Sample records for fully automatic segmentation

  1. Comparison between manual and semi-automatic segmentation of nasal cavity and paranasal sinuses from CT images.

    PubMed

    Tingelhoff, K; Moral, A I; Kunkel, M E; Rilk, M; Wagner, I; Eichhorn, K G; Wahl, F M; Bootz, F

    2007-01-01

    Segmentation of medical image data is getting more and more important over the last years. The results are used for diagnosis, surgical planning or workspace definition of robot-assisted systems. The purpose of this paper is to find out whether manual or semi-automatic segmentation is adequate for ENT surgical workflow or whether fully automatic segmentation of paranasal sinuses and nasal cavity is needed. We present a comparison of manual and semi-automatic segmentation of paranasal sinuses and the nasal cavity. Manual segmentation is performed by custom software whereas semi-automatic segmentation is realized by a commercial product (Amira). For this study we used a CT dataset of the paranasal sinuses which consists of 98 transversal slices, each 1.0 mm thick, with a resolution of 512 x 512 pixels. For the analysis of both segmentation procedures we used volume, extension (width, length and height), segmentation time and 3D-reconstruction. The segmentation time was reduced from 960 minutes with manual to 215 minutes with semi-automatic segmentation. We found highest variances segmenting nasal cavity. For the paranasal sinuses manual and semi-automatic volume differences are not significant. Dependent on the segmentation accuracy both approaches deliver useful results and could be used for e.g. robot-assisted systems. Nevertheless both procedures are not useful for everyday surgical workflow, because they take too much time. Fully automatic and reproducible segmentation algorithms are needed for segmentation of paranasal sinuses and nasal cavity.

  2. A fully automatic three-step liver segmentation method on LDA-based probability maps for multiple contrast MR images.

    PubMed

    Gloger, Oliver; Kühn, Jens; Stanski, Adam; Völzke, Henry; Puls, Ralf

    2010-07-01

    Automatic 3D liver segmentation in magnetic resonance (MR) data sets has proven to be a very challenging task in the domain of medical image analysis. There exist numerous approaches for automatic 3D liver segmentation on computer tomography data sets that have influenced the segmentation of MR images. In contrast to previous approaches to liver segmentation in MR data sets, we use all available MR channel information of different weightings and formulate liver tissue and position probabilities in a probabilistic framework. We apply multiclass linear discriminant analysis as a fast and efficient dimensionality reduction technique and generate probability maps then used for segmentation. We develop a fully automatic three-step 3D segmentation approach based upon a modified region growing approach and a further threshold technique. Finally, we incorporate characteristic prior knowledge to improve the segmentation results. This novel 3D segmentation approach is modularized and can be applied for normal and fat accumulated liver tissue properties. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Fully automatic multi-atlas segmentation of CTA for partial volume correction in cardiac SPECT/CT

    NASA Astrophysics Data System (ADS)

    Liu, Qingyi; Mohy-ud-Din, Hassan; Boutagy, Nabil E.; Jiang, Mingyan; Ren, Silin; Stendahl, John C.; Sinusas, Albert J.; Liu, Chi

    2017-05-01

    Anatomical-based partial volume correction (PVC) has been shown to improve image quality and quantitative accuracy in cardiac SPECT/CT. However, this method requires manual segmentation of various organs from contrast-enhanced computed tomography angiography (CTA) data. In order to achieve fully automatic CTA segmentation for clinical translation, we investigated the most common multi-atlas segmentation methods. We also modified the multi-atlas segmentation method by introducing a novel label fusion algorithm for multiple organ segmentation to eliminate overlap and gap voxels. To evaluate our proposed automatic segmentation, eight canine 99mTc-labeled red blood cell SPECT/CT datasets that incorporated PVC were analyzed, using the leave-one-out approach. The Dice similarity coefficient of each organ was computed. Compared to the conventional label fusion method, our proposed label fusion method effectively eliminated gaps and overlaps and improved the CTA segmentation accuracy. The anatomical-based PVC of cardiac SPECT images with automatic multi-atlas segmentation provided consistent image quality and quantitative estimation of intramyocardial blood volume, as compared to those derived using manual segmentation. In conclusion, our proposed automatic multi-atlas segmentation method of CTAs is feasible, practical, and facilitates anatomical-based PVC of cardiac SPECT/CT images.

  4. Automatic Cell Segmentation in Fluorescence Images of Confluent Cell Monolayers Using Multi-object Geometric Deformable Model.

    PubMed

    Yang, Zhen; Bogovic, John A; Carass, Aaron; Ye, Mao; Searson, Peter C; Prince, Jerry L

    2013-03-13

    With the rapid development of microscopy for cell imaging, there is a strong and growing demand for image analysis software to quantitatively study cell morphology. Automatic cell segmentation is an important step in image analysis. Despite substantial progress, there is still a need to improve the accuracy, efficiency, and adaptability to different cell morphologies. In this paper, we propose a fully automatic method for segmenting cells in fluorescence images of confluent cell monolayers. This method addresses several challenges through a combination of ideas. 1) It realizes a fully automatic segmentation process by first detecting the cell nuclei as initial seeds and then using a multi-object geometric deformable model (MGDM) for final segmentation. 2) To deal with different defects in the fluorescence images, the cell junctions are enhanced by applying an order-statistic filter and principal curvature based image operator. 3) The final segmentation using MGDM promotes robust and accurate segmentation results, and guarantees no overlaps and gaps between neighboring cells. The automatic segmentation results are compared with manually delineated cells, and the average Dice coefficient over all distinguishable cells is 0.88.

  5. Fully automatic cervical vertebrae segmentation framework for X-ray images.

    PubMed

    Al Arif, S M Masudur Rahman; Knapp, Karen; Slabaugh, Greg

    2018-04-01

    The cervical spine is a highly flexible anatomy and therefore vulnerable to injuries. Unfortunately, a large number of injuries in lateral cervical X-ray images remain undiagnosed due to human errors. Computer-aided injury detection has the potential to reduce the risk of misdiagnosis. Towards building an automatic injury detection system, in this paper, we propose a deep learning-based fully automatic framework for segmentation of cervical vertebrae in X-ray images. The framework first localizes the spinal region in the image using a deep fully convolutional neural network. Then vertebra centers are localized using a novel deep probabilistic spatial regression network. Finally, a novel shape-aware deep segmentation network is used to segment the vertebrae in the image. The framework can take an X-ray image and produce a vertebrae segmentation result without any manual intervention. Each block of the fully automatic framework has been trained on a set of 124 X-ray images and tested on another 172 images, all collected from real-life hospital emergency rooms. A Dice similarity coefficient of 0.84 and a shape error of 1.69 mm have been achieved. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Fully automatic segmentation of femurs with medullary canal definition in high and in low resolution CT scans.

    PubMed

    Almeida, Diogo F; Ruben, Rui B; Folgado, João; Fernandes, Paulo R; Audenaert, Emmanuel; Verhegghe, Benedict; De Beule, Matthieu

    2016-12-01

    Femur segmentation can be an important tool in orthopedic surgical planning. However, in order to overcome the need of an experienced user with extensive knowledge on the techniques, segmentation should be fully automatic. In this paper a new fully automatic femur segmentation method for CT images is presented. This method is also able to define automatically the medullary canal and performs well even in low resolution CT scans. Fully automatic femoral segmentation was performed adapting a template mesh of the femoral volume to medical images. In order to achieve this, an adaptation of the active shape model (ASM) technique based on the statistical shape model (SSM) and local appearance model (LAM) of the femur with a novel initialization method was used, to drive the template mesh deformation in order to fit the in-image femoral shape in a time effective approach. With the proposed method a 98% convergence rate was achieved. For high resolution CT images group the average error is less than 1mm. For the low resolution image group the results are also accurate and the average error is less than 1.5mm. The proposed segmentation pipeline is accurate, robust and completely user free. The method is robust to patient orientation, image artifacts and poorly defined edges. The results excelled even in CT images with a significant slice thickness, i.e., above 5mm. Medullary canal segmentation increases the geometric information that can be used in orthopedic surgical planning or in finite element analysis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  7. Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI.

    PubMed

    Zhou, Yongxin; Bai, Jing

    2007-01-01

    A framework that combines atlas registration, fuzzy connectedness (FC) segmentation, and parametric bias field correction (PABIC) is proposed for the automatic segmentation of brain magnetic resonance imaging (MRI). First, the atlas is registered onto the MRI to initialize the following FC segmentation. Original techniques are proposed to estimate necessary initial parameters of FC segmentation. Further, the result of the FC segmentation is utilized to initialize a following PABIC algorithm. Finally, we re-apply the FC technique on the PABIC corrected MRI to get the final segmentation. Thus, we avoid expert human intervention and provide a fully automatic method for brain MRI segmentation. Experiments on both simulated and real MRI images demonstrate the validity of the method, as well as the limitation of the method. Being a fully automatic method, it is expected to find wide applications, such as three-dimensional visualization, radiation therapy planning, and medical database construction.

  8. Automatic short axis orientation of the left ventricle in 3D ultrasound recordings

    NASA Astrophysics Data System (ADS)

    Pedrosa, João.; Heyde, Brecht; Heeren, Laurens; Engvall, Jan; Zamorano, Jose; Papachristidis, Alexandros; Edvardsen, Thor; Claus, Piet; D'hooge, Jan

    2016-04-01

    The recent advent of three-dimensional echocardiography has led to an increased interest from the scientific community in left ventricle segmentation frameworks for cardiac volume and function assessment. An automatic orientation of the segmented left ventricular mesh is an important step to obtain a point-to-point correspondence between the mesh and the cardiac anatomy. Furthermore, this would allow for an automatic division of the left ventricle into the standard 17 segments and, thus, fully automatic per-segment analysis, e.g. regional strain assessment. In this work, a method for fully automatic short axis orientation of the segmented left ventricle is presented. The proposed framework aims at detecting the inferior right ventricular insertion point. 211 three-dimensional echocardiographic images were used to validate this framework by comparison to manual annotation of the inferior right ventricular insertion point. A mean unsigned error of 8, 05° +/- 18, 50° was found, whereas the mean signed error was 1, 09°. Large deviations between the manual and automatic annotations (> 30°) only occurred in 3, 79% of cases. The average computation time was 666ms in a non-optimized MATLAB environment, which potentiates real-time application. In conclusion, a successful automatic real-time method for orientation of the segmented left ventricle is proposed.

  9. Fully automatic detection and segmentation of abdominal aortic thrombus in post-operative CTA images using Deep Convolutional Neural Networks.

    PubMed

    López-Linares, Karen; Aranjuelo, Nerea; Kabongo, Luis; Maclair, Gregory; Lete, Nerea; Ceresa, Mario; García-Familiar, Ainhoa; Macía, Iván; González Ballester, Miguel A

    2018-05-01

    Computerized Tomography Angiography (CTA) based follow-up of Abdominal Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair (EVAR) is essential to evaluate the progress of the patient and detect complications. In this context, accurate quantification of post-operative thrombus volume is required. However, a proper evaluation is hindered by the lack of automatic, robust and reproducible thrombus segmentation algorithms. We propose a new fully automatic approach based on Deep Convolutional Neural Networks (DCNN) for robust and reproducible thrombus region of interest detection and subsequent fine thrombus segmentation. The DetecNet detection network is adapted to perform region of interest extraction from a complete CTA and a new segmentation network architecture, based on Fully Convolutional Networks and a Holistically-Nested Edge Detection Network, is presented. These networks are trained, validated and tested in 13 post-operative CTA volumes of different patients using a 4-fold cross-validation approach to provide more robustness to the results. Our pipeline achieves a Dice score of more than 82% for post-operative thrombus segmentation and provides a mean relative volume difference between ground truth and automatic segmentation that lays within the experienced human observer variance without the need of human intervention in most common cases. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Automatic segmentation of vessels in in-vivo ultrasound scans

    NASA Astrophysics Data System (ADS)

    Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin; Arendt Jensen, Jørgen

    2017-03-01

    Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers "8L2 Linear" and "10L2w Wide Linear" (BK Ultrasound, Herlev, Denmark). The algorithm was evaluated empirically and applied to a dataset of in-vivo 1770 images recorded from 8 healthy subjects. The segmentation results were compared to manual delineation performed by two experienced users. The results showed a sensitivity and specificity of 90.41+/-11.2 % and 97.93+/-5.7% (mean+/-standard deviation), respectively. The amount of overlap of segmentation and manual segmentation, was measured by the Dice similarity coefficient, which was 91.25+/-11.6%. The empirical results demonstrated the feasibility of segmenting the vessel lumen in ultrasound scans using a fully automatic algorithm.

  11. AISLE: an automatic volumetric segmentation method for the study of lung allometry.

    PubMed

    Ren, Hongliang; Kazanzides, Peter

    2011-01-01

    We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.

  12. Fully automatic left ventricular myocardial strain estimation in 2D short-axis tagged magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Morais, Pedro; Queirós, Sandro; Heyde, Brecht; Engvall, Jan; 'hooge, Jan D.; Vilaça, João L.

    2017-09-01

    Cardiovascular diseases are among the leading causes of death and frequently result in local myocardial dysfunction. Among the numerous imaging modalities available to detect these dysfunctional regions, cardiac deformation imaging through tagged magnetic resonance imaging (t-MRI) has been an attractive approach. Nevertheless, fully automatic analysis of these data sets is still challenging. In this work, we present a fully automatic framework to estimate left ventricular myocardial deformation from t-MRI. This strategy performs automatic myocardial segmentation based on B-spline explicit active surfaces, which are initialized using an annular model. A non-rigid image-registration technique is then used to assess myocardial deformation. Three experiments were set up to validate the proposed framework using a clinical database of 75 patients. First, automatic segmentation accuracy was evaluated by comparing against manual delineations at one specific cardiac phase. The proposed solution showed an average perpendicular distance error of 2.35  ±  1.21 mm and 2.27  ±  1.02 mm for the endo- and epicardium, respectively. Second, starting from either manual or automatic segmentation, myocardial tracking was performed and the resulting strain curves were compared. It is shown that the automatic segmentation adds negligible differences during the strain-estimation stage, corroborating its accuracy. Finally, segmental strain was compared with scar tissue extent determined by delay-enhanced MRI. The results proved that both strain components were able to distinguish between normal and infarct regions. Overall, the proposed framework was shown to be accurate, robust, and attractive for clinical practice, as it overcomes several limitations of a manual analysis.

  13. Quantification of regional fat volume in rat MRI

    NASA Astrophysics Data System (ADS)

    Sacha, Jaroslaw P.; Cockman, Michael D.; Dufresne, Thomas E.; Trokhan, Darren

    2003-05-01

    Multiple initiatives in the pharmaceutical and beauty care industries are directed at identifying therapies for weight management. Body composition measurements are critical for such initiatives. Imaging technologies that can be used to measure body composition noninvasively include DXA (dual energy x-ray absorptiometry) and MRI (magnetic resonance imaging). Unlike other approaches, MRI provides the ability to perform localized measurements of fat distribution. Several factors complicate the automatic delineation of fat regions and quantification of fat volumes. These include motion artifacts, field non-uniformity, brightness and contrast variations, chemical shift misregistration, and ambiguity in delineating anatomical structures. We have developed an approach to deal practically with those challenges. The approach is implemented in a package, the Fat Volume Tool, for automatic detection of fat tissue in MR images of the rat abdomen, including automatic discrimination between abdominal and subcutaneous regions. We suppress motion artifacts using masking based on detection of implicit landmarks in the images. Adaptive object extraction is used to compensate for intensity variations. This approach enables us to perform fat tissue detection and quantification in a fully automated manner. The package can also operate in manual mode, which can be used for verification of the automatic analysis or for performing supervised segmentation. In supervised segmentation, the operator has the ability to interact with the automatic segmentation procedures to touch-up or completely overwrite intermediate segmentation steps. The operator's interventions steer the automatic segmentation steps that follow. This improves the efficiency and quality of the final segmentation. Semi-automatic segmentation tools (interactive region growing, live-wire, etc.) improve both the accuracy and throughput of the operator when working in manual mode. The quality of automatic segmentation has been evaluated by comparing the results of fully automated analysis to manual analysis of the same images. The comparison shows a high degree of correlation that validates the quality of the automatic segmentation approach.

  14. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.

    PubMed

    Hu, Peijun; Wu, Fa; Peng, Jialin; Bao, Yuanyuan; Chen, Feng; Kong, Dexing

    2017-03-01

    Multi-organ segmentation from CT images is an essential step for computer-aided diagnosis and surgery planning. However, manual delineation of the organs by radiologists is tedious, time-consuming and poorly reproducible. Therefore, we propose a fully automatic method for the segmentation of multiple organs from three-dimensional abdominal CT images. The proposed method employs deep fully convolutional neural networks (CNNs) for organ detection and segmentation, which is further refined by a time-implicit multi-phase evolution method. Firstly, a 3D CNN is trained to automatically localize and delineate the organs of interest with a probability prediction map. The learned probability map provides both subject-specific spatial priors and initialization for subsequent fine segmentation. Then, for the refinement of the multi-organ segmentation, image intensity models, probability priors as well as a disjoint region constraint are incorporated into an unified energy functional. Finally, a novel time-implicit multi-phase level-set algorithm is utilized to efficiently optimize the proposed energy functional model. Our method has been evaluated on 140 abdominal CT scans for the segmentation of four organs (liver, spleen and both kidneys). With respect to the ground truth, average Dice overlap ratios for the liver, spleen and both kidneys are 96.0, 94.2 and 95.4%, respectively, and average symmetric surface distance is less than 1.3 mm for all the segmented organs. The computation time for a CT volume is 125 s in average. The achieved accuracy compares well to state-of-the-art methods with much higher efficiency. A fully automatic method for multi-organ segmentation from abdominal CT images was developed and evaluated. The results demonstrated its potential in clinical usage with high effectiveness, robustness and efficiency.

  15. Fully automatic segmentation of the femur from 3D-CT images using primitive shape recognition and statistical shape models.

    PubMed

    Ben Younes, Lassad; Nakajima, Yoshikazu; Saito, Toki

    2014-03-01

    Femur segmentation is well established and widely used in computer-assisted orthopedic surgery. However, most of the robust segmentation methods such as statistical shape models (SSM) require human intervention to provide an initial position for the SSM. In this paper, we propose to overcome this problem and provide a fully automatic femur segmentation method for CT images based on primitive shape recognition and SSM. Femur segmentation in CT scans was performed using primitive shape recognition based on a robust algorithm such as the Hough transform and RANdom SAmple Consensus. The proposed method is divided into 3 steps: (1) detection of the femoral head as sphere and the femoral shaft as cylinder in the SSM and the CT images, (2) rigid registration between primitives of SSM and CT image to initialize the SSM into the CT image, and (3) fitting of the SSM to the CT image edge using an affine transformation followed by a nonlinear fitting. The automated method provided good results even with a high number of outliers. The difference of segmentation error between the proposed automatic initialization method and a manual initialization method is less than 1 mm. The proposed method detects primitive shape position to initialize the SSM into the target image. Based on primitive shapes, this method overcomes the problem of inter-patient variability. Moreover, the results demonstrate that our method of primitive shape recognition can be used for 3D SSM initialization to achieve fully automatic segmentation of the femur.

  16. A hybrid 3D region growing and 4D curvature analysis-based automatic abdominal blood vessel segmentation through contrast enhanced CT

    NASA Astrophysics Data System (ADS)

    Maklad, Ahmed S.; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Shimada, Mitsuo; Iinuma, Gen

    2017-03-01

    In abdominal disease diagnosis and various abdominal surgeries planning, segmentation of abdominal blood vessel (ABVs) is a very imperative task. Automatic segmentation enables fast and accurate processing of ABVs. We proposed a fully automatic approach for segmenting ABVs through contrast enhanced CT images by a hybrid of 3D region growing and 4D curvature analysis. The proposed method comprises three stages. First, candidates of bone, kidneys, ABVs and heart are segmented by an auto-adapted threshold. Second, bone is auto-segmented and classified into spine, ribs and pelvis. Third, ABVs are automatically segmented in two sub-steps: (1) kidneys and abdominal part of the heart are segmented, (2) ABVs are segmented by a hybrid approach that integrates a 3D region growing and 4D curvature analysis. Results are compared with two conventional methods. Results show that the proposed method is very promising in segmenting and classifying bone, segmenting whole ABVs and may have potential utility in clinical use.

  17. Brain tumor segmentation in MR slices using improved GrowCut algorithm

    NASA Astrophysics Data System (ADS)

    Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Chen, Liang; Shi, Zhifeng; Mao, Ying

    2015-12-01

    The detection of brain tumor from MR images is very significant for medical diagnosis and treatment. However, the existing methods are mostly based on manual or semiautomatic segmentation which are awkward when dealing with a large amount of MR slices. In this paper, a new fully automatic method for the segmentation of brain tumors in MR slices is presented. Based on the hypothesis of the symmetric brain structure, the method improves the interactive GrowCut algorithm by further using the bounding box algorithm in the pre-processing step. More importantly, local reflectional symmetry is used to make up the deficiency of the bounding box method. After segmentation, 3D tumor image is reconstructed. We evaluate the accuracy of the proposed method on MR slices with synthetic tumors and actual clinical MR images. Result of the proposed method is compared with the actual position of simulated 3D tumor qualitatively and quantitatively. In addition, our automatic method produces equivalent performance as manual segmentation and the interactive GrowCut with manual interference while providing fully automatic segmentation.

  18. Automatic segmentation of abdominal organs and adipose tissue compartments in water-fat MRI: Application to weight-loss in obesity.

    PubMed

    Shen, Jun; Baum, Thomas; Cordes, Christian; Ott, Beate; Skurk, Thomas; Kooijman, Hendrik; Rummeny, Ernst J; Hauner, Hans; Menze, Bjoern H; Karampinos, Dimitrios C

    2016-09-01

    To develop a fully automatic algorithm for abdominal organs and adipose tissue compartments segmentation and to assess organ and adipose tissue volume changes in longitudinal water-fat magnetic resonance imaging (MRI) data. Axial two-point Dixon images were acquired in 20 obese women (age range 24-65, BMI 34.9±3.8kg/m(2)) before and after a four-week calorie restriction. Abdominal organs, subcutaneous adipose tissue (SAT) compartments (abdominal, anterior, posterior), SAT regions along the feet-head direction and regional visceral adipose tissue (VAT) were assessed by a fully automatic algorithm using morphological operations and a multi-atlas-based segmentation method. The accuracy of organ segmentation represented by Dice coefficients ranged from 0.672±0.155 for the pancreas to 0.943±0.023 for the liver. Abdominal SAT changes were significantly greater in the posterior than the anterior SAT compartment (-11.4%±5.1% versus -9.5%±6.3%, p<0.001). The loss of VAT that was not located around any organ (-16.1%±8.9%) was significantly greater than the loss of VAT 5cm around liver, left and right kidney, spleen, and pancreas (p<0.05). The presented fully automatic algorithm showed good performance in abdominal adipose tissue and organ segmentation, and allowed the detection of SAT and VAT subcompartments changes during weight loss. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Fully automated, real-time 3D ultrasound segmentation to estimate first trimester placental volume using deep learning.

    PubMed

    Looney, Pádraig; Stevenson, Gordon N; Nicolaides, Kypros H; Plasencia, Walter; Molloholli, Malid; Natsis, Stavros; Collins, Sally L

    2018-06-07

    We present a new technique to fully automate the segmentation of an organ from 3D ultrasound (3D-US) volumes, using the placenta as the target organ. Image analysis tools to estimate organ volume do exist but are too time consuming and operator dependant. Fully automating the segmentation process would potentially allow the use of placental volume to screen for increased risk of pregnancy complications. The placenta was segmented from 2,393 first trimester 3D-US volumes using a semiautomated technique. This was quality controlled by three operators to produce the "ground-truth" data set. A fully convolutional neural network (OxNNet) was trained using this ground-truth data set to automatically segment the placenta. OxNNet delivered state-of-the-art automatic segmentation. The effect of training set size on the performance of OxNNet demonstrated the need for large data sets. The clinical utility of placental volume was tested by looking at predictions of small-for-gestational-age babies at term. The receiver-operating characteristics curves demonstrated almost identical results between OxNNet and the ground-truth). Our results demonstrated good similarity to the ground-truth and almost identical clinical results for the prediction of SGA.

  20. White matter lesion extension to automatic brain tissue segmentation on MRI.

    PubMed

    de Boer, Renske; Vrooman, Henri A; van der Lijn, Fedde; Vernooij, Meike W; Ikram, M Arfan; van der Lugt, Aad; Breteler, Monique M B; Niessen, Wiro J

    2009-05-01

    A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.

  1. Computer-aided endovascular aortic repair using fully automated two- and three-dimensional fusion imaging.

    PubMed

    Panuccio, Giuseppe; Torsello, Giovanni Federico; Pfister, Markus; Bisdas, Theodosios; Bosiers, Michel J; Torsello, Giovanni; Austermann, Martin

    2016-12-01

    To assess the usability of a fully automated fusion imaging engine prototype, matching preinterventional computed tomography with intraoperative fluoroscopic angiography during endovascular aortic repair. From June 2014 to February 2015, all patients treated electively for abdominal and thoracoabdominal aneurysms were enrolled prospectively. Before each procedure, preoperative planning was performed with a fully automated fusion engine prototype based on computed tomography angiography, creating a mesh model of the aorta. In a second step, this three-dimensional dataset was registered with the two-dimensional intraoperative fluoroscopy. The main outcome measure was the applicability of the fully automated fusion engine. Secondary outcomes were freedom from failure of automatic segmentation or of the automatic registration as well as accuracy of the mesh model, measuring deviations from intraoperative angiography in millimeters, if applicable. Twenty-five patients were enrolled in this study. The fusion imaging engine could be used in successfully 92% of the cases (n = 23). Freedom from failure of automatic segmentation was 44% (n = 11). The freedom from failure of the automatic registration was 76% (n = 19), the median error of the automatic registration process was 0 mm (interquartile range, 0-5 mm). The fully automated fusion imaging engine was found to be applicable in most cases, albeit in several cases a fully automated data processing was not possible, requiring manual intervention. The accuracy of the automatic registration yielded excellent results and promises a useful and simple to use technology. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  2. Automatic multi-organ segmentation using learning-based segmentation and level set optimization.

    PubMed

    Kohlberger, Timo; Sofka, Michal; Zhang, Jingdan; Birkbeck, Neil; Wetzl, Jens; Kaftan, Jens; Declerck, Jérôme; Zhou, S Kevin

    2011-01-01

    We present a novel generic segmentation system for the fully automatic multi-organ segmentation from CT medical images. Thereby we combine the advantages of learning-based approaches on point cloud-based shape representation, such a speed, robustness, point correspondences, with those of PDE-optimization-based level set approaches, such as high accuracy and the straightforward prevention of segment overlaps. In a benchmark on 10-100 annotated datasets for the liver, the lungs, and the kidneys we show that the proposed system yields segmentation accuracies of 1.17-2.89 mm average surface errors. Thereby the level set segmentation (which is initialized by the learning-based segmentations) contributes with an 20%-40% increase in accuracy.

  3. A Modular Hierarchical Approach to 3D Electron Microscopy Image Segmentation

    PubMed Central

    Liu, Ting; Jones, Cory; Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2014-01-01

    The study of neural circuit reconstruction, i.e., connectomics, is a challenging problem in neuroscience. Automated and semi-automated electron microscopy (EM) image analysis can be tremendously helpful for connectomics research. In this paper, we propose a fully automatic approach for intra-section segmentation and inter-section reconstruction of neurons using EM images. A hierarchical merge tree structure is built to represent multiple region hypotheses and supervised classification techniques are used to evaluate their potentials, based on which we resolve the merge tree with consistency constraints to acquire final intra-section segmentation. Then, we use a supervised learning based linking procedure for the inter-section neuron reconstruction. Also, we develop a semi-automatic method that utilizes the intermediate outputs of our automatic algorithm and achieves intra-segmentation with minimal user intervention. The experimental results show that our automatic method can achieve close-to-human intra-segmentation accuracy and state-of-the-art inter-section reconstruction accuracy. We also show that our semi-automatic method can further improve the intra-segmentation accuracy. PMID:24491638

  4. Surface smoothness: cartilage biomarkers for knee OA beyond the radiologist

    NASA Astrophysics Data System (ADS)

    Tummala, Sudhakar; Dam, Erik B.

    2010-03-01

    Fully automatic imaging biomarkers may allow quantification of patho-physiological processes that a radiologist would not be able to assess reliably. This can introduce new insight but is problematic to validate due to lack of meaningful ground truth expert measurements. Rather than quantification accuracy, such novel markers must therefore be validated against clinically meaningful end-goals such as the ability to allow correct diagnosis. We present a method for automatic cartilage surface smoothness quantification in the knee joint. The quantification is based on a curvature flow method used on tibial and femoral cartilage compartments resulting from an automatic segmentation scheme. These smoothness estimates are validated for their ability to diagnose osteoarthritis and compared to smoothness estimates based on manual expert segmentations and to conventional cartilage volume quantification. We demonstrate that the fully automatic markers eliminate the time required for radiologist annotations, and in addition provide a diagnostic marker superior to the evaluated semi-manual markers.

  5. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data

    NASA Astrophysics Data System (ADS)

    Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry

    2015-11-01

    In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.

  6. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data.

    PubMed

    Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry

    2015-11-21

    In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.

  7. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI.

    PubMed

    Avendi, M R; Kheradvar, Arash; Jafarkhani, Hamid

    2016-05-01

    Segmentation of the left ventricle (LV) from cardiac magnetic resonance imaging (MRI) datasets is an essential step for calculation of clinical indices such as ventricular volume and ejection fraction. In this work, we employ deep learning algorithms combined with deformable models to develop and evaluate a fully automatic LV segmentation tool from short-axis cardiac MRI datasets. The method employs deep learning algorithms to learn the segmentation task from the ground true data. Convolutional networks are employed to automatically detect the LV chamber in MRI dataset. Stacked autoencoders are used to infer the LV shape. The inferred shape is incorporated into deformable models to improve the accuracy and robustness of the segmentation. We validated our method using 45 cardiac MR datasets from the MICCAI 2009 LV segmentation challenge and showed that it outperforms the state-of-the art methods. Excellent agreement with the ground truth was achieved. Validation metrics, percentage of good contours, Dice metric, average perpendicular distance and conformity, were computed as 96.69%, 0.94, 1.81 mm and 0.86, versus those of 79.2-95.62%, 0.87-0.9, 1.76-2.97 mm and 0.67-0.78, obtained by other methods, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciller, Carlos, E-mail: carlos.cillerruiz@unil.ch; Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern; Centre d’Imagerie BioMédicale, University of Lausanne, Lausanne

    Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manualmore » and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.« less

  9. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma.

    PubMed

    Ciller, Carlos; De Zanet, Sandro I; Rüegsegger, Michael B; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L; Kowal, Jens H; Cuadra, Meritxell Bach

    2015-07-15

    Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Deep convolutional neural network for prostate MR segmentation

    NASA Astrophysics Data System (ADS)

    Tian, Zhiqiang; Liu, Lizhi; Fei, Baowei

    2017-03-01

    Automatic segmentation of the prostate in magnetic resonance imaging (MRI) has many applications in prostate cancer diagnosis and therapy. We propose a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage based on prostate MR images and the corresponding ground truths, and learns to make inference for pixel-wise segmentation. Experiments were performed on our in-house data set, which contains prostate MR images of 20 patients. The proposed CNN model obtained a mean Dice similarity coefficient of 85.3%+/-3.2% as compared to the manual segmentation. Experimental results show that our deep CNN model could yield satisfactory segmentation of the prostate.

  11. Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections

    NASA Astrophysics Data System (ADS)

    Bertholet, J.; Wan, H.; Toftegaard, J.; Schmidt, M. L.; Chotard, F.; Parikh, P. J.; Poulsen, P. R.

    2017-02-01

    Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated. The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio. For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations.

  12. Automatic segmentation and quantification of the cardiac structures from non-contrast-enhanced cardiac CT scans

    NASA Astrophysics Data System (ADS)

    Shahzad, Rahil; Bos, Daniel; Budde, Ricardo P. J.; Pellikaan, Karlijn; Niessen, Wiro J.; van der Lugt, Aad; van Walsum, Theo

    2017-05-01

    Early structural changes to the heart, including the chambers and the coronary arteries, provide important information on pre-clinical heart disease like cardiac failure. Currently, contrast-enhanced cardiac computed tomography angiography (CCTA) is the preferred modality for the visualization of the cardiac chambers and the coronaries. In clinical practice not every patient undergoes a CCTA scan; many patients receive only a non-contrast-enhanced calcium scoring CT scan (CTCS), which has less radiation dose and does not require the administration of contrast agent. Quantifying cardiac structures in such images is challenging, as they lack the contrast present in CCTA scans. Such quantification would however be relevant, as it enables population based studies with only a CTCS scan. The purpose of this work is therefore to investigate the feasibility of automatic segmentation and quantification of cardiac structures viz whole heart, left atrium, left ventricle, right atrium, right ventricle and aortic root from CTCS scans. A fully automatic multi-atlas-based segmentation approach is used to segment the cardiac structures. Results show that the segmentation overlap between the automatic method and that of the reference standard have a Dice similarity coefficient of 0.91 on average for the cardiac chambers. The mean surface-to-surface distance error over all the cardiac structures is 1.4+/- 1.7 mm. The automatically obtained cardiac chamber volumes using the CTCS scans have an excellent correlation when compared to the volumes in corresponding CCTA scans, a Pearson correlation coefficient (R) of 0.95 is obtained. Our fully automatic method enables large-scale assessment of cardiac structures on non-contrast-enhanced CT scans.

  13. Automatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion

    PubMed Central

    Ma, Da; Cardoso, Manuel J.; Modat, Marc; Powell, Nick; Wells, Jack; Holmes, Holly; Wiseman, Frances; Tybulewicz, Victor; Fisher, Elizabeth; Lythgoe, Mark F.; Ourselin, Sébastien

    2014-01-01

    Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopts the similarity and truth estimation for propagated segmentations (STEPS) algorithm, which utilises a locally normalised cross correlation similarity metric for atlas selection and an extended simultaneous truth and performance level estimation (STAPLE) framework for multi-label fusion. The segmentation accuracy of the multi-atlas framework was evaluated using publicly available mouse brain atlas databases with pre-segmented manually labelled anatomical structures as the gold standard, and optimised parameters were obtained for the STEPS algorithm in the label fusion to achieve the best segmentation accuracy. We showed that our multi-atlas framework resulted in significantly higher segmentation accuracy compared to single-atlas based segmentation, as well as to the original STAPLE framework. PMID:24475148

  14. An automatic multi-atlas prostate segmentation in MRI using a multiscale representation and a label fusion strategy

    NASA Astrophysics Data System (ADS)

    Álvarez, Charlens; Martínez, Fabio; Romero, Eduardo

    2015-01-01

    The pelvic magnetic Resonance images (MRI) are used in Prostate cancer radiotherapy (RT), a process which is part of the radiation planning. Modern protocols require a manual delineation, a tedious and variable activity that may take about 20 minutes per patient, even for trained experts. That considerable time is an important work ow burden in most radiological services. Automatic or semi-automatic methods might improve the efficiency by decreasing the measure times while conserving the required accuracy. This work presents a fully automatic atlas- based segmentation strategy that selects the more similar templates for a new MRI using a robust multi-scale SURF analysis. Then a new segmentation is achieved by a linear combination of the selected templates, which are previously non-rigidly registered towards the new image. The proposed method shows reliable segmentations, obtaining an average DICE Coefficient of 79%, when comparing with the expert manual segmentation, under a leave-one-out scheme with the training database.

  15. Fully automatic lesion segmentation in breast MRI using mean-shift and graph-cuts on a region adjacency graph.

    PubMed

    McClymont, Darryl; Mehnert, Andrew; Trakic, Adnan; Kennedy, Dominic; Crozier, Stuart

    2014-04-01

    To present and evaluate a fully automatic method for segmentation (i.e., detection and delineation) of suspicious tissue in breast MRI. The method, based on mean-shift clustering and graph-cuts on a region adjacency graph, was developed and its parameters tuned using multimodal (T1, T2, DCE-MRI) clinical breast MRI data from 35 subjects (training data). It was then tested using two data sets. Test set 1 comprises data for 85 subjects (93 lesions) acquired using the same protocol and scanner system used to acquire the training data. Test set 2 comprises data for eight subjects (nine lesions) acquired using a similar protocol but a different vendor's scanner system. Each lesion was manually delineated in three-dimensions by an experienced breast radiographer to establish segmentation ground truth. The regions of interest identified by the method were compared with the ground truth and the detection and delineation accuracies quantitatively evaluated. One hundred percent of the lesions were detected with a mean of 4.5 ± 1.2 false positives per subject. This false-positive rate is nearly 50% better than previously reported for a fully automatic breast lesion detection system. The median Dice coefficient for Test set 1 was 0.76 (interquartile range, 0.17), and 0.75 (interquartile range, 0.16) for Test set 2. The results demonstrate the efficacy and accuracy of the proposed method as well as its potential for direct application across different MRI systems. It is (to the authors' knowledge) the first fully automatic method for breast lesion detection and delineation in breast MRI.

  16. State of the art survey on MRI brain tumor segmentation.

    PubMed

    Gordillo, Nelly; Montseny, Eduard; Sobrevilla, Pilar

    2013-10-01

    Brain tumor segmentation consists of separating the different tumor tissues (solid or active tumor, edema, and necrosis) from normal brain tissues: gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). In brain tumor studies, the existence of abnormal tissues may be easily detectable most of the time. However, accurate and reproducible segmentation and characterization of abnormalities are not straightforward. In the past, many researchers in the field of medical imaging and soft computing have made significant survey in the field of brain tumor segmentation. Both semiautomatic and fully automatic methods have been proposed. Clinical acceptance of segmentation techniques has depended on the simplicity of the segmentation, and the degree of user supervision. Interactive or semiautomatic methods are likely to remain dominant in practice for some time, especially in these applications where erroneous interpretations are unacceptable. This article presents an overview of the most relevant brain tumor segmentation methods, conducted after the acquisition of the image. Given the advantages of magnetic resonance imaging over other diagnostic imaging, this survey is focused on MRI brain tumor segmentation. Semiautomatic and fully automatic techniques are emphasized. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Validation of automated white matter hyperintensity segmentation.

    PubMed

    Smart, Sean D; Firbank, Michael J; O'Brien, John T

    2011-01-01

    Introduction. White matter hyperintensities (WMHs) are a common finding on MRI scans of older people and are associated with vascular disease. We compared 3 methods for automatically segmenting WMHs from MRI scans. Method. An operator manually segmented WMHs on MRI images from a 3T scanner. The scans were also segmented in a fully automated fashion by three different programmes. The voxel overlap between manual and automated segmentation was compared. Results. Between observer overlap ratio was 63%. Using our previously described in-house software, we had overlap of 62.2%. We investigated the use of a modified version of SPM segmentation; however, this was not successful, with only 14% overlap. Discussion. Using our previously reported software, we demonstrated good segmentation of WMHs in a fully automated fashion.

  18. Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images.

    PubMed

    Harati, Vida; Khayati, Rasoul; Farzan, Abdolreza

    2011-07-01

    Uncontrollable and unlimited cell growth leads to tumor genesis in the brain. If brain tumors are not diagnosed early and cured properly, they could cause permanent brain damage or even death to patients. As in all methods of treatments, any information about tumor position and size is important for successful treatment; hence, finding an accurate and a fully automated method to give information to physicians is necessary. A fully automatic and accurate method for tumor region detection and segmentation in brain magnetic resonance (MR) images is suggested. The presented approach is an improved fuzzy connectedness (FC) algorithm based on a scale in which the seed point is selected automatically. This algorithm is independent of the tumor type in terms of its pixels intensity. Tumor segmentation evaluation results based on similarity criteria (similarity index (SI), overlap fraction (OF), and extra fraction (EF) are 92.89%, 91.75%, and 3.95%, respectively) indicate a higher performance of the proposed approach compared to the conventional methods, especially in MR images, in tumor regions with low contrast. Thus, the suggested method is useful for increasing the ability of automatic estimation of tumor size and position in brain tissues, which provides more accurate investigation of the required surgery, chemotherapy, and radiotherapy procedures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images

    PubMed Central

    Yan, Pingkum; Zhou, Xiaobo; Shah, Mubarak; Wong, Stephen T. C.

    2010-01-01

    High-throughput genome-wide RNA interference (RNAi) screening is emerging as an essential tool to assist biologists in understanding complex cellular processes. The large number of images produced in each study make manual analysis intractable; hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. In this paper, a fully automatic method for segmentation of cells from genome-wide RNAi screening images is proposed. Nuclei are first extracted from the DNA channel by using a modified watershed algorithm. Cells are then extracted by modeling the interaction between them as well as combining both gradient and region information in the Actin and Rac channels. A new energy functional is formulated based on a novel interaction model for segmenting tightly clustered cells with significant intensity variance and specific phenotypes. The energy functional is minimized by using a multiphase level set method, which leads to a highly effective cell segmentation method. Promising experimental results demonstrate that automatic segmentation of high-throughput genome-wide multichannel screening can be achieved by using the proposed method, which may also be extended to other multichannel image segmentation problems. PMID:18270043

  20. Automatic brain caudate nuclei segmentation and classification in diagnostic of Attention-Deficit/Hyperactivity Disorder.

    PubMed

    Igual, Laura; Soliva, Joan Carles; Escalera, Sergio; Gimeno, Roger; Vilarroya, Oscar; Radeva, Petia

    2012-12-01

    We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Automatic knee cartilage delineation using inheritable segmentation

    NASA Astrophysics Data System (ADS)

    Dries, Sebastian P. M.; Pekar, Vladimir; Bystrov, Daniel; Heese, Harald S.; Blaffert, Thomas; Bos, Clemens; van Muiswinkel, Arianne M. C.

    2008-03-01

    We present a fully automatic method for segmentation of knee joint cartilage from fat suppressed MRI. The method first applies 3-D model-based segmentation technology, which allows to reliably segment the femur, patella, and tibia by iterative adaptation of the model according to image gradients. Thin plate spline interpolation is used in the next step to position deformable cartilage models for each of the three bones with reference to the segmented bone models. After initialization, the cartilage models are fine adjusted by automatic iterative adaptation to image data based on gray value gradients. The method has been validated on a collection of 8 (3 left, 5 right) fat suppressed datasets and demonstrated the sensitivity of 83+/-6% compared to manual segmentation on a per voxel basis as primary endpoint. Gross cartilage volume measurement yielded an average error of 9+/-7% as secondary endpoint. For cartilage being a thin structure, already small deviations in distance result in large errors on a per voxel basis, rendering the primary endpoint a hard criterion.

  2. Automatic cerebrospinal fluid segmentation in non-contrast CT images using a 3D convolutional network

    NASA Astrophysics Data System (ADS)

    Patel, Ajay; van de Leemput, Sil C.; Prokop, Mathias; van Ginneken, Bram; Manniesing, Rashindra

    2017-03-01

    Segmentation of anatomical structures is fundamental in the development of computer aided diagnosis systems for cerebral pathologies. Manual annotations are laborious, time consuming and subject to human error and observer variability. Accurate quantification of cerebrospinal fluid (CSF) can be employed as a morphometric measure for diagnosis and patient outcome prediction. However, segmenting CSF in non-contrast CT images is complicated by low soft tissue contrast and image noise. In this paper we propose a state-of-the-art method using a multi-scale three-dimensional (3D) fully convolutional neural network (CNN) to automatically segment all CSF within the cranial cavity. The method is trained on a small dataset comprised of four manually annotated cerebral CT images. Quantitative evaluation of a separate test dataset of four images shows a mean Dice similarity coefficient of 0.87 +/- 0.01 and mean absolute volume difference of 4.77 +/- 2.70 %. The average prediction time was 68 seconds. Our method allows for fast and fully automated 3D segmentation of cerebral CSF in non-contrast CT, and shows promising results despite a limited amount of training data.

  3. PSNet: prostate segmentation on MRI based on a convolutional neural network.

    PubMed

    Tian, Zhiqiang; Liu, Lizhi; Zhang, Zhenfeng; Fei, Baowei

    2018-04-01

    Automatic segmentation of the prostate on magnetic resonance images (MRI) has many applications in prostate cancer diagnosis and therapy. We proposed a deep fully convolutional neural network (CNN) to segment the prostate automatically. Our deep CNN model is trained end-to-end in a single learning stage, which uses prostate MRI and the corresponding ground truths as inputs. The learned CNN model can be used to make an inference for pixel-wise segmentation. Experiments were performed on three data sets, which contain prostate MRI of 140 patients. The proposed CNN model of prostate segmentation (PSNet) obtained a mean Dice similarity coefficient of [Formula: see text] as compared to the manually labeled ground truth. Experimental results show that the proposed model could yield satisfactory segmentation of the prostate on MRI.

  4. Semi-automatic brain tumor segmentation by constrained MRFs using structural trajectories.

    PubMed

    Zhao, Liang; Wu, Wei; Corso, Jason J

    2013-01-01

    Quantifying volume and growth of a brain tumor is a primary prognostic measure and hence has received much attention in the medical imaging community. Most methods have sought a fully automatic segmentation, but the variability in shape and appearance of brain tumor has limited their success and further adoption in the clinic. In reaction, we present a semi-automatic brain tumor segmentation framework for multi-channel magnetic resonance (MR) images. This framework does not require prior model construction and only requires manual labels on one automatically selected slice. All other slices are labeled by an iterative multi-label Markov random field optimization with hard constraints. Structural trajectories-the medical image analog to optical flow and 3D image over-segmentation are used to capture pixel correspondences between consecutive slices for pixel labeling. We show robustness and effectiveness through an evaluation on the 2012 MICCAI BRATS Challenge Dataset; our results indicate superior performance to baselines and demonstrate the utility of the constrained MRF formulation.

  5. Gap-free segmentation of vascular networks with automatic image processing pipeline.

    PubMed

    Hsu, Chih-Yang; Ghaffari, Mahsa; Alaraj, Ali; Flannery, Michael; Zhou, Xiaohong Joe; Linninger, Andreas

    2017-03-01

    Current image processing techniques capture large vessels reliably but often fail to preserve connectivity in bifurcations and small vessels. Imaging artifacts and noise can create gaps and discontinuity of intensity that hinders segmentation of vascular trees. However, topological analysis of vascular trees require proper connectivity without gaps, loops or dangling segments. Proper tree connectivity is also important for high quality rendering of surface meshes for scientific visualization or 3D printing. We present a fully automated vessel enhancement pipeline with automated parameter settings for vessel enhancement of tree-like structures from customary imaging sources, including 3D rotational angiography, magnetic resonance angiography, magnetic resonance venography, and computed tomography angiography. The output of the filter pipeline is a vessel-enhanced image which is ideal for generating anatomical consistent network representations of the cerebral angioarchitecture for further topological or statistical analysis. The filter pipeline combined with computational modeling can potentially improve computer-aided diagnosis of cerebrovascular diseases by delivering biometrics and anatomy of the vasculature. It may serve as the first step in fully automatic epidemiological analysis of large clinical datasets. The automatic analysis would enable rigorous statistical comparison of biometrics in subject-specific vascular trees. The robust and accurate image segmentation using a validated filter pipeline would also eliminate operator dependency that has been observed in manual segmentation. Moreover, manual segmentation is time prohibitive given that vascular trees have more than thousands of segments and bifurcations so that interactive segmentation consumes excessive human resources. Subject-specific trees are a first step toward patient-specific hemodynamic simulations for assessing treatment outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. SU-C-201-04: Quantification of Perfusion Heterogeneity Based On Texture Analysis for Fully Automatic Detection of Ischemic Deficits From Myocardial Perfusion Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Y; Huang, H; Su, T

    Purpose: Texture-based quantification of image heterogeneity has been a popular topic for imaging studies in recent years. As previous studies mainly focus on oncological applications, we report our recent efforts of applying such techniques on cardiac perfusion imaging. A fully automated procedure has been developed to perform texture analysis for measuring the image heterogeneity. Clinical data were used to evaluate the preliminary performance of such methods. Methods: Myocardial perfusion images of Thallium-201 scans were collected from 293 patients with suspected coronary artery disease. Each subject underwent a Tl-201 scan and a percutaneous coronary intervention (PCI) within three months. The PCImore » Result was used as the gold standard of coronary ischemia of more than 70% stenosis. Each Tl-201 scan was spatially normalized to an image template for fully automatic segmentation of the LV. The segmented voxel intensities were then carried into the texture analysis with our open-source software Chang Gung Image Texture Analysis toolbox (CGITA). To evaluate the clinical performance of the image heterogeneity for detecting the coronary stenosis, receiver operating characteristic (ROC) analysis was used to compute the overall accuracy, sensitivity and specificity as well as the area under curve (AUC). Those indices were compared to those obtained from the commercially available semi-automatic software QPS. Results: With the fully automatic procedure to quantify heterogeneity from Tl-201 scans, we were able to achieve a good discrimination with good accuracy (74%), sensitivity (73%), specificity (77%) and AUC of 0.82. Such performance is similar to those obtained from the semi-automatic QPS software that gives a sensitivity of 71% and specificity of 77%. Conclusion: Based on fully automatic procedures of data processing, our preliminary data indicate that the image heterogeneity of myocardial perfusion imaging can provide useful information for automatic determination of the myocardial ischemia.« less

  7. Validation of Automated White Matter Hyperintensity Segmentation

    PubMed Central

    Smart, Sean D.; Firbank, Michael J.; O'Brien, John T.

    2011-01-01

    Introduction. White matter hyperintensities (WMHs) are a common finding on MRI scans of older people and are associated with vascular disease. We compared 3 methods for automatically segmenting WMHs from MRI scans. Method. An operator manually segmented WMHs on MRI images from a 3T scanner. The scans were also segmented in a fully automated fashion by three different programmes. The voxel overlap between manual and automated segmentation was compared. Results. Between observer overlap ratio was 63%. Using our previously described in-house software, we had overlap of 62.2%. We investigated the use of a modified version of SPM segmentation; however, this was not successful, with only 14% overlap. Discussion. Using our previously reported software, we demonstrated good segmentation of WMHs in a fully automated fashion. PMID:21904678

  8. A new user-assisted segmentation and tracking technique for an object-based video editing system

    NASA Astrophysics Data System (ADS)

    Yu, Hong Y.; Hong, Sung-Hoon; Lee, Mike M.; Choi, Jae-Gark

    2004-03-01

    This paper presents a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the user-guided and selected objects are continuously separated from the unselected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on these results, we have developed objects based video editing system with several convenient editing functions.

  9. Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry

    NASA Astrophysics Data System (ADS)

    Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2016-03-01

    Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.

  10. Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry.

    PubMed

    Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2016-03-22

    Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.

  11. Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks With Jaccard Distance.

    PubMed

    Yuan, Yading; Chao, Ming; Lo, Yeh-Chi

    2017-09-01

    Automatic skin lesion segmentation in dermoscopic images is a challenging task due to the low contrast between lesion and the surrounding skin, the irregular and fuzzy lesion borders, the existence of various artifacts, and various imaging acquisition conditions. In this paper, we present a fully automatic method for skin lesion segmentation by leveraging 19-layer deep convolutional neural networks that is trained end-to-end and does not rely on prior knowledge of the data. We propose a set of strategies to ensure effective and efficient learning with limited training data. Furthermore, we design a novel loss function based on Jaccard distance to eliminate the need of sample re-weighting, a typical procedure when using cross entropy as the loss function for image segmentation due to the strong imbalance between the number of foreground and background pixels. We evaluated the effectiveness, efficiency, as well as the generalization capability of the proposed framework on two publicly available databases. One is from ISBI 2016 skin lesion analysis towards melanoma detection challenge, and the other is the PH2 database. Experimental results showed that the proposed method outperformed other state-of-the-art algorithms on these two databases. Our method is general enough and only needs minimum pre- and post-processing, which allows its adoption in a variety of medical image segmentation tasks.

  12. Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry

    PubMed Central

    Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2016-01-01

    Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83–0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments. PMID:27001047

  13. Automatic coronary artery segmentation based on multi-domains remapping and quantile regression in angiographies.

    PubMed

    Li, Zhixun; Zhang, Yingtao; Gong, Huiling; Li, Weimin; Tang, Xianglong

    2016-12-01

    Coronary artery disease has become the most dangerous diseases to human life. And coronary artery segmentation is the basis of computer aided diagnosis and analysis. Existing segmentation methods are difficult to handle the complex vascular texture due to the projective nature in conventional coronary angiography. Due to large amount of data and complex vascular shapes, any manual annotation has become increasingly unrealistic. A fully automatic segmentation method is necessary in clinic practice. In this work, we study a method based on reliable boundaries via multi-domains remapping and robust discrepancy correction via distance balance and quantile regression for automatic coronary artery segmentation of angiography images. The proposed method can not only segment overlapping vascular structures robustly, but also achieve good performance in low contrast regions. The effectiveness of our approach is demonstrated on a variety of coronary blood vessels compared with the existing methods. The overall segmentation performances si, fnvf, fvpf and tpvf were 95.135%, 3.733%, 6.113%, 96.268%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Automatic MRI 2D brain segmentation using graph searching technique.

    PubMed

    Pedoia, Valentina; Binaghi, Elisabetta

    2013-09-01

    Accurate and efficient segmentation of the whole brain in magnetic resonance (MR) images is a key task in many neuroscience and medical studies either because the whole brain is the final anatomical structure of interest or because the automatic extraction facilitates further analysis. The problem of segmenting brain MRI images has been extensively addressed by many researchers. Despite the relevant achievements obtained, automated segmentation of brain MRI imagery is still a challenging problem whose solution has to cope with critical aspects such as anatomical variability and pathological deformation. In the present paper, we describe and experimentally evaluate a method for segmenting brain from MRI images basing on two-dimensional graph searching principles for border detection. The segmentation of the whole brain over the entire volume is accomplished slice by slice, automatically detecting frames including eyes. The method is fully automatic and easily reproducible by computing the internal main parameters directly from the image data. The segmentation procedure is conceived as a tool of general applicability, although design requirements are especially commensurate with the accuracy required in clinical tasks such as surgical planning and post-surgical assessment. Several experiments were performed to assess the performance of the algorithm on a varied set of MRI images obtaining good results in terms of accuracy and stability. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Automatic cortical segmentation in the developing brain.

    PubMed

    Xue, Hui; Srinivasan, Latha; Jiang, Shuzhou; Rutherford, Mary; Edwards, A David; Rueckert, Daniel; Hajnal, Jo V

    2007-01-01

    The segmentation of neonatal cortex from magnetic resonance (MR) images is much more challenging than the segmentation of cortex in adults. The main reason is the inverted contrast between grey matter (GM) and white matter (WM) that occurs when myelination is incomplete. This causes mislabeled partial volume voxels, especially at the interface between GM and cerebrospinal fluid (CSF). We propose a fully automatic cortical segmentation algorithm, detecting these mislabeled voxels using a knowledge-based approach and correcting errors by adjusting local priors to favor the correct classification. Our results show that the proposed algorithm corrects errors in the segmentation of both GM and WM compared to the classic EM scheme. The segmentation algorithm has been tested on 25 neonates with the gestational ages ranging from approximately 27 to 45 weeks. Quantitative comparison to the manual segmentation demonstrates good performance of the method (mean Dice similarity: 0.758 +/- 0.037 for GM and 0.794 +/- 0.078 for WM).

  16. A two-stage approach for fully automatic segmentation of venous vascular structures in liver CT images

    NASA Astrophysics Data System (ADS)

    Kaftan, Jens N.; Tek, Hüseyin; Aach, Til

    2009-02-01

    The segmentation of the hepatic vascular tree in computed tomography (CT) images is important for many applications such as surgical planning of oncological resections and living liver donations. In surgical planning, vessel segmentation is often used as basis to support the surgeon in the decision about the location of the cut to be performed and the extent of the liver to be removed, respectively. We present a novel approach to hepatic vessel segmentation that can be divided into two stages. First, we detect and delineate the core vessel components efficiently with a high specificity. Second, smaller vessel branches are segmented by a robust vessel tracking technique based on a medialness filter response, which starts from the terminal points of the previously segmented vessels. Specifically, in the first phase major vessels are segmented using the globally optimal graphcuts algorithm in combination with foreground and background seed detection, while the computationally more demanding tracking approach needs to be applied only locally in areas of smaller vessels within the second stage. The method has been evaluated on contrast-enhanced liver CT scans from clinical routine showing promising results. In addition to the fully-automatic instance of this method, the vessel tracking technique can also be used to easily add missing branches/sub-trees to an already existing segmentation result by adding single seed-points.

  17. Fully Automatic Segmentation of Fluorescein Leakage in Subjects With Diabetic Macular Edema

    PubMed Central

    Rabbani, Hossein; Allingham, Michael J.; Mettu, Priyatham S.; Cousins, Scott W.; Farsiu, Sina

    2015-01-01

    Purpose. To create and validate software to automatically segment leakage area in real-world clinical fluorescein angiography (FA) images of subjects with diabetic macular edema (DME). Methods. Fluorescein angiography images obtained from 24 eyes of 24 subjects with DME were retrospectively analyzed. Both video and still-frame images were obtained using a Heidelberg Spectralis 6-mode HRA/OCT unit. We aligned early and late FA frames in the video by a two-step nonrigid registration method. To remove background artifacts, we subtracted early and late FA frames. Finally, after postprocessing steps, including detection and inpainting of the vessels, a robust active contour method was utilized to obtain leakage area in a 1500-μm-radius circular region centered at the fovea. Images were captured at different fields of view (FOVs) and were often contaminated with outliers, as is the case in real-world clinical imaging. Our algorithm was applied to these images with no manual input. Separately, all images were manually segmented by two retina specialists. The sensitivity, specificity, and accuracy of manual interobserver, manual intraobserver, and automatic methods were calculated. Results. The mean accuracy was 0.86 ± 0.08 for automatic versus manual, 0.83 ± 0.16 for manual interobserver, and 0.90 ± 0.08 for manual intraobserver segmentation methods. Conclusions. Our fully automated algorithm can reproducibly and accurately quantify the area of leakage of clinical-grade FA video and is congruent with expert manual segmentation. The performance was reliable for different DME subtypes. This approach has the potential to reduce time and labor costs and may yield objective and reproducible quantitative measurements of DME imaging biomarkers. PMID:25634978

  18. Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema.

    PubMed

    Rabbani, Hossein; Allingham, Michael J; Mettu, Priyatham S; Cousins, Scott W; Farsiu, Sina

    2015-01-29

    To create and validate software to automatically segment leakage area in real-world clinical fluorescein angiography (FA) images of subjects with diabetic macular edema (DME). Fluorescein angiography images obtained from 24 eyes of 24 subjects with DME were retrospectively analyzed. Both video and still-frame images were obtained using a Heidelberg Spectralis 6-mode HRA/OCT unit. We aligned early and late FA frames in the video by a two-step nonrigid registration method. To remove background artifacts, we subtracted early and late FA frames. Finally, after postprocessing steps, including detection and inpainting of the vessels, a robust active contour method was utilized to obtain leakage area in a 1500-μm-radius circular region centered at the fovea. Images were captured at different fields of view (FOVs) and were often contaminated with outliers, as is the case in real-world clinical imaging. Our algorithm was applied to these images with no manual input. Separately, all images were manually segmented by two retina specialists. The sensitivity, specificity, and accuracy of manual interobserver, manual intraobserver, and automatic methods were calculated. The mean accuracy was 0.86 ± 0.08 for automatic versus manual, 0.83 ± 0.16 for manual interobserver, and 0.90 ± 0.08 for manual intraobserver segmentation methods. Our fully automated algorithm can reproducibly and accurately quantify the area of leakage of clinical-grade FA video and is congruent with expert manual segmentation. The performance was reliable for different DME subtypes. This approach has the potential to reduce time and labor costs and may yield objective and reproducible quantitative measurements of DME imaging biomarkers. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  19. An automatic quantification system for MS lesions with integrated DICOM structured reporting (DICOM-SR) for implementation within a clinical environment

    NASA Astrophysics Data System (ADS)

    Jacobs, Colin; Ma, Kevin; Moin, Paymann; Liu, Brent

    2010-03-01

    Multiple Sclerosis (MS) is a common neurological disease affecting the central nervous system characterized by pathologic changes including demyelination and axonal injury. MR imaging has become the most important tool to evaluate the disease progression of MS which is characterized by the occurrence of white matter lesions. Currently, radiologists evaluate and assess the multiple sclerosis lesions manually by estimating the lesion volume and amount of lesions. This process is extremely time-consuming and sensitive to intra- and inter-observer variability. Therefore, there is a need for automatic segmentation of the MS lesions followed by lesion quantification. We have developed a fully automatic segmentation algorithm to identify the MS lesions. The segmentation algorithm is accelerated by parallel computing using Graphics Processing Units (GPU) for practical implementation into a clinical environment. Subsequently, characterized quantification of the lesions is performed. The quantification results, which include lesion volume and amount of lesions, are stored in a structured report together with the lesion location in the brain to establish a standardized representation of the disease progression of the patient. The development of this structured report in collaboration with radiologists aims to facilitate outcome analysis and treatment assessment of the disease and will be standardized based on DICOM-SR. The results can be distributed to other DICOM-compliant clinical systems that support DICOM-SR such as PACS. In addition, the implementation of a fully automatic segmentation and quantification system together with a method for storing, distributing, and visualizing key imaging and informatics data in DICOM-SR for MS lesions improves the clinical workflow of radiologists and visualizations of the lesion segmentations and will provide 3-D insight into the distribution of lesions in the brain.

  20. Fully automatic algorithm for segmenting full human diaphragm in non-contrast CT Images

    NASA Astrophysics Data System (ADS)

    Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas

    2015-03-01

    The diaphragm is a sheet of muscle which separates the thorax from the abdomen and it acts as the most important muscle of the respiratory system. As such, an accurate segmentation of the diaphragm, not only provides key information for functional analysis of the respiratory system, but also can be used for locating other abdominal organs such as the liver. However, diaphragm segmentation is extremely challenging in non-contrast CT images due to the diaphragm's similar appearance to other abdominal organs. In this paper, we present a fully automatic algorithm for diaphragm segmentation in non-contrast CT images. The method is mainly based on a priori knowledge about the human diaphragm anatomy. The diaphragm domes are in contact with the lungs and the heart while its circumference runs along the lumbar vertebrae of the spine as well as the inferior border of the ribs and sternum. As such, the diaphragm can be delineated by segmentation of these organs followed by connecting relevant parts of their outline properly. More specifically, the bottom surface of the lungs and heart, the spine borders and the ribs are delineated, leading to a set of scattered points which represent the diaphragm's geometry. Next, a B-spline filter is used to find the smoothest surface which pass through these points. This algorithm was tested on a noncontrast CT image of a lung cancer patient. The results indicate that there is an average Hausdorff distance of 2.96 mm between the automatic and manually segmented diaphragms which implies a favourable accuracy.

  1. Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images.

    PubMed

    Simões, Rita; Mönninghoff, Christoph; Dlugaj, Martha; Weimar, Christian; Wanke, Isabel; van Cappellen van Walsum, Anne-Marie; Slump, Cornelis

    2013-09-01

    Magnetic Resonance (MR) white matter hyperintensities have been shown to predict an increased risk of developing cognitive decline. However, their actual role in the conversion to dementia is still not fully understood. Automatic segmentation methods can help in the screening and monitoring of Mild Cognitive Impairment patients who take part in large population-based studies. Most existing segmentation approaches use multimodal MR images. However, multiple acquisitions represent a limitation in terms of both patient comfort and computational complexity of the algorithms. In this work, we propose an automatic lesion segmentation method that uses only three-dimensional fluid-attenuation inversion recovery (FLAIR) images. We use a modified context-sensitive Gaussian mixture model to determine voxel class probabilities, followed by correction of FLAIR artifacts. We evaluate the method against the manual segmentation performed by an experienced neuroradiologist and compare the results with other unimodal segmentation approaches. Finally, we apply our method to the segmentation of multiple sclerosis lesions by using a publicly available benchmark dataset. Results show a similar performance to other state-of-the-art multimodal methods, as well as to the human rater. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Image segmentation evaluation for very-large datasets

    NASA Astrophysics Data System (ADS)

    Reeves, Anthony P.; Liu, Shuang; Xie, Yiting

    2016-03-01

    With the advent of modern machine learning methods and fully automated image analysis there is a need for very large image datasets having documented segmentations for both computer algorithm training and evaluation. Current approaches of visual inspection and manual markings do not scale well to big data. We present a new approach that depends on fully automated algorithm outcomes for segmentation documentation, requires no manual marking, and provides quantitative evaluation for computer algorithms. The documentation of new image segmentations and new algorithm outcomes are achieved by visual inspection. The burden of visual inspection on large datasets is minimized by (a) customized visualizations for rapid review and (b) reducing the number of cases to be reviewed through analysis of quantitative segmentation evaluation. This method has been applied to a dataset of 7,440 whole-lung CT images for 6 different segmentation algorithms designed to fully automatically facilitate the measurement of a number of very important quantitative image biomarkers. The results indicate that we could achieve 93% to 99% successful segmentation for these algorithms on this relatively large image database. The presented evaluation method may be scaled to much larger image databases.

  3. Accurate and Fully Automatic Hippocampus Segmentation Using Subject-Specific 3D Optimal Local Maps Into a Hybrid Active Contour Model

    PubMed Central

    Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos

    2014-01-01

    Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866

  4. Automatic brain tumor segmentation with a fast Mumford-Shah algorithm

    NASA Astrophysics Data System (ADS)

    Müller, Sabine; Weickert, Joachim; Graf, Norbert

    2016-03-01

    We propose a fully-automatic method for brain tumor segmentation that does not require any training phase. Our approach is based on a sequence of segmentations using the Mumford-Shah cartoon model with varying parameters. In order to come up with a very fast implementation, we extend the recent primal-dual algorithm of Strekalovskiy et al. (2014) from the 2D to the medically relevant 3D setting. Moreover, we suggest a new confidence refinement and show that it can increase the precision of our segmentations substantially. Our method is evaluated on 188 data sets with high-grade gliomas and 25 with low-grade gliomas from the BraTS14 database. Within a computation time of only three minutes, we achieve Dice scores that are comparable to state-of-the-art methods.

  5. Fully automatic detection and visualization of patient specific coronary supply regions

    NASA Astrophysics Data System (ADS)

    Fritz, Dominik; Wiedemann, Alexander; Dillmann, Ruediger; Scheuering, Michael

    2008-03-01

    Coronary territory maps, which associate myocardial regions with the corresponding coronary artery that supply them, are a common visualization technique to assist the physician in the diagnosis of coronary artery disease. However, the commonly used visualization is based on the AHA-17-segment model, which is an empirical population based model. Therefore, it does not necessarily cope with the often highly individual coronary anatomy of a specific patient. In this paper we introduce a novel fully automatic approach to compute the patient individual coronary supply regions in CTA datasets. This approach is divided in three consecutive steps. First, the aorta is fully automatically located in the dataset with a combination of a Hough transform and a cylindrical model matching approach. Having the location of the aorta, a segmentation and skeletonization of the coronary tree is triggered. In the next step, the three main branches (LAD, LCX and RCX) are automatically labeled, based on the knowledge of the pose of the aorta and the left ventricle. In the last step the labeled coronary tree is projected on the left ventricular surface, which can afterward be subdivided into the coronary supply regions, based on a Voronoi transform. The resulting supply regions can be either shown in 3D on the epicardiac surface of the left ventricle, or as a subdivision of a polarmap.

  6. Automated red blood cells extraction from holographic images using fully convolutional neural networks.

    PubMed

    Yi, Faliu; Moon, Inkyu; Javidi, Bahram

    2017-10-01

    In this paper, we present two models for automatically extracting red blood cells (RBCs) from RBCs holographic images based on a deep learning fully convolutional neural network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN approach with the marker-controlled watershed transform segmentation scheme to achieve RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second model has much better performance in terms of cell separation than traditional segmentation methods. In the proposed methods, the RBCs phase images are first numerically reconstructed from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some RBCs phase images are manually segmented and used as training data to fine-tune the FCN. Finally, each pixel in new input RBCs phase images is predicted into either foreground or background using the trained FCN models. The RBCs prediction result from the first model is the final segmentation result, whereas the result from the second model is used as the internal markers of the marker-controlled transform algorithm for further segmentation. Experimental results show that the given schemes can automatically extract RBCs from RBCs phase images and much better RBCs separation results are obtained when the FCN technique is combined with the marker-controlled watershed segmentation algorithm.

  7. Automated red blood cells extraction from holographic images using fully convolutional neural networks

    PubMed Central

    Yi, Faliu; Moon, Inkyu; Javidi, Bahram

    2017-01-01

    In this paper, we present two models for automatically extracting red blood cells (RBCs) from RBCs holographic images based on a deep learning fully convolutional neural network (FCN) algorithm. The first model, called FCN-1, only uses the FCN algorithm to carry out RBCs prediction, whereas the second model, called FCN-2, combines the FCN approach with the marker-controlled watershed transform segmentation scheme to achieve RBCs extraction. Both models achieve good segmentation accuracy. In addition, the second model has much better performance in terms of cell separation than traditional segmentation methods. In the proposed methods, the RBCs phase images are first numerically reconstructed from RBCs holograms recorded with off-axis digital holographic microscopy. Then, some RBCs phase images are manually segmented and used as training data to fine-tune the FCN. Finally, each pixel in new input RBCs phase images is predicted into either foreground or background using the trained FCN models. The RBCs prediction result from the first model is the final segmentation result, whereas the result from the second model is used as the internal markers of the marker-controlled transform algorithm for further segmentation. Experimental results show that the given schemes can automatically extract RBCs from RBCs phase images and much better RBCs separation results are obtained when the FCN technique is combined with the marker-controlled watershed segmentation algorithm. PMID:29082078

  8. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.

    PubMed

    Xu, Xuanang; Zhou, Fugen; Liu, Bo

    2018-03-19

    Automatic approach for bladder segmentation from computed tomography (CT) images is highly desirable in clinical practice. It is a challenging task since the bladder usually suffers large variations of appearance and low soft-tissue contrast in CT images. In this study, we present a deep learning-based approach which involves a convolutional neural network (CNN) and a 3D fully connected conditional random fields recurrent neural network (CRF-RNN) to perform accurate bladder segmentation. We also propose a novel preprocessing method, called dual-channel preprocessing, to further advance the segmentation performance of our approach. The presented approach works as following: first, we apply our proposed preprocessing method on the input CT image and obtain a dual-channel image which consists of the CT image and an enhanced bladder density map. Second, we exploit a CNN to predict a coarse voxel-wise bladder score map on this dual-channel image. Finally, a 3D fully connected CRF-RNN refines the coarse bladder score map and produce final fine-localized segmentation result. We compare our approach to the state-of-the-art V-net on a clinical dataset. Results show that our approach achieves superior segmentation accuracy, outperforming the V-net by a significant margin. The Dice Similarity Coefficient of our approach (92.24%) is 8.12% higher than that of the V-net. Moreover, the bladder probability maps performed by our approach present sharper boundaries and more accurate localizations compared with that of the V-net. Our approach achieves higher segmentation accuracy than the state-of-the-art method on clinical data. Both the dual-channel processing and the 3D fully connected CRF-RNN contribute to this improvement. The united deep network composed of the CNN and 3D CRF-RNN also outperforms a system where the CRF model acts as a post-processing method disconnected from the CNN.

  9. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.

    PubMed

    Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George

    2017-06-26

    We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.

  10. Primal/dual linear programming and statistical atlases for cartilage segmentation.

    PubMed

    Glocker, Ben; Komodakis, Nikos; Paragios, Nikos; Glaser, Christian; Tziritas, Georgios; Navab, Nassir

    2007-01-01

    In this paper we propose a novel approach for automatic segmentation of cartilage using a statistical atlas and efficient primal/dual linear programming. To this end, a novel statistical atlas construction is considered from registered training examples. Segmentation is then solved through registration which aims at deforming the atlas such that the conditional posterior of the learned (atlas) density is maximized with respect to the image. Such a task is reformulated using a discrete set of deformations and segmentation becomes equivalent to finding the set of local deformations which optimally match the model to the image. We evaluate our method on 56 MRI data sets (28 used for the model and 28 used for evaluation) and obtain a fully automatic segmentation of patella cartilage volume with an overlap ratio of 0.84 with a sensitivity and specificity of 94.06% and 99.92%, respectively.

  11. A fully automatic end-to-end method for content-based image retrieval of CT scans with similar liver lesion annotations.

    PubMed

    Spanier, A B; Caplan, N; Sosna, J; Acar, B; Joskowicz, L

    2018-01-01

    The goal of medical content-based image retrieval (M-CBIR) is to assist radiologists in the decision-making process by retrieving medical cases similar to a given image. One of the key interests of radiologists is lesions and their annotations, since the patient treatment depends on the lesion diagnosis. Therefore, a key feature of M-CBIR systems is the retrieval of scans with the most similar lesion annotations. To be of value, M-CBIR systems should be fully automatic to handle large case databases. We present a fully automatic end-to-end method for the retrieval of CT scans with similar liver lesion annotations. The input is a database of abdominal CT scans labeled with liver lesions, a query CT scan, and optionally one radiologist-specified lesion annotation of interest. The output is an ordered list of the database CT scans with the most similar liver lesion annotations. The method starts by automatically segmenting the liver in the scan. It then extracts a histogram-based features vector from the segmented region, learns the features' relative importance, and ranks the database scans according to the relative importance measure. The main advantages of our method are that it fully automates the end-to-end querying process, that it uses simple and efficient techniques that are scalable to large datasets, and that it produces quality retrieval results using an unannotated CT scan. Our experimental results on 9 CT queries on a dataset of 41 volumetric CT scans from the 2014 Image CLEF Liver Annotation Task yield an average retrieval accuracy (Normalized Discounted Cumulative Gain index) of 0.77 and 0.84 without/with annotation, respectively. Fully automatic end-to-end retrieval of similar cases based on image information alone, rather that on disease diagnosis, may help radiologists to better diagnose liver lesions.

  12. A Review on Automatic Mammographic Density and Parenchymal Segmentation

    PubMed Central

    He, Wenda; Juette, Arne; Denton, Erika R. E.; Oliver, Arnau

    2015-01-01

    Breast cancer is the most frequently diagnosed cancer in women. However, the exact cause(s) of breast cancer still remains unknown. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective way to tackle breast cancer. There are more than 70 common genetic susceptibility factors included in the current non-image-based risk prediction models (e.g., the Gail and the Tyrer-Cuzick models). Image-based risk factors, such as mammographic densities and parenchymal patterns, have been established as biomarkers but have not been fully incorporated in the risk prediction models used for risk stratification in screening and/or measuring responsiveness to preventive approaches. Within computer aided mammography, automatic mammographic tissue segmentation methods have been developed for estimation of breast tissue composition to facilitate mammographic risk assessment. This paper presents a comprehensive review of automatic mammographic tissue segmentation methodologies developed over the past two decades and the evidence for risk assessment/density classification using segmentation. The aim of this review is to analyse how engineering advances have progressed and the impact automatic mammographic tissue segmentation has in a clinical environment, as well as to understand the current research gaps with respect to the incorporation of image-based risk factors in non-image-based risk prediction models. PMID:26171249

  13. A novel automatic segmentation workflow of axial breast DCE-MRI

    NASA Astrophysics Data System (ADS)

    Besbes, Feten; Gargouri, Norhene; Damak, Alima; Sellami, Dorra

    2018-04-01

    In this paper we propose a novel process of a fully automatic breast tissue segmentation which is independent from expert calibration and contrast. The proposed algorithm is composed by two major steps. The first step consists in the detection of breast boundaries. It is based on image content analysis and Moore-Neighbour tracing algorithm. As a processing step, Otsu thresholding and neighbors algorithm are applied. Then, the external area of breast is removed to get an approximated breast region. The second preprocessing step is the delineation of the chest wall which is considered as the lowest cost path linking three key points; These points are located automatically at the breast. They are respectively, the left and right boundary points and the middle upper point placed at the sternum region using statistical method. For the minimum cost path search problem, we resolve it through Dijkstra algorithm. Evaluation results reveal the robustness of our process face to different breast densities, complex forms and challenging cases. In fact, the mean overlap between manual segmentation and automatic segmentation through our method is 96.5%. A comparative study shows that our proposed process is competitive and faster than existing methods. The segmentation of 120 slices with our method is achieved at least in 20.57+/-5.2s.

  14. Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network

    PubMed Central

    Dietz, Hans Peter; D’hooge, Jan; Barratt, Dean; Deprest, Jan

    2018-01-01

    Abstract. Segmentation of the levator hiatus in ultrasound allows the extraction of biometrics, which are of importance for pelvic floor disorder assessment. We present a fully automatic method using a convolutional neural network (CNN) to outline the levator hiatus in a two-dimensional image extracted from a three-dimensional ultrasound volume. In particular, our method uses a recently developed scaled exponential linear unit (SELU) as a nonlinear self-normalizing activation function, which for the first time has been applied in medical imaging with CNN. SELU has important advantages such as being parameter-free and mini-batch independent, which may help to overcome memory constraints during training. A dataset with 91 images from 35 patients during Valsalva, contraction, and rest, all labeled by three operators, is used for training and evaluation in a leave-one-patient-out cross validation. Results show a median Dice similarity coefficient of 0.90 with an interquartile range of 0.08, with equivalent performance to the three operators (with a Williams’ index of 1.03), and outperforming a U-Net architecture without the need for batch normalization. We conclude that the proposed fully automatic method achieved equivalent accuracy in segmenting the pelvic floor levator hiatus compared to a previous semiautomatic approach. PMID:29340289

  15. Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network.

    PubMed

    Bonmati, Ester; Hu, Yipeng; Sindhwani, Nikhil; Dietz, Hans Peter; D'hooge, Jan; Barratt, Dean; Deprest, Jan; Vercauteren, Tom

    2018-04-01

    Segmentation of the levator hiatus in ultrasound allows the extraction of biometrics, which are of importance for pelvic floor disorder assessment. We present a fully automatic method using a convolutional neural network (CNN) to outline the levator hiatus in a two-dimensional image extracted from a three-dimensional ultrasound volume. In particular, our method uses a recently developed scaled exponential linear unit (SELU) as a nonlinear self-normalizing activation function, which for the first time has been applied in medical imaging with CNN. SELU has important advantages such as being parameter-free and mini-batch independent, which may help to overcome memory constraints during training. A dataset with 91 images from 35 patients during Valsalva, contraction, and rest, all labeled by three operators, is used for training and evaluation in a leave-one-patient-out cross validation. Results show a median Dice similarity coefficient of 0.90 with an interquartile range of 0.08, with equivalent performance to the three operators (with a Williams' index of 1.03), and outperforming a U-Net architecture without the need for batch normalization. We conclude that the proposed fully automatic method achieved equivalent accuracy in segmenting the pelvic floor levator hiatus compared to a previous semiautomatic approach.

  16. Fully automated segmentation of callus by micro-CT compared to biomechanics.

    PubMed

    Bissinger, Oliver; Götz, Carolin; Wolff, Klaus-Dietrich; Hapfelmeier, Alexander; Prodinger, Peter Michael; Tischer, Thomas

    2017-07-11

    A high percentage of closed femur fractures have slight comminution. Using micro-CT (μCT), multiple fragment segmentation is much more difficult than segmentation of unfractured or osteotomied bone. Manual or semi-automated segmentation has been performed to date. However, such segmentation is extremely laborious, time-consuming and error-prone. Our aim was to therefore apply a fully automated segmentation algorithm to determine μCT parameters and examine their association with biomechanics. The femura of 64 rats taken after randomised inhibitory or neutral medication, in terms of the effect on fracture healing, and controls were closed fractured after a Kirschner wire was inserted. After 21 days, μCT and biomechanical parameters were determined by a fully automated method and correlated (Pearson's correlation). The fully automated segmentation algorithm automatically detected bone and simultaneously separated cortical bone from callus without requiring ROI selection for each single bony structure. We found an association of structural callus parameters obtained by μCT to the biomechanical properties. However, results were only explicable by additionally considering the callus location. A large number of slightly comminuted fractures in combination with therapies that influence the callus qualitatively and/or quantitatively considerably affects the association between μCT and biomechanics. In the future, contrast-enhanced μCT imaging of the callus cartilage might provide more information to improve the non-destructive and non-invasive prediction of callus mechanical properties. As studies evaluating such important drugs increase, fully automated segmentation appears to be clinically important.

  17. Automatic segmentation for detecting uterine fibroid regions treated with MR-guided high intensity focused ultrasound (MR-HIFU).

    PubMed

    Antila, Kari; Nieminen, Heikki J; Sequeiros, Roberto Blanco; Ehnholm, Gösta

    2014-07-01

    Up to 25% of women suffer from uterine fibroids (UF) that cause infertility, pain, and discomfort. MR-guided high intensity focused ultrasound (MR-HIFU) is an emerging technique for noninvasive, computer-guided thermal ablation of UFs. The volume of induced necrosis is a predictor of the success of the treatment. However, accurate volume assessment by hand can be time consuming, and quick tools produce biased results. Therefore, fast and reliable tools are required in order to estimate the technical treatment outcome during the therapy event so as to predict symptom relief. A novel technique has been developed for the segmentation and volume assessment of the treated region. Conventional algorithms typically require user interaction ora priori knowledge of the target. The developed algorithm exploits the treatment plan, the coordinates of the intended ablation, for fully automatic segmentation with no user input. A good similarity to an expert-segmented manual reference was achieved (Dice similarity coefficient = 0.880 ± 0.074). The average automatic segmentation time was 1.6 ± 0.7 min per patient against an order of tens of minutes when done manually. The results suggest that the segmentation algorithm developed, requiring no user-input, provides a feasible and practical approach for the automatic evaluation of the boundary and volume of the HIFU-treated region.

  18. Body Composition Assessment in Axial CT Images Using FEM-Based Automatic Segmentation of Skeletal Muscle.

    PubMed

    Popuri, Karteek; Cobzas, Dana; Esfandiari, Nina; Baracos, Vickie; Jägersand, Martin

    2016-02-01

    The proportions of muscle and fat tissues in the human body, referred to as body composition is a vital measurement for cancer patients. Body composition has been recently linked to patient survival and the onset/recurrence of several types of cancers in numerous cancer research studies. This paper introduces a fully automatic framework for the segmentation of muscle and fat tissues from CT images to estimate body composition. We developed a novel finite element method (FEM) deformable model that incorporates a priori shape information via a statistical deformation model (SDM) within the template-based segmentation framework. The proposed method was validated on 1000 abdominal and 530 thoracic CT images and we obtained very good segmentation results with Jaccard scores in excess of 90% for both the muscle and fat regions.

  19. Fully automatic GBM segmentation in the TCGA-GBM dataset: Prognosis and correlation with VASARI features.

    PubMed

    Rios Velazquez, Emmanuel; Meier, Raphael; Dunn, William D; Alexander, Brian; Wiest, Roland; Bauer, Stefan; Gutman, David A; Reyes, Mauricio; Aerts, Hugo J W L

    2015-11-18

    Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 - 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.

  20. Multi-spectral brain tissue segmentation using automatically trained k-Nearest-Neighbor classification.

    PubMed

    Vrooman, Henri A; Cocosco, Chris A; van der Lijn, Fedde; Stokking, Rik; Ikram, M Arfan; Vernooij, Meike W; Breteler, Monique M B; Niessen, Wiro J

    2007-08-01

    Conventional k-Nearest-Neighbor (kNN) classification, which has been successfully applied to classify brain tissue in MR data, requires training on manually labeled subjects. This manual labeling is a laborious and time-consuming procedure. In this work, a new fully automated brain tissue classification procedure is presented, in which kNN training is automated. This is achieved by non-rigidly registering the MR data with a tissue probability atlas to automatically select training samples, followed by a post-processing step to keep the most reliable samples. The accuracy of the new method was compared to rigid registration-based training and to conventional kNN-based segmentation using training on manually labeled subjects for segmenting gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF) in 12 data sets. Furthermore, for all classification methods, the performance was assessed when varying the free parameters. Finally, the robustness of the fully automated procedure was evaluated on 59 subjects. The automated training method using non-rigid registration with a tissue probability atlas was significantly more accurate than rigid registration. For both automated training using non-rigid registration and for the manually trained kNN classifier, the difference with the manual labeling by observers was not significantly larger than inter-observer variability for all tissue types. From the robustness study, it was clear that, given an appropriate brain atlas and optimal parameters, our new fully automated, non-rigid registration-based method gives accurate and robust segmentation results. A similarity index was used for comparison with manually trained kNN. The similarity indices were 0.93, 0.92 and 0.92, for CSF, GM and WM, respectively. It can be concluded that our fully automated method using non-rigid registration may replace manual segmentation, and thus that automated brain tissue segmentation without laborious manual training is feasible.

  1. Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images.

    PubMed

    Cunefare, David; Cooper, Robert F; Higgins, Brian; Katz, David F; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina

    2016-05-01

    Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice's coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice's coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images.

  2. Segmentation of 3D ultrasound computer tomography reflection images using edge detection and surface fitting

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Ruiter, N. V.

    2014-03-01

    An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.

  3. Fully automatic registration and segmentation of first-pass myocardial perfusion MR image sequences.

    PubMed

    Gupta, Vikas; Hendriks, Emile A; Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2010-11-01

    Derivation of diagnostically relevant parameters from first-pass myocardial perfusion magnetic resonance images involves the tedious and time-consuming manual segmentation of the myocardium in a large number of images. To reduce the manual interaction and expedite the perfusion analysis, we propose an automatic registration and segmentation method for the derivation of perfusion linked parameters. A complete automation was accomplished by first registering misaligned images using a method based on independent component analysis, and then using the registered data to automatically segment the myocardium with active appearance models. We used 18 perfusion studies (100 images per study) for validation in which the automatically obtained (AO) contours were compared with expert drawn contours on the basis of point-to-curve error, Dice index, and relative perfusion upslope in the myocardium. Visual inspection revealed successful segmentation in 15 out of 18 studies. Comparison of the AO contours with expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error and Dice index, respectively. The average difference between manually and automatically obtained relative upslope parameters was found to be statistically insignificant (P = .37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5 minutes (automatic). We proposed an automatic method that significantly reduced the time required for analysis of first-pass cardiac magnetic resonance perfusion images. The robustness and accuracy of the proposed method were demonstrated by the high spatial correspondence and statistically insignificant difference in perfusion parameters, when AO contours were compared with expert drawn contours. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.

  4. Watershed-based segmentation of the corpus callosum in diffusion MRI

    NASA Astrophysics Data System (ADS)

    Freitas, Pedro; Rittner, Leticia; Appenzeller, Simone; Lapa, Aline; Lotufo, Roberto

    2012-02-01

    The corpus callosum (CC) is one of the most important white matter structures of the brain, interconnecting the two cerebral hemispheres, and is related to several neurodegenerative diseases. Since segmentation is usually the first step for studies in this structure, and manual volumetric segmentation is a very time-consuming task, it is important to have a robust automatic method for CC segmentation. We propose here an approach for fully automatic 3D segmentation of the CC in the magnetic resonance diffusion tensor images. The method uses the watershed transform and is performed on the fractional anisotropy (FA) map weighted by the projection of the principal eigenvector in the left-right direction. The section of the CC in the midsagittal slice is used as seed for the volumetric segmentation. Experiments with real diffusion MRI data showed that the proposed method is able to quickly segment the CC without any user intervention, with great results when compared to manual segmentation. Since it is simple, fast and does not require parameter settings, the proposed method is well suited for clinical applications.

  5. Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring

    PubMed Central

    Moghbel, Mehrdad; Mashohor, Syamsiah; Mahmud, Rozi; Saripan, M. Iqbal Bin

    2016-01-01

    Segmentation of liver tumors from Computed Tomography (CT) and tumor burden analysis play an important role in the choice of therapeutic strategies for liver diseases and treatment monitoring. In this paper, a new segmentation method for liver tumors from contrast-enhanced CT imaging is proposed. As manual segmentation of tumors for liver treatment planning is both labor intensive and time-consuming, a highly accurate automatic tumor segmentation is desired. The proposed framework is fully automatic requiring no user interaction. The proposed segmentation evaluated on real-world clinical data from patients is based on a hybrid method integrating cuckoo optimization and fuzzy c-means algorithm with random walkers algorithm. The accuracy of the proposed method was validated using a clinical liver dataset containing one of the highest numbers of tumors utilized for liver tumor segmentation containing 127 tumors in total with further validation of the results by a consultant radiologist. The proposed method was able to achieve one of the highest accuracies reported in the literature for liver tumor segmentation compared to other segmentation methods with a mean overlap error of 22.78 % and dice similarity coefficient of 0.75 in 3Dircadb dataset and a mean overlap error of 15.61 % and dice similarity coefficient of 0.81 in MIDAS dataset. The proposed method was able to outperform most other tumor segmentation methods reported in the literature while representing an overlap error improvement of 6 % compared to one of the best performing automatic methods in the literature. The proposed framework was able to provide consistently accurate results considering the number of tumors and the variations in tumor contrast enhancements and tumor appearances while the tumor burden was estimated with a mean error of 0.84 % in 3Dircadb dataset. PMID:27540353

  6. Automatic iterative segmentation of multiple sclerosis lesions using Student's t mixture models and probabilistic anatomical atlases in FLAIR images.

    PubMed

    Freire, Paulo G L; Ferrari, Ricardo J

    2016-06-01

    Multiple sclerosis (MS) is a demyelinating autoimmune disease that attacks the central nervous system (CNS) and affects more than 2 million people worldwide. The segmentation of MS lesions in magnetic resonance imaging (MRI) is a very important task to assess how a patient is responding to treatment and how the disease is progressing. Computational approaches have been proposed over the years to segment MS lesions and reduce the amount of time spent on manual delineation and inter- and intra-rater variability and bias. However, fully-automatic segmentation of MS lesions still remains an open problem. In this work, we propose an iterative approach using Student's t mixture models and probabilistic anatomical atlases to automatically segment MS lesions in Fluid Attenuated Inversion Recovery (FLAIR) images. Our technique resembles a refinement approach by iteratively segmenting brain tissues into smaller classes until MS lesions are grouped as the most hyperintense one. To validate our technique we used 21 clinical images from the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge dataset. Evaluation using Dice Similarity Coefficient (DSC), True Positive Ratio (TPR), False Positive Ratio (FPR), Volume Difference (VD) and Pearson's r coefficient shows that our technique has a good spatial and volumetric agreement with raters' manual delineations. Also, a comparison between our proposal and the state-of-the-art shows that our technique is comparable and, in some cases, better than some approaches, thus being a viable alternative for automatic MS lesion segmentation in MRI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Automatic and semi-automatic approaches for arteriolar-to-venular computation in retinal photographs

    NASA Astrophysics Data System (ADS)

    Mendonça, Ana Maria; Remeseiro, Beatriz; Dashtbozorg, Behdad; Campilho, Aurélio

    2017-03-01

    The Arteriolar-to-Venular Ratio (AVR) is a popular dimensionless measure which allows the assessment of patients' condition for the early diagnosis of different diseases, including hypertension and diabetic retinopathy. This paper presents two new approaches for AVR computation in retinal photographs which include a sequence of automated processing steps: vessel segmentation, caliber measurement, optic disc segmentation, artery/vein classification, region of interest delineation, and AVR calculation. Both approaches have been tested on the INSPIRE-AVR dataset, and compared with a ground-truth provided by two medical specialists. The obtained results demonstrate the reliability of the fully automatic approach which provides AVR ratios very similar to at least one of the observers. Furthermore, the semi-automatic approach, which includes the manual modification of the artery/vein classification if needed, allows to significantly reduce the error to a level below the human error.

  8. Automatic segmentation of left ventricle in cardiac cine MRI images based on deep learning

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Icke, Ilknur; Dogdas, Belma; Parimal, Sarayu; Sampath, Smita; Forbes, Joseph; Bagchi, Ansuman; Chin, Chih-Liang; Chen, Antong

    2017-02-01

    In developing treatment of cardiovascular diseases, short axis cine MRI has been used as a standard technique for understanding the global structural and functional characteristics of the heart, e.g. ventricle dimensions, stroke volume and ejection fraction. To conduct an accurate assessment, heart structures need to be segmented from the cine MRI images with high precision, which could be a laborious task when performed manually. Herein a fully automatic framework is proposed for the segmentation of the left ventricle from the slices of short axis cine MRI scans of porcine subjects using a deep learning approach. For training the deep learning models, which generally requires a large set of data, a public database of human cine MRI scans is used. Experiments on the 3150 cine slices of 7 porcine subjects have shown that when comparing the automatic and manual segmentations the mean slice-wise Dice coefficient is about 0.930, the point-to-curve error is 1.07 mm, and the mean slice-wise Hausdorff distance is around 3.70 mm, which demonstrates the accuracy and robustness of the proposed inter-species translational approach.

  9. An Automatic Method for Geometric Segmentation of Masonry Arch Bridges for Structural Engineering Purposes

    NASA Astrophysics Data System (ADS)

    Riveiro, B.; DeJong, M.; Conde, B.

    2016-06-01

    Despite the tremendous advantages of the laser scanning technology for the geometric characterization of built constructions, there are important limitations preventing more widespread implementation in the structural engineering domain. Even though the technology provides extensive and accurate information to perform structural assessment and health monitoring, many people are resistant to the technology due to the processing times involved. Thus, new methods that can automatically process LiDAR data and subsequently provide an automatic and organized interpretation are required. This paper presents a new method for fully automated point cloud segmentation of masonry arch bridges. The method efficiently creates segmented, spatially related and organized point clouds, which each contain the relevant geometric data for a particular component (pier, arch, spandrel wall, etc.) of the structure. The segmentation procedure comprises a heuristic approach for the separation of different vertical walls, and later image processing tools adapted to voxel structures allows the efficient segmentation of the main structural elements of the bridge. The proposed methodology provides the essential processed data required for structural assessment of masonry arch bridges based on geometric anomalies. The method is validated using a representative sample of masonry arch bridges in Spain.

  10. Automatic testing and assessment of neuroanatomy using a digital brain atlas: method and development of computer- and mobile-based applications.

    PubMed

    Nowinski, Wieslaw L; Thirunavuukarasuu, Arumugam; Ananthasubramaniam, Anand; Chua, Beng Choon; Qian, Guoyu; Nowinska, Natalia G; Marchenko, Yevgen; Volkau, Ihar

    2009-10-01

    Preparation of tests and student's assessment by the instructor are time consuming. We address these two tasks in neuroanatomy education by employing a digital media application with a three-dimensional (3D), interactive, fully segmented, and labeled brain atlas. The anatomical and vascular models in the atlas are linked to Terminologia Anatomica. Because the cerebral models are fully segmented and labeled, our approach enables automatic and random atlas-derived generation of questions to test location and naming of cerebral structures. This is done in four steps: test individualization by the instructor, test taking by the students at their convenience, automatic student assessment by the application, and communication of the individual assessment to the instructor. A computer-based application with an interactive 3D atlas and a preliminary mobile-based application were developed to realize this approach. The application works in two test modes: instructor and student. In the instructor mode, the instructor customizes the test by setting the scope of testing and student performance criteria, which takes a few seconds. In the student mode, the student is tested and automatically assessed. Self-testing is also feasible at any time and pace. Our approach is automatic both with respect to test generation and student assessment. It is also objective, rapid, and customizable. We believe that this approach is novel from computer-based, mobile-based, and atlas-assisted standpoints.

  11. Automatic regional analysis of myocardial native T1 values: left ventricle segmentation and AHA parcellations.

    PubMed

    Huang, Hsiao-Hui; Huang, Chun-Yu; Chen, Chiao-Ning; Wang, Yun-Wen; Huang, Teng-Yi

    2018-01-01

    Native T1 value is emerging as a reliable indicator of abnormal heart conditions related to myocardial fibrosis. Investigators have extensively used the standardized myocardial segmentation of the American Heart Association (AHA) to measure regional T1 values of the left ventricular (LV) walls. In this paper, we present a fully automatic system to analyze modified Look-Locker inversion recovery images and to report regional T1 values of AHA segments. Ten healthy individuals participated in the T1 mapping study with a 3.0 T scanner after providing informed consent. First, we obtained masks of an LV blood-pool region and LV walls by using an image synthesis method and a layer-growing method. Subsequently, the LV walls were divided into AHA segments by identifying the boundaries of the septal regions and by using a radial projection method. The layer-growing method significantly enhanced the accuracy of the derived myocardium mask. We compared the T1 values that were obtained using manual region of interest selections and those obtained using the automatic system. The average T1 difference of the calculated segments was 4.6 ± 1.5%. This study demonstrated a practical and robust method of obtaining native T1 values of AHA segments in LV walls.

  12. Fully automatic segmentation of white matter hyperintensities in MR images of the elderly.

    PubMed

    Admiraal-Behloul, F; van den Heuvel, D M J; Olofsen, H; van Osch, M J P; van der Grond, J; van Buchem, M A; Reiber, J H C

    2005-11-15

    The role of quantitative image analysis in large clinical trials is continuously increasing. Several methods are available for performing white matter hyperintensity (WMH) volume quantification. They vary in the amount of the human interaction involved. In this paper, we describe a fully automatic segmentation that was used to quantify WMHs in a large clinical trial on elderly subjects. Our segmentation method combines information from 3 different MR images: proton density (PD), T2-weighted and fluid-attenuated inversion recovery (FLAIR) images; our method uses an established artificial intelligent technique (fuzzy inference system) and does not require extensive computations. The reproducibility of the segmentation was evaluated in 9 patients who underwent scan-rescan with repositioning; an inter-class correlation coefficient (ICC) of 0.91 was obtained. The effect of differences in image resolution was tested in 44 patients, scanned with 6- and 3-mm slice thickness FLAIR images; we obtained an ICC value of 0.99. The accuracy of the segmentation was evaluated on 100 patients for whom manual delineation of WMHs was available; the obtained ICC was 0.98 and the similarity index was 0.75. Besides the fact that the approach demonstrated very high volumetric and spatial agreement with expert delineation, the software did not require more than 2 min per patient (from loading the images to saving the results) on a Pentium-4 processor (512 MB RAM).

  13. Automatic lung lobe segmentation using particles, thin plate splines, and maximum a posteriori estimation.

    PubMed

    Ross, James C; San José Estépar, Rail; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K; Washko, George R

    2010-01-01

    We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases.

  14. Automatic Lung Lobe Segmentation Using Particles, Thin Plate Splines, and Maximum a Posteriori Estimation

    PubMed Central

    Ross, James C.; Estépar, Raúl San José; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K.; Washko, George R.

    2011-01-01

    We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases. PMID:20879396

  15. Segmentation of deformable organs from medical images using particle swarm optimization and nonlinear shape priors

    NASA Astrophysics Data System (ADS)

    Afifi, Ahmed; Nakaguchi, Toshiya; Tsumura, Norimichi

    2010-03-01

    In many medical applications, the automatic segmentation of deformable organs from medical images is indispensable and its accuracy is of a special interest. However, the automatic segmentation of these organs is a challenging task according to its complex shape. Moreover, the medical images usually have noise, clutter, or occlusion and considering the image information only often leads to meager image segmentation. In this paper, we propose a fully automated technique for the segmentation of deformable organs from medical images. In this technique, the segmentation is performed by fitting a nonlinear shape model with pre-segmented images. The kernel principle component analysis (KPCA) is utilized to capture the complex organs deformation and to construct the nonlinear shape model. The presegmentation is carried out by labeling each pixel according to its high level texture features extracted using the overcomplete wavelet packet decomposition. Furthermore, to guarantee an accurate fitting between the nonlinear model and the pre-segmented images, the particle swarm optimization (PSO) algorithm is employed to adapt the model parameters for the novel images. In this paper, we demonstrate the competence of proposed technique by implementing it to the liver segmentation from computed tomography (CT) scans of different patients.

  16. Automatic detection of left and right ventricles from CTA enables efficient alignment of anatomy with myocardial perfusion data.

    PubMed

    Piccinelli, Marina; Faber, Tracy L; Arepalli, Chesnal D; Appia, Vikram; Vinten-Johansen, Jakob; Schmarkey, Susan L; Folks, Russell D; Garcia, Ernest V; Yezzi, Anthony

    2014-02-01

    Accurate alignment between cardiac CT angiographic studies (CTA) and nuclear perfusion images is crucial for improved diagnosis of coronary artery disease. This study evaluated in an animal model the accuracy of a CTA fully automated biventricular segmentation algorithm, a necessary step for automatic and thus efficient PET/CT alignment. Twelve pigs with acute infarcts were imaged using Rb-82 PET and 64-slice CTA. Post-mortem myocardium mass measurements were obtained. Endocardial and epicardial myocardial boundaries were manually and automatically detected on the CTA and both segmentations used to perform PET/CT alignment. To assess the segmentation performance, image-based myocardial masses were compared to experimental data; the hand-traced profiles were used as a reference standard to assess the global and slice-by-slice robustness of the automated algorithm in extracting myocardium, LV, and RV. Mean distances between the automated and the manual 3D segmented surfaces were computed. Finally, differences in rotations and translations between the manual and automatic surfaces were estimated post-PET/CT alignment. The largest, smallest, and median distances between interactive and automatic surfaces averaged 1.2 ± 2.1, 0.2 ± 1.6, and 0.7 ± 1.9 mm. The average angular and translational differences in CT/PET alignments were 0.4°, -0.6°, and -2.3° about x, y, and z axes, and 1.8, -2.1, and 2.0 mm in x, y, and z directions. Our automatic myocardial boundary detection algorithm creates surfaces from CTA that are similar in accuracy and provide similar alignments with PET as those obtained from interactive tracing. Specific difficulties in a reliable segmentation of the apex and base regions will require further improvements in the automated technique.

  17. Quantification of common carotid artery and descending aorta vessel wall thickness from MR vessel wall imaging using a fully automated processing pipeline.

    PubMed

    Gao, Shan; van 't Klooster, Ronald; Brandts, Anne; Roes, Stijntje D; Alizadeh Dehnavi, Reza; de Roos, Albert; Westenberg, Jos J M; van der Geest, Rob J

    2017-01-01

    To develop and evaluate a method that can fully automatically identify the vessel wall boundaries and quantify the wall thickness for both common carotid artery (CCA) and descending aorta (DAO) from axial magnetic resonance (MR) images. 3T MRI data acquired with T 1 -weighted gradient-echo black-blood imaging sequence from carotid (39 subjects) and aorta (39 subjects) were used to develop and test the algorithm. The vessel wall segmentation was achieved by respectively fitting a 3D cylindrical B-spline surface to the boundaries of lumen and outer wall. The tube-fitting was based on the edge detection performed on the signal intensity (SI) profile along the surface normal. To achieve a fully automated process, Hough Transform (HT) was developed to estimate the lumen centerline and radii for the target vessel. Using the outputs of HT, a tube model for lumen segmentation was initialized and deformed to fit the image data. Finally, lumen segmentation was dilated to initiate the adaptation procedure of outer wall tube. The algorithm was validated by determining: 1) its performance against manual tracing; 2) its interscan reproducibility in quantifying vessel wall thickness (VWT); 3) its capability of detecting VWT difference in hypertensive patients compared with healthy controls. Statistical analysis including Bland-Altman analysis, t-test, and sample size calculation were performed for the purpose of algorithm evaluation. The mean distance between the manual and automatically detected lumen/outer wall contours was 0.00 ± 0.23/0.09 ± 0.21 mm for CCA and 0.12 ± 0.24/0.14 ± 0.35 mm for DAO. No significant difference was observed between the interscan VWT assessment using automated segmentation for both CCA (P = 0.19) and DAO (P = 0.94). Both manual and automated segmentation detected significantly higher carotid (P = 0.016 and P = 0.005) and aortic (P < 0.001 and P = 0.021) wall thickness in the hypertensive patients. A reliable and reproducible pipeline for fully automatic vessel wall quantification was developed and validated on healthy volunteers as well as patients with increased vessel wall thickness. This method holds promise for helping in efficient image interpretation for large-scale cohort studies. 4 J. Magn. Reson. Imaging 2017;45:215-228. © 2016 International Society for Magnetic Resonance in Medicine.

  18. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks.

    PubMed

    Ma, Jinlian; Wu, Fa; Jiang, Tian'an; Zhao, Qiyu; Kong, Dexing

    2017-11-01

    Delineation of thyroid nodule boundaries from ultrasound images plays an important role in calculation of clinical indices and diagnosis of thyroid diseases. However, it is challenging for accurate and automatic segmentation of thyroid nodules because of their heterogeneous appearance and components similar to the background. In this study, we employ a deep convolutional neural network (CNN) to automatically segment thyroid nodules from ultrasound images. Our CNN-based method formulates a thyroid nodule segmentation problem as a patch classification task, where the relationship among patches is ignored. Specifically, the CNN used image patches from images of normal thyroids and thyroid nodules as inputs and then generated the segmentation probability maps as outputs. A multi-view strategy is used to improve the performance of the CNN-based model. Additionally, we compared the performance of our approach with that of the commonly used segmentation methods on the same dataset. The experimental results suggest that our proposed method outperforms prior methods on thyroid nodule segmentation. Moreover, the results show that the CNN-based model is able to delineate multiple nodules in thyroid ultrasound images accurately and effectively. In detail, our CNN-based model can achieve an average of the overlap metric, dice ratio, true positive rate, false positive rate, and modified Hausdorff distance as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] on overall folds, respectively. Our proposed method is fully automatic without any user interaction. Quantitative results also indicate that our method is so efficient and accurate that it can be good enough to replace the time-consuming and tedious manual segmentation approach, demonstrating the potential clinical applications.

  19. Twelve automated thresholding methods for segmentation of PET images: a phantom study.

    PubMed

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M

    2012-06-21

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical (18)F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  20. Twelve automated thresholding methods for segmentation of PET images: a phantom study

    NASA Astrophysics Data System (ADS)

    Prieto, Elena; Lecumberri, Pablo; Pagola, Miguel; Gómez, Marisol; Bilbao, Izaskun; Ecay, Margarita; Peñuelas, Iván; Martí-Climent, Josep M.

    2012-06-01

    Tumor volume delineation over positron emission tomography (PET) images is of great interest for proper diagnosis and therapy planning. However, standard segmentation techniques (manual or semi-automated) are operator dependent and time consuming while fully automated procedures are cumbersome or require complex mathematical development. The aim of this study was to segment PET images in a fully automated way by implementing a set of 12 automated thresholding algorithms, classical in the fields of optical character recognition, tissue engineering or non-destructive testing images in high-tech structures. Automated thresholding algorithms select a specific threshold for each image without any a priori spatial information of the segmented object or any special calibration of the tomograph, as opposed to usual thresholding methods for PET. Spherical 18F-filled objects of different volumes were acquired on clinical PET/CT and on a small animal PET scanner, with three different signal-to-background ratios. Images were segmented with 12 automatic thresholding algorithms and results were compared with the standard segmentation reference, a threshold at 42% of the maximum uptake. Ridler and Ramesh thresholding algorithms based on clustering and histogram-shape information, respectively, provided better results that the classical 42%-based threshold (p < 0.05). We have herein demonstrated that fully automated thresholding algorithms can provide better results than classical PET segmentation tools.

  1. Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks

    NASA Astrophysics Data System (ADS)

    Roth, Holger; Oda, Masahiro; Shimizu, Natsuki; Oda, Hirohisa; Hayashi, Yuichiro; Kitasaka, Takayuki; Fujiwara, Michitaka; Misawa, Kazunari; Mori, Kensaku

    2018-03-01

    Pancreas segmentation in computed tomography imaging has been historically difficult for automated methods because of the large shape and size variations between patients. In this work, we describe a custom-build 3D fully convolutional network (FCN) that can process a 3D image including the whole pancreas and produce an automatic segmentation. We investigate two variations of the 3D FCN architecture; one with concatenation and one with summation skip connections to the decoder part of the network. We evaluate our methods on a dataset from a clinical trial with gastric cancer patients, including 147 contrast enhanced abdominal CT scans acquired in the portal venous phase. Using the summation architecture, we achieve an average Dice score of 89.7 +/- 3.8 (range [79.8, 94.8])% in testing, achieving the new state-of-the-art performance in pancreas segmentation on this dataset.

  2. Classification of microscopy images of Langerhans islets

    NASA Astrophysics Data System (ADS)

    Å vihlík, Jan; Kybic, Jan; Habart, David; Berková, Zuzana; Girman, Peter; Kříž, Jan; Zacharovová, Klára

    2014-03-01

    Evaluation of images of Langerhans islets is a crucial procedure for planning an islet transplantation, which is a promising diabetes treatment. This paper deals with segmentation of microscopy images of Langerhans islets and evaluation of islet parameters such as area, diameter, or volume (IE). For all the available images, the ground truth and the islet parameters were independently evaluated by four medical experts. We use a pixelwise linear classifier (perceptron algorithm) and SVM (support vector machine) for image segmentation. The volume is estimated based on circle or ellipse fitting to individual islets. The segmentations were compared with the corresponding ground truth. Quantitative islet parameters were also evaluated and compared with parameters given by medical experts. We can conclude that accuracy of the presented fully automatic algorithm is fully comparable with medical experts.

  3. Fast automatic segmentation of anatomical structures in x-ray computed tomography images to improve fluorescence molecular tomography reconstruction.

    PubMed

    Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans

    2010-01-01

    The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.

  4. Esophagus segmentation in CT via 3D fully convolutional neural network and random walk.

    PubMed

    Fechter, Tobias; Adebahr, Sonja; Baltas, Dimos; Ben Ayed, Ismail; Desrosiers, Christian; Dolz, Jose

    2017-12-01

    Precise delineation of organs at risk is a crucial task in radiotherapy treatment planning for delivering high doses to the tumor while sparing healthy tissues. In recent years, automated segmentation methods have shown an increasingly high performance for the delineation of various anatomical structures. However, this task remains challenging for organs like the esophagus, which have a versatile shape and poor contrast to neighboring tissues. For human experts, segmenting the esophagus from CT images is a time-consuming and error-prone process. To tackle these issues, we propose a random walker approach driven by a 3D fully convolutional neural network (CNN) to automatically segment the esophagus from CT images. First, a soft probability map is generated by the CNN. Then, an active contour model (ACM) is fitted to the CNN soft probability map to get a first estimation of the esophagus location. The outputs of the CNN and ACM are then used in conjunction with a probability model based on CT Hounsfield (HU) values to drive the random walker. Training and evaluation were done on 50 CTs from two different datasets, with clinically used peer-reviewed esophagus contours. Results were assessed regarding spatial overlap and shape similarity. The esophagus contours generated by the proposed algorithm showed a mean Dice coefficient of 0.76 ± 0.11, an average symmetric square distance of 1.36 ± 0.90 mm, and an average Hausdorff distance of 11.68 ± 6.80, compared to the reference contours. These results translate to a very good agreement with reference contours and an increase in accuracy compared to existing methods. Furthermore, when considering the results reported in the literature for the publicly available Synapse dataset, our method outperformed all existing approaches, which suggests that the proposed method represents the current state-of-the-art for automatic esophagus segmentation. We show that a CNN can yield accurate estimations of esophagus location, and that the results of this model can be refined by a random walk step taking pixel intensities and neighborhood relationships into account. One of the main advantages of our network over previous methods is that it performs 3D convolutions, thus fully exploiting the 3D spatial context and performing an efficient volume-wise prediction. The whole segmentation process is fully automatic and yields esophagus delineations in very good agreement with the gold standard, showing that it can compete with previously published methods. © 2017 American Association of Physicists in Medicine.

  5. Automatic localization of the left ventricular blood pool centroid in short axis cardiac cine MR images.

    PubMed

    Tan, Li Kuo; Liew, Yih Miin; Lim, Einly; Abdul Aziz, Yang Faridah; Chee, Kok Han; McLaughlin, Robert A

    2018-06-01

    In this paper, we develop and validate an open source, fully automatic algorithm to localize the left ventricular (LV) blood pool centroid in short axis cardiac cine MR images, enabling follow-on automated LV segmentation algorithms. The algorithm comprises four steps: (i) quantify motion to determine an initial region of interest surrounding the heart, (ii) identify potential 2D objects of interest using an intensity-based segmentation, (iii) assess contraction/expansion, circularity, and proximity to lung tissue to score all objects of interest in terms of their likelihood of constituting part of the LV, and (iv) aggregate the objects into connected groups and construct the final LV blood pool volume and centroid. This algorithm was tested against 1140 datasets from the Kaggle Second Annual Data Science Bowl, as well as 45 datasets from the STACOM 2009 Cardiac MR Left Ventricle Segmentation Challenge. Correct LV localization was confirmed in 97.3% of the datasets. The mean absolute error between the gold standard and localization centroids was 2.8 to 4.7 mm, or 12 to 22% of the average endocardial radius. Graphical abstract Fully automated localization of the left ventricular blood pool in short axis cardiac cine MR images.

  6. Fully convolutional neural network for removing background in noisy images of uranium bearing particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarolli, Jay G.; Naes, Benjamin E.; Butler, Lamar

    A fully convolutional neural network (FCN) was developed to supersede automatic or manual thresholding algorithms used for tabulating SIMS particle search data. The FCN was designed to perform a binary classification of pixels in each image belonging to a particle or not, thereby effectively removing background signal without manually or automatically determining an intensity threshold. Using 8,000 images from 28 different particle screening analyses, the FCN was trained to accurately predict pixels belonging to a particle with near 99% accuracy. Background eliminated images were then segmented using a watershed technique in order to determine isotopic ratios of particles. A comparisonmore » of the isotopic distributions of an independent data set segmented using the neural network, compared to a commercially available automated particle measurement (APM) program developed by CAMECA, highlighted the necessity for effective background removal to ensure that resulting particle identification is not only accurate, but preserves valuable signal that could be lost due to improper segmentation. The FCN approach improves the robustness of current state-of-the-art particle searching algorithms by reducing user input biases, resulting in an improved absolute signal per particle and decreased uncertainty of the determined isotope ratios.« less

  7. Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network.

    PubMed

    Cui, Shaoguo; Mao, Lei; Jiang, Jingfeng; Liu, Chang; Xiong, Shuyu

    2018-01-01

    Brain tumors can appear anywhere in the brain and have vastly different sizes and morphology. Additionally, these tumors are often diffused and poorly contrasted. Consequently, the segmentation of brain tumor and intratumor subregions using magnetic resonance imaging (MRI) data with minimal human interventions remains a challenging task. In this paper, we present a novel fully automatic segmentation method from MRI data containing in vivo brain gliomas. This approach can not only localize the entire tumor region but can also accurately segment the intratumor structure. The proposed work was based on a cascaded deep learning convolutional neural network consisting of two subnetworks: (1) a tumor localization network (TLN) and (2) an intratumor classification network (ITCN). The TLN, a fully convolutional network (FCN) in conjunction with the transfer learning technology, was used to first process MRI data. The goal of the first subnetwork was to define the tumor region from an MRI slice. Then, the ITCN was used to label the defined tumor region into multiple subregions. Particularly, ITCN exploited a convolutional neural network (CNN) with deeper architecture and smaller kernel. The proposed approach was validated on multimodal brain tumor segmentation (BRATS 2015) datasets, which contain 220 high-grade glioma (HGG) and 54 low-grade glioma (LGG) cases. Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity were used as evaluation metrics. Our experimental results indicated that our method could obtain the promising segmentation results and had a faster segmentation speed. More specifically, the proposed method obtained comparable and overall better DSC values (0.89, 0.77, and 0.80) on the combined (HGG + LGG) testing set, as compared to other methods reported in the literature. Additionally, the proposed approach was able to complete a segmentation task at a rate of 1.54 seconds per slice.

  8. Low-Grade Glioma Segmentation Based on CNN with Fully Connected CRF

    PubMed Central

    Li, Zeju; Shi, Zhifeng; Guo, Yi; Chen, Liang; Mao, Ying

    2017-01-01

    This work proposed a novel automatic three-dimensional (3D) magnetic resonance imaging (MRI) segmentation method which would be widely used in the clinical diagnosis of the most common and aggressive brain tumor, namely, glioma. The method combined a multipathway convolutional neural network (CNN) and fully connected conditional random field (CRF). Firstly, 3D information was introduced into the CNN which makes more accurate recognition of glioma with low contrast. Then, fully connected CRF was added as a postprocessing step which purposed more delicate delineation of glioma boundary. The method was applied to T2flair MRI images of 160 low-grade glioma patients. With 59 cases of data training and manual segmentation as the ground truth, the Dice similarity coefficient (DSC) of our method was 0.85 for the test set of 101 MRI images. The results of our method were better than those of another state-of-the-art CNN method, which gained the DSC of 0.76 for the same dataset. It proved that our method could produce better results for the segmentation of low-grade gliomas. PMID:29065666

  9. Low-Grade Glioma Segmentation Based on CNN with Fully Connected CRF.

    PubMed

    Li, Zeju; Wang, Yuanyuan; Yu, Jinhua; Shi, Zhifeng; Guo, Yi; Chen, Liang; Mao, Ying

    2017-01-01

    This work proposed a novel automatic three-dimensional (3D) magnetic resonance imaging (MRI) segmentation method which would be widely used in the clinical diagnosis of the most common and aggressive brain tumor, namely, glioma. The method combined a multipathway convolutional neural network (CNN) and fully connected conditional random field (CRF). Firstly, 3D information was introduced into the CNN which makes more accurate recognition of glioma with low contrast. Then, fully connected CRF was added as a postprocessing step which purposed more delicate delineation of glioma boundary. The method was applied to T2flair MRI images of 160 low-grade glioma patients. With 59 cases of data training and manual segmentation as the ground truth, the Dice similarity coefficient (DSC) of our method was 0.85 for the test set of 101 MRI images. The results of our method were better than those of another state-of-the-art CNN method, which gained the DSC of 0.76 for the same dataset. It proved that our method could produce better results for the segmentation of low-grade gliomas.

  10. Automatically measuring brain ventricular volume within PACS using artificial intelligence.

    PubMed

    Yepes-Calderon, Fernando; Nelson, Marvin D; McComb, J Gordon

    2018-01-01

    The picture archiving and communications system (PACS) is currently the standard platform to manage medical images but lacks analytical capabilities. Staying within PACS, the authors have developed an automatic method to retrieve the medical data and access it at a voxel level, decrypted and uncompressed that allows analytical capabilities while not perturbing the system's daily operation. Additionally, the strategy is secure and vendor independent. Cerebral ventricular volume is important for the diagnosis and treatment of many neurological disorders. A significant change in ventricular volume is readily recognized, but subtle changes, especially over longer periods of time, may be difficult to discern. Clinical imaging protocols and parameters are often varied making it difficult to use a general solution with standard segmentation techniques. Presented is a segmentation strategy based on an algorithm that uses four features extracted from the medical images to create a statistical estimator capable of determining ventricular volume. When compared with manual segmentations, the correlation was 94% and holds promise for even better accuracy by incorporating the unlimited data available. The volume of any segmentable structure can be accurately determined utilizing the machine learning strategy presented and runs fully automatically within the PACS.

  11. Automatic 3D liver location and segmentation via convolutional neural network and graph cut.

    PubMed

    Lu, Fang; Wu, Fa; Hu, Peijun; Peng, Zhiyi; Kong, Dexing

    2017-02-01

    Segmentation of the liver from abdominal computed tomography (CT) images is an essential step in some computer-assisted clinical interventions, such as surgery planning for living donor liver transplant, radiotherapy and volume measurement. In this work, we develop a deep learning algorithm with graph cut refinement to automatically segment the liver in CT scans. The proposed method consists of two main steps: (i) simultaneously liver detection and probabilistic segmentation using 3D convolutional neural network; (ii) accuracy refinement of the initial segmentation with graph cut and the previously learned probability map. The proposed approach was validated on forty CT volumes taken from two public databases MICCAI-Sliver07 and 3Dircadb1. For the MICCAI-Sliver07 test dataset, the calculated mean ratios of volumetric overlap error (VOE), relative volume difference (RVD), average symmetric surface distance (ASD), root-mean-square symmetric surface distance (RMSD) and maximum symmetric surface distance (MSD) are 5.9, 2.7 %, 0.91, 1.88 and 18.94 mm, respectively. For the 3Dircadb1 dataset, the calculated mean ratios of VOE, RVD, ASD, RMSD and MSD are 9.36, 0.97 %, 1.89, 4.15 and 33.14 mm, respectively. The proposed method is fully automatic without any user interaction. Quantitative results reveal that the proposed approach is efficient and accurate for hepatic volume estimation in a clinical setup. The high correlation between the automatic and manual references shows that the proposed method can be good enough to replace the time-consuming and nonreproducible manual segmentation method.

  12. Constraint factor graph cut-based active contour method for automated cellular image segmentation in RNAi screening.

    PubMed

    Chen, C; Li, H; Zhou, X; Wong, S T C

    2008-05-01

    Image-based, high throughput genome-wide RNA interference (RNAi) experiments are increasingly carried out to facilitate the understanding of gene functions in intricate biological processes. Automated screening of such experiments generates a large number of images with great variations in image quality, which makes manual analysis unreasonably time-consuming. Therefore, effective techniques for automatic image analysis are urgently needed, in which segmentation is one of the most important steps. This paper proposes a fully automatic method for cells segmentation in genome-wide RNAi screening images. The method consists of two steps: nuclei and cytoplasm segmentation. Nuclei are extracted and labelled to initialize cytoplasm segmentation. Since the quality of RNAi image is rather poor, a novel scale-adaptive steerable filter is designed to enhance the image in order to extract long and thin protrusions on the spiky cells. Then, constraint factor GCBAC method and morphological algorithms are combined to be an integrated method to segment tight clustered cells. Compared with the results obtained by using seeded watershed and the ground truth, that is, manual labelling results by experts in RNAi screening data, our method achieves higher accuracy. Compared with active contour methods, our method consumes much less time. The positive results indicate that the proposed method can be applied in automatic image analysis of multi-channel image screening data.

  13. Automatic, accurate, and reproducible segmentation of the brain and cerebro-spinal fluid in T1-weighted volume MRI scans and its application to serial cerebral and intracranial volumetry

    NASA Astrophysics Data System (ADS)

    Lemieux, Louis

    2001-07-01

    A new fully automatic algorithm for the segmentation of the brain and cerebro-spinal fluid (CSF) from T1-weighted volume MRI scans of the head was specifically developed in the context of serial intra-cranial volumetry. The method is an extension of a previously published brain extraction algorithm. The brain mask is used as a basis for CSF segmentation based on morphological operations, automatic histogram analysis and thresholding. Brain segmentation is then obtained by iterative tracking of the brain-CSF interface. Grey matter (GM), white matter (WM) and CSF volumes are calculated based on a model of intensity probability distribution that includes partial volume effects. Accuracy was assessed using a digital phantom scan. Reproducibility was assessed by segmenting pairs of scans from 20 normal subjects scanned 8 months apart and 11 patients with epilepsy scanned 3.5 years apart. Segmentation accuracy as measured by overlap was 98% for the brain and 96% for the intra-cranial tissues. The volume errors were: total brain (TBV): -1.0%, intra-cranial (ICV):0.1%, CSF: +4.8%. For repeated scans, matching resulted in improved reproducibility. In the controls, the coefficient of reliability (CR) was 1.5% for the TVB and 1.0% for the ICV. In the patients, the Cr for the ICV was 1.2%.

  14. Shape based segmentation of MRIs of the bones in the knee using phase and intensity information

    NASA Astrophysics Data System (ADS)

    Fripp, Jurgen; Bourgeat, Pierrick; Crozier, Stuart; Ourselin, Sébastien

    2007-03-01

    The segmentation of the bones from MR images is useful for performing subsequent segmentation and quantitative measurements of cartilage tissue. In this paper, we present a shape based segmentation scheme for the bones that uses texture features derived from the phase and intensity information in the complex MR image. The phase can provide additional information about the tissue interfaces, but due to the phase unwrapping problem, this information is usually discarded. By using a Gabor filter bank on the complex MR image, texture features (including phase) can be extracted without requiring phase unwrapping. These texture features are then analyzed using a support vector machine classifier to obtain probability tissue matches. The segmentation of the bone is fully automatic and performed using a 3D active shape model based approach driven using gradient and texture information. The 3D active shape model is automatically initialized using a robust affine registration. The approach is validated using a database of 18 FLASH MR images that are manually segmented, with an average segmentation overlap (Dice similarity coefficient) of 0.92 compared to 0.9 obtained using the classifier only.

  15. Fully automatic three-dimensional visualization of intravascular optical coherence tomography images: methods and feasibility in vivo

    PubMed Central

    Ughi, Giovanni J; Adriaenssens, Tom; Desmet, Walter; D’hooge, Jan

    2012-01-01

    Intravascular optical coherence tomography (IV-OCT) is an imaging modality that can be used for the assessment of intracoronary stents. Recent publications pointed to the fact that 3D visualizations have potential advantages compared to conventional 2D representations. However, 3D imaging still requires a time consuming manual procedure not suitable for on-line application during coronary interventions. We propose an algorithm for a rapid and fully automatic 3D visualization of IV-OCT pullbacks. IV-OCT images are first processed for the segmentation of the different structures. This also allows for automatic pullback calibration. Then, according to the segmentation results, different structures are depicted with different colors to visualize the vessel wall, the stent and the guide-wire in details. Final 3D rendering results are obtained through the use of a commercial 3D DICOM viewer. Manual analysis was used as ground-truth for the validation of the segmentation algorithms. A correlation value of 0.99 and good limits of agreement (Bland Altman statistics) were found over 250 images randomly extracted from 25 in vivo pullbacks. Moreover, 3D rendering was compared to angiography, pictures of deployed stents made available by the manufacturers and to conventional 2D imaging corroborating visualization results. Computational time for the visualization of an entire data sets resulted to be ~74 sec. The proposed method allows for the on-line use of 3D IV-OCT during percutaneous coronary interventions, potentially allowing treatments optimization. PMID:23243578

  16. Automatic lung segmentation using control feedback system: morphology and texture paradigm.

    PubMed

    Noor, Norliza M; Than, Joel C M; Rijal, Omar M; Kassim, Rosminah M; Yunus, Ashari; Zeki, Amir A; Anzidei, Michele; Saba, Luca; Suri, Jasjit S

    2015-03-01

    Interstitial Lung Disease (ILD) encompasses a wide array of diseases that share some common radiologic characteristics. When diagnosing such diseases, radiologists can be affected by heavy workload and fatigue thus decreasing diagnostic accuracy. Automatic segmentation is the first step in implementing a Computer Aided Diagnosis (CAD) that will help radiologists to improve diagnostic accuracy thereby reducing manual interpretation. Automatic segmentation proposed uses an initial thresholding and morphology based segmentation coupled with feedback that detects large deviations with a corrective segmentation. This feedback is analogous to a control system which allows detection of abnormal or severe lung disease and provides a feedback to an online segmentation improving the overall performance of the system. This feedback system encompasses a texture paradigm. In this study we studied 48 males and 48 female patients consisting of 15 normal and 81 abnormal patients. A senior radiologist chose the five levels needed for ILD diagnosis. The results of segmentation were displayed by showing the comparison of the automated and ground truth boundaries (courtesy of ImgTracer™ 1.0, AtheroPoint™ LLC, Roseville, CA, USA). The left lung's performance of segmentation was 96.52% for Jaccard Index and 98.21% for Dice Similarity, 0.61 mm for Polyline Distance Metric (PDM), -1.15% for Relative Area Error and 4.09% Area Overlap Error. The right lung's performance of segmentation was 97.24% for Jaccard Index, 98.58% for Dice Similarity, 0.61 mm for PDM, -0.03% for Relative Area Error and 3.53% for Area Overlap Error. The segmentation overall has an overall similarity of 98.4%. The segmentation proposed is an accurate and fully automated system.

  17. An Automatic Segmentation and Classification Framework Based on PCNN Model for Single Tooth in MicroCT Images.

    PubMed

    Wang, Liansheng; Li, Shusheng; Chen, Rongzhen; Liu, Sze-Yu; Chen, Jyh-Cheng

    2016-01-01

    Accurate segmentation and classification of different anatomical structures of teeth from medical images plays an essential role in many clinical applications. Usually, the anatomical structures of teeth are manually labelled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing three dimensional (3D) information, and classify the tooth by employing unsupervised learning Pulse Coupled Neural Networks (PCNN) model. In order to evaluate the proposed method, the experiments are conducted on the different datasets of mandibular molars and the experimental results show that our method can achieve better accuracy and robustness compared to other four state of the art clustering methods.

  18. A Patch-Based Approach for the Segmentation of Pathologies: Application to Glioma Labelling.

    PubMed

    Cordier, Nicolas; Delingette, Herve; Ayache, Nicholas

    2016-04-01

    In this paper, we describe a novel and generic approach to address fully-automatic segmentation of brain tumors by using multi-atlas patch-based voting techniques. In addition to avoiding the local search window assumption, the conventional patch-based framework is enhanced through several simple procedures: an improvement of the training dataset in terms of both label purity and intensity statistics, augmented features to implicitly guide the nearest-neighbor-search, multi-scale patches, invariance to cube isometries, stratification of the votes with respect to cases and labels. A probabilistic model automatically delineates regions of interest enclosing high-probability tumor volumes, which allows the algorithm to achieve highly competitive running time despite minimal processing power and resources. This method was evaluated on Multimodal Brain Tumor Image Segmentation challenge datasets. State-of-the-art results are achieved, with a limited learning stage thus restricting the risk of overfit. Moreover, segmentation smoothness does not involve any post-processing.

  19. Patient-specific semi-supervised learning for postoperative brain tumor segmentation.

    PubMed

    Meier, Raphael; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2014-01-01

    In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.

  20. Fully-integrated framework for the segmentation and registration of the spinal cord white and gray matter.

    PubMed

    Dupont, Sara M; De Leener, Benjamin; Taso, Manuel; Le Troter, Arnaud; Nadeau, Sylvie; Stikov, Nikola; Callot, Virginie; Cohen-Adad, Julien

    2017-04-15

    The spinal cord white and gray matter can be affected by various pathologies such as multiple sclerosis, amyotrophic lateral sclerosis or trauma. Being able to precisely segment the white and gray matter could help with MR image analysis and hence be useful in further understanding these pathologies, and helping with diagnosis/prognosis and drug development. Up to date, white/gray matter segmentation has mostly been done manually, which is time consuming, induces a bias related to the rater and prevents large-scale multi-center studies. Recently, few methods have been proposed to automatically segment the spinal cord white and gray matter. However, no single method exists that combines the following criteria: (i) fully automatic, (ii) works on various MRI contrasts, (iii) robust towards pathology and (iv) freely available and open source. In this study we propose a multi-atlas based method for the segmentation of the spinal cord white and gray matter that addresses the previous limitations. Moreover, to study the spinal cord morphology, atlas-based approaches are increasingly used. These approaches rely on the registration of a spinal cord template to an MR image, however the registration usually doesn't take into account the spinal cord internal structure and thus lacks accuracy. In this study, we propose a new template registration framework that integrates the white and gray matter segmentation to account for the specific gray matter shape of each individual subject. Validation of segmentation was performed in 24 healthy subjects using T 2 * -weighted images, in 8 healthy subjects using diffusion weighted images (exhibiting inverted white-to-gray matter contrast compared to T 2 *-weighted), and in 5 patients with spinal cord injury. The template registration was validated in 24 subjects using T 2 *-weighted data. Results of automatic segmentation on T 2 *-weighted images was in close correspondence with the manual segmentation (Dice coefficient in the white/gray matter of 0.91/0.71 respectively). Similarly, good results were obtained in data with inverted contrast (diffusion-weighted image) and in patients. When compared to the classical template registration framework, the proposed framework that accounts for gray matter shape significantly improved the quality of the registration (comparing Dice coefficient in gray matter: p=9.5×10 -6 ). While further validation is needed to show the benefits of the new registration framework in large cohorts and in a variety of patients, this study provides a fully-integrated tool for quantitative assessment of white/gray matter morphometry and template-based analysis. All the proposed methods are implemented in the Spinal Cord Toolbox (SCT), an open-source software for processing spinal cord multi-parametric MRI data. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Fully automated MR liver volumetry using watershed segmentation coupled with active contouring.

    PubMed

    Huynh, Hieu Trung; Le-Trong, Ngoc; Bao, Pham The; Oto, Aytek; Suzuki, Kenji

    2017-02-01

    Our purpose is to develop a fully automated scheme for liver volume measurement in abdominal MR images, without requiring any user input or interaction. The proposed scheme is fully automatic for liver volumetry from 3D abdominal MR images, and it consists of three main stages: preprocessing, rough liver shape generation, and liver extraction. The preprocessing stage reduced noise and enhanced the liver boundaries in 3D abdominal MR images. The rough liver shape was revealed fully automatically by using the watershed segmentation, thresholding transform, morphological operations, and statistical properties of the liver. An active contour model was applied to refine the rough liver shape to precisely obtain the liver boundaries. The liver volumes calculated by the proposed scheme were compared to the "gold standard" references which were estimated by an expert abdominal radiologist. The liver volumes computed by using our developed scheme excellently agreed (Intra-class correlation coefficient was 0.94) with the "gold standard" manual volumes by the radiologist in the evaluation with 27 cases from multiple medical centers. The running time was 8.4 min per case on average. We developed a fully automated liver volumetry scheme in MR, which does not require any interaction by users. It was evaluated with cases from multiple medical centers. The liver volumetry performance of our developed system was comparable to that of the gold standard manual volumetry, and it saved radiologists' time for manual liver volumetry of 24.7 min per case.

  2. Automatic co-segmentation of lung tumor based on random forest in PET-CT images

    NASA Astrophysics Data System (ADS)

    Jiang, Xueqing; Xiang, Dehui; Zhang, Bin; Zhu, Weifang; Shi, Fei; Chen, Xinjian

    2016-03-01

    In this paper, a fully automatic method is proposed to segment the lung tumor in clinical 3D PET-CT images. The proposed method effectively combines PET and CT information to make full use of the high contrast of PET images and superior spatial resolution of CT images. Our approach consists of three main parts: (1) initial segmentation, in which spines are removed in CT images and initial connected regions achieved by thresholding based segmentation in PET images; (2) coarse segmentation, in which monotonic downhill function is applied to rule out structures which have similar standardized uptake values (SUV) to the lung tumor but do not satisfy a monotonic property in PET images; (3) fine segmentation, random forests method is applied to accurately segment the lung tumor by extracting effective features from PET and CT images simultaneously. We validated our algorithm on a dataset which consists of 24 3D PET-CT images from different patients with non-small cell lung cancer (NSCLC). The average TPVF, FPVF and accuracy rate (ACC) were 83.65%, 0.05% and 99.93%, respectively. The correlation analysis shows our segmented lung tumor volumes has strong correlation ( average 0.985) with the ground truth 1 and ground truth 2 labeled by a clinical expert.

  3. A fully automatic, threshold-based segmentation method for the estimation of the Metabolic Tumor Volume from PET images: validation on 3D printed anthropomorphic oncological lesions

    NASA Astrophysics Data System (ADS)

    Gallivanone, F.; Interlenghi, M.; Canervari, C.; Castiglioni, I.

    2016-01-01

    18F-Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography (PET) is a standard functional diagnostic technique to in vivo image cancer. Different quantitative paramters can be extracted from PET images and used as in vivo cancer biomarkers. Between PET biomarkers Metabolic Tumor Volume (MTV) has gained an important role in particular considering the development of patient-personalized radiotherapy treatment for non-homogeneous dose delivery. Different imaging processing methods have been developed to define MTV. The different proposed PET segmentation strategies were validated in ideal condition (e.g. in spherical objects with uniform radioactivity concentration), while the majority of cancer lesions doesn't fulfill these requirements. In this context, this work has a twofold objective: 1) to implement and optimize a fully automatic, threshold-based segmentation method for the estimation of MTV, feasible in clinical practice 2) to develop a strategy to obtain anthropomorphic phantoms, including non-spherical and non-uniform objects, miming realistic oncological patient conditions. The developed PET segmentation algorithm combines an automatic threshold-based algorithm for the definition of MTV and a k-means clustering algorithm for the estimation of the background. The method is based on parameters always available in clinical studies and was calibrated using NEMA IQ Phantom. Validation of the method was performed both in ideal (e.g. in spherical objects with uniform radioactivity concentration) and non-ideal (e.g. in non-spherical objects with a non-uniform radioactivity concentration) conditions. The strategy to obtain a phantom with synthetic realistic lesions (e.g. with irregular shape and a non-homogeneous uptake) consisted into the combined use of standard anthropomorphic phantoms commercially and irregular molds generated using 3D printer technology and filled with a radioactive chromatic alginate. The proposed segmentation algorithm was feasible in a clinical context and showed a good accuracy both in ideal and in realistic conditions.

  4. Automatic initialization and quality control of large-scale cardiac MRI segmentations.

    PubMed

    Albà, Xènia; Lekadir, Karim; Pereañez, Marco; Medrano-Gracia, Pau; Young, Alistair A; Frangi, Alejandro F

    2018-01-01

    Continuous advances in imaging technologies enable ever more comprehensive phenotyping of human anatomy and physiology. Concomitant reduction of imaging costs has resulted in widespread use of imaging in large clinical trials and population imaging studies. Magnetic Resonance Imaging (MRI), in particular, offers one-stop-shop multidimensional biomarkers of cardiovascular physiology and pathology. A wide range of analysis methods offer sophisticated cardiac image assessment and quantification for clinical and research studies. However, most methods have only been evaluated on relatively small databases often not accessible for open and fair benchmarking. Consequently, published performance indices are not directly comparable across studies and their translation and scalability to large clinical trials or population imaging cohorts is uncertain. Most existing techniques still rely on considerable manual intervention for the initialization and quality control of the segmentation process, becoming prohibitive when dealing with thousands of images. The contributions of this paper are three-fold. First, we propose a fully automatic method for initializing cardiac MRI segmentation, by using image features and random forests regression to predict an initial position of the heart and key anatomical landmarks in an MRI volume. In processing a full imaging database, the technique predicts the optimal corrective displacements and positions in relation to the initial rough intersections of the long and short axis images. Second, we introduce for the first time a quality control measure capable of identifying incorrect cardiac segmentations with no visual assessment. The method uses statistical, pattern and fractal descriptors in a random forest classifier to detect failures to be corrected or removed from subsequent statistical analysis. Finally, we validate these new techniques within a full pipeline for cardiac segmentation applicable to large-scale cardiac MRI databases. The results obtained based on over 1200 cases from the Cardiac Atlas Project show the promise of fully automatic initialization and quality control for population studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Automated coronary artery calcification detection on low-dose chest CT images

    NASA Astrophysics Data System (ADS)

    Xie, Yiting; Cham, Matthew D.; Henschke, Claudia; Yankelevitz, David; Reeves, Anthony P.

    2014-03-01

    Coronary artery calcification (CAC) measurement from low-dose CT images can be used to assess the risk of coronary artery disease. A fully automatic algorithm to detect and measure CAC from low-dose non-contrast, non-ECG-gated chest CT scans is presented. Based on the automatically detected CAC, the Agatston score (AS), mass score and volume score were computed. These were compared with scores obtained manually from standard-dose ECG-gated scans and low-dose un-gated scans of the same patient. The automatic algorithm segments the heart region based on other pre-segmented organs to provide a coronary region mask. The mitral valve and aortic valve calcification is identified and excluded. All remaining voxels greater than 180HU within the mask region are considered as CAC candidates. The heart segmentation algorithm was evaluated on 400 non-contrast cases with both low-dose and regular dose CT scans. By visual inspection, 371 (92.8%) of the segmentations were acceptable. The automated CAC detection algorithm was evaluated on 41 low-dose non-contrast CT scans. Manual markings were performed on both low-dose and standard-dose scans for these cases. Using linear regression, the correlation of the automatic AS with the standard-dose manual scores was 0.86; with the low-dose manual scores the correlation was 0.91. Standard risk categories were also computed. The automated method risk category agreed with manual markings of gated scans for 24 cases while 15 cases were 1 category off. For low-dose scans, the automatic method agreed with 33 cases while 7 cases were 1 category off.

  6. A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning.

    PubMed

    Rundo, Leonardo; Stefano, Alessandro; Militello, Carmelo; Russo, Giorgio; Sabini, Maria Gabriella; D'Arrigo, Corrado; Marletta, Francesco; Ippolito, Massimo; Mauri, Giancarlo; Vitabile, Salvatore; Gilardi, Maria Carla

    2017-06-01

    Nowadays, clinical practice in Gamma Knife treatments is generally based on MRI anatomical information alone. However, the joint use of MRI and PET images can be useful for considering both anatomical and metabolic information about the lesion to be treated. In this paper we present a co-segmentation method to integrate the segmented Biological Target Volume (BTV), using [ 11 C]-Methionine-PET (MET-PET) images, and the segmented Gross Target Volume (GTV), on the respective co-registered MR images. The resulting volume gives enhanced brain tumor information to be used in stereotactic neuro-radiosurgery treatment planning. GTV often does not match entirely with BTV, which provides metabolic information about brain lesions. For this reason, PET imaging is valuable and it could be used to provide complementary information useful for treatment planning. In this way, BTV can be used to modify GTV, enhancing Clinical Target Volume (CTV) delineation. A novel fully automatic multimodal PET/MRI segmentation method for Leksell Gamma Knife ® treatments is proposed. This approach improves and combines two computer-assisted and operator-independent single modality methods, previously developed and validated, to segment BTV and GTV from PET and MR images, respectively. In addition, the GTV is utilized to combine the superior contrast of PET images with the higher spatial resolution of MRI, obtaining a new BTV, called BTV MRI . A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is also presented. Overlap-based and spatial distance-based metrics were considered to quantify similarity concerning PET and MRI segmentation approaches. Statistics was also included to measure correlation among the different segmentation processes. Since it is not possible to define a gold-standard CTV according to both MRI and PET images without treatment response assessment, the feasibility and the clinical value of BTV integration in Gamma Knife treatment planning were considered. Therefore, a qualitative evaluation was carried out by three experienced clinicians. The achieved experimental results showed that GTV and BTV segmentations are statistically correlated (Spearman's rank correlation coefficient: 0.898) but they have low similarity degree (average Dice Similarity Coefficient: 61.87 ± 14.64). Therefore, volume measurements as well as evaluation metrics values demonstrated that MRI and PET convey different but complementary imaging information. GTV and BTV could be combined to enhance treatment planning. In more than 50% of cases the CTV was strongly or moderately conditioned by metabolic imaging. Especially, BTV MRI enhanced the CTV more accurately than BTV in 25% of cases. The proposed fully automatic multimodal PET/MRI segmentation method is a valid operator-independent methodology helping the clinicians to define a CTV that includes both metabolic and morphologic information. BTV MRI and GTV should be considered for a comprehensive treatment planning. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Automatic segmentation of white matter hyperintensities robust to multicentre acquisition and pathological variability

    NASA Astrophysics Data System (ADS)

    Samaille, T.; Colliot, O.; Cuingnet, R.; Jouvent, E.; Chabriat, H.; Dormont, D.; Chupin, M.

    2012-02-01

    White matter hyperintensities (WMH), commonly seen on FLAIR images in elderly people, are a risk factor for dementia onset and have been associated with motor and cognitive deficits. We present here a method to fully automatically segment WMH from T1 and FLAIR images. Iterative steps of non linear diffusion followed by watershed segmentation were applied on FLAIR images until convergence. Diffusivity function and associated contrast parameter were carefully designed to adapt to WMH segmentation. It resulted in piecewise constant images with enhanced contrast between lesions and surrounding tissues. Selection of WMH areas was based on two characteristics: 1) a threshold automatically computed for intensity selection, 2) main location of areas in white matter. False positive areas were finally removed based on their proximity with cerebrospinal fluid/grey matter interface. Evaluation was performed on 67 patients: 24 with amnestic mild cognitive impairment (MCI), from five different centres, and 43 with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoaraiosis (CADASIL) acquired in a single centre. Results showed excellent volume agreement with manual delineation (Pearson coefficient: r=0.97, p<0.001) and substantial spatial correspondence (Similarity Index: 72%+/-16%). Our method appeared robust to acquisition differences across the centres as well as to pathological variability.

  8. Psoriasis skin biopsy image segmentation using Deep Convolutional Neural Network.

    PubMed

    Pal, Anabik; Garain, Utpal; Chandra, Aditi; Chatterjee, Raghunath; Senapati, Swapan

    2018-06-01

    Development of machine assisted tools for automatic analysis of psoriasis skin biopsy image plays an important role in clinical assistance. Development of automatic approach for accurate segmentation of psoriasis skin biopsy image is the initial prerequisite for developing such system. However, the complex cellular structure, presence of imaging artifacts, uneven staining variation make the task challenging. This paper presents a pioneering attempt for automatic segmentation of psoriasis skin biopsy images. Several deep neural architectures are tried for segmenting psoriasis skin biopsy images. Deep models are used for classifying the super-pixels generated by Simple Linear Iterative Clustering (SLIC) and the segmentation performance of these architectures is compared with the traditional hand-crafted feature based classifiers built on popularly used classifiers like K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Random Forest (RF). A U-shaped Fully Convolutional Neural Network (FCN) is also used in an end to end learning fashion where input is the original color image and the output is the segmentation class map for the skin layers. An annotated real psoriasis skin biopsy image data set of ninety (90) images is developed and used for this research. The segmentation performance is evaluated with two metrics namely, Jaccard's Coefficient (JC) and the Ratio of Correct Pixel Classification (RCPC) accuracy. The experimental results show that the CNN based approaches outperform the traditional hand-crafted feature based classification approaches. The present research shows that practical system can be developed for machine assisted analysis of psoriasis disease. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Fully automated segmentation of the pectoralis muscle boundary in breast MR images

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Filippatos, Konstantinos; Friman, Ola; Hahn, Horst K.

    2011-03-01

    Dynamic Contrast Enhanced MRI (DCE-MRI) of the breast is emerging as a novel tool for early tumor detection and diagnosis. The segmentation of the structures in breast DCE-MR images, such as the nipple, the breast-air boundary and the pectoralis muscle, serves as a fundamental step for further computer assisted diagnosis (CAD) applications, e.g. breast density analysis. Moreover, the previous clinical studies show that the distance between the posterior breast lesions and the pectoralis muscle can be used to assess the extent of the disease. To enable automatic quantification of the distance from a breast tumor to the pectoralis muscle, a precise delineation of the pectoralis muscle boundary is required. We present a fully automatic segmentation method based on the second derivative information represented by the Hessian matrix. The voxels proximal to the pectoralis muscle boundary exhibit roughly the same Eigen value patterns as a sheet-like object in 3D, which can be enhanced and segmented by a Hessian-based sheetness filter. A vector-based connected component filter is then utilized such that only the pectoralis muscle is preserved by extracting the largest connected component. The proposed method was evaluated quantitatively with a test data set which includes 30 breast MR images by measuring the average distances between the segmented boundary and the annotated surfaces in two ground truth sets, and the statistics showed that the mean distance was 1.434 mm with the standard deviation of 0.4661 mm, which shows great potential for integration of the approach in the clinical routine.

  10. Fully automatic detection of salient features in 3-d transesophageal images.

    PubMed

    Curiale, Ariel H; Haak, Alexander; Vegas-Sánchez-Ferrero, Gonzalo; Ren, Ben; Aja-Fernández, Santiago; Bosch, Johan G

    2014-12-01

    Most automated segmentation approaches to the mitral valve and left ventricle in 3-D echocardiography require a manual initialization. In this article, we propose a fully automatic scheme to initialize a multicavity segmentation approach in 3-D transesophageal echocardiography by detecting the left ventricle long axis, the mitral valve and the aortic valve location. Our approach uses a probabilistic and structural tissue classification to find structures such as the mitral and aortic valves; the Hough transform for circles to find the center of the left ventricle; and multidimensional dynamic programming to find the best position for the left ventricle long axis. For accuracy and agreement assessment, the proposed method was evaluated in 19 patients with respect to manual landmarks and as initialization of a multicavity segmentation approach for the left ventricle, the right ventricle, the left atrium, the right atrium and the aorta. The segmentation results revealed no statistically significant differences between manual and automated initialization in a paired t-test (p > 0.05). Additionally, small biases between manual and automated initialization were detected in the Bland-Altman analysis (bias, variance) for the left ventricle (-0.04, 0.10); right ventricle (-0.07, 0.18); left atrium (-0.01, 0.03); right atrium (-0.04, 0.13); and aorta (-0.05, 0.14). These results indicate that the proposed approach provides robust and accurate detection to initialize a multicavity segmentation approach without any user interaction. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Automatic estimation of extent of resection and residual tumor volume of patients with glioblastoma.

    PubMed

    Meier, Raphael; Porz, Nicole; Knecht, Urspeter; Loosli, Tina; Schucht, Philippe; Beck, Jürgen; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio

    2017-10-01

    OBJECTIVE In the treatment of glioblastoma, residual tumor burden is the only prognostic factor that can be actively influenced by therapy. Therefore, an accurate, reproducible, and objective measurement of residual tumor burden is necessary. This study aimed to evaluate the use of a fully automatic segmentation method-brain tumor image analysis (BraTumIA)-for estimating the extent of resection (EOR) and residual tumor volume (RTV) of contrast-enhancing tumor after surgery. METHODS The imaging data of 19 patients who underwent primary resection of histologically confirmed supratentorial glioblastoma were retrospectively reviewed. Contrast-enhancing tumors apparent on structural preoperative and immediate postoperative MR imaging in this patient cohort were segmented by 4 different raters and the automatic segmentation BraTumIA software. The manual and automatic results were quantitatively compared. RESULTS First, the interrater variabilities in the estimates of EOR and RTV were assessed for all human raters. Interrater agreement in terms of the coefficient of concordance (W) was higher for RTV (W = 0.812; p < 0.001) than for EOR (W = 0.775; p < 0.001). Second, the volumetric estimates of BraTumIA for all 19 patients were compared with the estimates of the human raters, which showed that for both EOR (W = 0.713; p < 0.001) and RTV (W = 0.693; p < 0.001) the estimates of BraTumIA were generally located close to or between the estimates of the human raters. No statistically significant differences were detected between the manual and automatic estimates. BraTumIA showed a tendency to overestimate contrast-enhancing tumors, leading to moderate agreement with expert raters with respect to the literature-based, survival-relevant threshold values for EOR. CONCLUSIONS BraTumIA can generate volumetric estimates of EOR and RTV, in a fully automatic fashion, which are comparable to the estimates of human experts. However, automated analysis showed a tendency to overestimate the volume of a contrast-enhancing tumor, whereas manual analysis is prone to subjectivity, thereby causing considerable interrater variability.

  12. Superpixel Cut for Figure-Ground Image Segmentation

    NASA Astrophysics Data System (ADS)

    Yang, Michael Ying; Rosenhahn, Bodo

    2016-06-01

    Figure-ground image segmentation has been a challenging problem in computer vision. Apart from the difficulties in establishing an effective framework to divide the image pixels into meaningful groups, the notions of figure and ground often need to be properly defined by providing either user inputs or object models. In this paper, we propose a novel graph-based segmentation framework, called superpixel cut. The key idea is to formulate foreground segmentation as finding a subset of superpixels that partitions a graph over superpixels. The problem is formulated as Min-Cut. Therefore, we propose a novel cost function that simultaneously minimizes the inter-class similarity while maximizing the intra-class similarity. This cost function is optimized using parametric programming. After a small learning step, our approach is fully automatic and fully bottom-up, which requires no high-level knowledge such as shape priors and scene content. It recovers coherent components of images, providing a set of multiscale hypotheses for high-level reasoning. We evaluate our proposed framework by comparing it to other generic figure-ground segmentation approaches. Our method achieves improved performance on state-of-the-art benchmark databases.

  13. Computer-aided liver volumetry: performance of a fully-automated, prototype post-processing solution for whole-organ and lobar segmentation based on MDCT imaging.

    PubMed

    Fananapazir, Ghaneh; Bashir, Mustafa R; Marin, Daniele; Boll, Daniel T

    2015-06-01

    To evaluate the performance of a prototype, fully-automated post-processing solution for whole-liver and lobar segmentation based on MDCT datasets. A polymer liver phantom was used to assess accuracy of post-processing applications comparing phantom volumes determined via Archimedes' principle with MDCT segmented datasets. For the IRB-approved, HIPAA-compliant study, 25 patients were enrolled. Volumetry performance compared the manual approach with the automated prototype, assessing intraobserver variability, and interclass correlation for whole-organ and lobar segmentation using ANOVA comparison. Fidelity of segmentation was evaluated qualitatively. Phantom volume was 1581.0 ± 44.7 mL, manually segmented datasets estimated 1628.0 ± 47.8 mL, representing a mean overestimation of 3.0%, automatically segmented datasets estimated 1601.9 ± 0 mL, representing a mean overestimation of 1.3%. Whole-liver and segmental volumetry demonstrated no significant intraobserver variability for neither manual nor automated measurements. For whole-liver volumetry, automated measurement repetitions resulted in identical values; reproducible whole-organ volumetry was also achieved with manual segmentation, p(ANOVA) 0.98. For lobar volumetry, automated segmentation improved reproducibility over manual approach, without significant measurement differences for either methodology, p(ANOVA) 0.95-0.99. Whole-organ and lobar segmentation results from manual and automated segmentation showed no significant differences, p(ANOVA) 0.96-1.00. Assessment of segmentation fidelity found that segments I-IV/VI showed greater segmentation inaccuracies compared to the remaining right hepatic lobe segments. Automated whole-liver segmentation showed non-inferiority of fully-automated whole-liver segmentation compared to manual approaches with improved reproducibility and post-processing duration; automated dual-seed lobar segmentation showed slight tendencies for underestimating the right hepatic lobe volume and greater variability in edge detection for the left hepatic lobe compared to manual segmentation.

  14. TU-CD-BRA-04: Evaluation of An Atlas-Based Segmentation Method for Prostate and Peripheral Zone Regions On MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, AS; Piper, J; Curry, K

    2015-06-15

    Purpose: Prostate MRI plays an important role in diagnosis, biopsy guidance, and therapy planning for prostate cancer. Prostate MRI contours can be used to aid in image fusion for ultrasound biopsy guidance and delivery of radiation. Our goal in this study is to evaluate an automatic atlas-based segmentation method for generating prostate and peripheral zone (PZ) contours on MRI. Methods: T2-weighted MRIs were acquired on 3T-Discovery MR750 System (GE, Milwaukee). The Volumes of Interest (VOIs): prostate and PZ were outlined by an expert radiation oncologist and used to create an atlas library for atlas-based segmentation. The atlas-segmentation accuracy was evaluatedmore » using a leave-one-out analysis. The method involved automatically finding the atlas subject that best matched the test subject followed by a normalized intensity-based free-form deformable registration of the atlas subject to the test subject. The prostate and PZ contours were transformed to the test subject using the same deformation. For each test subject the three best matches were used and the final contour was combined using Majority Vote. The atlas-segmentation process was fully automatic. Dice similarity coefficients (DSC) and mean Hausdorff values were used for comparison. Results: VOIs contours were available for 28 subjects. For the prostate, the atlas-based segmentation method resulted in an average DSC of 0.88+/−0.08 and a mean Hausdorff distance of 1.1+/−0.9mm. The number of patients (#) in DSC ranges are as follows: 0.60–0.69(1), 0.70–0.79(2), 0.80–0.89(13), >0.89(11). For the PZ, the average DSC was 0.72+/−0.17 and average Hausdorff of 0.9+/−0.9mm. The number of patients (#) in DSC ranges are as follows: <0.60(4), 0.60–0.69(6), 0.70–0.79(7), 0.80–0.89(9), >0.89(1). Conclusion: The MRI atlas-based segmentation method achieved good results for both the whole prostate and PZ compared to expert defined VOIs. The technique is fast, fully automatic, and has the potential to provide significant time savings for prostate VOI definition. AS Nelson and J Piper are partial owners of MIM Software, Inc. AS Nelson, J Piper, K Curry, and A Swallen are current employees at MIM Software, Inc.« less

  15. Ω-Net (Omega-Net): Fully automatic, multi-view cardiac MR detection, orientation, and segmentation with deep neural networks.

    PubMed

    Vigneault, Davis M; Xie, Weidi; Ho, Carolyn Y; Bluemke, David A; Noble, J Alison

    2018-05-22

    Pixelwise segmentation of the left ventricular (LV) myocardium and the four cardiac chambers in 2-D steady state free precession (SSFP) cine sequences is an essential preprocessing step for a wide range of analyses. Variability in contrast, appearance, orientation, and placement of the heart between patients, clinical views, scanners, and protocols makes fully automatic semantic segmentation a notoriously difficult problem. Here, we present Ω-Net (Omega-Net): A novel convolutional neural network (CNN) architecture for simultaneous localization, transformation into a canonical orientation, and semantic segmentation. First, an initial segmentation is performed on the input image; second, the features learned during this initial segmentation are used to predict the parameters needed to transform the input image into a canonical orientation; and third, a final segmentation is performed on the transformed image. In this work, Ω-Nets of varying depths were trained to detect five foreground classes in any of three clinical views (short axis, SA; four-chamber, 4C; two-chamber, 2C), without prior knowledge of the view being segmented. This constitutes a substantially more challenging problem compared with prior work. The architecture was trained using three-fold cross-validation on a cohort of patients with hypertrophic cardiomyopathy (HCM, N=42) and healthy control subjects (N=21). Network performance, as measured by weighted foreground intersection-over-union (IoU), was substantially improved for the best-performing Ω-Net compared with U-Net segmentation without localization or orientation (0.858 vs 0.834). In addition, to be comparable with other works, Ω-Net was retrained from scratch using five-fold cross-validation on the publicly available 2017 MICCAI Automated Cardiac Diagnosis Challenge (ACDC) dataset. The Ω-Net outperformed the state-of-the-art method in segmentation of the LV and RV bloodpools, and performed slightly worse in segmentation of the LV myocardium. We conclude that this architecture represents a substantive advancement over prior approaches, with implications for biomedical image segmentation more generally. Published by Elsevier B.V.

  16. Segmentation of stereo terrain images

    NASA Astrophysics Data System (ADS)

    George, Debra A.; Privitera, Claudio M.; Blackmon, Theodore T.; Zbinden, Eric; Stark, Lawrence W.

    2000-06-01

    We have studied four approaches to segmentation of images: three automatic ones using image processing algorithms and a fourth approach, human manual segmentation. We were motivated toward helping with an important NASA Mars rover mission task -- replacing laborious manual path planning with automatic navigation of the rover on the Mars terrain. The goal of the automatic segmentations was to identify an obstacle map on the Mars terrain to enable automatic path planning for the rover. The automatic segmentation was first explored with two different segmentation methods: one based on pixel luminance, and the other based on pixel altitude generated through stereo image processing. The third automatic segmentation was achieved by combining these two types of image segmentation. Human manual segmentation of Martian terrain images was used for evaluating the effectiveness of the combined automatic segmentation as well as for determining how different humans segment the same images. Comparisons between two different segmentations, manual or automatic, were measured using a similarity metric, SAB. Based on this metric, the combined automatic segmentation did fairly well in agreeing with the manual segmentation. This was a demonstration of a positive step towards automatically creating the accurate obstacle maps necessary for automatic path planning and rover navigation.

  17. Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network

    PubMed Central

    Mao, Lei; Liu, Chang; Xiong, Shuyu

    2018-01-01

    Brain tumors can appear anywhere in the brain and have vastly different sizes and morphology. Additionally, these tumors are often diffused and poorly contrasted. Consequently, the segmentation of brain tumor and intratumor subregions using magnetic resonance imaging (MRI) data with minimal human interventions remains a challenging task. In this paper, we present a novel fully automatic segmentation method from MRI data containing in vivo brain gliomas. This approach can not only localize the entire tumor region but can also accurately segment the intratumor structure. The proposed work was based on a cascaded deep learning convolutional neural network consisting of two subnetworks: (1) a tumor localization network (TLN) and (2) an intratumor classification network (ITCN). The TLN, a fully convolutional network (FCN) in conjunction with the transfer learning technology, was used to first process MRI data. The goal of the first subnetwork was to define the tumor region from an MRI slice. Then, the ITCN was used to label the defined tumor region into multiple subregions. Particularly, ITCN exploited a convolutional neural network (CNN) with deeper architecture and smaller kernel. The proposed approach was validated on multimodal brain tumor segmentation (BRATS 2015) datasets, which contain 220 high-grade glioma (HGG) and 54 low-grade glioma (LGG) cases. Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity were used as evaluation metrics. Our experimental results indicated that our method could obtain the promising segmentation results and had a faster segmentation speed. More specifically, the proposed method obtained comparable and overall better DSC values (0.89, 0.77, and 0.80) on the combined (HGG + LGG) testing set, as compared to other methods reported in the literature. Additionally, the proposed approach was able to complete a segmentation task at a rate of 1.54 seconds per slice. PMID:29755716

  18. Scene Semantic Segmentation from Indoor Rgb-D Images Using Encode-Decoder Fully Convolutional Networks

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Li, T.; Pan, L.; Kang, Z.

    2017-09-01

    With increasing attention for the indoor environment and the development of low-cost RGB-D sensors, indoor RGB-D images are easily acquired. However, scene semantic segmentation is still an open area, which restricts indoor applications. The depth information can help to distinguish the regions which are difficult to be segmented out from the RGB images with similar color or texture in the indoor scenes. How to utilize the depth information is the key problem of semantic segmentation for RGB-D images. In this paper, we propose an Encode-Decoder Fully Convolutional Networks for RGB-D image classification. We use Multiple Kernel Maximum Mean Discrepancy (MK-MMD) as a distance measure to find common and special features of RGB and D images in the network to enhance performance of classification automatically. To explore better methods of applying MMD, we designed two strategies; the first calculates MMD for each feature map, and the other calculates MMD for whole batch features. Based on the result of classification, we use the full connect CRFs for the semantic segmentation. The experimental results show that our method can achieve a good performance on indoor RGB-D image semantic segmentation.

  19. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images.

    PubMed

    Neubert, A; Yang, Z; Engstrom, C; Xia, Y; Strudwick, M W; Chandra, S S; Fripp, J; Crozier, S

    2016-10-01

    Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hip joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone-cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head and glenoid fossa, respectively. Mean DSC scores of 0.74 and 0.72 were obtained for the humeral and glenoid cartilage volumes, respectively. The manual interobserver reliability evaluated by DSC was 0.80 ± 0.03 and 0.76 ± 0.04 for the two cartilages, implying that the automated results were within an acceptable 10% difference. The MASD between the automatic and the corresponding manual cartilage segmentations was less than 0.4 mm (previous studies reported mean cartilage thickness of 1.3 mm). This work shows the feasibility of volumetric segmentation and separation of the glenohumeral cartilages from MR images. To their knowledge, this is the first fully automated algorithm for volumetric segmentation of the individual glenohumeral cartilages from MR images. The approach was validated against manual segmentations from experienced analysts. In future work, the approach will be validated on imaging datasets acquired with various MR contrasts in patients.

  20. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubert, A., E-mail: ales.neubert@csiro.au

    Purpose: Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hipmore » joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. Methods: The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone–cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Results: Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head and glenoid fossa, respectively. Mean DSC scores of 0.74 and 0.72 were obtained for the humeral and glenoid cartilage volumes, respectively. The manual interobserver reliability evaluated by DSC was 0.80 ± 0.03 and 0.76 ± 0.04 for the two cartilages, implying that the automated results were within an acceptable 10% difference. The MASD between the automatic and the corresponding manual cartilage segmentations was less than 0.4 mm (previous studies reported mean cartilage thickness of 1.3 mm). Conclusions: This work shows the feasibility of volumetric segmentation and separation of the glenohumeral cartilages from MR images. To their knowledge, this is the first fully automated algorithm for volumetric segmentation of the individual glenohumeral cartilages from MR images. The approach was validated against manual segmentations from experienced analysts. In future work, the approach will be validated on imaging datasets acquired with various MR contrasts in patients.« less

  1. New software tools for enhanced precision in robot-assisted laser phonomicrosurgery.

    PubMed

    Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G

    2012-01-01

    This paper describes a new software package created to enhance precision during robot-assisted laser phonomicrosurgery procedures. The new software is composed of three tools for camera calibration, automatic tumor segmentation, and laser tracking. These were designed and developed to improve the outcome of this demanding microsurgical technique, and were tested herein to produce quantitative performance data. The experimental setup was based on the motorized laser micromanipulator created by Istituto Italiano di Tecnologia and the experimental protocols followed are fully described in this paper. The results show the new tools are robust and effective: The camera calibration tool reduced residual errors (RMSE) to 0.009 ± 0.002 mm under 40× microscope magnification; the automatic tumor segmentation tool resulted in deep lesion segmentations comparable to manual segmentations (RMSE= 0.160 ± 0.028 mm under 40× magnification); and the laser tracker tool proved to be reliable even during cutting procedures (RMSE= 0.073 ± 0.023 mm under 40× magnification). These results demonstrate the new software package can provide excellent improvements to the previous microsurgical system, leading to important enhancements in surgical outcome.

  2. Automatic segmentation of 4D cardiac MR images for extraction of ventricular chambers using a spatio-temporal approach

    NASA Astrophysics Data System (ADS)

    Atehortúa, Angélica; Zuluaga, Maria A.; Ourselin, Sébastien; Giraldo, Diana; Romero, Eduardo

    2016-03-01

    An accurate ventricular function quantification is important to support evaluation, diagnosis and prognosis of several cardiac pathologies. However, expert heart delineation, specifically for the right ventricle, is a time consuming task with high inter-and-intra observer variability. A fully automatic 3D+time heart segmentation framework is herein proposed for short-axis-cardiac MRI sequences. This approach estimates the heart using exclusively information from the sequence itself without tuning any parameters. The proposed framework uses a coarse-to-fine approach, which starts by localizing the heart via spatio-temporal analysis, followed by a segmentation of the basal heart that is then propagated to the apex by using a non-rigid-registration strategy. The obtained volume is then refined by estimating the ventricular muscle by locally searching a prior endocardium- pericardium intensity pattern. The proposed framework was applied to 48 patients datasets supplied by the organizers of the MICCAI 2012 Right Ventricle segmentation challenge. Results show the robustness, efficiency and competitiveness of the proposed method both in terms of accuracy and computational load.

  3. Landmark-guided diffeomorphic demons algorithm and its application to automatic segmentation of the whole spine and pelvis in CT images.

    PubMed

    Hanaoka, Shouhei; Masutani, Yoshitaka; Nemoto, Mitsutaka; Nomura, Yukihiro; Miki, Soichiro; Yoshikawa, Takeharu; Hayashi, Naoto; Ohtomo, Kuni; Shimizu, Akinobu

    2017-03-01

    A fully automatic multiatlas-based method for segmentation of the spine and pelvis in a torso CT volume is proposed. A novel landmark-guided diffeomorphic demons algorithm is used to register a given CT image to multiple atlas volumes. This algorithm can utilize both grayscale image information and given landmark coordinate information optimally. The segmentation has four steps. Firstly, 170 bony landmarks are detected in the given volume. Using these landmark positions, an atlas selection procedure is performed to reduce the computational cost of the following registration. Then the chosen atlas volumes are registered to the given CT image. Finally, voxelwise label voting is performed to determine the final segmentation result. The proposed method was evaluated using 50 torso CT datasets as well as the public SpineWeb dataset. As a result, a mean distance error of [Formula: see text] and a mean Dice coefficient of [Formula: see text] were achieved for the whole spine and the pelvic bones, which are competitive with other state-of-the-art methods. From the experimental results, the usefulness of the proposed segmentation method was validated.

  4. Automatic Approach for Lung Segmentation with Juxta-Pleural Nodules from Thoracic CT Based on Contour Tracing and Correction.

    PubMed

    Wang, Jinke; Guo, Haoyan

    2016-01-01

    This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD) 11.15 ± 69.63 cm 3 , volume overlap error (VOE) 3.5057 ± 1.3719%, average surface distance (ASD) 0.7917 ± 0.2741 mm, root mean square distance (RMSD) 1.6957 ± 0.6568 mm, maximum symmetric absolute surface distance (MSD) 21.3430 ± 8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.

  5. A Scalable Framework For Segmenting Magnetic Resonance Images

    PubMed Central

    Hore, Prodip; Goldgof, Dmitry B.; Gu, Yuhua; Maudsley, Andrew A.; Darkazanli, Ammar

    2009-01-01

    A fast, accurate and fully automatic method of segmenting magnetic resonance images of the human brain is introduced. The approach scales well allowing fast segmentations of fine resolution images. The approach is based on modifications of the soft clustering algorithm, fuzzy c-means, that enable it to scale to large data sets. Two types of modifications to create incremental versions of fuzzy c-means are discussed. They are much faster when compared to fuzzy c-means for medium to extremely large data sets because they work on successive subsets of the data. They are comparable in quality to application of fuzzy c-means to all of the data. The clustering algorithms coupled with inhomogeneity correction and smoothing are used to create a framework for automatically segmenting magnetic resonance images of the human brain. The framework is applied to a set of normal human brain volumes acquired from different magnetic resonance scanners using different head coils, acquisition parameters and field strengths. Results are compared to those from two widely used magnetic resonance image segmentation programs, Statistical Parametric Mapping and the FMRIB Software Library (FSL). The results are comparable to FSL while providing significant speed-up and better scalability to larger volumes of data. PMID:20046893

  6. Automated contour detection in X-ray left ventricular angiograms using multiview active appearance models and dynamic programming.

    PubMed

    Oost, Elco; Koning, Gerhard; Sonka, Milan; Oemrawsingh, Pranobe V; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2006-09-01

    This paper describes a new approach to the automated segmentation of X-ray left ventricular (LV) angiograms, based on active appearance models (AAMs) and dynamic programming. A coupling of shape and texture information between the end-diastolic (ED) and end-systolic (ES) frame was achieved by constructing a multiview AAM. Over-constraining of the model was compensated for by employing dynamic programming, integrating both intensity and motion features in the cost function. Two applications are compared: a semi-automatic method with manual model initialization, and a fully automatic algorithm. The first proved to be highly robust and accurate, demonstrating high clinical relevance. Based on experiments involving 70 patient data sets, the algorithm's success rate was 100% for ED and 99% for ES, with average unsigned border positioning errors of 0.68 mm for ED and 1.45 mm for ES. Calculated volumes were accurate and unbiased. The fully automatic algorithm, with intrinsically less user interaction was less robust, but showed a high potential, mostly due to a controlled gradient descent in updating the model parameters. The success rate of the fully automatic method was 91% for ED and 83% for ES, with average unsigned border positioning errors of 0.79 mm for ED and 1.55 mm for ES.

  7. Breast tumor segmentation in DCE-MRI using fully convolutional networks with an application in radiogenomics

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Saha, Ashirbani; Zhu, Zhe; Mazurowski, Maciej A.

    2018-02-01

    Breast tumor segmentation based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) remains an active as well as a challenging problem. Previous studies often rely on manual annotation for tumor regions, which is not only time-consuming but also error-prone. Recent studies have shown high promise of deep learning-based methods in various segmentation problems. However, these methods are usually faced with the challenge of limited number (e.g., tens or hundreds) of medical images for training, leading to sub-optimal segmentation performance. Also, previous methods cannot efficiently deal with prevalent class-imbalance problems in tumor segmentation, where the number of voxels in tumor regions is much lower than that in the background area. To address these issues, in this study, we propose a mask-guided hierarchical learning (MHL) framework for breast tumor segmentation via fully convolutional networks (FCN). Our strategy is first decomposing the original difficult problem into several sub-problems and then solving these relatively simpler sub-problems in a hierarchical manner. To precisely identify locations of tumors that underwent a biopsy, we further propose an FCN model to detect two landmarks defined on nipples. Finally, based on both segmentation probability maps and our identified landmarks, we proposed to select biopsied tumors from all detected tumors via a tumor selection strategy using the pathology location. We validate our MHL method using data for 272 patients, and achieve a mean Dice similarity coefficient (DSC) of 0.72 in breast tumor segmentation. Finally, in a radiogenomic analysis, we show that a previously developed image features show a comparable performance for identifying luminal A subtype when applied to the automatic segmentation and a semi-manual segmentation demonstrating a high promise for fully automated radiogenomic analysis in breast cancer.

  8. Multi-atlas-based segmentation of the parotid glands of MR images in patients following head-and-neck cancer radiotherapy

    NASA Astrophysics Data System (ADS)

    Cheng, Guanghui; Yang, Xiaofeng; Wu, Ning; Xu, Zhijian; Zhao, Hongfu; Wang, Yuefeng; Liu, Tian

    2013-02-01

    Xerostomia (dry mouth), resulting from radiation damage to the parotid glands, is one of the most common and distressing side effects of head-and-neck cancer radiotherapy. Recent MRI studies have demonstrated that the volume reduction of parotid glands is an important indicator for radiation damage and xerostomia. In the clinic, parotid-volume evaluation is exclusively based on physicians' manual contours. However, manual contouring is time-consuming and prone to inter-observer and intra-observer variability. Here, we report a fully automated multi-atlas-based registration method for parotid-gland delineation in 3D head-and-neck MR images. The multi-atlas segmentation utilizes a hybrid deformable image registration to map the target subject to multiple patients' images, applies the transformation to the corresponding segmented parotid glands, and subsequently uses the multiple patient-specific pairs (head-and-neck MR image and transformed parotid-gland mask) to train support vector machine (SVM) to reach consensus to segment the parotid gland of the target subject. This segmentation algorithm was tested with head-and-neck MRIs of 5 patients following radiotherapy for the nasopharyngeal cancer. The average parotid-gland volume overlapped 85% between the automatic segmentations and the physicians' manual contours. In conclusion, we have demonstrated the feasibility of an automatic multi-atlas based segmentation algorithm to segment parotid glands in head-and-neck MR images.

  9. The ACODEA Framework: Developing Segmentation and Classification Schemes for Fully Automatic Analysis of Online Discussions

    ERIC Educational Resources Information Center

    Mu, Jin; Stegmann, Karsten; Mayfield, Elijah; Rose, Carolyn; Fischer, Frank

    2012-01-01

    Research related to online discussions frequently faces the problem of analyzing huge corpora. Natural Language Processing (NLP) technologies may allow automating this analysis. However, the state-of-the-art in machine learning and text mining approaches yields models that do not transfer well between corpora related to different topics. Also,…

  10. Automatic bone segmentation in knee MR images using a coarse-to-fine strategy

    NASA Astrophysics Data System (ADS)

    Park, Sang Hyun; Lee, Soochahn; Yun, Il Dong; Lee, Sang Uk

    2012-02-01

    Segmentation of bone and cartilage from a three dimensional knee magnetic resonance (MR) image is a crucial element in monitoring and understanding of development and progress of osteoarthritis. Until now, various segmentation methods have been proposed to separate the bone from other tissues, but it still remains challenging problem due to different modality of MR images, low contrast between bone and tissues, and shape irregularity. In this paper, we present a new fully-automatic segmentation method of bone compartments using relevant bone atlases from a training set. To find the relevant bone atlases and obtain the segmentation, a coarse-to-fine strategy is proposed. In the coarse step, the best atlas among the training set and an initial segmentation are simultaneously detected using branch and bound tree search. Since the best atlas in the coarse step is not accurately aligned, all atlases from the training set are aligned to the initial segmentation, and the best aligned atlas is selected in the middle step. Finally, in the fine step, segmentation is conducted as adaptively integrating shape of the best aligned atlas and appearance prior based on characteristics of local regions. For experiment, femur and tibia bones of forty test MR images are segmented by the proposed method using sixty training MR images. Experimental results show that a performance of the segmentation and the registration becomes better as going near the fine step, and the proposed method obtain the comparable performance with the state-of-the-art methods.

  11. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.

    PubMed

    Wang, Jinke; Cheng, Yuanzhi; Guo, Changyong; Wang, Yadong; Tamura, Shinichi

    2016-05-01

    Propose a fully automatic 3D segmentation framework to segment liver on challenging cases that contain the low contrast of adjacent organs and the presence of pathologies from abdominal CT images. First, all of the atlases are weighted in the selected training datasets by calculating the similarities between the atlases and the test image to dynamically generate a subject-specific probabilistic atlas for the test image. The most likely liver region of the test image is further determined based on the generated atlas. A rough segmentation is obtained by a maximum a posteriori classification of probability map, and the final liver segmentation is produced by a shape-intensity prior level set in the most likely liver region. Our method is evaluated and demonstrated on 25 test CT datasets from our partner site, and its results are compared with two state-of-the-art liver segmentation methods. Moreover, our performance results on 10 MICCAI test datasets are submitted to the organizers for comparison with the other automatic algorithms. Using the 25 test CT datasets, average symmetric surface distance is [Formula: see text] mm (range 0.62-2.12 mm), root mean square symmetric surface distance error is [Formula: see text] mm (range 0.97-3.01 mm), and maximum symmetric surface distance error is [Formula: see text] mm (range 12.73-26.67 mm) by our method. Our method on 10 MICCAI test data sets ranks 10th in all the 47 automatic algorithms on the site as of July 2015. Quantitative results, as well as qualitative comparisons of segmentations, indicate that our method is a promising tool to improve the efficiency of both techniques. The applicability of the proposed method to some challenging clinical problems and the segmentation of the liver are demonstrated with good results on both quantitative and qualitative experimentations. This study suggests that the proposed framework can be good enough to replace the time-consuming and tedious slice-by-slice manual segmentation approach.

  12. FreeSurfer-initiated fully-automated subcortical brain segmentation in MRI using Large Deformation Diffeomorphic Metric Mapping.

    PubMed

    Khan, Ali R; Wang, Lei; Beg, Mirza Faisal

    2008-07-01

    Fully-automated brain segmentation methods have not been widely adopted for clinical use because of issues related to reliability, accuracy, and limitations of delineation protocol. By combining the probabilistic-based FreeSurfer (FS) method with the Large Deformation Diffeomorphic Metric Mapping (LDDMM)-based label-propagation method, we are able to increase reliability and accuracy, and allow for flexibility in template choice. Our method uses the automated FreeSurfer subcortical labeling to provide a coarse-to-fine introduction of information in the LDDMM template-based segmentation resulting in a fully-automated subcortical brain segmentation method (FS+LDDMM). One major advantage of the FS+LDDMM-based approach is that the automatically generated segmentations generated are inherently smooth, thus subsequent steps in shape analysis can directly follow without manual post-processing or loss of detail. We have evaluated our new FS+LDDMM method on several databases containing a total of 50 subjects with different pathologies, scan sequences and manual delineation protocols for labeling the basal ganglia, thalamus, and hippocampus. In healthy controls we report Dice overlap measures of 0.81, 0.83, 0.74, 0.86 and 0.75 for the right caudate nucleus, putamen, pallidum, thalamus and hippocampus respectively. We also find statistically significant improvement of accuracy in FS+LDDMM over FreeSurfer for the caudate nucleus and putamen of Huntington's disease and Tourette's syndrome subjects, and the right hippocampus of Schizophrenia subjects.

  13. Automated segmentation of the atrial region and fossa ovalis towards computer-aided planning of inter-atrial wall interventions.

    PubMed

    Morais, Pedro; Vilaça, João L; Queirós, Sandro; Marchi, Alberto; Bourier, Felix; Deisenhofer, Isabel; D'hooge, Jan; Tavares, João Manuel R S

    2018-07-01

    Image-fusion strategies have been applied to improve inter-atrial septal (IAS) wall minimally-invasive interventions. Hereto, several landmarks are initially identified on richly-detailed datasets throughout the planning stage and then combined with intra-operative images, enhancing the relevant structures and easing the procedure. Nevertheless, such planning is still performed manually, which is time-consuming and not necessarily reproducible, hampering its regular application. In this article, we present a novel automatic strategy to segment the atrial region (left/right atrium and aortic tract) and the fossa ovalis (FO). The method starts by initializing multiple 3D contours based on an atlas-based approach with global transforms only and refining them to the desired anatomy using a competitive segmentation strategy. The obtained contours are then applied to estimate the FO by evaluating both IAS wall thickness and the expected FO spatial location. The proposed method was evaluated in 41 computed tomography datasets, by comparing the atrial region segmentation and FO estimation results against manually delineated contours. The automatic segmentation method presented a performance similar to the state-of-the-art techniques and a high feasibility, failing only in the segmentation of one aortic tract and of one right atrium. The FO estimation method presented an acceptable result in all the patients with a performance comparable to the inter-observer variability. Moreover, it was faster and fully user-interaction free. Hence, the proposed method proved to be feasible to automatically segment the anatomical models for the planning of IAS wall interventions, making it exceptionally attractive for use in the clinical practice. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics1[OPEN

    PubMed Central

    Poeschl, Yvonne; Plötner, Romina

    2017-01-01

    Pavement cells (PCs) are the most frequently occurring cell type in the leaf epidermis and play important roles in leaf growth and function. In many plant species, PCs form highly complex jigsaw-puzzle-shaped cells with interlocking lobes. Understanding of their development is of high interest for plant science research because of their importance for leaf growth and hence for plant fitness and crop yield. Studies of PC development, however, are limited, because robust methods are lacking that enable automatic segmentation and quantification of PC shape parameters suitable to reflect their cellular complexity. Here, we present our new ImageJ-based tool, PaCeQuant, which provides a fully automatic image analysis workflow for PC shape quantification. PaCeQuant automatically detects cell boundaries of PCs from confocal input images and enables manual correction of automatic segmentation results or direct import of manually segmented cells. PaCeQuant simultaneously extracts 27 shape features that include global, contour-based, skeleton-based, and PC-specific object descriptors. In addition, we included a method for classification and analysis of lobes at two-cell junctions and three-cell junctions, respectively. We provide an R script for graphical visualization and statistical analysis. We validated PaCeQuant by extensive comparative analysis to manual segmentation and existing quantification tools and demonstrated its usability to analyze PC shape characteristics during development and between different genotypes. PaCeQuant thus provides a platform for robust, efficient, and reproducible quantitative analysis of PC shape characteristics that can easily be applied to study PC development in large data sets. PMID:28931626

  15. TU-AB-BRA-11: Evaluation of Fully Automatic Volumetric GBM Segmentation in the TCGA-GBM Dataset: Prognosis and Correlation with VASARI Features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios Velazquez, E; Meier, R; Dunn, W

    Purpose: Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. Methods: MRI sets of 67 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA), including necrosis, edema, contrast enhancing and non-enhancing tumor. Spearman’s correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Results: Auto-segmented sub-volumes showedmore » high agreement with manually delineated volumes (range (r): 0.65 – 0.91). Also showed higher correlation with VASARI features (auto r = 0.35, 0.60 and 0.59; manual r = 0.29, 0.50, 0.43, for contrast-enhancing, necrosis and edema, respectively). The contrast-enhancing volume and post-contrast abnormal volume showed the highest C-index (0.73 and 0.72), comparable to manually defined volumes (p = 0.22 and p = 0.07, respectively). The non-enhancing region defined by BraTumIA showed a significantly higher prognostic value (CI = 0.71) than the edema (CI = 0.60), both of which could not be distinguished by manual delineation. Conclusion: BraTumIA tumor sub-compartments showed higher correlation with VASARI data, and equivalent performance in terms of prognosis compared to manual sub-volumes. This method can enable more reproducible definition and quantification of imaging based biomarkers and has a large potential in high-throughput medical imaging research.« less

  16. ARCOCT: Automatic detection of lumen border in intravascular OCT images.

    PubMed

    Cheimariotis, Grigorios-Aris; Chatzizisis, Yiannis S; Koutkias, Vassilis G; Toutouzas, Konstantinos; Giannopoulos, Andreas; Riga, Maria; Chouvarda, Ioanna; Antoniadis, Antonios P; Doulaverakis, Charalambos; Tsamboulatidis, Ioannis; Kompatsiaris, Ioannis; Giannoglou, George D; Maglaveras, Nicos

    2017-11-01

    Intravascular optical coherence tomography (OCT) is an invaluable tool for the detection of pathological features on the arterial wall and the investigation of post-stenting complications. Computational lumen border detection in OCT images is highly advantageous, since it may support rapid morphometric analysis. However, automatic detection is very challenging, since OCT images typically include various artifacts that impact image clarity, including features such as side branches and intraluminal blood presence. This paper presents ARCOCT, a segmentation method for fully-automatic detection of lumen border in OCT images. ARCOCT relies on multiple, consecutive processing steps, accounting for image preparation, contour extraction and refinement. In particular, for contour extraction ARCOCT employs the transformation of OCT images based on physical characteristics such as reflectivity and absorption of the tissue and, for contour refinement, local regression using weighted linear least squares and a 2nd degree polynomial model is employed to achieve artifact and small-branch correction as well as smoothness of the artery mesh. Our major focus was to achieve accurate contour delineation in the various types of OCT images, i.e., even in challenging cases with branches and artifacts. ARCOCT has been assessed in a dataset of 1812 images (308 from stented and 1504 from native segments) obtained from 20 patients. ARCOCT was compared against ground-truth manual segmentation performed by experts on the basis of various geometric features (e.g. area, perimeter, radius, diameter, centroid, etc.) and closed contour matching indicators (the Dice index, the Hausdorff distance and the undirected average distance), using standard statistical analysis methods. The proposed method was proven very efficient and close to the ground-truth, exhibiting non statistically-significant differences for most of the examined metrics. ARCOCT allows accurate and fully-automated lumen border detection in OCT images. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Multi-fractal texture features for brain tumor and edema segmentation

    NASA Astrophysics Data System (ADS)

    Reza, S.; Iftekharuddin, K. M.

    2014-03-01

    In this work, we propose a fully automatic brain tumor and edema segmentation technique in brain magnetic resonance (MR) images. Different brain tissues are characterized using the novel texture features such as piece-wise triangular prism surface area (PTPSA), multi-fractional Brownian motion (mBm) and Gabor-like textons, along with regular intensity and intensity difference features. Classical Random Forest (RF) classifier is used to formulate the segmentation task as classification of these features in multi-modal MRIs. The segmentation performance is compared with other state-of-art works using a publicly available dataset known as Brain Tumor Segmentation (BRATS) 2012 [1]. Quantitative evaluation is done using the online evaluation tool from Kitware/MIDAS website [2]. The results show that our segmentation performance is more consistent and, on the average, outperforms other state-of-the art works in both training and challenge cases in the BRATS competition.

  18. Liver vessels segmentation using a hybrid geometrical moments/graph cuts method

    PubMed Central

    Esneault, Simon; Lafon, Cyril; Dillenseger, Jean-Louis

    2010-01-01

    This paper describes a fast and fully-automatic method for liver vessel segmentation on CT scan pre-operative images. The basis of this method is the introduction of a 3-D geometrical moment-based detector of cylindrical shapes within the min-cut/max-flow energy minimization framework. This method represents an original way to introduce a data term as a constraint into the widely used Boykov’s graph cuts algorithm and hence, to automate the segmentation. The method is evaluated and compared with others on a synthetic dataset. Finally, the relevancy of our method regarding the planning of a -necessarily accurate- percutaneous high intensity focused ultrasound surgical operation is demonstrated with some examples. PMID:19783500

  19. Automatic Testing and Assessment of Neuroanatomy Using a Digital Brain Atlas: Method and Development of Computer- and Mobile-Based Applications

    ERIC Educational Resources Information Center

    Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Ananthasubramaniam, Anand; Chua, Beng Choon; Qian, Guoyu; Nowinska, Natalia G.; Marchenko, Yevgen; Volkau, Ihar

    2009-01-01

    Preparation of tests and student's assessment by the instructor are time consuming. We address these two tasks in neuroanatomy education by employing a digital media application with a three-dimensional (3D), interactive, fully segmented, and labeled brain atlas. The anatomical and vascular models in the atlas are linked to "Terminologia…

  20. TU-H-CAMPUS-JeP1-02: Fully Automatic Verification of Automatically Contoured Normal Tissues in the Head and Neck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarroll, R; UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX; Beadle, B

    Purpose: To investigate and validate the use of an independent deformable-based contouring algorithm for automatic verification of auto-contoured structures in the head and neck towards fully automated treatment planning. Methods: Two independent automatic contouring algorithms [(1) Eclipse’s Smart Segmentation followed by pixel-wise majority voting, (2) an in-house multi-atlas based method] were used to create contours of 6 normal structures of 10 head-and-neck patients. After rating by a radiation oncologist, the higher performing algorithm was selected as the primary contouring method, the other used for automatic verification of the primary. To determine the ability of the verification algorithm to detect incorrectmore » contours, contours from the primary method were shifted from 0.5 to 2cm. Using a logit model the structure-specific minimum detectable shift was identified. The models were then applied to a set of twenty different patients and the sensitivity and specificity of the models verified. Results: Per physician rating, the multi-atlas method (4.8/5 point scale, with 3 rated as generally acceptable for planning purposes) was selected as primary and the Eclipse-based method (3.5/5) for verification. Mean distance to agreement and true positive rate were selected as covariates in an optimized logit model. These models, when applied to a group of twenty different patients, indicated that shifts could be detected at 0.5cm (brain), 0.75cm (mandible, cord), 1cm (brainstem, cochlea), or 1.25cm (parotid), with sensitivity and specificity greater than 0.95. If sensitivity and specificity constraints are reduced to 0.9, detectable shifts of mandible and brainstem were reduced by 0.25cm. These shifts represent additional safety margins which might be considered if auto-contours are used for automatic treatment planning without physician review. Conclusion: Automatically contoured structures can be automatically verified. This fully automated process could be used to flag auto-contours for special review or used with safety margins in a fully automatic treatment planning system.« less

  1. Automatic liver segmentation from abdominal CT volumes using graph cuts and border marching.

    PubMed

    Liao, Miao; Zhao, Yu-Qian; Liu, Xi-Yao; Zeng, Ye-Zhan; Zou, Bei-Ji; Wang, Xiao-Fang; Shih, Frank Y

    2017-05-01

    Identifying liver regions from abdominal computed tomography (CT) volumes is an important task for computer-aided liver disease diagnosis and surgical planning. This paper presents a fully automatic method for liver segmentation from CT volumes based on graph cuts and border marching. An initial slice is segmented by density peak clustering. Based on pixel- and patch-wise features, an intensity model and a PCA-based regional appearance model are developed to enhance the contrast between liver and background. Then, these models as well as the location constraint estimated iteratively are integrated into graph cuts in order to segment the liver in each slice automatically. Finally, a vessel compensation method based on the border marching is used to increase the segmentation accuracy. Experiments are conducted on a clinical data set we created and also on the MICCAI2007 Grand Challenge liver data. The results show that the proposed intensity, appearance models, and the location constraint are significantly effective for liver recognition, and the undersegmented vessels can be compensated by the border marching based method. The segmentation performances in terms of VOE, RVD, ASD, RMSD, and MSD as well as the average running time achieved by our method on the SLIVER07 public database are 5.8 ± 3.2%, -0.1 ± 4.1%, 1.0 ± 0.5mm, 2.0 ± 1.2mm, 21.2 ± 9.3mm, and 4.7 minutes, respectively, which are superior to those of existing methods. The proposed method does not require time-consuming training process and statistical model construction, and is capable of dealing with complicated shapes and intensity variations successfully. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities

    PubMed Central

    Glatz, Andreas; Bastin, Mark E.; Kiker, Alexander J.; Deary, Ian J.; Wardlaw, Joanna M.; Valdés Hernández, Maria C.

    2015-01-01

    Multifocal basal ganglia T2*-weighted (T2*w) hypointensities, which are believed to arise mainly from vascular mineralization, were recently proposed as a novel MRI biomarker for small vessel disease and ageing. These T2*w hypointensities are typically segmented semi-automatically, which is time consuming, associated with a high intra-rater variability and low inter-rater agreement. To address these limitations, we developed a fully automated, unsupervised segmentation method for basal ganglia T2*w hypointensities. This method requires conventional, co-registered T2*w and T1-weighted (T1w) volumes, as well as region-of-interest (ROI) masks for the basal ganglia and adjacent internal capsule generated automatically from T1w MRI. The basal ganglia T2*w hypointensities were then segmented with thresholds derived with an adaptive outlier detection method from respective bivariate T2*w/T1w intensity distributions in each ROI. Artefacts were reduced by filtering connected components in the initial masks based on their standardised T2*w intensity variance. The segmentation method was validated using a custom-built phantom containing mineral deposit models, i.e. gel beads doped with 3 different contrast agents in 7 different concentrations, as well as with MRI data from 98 community-dwelling older subjects in their seventies with a wide range of basal ganglia T2*w hypointensities. The method produced basal ganglia T2*w hypointensity masks that were in substantial volumetric and spatial agreement with those generated by an experienced rater (Jaccard index = 0.62 ± 0.40). These promising results suggest that this method may have use in automatic segmentation of basal ganglia T2*w hypointensities in studies of small vessel disease and ageing. PMID:25451469

  3. Automated segmentation of the prostate in 3D MR images using a probabilistic atlas and a spatially constrained deformable model.

    PubMed

    Martin, Sébastien; Troccaz, Jocelyne; Daanenc, Vincent

    2010-04-01

    The authors present a fully automatic algorithm for the segmentation of the prostate in three-dimensional magnetic resonance (MR) images. The approach requires the use of an anatomical atlas which is built by computing transformation fields mapping a set of manually segmented images to a common reference. These transformation fields are then applied to the manually segmented structures of the training set in order to get a probabilistic map on the atlas. The segmentation is then realized through a two stage procedure. In the first stage, the processed image is registered to the probabilistic atlas. Subsequently, a probabilistic segmentation is obtained by mapping the probabilistic map of the atlas to the patient's anatomy. In the second stage, a deformable surface evolves toward the prostate boundaries by merging information coming from the probabilistic segmentation, an image feature model and a statistical shape model. During the evolution of the surface, the probabilistic segmentation allows the introduction of a spatial constraint that prevents the deformable surface from leaking in an unlikely configuration. The proposed method is evaluated on 36 exams that were manually segmented by a single expert. A median Dice similarity coefficient of 0.86 and an average surface error of 2.41 mm are achieved. By merging prior knowledge, the presented method achieves a robust and completely automatic segmentation of the prostate in MR images. Results show that the use of a spatial constraint is useful to increase the robustness of the deformable model comparatively to a deformable surface that is only driven by an image appearance model.

  4. Automatic extraction of road features in urban environments using dense ALS data

    NASA Astrophysics Data System (ADS)

    Soilán, Mario; Truong-Hong, Linh; Riveiro, Belén; Laefer, Debra

    2018-02-01

    This paper describes a methodology that automatically extracts semantic information from urban ALS data for urban parameterization and road network definition. First, building façades are segmented from the ground surface by combining knowledge-based information with both voxel and raster data. Next, heuristic rules and unsupervised learning are applied to the ground surface data to distinguish sidewalk and pavement points as a means for curb detection. Then radiometric information was employed for road marking extraction. Using high-density ALS data from Dublin, Ireland, this fully automatic workflow was able to generate a F-score close to 95% for pavement and sidewalk identification with a resolution of 20 cm and better than 80% for road marking detection.

  5. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach.

    PubMed

    Lavdas, Ioannis; Glocker, Ben; Kamnitsas, Konstantinos; Rueckert, Daniel; Mair, Henrietta; Sandhu, Amandeep; Taylor, Stuart A; Aboagye, Eric O; Rockall, Andrea G

    2017-10-01

    As part of a program to implement automatic lesion detection methods for whole body magnetic resonance imaging (MRI) in oncology, we have developed, evaluated, and compared three algorithms for fully automatic, multiorgan segmentation in healthy volunteers. The first algorithm is based on classification forests (CFs), the second is based on 3D convolutional neural networks (CNNs) and the third algorithm is based on a multi-atlas (MA) approach. We examined data from 51 healthy volunteers, scanned prospectively with a standardized, multiparametric whole body MRI protocol at 1.5 T. The study was approved by the local ethics committee and written consent was obtained from the participants. MRI data were used as input data to the algorithms, while training was based on manual annotation of the anatomies of interest by clinical MRI experts. Fivefold cross-validation experiments were run on 34 artifact-free subjects. We report three overlap and three surface distance metrics to evaluate the agreement between the automatic and manual segmentations, namely the dice similarity coefficient (DSC), recall (RE), precision (PR), average surface distance (ASD), root-mean-square surface distance (RMSSD), and Hausdorff distance (HD). Analysis of variances was used to compare pooled label metrics between the three algorithms and the DSC on a 'per-organ' basis. A Mann-Whitney U test was used to compare the pooled metrics between CFs and CNNs and the DSC on a 'per-organ' basis, when using different imaging combinations as input for training. All three algorithms resulted in robust segmenters that were effectively trained using a relatively small number of datasets, an important consideration in the clinical setting. Mean overlap metrics for all the segmented structures were: CFs: DSC = 0.70 ± 0.18, RE = 0.73 ± 0.18, PR = 0.71 ± 0.14, CNNs: DSC = 0.81 ± 0.13, RE = 0.83 ± 0.14, PR = 0.82 ± 0.10, MA: DSC = 0.71 ± 0.22, RE = 0.70 ± 0.34, PR = 0.77 ± 0.15. Mean surface distance metrics for all the segmented structures were: CFs: ASD = 13.5 ± 11.3 mm, RMSSD = 34.6 ± 37.6 mm and HD = 185.7 ± 194.0 mm, CNNs; ASD = 5.48 ± 4.84 mm, RMSSD = 17.0 ± 13.3 mm and HD = 199.0 ± 101.2 mm, MA: ASD = 4.22 ± 2.42 mm, RMSSD = 6.13 ± 2.55 mm, and HD = 38.9 ± 28.9 mm. The pooled performance of CFs improved when all imaging combinations (T2w + T1w + DWI) were used as input, while the performance of CNNs deteriorated, but in neither case, significantly. CNNs with T2w images as input, performed significantly better than CFs with all imaging combinations as input for all anatomical labels, except for the bladder. Three state-of-the-art algorithms were developed and used to automatically segment major organs and bones in whole body MRI; good agreement to manual segmentations performed by clinical MRI experts was observed. CNNs perform favorably, when using T2w volumes as input. Using multimodal MRI data as input to CNNs did not improve the segmentation performance. © 2017 American Association of Physicists in Medicine.

  6. Fully automated contour detection of the ascending aorta in cardiac 2D phase-contrast MRI.

    PubMed

    Codari, Marina; Scarabello, Marco; Secchi, Francesco; Sforza, Chiarella; Baselli, Giuseppe; Sardanelli, Francesco

    2018-04-01

    In this study we proposed a fully automated method for localizing and segmenting the ascending aortic lumen with phase-contrast magnetic resonance imaging (PC-MRI). Twenty-five phase-contrast series were randomly selected out of a large population dataset of patients whose cardiac MRI examination, performed from September 2008 to October 2013, was unremarkable. The local Ethical Committee approved this retrospective study. The ascending aorta was automatically identified on each phase of the cardiac cycle using a priori knowledge of aortic geometry. The frame that maximized the area, eccentricity, and solidity parameters was chosen for unsupervised initialization. Aortic segmentation was performed on each frame using active contouring without edges techniques. The entire algorithm was developed using Matlab R2016b. To validate the proposed method, the manual segmentation performed by a highly experienced operator was used. Dice similarity coefficient, Bland-Altman analysis, and Pearson's correlation coefficient were used as performance metrics. Comparing automated and manual segmentation of the aortic lumen on 714 images, Bland-Altman analysis showed a bias of -6.68mm 2 , a coefficient of repeatability of 91.22mm 2 , a mean area measurement of 581.40mm 2 , and a reproducibility of 85%. Automated and manual segmentation were highly correlated (R=0.98). The Dice similarity coefficient versus the manual reference standard was 94.6±2.1% (mean±standard deviation). A fully automated and robust method for identification and segmentation of ascending aorta on PC-MRI was developed. Its application on patients with a variety of pathologic conditions is advisable. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. PaCeQuant: A Tool for High-Throughput Quantification of Pavement Cell Shape Characteristics.

    PubMed

    Möller, Birgit; Poeschl, Yvonne; Plötner, Romina; Bürstenbinder, Katharina

    2017-11-01

    Pavement cells (PCs) are the most frequently occurring cell type in the leaf epidermis and play important roles in leaf growth and function. In many plant species, PCs form highly complex jigsaw-puzzle-shaped cells with interlocking lobes. Understanding of their development is of high interest for plant science research because of their importance for leaf growth and hence for plant fitness and crop yield. Studies of PC development, however, are limited, because robust methods are lacking that enable automatic segmentation and quantification of PC shape parameters suitable to reflect their cellular complexity. Here, we present our new ImageJ-based tool, PaCeQuant, which provides a fully automatic image analysis workflow for PC shape quantification. PaCeQuant automatically detects cell boundaries of PCs from confocal input images and enables manual correction of automatic segmentation results or direct import of manually segmented cells. PaCeQuant simultaneously extracts 27 shape features that include global, contour-based, skeleton-based, and PC-specific object descriptors. In addition, we included a method for classification and analysis of lobes at two-cell junctions and three-cell junctions, respectively. We provide an R script for graphical visualization and statistical analysis. We validated PaCeQuant by extensive comparative analysis to manual segmentation and existing quantification tools and demonstrated its usability to analyze PC shape characteristics during development and between different genotypes. PaCeQuant thus provides a platform for robust, efficient, and reproducible quantitative analysis of PC shape characteristics that can easily be applied to study PC development in large data sets. © 2017 American Society of Plant Biologists. All Rights Reserved.

  8. 3D multi-scale FCN with random modality voxel dropout learning for Intervertebral Disc Localization and Segmentation from Multi-modality MR Images.

    PubMed

    Li, Xiaomeng; Dou, Qi; Chen, Hao; Fu, Chi-Wing; Qi, Xiaojuan; Belavý, Daniel L; Armbrecht, Gabriele; Felsenberg, Dieter; Zheng, Guoyan; Heng, Pheng-Ann

    2018-04-01

    Intervertebral discs (IVDs) are small joints that lie between adjacent vertebrae. The localization and segmentation of IVDs are important for spine disease diagnosis and measurement quantification. However, manual annotation is time-consuming and error-prone with limited reproducibility, particularly for volumetric data. In this work, our goal is to develop an automatic and accurate method based on fully convolutional networks (FCN) for the localization and segmentation of IVDs from multi-modality 3D MR data. Compared with single modality data, multi-modality MR images provide complementary contextual information, which contributes to better recognition performance. However, how to effectively integrate such multi-modality information to generate accurate segmentation results remains to be further explored. In this paper, we present a novel multi-scale and modality dropout learning framework to locate and segment IVDs from four-modality MR images. First, we design a 3D multi-scale context fully convolutional network, which processes the input data in multiple scales of context and then merges the high-level features to enhance the representation capability of the network for handling the scale variation of anatomical structures. Second, to harness the complementary information from different modalities, we present a random modality voxel dropout strategy which alleviates the co-adaption issue and increases the discriminative capability of the network. Our method achieved the 1st place in the MICCAI challenge on automatic localization and segmentation of IVDs from multi-modality MR images, with a mean segmentation Dice coefficient of 91.2% and a mean localization error of 0.62 mm. We further conduct extensive experiments on the extended dataset to validate our method. We demonstrate that the proposed modality dropout strategy with multi-modality images as contextual information improved the segmentation accuracy significantly. Furthermore, experiments conducted on extended data collected from two different time points demonstrate the efficacy of our method on tracking the morphological changes in a longitudinal study. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. 3D marker-controlled watershed for kidney segmentation in clinical CT exams.

    PubMed

    Wieclawek, Wojciech

    2018-02-27

    Image segmentation is an essential and non trivial task in computer vision and medical image analysis. Computed tomography (CT) is one of the most accessible medical examination techniques to visualize the interior of a patient's body. Among different computer-aided diagnostic systems, the applications dedicated to kidney segmentation represent a relatively small group. In addition, literature solutions are verified on relatively small databases. The goal of this research is to develop a novel algorithm for fully automated kidney segmentation. This approach is designed for large database analysis including both physiological and pathological cases. This study presents a 3D marker-controlled watershed transform developed and employed for fully automated CT kidney segmentation. The original and the most complex step in the current proposition is an automatic generation of 3D marker images. The final kidney segmentation step is an analysis of the labelled image obtained from marker-controlled watershed transform. It consists of morphological operations and shape analysis. The implementation is conducted in a MATLAB environment, Version 2017a, using i.a. Image Processing Toolbox. 170 clinical CT abdominal studies have been subjected to the analysis. The dataset includes normal as well as various pathological cases (agenesis, renal cysts, tumors, renal cell carcinoma, kidney cirrhosis, partial or radical nephrectomy, hematoma and nephrolithiasis). Manual and semi-automated delineations have been used as a gold standard. Wieclawek Among 67 delineated medical cases, 62 cases are 'Very good', whereas only 5 are 'Good' according to Cohen's Kappa interpretation. The segmentation results show that mean values of Sensitivity, Specificity, Dice, Jaccard, Cohen's Kappa and Accuracy are 90.29, 99.96, 91.68, 85.04, 91.62 and 99.89% respectively. All 170 medical cases (with and without outlines) have been classified by three independent medical experts as 'Very good' in 143-148 cases, as 'Good' in 15-21 cases and as 'Moderate' in 6-8 cases. An automatic kidney segmentation approach for CT studies to compete with commonly known solutions was developed. The algorithm gives promising results, that were confirmed during validation procedure done on a relatively large database, including 170 CTs with both physiological and pathological cases.

  10. Automatic Sea Bird Detection from High Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    Mader, S.; Grenzdörffer, G. J.

    2016-06-01

    Great efforts are presently taken in the scientific community to develop computerized and (fully) automated image processing methods allowing for an efficient and automatic monitoring of sea birds and marine mammals in ever-growing amounts of aerial imagery. Currently the major part of the processing, however, is still conducted by especially trained professionals, visually examining the images and detecting and classifying the requested subjects. This is a very tedious task, particularly when the rate of void images regularly exceeds the mark of 90%. In the content of this contribution we will present our work aiming to support the processing of aerial images by modern methods from the field of image processing. We will especially focus on the combination of local, region-based feature detection and piecewise global image segmentation for automatic detection of different sea bird species. Large image dimensions resulting from the use of medium and large-format digital cameras in aerial surveys inhibit the applicability of image processing methods based on global operations. In order to efficiently handle those image sizes and to nevertheless take advantage of globally operating segmentation algorithms, we will describe the combined usage of a simple performant feature detector based on local operations on the original image with a complex global segmentation algorithm operating on extracted sub-images. The resulting exact segmentation of possible candidates then serves as a basis for the determination of feature vectors for subsequent elimination of false candidates and for classification tasks.

  11. A modified approach combining FNEA and watershed algorithms for segmenting remotely-sensed optical images

    NASA Astrophysics Data System (ADS)

    Liu, Likun

    2018-01-01

    In the field of remote sensing image processing, remote sensing image segmentation is a preliminary step for later analysis of remote sensing image processing and semi-auto human interpretation, fully-automatic machine recognition and learning. Since 2000, a technique of object-oriented remote sensing image processing method and its basic thought prevails. The core of the approach is Fractal Net Evolution Approach (FNEA) multi-scale segmentation algorithm. The paper is intent on the research and improvement of the algorithm, which analyzes present segmentation algorithms and selects optimum watershed algorithm as an initialization. Meanwhile, the algorithm is modified by modifying an area parameter, and then combining area parameter with a heterogeneous parameter further. After that, several experiments is carried on to prove the modified FNEA algorithm, compared with traditional pixel-based method (FCM algorithm based on neighborhood information) and combination of FNEA and watershed, has a better segmentation result.

  12. SEGMENTATION OF MITOCHONDRIA IN ELECTRON MICROSCOPY IMAGES USING ALGEBRAIC CURVES.

    PubMed

    Seyedhosseini, Mojtaba; Ellisman, Mark H; Tasdizen, Tolga

    2013-01-01

    High-resolution microscopy techniques have been used to generate large volumes of data with enough details for understanding the complex structure of the nervous system. However, automatic techniques are required to segment cells and intracellular structures in these multi-terabyte datasets and make anatomical analysis possible on a large scale. We propose a fully automated method that exploits both shape information and regional statistics to segment irregularly shaped intracellular structures such as mitochondria in electron microscopy (EM) images. The main idea is to use algebraic curves to extract shape features together with texture features from image patches. Then, these powerful features are used to learn a random forest classifier, which can predict mitochondria locations precisely. Finally, the algebraic curves together with regional information are used to segment the mitochondria at the predicted locations. We demonstrate that our method outperforms the state-of-the-art algorithms in segmentation of mitochondria in EM images.

  13. Multi-Modal Glioblastoma Segmentation: Man versus Machine

    PubMed Central

    Pica, Alessia; Schucht, Philippe; Beck, Jürgen; Verma, Rajeev Kumar; Slotboom, Johannes; Reyes, Mauricio; Wiest, Roland

    2014-01-01

    Background and Purpose Reproducible segmentation of brain tumors on magnetic resonance images is an important clinical need. This study was designed to evaluate the reliability of a novel fully automated segmentation tool for brain tumor image analysis in comparison to manually defined tumor segmentations. Methods We prospectively evaluated preoperative MR Images from 25 glioblastoma patients. Two independent expert raters performed manual segmentations. Automatic segmentations were performed using the Brain Tumor Image Analysis software (BraTumIA). In order to study the different tumor compartments, the complete tumor volume TV (enhancing part plus non-enhancing part plus necrotic core of the tumor), the TV+ (TV plus edema) and the contrast enhancing tumor volume CETV were identified. We quantified the overlap between manual and automated segmentation by calculation of diameter measurements as well as the Dice coefficients, the positive predictive values, sensitivity, relative volume error and absolute volume error. Results Comparison of automated versus manual extraction of 2-dimensional diameter measurements showed no significant difference (p = 0.29). Comparison of automated versus manual segmentation of volumetric segmentations showed significant differences for TV+ and TV (p<0.05) but no significant differences for CETV (p>0.05) with regard to the Dice overlap coefficients. Spearman's rank correlation coefficients (ρ) of TV+, TV and CETV showed highly significant correlations between automatic and manual segmentations. Tumor localization did not influence the accuracy of segmentation. Conclusions In summary, we demonstrated that BraTumIA supports radiologists and clinicians by providing accurate measures of cross-sectional diameter-based tumor extensions. The automated volume measurements were comparable to manual tumor delineation for CETV tumor volumes, and outperformed inter-rater variability for overlap and sensitivity. PMID:24804720

  14. A fully-automatic fast segmentation of the sub-basal layer nerves in corneal images.

    PubMed

    Guimarães, Pedro; Wigdahl, Jeff; Poletti, Enea; Ruggeri, Alfredo

    2014-01-01

    Corneal nerves changes have been linked to damage caused by surgical interventions or prolonged contact lens wear. Furthermore nerve tortuosity has been shown to correlate with the severity of diabetic neuropathy. For these reasons there has been an increasing interest on the analysis of these structures. In this work we propose a novel, robust, and fast fully automatic algorithm capable of tracing the sub-basal plexus nerves from human corneal confocal images. We resort to logGabor filters and support vector machines to trace the corneal nerves. The proposed algorithm traced most of the corneal nerves correctly (sensitivity of 0.88 ± 0.06 and false discovery rate of 0.08 ± 0.06). The displayed performance is comparable to a human grader. We believe that the achieved processing time (0.661 ± 0.07 s) and tracing quality are major advantages for the daily clinical practice.

  15. A direct morphometric comparison of five labeling protocols for multi-atlas driven automatic segmentation of the hippocampus in Alzheimer's disease.

    PubMed

    Nestor, Sean M; Gibson, Erin; Gao, Fu-Qiang; Kiss, Alex; Black, Sandra E

    2013-02-01

    Hippocampal volumetry derived from structural MRI is increasingly used to delineate regions of interest for functional measurements, assess efficacy in therapeutic trials of Alzheimer's disease (AD) and has been endorsed by the new AD diagnostic guidelines as a radiological marker of disease progression. Unfortunately, morphological heterogeneity in AD can prevent accurate demarcation of the hippocampus. Recent developments in automated volumetry commonly use multi-template fusion driven by expert manual labels, enabling highly accurate and reproducible segmentation in disease and healthy subjects. However, there are several protocols to define the hippocampus anatomically in vivo, and the method used to generate atlases may impact automatic accuracy and sensitivity - particularly in pathologically heterogeneous samples. Here we report a fully automated segmentation technique that provides a robust platform to directly evaluate both technical and biomarker performance in AD among anatomically unique labeling protocols. For the first time we test head-to-head the performance of five common hippocampal labeling protocols for multi-atlas based segmentation, using both the Sunnybrook Longitudinal Dementia Study and the entire Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) baseline and 24-month dataset. We based these atlas libraries on the protocols of (Haller et al., 1997; Killiany et al., 1993; Malykhin et al., 2007; Pantel et al., 2000; Pruessner et al., 2000), and a single operator performed all manual tracings to generate de facto "ground truth" labels. All methods distinguished between normal elders, mild cognitive impairment (MCI), and AD in the expected directions, and showed comparable correlations with measures of episodic memory performance. Only more inclusive protocols distinguished between stable MCI and MCI-to-AD converters, and had slightly better associations with episodic memory. Moreover, we demonstrate that protocols including more posterior anatomy and dorsal white matter compartments furnish the best voxel-overlap accuracies (Dice Similarity Coefficient=0.87-0.89), compared to expert manual tracings, and achieve the smallest sample sizes required to power clinical trials in MCI and AD. The greatest distribution of errors was localized to the caudal hippocampus and the alveus-fimbria compartment when these regions were excluded. The definition of the medial body did not significantly alter accuracy among more comprehensive protocols. Voxel-overlap accuracies between automatic and manual labels were lower for the more pathologically heterogeneous Sunnybrook study in comparison to the ADNI-1 sample. Finally, accuracy among protocols appears to significantly differ the most in AD subjects compared to MCI and normal elders. Together, these results suggest that selection of a candidate protocol for fully automatic multi-template based segmentation in AD can influence both segmentation accuracy when compared to expert manual labels and performance as a biomarker in MCI and AD. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. A Direct Morphometric Comparison of Five Labeling Protocols for Multi-Atlas Driven Automatic Segmentation of the Hippocampus in Alzheimer’s Disease

    PubMed Central

    Nestor, Sean M.; Gibson, Erin; Gao, Fu-Qiang; Kiss, Alex; Black, Sandra E.

    2012-01-01

    Hippocampal volumetry derived from structural MRI is increasingly used to delineate regions of interest for functional measurements, assess efficacy in therapeutic trials of Alzheimer’s disease (AD) and has been endorsed by the new AD diagnostic guidelines as a radiological marker of disease progression. Unfortunately, morphological heterogeneity in AD can prevent accurate demarcation of the hippocampus. Recent developments in automated volumetry commonly use multitemplate fusion driven by expert manual labels, enabling highly accurate and reproducible segmentation in disease and healthy subjects. However, there are several protocols to define the hippocampus anatomically in vivo, and the method used to generate atlases may impact automatic accuracy and sensitivity – particularly in pathologically heterogeneous samples. Here we report a fully automated segmentation technique that provides a robust platform to directly evaluate both technical and biomarker performance in AD among anatomically unique labeling protocols. For the first time we test head-to-head the performance of five common hippocampal labeling protocols for multi-atlas based segmentation, using both the Sunnybrook Longitudinal Dementia Study and the entire Alzheimer’s Disease Neuroimaging Initiative 1 (ADNI-1) baseline and 24-month dataset. We based these atlas libraries on the protocols of (Haller et al., 1997; Killiany et al., 1993; Malykhin et al., 2007; Pantel et al., 2000; Pruessner et al., 2000), and a single operator performed all manual tracings to generate de facto “ground truth” labels. All methods distinguished between normal elders, mild cognitive impairment (MCI), and AD in the expected directions, and showed comparable correlations with measures of episodic memory performance. Only more inclusive protocols distinguished between stable MCI and MCI-to-AD converters, and had slightly better associations with episodic memory. Moreover, we demonstrate that protocols including more posterior anatomy and dorsal white matter compartments furnish the best voxel-overlap accuracies (Dice Similarity Coefficient = 0.87–0.89), compared to expert manual tracings, and achieve the smallest sample sizes required to power clinical trials in MCI and AD. The greatest distribution of errors was localized to the caudal hippocampus and alveus-fimbria compartment when these regions were excluded. The definition of the medial body did not significantly alter accuracy among more comprehensive protocols. Voxel-overlap accuracies between automatic and manual labels were lower for the more pathologically heterogeneous Sunnybrook study in comparison to the ADNI-1 sample. Finally, accuracy among protocols appears to significantly differ the most in AD subjects compared to MCI and normal elders. Together, these results suggest that selection of a candidate protocol for fully automatic multi-template based segmentation in AD can influence both segmentation accuracy when compared to expert manual labels and performance as a biomarker in MCI and AD. PMID:23142652

  17. MIMoSA: An Automated Method for Intermodal Segmentation Analysis of Multiple Sclerosis Brain Lesions.

    PubMed

    Valcarcel, Alessandra M; Linn, Kristin A; Vandekar, Simon N; Satterthwaite, Theodore D; Muschelli, John; Calabresi, Peter A; Pham, Dzung L; Martin, Melissa Lynne; Shinohara, Russell T

    2018-03-08

    Magnetic resonance imaging (MRI) is crucial for in vivo detection and characterization of white matter lesions (WMLs) in multiple sclerosis. While WMLs have been studied for over two decades using MRI, automated segmentation remains challenging. Although the majority of statistical techniques for the automated segmentation of WMLs are based on single imaging modalities, recent advances have used multimodal techniques for identifying WMLs. Complementary modalities emphasize different tissue properties, which help identify interrelated features of lesions. Method for Inter-Modal Segmentation Analysis (MIMoSA), a fully automatic lesion segmentation algorithm that utilizes novel covariance features from intermodal coupling regression in addition to mean structure to model the probability lesion is contained in each voxel, is proposed. MIMoSA was validated by comparison with both expert manual and other automated segmentation methods in two datasets. The first included 98 subjects imaged at Johns Hopkins Hospital in which bootstrap cross-validation was used to compare the performance of MIMoSA against OASIS and LesionTOADS, two popular automatic segmentation approaches. For a secondary validation, a publicly available data from a segmentation challenge were used for performance benchmarking. In the Johns Hopkins study, MIMoSA yielded average Sørensen-Dice coefficient (DSC) of .57 and partial AUC of .68 calculated with false positive rates up to 1%. This was superior to performance using OASIS and LesionTOADS. The proposed method also performed competitively in the segmentation challenge dataset. MIMoSA resulted in statistically significant improvements in lesion segmentation performance compared with LesionTOADS and OASIS, and performed competitively in an additional validation study. Copyright © 2018 by the American Society of Neuroimaging.

  18. Real-time segmentation in 4D ultrasound with continuous max-flow

    NASA Astrophysics Data System (ADS)

    Rajchl, M.; Yuan, J.; Peters, T. M.

    2012-02-01

    We present a novel continuous Max-Flow based method to segment the inner left ventricular wall from 3D trans-esophageal echocardiography image sequences, which minimizes an energy functional encoding two Fisher-Tippett distributions and a geometrical constraint in form of a Euclidean distance map in a numerically efficient and accurate way. After initialization the method is fully automatic and is able to perform at up to 10Hz making it available for image-guided interventions. Results are shown on 4D TEE data sets from 18 patients with pathological cardiac conditions and the speed of the algorithm is assessed under a variety of conditions.

  19. Automated object-based classification of topography from SRTM data

    PubMed Central

    Drăguţ, Lucian; Eisank, Clemens

    2012-01-01

    We introduce an object-based method to automatically classify topography from SRTM data. The new method relies on the concept of decomposing land-surface complexity into more homogeneous domains. An elevation layer is automatically segmented and classified at three scale levels that represent domains of complexity by using self-adaptive, data-driven techniques. For each domain, scales in the data are detected with the help of local variance and segmentation is performed at these appropriate scales. Objects resulting from segmentation are partitioned into sub-domains based on thresholds given by the mean values of elevation and standard deviation of elevation respectively. Results resemble reasonably patterns of existing global and regional classifications, displaying a level of detail close to manually drawn maps. Statistical evaluation indicates that most of classes satisfy the regionalization requirements of maximizing internal homogeneity while minimizing external homogeneity. Most objects have boundaries matching natural discontinuities at regional level. The method is simple and fully automated. The input data consist of only one layer, which does not need any pre-processing. Both segmentation and classification rely on only two parameters: elevation and standard deviation of elevation. The methodology is implemented as a customized process for the eCognition® software, available as online download. The results are embedded in a web application with functionalities of visualization and download. PMID:22485060

  20. Automated object-based classification of topography from SRTM data

    NASA Astrophysics Data System (ADS)

    Drăguţ, Lucian; Eisank, Clemens

    2012-03-01

    We introduce an object-based method to automatically classify topography from SRTM data. The new method relies on the concept of decomposing land-surface complexity into more homogeneous domains. An elevation layer is automatically segmented and classified at three scale levels that represent domains of complexity by using self-adaptive, data-driven techniques. For each domain, scales in the data are detected with the help of local variance and segmentation is performed at these appropriate scales. Objects resulting from segmentation are partitioned into sub-domains based on thresholds given by the mean values of elevation and standard deviation of elevation respectively. Results resemble reasonably patterns of existing global and regional classifications, displaying a level of detail close to manually drawn maps. Statistical evaluation indicates that most of classes satisfy the regionalization requirements of maximizing internal homogeneity while minimizing external homogeneity. Most objects have boundaries matching natural discontinuities at regional level. The method is simple and fully automated. The input data consist of only one layer, which does not need any pre-processing. Both segmentation and classification rely on only two parameters: elevation and standard deviation of elevation. The methodology is implemented as a customized process for the eCognition® software, available as online download. The results are embedded in a web application with functionalities of visualization and download.

  1. Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes

    PubMed Central

    Erkol, Bulent; Moss, Randy H.; Stanley, R. Joe; Stoecker, William V.; Hvatum, Erik

    2011-01-01

    Background Malignant melanoma has a good prognosis if treated early. Dermoscopy images of pigmented lesions are most commonly taken at × 10 magnification under lighting at a low angle of incidence while the skin is immersed in oil under a glass plate. Accurate skin lesion segmentation from the background skin is important because some of the features anticipated to be used for diagnosis deal with shape of the lesion and others deal with the color of the lesion compared with the color of the surrounding skin. Methods In this research, gradient vector flow (GVF) snakes are investigated to find the border of skin lesions in dermoscopy images. An automatic initialization method is introduced to make the skin lesion border determination process fully automated. Results Skin lesion segmentation results are presented for 70 benign and 30 melanoma skin lesion images for the GVF-based method and a color histogram analysis technique. The average errors obtained by the GVF-based method are lower for both the benign and melanoma image sets than for the color histogram analysis technique based on comparison with manually segmented lesions determined by a dermatologist. Conclusions The experimental results for the GVF-based method demonstrate promise as an automated technique for skin lesion segmentation in dermoscopy images. PMID:15691255

  2. Accuracy of patient specific organ-dose estimates obtained using an automated image segmentation algorithm

    NASA Astrophysics Data System (ADS)

    Gilat-Schmidt, Taly; Wang, Adam; Coradi, Thomas; Haas, Benjamin; Star-Lack, Josh

    2016-03-01

    The overall goal of this work is to develop a rapid, accurate and fully automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using a deterministic Boltzmann Transport Equation solver and automated CT segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. The investigated algorithm uses a combination of feature-based and atlas-based methods. A multiatlas approach was also investigated. We hypothesize that the auto-segmentation algorithm is sufficiently accurate to provide organ dose estimates since random errors at the organ boundaries will average out when computing the total organ dose. To test this hypothesis, twenty head-neck CT scans were expertly segmented into nine regions. A leave-one-out validation study was performed, where every case was automatically segmented with each of the remaining cases used as the expert atlas, resulting in nineteen automated segmentations for each of the twenty datasets. The segmented regions were applied to gold-standard Monte Carlo dose maps to estimate mean and peak organ doses. The results demonstrated that the fully automated segmentation algorithm estimated the mean organ dose to within 10% of the expert segmentation for regions other than the spinal canal, with median error for each organ region below 2%. In the spinal canal region, the median error was 7% across all data sets and atlases, with a maximum error of 20%. The error in peak organ dose was below 10% for all regions, with a median error below 4% for all organ regions. The multiple-case atlas reduced the variation in the dose estimates and additional improvements may be possible with more robust multi-atlas approaches. Overall, the results support potential feasibility of an automated segmentation algorithm to provide accurate organ dose estimates.

  3. Validation of automatic segmentation of ribs for NTCP modeling.

    PubMed

    Stam, Barbara; Peulen, Heike; Rossi, Maddalena M G; Belderbos, José S A; Sonke, Jan-Jakob

    2016-03-01

    Determination of a dose-effect relation for rib fractures in a large patient group has been limited by the time consuming manual delineation of ribs. Automatic segmentation could facilitate such an analysis. We determine the accuracy of automatic rib segmentation in the context of normal tissue complication probability modeling (NTCP). Forty-one patients with stage I/II non-small cell lung cancer treated with SBRT to 54 Gy in 3 fractions were selected. Using the 4DCT derived mid-ventilation planning CT, all ribs were manually contoured and automatically segmented. Accuracy of segmentation was assessed using volumetric, shape and dosimetric measures. Manual and automatic dosimetric parameters Dx and EUD were tested for equivalence using the Two One-Sided T-test (TOST), and assessed for agreement using Bland-Altman analysis. NTCP models based on manual and automatic segmentation were compared. Automatic segmentation was comparable with the manual delineation in radial direction, but larger near the costal cartilage and vertebrae. Manual and automatic Dx and EUD were significantly equivalent. The Bland-Altman analysis showed good agreement. The two NTCP models were very similar. Automatic rib segmentation was significantly equivalent to manual delineation and can be used for NTCP modeling in a large patient group. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Automatic segmentation of the puborectalis muscle in 3D transperineal ultrasound.

    PubMed

    van den Noort, Frieda; Grob, Anique T M; Slump, Cornelis H; van der Vaart, Carl H; van Stralen, Marijn

    2017-10-11

    The introduction of 3D analysis of the puborectalis muscle, for diagnostic purposes, into daily practice is hindered by the need for appropriate training of the observers. Automatic 3D segmentation of the puborectalis muscle in 3D transperineal ultrasound may aid to its adaption in clinical practice. A manual 3D segmentation protocol was developed to segment the puborectalis muscle. The data of 20 women, in their first trimester of pregnancy, was used to validate the reproducibility of this protocol. For automatic segmentation, active appearance models of the puborectalis muscle were developed. Those models were trained using manual segmentation data of 50 women. The performance of both manual and automatic segmentation was analyzed by measuring the overlap and distance between the segmentations. Also, the interclass correlation coefficients and their 95% confidence intervals were determined for mean echogenicity and volume of the puborectalis muscle. The ICC values of mean echogenicity (0.968-0.991) and volume (0.626-0.910) are good to very good for both automatic and manual segmentation. The results of overlap and distance for manual segmentation are as expected, showing only few pixels (2-3) mismatch on average and a reasonable overlap. Based on overlap and distance 5 mismatches in automatic segmentation were detected, resulting in an automatic segmentation a success rate of 90%. In conclusion, this study presents a reliable manual and automatic 3D segmentation of the puborectalis muscle. This will facilitate future investigation of the puborectalis muscle. It also allows for reliable measurements of clinically potentially valuable parameters like mean echogenicity. This article is protected by copyright. All rights reserved.

  5. Fully automatic oil spill detection from COSMO-SkyMed imagery using a neural network approach

    NASA Astrophysics Data System (ADS)

    Avezzano, Ruggero G.; Del Frate, Fabio; Latini, Daniele

    2012-09-01

    The increased amount of available Synthetic Aperture Radar (SAR) images acquired over the ocean represents an extraordinary potential for improving oil spill detection activities. On the other side this involves a growing workload on the operators at analysis centers. In addition, even if the operators go through extensive training to learn manual oil spill detection, they can provide different and subjective responses. Hence, the upgrade and improvements of algorithms for automatic detection that can help in screening the images and prioritizing the alarms are of great benefit. In the framework of an ASI Announcement of Opportunity for the exploitation of COSMO-SkyMed data, a research activity (ASI contract L/020/09/0) aiming at studying the possibility to use neural networks architectures to set up fully automatic processing chains using COSMO-SkyMed imagery has been carried out and results are presented in this paper. The automatic identification of an oil spill is seen as a three step process based on segmentation, feature extraction and classification. We observed that a PCNN (Pulse Coupled Neural Network) was capable of providing a satisfactory performance in the different dark spots extraction, close to what it would be produced by manual editing. For the classification task a Multi-Layer Perceptron (MLP) Neural Network was employed.

  6. ProFound: Source Extraction and Application to Modern Survey Data

    NASA Astrophysics Data System (ADS)

    Robotham, A. S. G.

    2018-04-01

    ProFound detects sources in noisy images, generates segmentation maps identifying the pixels belonging to each source, and measures statistics like flux, size, and ellipticity. These inputs are key requirements of ProFit (ascl:1612.004), our galaxy profiling package; these two packages used in unison semi-automatically profile large samples of galaxies. The key novel feature introduced in ProFound is that all photometry is executed on dilated segmentation maps that fully contain the identifiable flux, rather than using more traditional circular or ellipse-based photometry. Also, to be less sensitive to pathological segmentation issues, the de-blending is made across saddle points in flux. ProFound offers good initial parameter estimation for ProFit, and also segmentation maps that follow the sometimes complex geometry of resolved sources, whilst capturing nearly all of the flux. A number of bulge-disc decomposition projects are already making use of the ProFound and ProFit pipeline.

  7. Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A.; Chee, Kok Han; Liew, Yih Miin

    2017-12-01

    Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame.

  8. Comparison of automatic and visual methods used for image segmentation in Endodontics: a microCT study.

    PubMed

    Queiroz, Polyane Mazucatto; Rovaris, Karla; Santaella, Gustavo Machado; Haiter-Neto, Francisco; Freitas, Deborah Queiroz

    2017-01-01

    To calculate root canal volume and surface area in microCT images, an image segmentation by selecting threshold values is required, which can be determined by visual or automatic methods. Visual determination is influenced by the operator's visual acuity, while the automatic method is done entirely by computer algorithms. To compare between visual and automatic segmentation, and to determine the influence of the operator's visual acuity on the reproducibility of root canal volume and area measurements. Images from 31 extracted human anterior teeth were scanned with a μCT scanner. Three experienced examiners performed visual image segmentation, and threshold values were recorded. Automatic segmentation was done using the "Automatic Threshold Tool" available in the dedicated software provided by the scanner's manufacturer. Volume and area measurements were performed using the threshold values determined both visually and automatically. The paired Student's t-test showed no significant difference between visual and automatic segmentation methods regarding root canal volume measurements (p=0.93) and root canal surface (p=0.79). Although visual and automatic segmentation methods can be used to determine the threshold and calculate root canal volume and surface, the automatic method may be the most suitable for ensuring the reproducibility of threshold determination.

  9. A Fully-Automatic Method to Segment the Carotid Artery Layers in Ultrasound Imaging: Application to Quantify the Compression-Decompression Pattern of the Intima-Media Complex During the Cardiac Cycle.

    PubMed

    Zahnd, Guillaume; Kapellas, Kostas; van Hattem, Martijn; van Dijk, Anouk; Sérusclat, André; Moulin, Philippe; van der Lugt, Aad; Skilton, Michael; Orkisz, Maciej

    2017-01-01

    The aim of this study was to introduce and evaluate a contour segmentation method to extract the interfaces of the intima-media complex in carotid B-mode ultrasound images. The method was applied to assess the temporal variation of intima-media thickness during the cardiac cycle. The main methodological contribution of the proposed approach is the introduction of an augmented dimension to process 2-D images in a 3-D space. The third dimension, which is added to the two spatial dimensions of the image, corresponds to the tentative local thickness of the intima-media complex. The method is based on a dynamic programming scheme that runs in a 3-D space generated with a shape-adapted filter bank. The optimal solution corresponds to a single medial axis representation that fully describes the two anatomical interfaces of the arterial wall. The method is fully automatic and does not require any input from the user. The method was trained on 60 subjects and validated on 184 other subjects from six different cohorts and four different medical centers. The arterial wall was successfully segmented in all analyzed images (average pixel size = 57 ± 20 mm), with average segmentation errors of 47 ± 70 mm for the lumen-intima interface, 55 ± 68 mm for the media-adventitia interface and 66 ± 90 mm for the intima-media thickness. The amplitude of the temporal variations in IMT during the cardiac cycle was significantly higher in the diseased population than in healthy volunteers (106 ± 48 vs. 86 ± 34 mm, p = 0.001). The introduced framework is a promising approach to investigate an emerging functional parameter of the arterial wall by assessing the cyclic compression-decompression pattern of the tissues. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  10. Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks.

    PubMed

    Bi, Lei; Kim, Jinman; Ahn, Euijoon; Kumar, Ashnil; Fulham, Michael; Feng, Dagan

    2017-09-01

    Segmentation of skin lesions is an important step in the automated computer aided diagnosis of melanoma. However, existing segmentation methods have a tendency to over- or under-segment the lesions and perform poorly when the lesions have fuzzy boundaries, low contrast with the background, inhomogeneous textures, or contain artifacts. Furthermore, the performance of these methods are heavily reliant on the appropriate tuning of a large number of parameters as well as the use of effective preprocessing techniques, such as illumination correction and hair removal. We propose to leverage fully convolutional networks (FCNs) to automatically segment the skin lesions. FCNs are a neural network architecture that achieves object detection by hierarchically combining low-level appearance information with high-level semantic information. We address the issue of FCN producing coarse segmentation boundaries for challenging skin lesions (e.g., those with fuzzy boundaries and/or low difference in the textures between the foreground and the background) through a multistage segmentation approach in which multiple FCNs learn complementary visual characteristics of different skin lesions; early stage FCNs learn coarse appearance and localization information while late-stage FCNs learn the subtle characteristics of the lesion boundaries. We also introduce a new parallel integration method to combine the complementary information derived from individual segmentation stages to achieve a final segmentation result that has accurate localization and well-defined lesion boundaries, even for the most challenging skin lesions. We achieved an average Dice coefficient of 91.18% on the ISBI 2016 Skin Lesion Challenge dataset and 90.66% on the PH2 dataset. Our extensive experimental results on two well-established public benchmark datasets demonstrate that our method is more effective than other state-of-the-art methods for skin lesion segmentation.

  11. An automatic brain tumor segmentation tool.

    PubMed

    Diaz, Idanis; Boulanger, Pierre; Greiner, Russell; Hoehn, Bret; Rowe, Lindsay; Murtha, Albert

    2013-01-01

    This paper introduces an automatic brain tumor segmentation method (ABTS) for segmenting multiple components of brain tumor using four magnetic resonance image modalities. ABTS's four stages involve automatic histogram multi-thresholding and morphological operations including geodesic dilation. Our empirical results, on 16 real tumors, show that ABTS works very effectively, achieving a Dice accuracy compared to expert segmentation of 81% in segmenting edema and 85% in segmenting gross tumor volume (GTV).

  12. Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation.

    PubMed

    Daisne, Jean-François; Blumhofer, Andreas

    2013-06-26

    Intensity modulated radiotherapy for head and neck cancer necessitates accurate definition of organs at risk (OAR) and clinical target volumes (CTV). This crucial step is time consuming and prone to inter- and intra-observer variations. Automatic segmentation by atlas deformable registration may help to reduce time and variations. We aim to test a new commercial atlas algorithm for automatic segmentation of OAR and CTV in both ideal and clinical conditions. The updated Brainlab automatic head and neck atlas segmentation was tested on 20 patients: 10 cN0-stages (ideal population) and 10 unselected N-stages (clinical population). Following manual delineation of OAR and CTV, automatic segmentation of the same set of structures was performed and afterwards manually corrected. Dice Similarity Coefficient (DSC), Average Surface Distance (ASD) and Maximal Surface Distance (MSD) were calculated for "manual to automatic" and "manual to corrected" volumes comparisons. In both groups, automatic segmentation saved about 40% of the corresponding manual segmentation time. This effect was more pronounced for OAR than for CTV. The edition of the automatically obtained contours significantly improved DSC, ASD and MSD. Large distortions of normal anatomy or lack of iodine contrast were the limiting factors. The updated Brainlab atlas-based automatic segmentation tool for head and neck Cancer patients is timesaving but still necessitates review and corrections by an expert.

  13. Automatic liver segmentation in computed tomography using general-purpose shape modeling methods.

    PubMed

    Spinczyk, Dominik; Krasoń, Agata

    2018-05-29

    Liver segmentation in computed tomography is required in many clinical applications. The segmentation methods used can be classified according to a number of criteria. One important criterion for method selection is the shape representation of the segmented organ. The aim of the work is automatic liver segmentation using general purpose shape modeling methods. As part of the research, methods based on shape information at various levels of advancement were used. The single atlas based segmentation method was used as the simplest shape-based method. This method is derived from a single atlas using the deformable free-form deformation of the control point curves. Subsequently, the classic and modified Active Shape Model (ASM) was used, using medium body shape models. As the most advanced and main method generalized statistical shape models, Gaussian Process Morphable Models was used, which are based on multi-dimensional Gaussian distributions of the shape deformation field. Mutual information and sum os square distance were used as similarity measures. The poorest results were obtained for the single atlas method. For the ASM method in 10 analyzed cases for seven test images, the Dice coefficient was above 55[Formula: see text], of which for three of them the coefficient was over 70[Formula: see text], which placed the method in second place. The best results were obtained for the method of generalized statistical distribution of the deformation field. The DICE coefficient for this method was 88.5[Formula: see text] CONCLUSIONS: This value of 88.5 [Formula: see text] Dice coefficient can be explained by the use of general-purpose shape modeling methods with a large variance of the shape of the modeled object-the liver and limitations on the size of our training data set, which was limited to 10 cases. The obtained results in presented fully automatic method are comparable with dedicated methods for liver segmentation. In addition, the deforamtion features of the model can be modeled mathematically by using various kernel functions, which allows to segment the liver on a comparable level using a smaller learning set.

  14. Brain tumor classification and segmentation using sparse coding and dictionary learning.

    PubMed

    Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo

    2016-08-01

    This paper presents a novel fully automatic framework for multi-class brain tumor classification and segmentation using a sparse coding and dictionary learning method. The proposed framework consists of two steps: classification and segmentation. The classification of the brain tumors is based on brain topology and texture. The segmentation is based on voxel values of the image data. Using K-SVD, two types of dictionaries are learned from the training data and their associated ground truth segmentation: feature dictionary and voxel-wise coupled dictionaries. The feature dictionary consists of global image features (topological and texture features). The coupled dictionaries consist of coupled information: gray scale voxel values of the training image data and their associated label voxel values of the ground truth segmentation of the training data. For quantitative evaluation, the proposed framework is evaluated using different metrics. The segmentation results of the brain tumor segmentation (MICCAI-BraTS-2013) database are evaluated using five different metric scores, which are computed using the online evaluation tool provided by the BraTS-2013 challenge organizers. Experimental results demonstrate that the proposed approach achieves an accurate brain tumor classification and segmentation and outperforms the state-of-the-art methods.

  15. Automatic corpus callosum segmentation for standardized MR brain scanning

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Chen, Hong; Zhang, Li; Novak, Carol L.

    2007-03-01

    Magnetic Resonance (MR) brain scanning is often planned manually with the goal of aligning the imaging plane with key anatomic landmarks. The planning is time-consuming and subject to inter- and intra- operator variability. An automatic and standardized planning of brain scans is highly useful for clinical applications, and for maximum utility should work on patients of all ages. In this study, we propose a method for fully automatic planning that utilizes the landmarks from two orthogonal images to define the geometry of the third scanning plane. The corpus callosum (CC) is segmented in sagittal images by an active shape model (ASM), and the result is further improved by weighting the boundary movement with confidence scores and incorporating region based refinement. Based on the extracted contour of the CC, several important landmarks are located and then combined with landmarks from the coronal or transverse plane to define the geometry of the third plane. Our automatic method is tested on 54 MR images from 24 patients and 3 healthy volunteers, with ages ranging from 4 months to 70 years old. The average accuracy with respect to two manually labeled points on the CC is 3.54 mm and 4.19 mm, and differed by an average of 2.48 degrees from the orientation of the line connecting them, demonstrating that our method is sufficiently accurate for clinical use.

  16. Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research.

    PubMed

    Ababneh, Sufyan Y; Prescott, Jeff W; Gurcan, Metin N

    2011-08-01

    In this paper, a new, fully automated, content-based system is proposed for knee bone segmentation from magnetic resonance images (MRI). The purpose of the bone segmentation is to support the discovery and characterization of imaging biomarkers for the incidence and progression of osteoarthritis, a debilitating joint disease, which affects a large portion of the aging population. The segmentation algorithm includes a novel content-based, two-pass disjoint block discovery mechanism, which is designed to support automation, segmentation initialization, and post-processing. The block discovery is achieved by classifying the image content to bone and background blocks according to their similarity to the categories in the training data collected from typical bone structures. The classified blocks are then used to design an efficient graph-cut based segmentation algorithm. This algorithm requires constructing a graph using image pixel data followed by applying a maximum-flow algorithm which generates a minimum graph-cut that corresponds to an initial image segmentation. Content-based refinements and morphological operations are then applied to obtain the final segmentation. The proposed segmentation technique does not require any user interaction and can distinguish between bone and highly similar adjacent structures, such as fat tissues with high accuracy. The performance of the proposed system is evaluated by testing it on 376 MR images from the Osteoarthritis Initiative (OAI) database. This database included a selection of single images containing the femur and tibia from 200 subjects with varying levels of osteoarthritis severity. Additionally, a full three-dimensional segmentation of the bones from ten subjects with 14 slices each, and synthetic images with background having intensity and spatial characteristics similar to those of bone are used to assess the robustness and consistency of the developed algorithm. The results show an automatic bone detection rate of 0.99 and an average segmentation accuracy of 0.95 using the Dice similarity index. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Automatic segmentation for brain MR images via a convex optimized segmentation and bias field correction coupled model.

    PubMed

    Chen, Yunjie; Zhao, Bo; Zhang, Jianwei; Zheng, Yuhui

    2014-09-01

    Accurate segmentation of magnetic resonance (MR) images remains challenging mainly due to the intensity inhomogeneity, which is also commonly known as bias field. Recently active contour models with geometric information constraint have been applied, however, most of them deal with the bias field by using a necessary pre-processing step before segmentation of MR data. This paper presents a novel automatic variational method, which can segment brain MR images meanwhile correcting the bias field when segmenting images with high intensity inhomogeneities. We first define a function for clustering the image pixels in a smaller neighborhood. The cluster centers in this objective function have a multiplicative factor that estimates the bias within the neighborhood. In order to reduce the effect of the noise, the local intensity variations are described by the Gaussian distributions with different means and variances. Then, the objective functions are integrated over the entire domain. In order to obtain the global optimal and make the results independent of the initialization of the algorithm, we reconstructed the energy function to be convex and calculated it by using the Split Bregman theory. A salient advantage of our method is that its result is independent of initialization, which allows robust and fully automated application. Our method is able to estimate the bias of quite general profiles, even in 7T MR images. Moreover, our model can also distinguish regions with similar intensity distribution with different variances. The proposed method has been rigorously validated with images acquired on variety of imaging modalities with promising results. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Deep residual networks for automatic segmentation of laparoscopic videos of the liver

    NASA Astrophysics Data System (ADS)

    Gibson, Eli; Robu, Maria R.; Thompson, Stephen; Edwards, P. Eddie; Schneider, Crispin; Gurusamy, Kurinchi; Davidson, Brian; Hawkes, David J.; Barratt, Dean C.; Clarkson, Matthew J.

    2017-03-01

    Motivation: For primary and metastatic liver cancer patients undergoing liver resection, a laparoscopic approach can reduce recovery times and morbidity while offering equivalent curative results; however, only about 10% of tumours reside in anatomical locations that are currently accessible for laparoscopic resection. Augmenting laparoscopic video with registered vascular anatomical models from pre-procedure imaging could support using laparoscopy in a wider population. Segmentation of liver tissue on laparoscopic video supports the robust registration of anatomical liver models by filtering out false anatomical correspondences between pre-procedure and intra-procedure images. In this paper, we present a convolutional neural network (CNN) approach to liver segmentation in laparoscopic liver procedure videos. Method: We defined a CNN architecture comprising fully-convolutional deep residual networks with multi-resolution loss functions. The CNN was trained in a leave-one-patient-out cross-validation on 2050 video frames from 6 liver resections and 7 laparoscopic staging procedures, and evaluated using the Dice score. Results: The CNN yielded segmentations with Dice scores >=0.95 for the majority of images; however, the inter-patient variability in median Dice score was substantial. Four failure modes were identified from low scoring segmentations: minimal visible liver tissue, inter-patient variability in liver appearance, automatic exposure correction, and pathological liver tissue that mimics non-liver tissue appearance. Conclusion: CNNs offer a feasible approach for accurately segmenting liver from other anatomy on laparoscopic video, but additional data or computational advances are necessary to address challenges due to the high inter-patient variability in liver appearance.

  19. Automatic blood vessel based-liver segmentation using the portal phase abdominal CT

    NASA Astrophysics Data System (ADS)

    Maklad, Ahmed S.; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Shimada, Mitsuo; Iinuma, Gen

    2018-02-01

    Liver segmentation is the basis for computer-based planning of hepatic surgical interventions. In diagnosis and analysis of hepatic diseases and surgery planning, automatic segmentation of liver has high importance. Blood vessel (BV) has showed high performance at liver segmentation. In our previous work, we developed a semi-automatic method that segments the liver through the portal phase abdominal CT images in two stages. First stage was interactive segmentation of abdominal blood vessels (ABVs) and subsequent classification into hepatic (HBVs) and non-hepatic (non-HBVs). This stage had 5 interactions that include selective threshold for bone segmentation, selecting two seed points for kidneys segmentation, selection of inferior vena cava (IVC) entrance for starting ABVs segmentation, identification of the portal vein (PV) entrance to the liver and the IVC-exit for classifying HBVs from other ABVs (non-HBVs). Second stage is automatic segmentation of the liver based on segmented ABVs as described in [4]. For full automation of our method we developed a method [5] that segments ABVs automatically tackling the first three interactions. In this paper, we propose full automation of classifying ABVs into HBVs and non- HBVs and consequently full automation of liver segmentation that we proposed in [4]. Results illustrate that the method is effective at segmentation of the liver through the portal abdominal CT images.

  20. Multiple sclerosis lesion segmentation using an automatic multimodal graph cuts.

    PubMed

    García-Lorenzo, Daniel; Lecoeur, Jeremy; Arnold, Douglas L; Collins, D Louis; Barillot, Christian

    2009-01-01

    Graph Cuts have been shown as a powerful interactive segmentation technique in several medical domains. We propose to automate the Graph Cuts in order to automatically segment Multiple Sclerosis (MS) lesions in MRI. We replace the manual interaction with a robust EM-based approach in order to discriminate between MS lesions and the Normal Appearing Brain Tissues (NABT). Evaluation is performed in synthetic and real images showing good agreement between the automatic segmentation and the target segmentation. We compare our algorithm with the state of the art techniques and with several manual segmentations. An advantage of our algorithm over previously published ones is the possibility to semi-automatically improve the segmentation due to the Graph Cuts interactive feature.

  1. Automated Volumetry and Regional Thickness Analysis of Hippocampal Subfields and Medial Temporal Cortical Structures in Mild Cognitive Impairment

    PubMed Central

    Yushkevich, Paul A.; Pluta, John B.; Wang, Hongzhi; Xie, Long; Ding, Song-Lin; Gertje, E. C.; Mancuso, Lauren; Kliot, Daria; Das, Sandhitsu R.; Wolk, David A.

    2014-01-01

    We evaluate a fully automatic technique for labeling hippocampal subfields and cortical subregions in the medial temporal lobe (MTL) in in vivo 3 Tesla MRI. The method performs segmentation on a T2-weighted MRI scan with 0.4 × 0.4 × 2.0 mm3 resolution, partial brain coverage, and oblique orientation. Hippocampal subfields, entorhinal cortex, and perirhinal cortex are labeled using a pipeline that combines multi-atlas label fusion and learning-based error correction. In contrast to earlier work on automatic subfield segmentation in T2-weighted MRI (Yushkevich et al., 2010), our approach requires no manual initialization, labels hippocampal subfields over a greater anterior-posterior extent, and labels the perirhinal cortex, which is further subdivided into Brodmann areas 35 and 36. The accuracy of the automatic segmentation relative to manual segmentation is measured using cross-validation in 29 subjects from a study of amnestic Mild Cognitive Impairment (aMCI), and is highest for the dentate gyrus (Dice coefficient is 0.823), CA1 (0.803), perirhinal cortex (0.797) and entorhinal cortex (0.786) labels. A larger cohort of 83 subjects is used to examine the effects of aMCI in the hippocampal region using both subfield volume and regional subfield thickness maps. Most significant differences between aMCI and healthy aging are observed bilaterally in the CA1 subfield and in the left Brodmann area 35. Thickness analysis results are consistent with volumetry, but provide additional regional specificity and suggest non-uniformity in the effects of aMCI on hippocampal subfields and MTL cortical subregions. PMID:25181316

  2. Segmentation of optic disc and optic cup in retinal fundus images using shape regression.

    PubMed

    Sedai, Suman; Roy, Pallab K; Mahapatra, Dwarikanath; Garnavi, Rahil

    2016-08-01

    Glaucoma is one of the leading cause of blindness. The manual examination of optic cup and disc is a standard procedure used for detecting glaucoma. This paper presents a fully automatic regression based method which accurately segments optic cup and disc in retinal colour fundus image. First, we roughly segment optic disc using circular hough transform. The approximated optic disc is then used to compute the initial optic disc and cup shapes. We propose a robust and efficient cascaded shape regression method which iteratively learns the final shape of the optic cup and disc from a given initial shape. Gradient boosted regression trees are employed to learn each regressor in the cascade. A novel data augmentation approach is proposed to improve the regressors performance by generating synthetic training data. The proposed optic cup and disc segmentation method is applied on an image set of 50 patients and demonstrate high segmentation accuracy for optic cup and disc with dice metric of 0.95 and 0.85 respectively. Comparative study shows that our proposed method outperforms state of the art optic cup and disc segmentation methods.

  3. Platform-Independent Cirrus and Spectralis Thickness Measurements in Eyes with Diabetic Macular Edema Using Fully Automated Software

    PubMed Central

    Willoughby, Alex S.; Chiu, Stephanie J.; Silverman, Rachel K.; Farsiu, Sina; Bailey, Clare; Wiley, Henry E.; Ferris, Frederick L.; Jaffe, Glenn J.

    2017-01-01

    Purpose We determine whether the automated segmentation software, Duke Optical Coherence Tomography Retinal Analysis Program (DOCTRAP), can measure, in a platform-independent manner, retinal thickness on Cirrus and Spectralis spectral domain optical coherence tomography (SD-OCT) images in eyes with diabetic macular edema (DME) under treatment in a clinical trial. Methods Automatic segmentation software was used to segment the internal limiting membrane (ILM), inner retinal pigment epithelium (RPE), and Bruch's membrane (BM) in SD-OCT images acquired by Cirrus and Spectralis commercial systems, from the same eye, on the same day during a clinical interventional DME trial. Mean retinal thickness differences were compared across commercial and DOCTRAP platforms using intraclass correlation (ICC) and Bland-Altman plots. Results The mean 1 mm central subfield thickness difference (standard error [SE]) comparing segmentation of Spectralis images with DOCTRAP versus HEYEX was 0.7 (0.3) μm (0.2 pixels). The corresponding values comparing segmentation of Cirrus images with DOCTRAP versus Cirrus software was 2.2 (0.7) μm. The mean 1 mm central subfield thickness difference (SE) comparing segmentation of Cirrus and Spectralis scan pairs with DOCTRAP using BM as the outer retinal boundary was −2.3 (0.9) μm compared to 2.8 (0.9) μm with inner RPE as the outer boundary. Conclusions DOCTRAP segmentation of Cirrus and Spectralis images produces validated thickness measurements that are very similar to each other, and very similar to the values generated by the corresponding commercial software in eyes with treated DME. Translational Relevance This software enables automatic total retinal thickness measurements across two OCT platforms, a process that is impractical to perform manually. PMID:28180033

  4. Joint Segmentation of Anatomical and Functional Images: Applications in Quantification of Lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT Images

    PubMed Central

    Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967

  5. Automatic segmentation of male pelvic anatomy on computed tomography images: a comparison with multiple observers in the context of a multicentre clinical trial.

    PubMed

    Geraghty, John P; Grogan, Garry; Ebert, Martin A

    2013-04-30

    This study investigates the variation in segmentation of several pelvic anatomical structures on computed tomography (CT) between multiple observers and a commercial automatic segmentation method, in the context of quality assurance and evaluation during a multicentre clinical trial. CT scans of two prostate cancer patients ('benchmarking cases'), one high risk (HR) and one intermediate risk (IR), were sent to multiple radiotherapy centres for segmentation of prostate, rectum and bladder structures according to the TROG 03.04 "RADAR" trial protocol definitions. The same structures were automatically segmented using iPlan software for the same two patients, allowing structures defined by automatic segmentation to be quantitatively compared with those defined by multiple observers. A sample of twenty trial patient datasets were also used to automatically generate anatomical structures for quantitative comparison with structures defined by individual observers for the same datasets. There was considerable agreement amongst all observers and automatic segmentation of the benchmarking cases for bladder (mean spatial variations < 0.4 cm across the majority of image slices). Although there was some variation in interpretation of the superior-inferior (cranio-caudal) extent of rectum, human-observer contours were typically within a mean 0.6 cm of automatically-defined contours. Prostate structures were more consistent for the HR case than the IR case with all human observers segmenting a prostate with considerably more volume (mean +113.3%) than that automatically segmented. Similar results were seen across the twenty sample datasets, with disagreement between iPlan and observers dominant at the prostatic apex and superior part of the rectum, which is consistent with observations made during quality assurance reviews during the trial. This study has demonstrated quantitative analysis for comparison of multi-observer segmentation studies. For automatic segmentation algorithms based on image-registration as in iPlan, it is apparent that agreement between observer and automatic segmentation will be a function of patient-specific image characteristics, particularly for anatomy with poor contrast definition. For this reason, it is suggested that automatic registration based on transformation of a single reference dataset adds a significant systematic bias to the resulting volumes and their use in the context of a multicentre trial should be carefully considered.

  6. Thai Automatic Speech Recognition

    DTIC Science & Technology

    2005-01-01

    used in an external DARPA evaluation involving medical scenarios between an American Doctor and a naïve monolingual Thai patient. 2. Thai Language... dictionary generation more challenging, and (3) the lack of word segmentation, which calls for automatic segmentation approaches to make n-gram language...requires a dictionary and provides various segmentation algorithms to automatically select suitable segmentations. Here we used a maximal matching

  7. Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT.

    PubMed

    Zhang, Li; Buitendijk, Gabriëlle H S; Lee, Kyungmoo; Sonka, Milan; Springelkamp, Henriët; Hofman, Albert; Vingerling, Johannes R; Mullins, Robert F; Klaver, Caroline C W; Abràmoff, Michael D

    2015-05-01

    To evaluate the validity of a novel fully automated three-dimensional (3D) method capable of segmenting the choroid from two different optical coherence tomography scanners: swept-source OCT (SS-OCT) and spectral-domain OCT (SD-OCT). One hundred eight subjects were imaged using SS-OCT and SD-OCT. A 3D method was used to segment the choroid and quantify the choroidal thickness along each A-scan. The segmented choroidal posterior boundary was evaluated by comparing to manual segmentation. Differences were assessed to test the agreement between segmentation results of the same subject. Choroidal thickness was defined as the Euclidian distance between Bruch's membrane and the choroidal posterior boundary, and reproducibility was analyzed using automatically and manually determined choroidal thicknesses. For SS-OCT, the average choroidal thickness of the entire 6- by 6-mm2 macular region was 219.5 μm (95% confidence interval [CI], 204.9-234.2 μm), and for SD-OCT it was 209.5 μm (95% CI, 197.9-221.0 μm). The agreement between automated and manual segmentations was high: Average relative difference was less than 5 μm, and average absolute difference was less than 15 μm. Reproducibility of choroidal thickness between repeated SS-OCT scans was high (coefficient of variation [CV] of 3.3%, intraclass correlation coefficient [ICC] of 0.98), and differences between SS-OCT and SD-OCT results were small (CV of 11.0%, ICC of 0.73). We have developed a fully automated 3D method for segmenting the choroid and quantifying choroidal thickness along each A-scan. The method yielded high validity. Our method can be used reliably to study local choroidal changes and may improve the diagnosis and management of patients with ocular diseases in which the choroid is affected.

  8. An automatic rat brain extraction method based on a deformable surface model.

    PubMed

    Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M

    2013-08-15

    The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Motion-aware stroke volume quantification in 4D PC-MRI data of the human aorta.

    PubMed

    Köhler, Benjamin; Preim, Uta; Grothoff, Matthias; Gutberlet, Matthias; Fischbach, Katharina; Preim, Bernhard

    2016-02-01

    4D PC-MRI enables the noninvasive measurement of time-resolved, three-dimensional blood flow data that allow quantification of the hemodynamics. Stroke volumes are essential to assess the cardiac function and evolution of different cardiovascular diseases. The calculation depends on the wall position and vessel orientation, which both change during the cardiac cycle due to the heart muscle contraction and the pumped blood. However, current systems for the quantitative 4D PC-MRI data analysis neglect the dynamic character and instead employ a static 3D vessel approximation. We quantify differences between stroke volumes in the aorta obtained with and without consideration of its dynamics. We describe a method that uses the approximating 3D segmentation to automatically initialize segmentation algorithms that require regions inside and outside the vessel for each temporal position. This enables the use of graph cuts to obtain 4D segmentations, extract vessel surfaces including centerlines for each temporal position and derive motion information. The stroke volume quantification is compared using measuring planes in static (3D) vessels, planes with fixed angulation inside dynamic vessels (this corresponds to the common 2D PC-MRI) and moving planes inside dynamic vessels. Seven datasets with different pathologies such as aneurysms and coarctations were evaluated in close collaboration with radiologists. Compared to the experts' manual stroke volume estimations, motion-aware quantification performs, on average, 1.57% better than calculations without motion consideration. The mean difference between stroke volumes obtained with the different methods is 7.82%. Automatically obtained 4D segmentations overlap by 85.75% with manually generated ones. Incorporating motion information in the stroke volume quantification yields slight but not statistically significant improvements. The presented method is feasible for the clinical routine, since computation times are low and essential parts run fully automatically. The 4D segmentations can be used for other algorithms as well. The simultaneous visualization and quantification may support the understanding and interpretation of cardiac blood flow.

  10. Detection and measurement of fetal anatomies from ultrasound images using a constrained probabilistic boosting tree.

    PubMed

    Carneiro, Gustavo; Georgescu, Bogdan; Good, Sara; Comaniciu, Dorin

    2008-09-01

    We propose a novel method for the automatic detection and measurement of fetal anatomical structures in ultrasound images. This problem offers a myriad of challenges, including: difficulty of modeling the appearance variations of the visual object of interest, robustness to speckle noise and signal dropout, and large search space of the detection procedure. Previous solutions typically rely on the explicit encoding of prior knowledge and formulation of the problem as a perceptual grouping task solved through clustering or variational approaches. These methods are constrained by the validity of the underlying assumptions and usually are not enough to capture the complex appearances of fetal anatomies. We propose a novel system for fast automatic detection and measurement of fetal anatomies that directly exploits a large database of expert annotated fetal anatomical structures in ultrasound images. Our method learns automatically to distinguish between the appearance of the object of interest and background by training a constrained probabilistic boosting tree classifier. This system is able to produce the automatic segmentation of several fetal anatomies using the same basic detection algorithm. We show results on fully automatic measurement of biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), femur length (FL), humerus length (HL), and crown rump length (CRL). Notice that our approach is the first in the literature to deal with the HL and CRL measurements. Extensive experiments (with clinical validation) show that our system is, on average, close to the accuracy of experts in terms of segmentation and obstetric measurements. Finally, this system runs under half second on a standard dual-core PC computer.

  11. Linear-regression convolutional neural network for fully automated coronary lumen segmentation in intravascular optical coherence tomography.

    PubMed

    Yong, Yan Ling; Tan, Li Kuo; McLaughlin, Robert A; Chee, Kok Han; Liew, Yih Miin

    2017-12-01

    Intravascular optical coherence tomography (OCT) is an optical imaging modality commonly used in the assessment of coronary artery diseases during percutaneous coronary intervention. Manual segmentation to assess luminal stenosis from OCT pullback scans is challenging and time consuming. We propose a linear-regression convolutional neural network to automatically perform vessel lumen segmentation, parameterized in terms of radial distances from the catheter centroid in polar space. Benchmarked against gold-standard manual segmentation, our proposed algorithm achieves average locational accuracy of the vessel wall of 22 microns, and 0.985 and 0.970 in Dice coefficient and Jaccard similarity index, respectively. The average absolute error of luminal area estimation is 1.38%. The processing rate is 40.6 ms per image, suggesting the potential to be incorporated into a clinical workflow and to provide quantitative assessment of vessel lumen in an intraoperative time frame. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Multi-tissue and multi-scale approach for nuclei segmentation in H&E stained images.

    PubMed

    Salvi, Massimo; Molinari, Filippo

    2018-06-20

    Accurate nuclei detection and segmentation in histological images is essential for many clinical purposes. While manual annotations are time-consuming and operator-dependent, full automated segmentation remains a challenging task due to the high variability of cells intensity, size and morphology. Most of the proposed algorithms for the automated segmentation of nuclei were designed for specific organ or tissues. The aim of this study was to develop and validate a fully multiscale method, named MANA (Multiscale Adaptive Nuclei Analysis), for nuclei segmentation in different tissues and magnifications. MANA was tested on a dataset of H&E stained tissue images with more than 59,000 annotated nuclei, taken from six organs (colon, liver, bone, prostate, adrenal gland and thyroid) and three magnifications (10×, 20×, 40×). Automatic results were compared with manual segmentations and three open-source software designed for nuclei detection. For each organ, MANA obtained always an F1-score higher than 0.91, with an average F1 of 0.9305 ± 0.0161. The average computational time was about 20 s independently of the number of nuclei to be detected (anyway, higher than 1000), indicating the efficiency of the proposed technique. To the best of our knowledge, MANA is the first fully automated multi-scale and multi-tissue algorithm for nuclei detection. Overall, the robustness and versatility of MANA allowed to achieve, on different organs and magnifications, performances in line or better than those of state-of-art algorithms optimized for single tissues.

  13. Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion

    NASA Astrophysics Data System (ADS)

    Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Tade, Funmilayo; Schuster, David M.; Nieh, Peter; Master, Viraj; Fei, Baowei

    2017-02-01

    Automatic segmentation of the prostate on CT images has many applications in prostate cancer diagnosis and therapy. However, prostate CT image segmentation is challenging because of the low contrast of soft tissue on CT images. In this paper, we propose an automatic segmentation method by combining a deep learning method and multi-atlas refinement. First, instead of segmenting the whole image, we extract the region of interesting (ROI) to delete irrelevant regions. Then, we use the convolutional neural networks (CNN) to learn the deep features for distinguishing the prostate pixels from the non-prostate pixels in order to obtain the preliminary segmentation results. CNN can automatically learn the deep features adapting to the data, which are different from some handcrafted features. Finally, we select some similar atlases to refine the initial segmentation results. The proposed method has been evaluated on a dataset of 92 prostate CT images. Experimental results show that our method achieved a Dice similarity coefficient of 86.80% as compared to the manual segmentation. The deep learning based method can provide a useful tool for automatic segmentation of the prostate on CT images and thus can have a variety of clinical applications.

  14. Automated Bone Segmentation and Surface Evaluation of a Small Animal Model of Post-Traumatic Osteoarthritis.

    PubMed

    Ramme, Austin J; Voss, Kevin; Lesporis, Jurinus; Lendhey, Matin S; Coughlin, Thomas R; Strauss, Eric J; Kennedy, Oran D

    2017-05-01

    MicroCT imaging allows for noninvasive microstructural evaluation of mineralized bone tissue, and is essential in studies of small animal models of bone and joint diseases. Automatic segmentation and evaluation of articular surfaces is challenging. Here, we present a novel method to create knee joint surface models, for the evaluation of PTOA-related joint changes in the rat using an atlas-based diffeomorphic registration to automatically isolate bone from surrounding tissues. As validation, two independent raters manually segment datasets and the resulting segmentations were compared to our novel automatic segmentation process. Data were evaluated using label map volumes, overlap metrics, Euclidean distance mapping, and a time trial. Intraclass correlation coefficients were calculated to compare methods, and were greater than 0.90. Total overlap, union overlap, and mean overlap were calculated to compare the automatic and manual methods and ranged from 0.85 to 0.99. A Euclidean distance comparison was also performed and showed no measurable difference between manual and automatic segmentations. Furthermore, our new method was 18 times faster than manual segmentation. Overall, this study describes a reliable, accurate, and automatic segmentation method for mineralized knee structures from microCT images, and will allow for efficient assessment of bony changes in small animal models of PTOA.

  15. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    PubMed

    Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K

    2017-10-01

    Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.

  16. Brain Tumor Image Segmentation in MRI Image

    NASA Astrophysics Data System (ADS)

    Peni Agustin Tjahyaningtijas, Hapsari

    2018-04-01

    Brain tumor segmentation plays an important role in medical image processing. Treatment of patients with brain tumors is highly dependent on early detection of these tumors. Early detection of brain tumors will improve the patient’s life chances. Diagnosis of brain tumors by experts usually use a manual segmentation that is difficult and time consuming because of the necessary automatic segmentation. Nowadays automatic segmentation is very populer and can be a solution to the problem of tumor brain segmentation with better performance. The purpose of this paper is to provide a review of MRI-based brain tumor segmentation methods. There are number of existing review papers, focusing on traditional methods for MRI-based brain tumor image segmentation. this paper, we focus on the recent trend of automatic segmentation in this field. First, an introduction to brain tumors and methods for brain tumor segmentation is given. Then, the state-of-the-art algorithms with a focus on recent trend of full automatic segmentaion are discussed. Finally, an assessment of the current state is presented and future developments to standardize MRI-based brain tumor segmentation methods into daily clinical routine are addressed.

  17. Automatic quantitative computed tomography segmentation and analysis of aerated lung volumes in acute respiratory distress syndrome-A comparative diagnostic study.

    PubMed

    Klapsing, Philipp; Herrmann, Peter; Quintel, Michael; Moerer, Onnen

    2017-12-01

    Quantitative lung computed tomographic (CT) analysis yields objective data regarding lung aeration but is currently not used in clinical routine primarily because of the labor-intensive process of manual CT segmentation. Automatic lung segmentation could help to shorten processing times significantly. In this study, we assessed bias and precision of lung CT analysis using automatic segmentation compared with manual segmentation. In this monocentric clinical study, 10 mechanically ventilated patients with mild to moderate acute respiratory distress syndrome were included who had received lung CT scans at 5- and 45-mbar airway pressure during a prior study. Lung segmentations were performed both automatically using a computerized algorithm and manually. Automatic segmentation yielded similar lung volumes compared with manual segmentation with clinically minor differences both at 5 and 45 mbar. At 5 mbar, results were as follows: overdistended lung 49.58mL (manual, SD 77.37mL) and 50.41mL (automatic, SD 77.3mL), P=.028; normally aerated lung 2142.17mL (manual, SD 1131.48mL) and 2156.68mL (automatic, SD 1134.53mL), P = .1038; and poorly aerated lung 631.68mL (manual, SD 196.76mL) and 646.32mL (automatic, SD 169.63mL), P = .3794. At 45 mbar, values were as follows: overdistended lung 612.85mL (manual, SD 449.55mL) and 615.49mL (automatic, SD 451.03mL), P=.078; normally aerated lung 3890.12mL (manual, SD 1134.14mL) and 3907.65mL (automatic, SD 1133.62mL), P = .027; and poorly aerated lung 413.35mL (manual, SD 57.66mL) and 469.58mL (automatic, SD 70.14mL), P=.007. Bland-Altman analyses revealed the following mean biases and limits of agreement at 5 mbar for automatic vs manual segmentation: overdistended lung +0.848mL (±2.062mL), normally aerated +14.51mL (±49.71mL), and poorly aerated +14.64mL (±98.16mL). At 45 mbar, results were as follows: overdistended +2.639mL (±8.231mL), normally aerated 17.53mL (±41.41mL), and poorly aerated 56.23mL (±100.67mL). Automatic single CT image and whole lung segmentation were faster than manual segmentation (0.17 vs 125.35seconds [P<.0001] and 10.46 vs 7739.45seconds [P<.0001]). Automatic lung CT segmentation allows fast analysis of aerated lung regions. A reduction of processing times by more than 99% allows the use of quantitative CT at the bedside. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. SparCLeS: dynamic l₁ sparse classifiers with level sets for robust beard/moustache detection and segmentation.

    PubMed

    Le, T Hoang Ngan; Luu, Khoa; Savvides, Marios

    2013-08-01

    Robust facial hair detection and segmentation is a highly valued soft biometric attribute for carrying out forensic facial analysis. In this paper, we propose a novel and fully automatic system, called SparCLeS, for beard/moustache detection and segmentation in challenging facial images. SparCLeS uses the multiscale self-quotient (MSQ) algorithm to preprocess facial images and deal with illumination variation. Histogram of oriented gradients (HOG) features are extracted from the preprocessed images and a dynamic sparse classifier is built using these features to classify a facial region as either containing skin or facial hair. A level set based approach, which makes use of the advantages of both global and local information, is then used to segment the regions of a face containing facial hair. Experimental results demonstrate the effectiveness of our proposed system in detecting and segmenting facial hair regions in images drawn from three databases, i.e., the NIST Multiple Biometric Grand Challenge (MBGC) still face database, the NIST Color Facial Recognition Technology FERET database, and the Labeled Faces in the Wild (LFW) database.

  19. Modeling and segmentation of intra-cochlear anatomy in conventional CT

    NASA Astrophysics Data System (ADS)

    Noble, Jack H.; Rutherford, Robert B.; Labadie, Robert F.; Majdani, Omid; Dawant, Benoit M.

    2010-03-01

    Cochlear implant surgery is a procedure performed to treat profound hearing loss. Since the cochlea is not visible in surgery, the physician uses anatomical landmarks to estimate the pose of the cochlea. Research has indicated that implanting the electrode in a particular cavity of the cochlea, the scala tympani, results in better hearing restoration. The success of the scala tympani implantation is largely dependent on the point of entry and angle of electrode insertion. Errors can occur due to the imprecise nature of landmark-based, manual navigation as well as inter-patient variations between scala tympani and the anatomical landmarks. In this work, we use point distribution models of the intra-cochlear anatomy to study the inter-patient variations between the cochlea and the typical anatomic landmarks, and we implement an active shape model technique to automatically localize intra-cochlear anatomy in conventional CT images, where intra-cochlear structures are not visible. This fully automatic segmentation could aid the surgeon to choose the point of entry and angle of approach to maximize the likelihood of scala tympani insertion, resulting in more substantial hearing restoration.

  20. Evaluation of an automatic segmentation algorithm for definition of head and neck organs at risk.

    PubMed

    Thomson, David; Boylan, Chris; Liptrot, Tom; Aitkenhead, Adam; Lee, Lip; Yap, Beng; Sykes, Andrew; Rowbottom, Carl; Slevin, Nicholas

    2014-08-03

    The accurate definition of organs at risk (OARs) is required to fully exploit the benefits of intensity-modulated radiotherapy (IMRT) for head and neck cancer. However, manual delineation is time-consuming and there is considerable inter-observer variability. This is pertinent as function-sparing and adaptive IMRT have increased the number and frequency of delineation of OARs. We evaluated accuracy and potential time-saving of Smart Probabilistic Image Contouring Engine (SPICE) automatic segmentation to define OARs for salivary-, swallowing- and cochlea-sparing IMRT. Five clinicians recorded the time to delineate five organs at risk (parotid glands, submandibular glands, larynx, pharyngeal constrictor muscles and cochleae) for each of 10 CT scans. SPICE was then used to define these structures. The acceptability of SPICE contours was initially determined by visual inspection and the total time to modify them recorded per scan. The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm created a reference standard from all clinician contours. Clinician, SPICE and modified contours were compared against STAPLE by the Dice similarity coefficient (DSC) and mean/maximum distance to agreement (DTA). For all investigated structures, SPICE contours were less accurate than manual contours. However, for parotid/submandibular glands they were acceptable (median DSC: 0.79/0.80; mean, maximum DTA: 1.5 mm, 14.8 mm/0.6 mm, 5.7 mm). Modified SPICE contours were also less accurate than manual contours. The utilisation of SPICE did not result in time-saving/improve efficiency. Improvements in accuracy of automatic segmentation for head and neck OARs would be worthwhile and are required before its routine clinical implementation.

  1. Carotid stenosis assessment with multi-detector CT angiography: comparison between manual and automatic segmentation methods.

    PubMed

    Zhu, Chengcheng; Patterson, Andrew J; Thomas, Owen M; Sadat, Umar; Graves, Martin J; Gillard, Jonathan H

    2013-04-01

    Luminal stenosis is used for selecting the optimal management strategy for patients with carotid artery disease. The aim of this study is to evaluate the reproducibility of carotid stenosis quantification using manual and automated segmentation methods using submillimeter through-plane resolution Multi-Detector CT angiography (MDCTA). 35 patients having carotid artery disease with >30 % luminal stenosis as identified by carotid duplex imaging underwent contrast enhanced MDCTA. Two experienced CT readers quantified carotid stenosis from axial source images, reconstructed maximum intensity projection (MIP) and 3D-carotid geometry which was automatically segmented by an open-source toolkit (Vascular Modelling Toolkit, VMTK) using NASCET criteria. Good agreement among the measurement using axial images, MIP and automatic segmentation was observed. Automatic segmentation methods show better inter-observer agreement between the readers (intra-class correlation coefficient (ICC): 0.99 for diameter stenosis measurement) than manual measurement of axial (ICC = 0.82) and MIP (ICC = 0.86) images. Carotid stenosis quantification using an automatic segmentation method has higher reproducibility compared with manual methods.

  2. Airway Segmentation and Centerline Extraction from Thoracic CT – Comparison of a New Method to State of the Art Commercialized Methods

    PubMed Central

    Reynisson, Pall Jens; Scali, Marta; Smistad, Erik; Hofstad, Erlend Fagertun; Leira, Håkon Olav; Lindseth, Frank; Nagelhus Hernes, Toril Anita; Amundsen, Tore; Sorger, Hanne; Langø, Thomas

    2015-01-01

    Introduction Our motivation is increased bronchoscopic diagnostic yield and optimized preparation, for navigated bronchoscopy. In navigated bronchoscopy, virtual 3D airway visualization is often used to guide a bronchoscopic tool to peripheral lesions, synchronized with the real time video bronchoscopy. Visualization during navigated bronchoscopy, the segmentation time and methods, differs. Time consumption and logistics are two essential aspects that need to be optimized when integrating such technologies in the interventional room. We compared three different approaches to obtain airway centerlines and surface. Method CT lung dataset of 17 patients were processed in Mimics (Materialize, Leuven, Belgium), which provides a Basic module and a Pulmonology module (beta version) (MPM), OsiriX (Pixmeo, Geneva, Switzerland) and our Tube Segmentation Framework (TSF) method. Both MPM and TSF were evaluated with reference segmentation. Automatic and manual settings allowed us to segment the airways and obtain 3D models as well as the centrelines in all datasets. We compared the different procedures by user interactions such as number of clicks needed to process the data and quantitative measures concerning the quality of the segmentation and centrelines such as total length of the branches, number of branches, number of generations, and volume of the 3D model. Results The TSF method was the most automatic, while the Mimics Pulmonology Module (MPM) and the Mimics Basic Module (MBM) resulted in the highest number of branches. MPM is the software which demands the least number of clicks to process the data. We found that the freely available OsiriX was less accurate compared to the other methods regarding segmentation results. However, the TSF method provided results fastest regarding number of clicks. The MPM was able to find the highest number of branches and generations. On the other hand, the TSF is fully automatic and it provides the user with both segmentation of the airways and the centerlines. Reference segmentation comparison averages and standard deviations for MPM and TSF correspond to literature. Conclusion The TSF is able to segment the airways and extract the centerlines in one single step. The number of branches found is lower for the TSF method than in Mimics. OsiriX demands the highest number of clicks to process the data, the segmentation is often sparse and extracting the centerline requires the use of another software system. Two of the software systems performed satisfactory with respect to be used in preprocessing CT images for navigated bronchoscopy, i.e. the TSF method and the MPM. According to reference segmentation both TSF and MPM are comparable with other segmentation methods. The level of automaticity and the resulting high number of branches plus the fact that both centerline and the surface of the airways were extracted, are requirements we considered particularly important. The in house method has the advantage of being an integrated part of a navigation platform for bronchoscopy, whilst the other methods can be considered preprocessing tools to a navigation system. PMID:26657513

  3. A novel fully automatic multilevel thresholding technique based on optimized intuitionistic fuzzy sets and tsallis entropy for MR brain tumor image segmentation.

    PubMed

    Kaur, Taranjit; Saini, Barjinder Singh; Gupta, Savita

    2018-03-01

    In the present paper, a hybrid multilevel thresholding technique that combines intuitionistic fuzzy sets and tsallis entropy has been proposed for the automatic delineation of the tumor from magnetic resonance images having vague boundaries and poor contrast. This novel technique takes into account both the image histogram and the uncertainty information for the computation of multiple thresholds. The benefit of the methodology is that it provides fast and improved segmentation for the complex tumorous images with imprecise gray levels. To further boost the computational speed, the mutation based particle swarm optimization is used that selects the most optimal threshold combination. The accuracy of the proposed segmentation approach has been validated on simulated, real low-grade glioma tumor volumes taken from MICCAI brain tumor segmentation (BRATS) challenge 2012 dataset and the clinical tumor images, so as to corroborate its generality and novelty. The designed technique achieves an average Dice overlap equal to 0.82010, 0.78610 and 0.94170 for three datasets. Further, a comparative analysis has also been made between the eight existing multilevel thresholding implementations so as to show the superiority of the designed technique. In comparison, the results indicate a mean improvement in Dice by an amount equal to 4.00% (p < 0.005), 9.60% (p < 0.005) and 3.58% (p < 0.005), respectively in contrast to the fuzzy tsallis approach.

  4. Semiautomatic tumor segmentation with multimodal images in a conditional random field framework.

    PubMed

    Hu, Yu-Chi; Grossberg, Michael; Mageras, Gikas

    2016-04-01

    Volumetric medical images of a single subject can be acquired using different imaging modalities, such as computed tomography, magnetic resonance imaging (MRI), and positron emission tomography. In this work, we present a semiautomatic segmentation algorithm that can leverage the synergies between different image modalities while integrating interactive human guidance. The algorithm provides a statistical segmentation framework partly automating the segmentation task while still maintaining critical human oversight. The statistical models presented are trained interactively using simple brush strokes to indicate tumor and nontumor tissues and using intermediate results within a patient's image study. To accomplish the segmentation, we construct the energy function in the conditional random field (CRF) framework. For each slice, the energy function is set using the estimated probabilities from both user brush stroke data and prior approved segmented slices within a patient study. The progressive segmentation is obtained using a graph-cut-based minimization. Although no similar semiautomated algorithm is currently available, we evaluated our method with an MRI data set from Medical Image Computing and Computer Assisted Intervention Society multimodal brain segmentation challenge (BRATS 2012 and 2013) against a similar fully automatic method based on CRF and a semiautomatic method based on grow-cut, and our method shows superior performance.

  5. Fast and fully automatic phalanx segmentation using a grayscale-histogram morphology algorithm

    NASA Astrophysics Data System (ADS)

    Hsieh, Chi-Wen; Liu, Tzu-Chiang; Jong, Tai-Lang; Chen, Chih-Yen; Tiu, Chui-Mei; Chan, Din-Yuen

    2011-08-01

    Bone age assessment is a common radiological examination used in pediatrics to diagnose the discrepancy between the skeletal and chronological age of a child; therefore, it is beneficial to develop a computer-based bone age assessment to help junior pediatricians estimate bone age easily. Unfortunately, the phalanx on radiograms is not easily separated from the background and soft tissue. Therefore, we proposed a new method, called the grayscale-histogram morphology algorithm, to segment the phalanges fast and precisely. The algorithm includes three parts: a tri-stage sieve algorithm used to eliminate the background of hand radiograms, a centroid-edge dual scanning algorithm to frame the phalanx region, and finally a segmentation algorithm based on disk traverse-subtraction filter to segment the phalanx. Moreover, two more segmentation methods: adaptive two-mean and adaptive two-mean clustering were performed, and their results were compared with the segmentation algorithm based on disk traverse-subtraction filter using five indices comprising misclassification error, relative foreground area error, modified Hausdorff distances, edge mismatch, and region nonuniformity. In addition, the CPU time of the three segmentation methods was discussed. The result showed that our method had a better performance than the other two methods. Furthermore, satisfactory segmentation results were obtained with a low standard error.

  6. Pulmonary lobar volumetry using novel volumetric computer-aided diagnosis and computed tomography

    PubMed Central

    Iwano, Shingo; Kitano, Mariko; Matsuo, Keiji; Kawakami, Kenichi; Koike, Wataru; Kishimoto, Mariko; Inoue, Tsutomu; Li, Yuanzhong; Naganawa, Shinji

    2013-01-01

    OBJECTIVES To compare the accuracy of pulmonary lobar volumetry using the conventional number of segments method and novel volumetric computer-aided diagnosis using 3D computed tomography images. METHODS We acquired 50 consecutive preoperative 3D computed tomography examinations for lung tumours reconstructed at 1-mm slice thicknesses. We calculated the lobar volume and the emphysematous lobar volume < −950 HU of each lobe using (i) the slice-by-slice method (reference standard), (ii) number of segments method, and (iii) semi-automatic and (iv) automatic computer-aided diagnosis. We determined Pearson correlation coefficients between the reference standard and the three other methods for lobar volumes and emphysematous lobar volumes. We also compared the relative errors among the three measurement methods. RESULTS Both semi-automatic and automatic computer-aided diagnosis results were more strongly correlated with the reference standard than the number of segments method. The correlation coefficients for automatic computer-aided diagnosis were slightly lower than those for semi-automatic computer-aided diagnosis because there was one outlier among 50 cases (2%) in the right upper lobe and two outliers among 50 cases (4%) in the other lobes. The number of segments method relative error was significantly greater than those for semi-automatic and automatic computer-aided diagnosis (P < 0.001). The computational time for automatic computer-aided diagnosis was 1/2 to 2/3 than that of semi-automatic computer-aided diagnosis. CONCLUSIONS A novel lobar volumetry computer-aided diagnosis system could more precisely measure lobar volumes than the conventional number of segments method. Because semi-automatic computer-aided diagnosis and automatic computer-aided diagnosis were complementary, in clinical use, it would be more practical to first measure volumes by automatic computer-aided diagnosis, and then use semi-automatic measurements if automatic computer-aided diagnosis failed. PMID:23526418

  7. Multi-Sectional Views Textural Based SVM for MS Lesion Segmentation in Multi-Channels MRIs

    PubMed Central

    Abdullah, Bassem A; Younis, Akmal A; John, Nigel M

    2012-01-01

    In this paper, a new technique is proposed for automatic segmentation of multiple sclerosis (MS) lesions from brain magnetic resonance imaging (MRI) data. The technique uses a trained support vector machine (SVM) to discriminate between the blocks in regions of MS lesions and the blocks in non-MS lesion regions mainly based on the textural features with aid of the other features. The classification is done on each of the axial, sagittal and coronal sectional brain view independently and the resultant segmentations are aggregated to provide more accurate output segmentation. The main contribution of the proposed technique described in this paper is the use of textural features to detect MS lesions in a fully automated approach that does not rely on manually delineating the MS lesions. In addition, the technique introduces the concept of the multi-sectional view segmentation to produce verified segmentation. The proposed textural-based SVM technique was evaluated using three simulated datasets and more than fifty real MRI datasets. The results were compared with state of the art methods. The obtained results indicate that the proposed method would be viable for use in clinical practice for the detection of MS lesions in MRI. PMID:22741026

  8. Superpixel-based segmentation of glottal area from videolaryngoscopy images

    NASA Astrophysics Data System (ADS)

    Turkmen, H. Irem; Albayrak, Abdulkadir; Karsligil, M. Elif; Kocak, Ismail

    2017-11-01

    Segmentation of the glottal area with high accuracy is one of the major challenges for the development of systems for computer-aided diagnosis of vocal-fold disorders. We propose a hybrid model combining conventional methods with a superpixel-based segmentation approach. We first employed a superpixel algorithm to reveal the glottal area by eliminating the local variances of pixels caused by bleedings, blood vessels, and light reflections from mucosa. Then, the glottal area was detected by exploiting a seeded region-growing algorithm in a fully automatic manner. The experiments were conducted on videolaryngoscopy images obtained from both patients having pathologic vocal folds as well as healthy subjects. Finally, the proposed hybrid approach was compared with conventional region-growing and active-contour model-based glottal area segmentation algorithms. The performance of the proposed method was evaluated in terms of segmentation accuracy and elapsed time. The F-measure, true negative rate, and dice coefficients of the hybrid method were calculated as 82%, 93%, and 82%, respectively, which are superior to the state-of-art glottal-area segmentation methods. The proposed hybrid model achieved high success rates and robustness, making it suitable for developing a computer-aided diagnosis system that can be used in clinical routines.

  9. Automatic segmentation of right ventricular ultrasound images using sparse matrix transform and a level set

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Fei, Baowei

    2013-11-01

    An automatic segmentation framework is proposed to segment the right ventricle (RV) in echocardiographic images. The method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform, a training model, and a localized region-based level set. First, the sparse matrix transform extracts main motion regions of the myocardium as eigen-images by analyzing the statistical information of the images. Second, an RV training model is registered to the eigen-images in order to locate the position of the RV. Third, the training model is adjusted and then serves as an optimized initialization for the segmentation of each image. Finally, based on the initializations, a localized, region-based level set algorithm is applied to segment both epicardial and endocardial boundaries in each echocardiograph. Three evaluation methods were used to validate the performance of the segmentation framework. The Dice coefficient measures the overall agreement between the manual and automatic segmentation. The absolute distance and the Hausdorff distance between the boundaries from manual and automatic segmentation were used to measure the accuracy of the segmentation. Ultrasound images of human subjects were used for validation. For the epicardial and endocardial boundaries, the Dice coefficients were 90.8 ± 1.7% and 87.3 ± 1.9%, the absolute distances were 2.0 ± 0.42 mm and 1.79 ± 0.45 mm, and the Hausdorff distances were 6.86 ± 1.71 mm and 7.02 ± 1.17 mm, respectively. The automatic segmentation method based on a sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.

  10. Computed Tomography-Based Biomarker for Longitudinal Assessment of Disease Burden in Pulmonary Tuberculosis.

    PubMed

    Gordaliza, P M; Muñoz-Barrutia, A; Via, L E; Sharpe, S; Desco, M; Vaquero, J J

    2018-05-29

    Computed tomography (CT) images enable capturing specific manifestations of tuberculosis (TB) that are undetectable using common diagnostic tests, which suffer from limited specificity. In this study, we aimed to automatically quantify the burden of Mycobacterium tuberculosis (Mtb) using biomarkers extracted from x-ray CT images. Nine macaques were aerosol-infected with Mtb and treated with various antibiotic cocktails. Chest CT scans were acquired in all animals at specific times independently of disease progression. First, a fully automatic segmentation of the healthy lungs from the acquired chest CT volumes was performed and air-like structures were extracted. Next, unsegmented pulmonary regions corresponding to damaged parenchymal tissue and TB lesions were included. CT biomarkers were extracted by classification of the probability distribution of the intensity of the segmented images into three tissue types: (1) Healthy tissue, parenchyma free from infection; (2) soft diseased tissue, and (3) hard diseased tissue. The probability distribution of tissue intensities was assumed to follow a Gaussian mixture model. The thresholds identifying each region were automatically computed using an expectation-maximization algorithm. The estimated longitudinal course of TB infection shows that subjects that have followed the same antibiotic treatment present a similar response (relative change in the diseased volume) with respect to baseline. More interestingly, the correlation between the diseased volume (soft tissue + hard tissue), which was manually delineated by an expert, and the automatically extracted volume with the proposed method was very strong (R 2  ≈ 0.8). We present a methodology that is suitable for automatic extraction of a radiological biomarker from CT images for TB disease burden. The method could be used to describe the longitudinal evolution of Mtb infection in a clinical trial devoted to the design of new drugs.

  11. Automatic reconstruction of fault networks from seismicity catalogs: Three-dimensional optimal anisotropic dynamic clustering

    NASA Astrophysics Data System (ADS)

    Ouillon, G.; Ducorbier, C.; Sornette, D.

    2008-01-01

    We propose a new pattern recognition method that is able to reconstruct the three-dimensional structure of the active part of a fault network using the spatial location of earthquakes. The method is a generalization of the so-called dynamic clustering (or k means) method, that partitions a set of data points into clusters, using a global minimization criterion of the variance of the hypocenters locations about their center of mass. The new method improves on the original k means method by taking into account the full spatial covariance tensor of each cluster in order to partition the data set into fault-like, anisotropic clusters. Given a catalog of seismic events, the output is the optimal set of plane segments that fits the spatial structure of the data. Each plane segment is fully characterized by its location, size, and orientation. The main tunable parameter is the accuracy of the earthquake locations, which fixes the resolution, i.e., the residual variance of the fit. The resolution determines the number of fault segments needed to describe the earthquake catalog: the better the resolution, the finer the structure of the reconstructed fault segments. The algorithm successfully reconstructs the fault segments of synthetic earthquake catalogs. Applied to the real catalog constituted of a subset of the aftershock sequence of the 28 June 1992 Landers earthquake in southern California, the reconstructed plane segments fully agree with faults already known on geological maps or with blind faults that appear quite obvious in longer-term catalogs. Future improvements of the method are discussed, as well as its potential use in the multiscale study of the inner structure of fault zones.

  12. Automatic segmentation of the facial nerve and chorda tympani in pediatric CT scans.

    PubMed

    Reda, Fitsum A; Noble, Jack H; Rivas, Alejandro; McRackan, Theodore R; Labadie, Robert F; Dawant, Benoit M

    2011-10-01

    Cochlear implant surgery is used to implant an electrode array in the cochlea to treat hearing loss. The authors recently introduced a minimally invasive image-guided technique termed percutaneous cochlear implantation. This approach achieves access to the cochlea by drilling a single linear channel from the outer skull into the cochlea via the facial recess, a region bounded by the facial nerve and chorda tympani. To exploit existing methods for computing automatically safe drilling trajectories, the facial nerve and chorda tympani need to be segmented. The goal of this work is to automatically segment the facial nerve and chorda tympani in pediatric CT scans. The authors have proposed an automatic technique to achieve the segmentation task in adult patients that relies on statistical models of the structures. These models contain intensity and shape information along the central axes of both structures. In this work, the authors attempted to use the same method to segment the structures in pediatric scans. However, the authors learned that substantial differences exist between the anatomy of children and that of adults, which led to poor segmentation results when an adult model is used to segment a pediatric volume. Therefore, the authors built a new model for pediatric cases and used it to segment pediatric scans. Once this new model was built, the authors employed the same segmentation method used for adults with algorithm parameters that were optimized for pediatric anatomy. A validation experiment was conducted on 10 CT scans in which manually segmented structures were compared to automatically segmented structures. The mean, standard deviation, median, and maximum segmentation errors were 0.23, 0.17, 0.18, and 1.27 mm, respectively. The results indicate that accurate segmentation of the facial nerve and chorda tympani in pediatric scans is achievable, thus suggesting that safe drilling trajectories can also be computed automatically.

  13. Automatic segmentation of the lateral geniculate nucleus: Application to control and glaucoma patients.

    PubMed

    Wang, Jieqiong; Miao, Wen; Li, Jing; Li, Meng; Zhen, Zonglei; Sabel, Bernhard; Xian, Junfang; He, Huiguang

    2015-11-30

    The lateral geniculate nucleus (LGN) is a key relay center of the visual system. Because the LGN morphology is affected by different diseases, it is of interest to analyze its morphology by segmentation. However, existing LGN segmentation methods are non-automatic, inefficient and prone to experimenters' bias. To address these problems, we proposed an automatic LGN segmentation algorithm based on T1-weighted imaging. First, the prior information of LGN was used to create a prior mask. Then region growing was applied to delineate LGN. We evaluated this automatic LGN segmentation method by (1) comparison with manually segmented LGN, (2) anatomically locating LGN in the visual system via LGN-based tractography, (3) application to control and glaucoma patients. The similarity coefficients of automatic segmented LGN and manually segmented one are 0.72 (0.06) for the left LGN and 0.77 (0.07) for the right LGN. LGN-based tractography shows the subcortical pathway seeding from LGN passes the optic tract and also reaches V1 through the optic radiation, which is consistent with the LGN location in the visual system. In addition, LGN asymmetry as well as LGN atrophy along with age is observed in normal controls. The investigation of glaucoma effects on LGN volumes demonstrates that the bilateral LGN volumes shrink in patients. The automatic LGN segmentation is objective, efficient, valid and applicable. Experiment results proved the validity and applicability of the algorithm. Our method will speed up the research on visual system and greatly enhance studies of different vision-related diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry.

    PubMed

    Norman, Berk; Pedoia, Valentina; Majumdar, Sharmila

    2018-03-27

    Purpose To analyze how automatic segmentation translates in accuracy and precision to morphology and relaxometry compared with manual segmentation and increases the speed and accuracy of the work flow that uses quantitative magnetic resonance (MR) imaging to study knee degenerative diseases such as osteoarthritis (OA). Materials and Methods This retrospective study involved the analysis of 638 MR imaging volumes from two data cohorts acquired at 3.0 T: (a) spoiled gradient-recalled acquisition in the steady state T1 ρ -weighted images and (b) three-dimensional (3D) double-echo steady-state (DESS) images. A deep learning model based on the U-Net convolutional network architecture was developed to perform automatic segmentation. Cartilage and meniscus compartments were manually segmented by skilled technicians and radiologists for comparison. Performance of the automatic segmentation was evaluated on Dice coefficient overlap with the manual segmentation, as well as by the automatic segmentations' ability to quantify, in a longitudinally repeatable way, relaxometry and morphology. Results The models produced strong Dice coefficients, particularly for 3D-DESS images, ranging between 0.770 and 0.878 in the cartilage compartments to 0.809 and 0.753 for the lateral meniscus and medial meniscus, respectively. The models averaged 5 seconds to generate the automatic segmentations. Average correlations between manual and automatic quantification of T1 ρ and T2 values were 0.8233 and 0.8603, respectively, and 0.9349 and 0.9384 for volume and thickness, respectively. Longitudinal precision of the automatic method was comparable with that of the manual one. Conclusion U-Net demonstrates efficacy and precision in quickly generating accurate segmentations that can be used to extract relaxation times and morphologic characterization and values that can be used in the monitoring and diagnosis of OA. © RSNA, 2018 Online supplemental material is available for this article.

  15. Subcortical structure segmentation using probabilistic atlas priors

    NASA Astrophysics Data System (ADS)

    Gouttard, Sylvain; Styner, Martin; Joshi, Sarang; Smith, Rachel G.; Cody Hazlett, Heather; Gerig, Guido

    2007-03-01

    The segmentation of the subcortical structures of the brain is required for many forms of quantitative neuroanatomic analysis. The volumetric and shape parameters of structures such as lateral ventricles, putamen, caudate, hippocampus, pallidus and amygdala are employed to characterize a disease or its evolution. This paper presents a fully automatic segmentation of these structures via a non-rigid registration of a probabilistic atlas prior and alongside a comprehensive validation. Our approach is based on an unbiased diffeomorphic atlas with probabilistic spatial priors built from a training set of MR images with corresponding manual segmentations. The atlas building computes an average image along with transformation fields mapping each training case to the average image. These transformation fields are applied to the manually segmented structures of each case in order to obtain a probabilistic map on the atlas. When applying the atlas for automatic structural segmentation, an MR image is first intensity inhomogeneity corrected, skull stripped and intensity calibrated to the atlas. Then the atlas image is registered to the image using an affine followed by a deformable registration matching the gray level intensity. Finally, the registration transformation is applied to the probabilistic maps of each structures, which are then thresholded at 0.5 probability. Using manual segmentations for comparison, measures of volumetric differences show high correlation with our results. Furthermore, the dice coefficient, which quantifies the volumetric overlap, is higher than 62% for all structures and is close to 80% for basal ganglia. The intraclass correlation coefficient computed on these same datasets shows a good inter-method correlation of the volumetric measurements. Using a dataset of a single patient scanned 10 times on 5 different scanners, reliability is shown with a coefficient of variance of less than 2 percents over the whole dataset. Overall, these validation and reliability studies show that our method accurately and reliably segments almost all structures. Only the hippocampus and amygdala segmentations exhibit relative low correlation with the manual segmentation in at least one of the validation studies, whereas they still show appropriate dice overlap coefficients.

  16. Quantitative Analysis of Mouse Retinal Layers Using Automated Segmentation of Spectral Domain Optical Coherence Tomography Images

    PubMed Central

    Dysli, Chantal; Enzmann, Volker; Sznitman, Raphael; Zinkernagel, Martin S.

    2015-01-01

    Purpose Quantification of retinal layers using automated segmentation of optical coherence tomography (OCT) images allows for longitudinal studies of retinal and neurological disorders in mice. The purpose of this study was to compare the performance of automated retinal layer segmentation algorithms with data from manual segmentation in mice using the Spectralis OCT. Methods Spectral domain OCT images from 55 mice from three different mouse strains were analyzed in total. The OCT scans from 22 C57Bl/6, 22 BALBc, and 11 C3A.Cg-Pde6b+Prph2Rd2/J mice were automatically segmented using three commercially available automated retinal segmentation algorithms and compared to manual segmentation. Results Fully automated segmentation performed well in mice and showed coefficients of variation (CV) of below 5% for the total retinal volume. However, all three automated segmentation algorithms yielded much thicker total retinal thickness values compared to manual segmentation data (P < 0.0001) due to segmentation errors in the basement membrane. Conclusions Whereas the automated retinal segmentation algorithms performed well for the inner layers, the retinal pigmentation epithelium (RPE) was delineated within the sclera, leading to consistently thicker measurements of the photoreceptor layer and the total retina. Translational Relevance The introduction of spectral domain OCT allows for accurate imaging of the mouse retina. Exact quantification of retinal layer thicknesses in mice is important to study layers of interest under various pathological conditions. PMID:26336634

  17. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation.

    PubMed

    Kamnitsas, Konstantinos; Ledig, Christian; Newcombe, Virginia F J; Simpson, Joanna P; Kane, Andrew D; Menon, David K; Rueckert, Daniel; Glocker, Ben

    2017-02-01

    We propose a dual pathway, 11-layers deep, three-dimensional Convolutional Neural Network for the challenging task of brain lesion segmentation. The devised architecture is the result of an in-depth analysis of the limitations of current networks proposed for similar applications. To overcome the computational burden of processing 3D medical scans, we have devised an efficient and effective dense training scheme which joins the processing of adjacent image patches into one pass through the network while automatically adapting to the inherent class imbalance present in the data. Further, we analyze the development of deeper, thus more discriminative 3D CNNs. In order to incorporate both local and larger contextual information, we employ a dual pathway architecture that processes the input images at multiple scales simultaneously. For post-processing of the network's soft segmentation, we use a 3D fully connected Conditional Random Field which effectively removes false positives. Our pipeline is extensively evaluated on three challenging tasks of lesion segmentation in multi-channel MRI patient data with traumatic brain injuries, brain tumours, and ischemic stroke. We improve on the state-of-the-art for all three applications, with top ranking performance on the public benchmarks BRATS 2015 and ISLES 2015. Our method is computationally efficient, which allows its adoption in a variety of research and clinical settings. The source code of our implementation is made publicly available. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Automatic segmentation of time-lapse microscopy images depicting a live Dharma embryo.

    PubMed

    Zacharia, Eleni; Bondesson, Maria; Riu, Anne; Ducharme, Nicole A; Gustafsson, Jan-Åke; Kakadiaris, Ioannis A

    2011-01-01

    Biological inferences about the toxicity of chemicals reached during experiments on the zebrafish Dharma embryo can be greatly affected by the analysis of the time-lapse microscopy images depicting the embryo. Among the stages of image analysis, automatic and accurate segmentation of the Dharma embryo is the most crucial and challenging. In this paper, an accurate and automatic segmentation approach for the segmentation of the Dharma embryo data obtained by fluorescent time-lapse microscopy is proposed. Experiments performed in four stacks of 3D images over time have shown promising results.

  19. Semi-automatic knee cartilage segmentation

    NASA Astrophysics Data System (ADS)

    Dam, Erik B.; Folkesson, Jenny; Pettersen, Paola C.; Christiansen, Claus

    2006-03-01

    Osteo-Arthritis (OA) is a very common age-related cause of pain and reduced range of motion. A central effect of OA is wear-down of the articular cartilage that otherwise ensures smooth joint motion. Quantification of the cartilage breakdown is central in monitoring disease progression and therefore cartilage segmentation is required. Recent advances allow automatic cartilage segmentation with high accuracy in most cases. However, the automatic methods still fail in some problematic cases. For clinical studies, even if a few failing cases will be averaged out in the overall results, this reduces the mean accuracy and precision and thereby necessitates larger/longer studies. Since the severe OA cases are often most problematic for the automatic methods, there is even a risk that the quantification will introduce a bias in the results. Therefore, interactive inspection and correction of these problematic cases is desirable. For diagnosis on individuals, this is even more crucial since the diagnosis will otherwise simply fail. We introduce and evaluate a semi-automatic cartilage segmentation method combining an automatic pre-segmentation with an interactive step that allows inspection and correction. The automatic step consists of voxel classification based on supervised learning. The interactive step combines a watershed transformation of the original scan with the posterior probability map from the classification step at sub-voxel precision. We evaluate the method for the task of segmenting the tibial cartilage sheet from low-field magnetic resonance imaging (MRI) of knees. The evaluation shows that the combined method allows accurate and highly reproducible correction of the segmentation of even the worst cases in approximately ten minutes of interaction.

  20. Automatic segmentation of right ventricle on ultrasound images using sparse matrix transform and level set

    NASA Astrophysics Data System (ADS)

    Qin, Xulei; Cong, Zhibin; Halig, Luma V.; Fei, Baowei

    2013-03-01

    An automatic framework is proposed to segment right ventricle on ultrasound images. This method can automatically segment both epicardial and endocardial boundaries from a continuous echocardiography series by combining sparse matrix transform (SMT), a training model, and a localized region based level set. First, the sparse matrix transform extracts main motion regions of myocardium as eigenimages by analyzing statistical information of these images. Second, a training model of right ventricle is registered to the extracted eigenimages in order to automatically detect the main location of the right ventricle and the corresponding transform relationship between the training model and the SMT-extracted results in the series. Third, the training model is then adjusted as an adapted initialization for the segmentation of each image in the series. Finally, based on the adapted initializations, a localized region based level set algorithm is applied to segment both epicardial and endocardial boundaries of the right ventricle from the whole series. Experimental results from real subject data validated the performance of the proposed framework in segmenting right ventricle from echocardiography. The mean Dice scores for both epicardial and endocardial boundaries are 89.1%+/-2.3% and 83.6+/-7.3%, respectively. The automatic segmentation method based on sparse matrix transform and level set can provide a useful tool for quantitative cardiac imaging.

  1. Automated regional analysis of B-mode ultrasound images of skeletal muscle movement

    PubMed Central

    Darby, John; Costen, Nicholas; Loram, Ian D.

    2012-01-01

    To understand the functional significance of skeletal muscle anatomy, a method of quantifying local shape changes in different tissue structures during dynamic tasks is required. Taking advantage of the good spatial and temporal resolution of B-mode ultrasound imaging, we describe a method of automatically segmenting images into fascicle and aponeurosis regions and tracking movement of features, independently, in localized portions of each tissue. Ultrasound images (25 Hz) of the medial gastrocnemius muscle were collected from eight participants during ankle joint rotation (2° and 20°), isometric contractions (1, 5, and 50 Nm), and deep knee bends. A Kanade-Lucas-Tomasi feature tracker was used to identify and track any distinctive and persistent features within the image sequences. A velocity field representation of local movement was then found and subdivided between fascicle and aponeurosis regions using segmentations from a multiresolution active shape model (ASM). Movement in each region was quantified by interpolating the effect of the fields on a set of probes. ASM segmentation results were compared with hand-labeled data, while aponeurosis and fascicle movement were compared with results from a previously documented cross-correlation approach. ASM provided good image segmentations (<1 mm average error), with fully automatic initialization possible in sequences from seven participants. Feature tracking provided similar length change results to the cross-correlation approach for small movements, while outperforming it in larger movements. The proposed method provides the potential to distinguish between active and passive changes in muscle shape and model strain distributions during different movements/conditions and quantify nonhomogeneous strain along aponeuroses. PMID:22033532

  2. Automatic and hierarchical segmentation of the human skeleton in CT images.

    PubMed

    Fu, Yabo; Liu, Shi; Li, Harold; Yang, Deshan

    2017-04-07

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic vertebrae, and 1.45 mm for pelvis bones.

  3. Automatic and hierarchical segmentation of the human skeleton in CT images

    NASA Astrophysics Data System (ADS)

    Fu, Yabo; Liu, Shi; Li, H. Harold; Yang, Deshan

    2017-04-01

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic vertebrae, and 1.45 mm for pelvis bones.

  4. Comparison of T1-weighted 2D TSE, 3D SPGR, and two-point 3D Dixon MRI for automated segmentation of visceral adipose tissue at 3 Tesla.

    PubMed

    Fallah, Faezeh; Machann, Jürgen; Martirosian, Petros; Bamberg, Fabian; Schick, Fritz; Yang, Bin

    2017-04-01

    To evaluate and compare conventional T1-weighted 2D turbo spin echo (TSE), T1-weighted 3D volumetric interpolated breath-hold examination (VIBE), and two-point 3D Dixon-VIBE sequences for automatic segmentation of visceral adipose tissue (VAT) volume at 3 Tesla by measuring and compensating for errors arising from intensity nonuniformity (INU) and partial volume effects (PVE). The body trunks of 28 volunteers with body mass index values ranging from 18 to 41.2 kg/m 2 (30.02 ± 6.63 kg/m 2 ) were scanned at 3 Tesla using three imaging techniques. Automatic methods were applied to reduce INU and PVE and to segment VAT. The automatically segmented VAT volumes obtained from all acquisitions were then statistically and objectively evaluated against the manually segmented (reference) VAT volumes. Comparing the reference volumes with the VAT volumes automatically segmented over the uncorrected images showed that INU led to an average relative volume difference of -59.22 ± 11.59, 2.21 ± 47.04, and -43.05 ± 5.01 % for the TSE, VIBE, and Dixon images, respectively, while PVE led to average differences of -34.85 ± 19.85, -15.13 ± 11.04, and -33.79 ± 20.38 %. After signal correction, differences of -2.72 ± 6.60, 34.02 ± 36.99, and -2.23 ± 7.58 % were obtained between the reference and the automatically segmented volumes. A paired-sample two-tailed t test revealed no significant difference between the reference and automatically segmented VAT volumes of the corrected TSE (p = 0.614) and Dixon (p = 0.969) images, but showed a significant VAT overestimation using the corrected VIBE images. Under similar imaging conditions and spatial resolution, automatically segmented VAT volumes obtained from the corrected TSE and Dixon images agreed with each other and with the reference volumes. These results demonstrate the efficacy of the signal correction methods and the similar accuracy of TSE and Dixon imaging for automatic volumetry of VAT at 3 Tesla.

  5. Automated segmentation of ultrasonic breast lesions using statistical texture classification and active contour based on probability distance.

    PubMed

    Liu, Bo; Cheng, H D; Huang, Jianhua; Tian, Jiawei; Liu, Jiafeng; Tang, Xianglong

    2009-08-01

    Because of its complicated structure, low signal/noise ratio, low contrast and blurry boundaries, fully automated segmentation of a breast ultrasound (BUS) image is a difficult task. In this paper, a novel segmentation method for BUS images without human intervention is proposed. Unlike most published approaches, the proposed method handles the segmentation problem by using a two-step strategy: ROI generation and ROI segmentation. First, a well-trained texture classifier categorizes the tissues into different classes, and the background knowledge rules are used for selecting the regions of interest (ROIs) from them. Second, a novel probability distance-based active contour model is applied for segmenting the ROIs and finding the accurate positions of the breast tumors. The active contour model combines both global statistical information and local edge information, using a level set approach. The proposed segmentation method was performed on 103 BUS images (48 benign and 55 malignant). To validate the performance, the results were compared with the corresponding tumor regions marked by an experienced radiologist. Three error metrics, true-positive ratio (TP), false-negative ratio (FN) and false-positive ratio (FP) were used for measuring the performance of the proposed method. The final results (TP = 91.31%, FN = 8.69% and FP = 7.26%) demonstrate that the proposed method can segment BUS images efficiently, quickly and automatically.

  6. Cerebral vessels segmentation for light-sheet microscopy image using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Hu, Chaoen; Hui, Hui; Wang, Shuo; Dong, Di; Liu, Xia; Yang, Xin; Tian, Jie

    2017-03-01

    Cerebral vessel segmentation is an important step in image analysis for brain function and brain disease studies. To extract all the cerebrovascular patterns, including arteries and capillaries, some filter-based methods are used to segment vessels. However, the design of accurate and robust vessel segmentation algorithms is still challenging, due to the variety and complexity of images, especially in cerebral blood vessel segmentation. In this work, we addressed a problem of automatic and robust segmentation of cerebral micro-vessels structures in cerebrovascular images acquired by light-sheet microscope for mouse. To segment micro-vessels in large-scale image data, we proposed a convolutional neural networks (CNNs) architecture trained by 1.58 million pixels with manual label. Three convolutional layers and one fully connected layer were used in the CNNs model. We extracted a patch of size 32x32 pixels in each acquired brain vessel image as training data set to feed into CNNs for classification. This network was trained to output the probability that the center pixel of input patch belongs to vessel structures. To build the CNNs architecture, a series of mouse brain vascular images acquired from a commercial light sheet fluorescence microscopy (LSFM) system were used for training the model. The experimental results demonstrated that our approach is a promising method for effectively segmenting micro-vessels structures in cerebrovascular images with vessel-dense, nonuniform gray-level and long-scale contrast regions.

  7. Scale-space for empty catheter segmentation in PCI fluoroscopic images.

    PubMed

    Bacchuwar, Ketan; Cousty, Jean; Vaillant, Régis; Najman, Laurent

    2017-07-01

    In this article, we present a method for empty guiding catheter segmentation in fluoroscopic X-ray images. The guiding catheter, being a commonly visible landmark, its segmentation is an important and a difficult brick for Percutaneous Coronary Intervention (PCI) procedure modeling. In number of clinical situations, the catheter is empty and appears as a low contrasted structure with two parallel and partially disconnected edges. To segment it, we work on the level-set scale-space of image, the min tree, to extract curve blobs. We then propose a novel structural scale-space, a hierarchy built on these curve blobs. The deep connected component, i.e. the cluster of curve blobs on this hierarchy, that maximizes the likelihood to be an empty catheter is retained as final segmentation. We evaluate the performance of the algorithm on a database of 1250 fluoroscopic images from 6 patients. As a result, we obtain very good qualitative and quantitative segmentation performance, with mean precision and recall of 80.48 and 63.04% respectively. We develop a novel structural scale-space to segment a structured object, the empty catheter, in challenging situations where the information content is very sparse in the images. Fully-automatic empty catheter segmentation in X-ray fluoroscopic images is an important and preliminary step in PCI procedure modeling, as it aids in tagging the arrival and removal location of other interventional tools.

  8. Brain Tumour Segmentation based on Extremely Randomized Forest with high-level features.

    PubMed

    Pinto, Adriano; Pereira, Sergio; Correia, Higino; Oliveira, J; Rasteiro, Deolinda M L D; Silva, Carlos A

    2015-08-01

    Gliomas are among the most common and aggressive brain tumours. Segmentation of these tumours is important for surgery and treatment planning, but also for follow-up evaluations. However, it is a difficult task, given that its size and locations are variable, and the delineation of all tumour tissue is not trivial, even with all the different modalities of the Magnetic Resonance Imaging (MRI). We propose a discriminative and fully automatic method for the segmentation of gliomas, using appearance- and context-based features to feed an Extremely Randomized Forest (Extra-Trees). Some of these features are computed over a non-linear transformation of the image. The proposed method was evaluated using the publicly available Challenge database from BraTS 2013, having obtained a Dice score of 0.83, 0.78 and 0.73 for the complete tumour, and the core and the enhanced regions, respectively. Our results are competitive, when compared against other results reported using the same database.

  9. A segmentation and classification scheme for single tooth in MicroCT images based on 3D level set and k-means+.

    PubMed

    Wang, Liansheng; Li, Shusheng; Chen, Rongzhen; Liu, Sze-Yu; Chen, Jyh-Cheng

    2017-04-01

    Accurate classification of different anatomical structures of teeth from medical images provides crucial information for the stress analysis in dentistry. Usually, the anatomical structures of teeth are manually labeled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing 3 dimensional (3D) information, and classify the tooth by employing unsupervised learning i.e., k-means++ method. In order to evaluate the proposed method, the experiments are conducted on the sufficient and extensive datasets of mandibular molars. The experimental results show that our method can achieve higher accuracy and robustness compared to other three clustering methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Video content parsing based on combined audio and visual information

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Kuo, C.-C. Jay

    1999-08-01

    While previous research on audiovisual data segmentation and indexing primarily focuses on the pictorial part, significant clues contained in the accompanying audio flow are often ignored. A fully functional system for video content parsing can be achieved more successfully through a proper combination of audio and visual information. By investigating the data structure of different video types, we present tools for both audio and visual content analysis and a scheme for video segmentation and annotation in this research. In the proposed system, video data are segmented into audio scenes and visual shots by detecting abrupt changes in audio and visual features, respectively. Then, the audio scene is categorized and indexed as one of the basic audio types while a visual shot is presented by keyframes and associate image features. An index table is then generated automatically for each video clip based on the integration of outputs from audio and visual analysis. It is shown that the proposed system provides satisfying video indexing results.

  11. New auto-segment method of cerebral hemorrhage

    NASA Astrophysics Data System (ADS)

    Wang, Weijiang; Shen, Tingzhi; Dang, Hua

    2007-12-01

    A novel method for Computerized tomography (CT) cerebral hemorrhage (CH) image automatic segmentation is presented in the paper, which uses expert system that models human knowledge about the CH automatic segmentation problem. The algorithm adopts a series of special steps and extracts some easy ignored CH features which can be found by statistic results of mass real CH images, such as region area, region CT number, region smoothness and some statistic CH region relationship. And a seven steps' extracting mechanism will ensure these CH features can be got correctly and efficiently. By using these CH features, a decision tree which models the human knowledge about the CH automatic segmentation problem has been built and it will ensure the rationality and accuracy of the algorithm. Finally some experiments has been taken to verify the correctness and reasonable of the automatic segmentation, and the good correct ratio and fast speed make it possible to be widely applied into practice.

  12. Validation of semi-automatic segmentation of the left atrium

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Holmes, D. R., III; Camp, J. J.; Packer, D. L.; Robb, R. A.

    2008-03-01

    Catheter ablation therapy has become increasingly popular for the treatment of left atrial fibrillation. The effect of this treatment on left atrial morphology, however, has not yet been completely quantified. Initial studies have indicated a decrease in left atrial size with a concomitant decrease in pulmonary vein diameter. In order to effectively study if catheter based therapies affect left atrial geometry, robust segmentations with minimal user interaction are required. In this work, we validate a method to semi-automatically segment the left atrium from computed-tomography scans. The first step of the technique utilizes seeded region growing to extract the entire blood pool including the four chambers of the heart, the pulmonary veins, aorta, superior vena cava, inferior vena cava, and other surrounding structures. Next, the left atrium and pulmonary veins are separated from the rest of the blood pool using an algorithm that searches for thin connections between user defined points in the volumetric data or on a surface rendering. Finally, pulmonary veins are separated from the left atrium using a three dimensional tracing tool. A single user segmented three datasets three times using both the semi-automatic technique as well as manual tracing. The user interaction time for the semi-automatic technique was approximately forty-five minutes per dataset and the manual tracing required between four and eight hours per dataset depending on the number of slices. A truth model was generated using a simple voting scheme on the repeated manual segmentations. A second user segmented each of the nine datasets using the semi-automatic technique only. Several metrics were computed to assess the agreement between the semi-automatic technique and the truth model including percent differences in left atrial volume, DICE overlap, and mean distance between the boundaries of the segmented left atria. Overall, the semi-automatic approach was demonstrated to be repeatable within and between raters, and accurate when compared to the truth model. Finally, we generated a visualization to assess the spatial variability in the segmentation errors between the semi-automatic approach and the truth model. The visualization demonstrates the highest errors occur at the boundaries between the left atium and pulmonary veins as well as the left atrium and left atrial appendage. In conclusion, we describe a semi-automatic approach for left atrial segmentation that demonstrates repeatability and accuracy, with the advantage of significant time reduction in user interaction time.

  13. Improving CCTA-based lesions' hemodynamic significance assessment by accounting for partial volume modeling in automatic coronary lumen segmentation.

    PubMed

    Freiman, Moti; Nickisch, Hannes; Prevrhal, Sven; Schmitt, Holger; Vembar, Mani; Maurovich-Horvat, Pál; Donnelly, Patrick; Goshen, Liran

    2017-03-01

    The goal of this study was to assess the potential added benefit of accounting for partial volume effects (PVE) in an automatic coronary lumen segmentation algorithm that is used to determine the hemodynamic significance of a coronary artery stenosis from coronary computed tomography angiography (CCTA). Two sets of data were used in our work: (a) multivendor CCTA datasets of 18 subjects from the MICCAI 2012 challenge with automatically generated centerlines and 3 reference segmentations of 78 coronary segments and (b) additional CCTA datasets of 97 subjects with 132 coronary lesions that had invasive reference standard FFR measurements. We extracted the coronary artery centerlines for the 97 datasets by an automated software program followed by manual correction if required. An automatic machine-learning-based algorithm segmented the coronary tree with and without accounting for the PVE. We obtained CCTA-based FFR measurements using a flow simulation in the coronary trees that were generated by the automatic algorithm with and without accounting for PVE. We assessed the potential added value of PVE integration as a part of the automatic coronary lumen segmentation algorithm by means of segmentation accuracy using the MICCAI 2012 challenge framework and by means of flow simulation overall accuracy, sensitivity, specificity, negative and positive predictive values, and the receiver operated characteristic (ROC) area under the curve. We also evaluated the potential benefit of accounting for PVE in automatic segmentation for flow simulation for lesions that were diagnosed as obstructive based on CCTA which could have indicated a need for an invasive exam and revascularization. Our segmentation algorithm improves the maximal surface distance error by ~39% compared to previously published method on the 18 datasets from the MICCAI 2012 challenge with comparable Dice and mean surface distance. Results with and without accounting for PVE were comparable. In contrast, integrating PVE analysis into an automatic coronary lumen segmentation algorithm improved the flow simulation specificity from 0.6 to 0.68 with the same sensitivity of 0.83. Also, accounting for PVE improved the area under the ROC curve for detecting hemodynamically significant CAD from 0.76 to 0.8 compared to automatic segmentation without PVE analysis with invasive FFR threshold of 0.8 as the reference standard. Accounting for PVE in flow simulation to support the detection of hemodynamic significant disease in CCTA-based obstructive lesions improved specificity from 0.51 to 0.73 with same sensitivity of 0.83 and the area under the curve from 0.69 to 0.79. The improvement in the AUC was statistically significant (N = 76, Delong's test, P = 0.012). Accounting for the partial volume effects in automatic coronary lumen segmentation algorithms has the potential to improve the accuracy of CCTA-based hemodynamic assessment of coronary artery lesions. © 2017 American Association of Physicists in Medicine.

  14. Template-based automatic breast segmentation on MRI by excluding the chest region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Muqing; Chen, Jeon-Hor; Wang, Xiaoyong

    2013-12-15

    Purpose: Methods for quantification of breast density on MRI using semiautomatic approaches are commonly used. In this study, the authors report on a fully automatic chest template-based method. Methods: Nonfat-suppressed breast MR images from 31 healthy women were analyzed. Among them, one case was randomly selected and used as the template, and the remaining 30 cases were used for testing. Unlike most model-based breast segmentation methods that use the breast region as the template, the chest body region on a middle slice was used as the template. Within the chest template, three body landmarks (thoracic spine and bilateral boundary ofmore » the pectoral muscle) were identified for performing the initial V-shape cut to determine the posterior lateral boundary of the breast. The chest template was mapped to each subject's image space to obtain a subject-specific chest model for exclusion. On the remaining image, the chest wall muscle was identified and excluded to obtain clean breast segmentation. The chest and muscle boundaries determined on the middle slice were used as the reference for the segmentation of adjacent slices, and the process continued superiorly and inferiorly until all 3D slices were segmented. The segmentation results were evaluated by an experienced radiologist to mark voxels that were wrongly included or excluded for error analysis. Results: The breast volumes measured by the proposed algorithm were very close to the radiologist's corrected volumes, showing a % difference ranging from 0.01% to 3.04% in 30 tested subjects with a mean of 0.86% ± 0.72%. The total error was calculated by adding the inclusion and the exclusion errors (so they did not cancel each other out), which ranged from 0.05% to 6.75% with a mean of 3.05% ± 1.93%. The fibroglandular tissue segmented within the breast region determined by the algorithm and the radiologist were also very close, showing a % difference ranging from 0.02% to 2.52% with a mean of 1.03% ± 1.03%. The total error by adding the inclusion and exclusion errors ranged from 0.16% to 11.8%, with a mean of 2.89% ± 2.55%. Conclusions: The automatic chest template-based breast MRI segmentation method worked well for cases with different body and breast shapes and different density patterns. Compared to the radiologist-established truth, the mean difference in segmented breast volume was approximately 1%, and the total error by considering the additive inclusion and exclusion errors was approximately 3%. This method may provide a reliable tool for MRI-based segmentation of breast density.« less

  15. Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation

    NASA Astrophysics Data System (ADS)

    Lu, Kongkuo; Hall, Christopher S.

    2014-03-01

    Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. < 80%, when auto-enhancement is applied for live-wire segmentation.

  16. Auto-segmentation of normal and target structures in head and neck CT images: a feature-driven model-based approach.

    PubMed

    Qazi, Arish A; Pekar, Vladimir; Kim, John; Xie, Jason; Breen, Stephen L; Jaffray, David A

    2011-11-01

    Intensity modulated radiation therapy (IMRT) allows greater control over dose distribution, which leads to a decrease in radiation related toxicity. IMRT, however, requires precise and accurate delineation of the organs at risk and target volumes. Manual delineation is tedious and suffers from both interobserver and intraobserver variability. State of the art auto-segmentation methods are either atlas-based, model-based or hybrid however, robust fully automated segmentation is often difficult due to the insufficient discriminative information provided by standard medical imaging modalities for certain tissue types. In this paper, the authors present a fully automated hybrid approach which combines deformable registration with the model-based approach to accurately segment normal and target tissues from head and neck CT images. The segmentation process starts by using an average atlas to reliably identify salient landmarks in the patient image. The relationship between these landmarks and the reference dataset serves to guide a deformable registration algorithm, which allows for a close initialization of a set of organ-specific deformable models in the patient image, ensuring their robust adaptation to the boundaries of the structures. Finally, the models are automatically fine adjusted by our boundary refinement approach which attempts to model the uncertainty in model adaptation using a probabilistic mask. This uncertainty is subsequently resolved by voxel classification based on local low-level organ-specific features. To quantitatively evaluate the method, they auto-segment several organs at risk and target tissues from 10 head and neck CT images. They compare the segmentations to the manual delineations outlined by the expert. The evaluation is carried out by estimating two common quantitative measures on 10 datasets: volume overlap fraction or the Dice similarity coefficient (DSC), and a geometrical metric, the median symmetric Hausdorff distance (HD), which is evaluated slice-wise. They achieve an average overlap of 93% for the mandible, 91% for the brainstem, 83% for the parotids, 83% for the submandibular glands, and 74% for the lymph node levels. Our automated segmentation framework is able to segment anatomy in the head and neck region with high accuracy within a clinically-acceptable segmentation time.

  17. Computer assisted detection and analysis of tall cell variant papillary thyroid carcinoma in histological images

    NASA Astrophysics Data System (ADS)

    Kim, Edward; Baloch, Zubair; Kim, Caroline

    2015-03-01

    The number of new cases of thyroid cancer are dramatically increasing as incidences of this cancer have more than doubled since the early 1970s. Tall cell variant (TCV-PTC) papillary thyroid carcinoma is one type of thyroid cancer that is more aggressive and usually associated with higher local recurrence and distant metastasis. This variant can be identified through visual characteristics of cells in histological images. Thus, we created a fully automatic algorithm that is able to segment cells using a multi-stage approach. Our method learns the statistical characteristics of nuclei and cells during the segmentation process and utilizes this information for a more accurate result. Furthermore, we are able to analyze the detected regions and extract characteristic cell data that can be used to assist in clinical diagnosis.

  18. Does semi-automatic bone-fragment segmentation improve the reproducibility of the Letournel acetabular fracture classification?

    PubMed

    Boudissa, M; Orfeuvre, B; Chabanas, M; Tonetti, J

    2017-09-01

    The Letournel classification of acetabular fracture shows poor reproducibility in inexperienced observers, despite the introduction of 3D imaging. We therefore developed a method of semi-automatic segmentation based on CT data. The present prospective study aimed to assess: (1) whether semi-automatic bone-fragment segmentation increased the rate of correct classification; (2) if so, in which fracture types; and (3) feasibility using the open-source itksnap 3.0 software package without incurring extra cost for users. Semi-automatic segmentation of acetabular fractures significantly increases the rate of correct classification by orthopedic surgery residents. Twelve orthopedic surgery residents classified 23 acetabular fractures. Six used conventional 3D reconstructions provided by the center's radiology department (conventional group) and 6 others used reconstructions obtained by semi-automatic segmentation using the open-source itksnap 3.0 software package (segmentation group). Bone fragments were identified by specific colors. Correct classification rates were compared between groups on Chi 2 test. Assessment was repeated 2 weeks later, to determine intra-observer reproducibility. Correct classification rates were significantly higher in the "segmentation" group: 114/138 (83%) versus 71/138 (52%); P<0.0001. The difference was greater for simple (36/36 (100%) versus 17/36 (47%); P<0.0001) than complex fractures (79/102 (77%) versus 54/102 (53%); P=0.0004). Mean segmentation time per fracture was 27±3min [range, 21-35min]. The segmentation group showed excellent intra-observer correlation coefficients, overall (ICC=0.88), and for simple (ICC=0.92) and complex fractures (ICC=0.84). Semi-automatic segmentation, identifying the various bone fragments, was effective in increasing the rate of correct acetabular fracture classification on the Letournel system by orthopedic surgery residents. It may be considered for routine use in education and training. III: prospective case-control study of a diagnostic procedure. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. User-guided segmentation for volumetric retinal optical coherence tomography images

    PubMed Central

    Yin, Xin; Chao, Jennifer R.; Wang, Ruikang K.

    2014-01-01

    Abstract. Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method. PMID:25147962

  20. User-guided segmentation for volumetric retinal optical coherence tomography images.

    PubMed

    Yin, Xin; Chao, Jennifer R; Wang, Ruikang K

    2014-08-01

    Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method.

  1. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.

    PubMed

    Wachinger, Christian; Reuter, Martin; Klein, Tassilo

    2018-04-15

    We introduce DeepNAT, a 3D Deep convolutional neural network for the automatic segmentation of NeuroAnaTomy in T1-weighted magnetic resonance images. DeepNAT is an end-to-end learning-based approach to brain segmentation that jointly learns an abstract feature representation and a multi-class classification. We propose a 3D patch-based approach, where we do not only predict the center voxel of the patch but also neighbors, which is formulated as multi-task learning. To address a class imbalance problem, we arrange two networks hierarchically, where the first one separates foreground from background, and the second one identifies 25 brain structures on the foreground. Since patches lack spatial context, we augment them with coordinates. To this end, we introduce a novel intrinsic parameterization of the brain volume, formed by eigenfunctions of the Laplace-Beltrami operator. As network architecture, we use three convolutional layers with pooling, batch normalization, and non-linearities, followed by fully connected layers with dropout. The final segmentation is inferred from the probabilistic output of the network with a 3D fully connected conditional random field, which ensures label agreement between close voxels. The roughly 2.7million parameters in the network are learned with stochastic gradient descent. Our results show that DeepNAT compares favorably to state-of-the-art methods. Finally, the purely learning-based method may have a high potential for the adaptation to young, old, or diseased brains by fine-tuning the pre-trained network with a small training sample on the target application, where the availability of larger datasets with manual annotations may boost the overall segmentation accuracy in the future. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. CT-based patient modeling for head and neck hyperthermia treatment planning: manual versus automatic normal-tissue-segmentation.

    PubMed

    Verhaart, René F; Fortunati, Valerio; Verduijn, Gerda M; van Walsum, Theo; Veenland, Jifke F; Paulides, Margarethus M

    2014-04-01

    Clinical trials have shown that hyperthermia, as adjuvant to radiotherapy and/or chemotherapy, improves treatment of patients with locally advanced or recurrent head and neck (H&N) carcinoma. Hyperthermia treatment planning (HTP) guided H&N hyperthermia is being investigated, which requires patient specific 3D patient models derived from Computed Tomography (CT)-images. To decide whether a recently developed automatic-segmentation algorithm can be introduced in the clinic, we compared the impact of manual- and automatic normal-tissue-segmentation variations on HTP quality. CT images of seven patients were segmented automatically and manually by four observers, to study inter-observer and intra-observer geometrical variation. To determine the impact of this variation on HTP quality, HTP was performed using the automatic and manual segmentation of each observer, for each patient. This impact was compared to other sources of patient model uncertainties, i.e. varying gridsizes and dielectric tissue properties. Despite geometrical variations, manual and automatic generated 3D patient models resulted in an equal, i.e. 1%, variation in HTP quality. This variation was minor with respect to the total of other sources of patient model uncertainties, i.e. 11.7%. Automatically generated 3D patient models can be introduced in the clinic for H&N HTP. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Automatic Segmentation of the Cortical Grey and White Matter in MRI Using a Region-Growing Approach Based on Anatomical Knowledge

    NASA Astrophysics Data System (ADS)

    Wasserthal, Christian; Engel, Karin; Rink, Karsten; Brechmann, Andr'e.

    We propose an automatic procedure for the correct segmentation of grey and white matter in MR data sets of the human brain. Our method exploits general anatomical knowledge for the initial segmentation and for the subsequent refinement of the estimation of the cortical grey matter. Our results are comparable to manual segmentations.

  4. Computerized Interpretation of Dynamic Breast MRI

    DTIC Science & Technology

    2006-05-01

    correction, tumor segmentation , extraction of computerized features that help distinguish between benign and malignant lesions, and classification. Our...for assessing tumor extent in 3D. The primary feature used for 3D tumor segmentation is the postcontrast enhancement vector. Tumor segmentation is a...Appendix B. 4. Investigation of methods for automatic tumor segmentation We developed an automatic method for assessing tumor extent in 3D. The

  5. Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features.

    PubMed

    Zheng, Yefeng; Barbu, Adrian; Georgescu, Bogdan; Scheuering, Michael; Comaniciu, Dorin

    2008-11-01

    We propose an automatic four-chamber heart segmentation system for the quantitative functional analysis of the heart from cardiac computed tomography (CT) volumes. Two topics are discussed: heart modeling and automatic model fitting to an unseen volume. Heart modeling is a nontrivial task since the heart is a complex nonrigid organ. The model must be anatomically accurate, allow manual editing, and provide sufficient information to guide automatic detection and segmentation. Unlike previous work, we explicitly represent important landmarks (such as the valves and the ventricular septum cusps) among the control points of the model. The control points can be detected reliably to guide the automatic model fitting process. Using this model, we develop an efficient and robust approach for automatic heart chamber segmentation in 3-D CT volumes. We formulate the segmentation as a two-step learning problem: anatomical structure localization and boundary delineation. In both steps, we exploit the recent advances in learning discriminative models. A novel algorithm, marginal space learning (MSL), is introduced to solve the 9-D similarity transformation search problem for localizing the heart chambers. After determining the pose of the heart chambers, we estimate the 3-D shape through learning-based boundary delineation. The proposed method has been extensively tested on the largest dataset (with 323 volumes from 137 patients) ever reported in the literature. To the best of our knowledge, our system is the fastest with a speed of 4.0 s per volume (on a dual-core 3.2-GHz processor) for the automatic segmentation of all four chambers.

  6. Automatic segmentation and classification of gestational sac based on mean sac diameter using medical ultrasound image

    NASA Astrophysics Data System (ADS)

    Khazendar, Shan; Farren, Jessica; Al-Assam, Hisham; Sayasneh, Ahmed; Du, Hongbo; Bourne, Tom; Jassim, Sabah A.

    2014-05-01

    Ultrasound is an effective multipurpose imaging modality that has been widely used for monitoring and diagnosing early pregnancy events. Technology developments coupled with wide public acceptance has made ultrasound an ideal tool for better understanding and diagnosing of early pregnancy. The first measurable signs of an early pregnancy are the geometric characteristics of the Gestational Sac (GS). Currently, the size of the GS is manually estimated from ultrasound images. The manual measurement involves multiple subjective decisions, in which dimensions are taken in three planes to establish what is known as Mean Sac Diameter (MSD). The manual measurement results in inter- and intra-observer variations, which may lead to difficulties in diagnosis. This paper proposes a fully automated diagnosis solution to accurately identify miscarriage cases in the first trimester of pregnancy based on automatic quantification of the MSD. Our study shows a strong positive correlation between the manual and the automatic MSD estimations. Our experimental results based on a dataset of 68 ultrasound images illustrate the effectiveness of the proposed scheme in identifying early miscarriage cases with classification accuracies comparable with those of domain experts using K nearest neighbor classifier on automatically estimated MSDs.

  7. Hierarchical combinatorial deep learning architecture for pancreas segmentation of medical computed tomography cancer images.

    PubMed

    Fu, Min; Wu, Wenming; Hong, Xiafei; Liu, Qiuhua; Jiang, Jialin; Ou, Yaobin; Zhao, Yupei; Gong, Xinqi

    2018-04-24

    Efficient computational recognition and segmentation of target organ from medical images are foundational in diagnosis and treatment, especially about pancreas cancer. In practice, the diversity in appearance of pancreas and organs in abdomen, makes detailed texture information of objects important in segmentation algorithm. According to our observations, however, the structures of previous networks, such as the Richer Feature Convolutional Network (RCF), are too coarse to segment the object (pancreas) accurately, especially the edge. In this paper, we extend the RCF, proposed to the field of edge detection, for the challenging pancreas segmentation, and put forward a novel pancreas segmentation network. By employing multi-layer up-sampling structure replacing the simple up-sampling operation in all stages, the proposed network fully considers the multi-scale detailed contexture information of object (pancreas) to perform per-pixel segmentation. Additionally, using the CT scans, we supply and train our network, thus get an effective pipeline. Working with our pipeline with multi-layer up-sampling model, we achieve better performance than RCF in the task of single object (pancreas) segmentation. Besides, combining with multi scale input, we achieve the 76.36% DSC (Dice Similarity Coefficient) value in testing data. The results of our experiments show that our advanced model works better than previous networks in our dataset. On the other words, it has better ability in catching detailed contexture information. Therefore, our new single object segmentation model has practical meaning in computational automatic diagnosis.

  8. Automatized spleen segmentation in non-contrast-enhanced MR volume data using subject-specific shape priors

    NASA Astrophysics Data System (ADS)

    Gloger, Oliver; Tönnies, Klaus; Bülow, Robin; Völzke, Henry

    2017-07-01

    To develop the first fully automated 3D spleen segmentation framework derived from T1-weighted magnetic resonance (MR) imaging data and to verify its performance for spleen delineation and volumetry. This approach considers the issue of low contrast between spleen and adjacent tissue in non-contrast-enhanced MR images. Native T1-weighted MR volume data was performed on a 1.5 T MR system in an epidemiological study. We analyzed random subsamples of MR examinations without pathologies to develop and verify the spleen segmentation framework. The framework is modularized to include different kinds of prior knowledge into the segmentation pipeline. Classification by support vector machines differentiates between five different shape types in computed foreground probability maps and recognizes characteristic spleen regions in axial slices of MR volume data. A spleen-shape space generated by training produces subject-specific prior shape knowledge that is then incorporated into a final 3D level set segmentation method. Individually adapted shape-driven forces as well as image-driven forces resulting from refined foreground probability maps steer the level set successfully to the segment the spleen. The framework achieves promising segmentation results with mean Dice coefficients of nearly 0.91 and low volumetric mean errors of 6.3%. The presented spleen segmentation approach can delineate spleen tissue in native MR volume data. Several kinds of prior shape knowledge including subject-specific 3D prior shape knowledge can be used to guide segmentation processes achieving promising results.

  9. Segmentation of the whole breast from low-dose chest CT images

    NASA Astrophysics Data System (ADS)

    Liu, Shuang; Salvatore, Mary; Yankelevitz, David F.; Henschke, Claudia I.; Reeves, Anthony P.

    2015-03-01

    The segmentation of whole breast serves as the first step towards automated breast lesion detection. It is also necessary for automatically assessing the breast density, which is considered to be an important risk factor for breast cancer. In this paper we present a fully automated algorithm to segment the whole breast in low-dose chest CT images (LDCT), which has been recommended as an annual lung cancer screening test. The automated whole breast segmentation and potential breast density readings as well as lesion detection in LDCT will provide useful information for women who have received LDCT screening, especially the ones who have not undergone mammographic screening, by providing them additional risk indicators for breast cancer with no additional radiation exposure. The two main challenges to be addressed are significant range of variations in terms of the shape and location of the breast in LDCT and the separation of pectoral muscles from the glandular tissues. The presented algorithm achieves robust whole breast segmentation using an anatomy directed rule-based method. The evaluation is performed on 20 LDCT scans by comparing the segmentation with ground truth manually annotated by a radiologist on one axial slice and two sagittal slices for each scan. The resulting average Dice coefficient is 0.880 with a standard deviation of 0.058, demonstrating that the automated segmentation algorithm achieves results consistent with manual annotations of a radiologist.

  10. Cardiac Multi-detector CT Segmentation Based on Multiscale Directional Edge Detector and 3D Level Set.

    PubMed

    Antunes, Sofia; Esposito, Antonio; Palmisano, Anna; Colantoni, Caterina; Cerutti, Sergio; Rizzo, Giovanna

    2016-05-01

    Extraction of the cardiac surfaces of interest from multi-detector computed tomographic (MDCT) data is a pre-requisite step for cardiac analysis, as well as for image guidance procedures. Most of the existing methods need manual corrections, which is time-consuming. We present a fully automatic segmentation technique for the extraction of the right ventricle, left ventricular endocardium and epicardium from MDCT images. The method consists in a 3D level set surface evolution approach coupled to a new stopping function based on a multiscale directional second derivative Gaussian filter, which is able to stop propagation precisely on the real boundary of the structures of interest. We validated the segmentation method on 18 MDCT volumes from healthy and pathologic subjects using manual segmentation performed by a team of expert radiologists as gold standard. Segmentation errors were assessed for each structure resulting in a surface-to-surface mean error below 0.5 mm and a percentage of surface distance with errors less than 1 mm above 80%. Moreover, in comparison to other segmentation approaches, already proposed in previous work, our method presented an improved accuracy (with surface distance errors less than 1 mm increased of 8-20% for all structures). The obtained results suggest that our approach is accurate and effective for the segmentation of ventricular cavities and myocardium from MDCT images.

  11. Interactive vs. automatic ultrasound image segmentation methods for staging hepatic lipidosis.

    PubMed

    Weijers, Gert; Starke, Alexander; Haudum, Alois; Thijssen, Johan M; Rehage, Jürgen; De Korte, Chris L

    2010-07-01

    The aim of this study was to test the hypothesis that automatic segmentation of vessels in ultrasound (US) images can produce similar or better results in grading fatty livers than interactive segmentation. A study was performed in postpartum dairy cows (N=151), as an animal model of human fatty liver disease, to test this hypothesis. Five transcutaneous and five intraoperative US liver images were acquired in each animal and a liverbiopsy was taken. In liver tissue samples, triacylglycerol (TAG) was measured by biochemical analysis and hepatic diseases other than hepatic lipidosis were excluded by histopathologic examination. Ultrasonic tissue characterization (UTC) parameters--Mean echo level, standard deviation (SD) of echo level, signal-to-noise ratio (SNR), residual attenuation coefficient (ResAtt) and axial and lateral speckle size--were derived using a computer-aided US (CAUS) protocol and software package. First, the liver tissue was interactively segmented by two observers. With increasing fat content, fewer hepatic vessels were visible in the ultrasound images and, therefore, a smaller proportion of the liver needed to be excluded from these images. Automatic-segmentation algorithms were implemented and it was investigated whether better results could be achieved than with the subjective and time-consuming interactive-segmentation procedure. The automatic-segmentation algorithms were based on both fixed and adaptive thresholding techniques in combination with a 'speckle'-shaped moving-window exclusion technique. All data were analyzed with and without postprocessing as contained in CAUS and with different automated-segmentation techniques. This enabled us to study the effect of the applied postprocessing steps on single and multiple linear regressions ofthe various UTC parameters with TAG. Improved correlations for all US parameters were found by using automatic-segmentation techniques. Stepwise multiple linear-regression formulas where derived and used to predict TAG level in the liver. Receiver-operating-characteristics (ROC) analysis was applied to assess the performance and area under the curve (AUC) of predicting TAG and to compare the sensitivity and specificity of the methods. Best speckle-size estimates and overall performance (R2 = 0.71, AUC = 0.94) were achieved by using an SNR-based adaptive automatic-segmentation method (used TAG threshold: 50 mg/g liver wet weight). Automatic segmentation is thus feasible and profitable.

  12. Automatic and manual segmentation of healthy retinas using high-definition optical coherence tomography.

    PubMed

    Golbaz, Isabelle; Ahlers, Christian; Goesseringer, Nina; Stock, Geraldine; Geitzenauer, Wolfgang; Prünte, Christian; Schmidt-Erfurth, Ursula Margarethe

    2011-03-01

    This study compared automatic- and manual segmentation modalities in the retina of healthy eyes using high-definition optical coherence tomography (HD-OCT). Twenty retinas in 20 healthy individuals were examined using an HD-OCT system (Carl Zeiss Meditec, Inc.). Three-dimensional imaging was performed with an axial resolution of 6 μm at a maximum scanning speed of 25,000 A-scans/second. Volumes of 6 × 6 × 2 mm were scanned. Scans were analysed using a matlab-based algorithm and a manual segmentation software system (3D-Doctor). The volume values calculated by the two methods were compared. Statistical analysis revealed a high correlation between automatic and manual modes of segmentation. The automatic mode of measuring retinal volume and the corresponding three-dimensional images provided similar results to the manual segmentation procedure. Both methods were able to visualize retinal and subretinal features accurately. This study compared two methods of assessing retinal volume using HD-OCT scans in healthy retinas. Both methods were able to provide realistic volumetric data when applied to raster scan sets. Manual segmentation methods represent an adequate tool with which to control automated processes and to identify clinically relevant structures, whereas automatic procedures will be needed to obtain data in larger patient populations. © 2009 The Authors. Journal compilation © 2009 Acta Ophthalmol.

  13. Automatic segmentation of the bone and extraction of the bone cartilage interface from magnetic resonance images of the knee

    NASA Astrophysics Data System (ADS)

    Fripp, Jurgen; Crozier, Stuart; Warfield, Simon K.; Ourselin, Sébastien

    2007-03-01

    The accurate segmentation of the articular cartilages from magnetic resonance (MR) images of the knee is important for clinical studies and drug trials into conditions like osteoarthritis. Currently, segmentations are obtained using time-consuming manual or semi-automatic algorithms which have high inter- and intra-observer variabilities. This paper presents an important step towards obtaining automatic and accurate segmentations of the cartilages, namely an approach to automatically segment the bones and extract the bone-cartilage interfaces (BCI) in the knee. The segmentation is performed using three-dimensional active shape models, which are initialized using an affine registration to an atlas. The BCI are then extracted using image information and prior knowledge about the likelihood of each point belonging to the interface. The accuracy and robustness of the approach was experimentally validated using an MR database of fat suppressed spoiled gradient recall images. The (femur, tibia, patella) bone segmentation had a median Dice similarity coefficient of (0.96, 0.96, 0.89) and an average point-to-surface error of 0.16 mm on the BCI. The extracted BCI had a median surface overlap of 0.94 with the real interface, demonstrating its usefulness for subsequent cartilage segmentation or quantitative analysis.

  14. Myocardium Segmentation From DE MRI Using Multicomponent Gaussian Mixture Model and Coupled Level Set.

    PubMed

    Liu, Jie; Zhuang, Xiahai; Wu, Lianming; An, Dongaolei; Xu, Jianrong; Peters, Terry; Gu, Lixu

    2017-11-01

    Objective: In this paper, we propose a fully automatic framework for myocardium segmentation of delayed-enhancement (DE) MRI images without relying on prior patient-specific information. Methods: We employ a multicomponent Gaussian mixture model to deal with the intensity heterogeneity of myocardium caused by the infarcts. To differentiate the myocardium from other tissues with similar intensities, while at the same time maintain spatial continuity, we introduce a coupled level set (CLS) to regularize the posterior probability. The CLS, as a spatial regularization, can be adapted to the image characteristics dynamically. We also introduce an image intensity gradient based term into the CLS, adding an extra force to the posterior probability based framework, to improve the accuracy of myocardium boundary delineation. The prebuilt atlases are propagated to the target image to initialize the framework. Results: The proposed method was tested on datasets of 22 clinical cases, and achieved Dice similarity coefficients of 87.43 ± 5.62% (endocardium), 90.53 ± 3.20% (epicardium) and 73.58 ± 5.58% (myocardium), which have outperformed three variants of the classic segmentation methods. Conclusion: The results can provide a benchmark for the myocardial segmentation in the literature. Significance: DE MRI provides an important tool to assess the viability of myocardium. The accurate segmentation of myocardium, which is a prerequisite for further quantitative analysis of myocardial infarction (MI) region, can provide important support for the diagnosis and treatment management for MI patients. Objective: In this paper, we propose a fully automatic framework for myocardium segmentation of delayed-enhancement (DE) MRI images without relying on prior patient-specific information. Methods: We employ a multicomponent Gaussian mixture model to deal with the intensity heterogeneity of myocardium caused by the infarcts. To differentiate the myocardium from other tissues with similar intensities, while at the same time maintain spatial continuity, we introduce a coupled level set (CLS) to regularize the posterior probability. The CLS, as a spatial regularization, can be adapted to the image characteristics dynamically. We also introduce an image intensity gradient based term into the CLS, adding an extra force to the posterior probability based framework, to improve the accuracy of myocardium boundary delineation. The prebuilt atlases are propagated to the target image to initialize the framework. Results: The proposed method was tested on datasets of 22 clinical cases, and achieved Dice similarity coefficients of 87.43 ± 5.62% (endocardium), 90.53 ± 3.20% (epicardium) and 73.58 ± 5.58% (myocardium), which have outperformed three variants of the classic segmentation methods. Conclusion: The results can provide a benchmark for the myocardial segmentation in the literature. Significance: DE MRI provides an important tool to assess the viability of myocardium. The accurate segmentation of myocardium, which is a prerequisite for further quantitative analysis of myocardial infarction (MI) region, can provide important support for the diagnosis and treatment management for MI patients.

  15. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.

    PubMed

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Shaw, Philip J; Ukosakit, Kittipat; Tragoonrung, Somvong; Tongsima, Sissades

    2015-01-01

    DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. This work presents an automated genotyping tool from DNA gel electrophoresis images, called GELect, which was written in Java and made available through the imageJ framework. With a novel automated image processing workflow, the tool can accurately segment lanes from a gel matrix, intelligently extract distorted and even doublet bands that are difficult to identify by existing image processing tools. Consequently, genotyping from DNA gel electrophoresis can be performed automatically allowing users to efficiently conduct large scale DNA fingerprinting via DNA gel electrophoresis. The software is freely available from http://www.biotec.or.th/gi/tools/gelect.

  16. Groping for quantitative digital 3-D image analysis: an approach to quantitative fluorescence in situ hybridization in thick tissue sections of prostate carcinoma.

    PubMed

    Rodenacker, K; Aubele, M; Hutzler, P; Adiga, P S

    1997-01-01

    In molecular pathology numerical chromosome aberrations have been found to be decisive for the prognosis of malignancy in tumours. The existence of such aberrations can be detected by interphase fluorescence in situ hybridization (FISH). The gain or loss of certain base sequences in the desoxyribonucleic acid (DNA) can be estimated by counting the number of FISH signals per cell nucleus. The quantitative evaluation of such events is a necessary condition for a prospective use in diagnostic pathology. To avoid occlusions of signals, the cell nucleus has to be analyzed in three dimensions. Confocal laser scanning microscopy is the means to obtain series of optical thin sections from fluorescence stained or marked material to fulfill the conditions mentioned above. A graphical user interface (GUI) to a software package for display, inspection, count and (semi-)automatic analysis of 3-D images for pathologists is outlined including the underlying methods of 3-D image interaction and segmentation developed. The preparative methods are briefly described. Main emphasis is given to the methodical questions of computer-aided analysis of large 3-D image data sets for pathologists. Several automated analysis steps can be performed for segmentation and succeeding quantification. However tumour material is in contrast to isolated or cultured cells even for visual inspection, a difficult material. For the present a fully automated digital image analysis of 3-D data is not in sight. A semi-automatic segmentation method is thus presented here.

  17. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery.

    PubMed

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lau, Steven; Lu, Weiguo; Yan, Yulong; Jiang, Steve B; Zhen, Xin; Timmerman, Robert; Nedzi, Lucien; Gu, Xuejun

    2017-01-01

    Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases.

  18. Statistical Validation of Automatic Methods for Hippocampus Segmentation in MR Images of Epileptic Patients

    PubMed Central

    Hosseini, Mohammad-Parsa; Nazem-Zadeh, Mohammad R.; Pompili, Dario; Soltanian-Zadeh, Hamid

    2015-01-01

    Hippocampus segmentation is a key step in the evaluation of mesial Temporal Lobe Epilepsy (mTLE) by MR images. Several automated segmentation methods have been introduced for medical image segmentation. Because of multiple edges, missing boundaries, and shape changing along its longitudinal axis, manual outlining still remains the benchmark for hippocampus segmentation, which however, is impractical for large datasets due to time constraints. In this study, four automatic methods, namely FreeSurfer, Hammer, Automatic Brain Structure Segmentation (ABSS), and LocalInfo segmentation, are evaluated to find the most accurate and applicable method that resembles the bench-mark of hippocampus. Results from these four methods are compared against those obtained using manual segmentation for T1-weighted images of 157 symptomatic mTLE patients. For performance evaluation of automatic segmentation, Dice coefficient, Hausdorff distance, Precision, and Root Mean Square (RMS) distance are extracted and compared. Among these four automated methods, ABSS generates the most accurate results and the reproducibility is more similar to expert manual outlining by statistical validation. By considering p-value<0.05, the results of performance measurement for ABSS reveal that, Dice is 4%, 13%, and 17% higher, Hausdorff is 23%, 87%, and 70% lower, precision is 5%, -5%, and 12% higher, and RMS is 19%, 62%, and 65% lower compared to LocalInfo, FreeSurfer, and Hammer, respectively. PMID:25571043

  19. volBrain: An Online MRI Brain Volumetry System

    PubMed Central

    Manjón, José V.; Coupé, Pierrick

    2016-01-01

    The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es), which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results. PMID:27512372

  20. volBrain: An Online MRI Brain Volumetry System.

    PubMed

    Manjón, José V; Coupé, Pierrick

    2016-01-01

    The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es), which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results.

  1. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

    PubMed

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi

    2017-10-01

    We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. We simplify the segmentation algorithms of anatomical structures (including multiple organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inherits the spirit of fully convolutional networks (FCNs) that consist of "convolution" and "deconvolution" layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are trained pixel-to-label from a small number of CT cases with human annotations as the ground truth. The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases of different sizes that cover arbitrary scan regions without any adjustment. The proposed network was trained and validated using the simultaneous segmentation of 19 anatomical structures in the human torso, including 17 major organs and two special regions (lumen and content inside of stomach). Some of these structures have never been reported in previous research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D CT scans, together with their manually annotated ground-truth segmentations, was used in our experiments. The results show that the 19 structures of interest were segmented with acceptable accuracy (88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly) against the ground truth. We propose a single network based on pixel-to-label deep learning to address the challenging issue of anatomical structure segmentation in 3D CT cases. The novelty of this work is the policy of deep learning of the different 2D sectional appearances of 3D anatomical structures for CT cases and the majority voting of the 3D segmentation results from multiple crossed 2D sections to achieve availability and reliability with better efficiency, generality, and flexibility than conventional segmentation methods, which must be guided by human expertise. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. Cavity contour segmentation in chest radiographs using supervised learning and dynamic programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maduskar, Pragnya, E-mail: pragnya.maduskar@radboudumc.nl; Hogeweg, Laurens; Sánchez, Clara I.

    Purpose: Efficacy of tuberculosis (TB) treatment is often monitored using chest radiography. Monitoring size of cavities in pulmonary tuberculosis is important as the size predicts severity of the disease and its persistence under therapy predicts relapse. The authors present a method for automatic cavity segmentation in chest radiographs. Methods: A two stage method is proposed to segment the cavity borders, given a user defined seed point close to the center of the cavity. First, a supervised learning approach is employed to train a pixel classifier using texture and radial features to identify the border pixels of the cavity. A likelihoodmore » value of belonging to the cavity border is assigned to each pixel by the classifier. The authors experimented with four different classifiers:k-nearest neighbor (kNN), linear discriminant analysis (LDA), GentleBoost (GB), and random forest (RF). Next, the constructed likelihood map was used as an input cost image in the polar transformed image space for dynamic programming to trace the optimal maximum cost path. This constructed path corresponds to the segmented cavity contour in image space. Results: The method was evaluated on 100 chest radiographs (CXRs) containing 126 cavities. The reference segmentation was manually delineated by an experienced chest radiologist. An independent observer (a chest radiologist) also delineated all cavities to estimate interobserver variability. Jaccard overlap measure Ω was computed between the reference segmentation and the automatic segmentation; and between the reference segmentation and the independent observer's segmentation for all cavities. A median overlap Ω of 0.81 (0.76 ± 0.16), and 0.85 (0.82 ± 0.11) was achieved between the reference segmentation and the automatic segmentation, and between the segmentations by the two radiologists, respectively. The best reported mean contour distance and Hausdorff distance between the reference and the automatic segmentation were, respectively, 2.48 ± 2.19 and 8.32 ± 5.66 mm, whereas these distances were 1.66 ± 1.29 and 5.75 ± 4.88 mm between the segmentations by the reference reader and the independent observer, respectively. The automatic segmentations were also visually assessed by two trained CXR readers as “excellent,” “adequate,” or “insufficient.” The readers had good agreement in assessing the cavity outlines and 84% of the segmentations were rated as “excellent” or “adequate” by both readers. Conclusions: The proposed cavity segmentation technique produced results with a good degree of overlap with manual expert segmentations. The evaluation measures demonstrated that the results approached the results of the experienced chest radiologists, in terms of overlap measure and contour distance measures. Automatic cavity segmentation can be employed in TB clinics for treatment monitoring, especially in resource limited settings where radiologists are not available.« less

  3. Analysis of manual segmentation in paranasal CT images.

    PubMed

    Tingelhoff, Kathrin; Eichhorn, Klaus W G; Wagner, Ingo; Kunkel, Maria E; Moral, Analia I; Rilk, Markus E; Wahl, Friedrich M; Bootz, Friedrich

    2008-09-01

    Manual segmentation is often used for evaluation of automatic or semi-automatic segmentation. The purpose of this paper is to describe the inter and intraindividual variability, the dubiety of manual segmentation as a gold standard and to find reasons for the discrepancy. We realized two experiments. In the first one ten ENT surgeons, ten medical students and one engineer outlined the right maxillary sinus and ethmoid sinuses manually on a standard CT dataset of a human head. In the second experiment two participants outlined maxillary sinus and ethmoid sinuses five times consecutively. Manual segmentation was accomplished with custom software using a line segmentation tool. The first experiment shows the interindividual variability of manual segmentation which is higher for ethmoidal sinuses than for maxillary sinuses. The variability can be caused by the level of experience, different interpretation of the CT data or different levels of accuracy. The second experiment shows intraindividual variability which is lower than interindividual variability. Most variances in both experiments appear during segmentation of ethmoidal sinuses and outlining hiatus semilunaris. Concerning the inter and intraindividual variances the segmentation result of one manual segmenter could not directly be used as gold standard for the evaluation of automatic segmentation algorithms.

  4. User Interaction in Semi-Automatic Segmentation of Organs at Risk: a Case Study in Radiotherapy.

    PubMed

    Ramkumar, Anjana; Dolz, Jose; Kirisli, Hortense A; Adebahr, Sonja; Schimek-Jasch, Tanja; Nestle, Ursula; Massoptier, Laurent; Varga, Edit; Stappers, Pieter Jan; Niessen, Wiro J; Song, Yu

    2016-04-01

    Accurate segmentation of organs at risk is an important step in radiotherapy planning. Manual segmentation being a tedious procedure and prone to inter- and intra-observer variability, there is a growing interest in automated segmentation methods. However, automatic methods frequently fail to provide satisfactory result, and post-processing corrections are often needed. Semi-automatic segmentation methods are designed to overcome these problems by combining physicians' expertise and computers' potential. This study evaluates two semi-automatic segmentation methods with different types of user interactions, named the "strokes" and the "contour", to provide insights into the role and impact of human-computer interaction. Two physicians participated in the experiment. In total, 42 case studies were carried out on five different types of organs at risk. For each case study, both the human-computer interaction process and quality of the segmentation results were measured subjectively and objectively. Furthermore, different measures of the process and the results were correlated. A total of 36 quantifiable and ten non-quantifiable correlations were identified for each type of interaction. Among those pairs of measures, 20 of the contour method and 22 of the strokes method were strongly or moderately correlated, either directly or inversely. Based on those correlated measures, it is concluded that: (1) in the design of semi-automatic segmentation methods, user interactions need to be less cognitively challenging; (2) based on the observed workflows and preferences of physicians, there is a need for flexibility in the interface design; (3) the correlated measures provide insights that can be used in improving user interaction design.

  5. Fully Automatic Software for Retinal Thickness in Eyes With Diabetic Macular Edema From Images Acquired by Cirrus and Spectralis Systems

    PubMed Central

    Lee, Joo Yong; Chiu, Stephanie J.; Srinivasan, Pratul P.; Izatt, Joseph A.; Toth, Cynthia A.; Farsiu, Sina; Jaffe, Glenn J.

    2013-01-01

    Purpose. To determine whether a novel automatic segmentation program, the Duke Optical Coherence Tomography Retinal Analysis Program (DOCTRAP), can be applied to spectral-domain optical coherence tomography (SD-OCT) images obtained from different commercially available SD-OCT in eyes with diabetic macular edema (DME). Methods. A novel segmentation framework was used to segment the retina, inner retinal pigment epithelium, and Bruch's membrane on images from eyes with DME acquired by one of two SD-OCT systems, Spectralis or Cirrus high definition (HD)-OCT. Thickness data obtained by the DOCTRAP software were compared with those produced by Spectralis and Cirrus. Measurement agreement and its dependence were assessed using intraclass correlation (ICC). Results. A total of 40 SD-OCT scans from 20 subjects for each machine were included in the analysis. Spectralis: the mean thickness in the 1-mm central area determined by DOCTRAP and Spectralis was 463.8 ± 107.5 μm and 467.0 ± 108.1 μm, respectively (ICC, 0.999). There was also a high level agreement in surrounding areas (out to 3 mm). Cirrus: the mean thickness in the 1-mm central area was 440.8 ± 183.4 μm and 442.7 ± 182.4 μm by DOCTRAP and Cirrus, respectively (ICC, 0.999). The thickness agreement in surrounding areas (out to 3 mm) was more variable due to Cirrus segmentation errors in one subject (ICC, 0.734–0.999). After manual correction of the errors, there was a high level of thickness agreement in surrounding areas (ICC, 0.997–1.000). Conclusions. The DOCTRAP may be useful to compare retinal thicknesses in eyes with DME across OCT platforms. PMID:24084089

  6. Automated 3D renal segmentation based on image partitioning

    NASA Astrophysics Data System (ADS)

    Yeghiazaryan, Varduhi; Voiculescu, Irina D.

    2016-03-01

    Despite several decades of research into segmentation techniques, automated medical image segmentation is barely usable in a clinical context, and still at vast user time expense. This paper illustrates unsupervised organ segmentation through the use of a novel automated labelling approximation algorithm followed by a hypersurface front propagation method. The approximation stage relies on a pre-computed image partition forest obtained directly from CT scan data. We have implemented all procedures to operate directly on 3D volumes, rather than slice-by-slice, because our algorithms are dimensionality-independent. The results picture segmentations which identify kidneys, but can easily be extrapolated to other body parts. Quantitative analysis of our automated segmentation compared against hand-segmented gold standards indicates an average Dice similarity coefficient of 90%. Results were obtained over volumes of CT data with 9 kidneys, computing both volume-based similarity measures (such as the Dice and Jaccard coefficients, true positive volume fraction) and size-based measures (such as the relative volume difference). The analysis considered both healthy and diseased kidneys, although extreme pathological cases were excluded from the overall count. Such cases are difficult to segment both manually and automatically due to the large amplitude of Hounsfield unit distribution in the scan, and the wide spread of the tumorous tissue inside the abdomen. In the case of kidneys that have maintained their shape, the similarity range lies around the values obtained for inter-operator variability. Whilst the procedure is fully automated, our tools also provide a light level of manual editing.

  7. Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images.

    PubMed

    Martínez-Domingo, Miguel Ángel; Valero, Eva M; Hernández-Andrés, Javier; Tominaga, Shoji; Horiuchi, Takahiko; Hirai, Keita

    2017-11-27

    We propose a method for the capture of high dynamic range (HDR), multispectral (MS), polarimetric (Pol) images of indoor scenes using a liquid crystal tunable filter (LCTF). We have included the adaptive exposure estimation (AEE) method to fully automatize the capturing process. We also propose a pre-processing method which can be applied for the registration of HDR images after they are already built as the result of combining different low dynamic range (LDR) images. This method is applied to ensure a correct alignment of the different polarization HDR images for each spectral band. We have focused our efforts in two main applications: object segmentation and classification into metal and dielectric classes. We have simplified the segmentation using mean shift combined with cluster averaging and region merging techniques. We compare the performance of our segmentation with that of Ncut and Watershed methods. For the classification task, we propose to use information not only in the highlight regions but also in their surrounding area, extracted from the degree of linear polarization (DoLP) maps. We present experimental results which proof that the proposed image processing pipeline outperforms previous techniques developed specifically for MSHDRPol image cubes.

  8. Segmentation of liver region with tumorous tissues

    NASA Astrophysics Data System (ADS)

    Zhang, Xuejun; Lee, Gobert; Tajima, Tetsuji; Kitagawa, Teruhiko; Kanematsu, Masayuki; Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kondo, Hiroshi; Hoshi, Hiroaki; Nawano, Shigeru; Shinozaki, Kenji

    2007-03-01

    Segmentation of an abnormal liver region based on CT or MR images is a crucial step in surgical planning. However, precisely carrying out this step remains a challenge due to either connectivities of the liver to other organs or the shape, internal texture, and homogeneity of liver that maybe extensively affected in case of liver diseases. Here, we propose a non-density based method for extracting the liver region containing tumor tissues by edge detection processing. False extracted regions are eliminated by a shape analysis method and thresholding processing. If the multi-phased images are available then the overall outcome of segmentation can be improved by subtracting two phase images, and the connectivities can be further eliminated by referring to the intensity on another phase image. Within an edge liver map, tumor candidates are identified by their different gray values relative to the liver. After elimination of the small and nonspherical over-extracted regions, the final liver region integrates the tumor region with the liver tissue. In our experiment, 40 cases of MDCT images were used and the result showed that our fully automatic method for the segmentation of liver region is effective and robust despite the presence of hepatic tumors within the liver.

  9. Thermal image analysis using the serpentine method

    NASA Astrophysics Data System (ADS)

    Koprowski, Robert; Wilczyński, Sławomir

    2018-03-01

    Thermal imaging is an increasingly widespread alternative to other imaging methods. As a supplementary method in diagnostics, it can be used both statically and with dynamic temperature changes. The paper proposes a new image analysis method that allows for the acquisition of new diagnostic information as well as object segmentation. The proposed serpentine analysis uses known and new methods of image analysis and processing proposed by the authors. Affine transformations of an image and subsequent Fourier analysis provide a new diagnostic quality. The method is fully repeatable and automatic and independent of inter-individual variability in patients. The segmentation results are by 10% better than those obtained from the watershed method and the hybrid segmentation method based on the Canny detector. The first and second harmonics of serpentine analysis enable to determine the type of temperature changes in the region of interest (gradient, number of heat sources etc.). The presented serpentine method provides new quantitative information on thermal imaging and more. Since it allows for image segmentation and designation of contact points of two and more heat sources (local minimum), it can be used to support medical diagnostics in many areas of medicine.

  10. Statistical segmentation of multidimensional brain datasets

    NASA Astrophysics Data System (ADS)

    Desco, Manuel; Gispert, Juan D.; Reig, Santiago; Santos, Andres; Pascau, Javier; Malpica, Norberto; Garcia-Barreno, Pedro

    2001-07-01

    This paper presents an automatic segmentation procedure for MRI neuroimages that overcomes part of the problems involved in multidimensional clustering techniques like partial volume effects (PVE), processing speed and difficulty of incorporating a priori knowledge. The method is a three-stage procedure: 1) Exclusion of background and skull voxels using threshold-based region growing techniques with fully automated seed selection. 2) Expectation Maximization algorithms are used to estimate the probability density function (PDF) of the remaining pixels, which are assumed to be mixtures of gaussians. These pixels can then be classified into cerebrospinal fluid (CSF), white matter and grey matter. Using this procedure, our method takes advantage of using the full covariance matrix (instead of the diagonal) for the joint PDF estimation. On the other hand, logistic discrimination techniques are more robust against violation of multi-gaussian assumptions. 3) A priori knowledge is added using Markov Random Field techniques. The algorithm has been tested with a dataset of 30 brain MRI studies (co-registered T1 and T2 MRI). Our method was compared with clustering techniques and with template-based statistical segmentation, using manual segmentation as a gold-standard. Our results were more robust and closer to the gold-standard.

  11. Automatic segmentation of the left ventricle in a cardiac MR short axis image using blind morphological operation

    NASA Astrophysics Data System (ADS)

    Irshad, Mehreen; Muhammad, Nazeer; Sharif, Muhammad; Yasmeen, Mussarat

    2018-04-01

    Conventionally, cardiac MR image analysis is done manually. Automatic examination for analyzing images can replace the monotonous tasks of massive amounts of data to analyze the global and regional functions of the cardiac left ventricle (LV). This task is performed using MR images to calculate the analytic cardiac parameter like end-systolic volume, end-diastolic volume, ejection fraction, and myocardial mass, respectively. These analytic parameters depend upon genuine delineation of epicardial, endocardial, papillary muscle, and trabeculations contours. In this paper, we propose an automatic segmentation method using the sum of absolute differences technique to localize the left ventricle. Blind morphological operations are proposed to segment and detect the LV contours of the epicardium and endocardium, automatically. We test the benchmark Sunny Brook dataset for evaluation of the proposed work. Contours of epicardium and endocardium are compared quantitatively to determine contour's accuracy and observe high matching values. Similarity or overlapping of an automatic examination to the given ground truth analysis by an expert are observed with high accuracy as with an index value of 91.30% . The proposed method for automatic segmentation gives better performance relative to existing techniques in terms of accuracy.

  12. Methods for 2-D and 3-D Endobronchial Ultrasound Image Segmentation.

    PubMed

    Zang, Xiaonan; Bascom, Rebecca; Gilbert, Christopher; Toth, Jennifer; Higgins, William

    2016-07-01

    Endobronchial ultrasound (EBUS) is now commonly used for cancer-staging bronchoscopy. Unfortunately, EBUS is challenging to use and interpreting EBUS video sequences is difficult. Other ultrasound imaging domains, hampered by related difficulties, have benefited from computer-based image-segmentation methods. Yet, so far, no such methods have been proposed for EBUS. We propose image-segmentation methods for 2-D EBUS frames and 3-D EBUS sequences. Our 2-D method adapts the fast-marching level-set process, anisotropic diffusion, and region growing to the problem of segmenting 2-D EBUS frames. Our 3-D method builds upon the 2-D method while also incorporating the geodesic level-set process for segmenting EBUS sequences. Tests with lung-cancer patient data showed that the methods ran fully automatically for nearly 80% of test cases. For the remaining cases, the only user-interaction required was the selection of a seed point. When compared to ground-truth segmentations, the 2-D method achieved an overall Dice index = 90.0% ±4.9%, while the 3-D method achieved an overall Dice index = 83.9 ± 6.0%. In addition, the computation time (2-D, 0.070 s/frame; 3-D, 0.088 s/frame) was two orders of magnitude faster than interactive contour definition. Finally, we demonstrate the potential of the methods for EBUS localization in a multimodal image-guided bronchoscopy system.

  13. Comparison of computer systems and ranking criteria for automatic melanoma detection in dermoscopic images.

    PubMed

    Møllersen, Kajsa; Zortea, Maciel; Schopf, Thomas R; Kirchesch, Herbert; Godtliebsen, Fred

    2017-01-01

    Melanoma is the deadliest form of skin cancer, and early detection is crucial for patient survival. Computer systems can assist in melanoma detection, but are not widespread in clinical practice. In 2016, an open challenge in classification of dermoscopic images of skin lesions was announced. A training set of 900 images with corresponding class labels and semi-automatic/manual segmentation masks was released for the challenge. An independent test set of 379 images, of which 75 were of melanomas, was used to rank the participants. This article demonstrates the impact of ranking criteria, segmentation method and classifier, and highlights the clinical perspective. We compare five different measures for diagnostic accuracy by analysing the resulting ranking of the computer systems in the challenge. Choice of performance measure had great impact on the ranking. Systems that were ranked among the top three for one measure, dropped to the bottom half when changing performance measure. Nevus Doctor, a computer system previously developed by the authors, was used to participate in the challenge, and investigate the impact of segmentation and classifier. The diagnostic accuracy when using an automatic versus the semi-automatic/manual segmentation is investigated. The unexpected small impact of segmentation method suggests that improvements of the automatic segmentation method w.r.t. resemblance to semi-automatic/manual segmentation will not improve diagnostic accuracy substantially. A small set of similar classification algorithms are used to investigate the impact of classifier on the diagnostic accuracy. The variability in diagnostic accuracy for different classifier algorithms was larger than the variability for segmentation methods, and suggests a focus for future investigations. From a clinical perspective, the misclassification of a melanoma as benign has far greater cost than the misclassification of a benign lesion. For computer systems to have clinical impact, their performance should be ranked by a high-sensitivity measure.

  14. Automatic tissue image segmentation based on image processing and deep learning

    NASA Astrophysics Data System (ADS)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  15. Pancreas and cyst segmentation

    NASA Astrophysics Data System (ADS)

    Dmitriev, Konstantin; Gutenko, Ievgeniia; Nadeem, Saad; Kaufman, Arie

    2016-03-01

    Accurate segmentation of abdominal organs from medical images is an essential part of surgical planning and computer-aided disease diagnosis. Many existing algorithms are specialized for the segmentation of healthy organs. Cystic pancreas segmentation is especially challenging due to its low contrast boundaries, variability in shape, location and the stage of the pancreatic cancer. We present a semi-automatic segmentation algorithm for pancreata with cysts. In contrast to existing automatic segmentation approaches for healthy pancreas segmentation which are amenable to atlas/statistical shape approaches, a pancreas with cysts can have even higher variability with respect to the shape of the pancreas due to the size and shape of the cyst(s). Hence, fine results are better attained with semi-automatic steerable approaches. We use a novel combination of random walker and region growing approaches to delineate the boundaries of the pancreas and cysts with respective best Dice coefficients of 85.1% and 86.7%, and respective best volumetric overlap errors of 26.0% and 23.5%. Results show that the proposed algorithm for pancreas and pancreatic cyst segmentation is accurate and stable.

  16. Comparison and assessment of semi-automatic image segmentation in computed tomography scans for image-guided kidney surgery.

    PubMed

    Glisson, Courtenay L; Altamar, Hernan O; Herrell, S Duke; Clark, Peter; Galloway, Robert L

    2011-11-01

    Image segmentation is integral to implementing intraoperative guidance for kidney tumor resection. Results seen in computed tomography (CT) data are affected by target organ physiology as well as by the segmentation algorithm used. This work studies variables involved in using level set methods found in the Insight Toolkit to segment kidneys from CT scans and applies the results to an image guidance setting. A composite algorithm drawing on the strengths of multiple level set approaches was built using the Insight Toolkit. This algorithm requires image contrast state and seed points to be identified as input, and functions independently thereafter, selecting and altering method and variable choice as needed. Semi-automatic results were compared to expert hand segmentation results directly and by the use of the resultant surfaces for registration of intraoperative data. Direct comparison using the Dice metric showed average agreement of 0.93 between semi-automatic and hand segmentation results. Use of the segmented surfaces in closest point registration of intraoperative laser range scan data yielded average closest point distances of approximately 1 mm. Application of both inverse registration transforms from the previous step to all hand segmented image space points revealed that the distance variability introduced by registering to the semi-automatically segmented surface versus the hand segmented surface was typically less than 3 mm both near the tumor target and at distal points, including subsurface points. Use of the algorithm shortened user interaction time and provided results which were comparable to the gold standard of hand segmentation. Further, the use of the algorithm's resultant surfaces in image registration provided comparable transformations to surfaces produced by hand segmentation. These data support the applicability and utility of such an algorithm as part of an image guidance workflow.

  17. A segmentation editing framework based on shape change statistics

    NASA Astrophysics Data System (ADS)

    Mostapha, Mahmoud; Vicory, Jared; Styner, Martin; Pizer, Stephen

    2017-02-01

    Segmentation is a key task in medical image analysis because its accuracy significantly affects successive steps. Automatic segmentation methods often produce inadequate segmentations, which require the user to manually edit the produced segmentation slice by slice. Because editing is time-consuming, an editing tool that enables the user to produce accurate segmentations by only drawing a sparse set of contours would be needed. This paper describes such a framework as applied to a single object. Constrained by the additional information enabled by the manually segmented contours, the proposed framework utilizes object shape statistics to transform the failed automatic segmentation to a more accurate version. Instead of modeling the object shape, the proposed framework utilizes shape change statistics that were generated to capture the object deformation from the failed automatic segmentation to its corresponding correct segmentation. An optimization procedure was used to minimize an energy function that consists of two terms, an external contour match term and an internal shape change regularity term. The high accuracy of the proposed segmentation editing approach was confirmed by testing it on a simulated data set based on 10 in-vivo infant magnetic resonance brain data sets using four similarity metrics. Segmentation results indicated that our method can provide efficient and adequately accurate segmentations (Dice segmentation accuracy increase of 10%), with very sparse contours (only 10%), which is promising in greatly decreasing the work expected from the user.

  18. Implementation and evaluation of a new workflow for registration and segmentation of pulmonary MRI data for regional lung perfusion assessment.

    PubMed

    Böttger, T; Grunewald, K; Schöbinger, M; Fink, C; Risse, F; Kauczor, H U; Meinzer, H P; Wolf, Ivo

    2007-03-07

    Recently it has been shown that regional lung perfusion can be assessed using time-resolved contrast-enhanced magnetic resonance (MR) imaging. Quantification of the perfusion images has been attempted, based on definition of small regions of interest (ROIs). Use of complete lung segmentations instead of ROIs could possibly increase quantification accuracy. Due to the low signal-to-noise ratio, automatic segmentation algorithms cannot be applied. On the other hand, manual segmentation of the lung tissue is very time consuming and can become inaccurate, as the borders of the lung to adjacent tissues are not always clearly visible. We propose a new workflow for semi-automatic segmentation of the lung from additionally acquired morphological HASTE MR images. First the lung is delineated semi-automatically in the HASTE image. Next the HASTE image is automatically registered with the perfusion images. Finally, the transformation resulting from the registration is used to align the lung segmentation from the morphological dataset with the perfusion images. We evaluated rigid, affine and locally elastic transformations, suitable optimizers and different implementations of mutual information (MI) metrics to determine the best possible registration algorithm. We located the shortcomings of the registration procedure and under which conditions automatic registration will succeed or fail. Segmentation results were evaluated using overlap and distance measures. Integration of the new workflow reduces the time needed for post-processing of the data, simplifies the perfusion quantification and reduces interobserver variability in the segmentation process. In addition, the matched morphological data set can be used to identify morphologic changes as the source for the perfusion abnormalities.

  19. Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hori, Yasuaki; Yasuno, Yoshiaki; Sakai, Shingo; Matsumoto, Masayuki; Sugawara, Tomoko; Madjarova, Violeta; Yamanari, Masahiro; Makita, Shuichi; Yasui, Takeshi; Araki, Tsutomu; Itoh, Masahide; Yatagai, Toyohiko

    2006-03-01

    A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm.

  20. Asymmetric bias in user guided segmentations of brain structures

    NASA Astrophysics Data System (ADS)

    Styner, Martin; Smith, Rachel G.; Graves, Michael M.; Mosconi, Matthew W.; Peterson, Sarah; White, Scott; Blocher, Joe; El-Sayed, Mohammed; Hazlett, Heather C.

    2007-03-01

    Brain morphometric studies often incorporate comparative asymmetry analyses of left and right hemispheric brain structures. In this work we show evidence that common methods of user guided structural segmentation exhibit strong left-right asymmetric biases and thus fundamentally influence any left-right asymmetry analyses. We studied several structural segmentation methods with varying degree of user interaction from pure manual outlining to nearly fully automatic procedures. The methods were applied to MR images and their corresponding left-right mirrored images from an adult and a pediatric study. Several expert raters performed the segmentations of all structures. The asymmetric segmentation bias is assessed by comparing the left-right volumetric asymmetry in the original and mirrored datasets, as well as by testing each sides volumetric differences to a zero mean standard t-tests. The structural segmentations of caudate, putamen, globus pallidus, amygdala and hippocampus showed a highly significant asymmetric bias using methods with considerable manual outlining or landmark placement. Only the lateral ventricle segmentation revealed no asymmetric bias due to the high degree of automation and a high intensity contrast on its boundary. Our segmentation methods have been adapted in that they are applied to only one of the hemispheres in an image and its left-right mirrored image. Our work suggests that existing studies of hemispheric asymmetry without similar precautions should be interpreted in a new, skeptical light. Evidence of an asymmetric segmentation bias is novel and unknown to the imaging community. This result seems less surprising to the visual perception community and its likely cause is differences in perception of oppositely curved 3D structures.

  1. A deep convolutional neural network-based automatic delineation strategy for multiple brain metastases stereotactic radiosurgery

    PubMed Central

    Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lau, Steven; Lu, Weiguo; Yan, Yulong; Jiang, Steve B.; Zhen, Xin; Timmerman, Robert; Nedzi, Lucien

    2017-01-01

    Accurate and automatic brain metastases target delineation is a key step for efficient and effective stereotactic radiosurgery (SRS) treatment planning. In this work, we developed a deep learning convolutional neural network (CNN) algorithm for segmenting brain metastases on contrast-enhanced T1-weighted magnetic resonance imaging (MRI) datasets. We integrated the CNN-based algorithm into an automatic brain metastases segmentation workflow and validated on both Multimodal Brain Tumor Image Segmentation challenge (BRATS) data and clinical patients' data. Validation on BRATS data yielded average DICE coefficients (DCs) of 0.75±0.07 in the tumor core and 0.81±0.04 in the enhancing tumor, which outperformed most techniques in the 2015 BRATS challenge. Segmentation results of patient cases showed an average of DCs 0.67±0.03 and achieved an area under the receiver operating characteristic curve of 0.98±0.01. The developed automatic segmentation strategy surpasses current benchmark levels and offers a promising tool for SRS treatment planning for multiple brain metastases. PMID:28985229

  2. Automatic segmentation of triaxial accelerometry signals for falls risk estimation.

    PubMed

    Redmond, Stephen J; Scalzi, Maria Elena; Narayanan, Michael R; Lord, Stephen R; Cerutti, Sergio; Lovell, Nigel H

    2010-01-01

    Falls-related injuries in the elderly population represent one of the most significant contributors to rising health care expense in developed countries. In recent years, falls detection technologies have become more common. However, very few have adopted a preferable falls prevention strategy through unsupervised monitoring in the free-living environment. The basis of the monitoring described herein was a self-administered directed-routine (DR) comprising three separate tests measured by way of a waist-mounted triaxial accelerometer. Using features extracted from the manually segmented signals, a reasonable estimate of falls risk can be achieved. We describe here a series of algorithms for automatically segmenting these recordings, enabling the use of the DR assessment in the unsupervised and home environments. The accelerometry signals, from 68 subjects performing the DR, were manually annotated by an observer. Using the proposed signal segmentation routines, an good agreement was observed between the manually annotated markers and the automatically estimated values. However, a decrease in the correlation with falls risk to 0.73 was observed using the automatic segmentation, compared to 0.81 when using markers manually placed by an observer.

  3. Quality assurance using outlier detection on an automatic segmentation method for the cerebellar peduncles

    NASA Astrophysics Data System (ADS)

    Li, Ke; Ye, Chuyang; Yang, Zhen; Carass, Aaron; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    Cerebellar peduncles (CPs) are white matter tracts connecting the cerebellum to other brain regions. Automatic segmentation methods of the CPs have been proposed for studying their structure and function. Usually the performance of these methods is evaluated by comparing segmentation results with manual delineations (ground truth). However, when a segmentation method is run on new data (for which no ground truth exists) it is highly desirable to efficiently detect and assess algorithm failures so that these cases can be excluded from scientific analysis. In this work, two outlier detection methods aimed to assess the performance of an automatic CP segmentation algorithm are presented. The first one is a univariate non-parametric method using a box-whisker plot. We first categorize automatic segmentation results of a dataset of diffusion tensor imaging (DTI) scans from 48 subjects as either a success or a failure. We then design three groups of features from the image data of nine categorized failures for failure detection. Results show that most of these features can efficiently detect the true failures. The second method—supervised classification—was employed on a larger DTI dataset of 249 manually categorized subjects. Four classifiers—linear discriminant analysis (LDA), logistic regression (LR), support vector machine (SVM), and random forest classification (RFC)—were trained using the designed features and evaluated using a leave-one-out cross validation. Results show that the LR performs worst among the four classifiers and the other three perform comparably, which demonstrates the feasibility of automatically detecting segmentation failures using classification methods.

  4. Automatic anatomical segmentation of the liver by separation planes

    NASA Astrophysics Data System (ADS)

    Boltcheva, Dobrina; Passat, Nicolas; Agnus, Vincent; Jacob-Da, Marie-Andrée, , Col; Ronse, Christian; Soler, Luc

    2006-03-01

    Surgical planning in oncological liver surgery is based on the location of the 8 anatomical segments according to Couinaud's definition and tumors inside these structures. The detection of the boundaries between the segments is then the first step of the preoperative planning. The proposed method, devoted to binary images of livers segmented from CT-scans, has been designed to delineate these segments. It automatically detects a set of landmarks using a priori anatomical knowledge and differential geometry criteria. These landmarks are then used to position the Couinaud's segments. Validations performed on 7 clinical cases tend to prove that the method is reliable for most of these separation planes.

  5. Random forest classification of large volume structures for visuo-haptic rendering in CT images

    NASA Astrophysics Data System (ADS)

    Mastmeyer, Andre; Fortmeier, Dirk; Handels, Heinz

    2016-03-01

    For patient-specific voxel-based visuo-haptic rendering of CT scans of the liver area, the fully automatic segmentation of large volume structures such as skin, soft tissue, lungs and intestine (risk structures) is important. Using a machine learning based approach, several existing segmentations from 10 segmented gold-standard patients are learned by random decision forests individually and collectively. The core of this paper is feature selection and the application of the learned classifiers to a new patient data set. In a leave-some-out cross-validation, the obtained full volume segmentations are compared to the gold-standard segmentations of the untrained patients. The proposed classifiers use a multi-dimensional feature space to estimate the hidden truth, instead of relying on clinical standard threshold and connectivity based methods. The result of our efficient whole-body section classification are multi-label maps with the considered tissues. For visuo-haptic simulation, other small volume structures would have to be segmented additionally. We also take a look into these structures (liver vessels). For an experimental leave-some-out study consisting of 10 patients, the proposed method performs much more efficiently compared to state of the art methods. In two variants of leave-some-out experiments we obtain best mean DICE ratios of 0.79, 0.97, 0.63 and 0.83 for skin, soft tissue, hard bone and risk structures. Liver structures are segmented with DICE 0.93 for the liver, 0.43 for blood vessels and 0.39 for bile vessels.

  6. Fast Appearance Modeling for Automatic Primary Video Object Segmentation.

    PubMed

    Yang, Jiong; Price, Brian; Shen, Xiaohui; Lin, Zhe; Yuan, Junsong

    2016-02-01

    Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.

  7. Automatic aortic root segmentation in CTA whole-body dataset

    NASA Astrophysics Data System (ADS)

    Gao, Xinpei; Kitslaar, Pieter H.; Scholte, Arthur J. H. A.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke; Reiber, Johan H. C.

    2016-03-01

    Trans-catheter aortic valve replacement (TAVR) is an evolving technique for patients with serious aortic stenosis disease. Typically, in this application a CTA data set is obtained of the patient's arterial system from the subclavian artery to the femoral arteries, to evaluate the quality of the vascular access route and analyze the aortic root to determine if and which prosthesis should be used. In this paper, we concentrate on the automated segmentation of the aortic root. The purpose of this study was to automatically segment the aortic root in computed tomography angiography (CTA) datasets to support TAVR procedures. The method in this study includes 4 major steps. First, the patient's cardiac CTA image was resampled to reduce the computation time. Next, the cardiac CTA image was segmented using an atlas-based approach. The most similar atlas was selected from a total of 8 atlases based on its image similarity to the input CTA image. Third, the aortic root segmentation from the previous step was transferred to the patient's whole-body CTA image by affine registration and refined in the fourth step using a deformable subdivision surface model fitting procedure based on image intensity. The pipeline was applied to 20 patients. The ground truth was created by an analyst who semi-automatically corrected the contours of the automatic method, where necessary. The average Dice similarity index between the segmentations of the automatic method and the ground truth was found to be 0.965±0.024. In conclusion, the current results are very promising.

  8. Research into automatic recognition of joints in human symmetrical movements

    NASA Astrophysics Data System (ADS)

    Fan, Yifang; Li, Zhiyu

    2008-03-01

    High speed photography is a major means of collecting data from human body movement. It enables the automatic identification of joints, which brings great significance to the research, treatment and recovery of injuries, the analysis to the diagnosis of sport techniques and the ergonomics. According to the features that when the adjacent joints of human body are in planetary motion, their distance remains the same, and according to the human body joint movement laws (such as the territory of the articular anatomy and the kinematic features), a new approach is introduced to process the image thresholding of joints filmed by the high speed camera, to automatically identify the joints and to automatically trace the joint points (by labeling markers at the joints). Based upon the closure of marking points, automatic identification can be achieved through thresholding treatment. Due to the screening frequency and the laws of human segment movement, when the marking points have been initialized, their automatic tracking can be achieved with the progressive sequential images.Then the testing results, the data from three-dimensional force platform and the characteristics that human body segment will only rotate around the closer ending segment when the segment has no boding force and only valid to the conservative force all tell that after being analyzed kinematically, the approach is approved to be valid.

  9. Validation tools for image segmentation

    NASA Astrophysics Data System (ADS)

    Padfield, Dirk; Ross, James

    2009-02-01

    A large variety of image analysis tasks require the segmentation of various regions in an image. For example, segmentation is required to generate accurate models of brain pathology that are important components of modern diagnosis and therapy. While the manual delineation of such structures gives accurate information, the automatic segmentation of regions such as the brain and tumors from such images greatly enhances the speed and repeatability of quantifying such structures. The ubiquitous need for such algorithms has lead to a wide range of image segmentation algorithms with various assumptions, parameters, and robustness. The evaluation of such algorithms is an important step in determining their effectiveness. Therefore, rather than developing new segmentation algorithms, we here describe validation methods for segmentation algorithms. Using similarity metrics comparing the automatic to manual segmentations, we demonstrate methods for optimizing the parameter settings for individual cases and across a collection of datasets using the Design of Experiment framework. We then employ statistical analysis methods to compare the effectiveness of various algorithms. We investigate several region-growing algorithms from the Insight Toolkit and compare their accuracy to that of a separate statistical segmentation algorithm. The segmentation algorithms are used with their optimized parameters to automatically segment the brain and tumor regions in MRI images of 10 patients. The validation tools indicate that none of the ITK algorithms studied are able to outperform with statistical significance the statistical segmentation algorithm although they perform reasonably well considering their simplicity.

  10. Automatic segmentation and supervised learning-based selection of nuclei in cancer tissue images.

    PubMed

    Nandy, Kaustav; Gudla, Prabhakar R; Amundsen, Ryan; Meaburn, Karen J; Misteli, Tom; Lockett, Stephen J

    2012-09-01

    Analysis of preferential localization of certain genes within the cell nuclei is emerging as a new technique for the diagnosis of breast cancer. Quantitation requires accurate segmentation of 100-200 cell nuclei in each tissue section to draw a statistically significant result. Thus, for large-scale analysis, manual processing is too time consuming and subjective. Fortuitously, acquired images generally contain many more nuclei than are needed for analysis. Therefore, we developed an integrated workflow that selects, following automatic segmentation, a subpopulation of accurately delineated nuclei for positioning of fluorescence in situ hybridization-labeled genes of interest. Segmentation was performed by a multistage watershed-based algorithm and screening by an artificial neural network-based pattern recognition engine. The performance of the workflow was quantified in terms of the fraction of automatically selected nuclei that were visually confirmed as well segmented and by the boundary accuracy of the well-segmented nuclei relative to a 2D dynamic programming-based reference segmentation method. Application of the method was demonstrated for discriminating normal and cancerous breast tissue sections based on the differential positioning of the HES5 gene. Automatic results agreed with manual analysis in 11 out of 14 cancers, all four normal cases, and all five noncancerous breast disease cases, thus showing the accuracy and robustness of the proposed approach. Published 2012 Wiley Periodicals, Inc.

  11. Automatic assessment of volume asymmetries applied to hip abductor muscles in patients with hip arthroplasty

    NASA Astrophysics Data System (ADS)

    Klemt, Christian; Modat, Marc; Pichat, Jonas; Cardoso, M. J.; Henckel, Joahnn; Hart, Alister; Ourselin, Sebastien

    2015-03-01

    Metal-on-metal (MoM) hip arthroplasties have been utilised over the last 15 years to restore hip function for 1.5 million patients worldwide. Althoug widely used, this hip arthroplasty releases metal wear debris which lead to muscle atrophy. The degree of muscle wastage differs across patients ranging from mild to severe. The longterm outcomes for patients with MoM hip arthroplasty are reduced for increasing degrees of muscle atrophy, highlighting the need to automatically segment pathological muscles. The automated segmentation of pathological soft tissues is challenging as these lack distinct boundaries and morphologically differ across subjects. As a result, there is no method reported in the literature which has been successfully applied to automatically segment pathological muscles. We propose the first automated framework to delineate severely atrophied muscles by applying a novel automated segmentation propagation framework to patients with MoM hip arthroplasty. The proposed algorithm was used to automatically quantify muscle wastage in these patients.

  12. Automatic Organ Localization for Adaptive Radiation Therapy for Prostate Cancer

    DTIC Science & Technology

    2005-05-01

    and provides a framework for task 3. Key Research Accomplishments "* Comparison of manual segmentation with our automatic method, using several...well as manual segmentations by a different rater. "* Computation of the actual cumulative dose delivered to both the cancerous and critical healthy...adaptive treatment of prostate or other cancer. As a result, all such work must be done manually . However, manual segmentation of the tumor and neighboring

  13. Automatic cardiac LV segmentation in MRI using modified graph cuts with smoothness and interslice constraints.

    PubMed

    Albà, Xènia; Figueras I Ventura, Rosa M; Lekadir, Karim; Tobon-Gomez, Catalina; Hoogendoorn, Corné; Frangi, Alejandro F

    2014-12-01

    Magnetic resonance imaging (MRI), specifically late-enhanced MRI, is the standard clinical imaging protocol to assess cardiac viability. Segmentation of myocardial walls is a prerequisite for this assessment. Automatic and robust multisequence segmentation is required to support processing massive quantities of data. A generic rule-based framework to automatically segment the left ventricle myocardium is presented here. We use intensity information, and include shape and interslice smoothness constraints, providing robustness to subject- and study-specific changes. Our automatic initialization considers the geometrical and appearance properties of the left ventricle, as well as interslice information. The segmentation algorithm uses a decoupled, modified graph cut approach with control points, providing a good balance between flexibility and robustness. The method was evaluated on late-enhanced MRI images from a 20-patient in-house database, and on cine-MRI images from a 15-patient open access database, both using as reference manually delineated contours. Segmentation agreement, measured using the Dice coefficient, was 0.81±0.05 and 0.92±0.04 for late-enhanced MRI and cine-MRI, respectively. The method was also compared favorably to a three-dimensional Active Shape Model approach. The experimental validation with two magnetic resonance sequences demonstrates increased accuracy and versatility. © 2013 Wiley Periodicals, Inc.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoang Duc, Albert K., E-mail: albert.hoangduc.ucl@gmail.com; McClelland, Jamie; Modat, Marc

    Purpose: The aim of this study was to assess whether clinically acceptable segmentations of organs at risk (OARs) in head and neck cancer can be obtained automatically and efficiently using the novel “similarity and truth estimation for propagated segmentations” (STEPS) compared to the traditional “simultaneous truth and performance level estimation” (STAPLE) algorithm. Methods: First, 6 OARs were contoured by 2 radiation oncologists in a dataset of 100 patients with head and neck cancer on planning computed tomography images. Each image in the dataset was then automatically segmented with STAPLE and STEPS using those manual contours. Dice similarity coefficient (DSC) wasmore » then used to compare the accuracy of these automatic methods. Second, in a blind experiment, three separate and distinct trained physicians graded manual and automatic segmentations into one of the following three grades: clinically acceptable as determined by universal delineation guidelines (grade A), reasonably acceptable for clinical practice upon manual editing (grade B), and not acceptable (grade C). Finally, STEPS segmentations graded B were selected and one of the physicians manually edited them to grade A. Editing time was recorded. Results: Significant improvements in DSC can be seen when using the STEPS algorithm on large structures such as the brainstem, spinal canal, and left/right parotid compared to the STAPLE algorithm (all p < 0.001). In addition, across all three trained physicians, manual and STEPS segmentation grades were not significantly different for the brainstem, spinal canal, parotid (right/left), and optic chiasm (all p > 0.100). In contrast, STEPS segmentation grades were lower for the eyes (p < 0.001). Across all OARs and all physicians, STEPS produced segmentations graded as well as manual contouring at a rate of 83%, giving a lower bound on this rate of 80% with 95% confidence. Reduction in manual interaction time was on average 61% and 93% when automatic segmentations did and did not, respectively, require manual editing. Conclusions: The STEPS algorithm showed better performance than the STAPLE algorithm in segmenting OARs for radiotherapy of the head and neck. It can automatically produce clinically acceptable segmentation of OARs, with results as relevant as manual contouring for the brainstem, spinal canal, the parotids (left/right), and optic chiasm. A substantial reduction in manual labor was achieved when using STEPS even when manual editing was necessary.« less

  15. In vivo validation of cardiac output assessment in non-standard 3D echocardiographic images

    NASA Astrophysics Data System (ADS)

    Nillesen, M. M.; Lopata, R. G. P.; de Boode, W. P.; Gerrits, I. H.; Huisman, H. J.; Thijssen, J. M.; Kapusta, L.; de Korte, C. L.

    2009-04-01

    Automatic segmentation of the endocardial surface in three-dimensional (3D) echocardiographic images is an important tool to assess left ventricular (LV) geometry and cardiac output (CO). The presence of speckle noise as well as the nonisotropic characteristics of the myocardium impose strong demands on the segmentation algorithm. In the analysis of normal heart geometries of standardized (apical) views, it is advantageous to incorporate a priori knowledge about the shape and appearance of the heart. In contrast, when analyzing abnormal heart geometries, for example in children with congenital malformations, this a priori knowledge about the shape and anatomy of the LV might induce erroneous segmentation results. This study describes a fully automated segmentation method for the analysis of non-standard echocardiographic images, without making strong assumptions on the shape and appearance of the heart. The method was validated in vivo in a piglet model. Real-time 3D echocardiographic image sequences of five piglets were acquired in radiofrequency (rf) format. These ECG-gated full volume images were acquired intra-operatively in a non-standard view. Cardiac blood flow was measured simultaneously by an ultrasound transit time flow probe positioned around the common pulmonary artery. Three-dimensional adaptive filtering using the characteristics of speckle was performed on the demodulated rf data to reduce the influence of speckle noise and to optimize the distinction between blood and myocardium. A gradient-based 3D deformable simplex mesh was then used to segment the endocardial surface. A gradient and a speed force were included as external forces of the model. To balance data fitting and mesh regularity, one fixed set of weighting parameters of internal, gradient and speed forces was used for all data sets. End-diastolic and end-systolic volumes were computed from the segmented endocardial surface. The cardiac output derived from this automatic segmentation was validated quantitatively by comparing it with the CO values measured from the volume flow in the pulmonary artery. Relative bias varied between 0 and -17%, where the nominal accuracy of the flow meter is in the order of 10%. Assuming the CO measurements from the flow probe as a gold standard, excellent correlation (r = 0.99) was observed with the CO estimates obtained from image segmentation.

  16. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    PubMed

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-07

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  17. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography

    NASA Astrophysics Data System (ADS)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-01

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  18. Validation of automated lobe segmentation on paired inspiratory-expiratory chest CT in 8-14 year-old children with cystic fibrosis.

    PubMed

    Konietzke, Philip; Weinheimer, Oliver; Wielpütz, Mark O; Savage, Dasha; Ziyeh, Tiglath; Tu, Christin; Newman, Beverly; Galbán, Craig J; Mall, Marcus A; Kauczor, Hans-Ulrich; Robinson, Terry E

    2018-01-01

    Densitometry on paired inspiratory and expiratory multidetector computed tomography (MDCT) for the quantification of air trapping is an important approach to assess functional changes in airways diseases such as cystic fibrosis (CF). For a regional analysis of functional deficits, an accurate lobe segmentation algorithm applicable to inspiratory and expiratory scans is beneficial. We developed a fully automated lobe segmentation algorithm, and subsequently validated automatically generated lobe masks (ALM) against manually corrected lobe masks (MLM). Paired inspiratory and expiratory CTs from 16 children with CF (mean age 11.1±2.4) acquired at 4 time-points (baseline, 3mon, 12mon, 24mon) with 2 kernels (B30f, B60f) were segmented, resulting in 256 ALM. After manual correction spatial overlap (Dice index) and mean differences in lung volume and air trapping were calculated for ALM vs. MLM. The mean overlap calculated with Dice index between ALM and MLM was 0.98±0.02 on inspiratory, and 0.86±0.07 on expiratory CT. If 6 lobes were segmented (lingula treated as separate lobe), the mean overlap was 0.97±0.02 on inspiratory, and 0.83±0.08 on expiratory CT. The mean differences in lobar volumes calculated in accordance with the approach of Bland and Altman were generally low, ranging on inspiratory CT from 5.7±52.23cm3 for the right upper lobe to 17.41±14.92cm3 for the right lower lobe. Higher differences were noted on expiratory CT. The mean differences for air trapping were even lower, ranging from 0±0.01 for the right upper lobe to 0.03±0.03 for the left lower lobe. Automatic lobe segmentation delivers excellent results for inspiratory and good results for expiratory CT. It may become an important component for lobe-based quantification of functional deficits in cystic fibrosis lung disease, reducing necessity for user-interaction in CT post-processing.

  19. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Baochun; Huang, Cheng; Zhou, Shoujun

    Purpose: A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. Methods: The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-levelmore » active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods—3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration—are used to establish shape correspondence. Results: The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. Conclusions: The proposed automatic approach achieves robust, accurate, and fast liver segmentation for 3D CTce datasets. The AdaBoost voxel classifier can detect liver area quickly without errors and provides sufficient liver shape information for model initialization. The AdaBoost profile classifier achieves sufficient accuracy and greatly decreases segmentation time. These results show that the proposed segmentation method achieves a level of accuracy comparable to that of state-of-the-art automatic methods based on ASM.« less

  20. Fast automatic 3D liver segmentation based on a three-level AdaBoost-guided active shape model.

    PubMed

    He, Baochun; Huang, Cheng; Sharp, Gregory; Zhou, Shoujun; Hu, Qingmao; Fang, Chihua; Fan, Yingfang; Jia, Fucang

    2016-05-01

    A robust, automatic, and rapid method for liver delineation is urgently needed for the diagnosis and treatment of liver disorders. Until now, the high variability in liver shape, local image artifacts, and the presence of tumors have complicated the development of automatic 3D liver segmentation. In this study, an automatic three-level AdaBoost-guided active shape model (ASM) is proposed for the segmentation of the liver based on enhanced computed tomography images in a robust and fast manner, with an emphasis on the detection of tumors. The AdaBoost voxel classifier and AdaBoost profile classifier were used to automatically guide three-level active shape modeling. In the first level of model initialization, fast automatic liver segmentation by an AdaBoost voxel classifier method is proposed. A shape model is then initialized by registration with the resulting rough segmentation. In the second level of active shape model fitting, a prior model based on the two-class AdaBoost profile classifier is proposed to identify the optimal surface. In the third level, a deformable simplex mesh with profile probability and curvature constraint as the external force is used to refine the shape fitting result. In total, three registration methods-3D similarity registration, probability atlas B-spline, and their proposed deformable closest point registration-are used to establish shape correspondence. The proposed method was evaluated using three public challenge datasets: 3Dircadb1, SLIVER07, and Visceral Anatomy3. The results showed that our approach performs with promising efficiency, with an average of 35 s, and accuracy, with an average Dice similarity coefficient (DSC) of 0.94 ± 0.02, 0.96 ± 0.01, and 0.94 ± 0.02 for the 3Dircadb1, SLIVER07, and Anatomy3 training datasets, respectively. The DSC of the SLIVER07 testing and Anatomy3 unseen testing datasets were 0.964 and 0.933, respectively. The proposed automatic approach achieves robust, accurate, and fast liver segmentation for 3D CTce datasets. The AdaBoost voxel classifier can detect liver area quickly without errors and provides sufficient liver shape information for model initialization. The AdaBoost profile classifier achieves sufficient accuracy and greatly decreases segmentation time. These results show that the proposed segmentation method achieves a level of accuracy comparable to that of state-of-the-art automatic methods based on ASM.

  1. Three-dimensional murine airway segmentation in micro-CT images

    NASA Astrophysics Data System (ADS)

    Shi, Lijun; Thiesse, Jacqueline; McLennan, Geoffrey; Hoffman, Eric A.; Reinhardt, Joseph M.

    2007-03-01

    Thoracic imaging for small animals has emerged as an important tool for monitoring pulmonary disease progression and therapy response in genetically engineered animals. Micro-CT is becoming the standard thoracic imaging modality in small animal imaging because it can produce high-resolution images of the lung parenchyma, vasculature, and airways. Segmentation, measurement, and visualization of the airway tree is an important step in pulmonary image analysis. However, manual analysis of the airway tree in micro-CT images can be extremely time-consuming since a typical dataset is usually on the order of several gigabytes in size. Automated and semi-automated tools for micro-CT airway analysis are desirable. In this paper, we propose an automatic airway segmentation method for in vivo micro-CT images of the murine lung and validate our method by comparing the automatic results to manual tracing. Our method is based primarily on grayscale morphology. The results show good visual matches between manually segmented and automatically segmented trees. The average true positive volume fraction compared to manual analysis is 91.61%. The overall runtime for the automatic method is on the order of 30 minutes per volume compared to several hours to a few days for manual analysis.

  2. Comparison of liver volumetry on contrast‐enhanced CT images: one semiautomatic and two automatic approaches

    PubMed Central

    Cai, Wei; He, Baochun; Fang, Chihua

    2016-01-01

    This study was to evaluate the accuracy, consistency, and efficiency of three liver volumetry methods— one interactive method, an in‐house‐developed 3D medical Image Analysis (3DMIA) system, one automatic active shape model (ASM)‐based segmentation, and one automatic probabilistic atlas (PA)‐guided segmentation method on clinical contrast‐enhanced CT images. Forty‐two datasets, including 27 normal liver and 15 space‐occupying liver lesion patients, were retrospectively included in this study. The three methods — one semiautomatic 3DMIA, one automatic ASM‐based, and one automatic PA‐based liver volumetry — achieved an accuracy with VD (volume difference) of −1.69%,−2.75%, and 3.06% in the normal group, respectively, and with VD of −3.20%,−3.35%, and 4.14% in the space‐occupying lesion group, respectively. However, the three methods achieved an efficiency of 27.63 mins, 1.26 mins, 1.18 mins on average, respectively, compared with the manual volumetry, which took 43.98 mins. The high intraclass correlation coefficient between the three methods and the manual method indicated an excellent agreement on liver volumetry. Significant differences in segmentation time were observed between the three methods (3DMIA, ASM, and PA) and the manual volumetry (p<0.001), as well as between the automatic volumetries (ASM and PA) and the semiautomatic volumetry (3DMIA) (p<0.001). The semiautomatic interactive 3DMIA, automatic ASM‐based, and automatic PA‐based liver volumetry agreed well with manual gold standard in both the normal liver group and the space‐occupying lesion group. The ASM‐ and PA‐based automatic segmentation have better efficiency in clinical use. PACS number(s): 87.55.‐x PMID:27929487

  3. Comparison of liver volumetry on contrast-enhanced CT images: one semiautomatic and two automatic approaches.

    PubMed

    Cai, Wei; He, Baochun; Fan, Yingfang; Fang, Chihua; Jia, Fucang

    2016-11-08

    This study was to evaluate the accuracy, consistency, and efficiency of three liver volumetry methods- one interactive method, an in-house-developed 3D medical Image Analysis (3DMIA) system, one automatic active shape model (ASM)-based segmentation, and one automatic probabilistic atlas (PA)-guided segmentation method on clinical contrast-enhanced CT images. Forty-two datasets, including 27 normal liver and 15 space-occupying liver lesion patients, were retrospectively included in this study. The three methods - one semiautomatic 3DMIA, one automatic ASM-based, and one automatic PA-based liver volumetry - achieved an accuracy with VD (volume difference) of -1.69%, -2.75%, and 3.06% in the normal group, respectively, and with VD of -3.20%, -3.35%, and 4.14% in the space-occupying lesion group, respectively. However, the three methods achieved an efficiency of 27.63 mins, 1.26 mins, 1.18 mins on average, respectively, compared with the manual volumetry, which took 43.98 mins. The high intraclass correlation coefficient between the three methods and the manual method indicated an excel-lent agreement on liver volumetry. Significant differences in segmentation time were observed between the three methods (3DMIA, ASM, and PA) and the manual volumetry (p < 0.001), as well as between the automatic volumetries (ASM and PA) and the semiautomatic volumetry (3DMIA) (p < 0.001). The semiautomatic interactive 3DMIA, automatic ASM-based, and automatic PA-based liver volum-etry agreed well with manual gold standard in both the normal liver group and the space-occupying lesion group. The ASM- and PA-based automatic segmentation have better efficiency in clinical use. © 2016 The Authors.

  4. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.

    PubMed

    Men, Kuo; Dai, Jianrong; Li, Yexiong

    2017-12-01

    Delineation of the clinical target volume (CTV) and organs at risk (OARs) is very important for radiotherapy but is time-consuming and prone to inter-observer variation. Here, we proposed a novel deep dilated convolutional neural network (DDCNN)-based method for fast and consistent auto-segmentation of these structures. Our DDCNN method was an end-to-end architecture enabling fast training and testing. Specifically, it employed a novel multiple-scale convolutional architecture to extract multiple-scale context features in the early layers, which contain the original information on fine texture and boundaries and which are very useful for accurate auto-segmentation. In addition, it enlarged the receptive fields of dilated convolutions at the end of networks to capture complementary context features. Then, it replaced the fully connected layers with fully convolutional layers to achieve pixel-wise segmentation. We used data from 278 patients with rectal cancer for evaluation. The CTV and OARs were delineated and validated by senior radiation oncologists in the planning computed tomography (CT) images. A total of 218 patients chosen randomly were used for training, and the remaining 60 for validation. The Dice similarity coefficient (DSC) was used to measure segmentation accuracy. Performance was evaluated on segmentation of the CTV and OARs. In addition, the performance of DDCNN was compared with that of U-Net. The proposed DDCNN method outperformed the U-Net for all segmentations, and the average DSC value of DDCNN was 3.8% higher than that of U-Net. Mean DSC values of DDCNN were 87.7% for the CTV, 93.4% for the bladder, 92.1% for the left femoral head, 92.3% for the right femoral head, 65.3% for the intestine, and 61.8% for the colon. The test time was 45 s per patient for segmentation of all the CTV, bladder, left and right femoral heads, colon, and intestine. We also assessed our approaches and results with those in the literature: our system showed superior performance and faster speed. These data suggest that DDCNN can be used to segment the CTV and OARs accurately and efficiently. It was invariant to the body size, body shape, and age of the patients. DDCNN could improve the consistency of contouring and streamline radiotherapy workflows. © 2017 American Association of Physicists in Medicine.

  5. KSC-99pp1183

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the newly arrived S1 truss, a segment of the International Space Station (ISS), is offloaded from NASA's Super Guppy aircraft. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is being transferred to the Operations and Checkout Building

  6. Multiple supervised residual network for osteosarcoma segmentation in CT images.

    PubMed

    Zhang, Rui; Huang, Lin; Xia, Wei; Zhang, Bo; Qiu, Bensheng; Gao, Xin

    2018-01-01

    Automatic and accurate segmentation of osteosarcoma region in CT images can help doctor make a reasonable treatment plan, thus improving cure rate. In this paper, a multiple supervised residual network (MSRN) was proposed for osteosarcoma image segmentation. Three supervised side output modules were added to the residual network. The shallow side output module could extract image shape features, such as edge features and texture features. The deep side output module could extract semantic features. The side output module could compute the loss value between output probability map and ground truth and back-propagate the loss information. Then, the parameters of residual network could be modified by gradient descent method. This could guide the multi-scale feature learning of the network. The final segmentation results were obtained by fusing the results output by the three side output modules. A total of 1900 CT images from 15 osteosarcoma patients were used to train the network and a total of 405 CT images from another 8 osteosarcoma patients were used to test the network. Results indicated that MSRN enabled a dice similarity coefficient (DSC) of 89.22%, a sensitivity of 88.74% and a F1-measure of 0.9305, which were larger than those obtained by fully convolutional network (FCN) and U-net. Thus, MSRN for osteosarcoma segmentation could give more accurate results than FCN and U-Net. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    PubMed

    Wang, Jun Yi; Ngo, Michael M; Hessl, David; Hagerman, Randi J; Rivera, Susan M

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging studies, and potentially for segmenting other neural regions as well.

  8. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem

    PubMed Central

    Wang, Jun Yi; Ngo, Michael M.; Hessl, David; Hagerman, Randi J.; Rivera, Susan M.

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer’s segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging studies, and potentially for segmenting other neural regions as well. PMID:27213683

  9. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.

    PubMed

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle

    2016-03-08

    On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual con-tours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (< 1 ms) with a satisfying accuracy (Dice = 0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on-board MR-IGRT system.

  10. Automatic segmentation of relevant structures in DCE MR mammograms

    NASA Astrophysics Data System (ADS)

    Koenig, Matthias; Laue, Hendrik; Boehler, Tobias; Peitgen, Heinz-Otto

    2007-03-01

    The automatic segmentation of relevant structures such as skin edge, chest wall, or nipple in dynamic contrast enhanced MR imaging (DCE MRI) of the breast provides additional information for computer aided diagnosis (CAD) systems. Automatic reporting using BI-RADS criteria benefits of information about location of those structures. Lesion positions can be automatically described relatively to such reference structures for reporting purposes. Furthermore, this information can assist data reduction for computation expensive preprocessing such as registration, or for visualization of only the segments of current interest. In this paper, a novel automatic method for determining the air-breast boundary resp. skin edge, for approximation of the chest wall, and locating of the nipples is presented. The method consists of several steps which are built on top of each other. Automatic threshold computation leads to the air-breast boundary which is then analyzed to determine the location of the nipple. Finally, results of both steps are starting point for approximation of the chest wall. The proposed process was evaluated on a large data set of DCE MRI recorded by T1 sequences and yielded reasonable results in all cases.

  11. TU-H-CAMPUS-JeP2-05: Can Automatic Delineation of Cardiac Substructures On Noncontrast CT Be Used for Cardiac Toxicity Analysis?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y; Liao, Z; Jiang, W

    Purpose: To evaluate the feasibility of using an automatic segmentation tool to delineate cardiac substructures from computed tomography (CT) images for cardiac toxicity analysis for non-small cell lung cancer (NSCLC) patients after radiotherapy. Methods: A multi-atlas segmentation tool developed in-house was used to delineate eleven cardiac substructures including the whole heart, four heart chambers, and six greater vessels automatically from the averaged 4DCT planning images for 49 NSCLC patients. The automatic segmented contours were edited appropriately by two experienced radiation oncologists. The modified contours were compared with the auto-segmented contours using Dice similarity coefficient (DSC) and mean surface distance (MSD)more » to evaluate how much modification was needed. In addition, the dose volume histogram (DVH) of the modified contours were compared with that of the auto-segmented contours to evaluate the dosimetric difference between modified and auto-segmented contours. Results: Of the eleven structures, the averaged DSC values ranged from 0.73 ± 0.08 to 0.95 ± 0.04 and the averaged MSD values ranged from 1.3 ± 0.6 mm to 2.9 ± 5.1mm for the 49 patients. Overall, the modification is small. The pulmonary vein (PV) and the inferior vena cava required the most modifications. The V30 (volume receiving 30 Gy or above) for the whole heart and the mean dose to the whole heart and four heart chambers did not show statistically significant difference between modified and auto-segmented contours. The maximum dose to the greater vessels did not show statistically significant difference except for the PV. Conclusion: The automatic segmentation of the cardiac substructures did not require substantial modification. The dosimetric evaluation showed no statistically significant difference between auto-segmented and modified contours except for the PV, which suggests that auto-segmented contours for the cardiac dose response study are feasible in the clinical practice with a minor modification to the PV vessel.« less

  12. Impact of the accuracy of automatic segmentation of cell nuclei clusters on classification of thyroid follicular lesions.

    PubMed

    Jung, Chanho; Kim, Changick

    2014-08-01

    Automatic segmentation of cell nuclei clusters is a key building block in systems for quantitative analysis of microscopy cell images. For that reason, it has received a great attention over the last decade, and diverse automatic approaches to segment clustered nuclei with varying levels of performance under different test conditions have been proposed in literature. To the best of our knowledge, however, so far there is no comparative study on the methods. This study is a first attempt to fill this research gap. More precisely, the purpose of this study is to present an objective performance comparison of existing state-of-the-art segmentation methods. Particularly, the impact of their accuracy on classification of thyroid follicular lesions is also investigated "quantitatively" under the same experimental condition, to evaluate the applicability of the methods. Thirteen different segmentation approaches are compared in terms of not only errors in nuclei segmentation and delineation, but also their impact on the performance of system to classify thyroid follicular lesions using different metrics (e.g., diagnostic accuracy, sensitivity, specificity, etc.). Extensive experiments have been conducted on a total of 204 digitized thyroid biopsy specimens. Our study demonstrates that significant diagnostic errors can be avoided using more advanced segmentation approaches. We believe that this comprehensive comparative study serves as a reference point and guide for developers and practitioners in choosing an appropriate automatic segmentation technique adopted for building automated systems for specifically classifying follicular thyroid lesions. © 2014 International Society for Advancement of Cytometry.

  13. Automatic segmentation and co-registration of gated CT angiography datasets: measuring abdominal aortic pulsatility

    NASA Astrophysics Data System (ADS)

    Wentz, Robert; Manduca, Armando; Fletcher, J. G.; Siddiki, Hassan; Shields, Raymond C.; Vrtiska, Terri; Spencer, Garrett; Primak, Andrew N.; Zhang, Jie; Nielson, Theresa; McCollough, Cynthia; Yu, Lifeng

    2007-03-01

    Purpose: To develop robust, novel segmentation and co-registration software to analyze temporally overlapping CT angiography datasets, with an aim to permit automated measurement of regional aortic pulsatility in patients with abdominal aortic aneurysms. Methods: We perform retrospective gated CT angiography in patients with abdominal aortic aneurysms. Multiple, temporally overlapping, time-resolved CT angiography datasets are reconstructed over the cardiac cycle, with aortic segmentation performed using a priori anatomic assumptions for the aorta and heart. Visual quality assessment is performed following automatic segmentation with manual editing. Following subsequent centerline generation, centerlines are cross-registered across phases, with internal validation of co-registration performed by examining registration at the regions of greatest diameter change (i.e. when the second derivative is maximal). Results: We have performed gated CT angiography in 60 patients. Automatic seed placement is successful in 79% of datasets, requiring either no editing (70%) or minimal editing (less than 1 minute; 12%). Causes of error include segmentation into adjacent, high-attenuating, nonvascular tissues; small segmentation errors associated with calcified plaque; and segmentation of non-renal, small paralumbar arteries. Internal validation of cross-registration demonstrates appropriate registration in our patient population. In general, we observed that aortic pulsatility can vary along the course of the abdominal aorta. Pulsation can also vary within an aneurysm as well as between aneurysms, but the clinical significance of these findings remain unknown. Conclusions: Visualization of large vessel pulsatility is possible using ECG-gated CT angiography, partial scan reconstruction, automatic segmentation, centerline generation, and coregistration of temporally resolved datasets.

  14. Automatic pelvis segmentation from x-ray images of a mouse model

    NASA Astrophysics Data System (ADS)

    Al Okashi, Omar M.; Du, Hongbo; Al-Assam, Hisham

    2017-05-01

    The automatic detection and quantification of skeletal structures has a variety of different applications for biological research. Accurate segmentation of the pelvis from X-ray images of mice in a high-throughput project such as the Mouse Genomes Project not only saves time and cost but also helps achieving an unbiased quantitative analysis within the phenotyping pipeline. This paper proposes an automatic solution for pelvis segmentation based on structural and orientation properties of the pelvis in X-ray images. The solution consists of three stages including pre-processing image to extract pelvis area, initial pelvis mask preparation and final pelvis segmentation. Experimental results on a set of 100 X-ray images showed consistent performance of the algorithm. The automated solution overcomes the weaknesses of a manual annotation procedure where intra- and inter-observer variations cannot be avoided.

  15. Automatic vasculature identification in coronary angiograms by adaptive geometrical tracking.

    PubMed

    Xiao, Ruoxiu; Yang, Jian; Goyal, Mahima; Liu, Yue; Wang, Yongtian

    2013-01-01

    As the uneven distribution of contrast agents and the perspective projection principle of X-ray, the vasculatures in angiographic image are with low contrast and are generally superposed with other organic tissues; therefore, it is very difficult to identify the vasculature and quantitatively estimate the blood flow directly from angiographic images. In this paper, we propose a fully automatic algorithm named adaptive geometrical vessel tracking (AGVT) for coronary artery identification in X-ray angiograms. Initially, the ridge enhancement (RE) image is obtained utilizing multiscale Hessian information. Then, automatic initialization procedures including seed points detection, and initial directions determination are performed on the RE image. The extracted ridge points can be adjusted to the geometrical centerline points adaptively through diameter estimation. Bifurcations are identified by discriminating connecting relationship of the tracked ridge points. Finally, all the tracked centerlines are merged and smoothed by classifying the connecting components on the vascular structures. Synthetic angiographic images and clinical angiograms are used to evaluate the performance of the proposed algorithm. The proposed algorithm is compared with other two vascular tracking techniques in terms of the efficiency and accuracy, which demonstrate successful applications of the proposed segmentation and extraction scheme in vasculature identification.

  16. Method for automatic measurement of second language speaking proficiency

    NASA Astrophysics Data System (ADS)

    Bernstein, Jared; Balogh, Jennifer

    2005-04-01

    Spoken language proficiency is intuitively related to effective and efficient communication in spoken interactions. However, it is difficult to derive a reliable estimate of spoken language proficiency by situated elicitation and evaluation of a person's communicative behavior. This paper describes the task structure and scoring logic of a group of fully automatic spoken language proficiency tests (for English, Spanish and Dutch) that are delivered via telephone or Internet. Test items are presented in spoken form and require a spoken response. Each test is automatically-scored and primarily based on short, decontextualized tasks that elicit integrated listening and speaking performances. The tests present several types of tasks to candidates, including sentence repetition, question answering, sentence construction, and story retelling. The spoken responses are scored according to the lexical content of the response and a set of acoustic base measures on segments, words and phrases, which are scaled with IRT methods or parametrically combined to optimize fit to human listener judgments. Most responses are isolated spoken phrases and sentences that are scored according to their linguistic content, their latency, and their fluency and pronunciation. The item development procedures and item norming are described.

  17. Weakly supervised automatic segmentation and 3D modeling of the knee joint from MR images

    NASA Astrophysics Data System (ADS)

    Amami, Amal; Ben Azouz, Zouhour

    2013-12-01

    Automatic segmentation and 3D modeling of the knee joint from MR images, is a challenging task. Most of the existing techniques require the tedious manual segmentation of a training set of MRIs. We present an approach that necessitates the manual segmentation of one MR image. It is based on a volumetric active appearance model. First, a dense tetrahedral mesh is automatically created on a reference MR image that is arbitrary selected. Second, a pairwise non-rigid registration between each MRI from a training set and the reference MRI is computed. The non-rigid registration is based on a piece-wise affine deformation using the created tetrahedral mesh. The minimum description length is then used to bring all the MR images into a correspondence. An average image and tetrahedral mesh, as well as a set of main modes of variations, are generated using the established correspondence. Any manual segmentation of the average MRI can be mapped to other MR images using the AAM. The proposed approach has the advantage of simultaneously generating 3D reconstructions of the surface as well as a 3D solid model of the knee joint. The generated surfaces and tetrahedral meshes present the interesting property of fulfilling a correspondence between different MR images. This paper shows preliminary results of the proposed approach. It demonstrates the automatic segmentation and 3D reconstruction of a knee joint obtained by mapping a manual segmentation of a reference image.

  18. Segmenting the Femoral Head and Acetabulum in the Hip Joint Automatically Using a Multi-Step Scheme

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Cheng, Yuanzhi; Fu, Yili; Zhou, Shengjun; Tamura, Shinichi

    We describe a multi-step approach for automatic segmentation of the femoral head and the acetabulum in the hip joint from three dimensional (3D) CT images. Our segmentation method consists of the following steps: 1) construction of the valley-emphasized image by subtracting valleys from the original images; 2) initial segmentation of the bone regions by using conventional techniques including the initial threshold and binary morphological operations from the valley-emphasized image; 3) further segmentation of the bone regions by using the iterative adaptive classification with the initial segmentation result; 4) detection of the rough bone boundaries based on the segmented bone regions; 5) 3D reconstruction of the bone surface using the rough bone boundaries obtained in step 4) by a network of triangles; 6) correction of all vertices of the 3D bone surface based on the normal direction of vertices; 7) adjustment of the bone surface based on the corrected vertices. We evaluated our approach on 35 CT patient data sets. Our experimental results show that our segmentation algorithm is more accurate and robust against noise than other conventional approaches for automatic segmentation of the femoral head and the acetabulum. Average root-mean-square (RMS) distance from manual reference segmentations created by experienced users was approximately 0.68mm (in-plane resolution of the CT data).

  19. Multiple Hypotheses Image Segmentation and Classification With Application to Dietary Assessment

    PubMed Central

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J.; Delp, Edward J.

    2016-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier’s confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback. PMID:25561457

  20. Multiple hypotheses image segmentation and classification with application to dietary assessment.

    PubMed

    Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J; Delp, Edward J

    2015-01-01

    We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier's confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback.

  1. Detection of buried magnetic objects by a SQUID gradiometer system

    NASA Astrophysics Data System (ADS)

    Meyer, Hans-Georg; Hartung, Konrad; Linzen, Sven; Schneider, Michael; Stolz, Ronny; Fried, Wolfgang; Hauspurg, Sebastian

    2009-05-01

    We present a magnetic detection system based on superconducting gradiometric sensors (SQUID gradiometers). The system provides a unique fast mapping of large areas with a high resolution of the magnetic field gradient as well as the local position. A main part of this work is the localization and classification of magnetic objects in the ground by automatic interpretation of geomagnetic field gradients, measured by the SQUID system. In accordance with specific features the field is decomposed into segments, which allow inferences to possible objects in the ground. The global consideration of object describing properties and their optimization using error minimization methods allows the reconstruction of superimposed features and detection of buried objects. The analysis system of measured geomagnetic fields works fully automatically. By a given surface of area-measured gradients the algorithm determines within numerical limits the absolute position of objects including depth with sub-pixel accuracy and allows an arbitrary position and attitude of sources. Several SQUID gradiometer data sets were used to show the applicability of the analysis algorithm.

  2. Automatic Synthetic Aperture Radar based oil spill detection and performance estimation via a semi-automatic operational service benchmark.

    PubMed

    Singha, Suman; Vespe, Michele; Trieschmann, Olaf

    2013-08-15

    Today the health of ocean is in danger as it was never before mainly due to man-made pollutions. Operational activities show regular occurrence of accidental and deliberate oil spill in European waters. Since the areas covered by oil spills are usually large, satellite remote sensing particularly Synthetic Aperture Radar represents an effective option for operational oil spill detection. This paper describes the development of a fully automated approach for oil spill detection from SAR. Total of 41 feature parameters extracted from each segmented dark spot for oil spill and 'look-alike' classification and ranked according to their importance. The classification algorithm is based on a two-stage processing that combines classification tree analysis and fuzzy logic. An initial evaluation of this methodology on a large dataset has been carried out and degree of agreement between results from proposed algorithm and human analyst was estimated between 85% and 93% respectively for ENVISAT and RADARSAT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Is STAPLE algorithm confident to assess segmentation methods in PET imaging?

    NASA Astrophysics Data System (ADS)

    Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Baillet, Clio; Vermandel, Maximilien

    2015-12-01

    Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians’ manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging. Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used. Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results. The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging.

  4. Is STAPLE algorithm confident to assess segmentation methods in PET imaging?

    PubMed

    Dewalle-Vignion, Anne-Sophie; Betrouni, Nacim; Baillet, Clio; Vermandel, Maximilien

    2015-12-21

    Accurate tumor segmentation in [18F]-fluorodeoxyglucose positron emission tomography is crucial for tumor response assessment and target volume definition in radiation therapy. Evaluation of segmentation methods from clinical data without ground truth is usually based on physicians' manual delineations. In this context, the simultaneous truth and performance level estimation (STAPLE) algorithm could be useful to manage the multi-observers variability. In this paper, we evaluated how this algorithm could accurately estimate the ground truth in PET imaging. Complete evaluation study using different criteria was performed on simulated data. The STAPLE algorithm was applied to manual and automatic segmentation results. A specific configuration of the implementation provided by the Computational Radiology Laboratory was used. Consensus obtained by the STAPLE algorithm from manual delineations appeared to be more accurate than manual delineations themselves (80% of overlap). An improvement of the accuracy was also observed when applying the STAPLE algorithm to automatic segmentations results. The STAPLE algorithm, with the configuration used in this paper, is more appropriate than manual delineations alone or automatic segmentations results alone to estimate the ground truth in PET imaging. Therefore, it might be preferred to assess the accuracy of tumor segmentation methods in PET imaging.

  5. A superpixel-based framework for automatic tumor segmentation on breast DCE-MRI

    NASA Astrophysics Data System (ADS)

    Yu, Ning; Wu, Jia; Weinstein, Susan P.; Gaonkar, Bilwaj; Keller, Brad M.; Ashraf, Ahmed B.; Jiang, YunQing; Davatzikos, Christos; Conant, Emily F.; Kontos, Despina

    2015-03-01

    Accurate and efficient automated tumor segmentation in breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is highly desirable for computer-aided tumor diagnosis. We propose a novel automatic segmentation framework which incorporates mean-shift smoothing, superpixel-wise classification, pixel-wise graph-cuts partitioning, and morphological refinement. A set of 15 breast DCE-MR images, obtained from the American College of Radiology Imaging Network (ACRIN) 6657 I-SPY trial, were manually segmented to generate tumor masks (as ground truth) and breast masks (as regions of interest). Four state-of-the-art segmentation approaches based on diverse models were also utilized for comparison. Based on five standard evaluation metrics for segmentation, the proposed framework consistently outperformed all other approaches. The performance of the proposed framework was: 1) 0.83 for Dice similarity coefficient, 2) 0.96 for pixel-wise accuracy, 3) 0.72 for VOC score, 4) 0.79 mm for mean absolute difference, and 5) 11.71 mm for maximum Hausdorff distance, which surpassed the second best method (i.e., adaptive geodesic transformation), a semi-automatic algorithm depending on precise initialization. Our results suggest promising potential applications of our segmentation framework in assisting analysis of breast carcinomas.

  6. Semi-automatic tracking, smoothing and segmentation of hyoid bone motion from videofluoroscopic swallowing study.

    PubMed

    Kim, Won-Seok; Zeng, Pengcheng; Shi, Jian Qing; Lee, Youngjo; Paik, Nam-Jong

    2017-01-01

    Motion analysis of the hyoid bone via videofluoroscopic study has been used in clinical research, but the classical manual tracking method is generally labor intensive and time consuming. Although some automatic tracking methods have been developed, masked points could not be tracked and smoothing and segmentation, which are necessary for functional motion analysis prior to registration, were not provided by the previous software. We developed software to track the hyoid bone motion semi-automatically. It works even in the situation where the hyoid bone is masked by the mandible and has been validated in dysphagia patients with stroke. In addition, we added the function of semi-automatic smoothing and segmentation. A total of 30 patients' data were used to develop the software, and data collected from 17 patients were used for validation, of which the trajectories of 8 patients were partly masked. Pearson correlation coefficients between the manual and automatic tracking are high and statistically significant (0.942 to 0.991, P-value<0.0001). Relative errors between automatic tracking and manual tracking in terms of the x-axis, y-axis and 2D range of hyoid bone excursion range from 3.3% to 9.2%. We also developed an automatic method to segment each hyoid bone trajectory into four phases (elevation phase, anterior movement phase, descending phase and returning phase). The semi-automatic hyoid bone tracking from VFSS data by our software is valid compared to the conventional manual tracking method. In addition, the ability of automatic indication to switch the automatic mode to manual mode in extreme cases and calibration without attaching the radiopaque object is convenient and useful for users. Semi-automatic smoothing and segmentation provide further information for functional motion analysis which is beneficial to further statistical analysis such as functional classification and prognostication for dysphagia. Therefore, this software could provide the researchers in the field of dysphagia with a convenient, useful, and all-in-one platform for analyzing the hyoid bone motion. Further development of our method to track the other swallowing related structures or objects such as epiglottis and bolus and to carry out the 2D curve registration may be needed for a more comprehensive functional data analysis for dysphagia with big data.

  7. Brain tumor segmentation from multimodal magnetic resonance images via sparse representation.

    PubMed

    Li, Yuhong; Jia, Fucang; Qin, Jing

    2016-10-01

    Accurately segmenting and quantifying brain gliomas from magnetic resonance (MR) images remains a challenging task because of the large spatial and structural variability among brain tumors. To develop a fully automatic and accurate brain tumor segmentation algorithm, we present a probabilistic model of multimodal MR brain tumor segmentation. This model combines sparse representation and the Markov random field (MRF) to solve the spatial and structural variability problem. We formulate the tumor segmentation problem as a multi-classification task by labeling each voxel as the maximum posterior probability. We estimate the maximum a posteriori (MAP) probability by introducing the sparse representation into a likelihood probability and a MRF into the prior probability. Considering the MAP as an NP-hard problem, we convert the maximum posterior probability estimation into a minimum energy optimization problem and employ graph cuts to find the solution to the MAP estimation. Our method is evaluated using the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013) and obtained Dice coefficient metric values of 0.85, 0.75, and 0.69 on the high-grade Challenge data set, 0.73, 0.56, and 0.54 on the high-grade Challenge LeaderBoard data set, and 0.84, 0.54, and 0.57 on the low-grade Challenge data set for the complete, core, and enhancing regions. The experimental results show that the proposed algorithm is valid and ranks 2nd compared with the state-of-the-art tumor segmentation algorithms in the MICCAI BRATS 2013 challenge. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. 3D variational brain tumor segmentation using Dirichlet priors on a clustered feature set.

    PubMed

    Popuri, Karteek; Cobzas, Dana; Murtha, Albert; Jägersand, Martin

    2012-07-01

    Brain tumor segmentation is a required step before any radiation treatment or surgery. When performed manually, segmentation is time consuming and prone to human errors. Therefore, there have been significant efforts to automate the process. But, automatic tumor segmentation from MRI data is a particularly challenging task. Tumors have a large diversity in shape and appearance with intensities overlapping the normal brain tissues. In addition, an expanding tumor can also deflect and deform nearby tissue. In our work, we propose an automatic brain tumor segmentation method that addresses these last two difficult problems. We use the available MRI modalities (T1, T1c, T2) and their texture characteristics to construct a multidimensional feature set. Then, we extract clusters which provide a compact representation of the essential information in these features. The main idea in this work is to incorporate these clustered features into the 3D variational segmentation framework. In contrast to previous variational approaches, we propose a segmentation method that evolves the contour in a supervised fashion. The segmentation boundary is driven by the learned region statistics in the cluster space. We incorporate prior knowledge about the normal brain tissue appearance during the estimation of these region statistics. In particular, we use a Dirichlet prior that discourages the clusters from the normal brain region to be in the tumor region. This leads to a better disambiguation of the tumor from brain tissue. We evaluated the performance of our automatic segmentation method on 15 real MRI scans of brain tumor patients, with tumors that are inhomogeneous in appearance, small in size and in proximity to the major structures in the brain. Validation with the expert segmentation labels yielded encouraging results: Jaccard (58%), Precision (81%), Recall (67%), Hausdorff distance (24 mm). Using priors on the brain/tumor appearance, our proposed automatic 3D variational segmentation method was able to better disambiguate the tumor from the surrounding tissue.

  9. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks.

    PubMed

    Chen, Liang; Bentley, Paul; Rueckert, Daniel

    2017-01-01

    Stroke is an acute cerebral vascular disease, which is likely to cause long-term disabilities and death. Acute ischemic lesions occur in most stroke patients. These lesions are treatable under accurate diagnosis and treatments. Although diffusion-weighted MR imaging (DWI) is sensitive to these lesions, localizing and quantifying them manually is costly and challenging for clinicians. In this paper, we propose a novel framework to automatically segment stroke lesions in DWI. Our framework consists of two convolutional neural networks (CNNs): one is an ensemble of two DeconvNets (Noh et al., 2015), which is the EDD Net; the second CNN is the multi-scale convolutional label evaluation net (MUSCLE Net), which aims to evaluate the lesions detected by the EDD Net in order to remove potential false positives. To the best of our knowledge, it is the first attempt to solve this problem and using both CNNs achieves very good results. Furthermore, we study the network architectures and key configurations in detail to ensure the best performance. It is validated on a large dataset comprising clinical acquired DW images from 741 subjects. A mean accuracy of Dice coefficient obtained is 0.67 in total. The mean Dice scores based on subjects with only small and large lesions are 0.61 and 0.83, respectively. The lesion detection rate achieved is 0.94.

  10. A Learning-Based Wrapper Method to Correct Systematic Errors in Automatic Image Segmentation: Consistently Improved Performance in Hippocampus, Cortex and Brain Segmentation

    PubMed Central

    Wang, Hongzhi; Das, Sandhitsu R.; Suh, Jung Wook; Altinay, Murat; Pluta, John; Craige, Caryne; Avants, Brian; Yushkevich, Paul A.

    2011-01-01

    We propose a simple but generally applicable approach to improving the accuracy of automatic image segmentation algorithms relative to manual segmentations. The approach is based on the hypothesis that a large fraction of the errors produced by automatic segmentation are systematic, i.e., occur consistently from subject to subject, and serves as a wrapper method around a given host segmentation method. The wrapper method attempts to learn the intensity, spatial and contextual patterns associated with systematic segmentation errors produced by the host method on training data for which manual segmentations are available. The method then attempts to correct such errors in segmentations produced by the host method on new images. One practical use of the proposed wrapper method is to adapt existing segmentation tools, without explicit modification, to imaging data and segmentation protocols that are different from those on which the tools were trained and tuned. An open-source implementation of the proposed wrapper method is provided, and can be applied to a wide range of image segmentation problems. The wrapper method is evaluated with four host brain MRI segmentation methods: hippocampus segmentation using FreeSurfer (Fischl et al., 2002); hippocampus segmentation using multi-atlas label fusion (Artaechevarria et al., 2009); brain extraction using BET (Smith, 2002); and brain tissue segmentation using FAST (Zhang et al., 2001). The wrapper method generates 72%, 14%, 29% and 21% fewer erroneously segmented voxels than the respective host segmentation methods. In the hippocampus segmentation experiment with multi-atlas label fusion as the host method, the average Dice overlap between reference segmentations and segmentations produced by the wrapper method is 0.908 for normal controls and 0.893 for patients with mild cognitive impairment. Average Dice overlaps of 0.964, 0.905 and 0.951 are obtained for brain extraction, white matter segmentation and gray matter segmentation, respectively. PMID:21237273

  11. Semi-Automatic Segmentation Software for Quantitative Clinical Brain Glioblastoma Evaluation

    PubMed Central

    Zhu, Y; Young, G; Xue, Z; Huang, R; You, H; Setayesh, K; Hatabu, H; Cao, F; Wong, S.T.

    2012-01-01

    Rationale and Objectives Quantitative measurement provides essential information about disease progression and treatment response in patients with Glioblastoma multiforme (GBM). The goal of this paper is to present and validate a software pipeline for semi-automatic GBM segmentation, called AFINITI (Assisted Follow-up in NeuroImaging of Therapeutic Intervention), using clinical data from GBM patients. Materials and Methods Our software adopts the current state-of-the-art tumor segmentation algorithms and combines them into one clinically usable pipeline. Both the advantages of the traditional voxel-based and the deformable shape-based segmentation are embedded into the software pipeline. The former provides an automatic tumor segmentation scheme based on T1- and T2-weighted MR brain data, and the latter refines the segmentation results with minimal manual input. Results Twenty six clinical MR brain images of GBM patients were processed and compared with manual results. The results can be visualized using the embedded graphic user interface (GUI). Conclusion Validation results using clinical GBM data showed high correlation between the AFINITI results and manual annotation. Compared to the voxel-wise segmentation, AFINITI yielded more accurate results in segmenting the enhanced GBM from multimodality MRI data. The proposed pipeline could be used as additional information to interpret MR brain images in neuroradiology. PMID:22591720

  12. Automated bone segmentation from dental CBCT images using patch-based sparse representation and convex optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Li; Gao, Yaozong; Shi, Feng

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate three-dimensional (3D) models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the poor image quality, including very low signal-to-noise ratio and the widespread image artifacts such as noise, beam hardening, and inhomogeneity, it is challenging to segment the CBCT images. In this paper, the authors present a new automatic segmentation method to address these problems. Methods: To segmentmore » CBCT images, the authors propose a new method for fully automated CBCT segmentation by using patch-based sparse representation to (1) segment bony structures from the soft tissues and (2) further separate the mandible from the maxilla. Specifically, a region-specific registration strategy is first proposed to warp all the atlases to the current testing subject and then a sparse-based label propagation strategy is employed to estimate a patient-specific atlas from all aligned atlases. Finally, the patient-specific atlas is integrated into amaximum a posteriori probability-based convex segmentation framework for accurate segmentation. Results: The proposed method has been evaluated on a dataset with 15 CBCT images. The effectiveness of the proposed region-specific registration strategy and patient-specific atlas has been validated by comparing with the traditional registration strategy and population-based atlas. The experimental results show that the proposed method achieves the best segmentation accuracy by comparison with other state-of-the-art segmentation methods. Conclusions: The authors have proposed a new CBCT segmentation method by using patch-based sparse representation and convex optimization, which can achieve considerably accurate segmentation results in CBCT segmentation based on 15 patients.« less

  13. Automatic identification of IASLC-defined mediastinal lymph node stations on CT scans using multi-atlas organ segmentation

    NASA Astrophysics Data System (ADS)

    Hoffman, Joanne; Liu, Jiamin; Turkbey, Evrim; Kim, Lauren; Summers, Ronald M.

    2015-03-01

    Station-labeling of mediastinal lymph nodes is typically performed to identify the location of enlarged nodes for cancer staging. Stations are usually assigned in clinical radiology practice manually by qualitative visual assessment on CT scans, which is time consuming and highly variable. In this paper, we developed a method that automatically recognizes the lymph node stations in thoracic CT scans based on the anatomical organs in the mediastinum. First, the trachea, lungs, and spines are automatically segmented to locate the mediastinum region. Then, eight more anatomical organs are simultaneously identified by multi-atlas segmentation. Finally, with the segmentation of those anatomical organs, we convert the text definitions of the International Association for the Study of Lung Cancer (IASLC) lymph node map into patient-specific color-coded CT image maps. Thus, a lymph node station is automatically assigned to each lymph node. We applied this system to CT scans of 86 patients with 336 mediastinal lymph nodes measuring equal or greater than 10 mm. 84.8% of mediastinal lymph nodes were correctly mapped to their stations.

  14. Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images.

    PubMed

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Tun, Tin Aung; Aung, Tin

    2013-03-01

    Enhanced Depth Imaging (EDI) optical coherence tomography (OCT) provides high-definition cross-sectional images of the choroid in vivo, and hence is used in many clinical studies. However, the quantification of the choroid depends on the manual labelings of two boundaries, Bruch's membrane and the choroidal-scleral interface. This labeling process is tedious and subjective of inter-observer differences, hence, automatic segmentation of the choroid layer is highly desirable. In this paper, we present a fast and accurate algorithm that could segment the choroid automatically. Bruch's membrane is detected by searching the pixel with the biggest gradient value above the retinal pigment epithelium (RPE) and the choroidal-scleral interface is delineated by finding the shortest path of the graph formed by valley pixels using Dijkstra's algorithm. The experiments comparing automatic segmentation results with the manual labelings are conducted on 45 EDI-OCT images and the average of Dice's Coefficient is 90.5%, which shows good consistency of the algorithm with the manual labelings. The processing time for each image is about 1.25 seconds.

  15. Grammar-based Automatic 3D Model Reconstruction from Terrestrial Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Helmholz, P.; Belton, D.; West, G.

    2014-04-01

    The automatic reconstruction of 3D buildings has been an important research topic during the last years. In this paper, a novel method is proposed to automatically reconstruct the 3D building models from segmented data based on pre-defined formal grammar and rules. Such segmented data can be extracted e.g. from terrestrial or mobile laser scanning devices. Two steps are considered in detail. The first step is to transform the segmented data into 3D shapes, for instance using the DXF (Drawing Exchange Format) format which is a CAD data file format used for data interchange between AutoCAD and other program. Second, we develop a formal grammar to describe the building model structure and integrate the pre-defined grammars into the reconstruction process. Depending on the different segmented data, the selected grammar and rules are applied to drive the reconstruction process in an automatic manner. Compared with other existing approaches, our proposed method allows the model reconstruction directly from 3D shapes and takes the whole building into account.

  16. Automated Analysis of siRNA Screens of Virus Infected Cells Based on Immunofluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Matula, Petr; Kumar, Anil; Wörz, Ilka; Harder, Nathalie; Erfle, Holger; Bartenschlager, Ralf; Eils, Roland; Rohr, Karl

    We present an image analysis approach as part of a high-throughput microscopy screening system based on cell arrays for the identification of genes involved in Hepatitis C and Dengue virus replication. Our approach comprises: cell nucleus segmentation, quantification of virus replication level in cells, localization of regions with transfected cells, cell classification by infection status, and quality assessment of an experiment. The approach is fully automatic and has been successfully applied to a large number of cell array images from screening experiments. The experimental results show a good agreement with the expected behavior of positive as well as negative controls and encourage the application to screens from further high-throughput experiments.

  17. Segmentation of Nerve Bundles and Ganglia in Spine MRI Using Particle Filters

    PubMed Central

    Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina

    2011-01-01

    Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation. PMID:22003741

  18. Segmentation of nerve bundles and ganglia in spine MRI using particle filters.

    PubMed

    Dalca, Adrian; Danagoulian, Giovanna; Kikinis, Ron; Schmidt, Ehud; Golland, Polina

    2011-01-01

    Automatic segmentation of spinal nerve bundles that originate within the dural sac and exit the spinal canal is important for diagnosis and surgical planning. The variability in intensity, contrast, shape and direction of nerves seen in high resolution myelographic MR images makes segmentation a challenging task. In this paper, we present an automatic tracking method for nerve segmentation based on particle filters. We develop a novel approach to particle representation and dynamics, based on Bézier splines. Moreover, we introduce a robust image likelihood model that enables delineation of nerve bundles and ganglia from the surrounding anatomical structures. We demonstrate accurate and fast nerve tracking and compare it to expert manual segmentation.

  19. An automatic and accurate method of full heart segmentation from CT image based on linear gradient model

    NASA Astrophysics Data System (ADS)

    Yang, Zili

    2017-07-01

    Heart segmentation is an important auxiliary method in the diagnosis of many heart diseases, such as coronary heart disease and atrial fibrillation, and in the planning of tumor radiotherapy. Most of the existing methods for full heart segmentation treat the heart as a whole part and cannot accurately extract the bottom of the heart. In this paper, we propose a new method based on linear gradient model to segment the whole heart from the CT images automatically and accurately. Twelve cases were tested in order to test this method and accurate segmentation results were achieved and identified by clinical experts. The results can provide reliable clinical support.

  20. Assessment of Automated Analyses of Cell Migration on Flat and Nanostructured Surfaces

    PubMed Central

    Grădinaru, Cristian; Łopacińska, Joanna M.; Huth, Johannes; Kestler, Hans A.; Flyvbjerg, Henrik; Mølhave, Kristian

    2012-01-01

    Motility studies of cells often rely on computer software that analyzes time-lapse recorded movies and establishes cell trajectories fully automatically. This raises the question of reproducibility of results, since different programs could yield significantly different results of such automated analysis. The fact that the segmentation routines of such programs are often challenged by nanostructured surfaces makes the question more pertinent. Here we illustrate how it is possible to track cells on bright field microscopy images with image analysis routines implemented in an open-source cell tracking program, PACT (Program for Automated Cell Tracking). We compare the automated motility analysis of three cell tracking programs, PACT, Autozell, and TLA, using the same movies as input for all three programs. We find that different programs track overlapping, but different subsets of cells due to different segmentation methods. Unfortunately, population averages based on such different cell populations, differ significantly in some cases. Thus, results obtained with one software package are not necessarily reproducible by other software. PMID:24688640

  1. Automatic Text Structuring and Summarization.

    ERIC Educational Resources Information Center

    Salton, Gerard; And Others

    1997-01-01

    Discussion of the use of information retrieval techniques for automatic generation of semantic hypertext links focuses on automatic text summarization. Topics include World Wide Web links, text segmentation, and evaluation of text summarization by comparing automatically generated abstracts with manually prepared abstracts. (Author/LRW)

  2. Research and Development of Fully Automatic Alien Smoke Stack and Packaging System

    NASA Astrophysics Data System (ADS)

    Yang, Xudong; Ge, Qingkuan; Peng, Tao; Zuo, Ping; Dong, Weifu

    2017-12-01

    The problem of low efficiency of manual sorting packaging for the current tobacco distribution center, which developed a set of safe efficient and automatic type of alien smoke stack and packaging system. The functions of fully automatic alien smoke stack and packaging system adopt PLC control technology, servo control technology, robot technology, image recognition technology and human-computer interaction technology. The characteristics, principles, control process and key technology of the system are discussed in detail. Through the installation and commissioning fully automatic alien smoke stack and packaging system has a good performance and has completed the requirements for shaped cigarette.

  3. Validation of automatic landmark identification for atlas-based segmentation for radiation treatment planning of the head-and-neck region

    NASA Astrophysics Data System (ADS)

    Leavens, Claudia; Vik, Torbjørn; Schulz, Heinrich; Allaire, Stéphane; Kim, John; Dawson, Laura; O'Sullivan, Brian; Breen, Stephen; Jaffray, David; Pekar, Vladimir

    2008-03-01

    Manual contouring of target volumes and organs at risk in radiation therapy is extremely time-consuming, in particular for treating the head-and-neck area, where a single patient treatment plan can take several hours to contour. As radiation treatment delivery moves towards adaptive treatment, the need for more efficient segmentation techniques will increase. We are developing a method for automatic model-based segmentation of the head and neck. This process can be broken down into three main steps: i) automatic landmark identification in the image dataset of interest, ii) automatic landmark-based initialization of deformable surface models to the patient image dataset, and iii) adaptation of the deformable models to the patient-specific anatomical boundaries of interest. In this paper, we focus on the validation of the first step of this method, quantifying the results of our automatic landmark identification method. We use an image atlas formed by applying thin-plate spline (TPS) interpolation to ten atlas datasets, using 27 manually identified landmarks in each atlas/training dataset. The principal variation modes returned by principal component analysis (PCA) of the landmark positions were used by an automatic registration algorithm, which sought the corresponding landmarks in the clinical dataset of interest using a controlled random search algorithm. Applying a run time of 60 seconds to the random search, a root mean square (rms) distance to the ground-truth landmark position of 9.5 +/- 0.6 mm was calculated for the identified landmarks. Automatic segmentation of the brain, mandible and brain stem, using the detected landmarks, is demonstrated.

  4. Automated segmentation and reconstruction of patient-specific cardiac anatomy and pathology from in vivo MRI*

    NASA Astrophysics Data System (ADS)

    Ringenberg, Jordan; Deo, Makarand; Devabhaktuni, Vijay; Filgueiras-Rama, David; Pizarro, Gonzalo; Ibañez, Borja; Berenfeld, Omer; Boyers, Pamela; Gold, Jeffrey

    2012-12-01

    This paper presents an automated method to segment left ventricle (LV) tissues from functional and delayed-enhancement (DE) cardiac magnetic resonance imaging (MRI) scans using a sequential multi-step approach. First, a region of interest (ROI) is computed to create a subvolume around the LV using morphological operations and image arithmetic. From the subvolume, the myocardial contours are automatically delineated using difference of Gaussians (DoG) filters and GSV snakes. These contours are used as a mask to identify pathological tissues, such as fibrosis or scar, within the DE-MRI. The presented automated technique is able to accurately delineate the myocardium and identify the pathological tissue in patient sets. The results were validated by two expert cardiologists, and in one set the automated results are quantitatively and qualitatively compared with expert manual delineation. Furthermore, the method is patient-specific, performed on an entire patient MRI series. Thus, in addition to providing a quick analysis of individual MRI scans, the fully automated segmentation method is used for effectively tagging regions in order to reconstruct computerized patient-specific 3D cardiac models. These models can then be used in electrophysiological studies and surgical strategy planning.

  5. Automatic coronary calcium scoring using noncontrast and contrast CT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guanyu, E-mail: yang.list@seu.edu.cn; Chen, Yang; Shu, Huazhong

    Purpose: Calcium scoring is widely used to assess the risk of coronary heart disease (CHD). Accurate coronary artery calcification detection in noncontrast CT image is a prerequisite step for coronary calcium scoring. Currently, calcified lesions in the coronary arteries are manually identified by radiologists in clinical practice. Thus, in this paper, a fully automatic calcium scoring method was developed to alleviate the work load of the radiologists or cardiologists. Methods: The challenge of automatic coronary calcification detection is to discriminate the calcification in the coronary arteries from the calcification in the other tissues. Since the anatomy of coronary arteries ismore » difficult to be observed in the noncontrast CT images, the contrast CT image of the same patient is used to extract the regions of the aorta, heart, and coronary arteries. Then, a patient-specific region-of-interest (ROI) is generated in the noncontrast CT image according to the segmentation results in the contrast CT image. This patient-specific ROI focuses on the regions in the neighborhood of coronary arteries for calcification detection, which can eliminate the calcifications in the surrounding tissues. A support vector machine classifier is applied finally to refine the results by removing possible image noise. Furthermore, the calcified lesions in the noncontrast images belonging to the different main coronary arteries are identified automatically using the labeling results of the extracted coronary arteries. Results: Forty datasets from four different CT machine vendors were used to evaluate their algorithm, which were provided by the MICCAI 2014 Coronary Calcium Scoring (orCaScore) Challenge. The sensitivity and positive predictive value for the volume of detected calcifications are 0.989 and 0.948. Only one patient out of 40 patients had been assigned to the wrong risk category defined according to Agatston scores (0, 1–100, 101–300, >300) by comparing with the ground truth. Conclusions: The calcified lesions in the noncontrast CT images can be detected automatically by using the segmentation results of the aorta, heart, and coronary arteries obtained in the contrast CT images with a very high accuracy.« less

  6. Automated segmentation of dental CBCT image with prior-guided sequential random forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Li; Gao, Yaozong; Shi, Feng

    Purpose: Cone-beam computed tomography (CBCT) is an increasingly utilized imaging modality for the diagnosis and treatment planning of the patients with craniomaxillofacial (CMF) deformities. Accurate segmentation of CBCT image is an essential step to generate 3D models for the diagnosis and treatment planning of the patients with CMF deformities. However, due to the image artifacts caused by beam hardening, imaging noise, inhomogeneity, truncation, and maximal intercuspation, it is difficult to segment the CBCT. Methods: In this paper, the authors present a new automatic segmentation method to address these problems. Specifically, the authors first employ a majority voting method to estimatemore » the initial segmentation probability maps of both mandible and maxilla based on multiple aligned expert-segmented CBCT images. These probability maps provide an important prior guidance for CBCT segmentation. The authors then extract both the appearance features from CBCTs and the context features from the initial probability maps to train the first-layer of random forest classifier that can select discriminative features for segmentation. Based on the first-layer of trained classifier, the probability maps are updated, which will be employed to further train the next layer of random forest classifier. By iteratively training the subsequent random forest classifier using both the original CBCT features and the updated segmentation probability maps, a sequence of classifiers can be derived for accurate segmentation of CBCT images. Results: Segmentation results on CBCTs of 30 subjects were both quantitatively and qualitatively validated based on manually labeled ground truth. The average Dice ratios of mandible and maxilla by the authors’ method were 0.94 and 0.91, respectively, which are significantly better than the state-of-the-art method based on sparse representation (p-value < 0.001). Conclusions: The authors have developed and validated a novel fully automated method for CBCT segmentation.« less

  7. Model-based registration for assessment of spinal deformities in idiopathic scoliosis

    NASA Astrophysics Data System (ADS)

    Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans

    2014-01-01

    Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.

  8. Leveraging Automatic Speech Recognition Errors to Detect Challenging Speech Segments in TED Talks

    ERIC Educational Resources Information Center

    Mirzaei, Maryam Sadat; Meshgi, Kourosh; Kawahara, Tatsuya

    2016-01-01

    This study investigates the use of Automatic Speech Recognition (ASR) systems to epitomize second language (L2) listeners' problems in perception of TED talks. ASR-generated transcripts of videos often involve recognition errors, which may indicate difficult segments for L2 listeners. This paper aims to discover the root-causes of the ASR errors…

  9. Image analysis for skeletal evaluation of carpal bones

    NASA Astrophysics Data System (ADS)

    Ko, Chien-Chuan; Mao, Chi-Wu; Lin, Chi-Jen; Sun, Yung-Nien

    1995-04-01

    The assessment of bone age is an important field to the pediatric radiology. It provides very important information for treatment and prediction of skeletal growth in a developing child. So far, various computerized algorithms for automatically assessing the skeletal growth have been reported. Most of these methods made attempt to analyze the phalangeal growth. The most fundamental step in these automatic measurement methods is the image segmentation that extracts bones from soft-tissue and background. These automatic segmentation methods of hand radiographs can roughly be categorized into two main approaches that are edge and region based methods. This paper presents a region-based carpal-bone segmentation approach. It is organized into four stages: contrast enhancement, moment-preserving thresholding, morphological processing, and region-growing labeling.

  10. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging.

    PubMed

    Liu, Fang; Zhou, Zhaoye; Jang, Hyungseok; Samsonov, Alexey; Zhao, Gengyan; Kijowski, Richard

    2018-04-01

    To describe and evaluate a new fully automated musculoskeletal tissue segmentation method using deep convolutional neural network (CNN) and three-dimensional (3D) simplex deformable modeling to improve the accuracy and efficiency of cartilage and bone segmentation within the knee joint. A fully automated segmentation pipeline was built by combining a semantic segmentation CNN and 3D simplex deformable modeling. A CNN technique called SegNet was applied as the core of the segmentation method to perform high resolution pixel-wise multi-class tissue classification. The 3D simplex deformable modeling refined the output from SegNet to preserve the overall shape and maintain a desirable smooth surface for musculoskeletal structure. The fully automated segmentation method was tested using a publicly available knee image data set to compare with currently used state-of-the-art segmentation methods. The fully automated method was also evaluated on two different data sets, which include morphological and quantitative MR images with different tissue contrasts. The proposed fully automated segmentation method provided good segmentation performance with segmentation accuracy superior to most of state-of-the-art methods in the publicly available knee image data set. The method also demonstrated versatile segmentation performance on both morphological and quantitative musculoskeletal MR images with different tissue contrasts and spatial resolutions. The study demonstrates that the combined CNN and 3D deformable modeling approach is useful for performing rapid and accurate cartilage and bone segmentation within the knee joint. The CNN has promising potential applications in musculoskeletal imaging. Magn Reson Med 79:2379-2391, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Automated segmentation and analysis of normal and osteoarthritic knee menisci from magnetic resonance images--data from the Osteoarthritis Initiative.

    PubMed

    Paproki, A; Engstrom, C; Chandra, S S; Neubert, A; Fripp, J; Crozier, S

    2014-09-01

    To validate an automatic scheme for the segmentation and quantitative analysis of the medial meniscus (MM) and lateral meniscus (LM) in magnetic resonance (MR) images of the knee. We analysed sagittal water-excited double-echo steady-state MR images of the knee from a subset of the Osteoarthritis Initiative (OAI) cohort. The MM and LM were automatically segmented in the MR images based on a deformable model approach. Quantitative parameters including volume, subluxation and tibial-coverage were automatically calculated for comparison (Wilcoxon tests) between knees with variable radiographic osteoarthritis (rOA), medial and lateral joint space narrowing (mJSN, lJSN) and pain. Automatic segmentations and estimated parameters were evaluated for accuracy using manual delineations of the menisci in 88 pathological knee MR examinations at baseline and 12 months time-points. The median (95% confidence-interval (CI)) Dice similarity index (DSI) (2 ∗|Auto ∩ Manual|/(|Auto|+|Manual|)∗ 100) between manual and automated segmentations for the MM and LM volumes were 78.3% (75.0-78.7), 83.9% (82.1-83.9) at baseline and 75.3% (72.8-76.9), 83.0% (81.6-83.5) at 12 months. Pearson coefficients between automatic and manual segmentation parameters ranged from r = 0.70 to r = 0.92. MM in rOA/mJSN knees had significantly greater subluxation and smaller tibial-coverage than no-rOA/no-mJSN knees. LM in rOA knees had significantly greater volumes and tibial-coverage than no-rOA knees. Our automated method successfully segmented the menisci in normal and osteoarthritic knee MR images and detected meaningful morphological differences with respect to rOA and joint space narrowing (JSN). Our approach will facilitate analyses of the menisci in prospective MR cohorts such as the OAI for investigations into pathophysiological changes occurring in early osteoarthritis (OA) development. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Volumetric vessel reconstruction method for absolute blood flow velocity measurement in Doppler OCT images

    NASA Astrophysics Data System (ADS)

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2017-02-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it not only relates to the properties of the laser and the scattering particles, but also relates to the geometry of both directions of the laser beam and the flow. In this paper, focusing on the analysis of cerebral hemodynamics, we presents a method to quantify the total absolute blood flow velocity in middle cerebral artery (MCA) based on volumetric vessel reconstruction from pure DOCT images. A modified region growing segmentation method is first used to localize the MCA on successive DOCT B-scan images. Vessel skeletonization, followed by an averaging gradient angle calculation method, is then carried out to obtain Doppler angles along the entire MCA. Once the Doppler angles are determined, the absolute blood flow velocity of each position on the MCA is easily found. Given a seed point position on the MCA, our approach could achieve automatic quantification of the fully distributed absolute BFV. Based on experiments conducted using a swept-source optical coherence tomography system, our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches in the rodent brain.

  13. Automatic 3D segmentation of multiphoton images: a key step for the quantification of human skin.

    PubMed

    Decencière, Etienne; Tancrède-Bohin, Emmanuelle; Dokládal, Petr; Koudoro, Serge; Pena, Ana-Maria; Baldeweck, Thérèse

    2013-05-01

    Multiphoton microscopy has emerged in the past decade as a useful noninvasive imaging technique for in vivo human skin characterization. However, it has not been used until now in evaluation clinical trials, mainly because of the lack of specific image processing tools that would allow the investigator to extract pertinent quantitative three-dimensional (3D) information from the different skin components. We propose a 3D automatic segmentation method of multiphoton images which is a key step for epidermis and dermis quantification. This method, based on the morphological watershed and graph cuts algorithms, takes into account the real shape of the skin surface and of the dermal-epidermal junction, and allows separating in 3D the epidermis and the superficial dermis. The automatic segmentation method and the associated quantitative measurements have been developed and validated on a clinical database designed for aging characterization. The segmentation achieves its goals for epidermis-dermis separation and allows quantitative measurements inside the different skin compartments with sufficient relevance. This study shows that multiphoton microscopy associated with specific image processing tools provides access to new quantitative measurements on the various skin components. The proposed 3D automatic segmentation method will contribute to build a powerful tool for characterizing human skin condition. To our knowledge, this is the first 3D approach to the segmentation and quantification of these original images. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  14. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.

    PubMed

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle

    2016-03-01

    On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (<1 ms) with a satisfying accuracy (Dice=0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on-board MR-IGRT system. PACS number(s): 87.57.nm, 87.57.N-, 87.61.Tg. © 2016 The Authors.

  15. A comparative study of automatic image segmentation algorithms for target tracking in MR‐IGRT

    PubMed Central

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J.; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa

    2016-01-01

    On‐board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real‐time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image‐guided radiotherapy (MR‐IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k‐means (FKM), k‐harmonic means (KHM), and reaction‐diffusion level set evolution (RD‐LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR‐TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR‐TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD‐LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP‐TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high‐contrast images (i.e., kidney), the thresholding method provided the best speed (<1 ms) with a satisfying accuracy (Dice=0.95). When the image contrast was low, the VR‐TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on‐board MR‐IGRT system. PACS number(s): 87.57.nm, 87.57.N‐, 87.61.Tg

  16. Myocardial Iron Loading Assessment by Automatic Left Ventricle Segmentation with Morphological Operations and Geodesic Active Contour on T2* images

    NASA Astrophysics Data System (ADS)

    Luo, Yun-Gang; Ko, Jacky Kl; Shi, Lin; Guan, Yuefeng; Li, Linong; Qin, Jing; Heng, Pheng-Ann; Chu, Winnie Cw; Wang, Defeng

    2015-07-01

    Myocardial iron loading thalassemia patients could be identified using T2* magnetic resonance images (MRI). To quantitatively assess cardiac iron loading, we proposed an effective algorithm to segment aligned free induction decay sequential myocardium images based on morphological operations and geodesic active contour (GAC). Nine patients with thalassemia major were recruited (10 male and 16 female) to undergo a thoracic MRI scan in the short axis view. Free induction decay images were registered for T2* mapping. The GAC were utilized to segment aligned MR images with a robust initialization. Segmented myocardium regions were divided into sectors for a region-based quantification of cardiac iron loading. Our proposed automatic segmentation approach achieve a true positive rate at 84.6% and false positive rate at 53.8%. The area difference between manual and automatic segmentation was 25.5% after 1000 iterations. Results from T2* analysis indicated that regions with intensity lower than 20 ms were suffered from heavy iron loading in thalassemia major patients. The proposed method benefited from abundant edge information of the free induction decay sequential MRI. Experiment results demonstrated that the proposed method is feasible in myocardium segmentation and was clinically applicable to measure myocardium iron loading.

  17. 2D/3D fetal cardiac dataset segmentation using a deformable model.

    PubMed

    Dindoyal, Irving; Lambrou, Tryphon; Deng, Jing; Todd-Pokropek, Andrew

    2011-07-01

    To segment the fetal heart in order to facilitate the 3D assessment of the cardiac function and structure. Ultrasound acquisition typically results in drop-out artifacts of the chamber walls. The authors outline a level set deformable model to automatically delineate the small fetal cardiac chambers. The level set is penalized from growing into an adjacent cardiac compartment using a novel collision detection term. The region based model allows simultaneous segmentation of all four cardiac chambers from a user defined seed point placed in each chamber. The segmented boundaries are automatically penalized from intersecting at walls with signal dropout. Root mean square errors of the perpendicular distances between the algorithm's delineation and manual tracings are within 2 mm which is less than 10% of the length of a typical fetal heart. The ejection fractions were determined from the 3D datasets. We validate the algorithm using a physical phantom and obtain volumes that are comparable to those from physically determined means. The algorithm segments volumes with an error of within 13% as determined using a physical phantom. Our original work in fetal cardiac segmentation compares automatic and manual tracings to a physical phantom and also measures inter observer variation.

  18. Boundary segmentation for fluorescence microscopy using steerable filters

    NASA Astrophysics Data System (ADS)

    Ho, David Joon; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2017-02-01

    Fluorescence microscopy is used to image multiple subcellular structures in living cells which are not readily observed using conventional optical microscopy. Moreover, two-photon microscopy is widely used to image structures deeper in tissue. Recent advancement in fluorescence microscopy has enabled the generation of large data sets of images at different depths, times, and spectral channels. Thus, automatic object segmentation is necessary since manual segmentation would be inefficient and biased. However, automatic segmentation is still a challenging problem as regions of interest may not have well defined boundaries as well as non-uniform pixel intensities. This paper describes a method for segmenting tubular structures in fluorescence microscopy images of rat kidney and liver samples using adaptive histogram equalization, foreground/background segmentation, steerable filters to capture directional tendencies, and connected-component analysis. The results from several data sets demonstrate that our method can segment tubular boundaries successfully. Moreover, our method has better performance when compared to other popular image segmentation methods when using ground truth data obtained via manual segmentation.

  19. Efficient Semi-Automatic 3D Segmentation for Neuron Tracing in Electron Microscopy Images

    PubMed Central

    Jones, Cory; Liu, Ting; Cohan, Nathaniel Wood; Ellisman, Mark; Tasdizen, Tolga

    2015-01-01

    0.1. Background In the area of connectomics, there is a significant gap between the time required for data acquisition and dense reconstruction of the neural processes contained in the same dataset. Automatic methods are able to eliminate this timing gap, but the state-of-the-art accuracy so far is insufficient for use without user corrections. If completed naively, this process of correction can be tedious and time consuming. 0.2. New Method We present a new semi-automatic method that can be used to perform 3D segmentation of neurites in EM image stacks. It utilizes an automatic method that creates a hierarchical structure for recommended merges of superpixels. The user is then guided through each predicted region to quickly identify errors and establish correct links. 0.3. Results We tested our method on three datasets with both novice and expert users. Accuracy and timing were compared with published automatic, semi-automatic, and manual results. 0.4. Comparison with Existing Methods Post-automatic correction methods have also been used in [1] and [2]. These methods do not provide navigation or suggestions in the manner we present. Other semi-automatic methods require user input prior to the automatic segmentation such as [3] and [4] and are inherently different than our method. 0.5. Conclusion Using this method on the three datasets, novice users achieved accuracy exceeding state-of-the-art automatic results, and expert users achieved accuracy on par with full manual labeling but with a 70% time improvement when compared with other examples in publication. PMID:25769273

  20. Fast algorithm for probabilistic bone edge detection (FAPBED)

    NASA Astrophysics Data System (ADS)

    Scepanovic, Danilo; Kirshtein, Joshua; Jain, Ameet K.; Taylor, Russell H.

    2005-04-01

    The registration of preoperative CT to intra-operative reality systems is a crucial step in Computer Assisted Orthopedic Surgery (CAOS). The intra-operative sensors include 3D digitizers, fiducials, X-rays and Ultrasound (US). FAPBED is designed to process CT volumes for registration to tracked US data. Tracked US is advantageous because it is real time, noninvasive, and non-ionizing, but it is also known to have inherent inaccuracies which create the need to develop a framework that is robust to various uncertainties, and can be useful in US-CT registration. Furthermore, conventional registration methods depend on accurate and absolute segmentation. Our proposed probabilistic framework addresses the segmentation-registration duality, wherein exact segmentation is not a prerequisite to achieve accurate registration. In this paper, we develop a method for fast and automatic probabilistic bone surface (edge) detection in CT images. Various features that influence the likelihood of the surface at each spatial coordinate are combined using a simple probabilistic framework, which strikes a fair balance between a high-level understanding of features in an image and the low-level number crunching of standard image processing techniques. The algorithm evaluates different features for detecting the probability of a bone surface at each voxel, and compounds the results of these methods to yield a final, low-noise, probability map of bone surfaces in the volume. Such a probability map can then be used in conjunction with a similar map from tracked intra-operative US to achieve accurate registration. Eight sample pelvic CT scans were used to extract feature parameters and validate the final probability maps. An un-optimized fully automatic Matlab code runs in five minutes per CT volume on average, and was validated by comparison against hand-segmented gold standards. The mean probability assigned to nonzero surface points was 0.8, while nonzero non-surface points had a mean value of 0.38 indicating clear identification of surface points on average. The segmentation was also sufficiently crisp, with a full width at half maximum (FWHM) value of 1.51 voxels.

  1. Oriented active shape models.

    PubMed

    Liu, Jiamin; Udupa, Jayaram K

    2009-04-01

    Active shape models (ASM) are widely employed for recognizing anatomic structures and for delineating them in medical images. In this paper, a novel strategy called oriented active shape models (OASM) is presented in an attempt to overcome the following five limitations of ASM: 1) lower delineation accuracy, 2) the requirement of a large number of landmarks, 3) sensitivity to search range, 4) sensitivity to initialization, and 5) inability to fully exploit the specific information present in the given image to be segmented. OASM effectively combines the rich statistical shape information embodied in ASM with the boundary orientedness property and the globally optimal delineation capability of the live wire methodology of boundary segmentation. The latter characteristics allow live wire to effectively separate an object boundary from other nonobject boundaries with similar properties especially when they come very close in the image domain. The approach leads to a two-level dynamic programming method, wherein the first level corresponds to boundary recognition and the second level corresponds to boundary delineation, and to an effective automatic initialization method. The method outputs a globally optimal boundary that agrees with the shape model if the recognition step is successful in bringing the model close to the boundary in the image. Extensive evaluation experiments have been conducted by utilizing 40 image (magnetic resonance and computed tomography) data sets in each of five different application areas for segmenting breast, liver, bones of the foot, and cervical vertebrae of the spine. Comparisons are made between OASM and ASM based on precision, accuracy, and efficiency of segmentation. Accuracy is assessed using both region-based false positive and false negative measures and boundary-based distance measures. The results indicate the following: 1) The accuracy of segmentation via OASM is considerably better than that of ASM; 2) The number of landmarks can be reduced by a factor of 3 in OASM over that in ASM; 3) OASM becomes largely independent of search range and initialization becomes automatic. All three benefits of OASM ensue mainly from the severe constraints brought in by the boundary-orientedness property of live wire and the globally optimal solution found by the 2-level dynamic programming algorithm.

  2. Automatic atlas-based three-label cartilage segmentation from MR knee images

    PubMed Central

    Shan, Liang; Zach, Christopher; Charles, Cecil; Niethammer, Marc

    2016-01-01

    Osteoarthritis (OA) is the most common form of joint disease and often characterized by cartilage changes. Accurate quantitative methods are needed to rapidly screen large image databases to assess changes in cartilage morphology. We therefore propose a new automatic atlas-based cartilage segmentation method for future automatic OA studies. Atlas-based segmentation methods have been demonstrated to be robust and accurate in brain imaging and therefore also hold high promise to allow for reliable and high-quality segmentations of cartilage. Nevertheless, atlas-based methods have not been well explored for cartilage segmentation. A particular challenge is the thinness of cartilage, its relatively small volume in comparison to surrounding tissue and the difficulty to locate cartilage interfaces – for example the interface between femoral and tibial cartilage. This paper focuses on the segmentation of femoral and tibial cartilage, proposing a multi-atlas segmentation strategy with non-local patch-based label fusion which can robustly identify candidate regions of cartilage. This method is combined with a novel three-label segmentation method which guarantees the spatial separation of femoral and tibial cartilage, and ensures spatial regularity while preserving the thin cartilage shape through anisotropic regularization. Our segmentation energy is convex and therefore guarantees globally optimal solutions. We perform an extensive validation of the proposed method on 706 images of the Pfizer Longitudinal Study. Our validation includes comparisons of different atlas segmentation strategies, different local classifiers, and different types of regularizers. To compare to other cartilage segmentation approaches we validate based on the 50 images of the SKI10 dataset. PMID:25128683

  3. Multifractal-based nuclei segmentation in fish images.

    PubMed

    Reljin, Nikola; Slavkovic-Ilic, Marijeta; Tapia, Coya; Cihoric, Nikola; Stankovic, Srdjan

    2017-09-01

    The method for nuclei segmentation in fluorescence in-situ hybridization (FISH) images, based on the inverse multifractal analysis (IMFA) is proposed. From the blue channel of the FISH image in RGB format, the matrix of Holder exponents, with one-by-one correspondence with the image pixels, is determined first. The following semi-automatic procedure is proposed: initial nuclei segmentation is performed automatically from the matrix of Holder exponents by applying predefined hard thresholding; then the user evaluates the result and is able to refine the segmentation by changing the threshold, if necessary. After successful nuclei segmentation, the HER2 (human epidermal growth factor receptor 2) scoring can be determined in usual way: by counting red and green dots within segmented nuclei, and finding their ratio. The IMFA segmentation method is tested over 100 clinical cases, evaluated by skilled pathologist. Testing results show that the new method has advantages compared to already reported methods.

  4. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography

    PubMed Central

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2016-01-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement. PMID:26977365

  5. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography.

    PubMed

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D; Chen, Zhongping

    2016-02-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement.

  6. Direct volume estimation without segmentation

    NASA Astrophysics Data System (ADS)

    Zhen, X.; Wang, Z.; Islam, A.; Bhaduri, M.; Chan, I.; Li, S.

    2015-03-01

    Volume estimation plays an important role in clinical diagnosis. For example, cardiac ventricular volumes including left ventricle (LV) and right ventricle (RV) are important clinical indicators of cardiac functions. Accurate and automatic estimation of the ventricular volumes is essential to the assessment of cardiac functions and diagnosis of heart diseases. Conventional methods are dependent on an intermediate segmentation step which is obtained either manually or automatically. However, manual segmentation is extremely time-consuming, subjective and highly non-reproducible; automatic segmentation is still challenging, computationally expensive, and completely unsolved for the RV. Towards accurate and efficient direct volume estimation, our group has been researching on learning based methods without segmentation by leveraging state-of-the-art machine learning techniques. Our direct estimation methods remove the accessional step of segmentation and can naturally deal with various volume estimation tasks. Moreover, they are extremely flexible to be used for volume estimation of either joint bi-ventricles (LV and RV) or individual LV/RV. We comparatively study the performance of direct methods on cardiac ventricular volume estimation by comparing with segmentation based methods. Experimental results show that direct estimation methods provide more accurate estimation of cardiac ventricular volumes than segmentation based methods. This indicates that direct estimation methods not only provide a convenient and mature clinical tool for cardiac volume estimation but also enables diagnosis of cardiac diseases to be conducted in a more efficient and reliable way.

  7. KSC-99pp1184

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the S1 truss, a segment of the International Space Station, is moved away from the Super Guppy that brought it to KSC from Marshall Space Flight Center. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is being transferred to the Operations and Checkout Building

  8. Fast localization of optic disc and fovea in retinal images for eye disease screening

    NASA Astrophysics Data System (ADS)

    Yu, H.; Barriga, S.; Agurto, C.; Echegaray, S.; Pattichis, M.; Zamora, G.; Bauman, W.; Soliz, P.

    2011-03-01

    Optic disc (OD) and fovea locations are two important anatomical landmarks in automated analysis of retinal disease in color fundus photographs. This paper presents a new, fast, fully automatic optic disc and fovea localization algorithm developed for diabetic retinopathy (DR) screening. The optic disc localization methodology comprises of two steps. First, the OD location is identified using template matching and directional matched filter. To reduce false positives due to bright areas of pathology, we exploit vessel characteristics inside the optic disc. The location of the fovea is estimated as the point of lowest matched filter response within a search area determined by the optic disc location. Second, optic disc segmentation is performed. Based on the detected optic disc location, a fast hybrid level-set algorithm which combines the region information and edge gradient to drive the curve evolution is used to segment the optic disc boundary. Extensive evaluation was performed on 1200 images (Messidor) composed of 540 images of healthy retinas, 431 images with DR but no risk of macular edema (ME), and 229 images with DR and risk of ME. The OD location methodology obtained 98.3% success rate, while fovea location achieved 95% success rate. The average mean absolute distance (MAD) between the OD segmentation algorithm and "gold standard" is 10.5% of estimated OD radius. Qualitatively, 97% of the images achieved Excellent to Fair performance for OD segmentation. The segmentation algorithm performs well even on blurred images.

  9. Flexible methods for segmentation evaluation: results from CT-based luggage screening.

    PubMed

    Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry

    2014-01-01

    Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms' behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms.

  10. A univocal definition of the neuronal soma morphology using Gaussian mixture models.

    PubMed

    Luengo-Sanchez, Sergio; Bielza, Concha; Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; DeFelipe, Javier; Larrañaga, Pedro

    2015-01-01

    The definition of the soma is fuzzy, as there is no clear line demarcating the soma of the labeled neurons and the origin of the dendrites and axon. Thus, the morphometric analysis of the neuronal soma is highly subjective. In this paper, we provide a mathematical definition and an automatic segmentation method to delimit the neuronal soma. We applied this method to the characterization of pyramidal cells, which are the most abundant neurons in the cerebral cortex. Since there are no benchmarks with which to compare the proposed procedure, we validated the goodness of this automatic segmentation method against manual segmentation by neuroanatomists to set up a framework for comparison. We concluded that there were no significant differences between automatically and manually segmented somata, i.e., the proposed procedure segments the neurons similarly to how a neuroanatomist does. It also provides univocal, justifiable and objective cutoffs. Thus, this study is a means of characterizing pyramidal neurons in order to objectively compare the morphometry of the somata of these neurons in different cortical areas and species.

  11. Automatic liver volume segmentation and fibrosis classification

    NASA Astrophysics Data System (ADS)

    Bal, Evgeny; Klang, Eyal; Amitai, Michal; Greenspan, Hayit

    2018-02-01

    In this work, we present an automatic method for liver segmentation and fibrosis classification in liver computed-tomography (CT) portal phase scans. The input is a full abdomen CT scan with an unknown number of slices, and the output is a liver volume segmentation mask and a fibrosis grade. A multi-stage analysis scheme is applied to each scan, including: volume segmentation, texture features extraction and SVM based classification. Data contains portal phase CT examinations from 80 patients, taken with different scanners. Each examination has a matching Fibroscan grade. The dataset was subdivided into two groups: first group contains healthy cases and mild fibrosis, second group contains moderate fibrosis, severe fibrosis and cirrhosis. Using our automated algorithm, we achieved an average dice index of 0.93 ± 0.05 for segmentation and a sensitivity of 0.92 and specificity of 0.81for classification. To the best of our knowledge, this is a first end to end automatic framework for liver fibrosis classification; an approach that, once validated, can have a great potential value in the clinic.

  12. Review of automatic detection of pig behaviours by using image analysis

    NASA Astrophysics Data System (ADS)

    Han, Shuqing; Zhang, Jianhua; Zhu, Mengshuai; Wu, Jianzhai; Kong, Fantao

    2017-06-01

    Automatic detection of lying, moving, feeding, drinking, and aggressive behaviours of pigs by means of image analysis can save observation input by staff. It would help staff make early detection of diseases or injuries of pigs during breeding and improve management efficiency of swine industry. This study describes the progress of pig behaviour detection based on image analysis and advancement in image segmentation of pig body, segmentation of pig adhesion and extraction of pig behaviour characteristic parameters. Challenges for achieving automatic detection of pig behaviours were summarized.

  13. Automatic segmentation of tumor-laden lung volumes from the LIDC database

    NASA Astrophysics Data System (ADS)

    O'Dell, Walter G.

    2012-03-01

    The segmentation of the lung parenchyma is often a critical pre-processing step prior to application of computer-aided detection of lung nodules. Segmentation of the lung volume can dramatically decrease computation time and reduce the number of false positive detections by excluding from consideration extra-pulmonary tissue. However, while many algorithms are capable of adequately segmenting the healthy lung, none have been demonstrated to work reliably well on tumor-laden lungs. Of particular challenge is to preserve tumorous masses attached to the chest wall, mediastinum or major vessels. In this role, lung volume segmentation comprises an important computational step that can adversely affect the performance of the overall CAD algorithm. An automated lung volume segmentation algorithm has been developed with the goals to maximally exclude extra-pulmonary tissue while retaining all true nodules. The algorithm comprises a series of tasks including intensity thresholding, 2-D and 3-D morphological operations, 2-D and 3-D floodfilling, and snake-based clipping of nodules attached to the chest wall. It features the ability to (1) exclude trachea and bowels, (2) snip large attached nodules using snakes, (3) snip small attached nodules using dilation, (4) preserve large masses fully internal to lung volume, (5) account for basal aspects of the lung where in a 2-D slice the lower sections appear to be disconnected from main lung, and (6) achieve separation of the right and left hemi-lungs. The algorithm was developed and trained to on the first 100 datasets of the LIDC image database.

  14. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoot, A. J. A. J. van de, E-mail: a.j.schootvande@amc.uva.nl; Schooneveldt, G.; Wognum, S.

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used tomore » guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation results significantly (p < 0.01) based on DSC (6.72%) and SD of contour-to-contour distances (0.08 cm) and decreased the 95% confidence intervals of the bladder volume differences. Moreover, expanding the shape model improved the segmentation results significantly (p < 0.01) based on DSC and SD of contour-to-contour distances. Conclusions: This patient-specific shape model based automatic bladder segmentation method on CBCT is accurate and generic. Our segmentation method only needs two pretreatment imaging data sets as prior knowledge, is independent of patient gender and patient treatment position and has the possibility to manually adapt the segmentation locally.« less

  15. The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction.

    PubMed

    Makropoulos, Antonios; Robinson, Emma C; Schuh, Andreas; Wright, Robert; Fitzgibbon, Sean; Bozek, Jelena; Counsell, Serena J; Steinweg, Johannes; Vecchiato, Katy; Passerat-Palmbach, Jonathan; Lenz, Gregor; Mortari, Filippo; Tenev, Tencho; Duff, Eugene P; Bastiani, Matteo; Cordero-Grande, Lucilio; Hughes, Emer; Tusor, Nora; Tournier, Jacques-Donald; Hutter, Jana; Price, Anthony N; Teixeira, Rui Pedro A G; Murgasova, Maria; Victor, Suresh; Kelly, Christopher; Rutherford, Mary A; Smith, Stephen M; Edwards, A David; Hajnal, Joseph V; Jenkinson, Mark; Rueckert, Daniel

    2018-06-01

    The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. ProFound: Source Extraction and Application to Modern Survey Data

    NASA Astrophysics Data System (ADS)

    Robotham, A. S. G.; Davies, L. J. M.; Driver, S. P.; Koushan, S.; Taranu, D. S.; Casura, S.; Liske, J.

    2018-05-01

    We introduce PROFOUND, a source finding and image analysis package. PROFOUND provides methods to detect sources in noisy images, generate segmentation maps identifying the pixels belonging to each source, and measure statistics like flux, size, and ellipticity. These inputs are key requirements of PROFIT, our recently released galaxy profiling package, where the design aim is that these two software packages will be used in unison to semi-automatically profile large samples of galaxies. The key novel feature introduced in PROFOUND is that all photometry is executed on dilated segmentation maps that fully contain the identifiable flux, rather than using more traditional circular or ellipse-based photometry. Also, to be less sensitive to pathological segmentation issues, the de-blending is made across saddle points in flux. We apply PROFOUND in a number of simulated and real-world cases, and demonstrate that it behaves reasonably given its stated design goals. In particular, it offers good initial parameter estimation for PROFIT, and also segmentation maps that follow the sometimes complex geometry of resolved sources, whilst capturing nearly all of the flux. A number of bulge-disc decomposition projects are already making use of the PROFOUND and PROFIT pipeline, and adoption is being encouraged by publicly releasing the software for the open source R data analysis platform under an LGPL-3 license on GitHub (github.com/asgr/ProFound).

  17. KSC-99pp1181

    NASA Image and Video Library

    1999-10-06

    KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, rolls to a stop at KSC's Shuttle Landing Facility. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be transferred to the Operations and Checkout Building

  18. KSC-99pp1180

    NASA Image and Video Library

    1999-10-06

    KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, arrives at KSC's Shuttle Landing Facility from Marshall Space Flight Center. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be moved to the Operations and Checkout Building

  19. KSC-99pp1182

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- At KSC's Shuttle Landing Facility, NASA's Super Guppy opens to reveal its cargo, the International Space Station's (ISS) S1 truss. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be transferred to the Operations and Checkout Building

  20. KSC-99pp1185

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, workers attach cranes to the S1 truss, a segment of the International Space Station, to lift the truss to a payload transporter for its transfer to the Operations and Checkout Building. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The truss arrived at KSC aboard NASA's Super Guppy, with a 25-foot diameter fuselage designed to handle oversized loads. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight

  1. Automatic segmentation of brain MRI in high-dimensional local and non-local feature space based on sparse representation.

    PubMed

    Khalilzadeh, Mohammad Mahdi; Fatemizadeh, Emad; Behnam, Hamid

    2013-06-01

    Automatic extraction of the varying regions of magnetic resonance images is required as a prior step in a diagnostic intelligent system. The sparsest representation and high-dimensional feature are provided based on learned dictionary. The classification is done by employing the technique that computes the reconstruction error locally and non-locally of each pixel. The acquired results from the real and simulated images are superior to the best MRI segmentation method with regard to the stability advantages. In addition, it is segmented exactly through a formula taken from the distance and sparse factors. Also, it is done automatically taking sparse factor in unsupervised clustering methods whose results have been improved. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction

    NASA Astrophysics Data System (ADS)

    Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2011-06-01

    We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average Dice coefficients of 0.93 ± 0.03 (WM) and 0.90 ± 0.05 (GM) on simulated mono-spectral and 0.94 ± 0.02 (WM) and 0.92 ± 0.04 (GM) on simulated multi-spectral data from the BrainWeb repository. The scores are 0.81 ± 0.09 (WM) and 0.82 ± 0.06 (GM) and 0.87 ± 0.05 (WM) and 0.83 ± 0.12 (GM) for the two collections of real-world data sets—consisting of 20 and 18 volumes, respectively—provided by the Internet Brain Segmentation Repository.

  3. A discriminative model-constrained EM approach to 3D MRI brain tissue classification and intensity non-uniformity correction.

    PubMed

    Wels, Michael; Zheng, Yefeng; Huber, Martin; Hornegger, Joachim; Comaniciu, Dorin

    2011-06-07

    We describe a fully automated method for tissue classification, which is the segmentation into cerebral gray matter (GM), cerebral white matter (WM), and cerebral spinal fluid (CSF), and intensity non-uniformity (INU) correction in brain magnetic resonance imaging (MRI) volumes. It combines supervised MRI modality-specific discriminative modeling and unsupervised statistical expectation maximization (EM) segmentation into an integrated Bayesian framework. While both the parametric observation models and the non-parametrically modeled INUs are estimated via EM during segmentation itself, a Markov random field (MRF) prior model regularizes segmentation and parameter estimation. Firstly, the regularization takes into account knowledge about spatial and appearance-related homogeneity of segments in terms of pairwise clique potentials of adjacent voxels. Secondly and more importantly, patient-specific knowledge about the global spatial distribution of brain tissue is incorporated into the segmentation process via unary clique potentials. They are based on a strong discriminative model provided by a probabilistic boosting tree (PBT) for classifying image voxels. It relies on the surrounding context and alignment-based features derived from a probabilistic anatomical atlas. The context considered is encoded by 3D Haar-like features of reduced INU sensitivity. Alignment is carried out fully automatically by means of an affine registration algorithm minimizing cross-correlation. Both types of features do not immediately use the observed intensities provided by the MRI modality but instead rely on specifically transformed features, which are less sensitive to MRI artifacts. Detailed quantitative evaluations on standard phantom scans and standard real-world data show the accuracy and robustness of the proposed method. They also demonstrate relative superiority in comparison to other state-of-the-art approaches to this kind of computational task: our method achieves average Dice coefficients of 0.93 ± 0.03 (WM) and 0.90 ± 0.05 (GM) on simulated mono-spectral and 0.94 ± 0.02 (WM) and 0.92 ± 0.04 (GM) on simulated multi-spectral data from the BrainWeb repository. The scores are 0.81 ± 0.09 (WM) and 0.82 ± 0.06 (GM) and 0.87 ± 0.05 (WM) and 0.83 ± 0.12 (GM) for the two collections of real-world data sets-consisting of 20 and 18 volumes, respectively-provided by the Internet Brain Segmentation Repository.

  4. Model-based segmentation of the facial nerve and chorda tympani in pediatric CT scans

    NASA Astrophysics Data System (ADS)

    Reda, Fitsum A.; Noble, Jack H.; Rivas, Alejandro; Labadie, Robert F.; Dawant, Benoit M.

    2011-03-01

    In image-guided cochlear implant surgery an electrode array is implanted in the cochlea to treat hearing loss. Access to the cochlea is achieved by drilling from the outer skull to the cochlea through the facial recess, a region bounded by the facial nerve and the chorda tympani. To exploit existing methods for computing automatically safe drilling trajectories, the facial nerve and chorda tympani need to be segmented. The effectiveness of traditional segmentation approaches to achieve this is severely limited because the facial nerve and chorda are small structures (~1 mm and ~0.3 mm in diameter, respectively) and exhibit poor image contrast. We have recently proposed a technique to achieve this task in adult patients, which relies on statistical models of the structures. These models contain intensity and shape information along the central axes of both structures. In this work we use the same method to segment pediatric scans. We show that substantial differences exist between the anatomy of children and the anatomy of adults, which lead to poor segmentation results when an adult model is used to segment a pediatric volume. We have built a new model for pediatric cases and we have applied it to ten scans. A leave-one-out validation experiment was conducted in which manually segmented structures were compared to automatically segmented structures. The maximum segmentation error was 1 mm. This result indicates that accurate segmentation of the facial nerve and chorda in pediatric scans is achievable, thus suggesting that safe drilling trajectories can also be computed automatically.

  5. Towards Automatic Image Segmentation Using Optimised Region Growing Technique

    NASA Astrophysics Data System (ADS)

    Alazab, Mamoun; Islam, Mofakharul; Venkatraman, Sitalakshmi

    Image analysis is being adopted extensively in many applications such as digital forensics, medical treatment, industrial inspection, etc. primarily for diagnostic purposes. Hence, there is a growing interest among researches in developing new segmentation techniques to aid the diagnosis process. Manual segmentation of images is labour intensive, extremely time consuming and prone to human errors and hence an automated real-time technique is warranted in such applications. There is no universally applicable automated segmentation technique that will work for all images as the image segmentation is quite complex and unique depending upon the domain application. Hence, to fill the gap, this paper presents an efficient segmentation algorithm that can segment a digital image of interest into a more meaningful arrangement of regions and objects. Our algorithm combines region growing approach with optimised elimination of false boundaries to arrive at more meaningful segments automatically. We demonstrate this using X-ray teeth images that were taken for real-life dental diagnosis.

  6. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading.

    PubMed

    Li, Siqi; Jiang, Huiyan; Pang, Wenbo

    2017-05-01

    Accurate cell grading of cancerous tissue pathological image is of great importance in medical diagnosis and treatment. This paper proposes a joint multiple fully connected convolutional neural network with extreme learning machine (MFC-CNN-ELM) architecture for hepatocellular carcinoma (HCC) nuclei grading. First, in preprocessing stage, each grayscale image patch with the fixed size is obtained using center-proliferation segmentation (CPS) method and the corresponding labels are marked under the guidance of three pathologists. Next, a multiple fully connected convolutional neural network (MFC-CNN) is designed to extract the multi-form feature vectors of each input image automatically, which considers multi-scale contextual information of deep layer maps sufficiently. After that, a convolutional neural network extreme learning machine (CNN-ELM) model is proposed to grade HCC nuclei. Finally, a back propagation (BP) algorithm, which contains a new up-sample method, is utilized to train MFC-CNN-ELM architecture. The experiment comparison results demonstrate that our proposed MFC-CNN-ELM has superior performance compared with related works for HCC nuclei grading. Meanwhile, external validation using ICPR 2014 HEp-2 cell dataset shows the good generalization of our MFC-CNN-ELM architecture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. [Medical image segmentation based on the minimum variation snake model].

    PubMed

    Zhou, Changxiong; Yu, Shenglin

    2007-02-01

    It is difficult for traditional parametric active contour (Snake) model to deal with automatic segmentation of weak edge medical image. After analyzing snake and geometric active contour model, a minimum variation snake model was proposed and successfully applied to weak edge medical image segmentation. This proposed model replaces constant force in the balloon snake model by variable force incorporating foreground and background two regions information. It drives curve to evolve with the criterion of the minimum variation of foreground and background two regions. Experiments and results have proved that the proposed model is robust to initial contours placements and can segment weak edge medical image automatically. Besides, the testing for segmentation on the noise medical image filtered by curvature flow filter, which preserves edge features, shows a significant effect.

  8. Automatic sleep staging using empirical mode decomposition, discrete wavelet transform, time-domain, and nonlinear dynamics features of heart rate variability signals.

    PubMed

    Ebrahimi, Farideh; Setarehdan, Seyed-Kamaledin; Ayala-Moyeda, Jose; Nazeran, Homer

    2013-10-01

    The conventional method for sleep staging is to analyze polysomnograms (PSGs) recorded in a sleep lab. The electroencephalogram (EEG) is one of the most important signals in PSGs but recording and analysis of this signal presents a number of technical challenges, especially at home. Instead, electrocardiograms (ECGs) are much easier to record and may offer an attractive alternative for home sleep monitoring. The heart rate variability (HRV) signal proves suitable for automatic sleep staging. Thirty PSGs from the Sleep Heart Health Study (SHHS) database were used. Three feature sets were extracted from 5- and 0.5-min HRV segments: time-domain features, nonlinear-dynamics features and time-frequency features. The latter was achieved by using empirical mode decomposition (EMD) and discrete wavelet transform (DWT) methods. Normalized energies in important frequency bands of HRV signals were computed using time-frequency methods. ANOVA and t-test were used for statistical evaluations. Automatic sleep staging was based on HRV signal features. The ANOVA followed by a post hoc Bonferroni was used for individual feature assessment. Most features were beneficial for sleep staging. A t-test was used to compare the means of extracted features in 5- and 0.5-min HRV segments. The results showed that the extracted features means were statistically similar for a small number of features. A separability measure showed that time-frequency features, especially EMD features, had larger separation than others. There was not a sizable difference in separability of linear features between 5- and 0.5-min HRV segments but separability of nonlinear features, especially EMD features, decreased in 0.5-min HRV segments. HRV signal features were classified by linear discriminant (LD) and quadratic discriminant (QD) methods. Classification results based on features from 5-min segments surpassed those obtained from 0.5-min segments. The best result was obtained from features using 5-min HRV segments classified by the LD classifier. A combination of linear/nonlinear features from HRV signals is effective in automatic sleep staging. Moreover, time-frequency features are more informative than others. In addition, a separability measure and classification results showed that HRV signal features, especially nonlinear features, extracted from 5-min segments are more discriminative than those from 0.5-min segments in automatic sleep staging. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. A fully automated cell segmentation and morphometric parameter system for quantifying corneal endothelial cell morphology.

    PubMed

    Al-Fahdawi, Shumoos; Qahwaji, Rami; Al-Waisy, Alaa S; Ipson, Stanley; Ferdousi, Maryam; Malik, Rayaz A; Brahma, Arun

    2018-07-01

    Corneal endothelial cell abnormalities may be associated with a number of corneal and systemic diseases. Damage to the endothelial cells can significantly affect corneal transparency by altering hydration of the corneal stroma, which can lead to irreversible endothelial cell pathology requiring corneal transplantation. To date, quantitative analysis of endothelial cell abnormalities has been manually performed by ophthalmologists using time consuming and highly subjective semi-automatic tools, which require an operator interaction. We developed and applied a fully-automated and real-time system, termed the Corneal Endothelium Analysis System (CEAS) for the segmentation and computation of endothelial cells in images of the human cornea obtained by in vivo corneal confocal microscopy. First, a Fast Fourier Transform (FFT) Band-pass filter is applied to reduce noise and enhance the image quality to make the cells more visible. Secondly, endothelial cell boundaries are detected using watershed transformations and Voronoi tessellations to accurately quantify the morphological parameters of the human corneal endothelial cells. The performance of the automated segmentation system was tested against manually traced ground-truth images based on a database consisting of 40 corneal confocal endothelial cell images in terms of segmentation accuracy and obtained clinical features. In addition, the robustness and efficiency of the proposed CEAS system were compared with manually obtained cell densities using a separate database of 40 images from controls (n = 11), obese subjects (n = 16) and patients with diabetes (n = 13). The Pearson correlation coefficient between automated and manual endothelial cell densities is 0.9 (p < 0.0001) and a Bland-Altman plot shows that 95% of the data are between the 2SD agreement lines. We demonstrate the effectiveness and robustness of the CEAS system, and the possibility of utilizing it in a real world clinical setting to enable rapid diagnosis and for patient follow-up, with an execution time of only 6 seconds per image. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Performance evaluation of 2D and 3D deep learning approaches for automatic segmentation of multiple organs on CT images

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Yamada, Kazuma; Kojima, Takuya; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi

    2018-02-01

    The purpose of this study is to evaluate and compare the performance of modern deep learning techniques for automatically recognizing and segmenting multiple organ regions on 3D CT images. CT image segmentation is one of the important task in medical image analysis and is still very challenging. Deep learning approaches have demonstrated the capability of scene recognition and semantic segmentation on nature images and have been used to address segmentation problems of medical images. Although several works showed promising results of CT image segmentation by using deep learning approaches, there is no comprehensive evaluation of segmentation performance of the deep learning on segmenting multiple organs on different portions of CT scans. In this paper, we evaluated and compared the segmentation performance of two different deep learning approaches that used 2D- and 3D deep convolutional neural networks (CNN) without- and with a pre-processing step. A conventional approach that presents the state-of-the-art performance of CT image segmentation without deep learning was also used for comparison. A dataset that includes 240 CT images scanned on different portions of human bodies was used for performance evaluation. The maximum number of 17 types of organ regions in each CT scan were segmented automatically and compared to the human annotations by using ratio of intersection over union (IU) as the criterion. The experimental results demonstrated the IUs of the segmentation results had a mean value of 79% and 67% by averaging 17 types of organs that segmented by a 3D- and 2D deep CNN, respectively. All the results of the deep learning approaches showed a better accuracy and robustness than the conventional segmentation method that used probabilistic atlas and graph-cut methods. The effectiveness and the usefulness of deep learning approaches were demonstrated for solving multiple organs segmentation problem on 3D CT images.

  11. Automated imaging of cellular spheroids with selective plane illumination microscopy on a chip (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Paiè, Petra; Bassi, Andrea; Bragheri, Francesca; Osellame, Roberto

    2017-02-01

    Selective plane illumination microscopy (SPIM) is an optical sectioning technique that allows imaging of biological samples at high spatio-temporal resolution. Standard SPIM devices require dedicated set-ups, complex sample preparation and accurate system alignment, thus limiting the automation of the technique, its accessibility and throughput. We present a millimeter-scaled optofluidic device that incorporates selective plane illumination and fully automatic sample delivery and scanning. To this end an integrated cylindrical lens and a three-dimensional fluidic network were fabricated by femtosecond laser micromachining into a single glass chip. This device can upgrade any standard fluorescence microscope to a SPIM system. We used SPIM on a CHIP to automatically scan biological samples under a conventional microscope, without the need of any motorized stage: tissue spheroids expressing fluorescent proteins were flowed in the microchannel at constant speed and their sections were acquired while passing through the light sheet. We demonstrate high-throughput imaging of the entire sample volume (with a rate of 30 samples/min), segmentation and quantification in thick (100-300 μm diameter) cellular spheroids. This optofluidic device gives access to SPIM analyses to non-expert end-users, opening the way to automatic and fast screening of a high number of samples at subcellular resolution.

  12. Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection--a first study.

    PubMed

    Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z

    2014-01-01

    Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  13. Automatic Segmentation of Fluorescence Lifetime Microscopy Images of Cells Using Multi-Resolution Community Detection -A First Study

    PubMed Central

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar

    2014-01-01

    Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410

  14. Morphometric Atlas Selection for Automatic Brachial Plexus Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Velde, Joris, E-mail: joris.vandevelde@ugent.be; Department of Radiotherapy, Ghent University, Ghent; Wouters, Johan

    Purpose: The purpose of this study was to determine the effects of atlas selection based on different morphometric parameters, on the accuracy of automatic brachial plexus (BP) segmentation for radiation therapy planning. The segmentation accuracy was measured by comparing all of the generated automatic segmentations with anatomically validated gold standard atlases developed using cadavers. Methods and Materials: Twelve cadaver computed tomography (CT) atlases (3 males, 9 females; mean age: 73 years) were included in the study. One atlas was selected to serve as a patient, and the other 11 atlases were registered separately onto this “patient” using deformable image registration. Thismore » procedure was repeated for every atlas as a patient. Next, the Dice and Jaccard similarity indices and inclusion index were calculated for every registered BP with the original gold standard BP. In parallel, differences in several morphometric parameters that may influence the BP segmentation accuracy were measured for the different atlases. Specific brachial plexus-related CT-visible bony points were used to define the morphometric parameters. Subsequently, correlations between the similarity indices and morphometric parameters were calculated. Results: A clear negative correlation between difference in protraction-retraction distance and the similarity indices was observed (mean Pearson correlation coefficient = −0.546). All of the other investigated Pearson correlation coefficients were weak. Conclusions: Differences in the shoulder protraction-retraction position between the atlas and the patient during planning CT influence the BP autosegmentation accuracy. A greater difference in the protraction-retraction distance between the atlas and the patient reduces the accuracy of the BP automatic segmentation result.« less

  15. Automatic lung nodule graph cuts segmentation with deep learning false positive reduction

    NASA Astrophysics Data System (ADS)

    Sun, Wenqing; Huang, Xia; Tseng, Tzu-Liang Bill; Qian, Wei

    2017-03-01

    To automatic detect lung nodules from CT images, we designed a two stage computer aided detection (CAD) system. The first stage is graph cuts segmentation to identify and segment the nodule candidates, and the second stage is convolutional neural network for false positive reduction. The dataset contains 595 CT cases randomly selected from Lung Image Database Consortium and Image Database Resource Initiative (LIDC/IDRI) and the 305 pulmonary nodules achieved diagnosis consensus by all four experienced radiologists were our detection targets. Consider each slice as an individual sample, 2844 nodules were included in our database. The graph cuts segmentation was conducted in a two-dimension manner, 2733 lung nodule ROIs are successfully identified and segmented. With a false positive reduction by a seven-layer convolutional neural network, 2535 nodules remain detected while the false positive dropped to 31.6%. The average F-measure of segmented lung nodule tissue is 0.8501.

  16. A scale space based algorithm for automated segmentation of single shot tagged MRI of shearing deformation.

    PubMed

    Sprengers, Andre M J; Caan, Matthan W A; Moerman, Kevin M; Nederveen, Aart J; Lamerichs, Rolf M; Stoker, Jaap

    2013-04-01

    This study proposes a scale space based algorithm for automated segmentation of single-shot tagged images of modest SNR. Furthermore the algorithm was designed for analysis of discontinuous or shearing types of motion, i.e. segmentation of broken tag patterns. The proposed algorithm utilises non-linear scale space for automatic segmentation of single-shot tagged images. The algorithm's ability to automatically segment tagged shearing motion was evaluated in a numerical simulation and in vivo. A typical shearing deformation was simulated in a Shepp-Logan phantom allowing for quantitative evaluation of the algorithm's success rate as a function of both SNR and the amount of deformation. For a qualitative in vivo evaluation tagged images showing deformations in the calf muscles and eye movement in a healthy volunteer were acquired. Both the numerical simulation and the in vivo tagged data demonstrated the algorithm's ability for automated segmentation of single-shot tagged MR provided that SNR of the images is above 10 and the amount of deformation does not exceed the tag spacing. The latter constraint can be met by adjusting the tag delay or the tag spacing. The scale space based algorithm for automatic segmentation of single-shot tagged MR enables the application of tagged MR to complex (shearing) deformation and the processing of datasets with relatively low SNR.

  17. Automatic segmentation of brain MRIs and mapping neuroanatomy across the human lifespan

    NASA Astrophysics Data System (ADS)

    Keihaninejad, Shiva; Heckemann, Rolf A.; Gousias, Ioannis S.; Rueckert, Daniel; Aljabar, Paul; Hajnal, Joseph V.; Hammers, Alexander

    2009-02-01

    A robust model for the automatic segmentation of human brain images into anatomically defined regions across the human lifespan would be highly desirable, but such structural segmentations of brain MRI are challenging due to age-related changes. We have developed a new method, based on established algorithms for automatic segmentation of young adults' brains. We used prior information from 30 anatomical atlases, which had been manually segmented into 83 anatomical structures. Target MRIs came from 80 subjects (~12 individuals/decade) from 20 to 90 years, with equal numbers of men, women; data from two different scanners (1.5T, 3T), using the IXI database. Each of the adult atlases was registered to each target MR image. By using additional information from segmentation into tissue classes (GM, WM and CSF) to initialise the warping based on label consistency similarity before feeding this into the previous normalised mutual information non-rigid registration, the registration became robust enough to accommodate atrophy and ventricular enlargement with age. The final segmentation was obtained by combination of the 30 propagated atlases using decision fusion. Kernel smoothing was used for modelling the structural volume changes with aging. Example linear correlation coefficients with age were, for lateral ventricular volume, rmale=0.76, rfemale=0.58 and, for hippocampal volume, rmale=-0.6, rfemale=-0.4 (allρ<0.01).

  18. Improving left ventricular segmentation in four-dimensional flow MRI using intramodality image registration for cardiac blood flow analysis.

    PubMed

    Gupta, Vikas; Bustamante, Mariana; Fredriksson, Alexandru; Carlhäll, Carl-Johan; Ebbers, Tino

    2018-01-01

    Assessment of blood flow in the left ventricle using four-dimensional flow MRI requires accurate left ventricle segmentation that is often hampered by the low contrast between blood and the myocardium. The purpose of this work is to improve left-ventricular segmentation in four-dimensional flow MRI for reliable blood flow analysis. The left ventricle segmentations are first obtained using morphological cine-MRI with better in-plane resolution and contrast, and then aligned to four-dimensional flow MRI data. This alignment is, however, not trivial due to inter-slice misalignment errors caused by patient motion and respiratory drift during breath-hold based cine-MRI acquisition. A robust image registration based framework is proposed to mitigate such errors automatically. Data from 20 subjects, including healthy volunteers and patients, was used to evaluate its geometric accuracy and impact on blood flow analysis. High spatial correspondence was observed between manually and automatically aligned segmentations, and the improvements in alignment compared to uncorrected segmentations were significant (P < 0.01). Blood flow analysis from manual and automatically corrected segmentations did not differ significantly (P > 0.05). Our results demonstrate the efficacy of the proposed approach in improving left-ventricular segmentation in four-dimensional flow MRI, and its potential for reliable blood flow analysis. Magn Reson Med 79:554-560, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  19. Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study

    PubMed Central

    Deeley, M A; Chen, A; Datteri, R; Noble, J; Cmelak, A; Donnelly, E; Malcolm, A; Moretti, L; Jaboin, J; Niermann, K; Yang, Eddy S; Yu, David S; Yei, F; Koyama, T; Ding, G X; Dawant, B M

    2011-01-01

    The purpose of this work was to characterize expert variation in segmentation of intracranial structures pertinent to radiation therapy, and to assess a registration-driven atlas-based segmentation algorithm in that context. Eight experts were recruited to segment the brainstem, optic chiasm, optic nerves, and eyes, of 20 patients who underwent therapy for large space-occupying tumors. Performance variability was assessed through three geometric measures: volume, Dice similarity coefficient, and Euclidean distance. In addition, two simulated ground truth segmentations were calculated via the simultaneous truth and performance level estimation (STAPLE) algorithm and a novel application of probability maps. The experts and automatic system were found to generate structures of similar volume, though the experts exhibited higher variation with respect to tubular structures. No difference was found between the mean Dice coefficient (DSC) of the automatic and expert delineations as a group at a 5% significance level over all cases and organs. The larger structures of the brainstem and eyes exhibited mean DSC of approximately 0.8–0.9, whereas the tubular chiasm and nerves were lower, approximately 0.4–0.5. Similarly low DSC have been reported previously without the context of several experts and patient volumes. This study, however, provides evidence that experts are similarly challenged. The average maximum distances (maximum inside, maximum outside) from a simulated ground truth ranged from (−4.3, +5.4) mm for the automatic system to (−3.9, +7.5) mm for the experts considered as a group. Over all the structures in a rank of true positive rates at a 2 mm threshold from the simulated ground truth, the automatic system ranked second of the nine raters. This work underscores the need for large scale studies utilizing statistically robust numbers of patients and experts in evaluating quality of automatic algorithms. PMID:21725140

  20. Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study

    NASA Astrophysics Data System (ADS)

    Deeley, M. A.; Chen, A.; Datteri, R.; Noble, J. H.; Cmelak, A. J.; Donnelly, E. F.; Malcolm, A. W.; Moretti, L.; Jaboin, J.; Niermann, K.; Yang, Eddy S.; Yu, David S.; Yei, F.; Koyama, T.; Ding, G. X.; Dawant, B. M.

    2011-07-01

    The purpose of this work was to characterize expert variation in segmentation of intracranial structures pertinent to radiation therapy, and to assess a registration-driven atlas-based segmentation algorithm in that context. Eight experts were recruited to segment the brainstem, optic chiasm, optic nerves, and eyes, of 20 patients who underwent therapy for large space-occupying tumors. Performance variability was assessed through three geometric measures: volume, Dice similarity coefficient, and Euclidean distance. In addition, two simulated ground truth segmentations were calculated via the simultaneous truth and performance level estimation algorithm and a novel application of probability maps. The experts and automatic system were found to generate structures of similar volume, though the experts exhibited higher variation with respect to tubular structures. No difference was found between the mean Dice similarity coefficient (DSC) of the automatic and expert delineations as a group at a 5% significance level over all cases and organs. The larger structures of the brainstem and eyes exhibited mean DSC of approximately 0.8-0.9, whereas the tubular chiasm and nerves were lower, approximately 0.4-0.5. Similarly low DSCs have been reported previously without the context of several experts and patient volumes. This study, however, provides evidence that experts are similarly challenged. The average maximum distances (maximum inside, maximum outside) from a simulated ground truth ranged from (-4.3, +5.4) mm for the automatic system to (-3.9, +7.5) mm for the experts considered as a group. Over all the structures in a rank of true positive rates at a 2 mm threshold from the simulated ground truth, the automatic system ranked second of the nine raters. This work underscores the need for large scale studies utilizing statistically robust numbers of patients and experts in evaluating quality of automatic algorithms.

  1. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution

    NASA Astrophysics Data System (ADS)

    Hu, Peijun; Wu, Fa; Peng, Jialin; Liang, Ping; Kong, Dexing

    2016-12-01

    The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of 80.3+/- 4.5 , yielding a mean Dice similarity coefficient of 97.25+/- 0.65 % , and an average symmetric surface distance of 0.84+/- 0.25 mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.

  2. Automatic lumen and outer wall segmentation of the carotid artery using deformable three-dimensional models in MR angiography and vessel wall images.

    PubMed

    van 't Klooster, Ronald; de Koning, Patrick J H; Dehnavi, Reza Alizadeh; Tamsma, Jouke T; de Roos, Albert; Reiber, Johan H C; van der Geest, Rob J

    2012-01-01

    To develop and validate an automated segmentation technique for the detection of the lumen and outer wall boundaries in MR vessel wall studies of the common carotid artery. A new segmentation method was developed using a three-dimensional (3D) deformable vessel model requiring only one single user interaction by combining 3D MR angiography (MRA) and 2D vessel wall images. This vessel model is a 3D cylindrical Non-Uniform Rational B-Spline (NURBS) surface which can be deformed to fit the underlying image data. Image data of 45 subjects was used to validate the method by comparing manual and automatic segmentations. Vessel wall thickness and volume measurements obtained by both methods were compared. Substantial agreement was observed between manual and automatic segmentation; over 85% of the vessel wall contours were segmented successfully. The interclass correlation was 0.690 for the vessel wall thickness and 0.793 for the vessel wall volume. Compared with manual image analysis, the automated method demonstrated improved interobserver agreement and inter-scan reproducibility. Additionally, the proposed automated image analysis approach was substantially faster. This new automated method can reduce analysis time and enhance reproducibility of the quantification of vessel wall dimensions in clinical studies. Copyright © 2011 Wiley Periodicals, Inc.

  3. Automatic Segmenting Structures in MRI's Based on Texture Analysis and Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Kaur, Mandeep; Rattan, Munish; Singh, Pushpinder

    2017-12-01

    The purpose of this paper is to present the variational method for geometric contours which helps the level set function remain close to the sign distance function, therefor it remove the need of expensive re-initialization procedure and thus, level set method is applied on magnetic resonance images (MRI) to track the irregularities in them as medical imaging plays a substantial part in the treatment, therapy and diagnosis of various organs, tumors and various abnormalities. It favors the patient with more speedy and decisive disease controlling with lesser side effects. The geometrical shape, the tumor's size and tissue's abnormal growth can be calculated by the segmentation of that particular image. It is still a great challenge for the researchers to tackle with an automatic segmentation in the medical imaging. Based on the texture analysis, different images are processed by optimization of level set segmentation. Traditionally, optimization was manual for every image where each parameter is selected one after another. By applying fuzzy logic, the segmentation of image is correlated based on texture features, to make it automatic and more effective. There is no initialization of parameters and it works like an intelligent system. It segments the different MRI images without tuning the level set parameters and give optimized results for all MRI's.

  4. Coronary artery analysis: Computer-assisted selection of best-quality segments in multiple-phase coronary CT angiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Chuan, E-mail: chuan@umich.edu; Chan, Heang-

    Purpose: The authors are developing an automated method to identify the best-quality coronary arterial segment from multiple-phase coronary CT angiography (cCTA) acquisitions, which may be used by either interpreting physicians or computer-aided detection systems to optimally and efficiently utilize the diagnostic information available in multiple-phase cCTA for the detection of coronary artery disease. Methods: After initialization with a manually identified seed point, each coronary artery tree is automatically extracted from multiple cCTA phases using our multiscale coronary artery response enhancement and 3D rolling balloon region growing vessel segmentation and tracking method. The coronary artery trees from multiple phases are thenmore » aligned by a global registration using an affine transformation with quadratic terms and nonlinear simplex optimization, followed by a local registration using a cubic B-spline method with fast localized optimization. The corresponding coronary arteries among the available phases are identified using a recursive coronary segment matching method. Each of the identified vessel segments is transformed by the curved planar reformation (CPR) method. Four features are extracted from each corresponding segment as quality indicators in the original computed tomography volume and the straightened CPR volume, and each quality indicator is used as a voting classifier for the arterial segment. A weighted voting ensemble (WVE) classifier is designed to combine the votes of the four voting classifiers for each corresponding segment. The segment with the highest WVE vote is then selected as the best-quality segment. In this study, the training and test sets consisted of 6 and 20 cCTA cases, respectively, each with 6 phases, containing a total of 156 cCTA volumes and 312 coronary artery trees. An observer preference study was also conducted with one expert cardiothoracic radiologist and four nonradiologist readers to visually rank vessel segment quality. The performance of our automated method was evaluated by comparing the automatically identified best-quality segments identified by the computer to those selected by the observers. Results: For the 20 test cases, 254 groups of corresponding vessel segments were identified after multiple phase registration and recursive matching. The AI-BQ segments agreed with the radiologist’s top 2 ranked segments in 78.3% of the 254 groups (Cohen’s kappa 0.60), and with the 4 nonradiologist observers in 76.8%, 84.3%, 83.9%, and 85.8% of the 254 groups. In addition, 89.4% of the AI-BQ segments agreed with at least two observers’ top 2 rankings, and 96.5% agreed with at least one observer’s top 2 rankings. In comparison, agreement between the four observers’ top ranked segment and the radiologist’s top 2 ranked segments were 79.9%, 80.7%, 82.3%, and 76.8%, respectively, with kappa values ranging from 0.56 to 0.68. Conclusions: The performance of our automated method for selecting the best-quality coronary segments from a multiple-phase cCTA acquisition was comparable to the selection made by human observers. This study demonstrates the potential usefulness of the automated method in clinical practice, enabling interpreting physicians to fully utilize the best available information in cCTA for diagnosis of coronary disease, without requiring manual search through the multiple phases and minimizing the variability in image phase selection for evaluation of coronary artery segments across the diversity of human readers with variations in expertise.« less

  5. Automatic segmentation in three-dimensional analysis of fibrovascular pigmentepithelial detachment using high-definition optical coherence tomography.

    PubMed

    Ahlers, C; Simader, C; Geitzenauer, W; Stock, G; Stetson, P; Dastmalchi, S; Schmidt-Erfurth, U

    2008-02-01

    A limited number of scans compromise conventional optical coherence tomography (OCT) to track chorioretinal disease in its full extension. Failures in edge-detection algorithms falsify the results of retinal mapping even further. High-definition-OCT (HD-OCT) is based on raster scanning and was used to visualise the localisation and volume of intra- and sub-pigment-epithelial (RPE) changes in fibrovascular pigment epithelial detachments (fPED). Two different scanning patterns were evaluated. 22 eyes with fPED were imaged using a frequency-domain, high-speed prototype of the Cirrus HD-OCT. The axial resolution was 6 mum, and the scanning speed was 25 kA scans/s. Two different scanning patterns covering an area of 6 x 6 mm in the macular retina were compared. Three-dimensional topographic reconstructions and volume calculations were performed using MATLAB-based automatic segmentation software. Detailed information about layer-specific distribution of fluid accumulation and volumetric measurements can be obtained for retinal- and sub-RPE volumes. Both raster scans show a high correlation (p<0.01; R2>0.89) of measured values, that is PED volume/area, retinal volume and mean retinal thickness. Quality control of the automatic segmentation revealed reasonable results in over 90% of the examinations. Automatic segmentation allows for detailed quantitative and topographic analysis of the RPE and the overlying retina. In fPED, the 128 x 512 scanning-pattern shows mild advantages when compared with the 256 x 256 scan. Together with the ability for automatic segmentation, HD-OCT clearly improves the clinical monitoring of chorioretinal disease by adding relevant new parameters. HD-OCT is likely capable of enhancing the understanding of pathophysiology and benefits of treatment for current anti-CNV strategies in future.

  6. Semi-automatic volume measurement for orbital fat and total extraocular muscles based on Cube FSE-flex sequence in patients with thyroid-associated ophthalmopathy.

    PubMed

    Tang, X; Liu, H; Chen, L; Wang, Q; Luo, B; Xiang, N; He, Y; Zhu, W; Zhang, J

    2018-05-24

    To investigate the accuracy of two semi-automatic segmentation measurements based on magnetic resonance imaging (MRI) three-dimensional (3D) Cube fast spin echo (FSE)-flex sequence in phantoms, and to evaluate the feasibility of determining the volumetric alterations of orbital fat (OF) and total extraocular muscles (TEM) in patients with thyroid-associated ophthalmopathy (TAO) by semi-automatic segmentation. Forty-four fatty (n=22) and lean (n=22) phantoms were scanned by using Cube FSE-flex sequence with a 3 T MRI system. Their volumes were measured by manual segmentation (MS) and two semi-automatic segmentation algorithms (regional growing [RG], multi-dimensional threshold [MDT]). Pearson correlation and Bland-Altman analysis were used to evaluate the measuring accuracy of MS, RG, and MDT in phantoms as compared with the true volume. Then, OF and TEM volumes of 15 TAO patients and 15 normal controls were measured using MDT. Paired-sample t-tests were used to compare the volumes and volume ratios of different orbital tissues between TAO patients and controls. Each segmentation (MS RG, MDT) has a significant correlation (p<0.01) with true volume. There was a minimal bias for MS, and a stronger agreement between MDT and the true volume than RG and the true volume both in fatty and lean phantoms. The reproducibility of Cube FSE-flex determined MDT was adequate. The volumetric ratios of OF/globe (p<0.01), TEM/globe (p<0.01), whole orbit/globe (p<0.01) and bone orbit/globe (p<0.01) were significantly greater in TAO patients than those in healthy controls. MRI Cube FSE-flex determined MDT is a relatively accurate semi-automatic segmentation that can be used to evaluate OF and TEM volumes in clinic. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  7. Semiautomatic segmentation of liver metastases on volumetric CT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jiayong; Schwartz, Lawrence H.; Zhao, Binsheng, E-mail: bz2166@cumc.columbia.edu

    2015-11-15

    Purpose: Accurate segmentation and quantification of liver metastases on CT images are critical to surgery/radiation treatment planning and therapy response assessment. To date, there are no reliable methods to perform such segmentation automatically. In this work, the authors present a method for semiautomatic delineation of liver metastases on contrast-enhanced volumetric CT images. Methods: The first step is to manually place a seed region-of-interest (ROI) in the lesion on an image. This ROI will (1) serve as an internal marker and (2) assist in automatically identifying an external marker. With these two markers, lesion contour on the image can be accuratelymore » delineated using traditional watershed transformation. Density information will then be extracted from the segmented 2D lesion and help determine the 3D connected object that is a candidate of the lesion volume. The authors have developed a robust strategy to automatically determine internal and external markers for marker-controlled watershed segmentation. By manually placing a seed region-of-interest in the lesion to be delineated on a reference image, the method can automatically determine dual threshold values to approximately separate the lesion from its surrounding structures and refine the thresholds from the segmented lesion for the accurate segmentation of the lesion volume. This method was applied to 69 liver metastases (1.1–10.3 cm in diameter) from a total of 15 patients. An independent radiologist manually delineated all lesions and the resultant lesion volumes served as the “gold standard” for validation of the method’s accuracy. Results: The algorithm received a median overlap, overestimation ratio, and underestimation ratio of 82.3%, 6.0%, and 11.5%, respectively, and a median average boundary distance of 1.2 mm. Conclusions: Preliminary results have shown that volumes of liver metastases on contrast-enhanced CT images can be accurately estimated by a semiautomatic segmentation method.« less

  8. Flexible methods for segmentation evaluation: Results from CT-based luggage screening

    PubMed Central

    Karimi, Seemeen; Jiang, Xiaoqian; Cosman, Pamela; Martz, Harry

    2017-01-01

    BACKGROUND Imaging systems used in aviation security include segmentation algorithms in an automatic threat recognition pipeline. The segmentation algorithms evolve in response to emerging threats and changing performance requirements. Analysis of segmentation algorithms’ behavior, including the nature of errors and feature recovery, facilitates their development. However, evaluation methods from the literature provide limited characterization of the segmentation algorithms. OBJECTIVE To develop segmentation evaluation methods that measure systematic errors such as oversegmentation and undersegmentation, outliers, and overall errors. The methods must measure feature recovery and allow us to prioritize segments. METHODS We developed two complementary evaluation methods using statistical techniques and information theory. We also created a semi-automatic method to define ground truth from 3D images. We applied our methods to evaluate five segmentation algorithms developed for CT luggage screening. We validated our methods with synthetic problems and an observer evaluation. RESULTS Both methods selected the same best segmentation algorithm. Human evaluation confirmed the findings. The measurement of systematic errors and prioritization helped in understanding the behavior of each segmentation algorithm. CONCLUSIONS Our evaluation methods allow us to measure and explain the accuracy of segmentation algorithms. PMID:24699346

  9. Tools for model-building with cryo-EM maps

    DOE PAGES

    Terwilliger, Thomas Charles

    2018-01-01

    There are new tools available to you in Phenix for interpreting cryo-EM maps. You can automatically sharpen (or blur) a map with phenix.auto_sharpen and you can segment a map with phenix.segment_and_split_map. If you have overlapping partial models for a map, you can merge them with phenix.combine_models. If you have a protein-RNA complex and protein chains have been accidentally built in the RNA region, you can try to remove them with phenix.remove_poor_fragments. You can put these together and automatically sharpen, segment and build a map with phenix.map_to_model.

  10. Tools for model-building with cryo-EM maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terwilliger, Thomas Charles

    There are new tools available to you in Phenix for interpreting cryo-EM maps. You can automatically sharpen (or blur) a map with phenix.auto_sharpen and you can segment a map with phenix.segment_and_split_map. If you have overlapping partial models for a map, you can merge them with phenix.combine_models. If you have a protein-RNA complex and protein chains have been accidentally built in the RNA region, you can try to remove them with phenix.remove_poor_fragments. You can put these together and automatically sharpen, segment and build a map with phenix.map_to_model.

  11. Prostate segmentation in MRI using fused T2-weighted and elastography images

    NASA Astrophysics Data System (ADS)

    Nir, Guy; Sahebjavaher, Ramin S.; Baghani, Ali; Sinkus, Ralph; Salcudean, Septimiu E.

    2014-03-01

    Segmentation of the prostate in medical imaging is a challenging and important task for surgical planning and delivery of prostate cancer treatment. Automatic prostate segmentation can improve speed, reproducibility and consistency of the process. In this work, we propose a method for automatic segmentation of the prostate in magnetic resonance elastography (MRE) images. The method utilizes the complementary property of the elastogram and the corresponding T2-weighted image, which are obtained from the phase and magnitude components of the imaging signal, respectively. It follows a variational approach to propagate an active contour model based on the combination of region statistics in the elastogram and the edge map of the T2-weighted image. The method is fast and does not require prior shape information. The proposed algorithm is tested on 35 clinical image pairs from five MRE data sets, and is evaluated in comparison with manual contouring. The mean absolute distance between the automatic and manual contours is 1.8mm, with a maximum distance of 5.6mm. The relative area error is 7.6%, and the duration of the segmentation process is 2s per slice.

  12. SU-C-207B-04: Automated Segmentation of Pectoral Muscle in MR Images of Dense Breasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verburg, E; Waard, SN de; Veldhuis, WB

    Purpose: To develop and evaluate a fully automated method for segmentation of the pectoral muscle boundary in Magnetic Resonance Imaging (MRI) of dense breasts. Methods: Segmentation of the pectoral muscle is an important part of automatic breast image analysis methods. Current methods for segmenting the pectoral muscle in breast MRI have difficulties delineating the muscle border correctly in breasts with a large proportion of fibroglandular tissue (i.e., dense breasts). Hence, an automated method based on dynamic programming was developed, incorporating heuristics aimed at shape, location and gradient features.To assess the method, the pectoral muscle was segmented in 91 randomly selectedmore » participants (mean age 56.6 years, range 49.5–75.2 years) from a large MRI screening trial in women with dense breasts (ACR BI-RADS category 4). Each MR dataset consisted of 178 or 179 T1-weighted images with voxel size 0.64 × 0.64 × 1.00 mm3. All images (n=16,287) were reviewed and scored by a radiologist. In contrast to volume overlap coefficients, such as DICE, the radiologist detected deviations in the segmented muscle border and determined whether the result would impact the ability to accurately determine the volume of fibroglandular tissue and detection of breast lesions. Results: According to the radiologist’s scores, 95.5% of the slices did not mask breast tissue in such way that it could affect detection of breast lesions or volume measurements. In 13.1% of the slices a deviation in the segmented muscle border was present which would not impact breast lesion detection. In 70 datasets (78%) at least 95% of the slices were segmented in such a way it would not affect detection of breast lesions, and in 60 (66%) datasets this was 100%. Conclusion: Dynamic programming with dedicated heuristics shows promising potential to segment the pectoral muscle in women with dense breasts.« less

  13. Volumetric glioma quantification: comparison of manual and semi-automatic tumor segmentation for the quantification of tumor growth.

    PubMed

    Odland, Audun; Server, Andres; Saxhaug, Cathrine; Breivik, Birger; Groote, Rasmus; Vardal, Jonas; Larsson, Christopher; Bjørnerud, Atle

    2015-11-01

    Volumetric magnetic resonance imaging (MRI) is now widely available and routinely used in the evaluation of high-grade gliomas (HGGs). Ideally, volumetric measurements should be included in this evaluation. However, manual tumor segmentation is time-consuming and suffers from inter-observer variability. Thus, tools for semi-automatic tumor segmentation are needed. To present a semi-automatic method (SAM) for segmentation of HGGs and to compare this method with manual segmentation performed by experts. The inter-observer variability among experts manually segmenting HGGs using volumetric MRIs was also examined. Twenty patients with HGGs were included. All patients underwent surgical resection prior to inclusion. Each patient underwent several MRI examinations during and after adjuvant chemoradiation therapy. Three experts performed manual segmentation. The results of tumor segmentation by the experts and by the SAM were compared using Dice coefficients and kappa statistics. A relatively close agreement was seen among two of the experts and the SAM, while the third expert disagreed considerably with the other experts and the SAM. An important reason for this disagreement was a different interpretation of contrast enhancement as either surgically-induced or glioma-induced. The time required for manual tumor segmentation was an average of 16 min per scan. Editing of the tumor masks produced by the SAM required an average of less than 2 min per sample. Manual segmentation of HGG is very time-consuming and using the SAM could increase the efficiency of this process. However, the accuracy of the SAM ultimately depends on the expert doing the editing. Our study confirmed a considerable inter-observer variability among experts defining tumor volume from volumetric MRIs. © The Foundation Acta Radiologica 2014.

  14. Improve accuracy for automatic acetabulum segmentation in CT images.

    PubMed

    Liu, Hao; Zhao, Jianning; Dai, Ning; Qian, Hongbo; Tang, Yuehong

    2014-01-01

    Separation of the femur head and acetabulum is one of main difficulties in the diseased hip joint due to deformed shapes and extreme narrowness of the joint space. To improve the segmentation accuracy is the key point of existing automatic or semi-automatic segmentation methods. In this paper, we propose a new method to improve the accuracy of the segmented acetabulum using surface fitting techniques, which essentially consists of three parts: (1) design a surface iterative process to obtain an optimization surface; (2) change the ellipsoid fitting to two-phase quadric surface fitting; (3) bring in a normal matching method and an optimization region method to capture edge points for the fitting quadric surface. Furthermore, this paper cited vivo CT data sets of 40 actual patients (with 79 hip joints). Test results for these clinical cases show that: (1) the average error of the quadric surface fitting method is 2.3 (mm); (2) the accuracy ratio of automatically recognized contours is larger than 89.4%; (3) the error ratio of section contours is less than 10% for acetabulums without severe malformation and less than 30% for acetabulums with severe malformation. Compared with similar methods, the accuracy of our method, which is applied in a software system, is significantly enhanced.

  15. KSC-99pp1186

    NASA Image and Video Library

    1999-10-07

    KENNEDY SPACE CENTER, FLA. -- Escort vehicles prepare to leave the Shuttle Landing Facility with the S1 truss (at right) on its trek to the Operations and Checkout Building. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The truss arrived at KSC aboard NASA's Super Guppy, seen in the background. The aircraft is uniquely built with a 25-foot diameter fuselage designed to handle oversized loads and a "fold-away" nose that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight

  16. Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain MRI.

    PubMed

    Elliott, Colm; Arnold, Douglas L; Collins, D Louis; Arbel, Tal

    2013-08-01

    Detection of new Multiple Sclerosis (MS) lesions on magnetic resonance imaging (MRI) is important as a marker of disease activity and as a potential surrogate for relapses. We propose an approach where sequential scans are jointly segmented, to provide a temporally consistent tissue segmentation while remaining sensitive to newly appearing lesions. The method uses a two-stage classification process: 1) a Bayesian classifier provides a probabilistic brain tissue classification at each voxel of reference and follow-up scans, and 2) a random-forest based lesion-level classification provides a final identification of new lesions. Generative models are learned based on 364 scans from 95 subjects from a multi-center clinical trial. The method is evaluated on sequential brain MRI of 160 subjects from a separate multi-center clinical trial, and is compared to 1) semi-automatically generated ground truth segmentations and 2) fully manual identification of new lesions generated independently by nine expert raters on a subset of 60 subjects. For new lesions greater than 0.15 cc in size, the classifier has near perfect performance (99% sensitivity, 2% false detection rate), as compared to ground truth. The proposed method was also shown to exceed the performance of any one of the nine expert manual identifications.

  17. A novel fully automatic scheme for fiducial marker-based alignment in electron tomography.

    PubMed

    Han, Renmin; Wang, Liansan; Liu, Zhiyong; Sun, Fei; Zhang, Fa

    2015-12-01

    Although the topic of fiducial marker-based alignment in electron tomography (ET) has been widely discussed for decades, alignment without human intervention remains a difficult problem. Specifically, the emergence of subtomogram averaging has increased the demand for batch processing during tomographic reconstruction; fully automatic fiducial marker-based alignment is the main technique in this process. However, the lack of an accurate method for detecting and tracking fiducial markers precludes fully automatic alignment. In this paper, we present a novel, fully automatic alignment scheme for ET. Our scheme has two main contributions: First, we present a series of algorithms to ensure a high recognition rate and precise localization during the detection of fiducial markers. Our proposed solution reduces fiducial marker detection to a sampling and classification problem and further introduces an algorithm to solve the parameter dependence of marker diameter and marker number. Second, we propose a novel algorithm to solve the tracking of fiducial markers by reducing the tracking problem to an incomplete point set registration problem. Because a global optimization of a point set registration occurs, the result of our tracking is independent of the initial image position in the tilt series, allowing for the robust tracking of fiducial markers without pre-alignment. The experimental results indicate that our method can achieve an accurate tracking, almost identical to the current best one in IMOD with half automatic scheme. Furthermore, our scheme is fully automatic, depends on fewer parameters (only requires a gross value of the marker diameter) and does not require any manual interaction, providing the possibility of automatic batch processing of electron tomographic reconstruction. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Cao, Siming; He, Jun; Yu, Lejun; Li, Liandong

    2017-03-01

    Constrained by the physiology, the temporal factors associated with human behavior, irrespective of facial movement or body gesture, are described by four phases: neutral, onset, apex, and offset. Although they may benefit related recognition tasks, it is not easy to accurately detect such temporal segments. An automatic temporal segment detection framework using bilateral long short-term memory recurrent neural networks (BLSTM-RNN) to learn high-level temporal-spatial features, which synthesizes the local and global temporal-spatial information more efficiently, is presented. The framework is evaluated in detail over the face and body database (FABO). The comparison shows that the proposed framework outperforms state-of-the-art methods for solving the problem of temporal segment detection.

  19. Automated analysis of siRNA screens of cells infected by hepatitis C and dengue viruses based on immunofluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Matula, Petr; Kumar, Anil; Wörz, Ilka; Harder, Nathalie; Erfle, Holger; Bartenschlager, Ralf; Eils, Roland; Rohr, Karl

    2008-03-01

    We present an image analysis approach as part of a high-throughput microscopy siRNA-based screening system using cell arrays for the identification of cellular genes involved in hepatitis C and dengue virus replication. Our approach comprises: cell nucleus segmentation, quantification of virus replication level in the neighborhood of segmented cell nuclei, localization of regions with transfected cells, cell classification by infection status, and quality assessment of an experiment and single images. In particular, we propose a novel approach for the localization of regions of transfected cells within cell array images, which combines model-based circle fitting and grid fitting. By this scheme we integrate information from single cell array images and knowledge from the complete cell arrays. The approach is fully automatic and has been successfully applied to a large number of cell array images from screening experiments. The experimental results show a good agreement with the expected behaviour of positive as well as negative controls and encourage the application to screens from further high-throughput experiments.

  20. Deep convolutional networks for pancreas segmentation in CT imaging

    NASA Astrophysics Data System (ADS)

    Roth, Holger R.; Farag, Amal; Lu, Le; Turkbey, Evrim B.; Summers, Ronald M.

    2015-03-01

    Automatic organ segmentation is an important prerequisite for many computer-aided diagnosis systems. The high anatomical variability of organs in the abdomen, such as the pancreas, prevents many segmentation methods from achieving high accuracies when compared to state-of-the-art segmentation of organs like the liver, heart or kidneys. Recently, the availability of large annotated training sets and the accessibility of affordable parallel computing resources via GPUs have made it feasible for "deep learning" methods such as convolutional networks (ConvNets) to succeed in image classification tasks. These methods have the advantage that used classification features are trained directly from the imaging data. We present a fully-automated bottom-up method for pancreas segmentation in computed tomography (CT) images of the abdomen. The method is based on hierarchical coarse-to-fine classification of local image regions (superpixels). Superpixels are extracted from the abdominal region using Simple Linear Iterative Clustering (SLIC). An initial probability response map is generated, using patch-level confidences and a two-level cascade of random forest classifiers, from which superpixel regions with probabilities larger 0.5 are retained. These retained superpixels serve as a highly sensitive initial input of the pancreas and its surroundings to a ConvNet that samples a bounding box around each superpixel at different scales (and random non-rigid deformations at training time) in order to assign a more distinct probability of each superpixel region being pancreas or not. We evaluate our method on CT images of 82 patients (60 for training, 2 for validation, and 20 for testing). Using ConvNets we achieve maximum Dice scores of an average 68% +/- 10% (range, 43-80%) in testing. This shows promise for accurate pancreas segmentation, using a deep learning approach and compares favorably to state-of-the-art methods.

  1. An image segmentation method for apple sorting and grading using support vector machine and Otsu's method

    USDA-ARS?s Scientific Manuscript database

    Segmentation is the first step in image analysis to subdivide an image into meaningful regions. The segmentation result directly affects the subsequent image analysis. The objective of the research was to develop an automatic adjustable algorithm for segmentation of color images, using linear suppor...

  2. Semi-automatic segmentation of brain tumors using population and individual information.

    PubMed

    Wu, Yao; Yang, Wei; Jiang, Jun; Li, Shuanqian; Feng, Qianjin; Chen, Wufan

    2013-08-01

    Efficient segmentation of tumors in medical images is of great practical importance in early diagnosis and radiation plan. This paper proposes a novel semi-automatic segmentation method based on population and individual statistical information to segment brain tumors in magnetic resonance (MR) images. First, high-dimensional image features are extracted. Neighborhood components analysis is proposed to learn two optimal distance metrics, which contain population and patient-specific information, respectively. The probability of each pixel belonging to the foreground (tumor) and the background is estimated by the k-nearest neighborhood classifier under the learned optimal distance metrics. A cost function for segmentation is constructed through these probabilities and is optimized using graph cuts. Finally, some morphological operations are performed to improve the achieved segmentation results. Our dataset consists of 137 brain MR images, including 68 for training and 69 for testing. The proposed method overcomes segmentation difficulties caused by the uneven gray level distribution of the tumors and even can get satisfactory results if the tumors have fuzzy edges. Experimental results demonstrate that the proposed method is robust to brain tumor segmentation.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rueegsegger, Michael B.; Bach Cuadra, Meritxell; Pica, Alessia

    Purpose: Ocular anatomy and radiation-associated toxicities provide unique challenges for external beam radiation therapy. For treatment planning, precise modeling of organs at risk and tumor volume are crucial. Development of a precise eye model and automatic adaptation of this model to patients' anatomy remain problematic because of organ shape variability. This work introduces the application of a 3-dimensional (3D) statistical shape model as a novel method for precise eye modeling for external beam radiation therapy of intraocular tumors. Methods and Materials: Manual and automatic segmentations were compared for 17 patients, based on head computed tomography (CT) volume scans. A 3Dmore » statistical shape model of the cornea, lens, and sclera as well as of the optic disc position was developed. Furthermore, an active shape model was built to enable automatic fitting of the eye model to CT slice stacks. Cross-validation was performed based on leave-one-out tests for all training shapes by measuring dice coefficients and mean segmentation errors between automatic segmentation and manual segmentation by an expert. Results: Cross-validation revealed a dice similarity of 95% {+-} 2% for the sclera and cornea and 91% {+-} 2% for the lens. Overall, mean segmentation error was found to be 0.3 {+-} 0.1 mm. Average segmentation time was 14 {+-} 2 s on a standard personal computer. Conclusions: Our results show that the solution presented outperforms state-of-the-art methods in terms of accuracy, reliability, and robustness. Moreover, the eye model shape as well as its variability is learned from a training set rather than by making shape assumptions (eg, as with the spherical or elliptical model). Therefore, the model appears to be capable of modeling nonspherically and nonelliptically shaped eyes.« less

  4. Generalized expectation-maximization segmentation of brain MR images

    NASA Astrophysics Data System (ADS)

    Devalkeneer, Arnaud A.; Robe, Pierre A.; Verly, Jacques G.; Phillips, Christophe L. M.

    2006-03-01

    Manual segmentation of medical images is unpractical because it is time consuming, not reproducible, and prone to human error. It is also very difficult to take into account the 3D nature of the images. Thus, semi- or fully-automatic methods are of great interest. Current segmentation algorithms based on an Expectation- Maximization (EM) procedure present some limitations. The algorithm by Ashburner et al., 2005, does not allow multichannel inputs, e.g. two MR images of different contrast, and does not use spatial constraints between adjacent voxels, e.g. Markov random field (MRF) constraints. The solution of Van Leemput et al., 1999, employs a simplified model (mixture coefficients are not estimated and only one Gaussian is used by tissue class, with three for the image background). We have thus implemented an algorithm that combines the features of these two approaches: multichannel inputs, intensity bias correction, multi-Gaussian histogram model, and Markov random field (MRF) constraints. Our proposed method classifies tissues in three iterative main stages by way of a Generalized-EM (GEM) algorithm: (1) estimation of the Gaussian parameters modeling the histogram of the images, (2) correction of image intensity non-uniformity, and (3) modification of prior classification knowledge by MRF techniques. The goal of the GEM algorithm is to maximize the log-likelihood across the classes and voxels. Our segmentation algorithm was validated on synthetic data (with the Dice metric criterion) and real data (by a neurosurgeon) and compared to the original algorithms by Ashburner et al. and Van Leemput et al. Our combined approach leads to more robust and accurate segmentation.

  5. Modeling slow-slip segmentation in Cascadia subduction zone constrained by tremor locations and gravity anomalies

    NASA Astrophysics Data System (ADS)

    Li, Duo; Liu, Yajing

    2017-04-01

    Along-strike segmentation of slow-slip events (SSEs) and nonvolcanic tremors in Cascadia may reflect heterogeneities of the subducting slab or overlying continental lithosphere. However, the nature behind this segmentation is not fully understood. We develop a 3-D model for episodic SSEs in northern and central Cascadia, incorporating both seismological and gravitational observations to constrain the heterogeneities in the megathrust fault properties. The 6 year automatically detected tremors are used to constrain the rate-state friction parameters. The effective normal stress at SSE depths is constrained by along-margin free-air and Bouguer gravity anomalies. The along-strike variation in the long-term plate convergence rate is also taken into consideration. Simulation results show five segments of ˜Mw6.0 SSEs spontaneously appear along the strike, correlated to the distribution of tremor epicenters. Modeled SSE recurrence intervals are equally comparable to GPS observations using both types of gravity anomaly constraints. However, the model constrained by free-air anomaly does a better job in reproducing the cumulative slip as well as more consistent surface displacements with GPS observations. The modeled along-strike segmentation represents the averaged slip release over many SSE cycles, rather than permanent barriers. Individual slow-slip events can still propagate across the boundaries, which may cause interactions between adjacent SSEs, as observed in time-dependent GPS inversions. In addition, the moment-duration scaling is sensitive to the selection of velocity criteria for determining when SSEs occur. Hence, the detection ability of the current GPS network should be considered in the interpretation of slow earthquake source parameter scaling relations.

  6. An automatic method for segmentation of fission tracks in epidote crystal photomicrographs

    NASA Astrophysics Data System (ADS)

    de Siqueira, Alexandre Fioravante; Nakasuga, Wagner Massayuki; Pagamisse, Aylton; Tello Saenz, Carlos Alberto; Job, Aldo Eloizo

    2014-08-01

    Manual identification of fission tracks has practical problems, such as variation due to observe-observation efficiency. An automatic processing method that could identify fission tracks in a photomicrograph could solve this problem and improve the speed of track counting. However, separation of nontrivial images is one of the most difficult tasks in image processing. Several commercial and free softwares are available, but these softwares are meant to be used in specific images. In this paper, an automatic method based on starlet wavelets is presented in order to separate fission tracks in mineral photomicrographs. Automatization is obtained by the Matthews correlation coefficient, and results are evaluated by precision, recall and accuracy. This technique is an improvement of a method aimed at segmentation of scanning electron microscopy images. This method is applied in photomicrographs of epidote phenocrystals, in which accuracy higher than 89% was obtained in fission track segmentation, even for difficult images. Algorithms corresponding to the proposed method are available for download. Using the method presented here, a user could easily determine fission tracks in photomicrographs of mineral samples.

  7. Interactive lung segmentation in abnormal human and animal chest CT scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kockelkorn, Thessa T. J. P., E-mail: thessa@isi.uu.nl; Viergever, Max A.; Schaefer-Prokop, Cornelia M.

    2014-08-15

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling resultsmore » can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in challenging chest CT images. Both systems do not require prior knowledge of the scans under consideration and work on a variety of scans.« less

  8. Automatic macroscopic characterization of diesel sprays by means of a new image processing algorithm

    NASA Astrophysics Data System (ADS)

    Rubio-Gómez, Guillermo; Martínez-Martínez, S.; Rua-Mojica, Luis F.; Gómez-Gordo, Pablo; de la Garza, Oscar A.

    2018-05-01

    A novel algorithm is proposed for the automatic segmentation of diesel spray images and the calculation of their macroscopic parameters. The algorithm automatically detects each spray present in an image, and therefore it is able to work with diesel injectors with a different number of nozzle holes without any modification. The main characteristic of the algorithm is that it splits each spray into three different regions and then segments each one with an individually calculated binarization threshold. Each threshold level is calculated from the analysis of a representative luminosity profile of each region. This approach makes it robust to irregular light distribution along a single spray and between different sprays of an image. Once the sprays are segmented, the macroscopic parameters of each one are calculated. The algorithm is tested with two sets of diesel spray images taken under normal and irregular illumination setups.

  9. Development of A Two-Stage Procedure for the Automatic Recognition of Dysfluencies in the Speech of Children Who Stutter: I. Psychometric Procedures Appropriate for Selection of Training Material for Lexical Dysfluency Classifiers

    PubMed Central

    Howell, Peter; Sackin, Stevie; Glenn, Kazan

    2007-01-01

    This program of work is intended to develop automatic recognition procedures to locate and assess stuttered dysfluencies. This and the following article together, develop and test recognizers for repetitions and prolongations. The automatic recognizers classify the speech in two stages: In the first, the speech is segmented and in the second the segments are categorized. The units that are segmented are words. Here assessments by human judges on the speech of 12 children who stutter are described using a corresponding procedure. The accuracy of word boundary placement across judges, categorization of the words as fluent, repetition or prolongation, and duration of the different fluency categories are reported. These measures allow reliable instances of repetitions and prolongations to be selected for training and assessing the recognizers in the subsequent paper. PMID:9328878

  10. Automatic Tortuosity-Based Retinopathy of Prematurity Screening System

    NASA Astrophysics Data System (ADS)

    Sukkaew, Lassada; Uyyanonvara, Bunyarit; Makhanov, Stanislav S.; Barman, Sarah; Pangputhipong, Pannet

    Retinopathy of Prematurity (ROP) is an infant disease characterized by increased dilation and tortuosity of the retinal blood vessels. Automatic tortuosity evaluation from retinal digital images is very useful to facilitate an ophthalmologist in the ROP screening and to prevent childhood blindness. This paper proposes a method to automatically classify the image into tortuous and non-tortuous. The process imitates expert ophthalmologists' screening by searching for clearly tortuous vessel segments. First, a skeleton of the retinal blood vessels is extracted from the original infant retinal image using a series of morphological operators. Next, we propose to partition the blood vessels recursively using an adaptive linear interpolation scheme. Finally, the tortuosity is calculated based on the curvature of the resulting vessel segments. The retinal images are then classified into two classes using segments characterized by the highest tortuosity. For an optimal set of training parameters the prediction is as high as 100%.

  11. Towards automatic music transcription: note extraction based on independent subspace analysis

    NASA Astrophysics Data System (ADS)

    Wellhausen, Jens; Hoynck, Michael

    2005-01-01

    Due to the increasing amount of music available electronically the need of automatic search, retrieval and classification systems for music becomes more and more important. In this paper an algorithm for automatic transcription of polyphonic piano music into MIDI data is presented, which is a very interesting basis for database applications, music analysis and music classification. The first part of the algorithm performs a note accurate temporal audio segmentation. In the second part, the resulting segments are examined using Independent Subspace Analysis to extract sounding notes. Finally, the results are used to build a MIDI file as a new representation of the piece of music which is examined.

  12. Towards automatic music transcription: note extraction based on independent subspace analysis

    NASA Astrophysics Data System (ADS)

    Wellhausen, Jens; Höynck, Michael

    2004-12-01

    Due to the increasing amount of music available electronically the need of automatic search, retrieval and classification systems for music becomes more and more important. In this paper an algorithm for automatic transcription of polyphonic piano music into MIDI data is presented, which is a very interesting basis for database applications, music analysis and music classification. The first part of the algorithm performs a note accurate temporal audio segmentation. In the second part, the resulting segments are examined using Independent Subspace Analysis to extract sounding notes. Finally, the results are used to build a MIDI file as a new representation of the piece of music which is examined.

  13. A medical software system for volumetric analysis of cerebral pathologies in magnetic resonance imaging (MRI) data.

    PubMed

    Egger, Jan; Kappus, Christoph; Freisleben, Bernd; Nimsky, Christopher

    2012-08-01

    In this contribution, a medical software system for volumetric analysis of different cerebral pathologies in magnetic resonance imaging (MRI) data is presented. The software system is based on a semi-automatic segmentation algorithm and helps to overcome the time-consuming process of volume determination during monitoring of a patient. After imaging, the parameter settings-including a seed point-are set up in the system and an automatic segmentation is performed by a novel graph-based approach. Manually reviewing the result leads to reseeding, adding seed points or an automatic surface mesh generation. The mesh is saved for monitoring the patient and for comparisons with follow-up scans. Based on the mesh, the system performs a voxelization and volume calculation, which leads to diagnosis and therefore further treatment decisions. The overall system has been tested with different cerebral pathologies-glioblastoma multiforme, pituitary adenomas and cerebral aneurysms- and evaluated against manual expert segmentations using the Dice Similarity Coefficient (DSC). Additionally, intra-physician segmentations have been performed to provide a quality measure for the presented system.

  14. Level set method with automatic selective local statistics for brain tumor segmentation in MR images.

    PubMed

    Thapaliya, Kiran; Pyun, Jae-Young; Park, Chun-Su; Kwon, Goo-Rak

    2013-01-01

    The level set approach is a powerful tool for segmenting images. This paper proposes a method for segmenting brain tumor images from MR images. A new signed pressure function (SPF) that can efficiently stop the contours at weak or blurred edges is introduced. The local statistics of the different objects present in the MR images were calculated. Using local statistics, the tumor objects were identified among different objects. In this level set method, the calculation of the parameters is a challenging task. The calculations of different parameters for different types of images were automatic. The basic thresholding value was updated and adjusted automatically for different MR images. This thresholding value was used to calculate the different parameters in the proposed algorithm. The proposed algorithm was tested on the magnetic resonance images of the brain for tumor segmentation and its performance was evaluated visually and quantitatively. Numerical experiments on some brain tumor images highlighted the efficiency and robustness of this method. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. A Complete System for Automatic Extraction of Left Ventricular Myocardium From CT Images Using Shape Segmentation and Contour Evolution

    PubMed Central

    Zhu, Liangjia; Gao, Yi; Appia, Vikram; Yezzi, Anthony; Arepalli, Chesnal; Faber, Tracy; Stillman, Arthur; Tannenbaum, Allen

    2014-01-01

    The left ventricular myocardium plays a key role in the entire circulation system and an automatic delineation of the myocardium is a prerequisite for most of the subsequent functional analysis. In this paper, we present a complete system for an automatic segmentation of the left ventricular myocardium from cardiac computed tomography (CT) images using the shape information from images to be segmented. The system follows a coarse-to-fine strategy by first localizing the left ventricle and then deforming the myocardial surfaces of the left ventricle to refine the segmentation. In particular, the blood pool of a CT image is extracted and represented as a triangulated surface. Then, the left ventricle is localized as a salient component on this surface using geometric and anatomical characteristics. After that, the myocardial surfaces are initialized from the localization result and evolved by applying forces from the image intensities with a constraint based on the initial myocardial surface locations. The proposed framework has been validated on 34-human and 12-pig CT images, and the robustness and accuracy are demonstrated. PMID:24723531

  16. Virtual Surveyor based Object Extraction from Airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Habib, Md. Ahsan

    Topographic feature detection of land cover from LiDAR data is important in various fields - city planning, disaster response and prevention, soil conservation, infrastructure or forestry. In recent years, feature classification, compliant with Object-Based Image Analysis (OBIA) methodology has been gaining traction in remote sensing and geographic information science (GIS). In OBIA, the LiDAR image is first divided into meaningful segments called object candidates. This results, in addition to spectral values, in a plethora of new information such as aggregated spectral pixel values, morphology, texture, context as well as topology. Traditional nonparametric segmentation methods rely on segmentations at different scales to produce a hierarchy of semantically significant objects. Properly tuned scale parameters are, therefore, imperative in these methods for successful subsequent classification. Recently, some progress has been made in the development of methods for tuning the parameters for automatic segmentation. However, researchers found that it is very difficult to automatically refine the tuning with respect to each object class present in the scene. Moreover, due to the relative complexity of real-world objects, the intra-class heterogeneity is very high, which leads to over-segmentation. Therefore, the method fails to deliver correctly many of the new segment features. In this dissertation, a new hierarchical 3D object segmentation algorithm called Automatic Virtual Surveyor based Object Extracted (AVSOE) is presented. AVSOE segments objects based on their distinct geometric concavity/convexity. This is achieved by strategically mapping the sloping surface, which connects the object to its background. Further analysis produces hierarchical decomposition of objects to its sub-objects at a single scale level. Extensive qualitative and qualitative results are presented to demonstrate the efficacy of this hierarchical segmentation approach.

  17. Real-time segmentation of burst suppression patterns in critical care EEG monitoring

    PubMed Central

    Westover, M. Brandon; Shafi, Mouhsin M.; Ching, ShiNung; Chemali, Jessica J.; Purdon, Patrick L.; Cash, Sydney S.; Brown, Emery N.

    2014-01-01

    Objective Develop a real-time algorithm to automatically discriminate suppressions from non-suppressions (bursts) in electroencephalograms of critically ill adult patients. Methods A real-time method for segmenting adult ICU EEG data into bursts and suppressions is presented based on thresholding local voltage variance. Results are validated against manual segmentations by two experienced human electroencephalographers. We compare inter-rater agreement between manual EEG segmentations by experts with inter-rater agreement between human vs automatic segmentations, and investigate the robustness of segmentation quality to variations in algorithm parameter settings. We further compare the results of using these segmentations as input for calculating the burst suppression probability (BSP), a continuous measure of depth-of-suppression. Results Automated segmentation was comparable to manual segmentation, i.e. algorithm-vs-human agreement was comparable to human-vs-human agreement, as judged by comparing raw EEG segmentations or the derived BSP signals. Results were robust to modest variations in algorithm parameter settings. Conclusions Our automated method satisfactorily segments burst suppression data across a wide range adult ICU EEG patterns. Performance is comparable to or exceeds that of manual segmentation by human electroencephalographers. Significance Automated segmentation of burst suppression EEG patterns is an essential component of quantitative brain activity monitoring in critically ill and anesthetized adults. The segmentations produced by our algorithm provide a basis for accurate tracking of suppression depth. PMID:23891828

  18. Real-time segmentation of burst suppression patterns in critical care EEG monitoring.

    PubMed

    Brandon Westover, M; Shafi, Mouhsin M; Ching, Shinung; Chemali, Jessica J; Purdon, Patrick L; Cash, Sydney S; Brown, Emery N

    2013-09-30

    Develop a real-time algorithm to automatically discriminate suppressions from non-suppressions (bursts) in electroencephalograms of critically ill adult patients. A real-time method for segmenting adult ICU EEG data into bursts and suppressions is presented based on thresholding local voltage variance. Results are validated against manual segmentations by two experienced human electroencephalographers. We compare inter-rater agreement between manual EEG segmentations by experts with inter-rater agreement between human vs automatic segmentations, and investigate the robustness of segmentation quality to variations in algorithm parameter settings. We further compare the results of using these segmentations as input for calculating the burst suppression probability (BSP), a continuous measure of depth-of-suppression. Automated segmentation was comparable to manual segmentation, i.e. algorithm-vs-human agreement was comparable to human-vs-human agreement, as judged by comparing raw EEG segmentations or the derived BSP signals. Results were robust to modest variations in algorithm parameter settings. Our automated method satisfactorily segments burst suppression data across a wide range adult ICU EEG patterns. Performance is comparable to or exceeds that of manual segmentation by human electroencephalographers. Automated segmentation of burst suppression EEG patterns is an essential component of quantitative brain activity monitoring in critically ill and anesthetized adults. The segmentations produced by our algorithm provide a basis for accurate tracking of suppression depth. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. AutoCellSeg: robust automatic colony forming unit (CFU)/cell analysis using adaptive image segmentation and easy-to-use post-editing techniques.

    PubMed

    Khan, Arif Ul Maula; Torelli, Angelo; Wolf, Ivo; Gretz, Norbert

    2018-05-08

    In biological assays, automated cell/colony segmentation and counting is imperative owing to huge image sets. Problems occurring due to drifting image acquisition conditions, background noise and high variation in colony features in experiments demand a user-friendly, adaptive and robust image processing/analysis method. We present AutoCellSeg (based on MATLAB) that implements a supervised automatic and robust image segmentation method. AutoCellSeg utilizes multi-thresholding aided by a feedback-based watershed algorithm taking segmentation plausibility criteria into account. It is usable in different operation modes and intuitively enables the user to select object features interactively for supervised image segmentation method. It allows the user to correct results with a graphical interface. This publicly available tool outperforms tools like OpenCFU and CellProfiler in terms of accuracy and provides many additional useful features for end-users.

  20. Reconstruction of three-dimensional grain structure in polycrystalline iron via an interactive segmentation method

    NASA Astrophysics Data System (ADS)

    Feng, Min-nan; Wang, Yu-cong; Wang, Hao; Liu, Guo-quan; Xue, Wei-hua

    2017-03-01

    Using a total of 297 segmented sections, we reconstructed the three-dimensional (3D) structure of pure iron and obtained the largest dataset of 16254 3D complete grains reported to date. The mean values of equivalent sphere radius and face number of pure iron were observed to be consistent with those of Monte Carlo simulated grains, phase-field simulated grains, Ti-alloy grains, and Ni-based super alloy grains. In this work, by finding a balance between automatic methods and manual refinement, we developed an interactive segmentation method to segment serial sections accurately in the reconstruction of the 3D microstructure; this approach can save time as well as substantially eliminate errors. The segmentation process comprises four operations: image preprocessing, breakpoint detection based on mathematical morphology analysis, optimized automatic connection of the breakpoints, and manual refinement by artificial evaluation.

  1. User-assisted video segmentation system for visual communication

    NASA Astrophysics Data System (ADS)

    Wu, Zhengping; Chen, Chun

    2002-01-01

    Video segmentation plays an important role for efficient storage and transmission in visual communication. In this paper, we introduce a novel video segmentation system using point tracking and contour formation techniques. Inspired by the results from the study of the human visual system, we intend to solve the video segmentation problem into three separate phases: user-assisted feature points selection, feature points' automatic tracking, and contour formation. This splitting relieves the computer of ill-posed automatic segmentation problems, and allows a higher level of flexibility of the method. First, the precise feature points can be found using a combination of user assistance and an eigenvalue-based adjustment. Second, the feature points in the remaining frames are obtained using motion estimation and point refinement. At last, contour formation is used to extract the object, and plus a point insertion process to provide the feature points for next frame's tracking.

  2. Tracking fuzzy borders using geodesic curves with application to liver segmentation on planning CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yading, E-mail: yading.yuan@mssm.edu; Chao, Ming; Sheu, Ren-Dih

    Purpose: This work aims to develop a robust and efficient method to track the fuzzy borders between liver and the abutted organs where automatic liver segmentation usually suffers, and to investigate its applications in automatic liver segmentation on noncontrast-enhanced planning computed tomography (CT) images. Methods: In order to track the fuzzy liver–chestwall and liver–heart borders where oversegmentation is often found, a starting point and an ending point were first identified on the coronal view images; the fuzzy border was then determined as a geodesic curve constructed by minimizing the gradient-weighted path length between these two points near the fuzzy border.more » The minimization of path length was numerically solved by fast-marching method. The resultant fuzzy borders were incorporated into the authors’ automatic segmentation scheme, in which the liver was initially estimated by a patient-specific adaptive thresholding and then refined by a geodesic active contour model. By using planning CT images of 15 liver patients treated with stereotactic body radiation therapy, the liver contours extracted by the proposed computerized scheme were compared with those manually delineated by a radiation oncologist. Results: The proposed automatic liver segmentation method yielded an average Dice similarity coefficient of 0.930 ± 0.015, whereas it was 0.912 ± 0.020 if the fuzzy border tracking was not used. The application of fuzzy border tracking was found to significantly improve the segmentation performance. The mean liver volume obtained by the proposed method was 1727 cm{sup 3}, whereas it was 1719 cm{sup 3} for manual-outlined volumes. The computer-generated liver volumes achieved excellent agreement with manual-outlined volumes with correlation coefficient of 0.98. Conclusions: The proposed method was shown to provide accurate segmentation for liver in the planning CT images where contrast agent is not applied. The authors’ results also clearly demonstrated that the application of tracking the fuzzy borders could significantly reduce contour leakage during active contour evolution.« less

  3. A fully convolutional networks (FCN) based image segmentation algorithm in binocular imaging system

    NASA Astrophysics Data System (ADS)

    Long, Zourong; Wei, Biao; Feng, Peng; Yu, Pengwei; Liu, Yuanyuan

    2018-01-01

    This paper proposes an image segmentation algorithm with fully convolutional networks (FCN) in binocular imaging system under various circumstance. Image segmentation is perfectly solved by semantic segmentation. FCN classifies the pixels, so as to achieve the level of image semantic segmentation. Different from the classical convolutional neural networks (CNN), FCN uses convolution layers instead of the fully connected layers. So it can accept image of arbitrary size. In this paper, we combine the convolutional neural network and scale invariant feature matching to solve the problem of visual positioning under different scenarios. All high-resolution images are captured with our calibrated binocular imaging system and several groups of test data are collected to verify this method. The experimental results show that the binocular images are effectively segmented without over-segmentation. With these segmented images, feature matching via SURF method is implemented to obtain regional information for further image processing. The final positioning procedure shows that the results are acceptable in the range of 1.4 1.6 m, the distance error is less than 10mm.

  4. An ATR architecture for algorithm development and testing

    NASA Astrophysics Data System (ADS)

    Breivik, Gøril M.; Løkken, Kristin H.; Brattli, Alvin; Palm, Hans C.; Haavardsholm, Trym

    2013-05-01

    A research platform with four cameras in the infrared and visible spectral domains is under development at the Norwegian Defence Research Establishment (FFI). The platform will be mounted on a high-speed jet aircraft and will primarily be used for image acquisition and for development and test of automatic target recognition (ATR) algorithms. The sensors on board produce large amounts of data, the algorithms can be computationally intensive and the data processing is complex. This puts great demands on the system architecture; it has to run in real-time and at the same time be suitable for algorithm development. In this paper we present an architecture for ATR systems that is designed to be exible, generic and efficient. The architecture is module based so that certain parts, e.g. specific ATR algorithms, can be exchanged without affecting the rest of the system. The modules are generic and can be used in various ATR system configurations. A software framework in C++ that handles large data ows in non-linear pipelines is used for implementation. The framework exploits several levels of parallelism and lets the hardware processing capacity be fully utilised. The ATR system is under development and has reached a first level that can be used for segmentation algorithm development and testing. The implemented system consists of several modules, and although their content is still limited, the segmentation module includes two different segmentation algorithms that can be easily exchanged. We demonstrate the system by applying the two segmentation algorithms to infrared images from sea trial recordings.

  5. STS-112 S1 Truss Payload arrives at KSC

    NASA Technical Reports Server (NTRS)

    1999-01-01

    KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, rolls to a stop at KSC's Shuttle Landing Facility. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the I SS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communicatio ns systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique 'fold-away' nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an elec tric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be transferred to the Operations and Checkout Building

  6. CONEDEP: COnvolutional Neural network based Earthquake DEtection and Phase Picking

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Huang, Y.; Yue, H.; Zhou, S.; An, S.; Yun, N.

    2017-12-01

    We developed an automatic local earthquake detection and phase picking algorithm based on Fully Convolutional Neural network (FCN). The FCN algorithm detects and segments certain features (phases) in 3 component seismograms to realize efficient picking. We use STA/LTA algorithm and template matching algorithm to construct the training set from seismograms recorded 1 month before and after the Wenchuan earthquake. Precise P and S phases are identified and labeled to construct the training set. Noise data are produced by combining back-ground noise and artificial synthetic noise to form the equivalent scale of noise set as the signal set. Training is performed on GPUs to achieve efficient convergence. Our algorithm has significantly improved performance in terms of the detection rate and precision in comparison with STA/LTA and template matching algorithms.

  7. A Marker-Based Approach for the Automated Selection of a Single Segmentation from a Hierarchical Set of Image Segmentations

    NASA Technical Reports Server (NTRS)

    Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.

    2012-01-01

    The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.

  8. The Brain's Cutting-Room Floor: Segmentation of Narrative Cinema

    PubMed Central

    Zacks, Jeffrey M.; Speer, Nicole K.; Swallow, Khena M.; Maley, Corey J.

    2010-01-01

    Observers segment ongoing activity into meaningful events. Segmentation is a core component of perception that helps determine memory and guide planning. The current study tested the hypotheses that event segmentation is an automatic component of the perception of extended naturalistic activity, and that the identification of event boundaries in such activities results in part from processing changes in the perceived situation. Observers may identify boundaries between events as a result of processing changes in the observed situation. To test this hypothesis and study this potential mechanism, we measured brain activity while participants viewed an extended narrative film. Large transient responses were observed when the activity was segmented, and these responses were mediated by changes in the observed activity, including characters and their interactions, interactions with objects, spatial location, goals, and causes. These results support accounts that propose event segmentation is automatic and depends on processing meaningful changes in the perceived situation; they are the first to show such effects for extended naturalistic human activity. PMID:20953234

  9. CERES: A new cerebellum lobule segmentation method.

    PubMed

    Romero, Jose E; Coupé, Pierrick; Giraud, Rémi; Ta, Vinh-Thong; Fonov, Vladimir; Park, Min Tae M; Chakravarty, M Mallar; Voineskos, Aristotle N; Manjón, Jose V

    2017-02-15

    The human cerebellum is involved in language, motor tasks and cognitive processes such as attention or emotional processing. Therefore, an automatic and accurate segmentation method is highly desirable to measure and understand the cerebellum role in normal and pathological brain development. In this work, we propose a patch-based multi-atlas segmentation tool called CERES (CEREbellum Segmentation) that is able to automatically parcellate the cerebellum lobules. The proposed method works with standard resolution magnetic resonance T1-weighted images and uses the Optimized PatchMatch algorithm to speed up the patch matching process. The proposed method was compared with related recent state-of-the-art methods showing competitive results in both accuracy (average DICE of 0.7729) and execution time (around 5 minutes). Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Automatic right ventricle (RV) segmentation by propagating a basal spatio-temporal characterization

    NASA Astrophysics Data System (ADS)

    Atehortúa, Angélica; Zuluaga, María. A.; Martínez, Fabio; Romero, Eduardo

    2015-12-01

    An accurate right ventricular (RV) function quantification is important to support the evaluation, diagnosis and prognosis of several cardiac pathologies and to complement the left ventricular function assessment. However, expert RV delineation is a time consuming task with high inter-and-intra observer variability. In this paper we present an automatic segmentation method of the RV in MR-cardiac sequences. Unlike atlas or multi-atlas methods, this approach estimates the RV using exclusively information from the sequence itself. For so doing, a spatio-temporal analysis segments the heart at the basal slice, segmentation that is then propagated to the apex by using a non-rigid-registration strategy. The proposed approach achieves an average Dice Score of 0:79 evaluated with a set of 48 patients.

  11. Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches.

    PubMed

    Le Troter, Arnaud; Fouré, Alexandre; Guye, Maxime; Confort-Gouny, Sylviane; Mattei, Jean-Pierre; Gondin, Julien; Salort-Campana, Emmanuelle; Bendahan, David

    2016-04-01

    Atlas-based segmentation is a powerful method for automatic structural segmentation of several sub-structures in many organs. However, such an approach has been very scarcely used in the context of muscle segmentation, and so far no study has assessed such a method for the automatic delineation of individual muscles of the quadriceps femoris (QF). In the present study, we have evaluated a fully automated multi-atlas method and a semi-automated single-atlas method for the segmentation and volume quantification of the four muscles of the QF and for the QF as a whole. The study was conducted in 32 young healthy males, using high-resolution magnetic resonance images (MRI) of the thigh. The multi-atlas-based segmentation method was conducted in 25 subjects. Different non-linear registration approaches based on free-form deformable (FFD) and symmetric diffeomorphic normalization algorithms (SyN) were assessed. Optimal parameters of two fusion methods, i.e., STAPLE and STEPS, were determined on the basis of the highest Dice similarity index (DSI) considering manual segmentation (MSeg) as the ground truth. Validation and reproducibility of this pipeline were determined using another MRI dataset recorded in seven healthy male subjects on the basis of additional metrics such as the muscle volume similarity values, intraclass coefficient, and coefficient of variation. Both non-linear registration methods (FFD and SyN) were also evaluated as part of a single-atlas strategy in order to assess longitudinal muscle volume measurements. The multi- and the single-atlas approaches were compared for the segmentation and the volume quantification of the four muscles of the QF and for the QF as a whole. Considering each muscle of the QF, the DSI of the multi-atlas-based approach was high 0.87 ± 0.11 and the best results were obtained with the combination of two deformation fields resulting from the SyN registration method and the STEPS fusion algorithm. The optimal variables for FFD and SyN registration methods were four templates and a kernel standard deviation ranging between 5 and 8. The segmentation process using a single-atlas-based method was more robust with DSI values higher than 0.9. From the vantage of muscle volume measurements, the multi-atlas-based strategy provided acceptable results regarding the QF muscle as a whole but highly variable results regarding individual muscle. On the contrary, the performance of the single-atlas-based pipeline for individual muscles was highly comparable to the MSeg, thereby indicating that this method would be adequate for longitudinal tracking of muscle volume changes in healthy subjects. In the present study, we demonstrated that both multi-atlas and single-atlas approaches were relevant for the segmentation of individual muscles of the QF in healthy subjects. Considering muscle volume measurements, the single-atlas method provided promising perspectives regarding longitudinal quantification of individual muscle volumes.

  12. Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.

    PubMed

    Guo, Yu; Feng, Yuanming; Sun, Jian; Zhang, Ning; Lin, Wang; Sa, Yu; Wang, Ping

    2014-01-01

    The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF) model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice's similarity coefficient (DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  13. Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation.

    PubMed

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Cepeda-Negrete, Jonathan; Ibarra-Manzano, Mario Alberto; Chalopin, Claire

    2017-12-01

    Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM). There are many popular LRACM, but each of them presents strong and weak points. In this paper, the automatic selection of LRACM based on image content and its application on brain tumor segmentation is presented. Thereby, a framework to select one of three LRACM, i.e., Local Gaussian Distribution Fitting (LGDF), localized Chan-Vese (C-V) and Localized Active Contour Model with Background Intensity Compensation (LACM-BIC), is proposed. Twelve visual features are extracted to properly select the method that may process a given input image. The system is based on a supervised approach. Applied specifically to Magnetic Resonance Imaging (MRI) images, the experiments showed that the proposed system is able to correctly select the suitable LRACM to handle a specific image. Consequently, the selection framework achieves better accuracy performance than the three LRACM separately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Dentalmaps: Automatic Dental Delineation for Radiotherapy Planning in Head-and-Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thariat, Juliette, E-mail: jthariat@hotmail.com; Ramus, Liliane; INRIA

    Purpose: To propose an automatic atlas-based segmentation framework of the dental structures, called Dentalmaps, and to assess its accuracy and relevance to guide dental care in the context of intensity-modulated radiotherapy. Methods and Materials: A multi-atlas-based segmentation, less sensitive to artifacts than previously published head-and-neck segmentation methods, was used. The manual segmentations of a 21-patient database were first deformed onto the query using nonlinear registrations with the training images and then fused to estimate the consensus segmentation of the query. Results: The framework was evaluated with a leave-one-out protocol. The maximum doses estimated using manual contours were considered as groundmore » truth and compared with the maximum doses estimated using automatic contours. The dose estimation error was within 2-Gy accuracy in 75% of cases (with a median of 0.9 Gy), whereas it was within 2-Gy accuracy in 30% of cases only with the visual estimation method without any contour, which is the routine practice procedure. Conclusions: Dose estimates using this framework were more accurate than visual estimates without dental contour. Dentalmaps represents a useful documentation and communication tool between radiation oncologists and dentists in routine practice. Prospective multicenter assessment is underway on patients extrinsic to the database.« less

  15. Chest wall segmentation in automated 3D breast ultrasound scans.

    PubMed

    Tan, Tao; Platel, Bram; Mann, Ritse M; Huisman, Henkjan; Karssemeijer, Nico

    2013-12-01

    In this paper, we present an automatic method to segment the chest wall in automated 3D breast ultrasound images. Determining the location of the chest wall in automated 3D breast ultrasound images is necessary in computer-aided detection systems to remove automatically detected cancer candidates beyond the chest wall and it can be of great help for inter- and intra-modal image registration. We show that the visible part of the chest wall in an automated 3D breast ultrasound image can be accurately modeled by a cylinder. We fit the surface of our cylinder model to a set of automatically detected rib-surface points. The detection of the rib-surface points is done by a classifier using features representing local image intensity patterns and presence of rib shadows. Due to attenuation of the ultrasound signal, a clear shadow is visible behind the ribs. Evaluation of our segmentation method is done by computing the distance of manually annotated rib points to the surface of the automatically detected chest wall. We examined the performance on images obtained with the two most common 3D breast ultrasound devices in the market. In a dataset of 142 images, the average mean distance of the annotated points to the segmented chest wall was 5.59 ± 3.08 mm. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours

    NASA Astrophysics Data System (ADS)

    Li, Dengwang; Liu, Li; Chen, Jinhu; Li, Hongsheng; Yin, Yong; Ibragimov, Bulat; Xing, Lei

    2017-01-01

    Atlas-based segmentation utilizes a library of previously delineated contours of similar cases to facilitate automatic segmentation. The problem, however, remains challenging because of limited information carried by the contours in the library. In this studying, we developed a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. This study presented a new concept of atlas based segmentation method. Instead of using the complete volume of the target organs, only information along the organ contours from the atlas images was used for guiding segmentation of the new image. In setting up an atlas-based library, we included not only the coordinates of contour points, but also the image features adjacent to the contour. In this work, 139 CT images with normal appearing livers collected for radiotherapy treatment planning were used to construct the library. The CT images within the library were first registered to each other using affine registration. The nonlinear narrow shell was generated alongside the object contours of registered images. Matching voxels were selected inside common narrow shell image features of a library case and a new case using a speed-up robust features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the new image by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy optimization within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by physicians. A novel atlas-based segmentation technique with inclusion of neighborhood image features through the introduction of a narrow-shell surrounding the target objects was established. Application of the technique to 30 liver cases suggested that the technique was capable to reliably segment liver cases from CT, 4D-CT, and CBCT images with little human interaction. The accuracy and speed of the proposed method are quantitatively validated by comparing automatic segmentation results with the manual delineation results. The Jaccard similarity metric between the automatically generated liver contours obtained by the proposed method and the physician delineated results are on an average 90%-96% for planning images. Incorporation of image features into the library contours improves the currently available atlas-based auto-contouring techniques and provides a clinically practical solution for auto-segmentation. The proposed mountainous narrow shell atlas based method can achieve efficient automatic liver propagation for CT, 4D-CT and CBCT images with following treatment planning and should find widespread application in future treatment planning systems.

  17. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours.

    PubMed

    Li, Dengwang; Liu, Li; Chen, Jinhu; Li, Hongsheng; Yin, Yong; Ibragimov, Bulat; Xing, Lei

    2017-01-07

    Atlas-based segmentation utilizes a library of previously delineated contours of similar cases to facilitate automatic segmentation. The problem, however, remains challenging because of limited information carried by the contours in the library. In this studying, we developed a narrow-shell strategy to enhance the information of each contour in the library and to improve the accuracy of the exiting atlas-based approach. This study presented a new concept of atlas based segmentation method. Instead of using the complete volume of the target organs, only information along the organ contours from the atlas images was used for guiding segmentation of the new image. In setting up an atlas-based library, we included not only the coordinates of contour points, but also the image features adjacent to the contour. In this work, 139 CT images with normal appearing livers collected for radiotherapy treatment planning were used to construct the library. The CT images within the library were first registered to each other using affine registration. The nonlinear narrow shell was generated alongside the object contours of registered images. Matching voxels were selected inside common narrow shell image features of a library case and a new case using a speed-up robust features (SURF) strategy. A deformable registration was then performed using a thin plate splines (TPS) technique. The contour associated with the library case was propagated automatically onto the new image by exploiting the deformation field vectors. The liver contour was finally obtained by employing level set based energy optimization within the narrow shell. The performance of the proposed method was evaluated by comparing quantitatively the auto-segmentation results with that delineated by physicians. A novel atlas-based segmentation technique with inclusion of neighborhood image features through the introduction of a narrow-shell surrounding the target objects was established. Application of the technique to 30 liver cases suggested that the technique was capable to reliably segment liver cases from CT, 4D-CT, and CBCT images with little human interaction. The accuracy and speed of the proposed method are quantitatively validated by comparing automatic segmentation results with the manual delineation results. The Jaccard similarity metric between the automatically generated liver contours obtained by the proposed method and the physician delineated results are on an average 90%-96% for planning images. Incorporation of image features into the library contours improves the currently available atlas-based auto-contouring techniques and provides a clinically practical solution for auto-segmentation. The proposed mountainous narrow shell atlas based method can achieve efficient automatic liver propagation for CT, 4D-CT and CBCT images with following treatment planning and should find widespread application in future treatment planning systems.

  18. Automatic layer segmentation of H&E microscopic images of mice skin

    NASA Astrophysics Data System (ADS)

    Hussein, Saif; Selway, Joanne; Jassim, Sabah; Al-Assam, Hisham

    2016-05-01

    Mammalian skin is a complex organ composed of a variety of cells and tissue types. The automatic detection and quantification of changes in skin structures has a wide range of applications for biological research. To accurately segment and quantify nuclei, sebaceous gland, hair follicles, and other skin structures, there is a need for a reliable segmentation of different skin layers. This paper presents an efficient segmentation algorithm to segment the three main layers of mice skin, namely epidermis, dermis, and subcutaneous layers. It also segments the epidermis layer into two sub layers, basal and cornified layers. The proposed algorithm uses adaptive colour deconvolution technique on H&E stain images to separate different tissue structures, inter-modes and Otsu thresholding techniques were effectively combined to segment the layers. It then uses a set of morphological and logical operations on each layer to removing unwanted objects. A dataset of 7000 H&E microscopic images of mutant and wild type mice were used to evaluate the effectiveness of the algorithm. Experimental results examined by domain experts have confirmed the viability of the proposed algorithms.

  19. Image Segmentation, Registration, Compression, and Matching

    NASA Technical Reports Server (NTRS)

    Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina

    2011-01-01

    A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity/topology components of the generated models. The highly efficient triangular mesh compression compacts the connectivity information at the rate of 1.5-4 bits per vertex (on average for triangle meshes), while reducing the 3D geometry by 40-50 percent. Finally, taking into consideration the characteristics of 3D terrain data, and using the innovative, regularized binary decomposition mesh modeling, a multistage, pattern-drive modeling, and compression technique has been developed to provide an effective framework for compressing digital elevation model (DEM) surfaces, high-resolution aerial imagery, and other types of NASA data.

  20. Performance of an Artificial Multi-observer Deep Neural Network for Fully Automated Segmentation of Polycystic Kidneys.

    PubMed

    Kline, Timothy L; Korfiatis, Panagiotis; Edwards, Marie E; Blais, Jaime D; Czerwiec, Frank S; Harris, Peter C; King, Bernard F; Torres, Vicente E; Erickson, Bradley J

    2017-08-01

    Deep learning techniques are being rapidly applied to medical imaging tasks-from organ and lesion segmentation to tissue and tumor classification. These techniques are becoming the leading algorithmic approaches to solve inherently difficult image processing tasks. Currently, the most critical requirement for successful implementation lies in the need for relatively large datasets that can be used for training the deep learning networks. Based on our initial studies of MR imaging examinations of the kidneys of patients affected by polycystic kidney disease (PKD), we have generated a unique database of imaging data and corresponding reference standard segmentations of polycystic kidneys. In the study of PKD, segmentation of the kidneys is needed in order to measure total kidney volume (TKV). Automated methods to segment the kidneys and measure TKV are needed to increase measurement throughput and alleviate the inherent variability of human-derived measurements. We hypothesize that deep learning techniques can be leveraged to perform fast, accurate, reproducible, and fully automated segmentation of polycystic kidneys. Here, we describe a fully automated approach for segmenting PKD kidneys within MR images that simulates a multi-observer approach in order to create an accurate and robust method for the task of segmentation and computation of TKV for PKD patients. A total of 2000 cases were used for training and validation, and 400 cases were used for testing. The multi-observer ensemble method had mean ± SD percent volume difference of 0.68 ± 2.2% compared with the reference standard segmentations. The complete framework performs fully automated segmentation at a level comparable with interobserver variability and could be considered as a replacement for the task of segmentation of PKD kidneys by a human.

  1. Feasibility Study on Fully Automatic High Quality Translation: Volume II. Final Technical Report.

    ERIC Educational Resources Information Center

    Lehmann, Winifred P.; Stachowitz, Rolf

    This second volume of a two-volume report on a fully automatic high quality translation (FAHQT) contains relevant papers contributed by specialists on the topic of machine translation. The papers presented here cover such topics as syntactical analysis in transformational grammar and in machine translation, lexical features in translation and…

  2. WE-AB-BRA-05: Fully Automatic Segmentation of Male Pelvic Organs On CT Without Manual Intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Y; Lian, J; Chen, R

    Purpose: We aim to develop a fully automatic tool for accurate contouring of major male pelvic organs in CT images for radiotherapy without any manual initialization, yet still achieving superior performance than the existing tools. Methods: A learning-based 3D deformable shape model was developed for automatic contouring. Specifically, we utilized a recent machine learning method, random forest, to jointly learn both image regressor and classifier for each organ. In particular, the image regressor is trained to predict the 3D displacement from each vertex of the 3D shape model towards the organ boundary based on the local image appearance around themore » location of this vertex. The predicted 3D displacements are then used to drive the 3D shape model towards the target organ. Once the shape model is deformed close to the target organ, it is further refined by an organ likelihood map estimated by the learned classifier. As the organ likelihood map provides good guideline for the organ boundary, the precise contouring Result could be achieved, by deforming the 3D shape model locally to fit boundaries in the organ likelihood map. Results: We applied our method to 29 previously-treated prostate cancer patients, each with one planning CT scan. Compared with manually delineated pelvic organs, our method obtains overlap ratios of 85.2%±3.74% for the prostate, 94.9%±1.62% for the bladder, and 84.7%±1.97% for the rectum, respectively. Conclusion: This work demonstrated feasibility of a novel machine-learning based approach for accurate and automatic contouring of major male pelvic organs. It shows the potential to replace the time-consuming and inconsistent manual contouring in the clinic. Also, compared with the existing works, our method is more accurate and also efficient since it does not require any manual intervention, such as manual landmark placement. Moreover, our method obtained very similar contouring results as the clinical experts. Project is partially support by a grant from NCI 1R01CA140413.« less

  3. 3D mapping of airway wall thickening in asthma with MSCT: a level set approach

    NASA Astrophysics Data System (ADS)

    Fetita, Catalin; Brillet, Pierre-Yves; Hartley, Ruth; Grenier, Philippe A.; Brightling, Christopher

    2014-03-01

    Assessing the airway wall thickness in multi slice computed tomography (MSCT) as image marker for airway disease phenotyping such asthma and COPD is a current trend and challenge for the scientific community working in lung imaging. This paper addresses the same problem from a different point of view: considering the expected wall thickness-to-lumen-radius ratio for a normal subject as known and constant throughout the whole airway tree, the aim is to build up a 3D map of airway wall regions of larger thickness and to define an overall score able to highlight a pathological status. In this respect, the local dimension (caliber) of the previously segmented airway lumen is obtained on each point by exploiting the granulometry morphological operator. A level set function is defined based on this caliber information and on the expected wall thickness ratio, which allows obtaining a good estimate of the airway wall throughout all segmented lumen generations. Next, the vascular (or mediastinal dense tissue) contact regions are automatically detected and excluded from analysis. For the remaining airway wall border points, the real wall thickness is estimated based on the tissue density analysis in the airway radial direction; thick wall points are highlighted on a 3D representation of the airways and several quantification scores are defined. The proposed approach is fully automatic and was evaluated (proof of concept) on a patient selection coming from different databases including mild, severe asthmatics and normal cases. This preliminary evaluation confirms the discriminative power of the proposed approach regarding different phenotypes and is currently extending to larger cohorts.

  4. Breast fat volume measurement using wide-bore 3 T MRI: comparison of traditional mammographic density evaluation with MRI density measurements using automatic segmentation.

    PubMed

    Petridou, E; Kibiro, M; Gladwell, C; Malcolm, P; Toms, A; Juette, A; Borga, M; Dahlqvist Leinhard, O; Romu, T; Kasmai, B; Denton, E

    2017-07-01

    To compare magnetic resonance imaging (MRI)-derived breast density measurements using automatic segmentation algorithms with radiologist estimations using the Breast Imaging Reporting and Data Systems (BI-RADS) density classification. Forty women undergoing mammography and dynamic breast MRI as part of their clinical management were recruited. Fat-water separated MRI images derived from a two-point Dixon technique, phase-sensitive reconstruction, and atlas-based segmentation were obtained before and after intravenous contrast medium administration. Breast density was assessed using software from Advanced MR Analytics (AMRA), Linköping, Sweden, with results compared to the widely used four-quartile quantitative BI-RADS scale. The proportion of glandular tissue in the breast on MRI was derived from the AMRA sequence. The mean unenhanced breast density was 0.31±0.22 (mean±SD; left) and 0.29±0.21 (right). Mean breast density on post-contrast images was 0.32±0.19 (left) and 0.32±0.2 (right). There was "almost perfect" correlation between pre- and post-contrast breast density quantification: Spearman's correlation rho=0.98 (95% confidence intervals [CI]: 0.97-0.99; left) and rho=0.99 (95% CI: 0.98-0.99; right). The 95% limits of agreement were -0.11-0.08 (left) and -0.08-0.03 (right). Interobserver reliability for BI-RADS was "substantial": weighted Kappa k=0.8 (95% CI: 0.74-0.87). The Spearman correlation coefficient between BI-RADS and MRI breast density was rho=0.73 (95% CI: 0.60-0.82; left) and rho=0.75 (95% CI: 0.63-0.83; right) which was also "substantial". The AMRA sequence provides a fully automated, reproducible, objective assessment of fibroglandular breast tissue proportion that correlates well with mammographic assessment of breast density with the added advantage of avoidance of ionising radiation. Copyright © 2017 The Royal College of Radiologists. All rights reserved.

  5. Method: automatic segmentation of mitochondria utilizing patch classification, contour pair classification, and automatically seeded level sets

    PubMed Central

    2012-01-01

    Background While progress has been made to develop automatic segmentation techniques for mitochondria, there remains a need for more accurate and robust techniques to delineate mitochondria in serial blockface scanning electron microscopic data. Previously developed texture based methods are limited for solving this problem because texture alone is often not sufficient to identify mitochondria. This paper presents a new three-step method, the Cytoseg process, for automated segmentation of mitochondria contained in 3D electron microscopic volumes generated through serial block face scanning electron microscopic imaging. The method consists of three steps. The first is a random forest patch classification step operating directly on 2D image patches. The second step consists of contour-pair classification. At the final step, we introduce a method to automatically seed a level set operation with output from previous steps. Results We report accuracy of the Cytoseg process on three types of tissue and compare it to a previous method based on Radon-Like Features. At step 1, we show that the patch classifier identifies mitochondria texture but creates many false positive pixels. At step 2, our contour processing step produces contours and then filters them with a second classification step, helping to improve overall accuracy. We show that our final level set operation, which is automatically seeded with output from previous steps, helps to smooth the results. Overall, our results show that use of contour pair classification and level set operations improve segmentation accuracy beyond patch classification alone. We show that the Cytoseg process performs well compared to another modern technique based on Radon-Like Features. Conclusions We demonstrated that texture based methods for mitochondria segmentation can be enhanced with multiple steps that form an image processing pipeline. While we used a random-forest based patch classifier to recognize texture, it would be possible to replace this with other texture identifiers, and we plan to explore this in future work. PMID:22321695

  6. Hierarchical layered and semantic-based image segmentation using ergodicity map

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing

    2010-04-01

    Image segmentation plays a foundational role in image understanding and computer vision. Although great strides have been made and progress achieved on automatic/semi-automatic image segmentation algorithms, designing a generic, robust, and efficient image segmentation algorithm is still challenging. Human vision is still far superior compared to computer vision, especially in interpreting semantic meanings/objects in images. We present a hierarchical/layered semantic image segmentation algorithm that can automatically and efficiently segment images into hierarchical layered/multi-scaled semantic regions/objects with contextual topological relationships. The proposed algorithm bridges the gap between high-level semantics and low-level visual features/cues (such as color, intensity, edge, etc.) through utilizing a layered/hierarchical ergodicity map, where ergodicity is computed based on a space filling fractal concept and used as a region dissimilarity measurement. The algorithm applies a highly scalable, efficient, and adaptive Peano- Cesaro triangulation/tiling technique to decompose the given image into a set of similar/homogenous regions based on low-level visual cues in a top-down manner. The layered/hierarchical ergodicity map is built through a bottom-up region dissimilarity analysis. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level of detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanisms for contextual topological object/region relationship generation. Experiments have been conducted within the maritime image environment where the segmented layered semantic objects include the basic level objects (i.e. sky/land/water) and deeper level objects in the sky/land/water surfaces. Experimental results demonstrate the proposed algorithm has the capability to robustly and efficiently segment images into layered semantic objects/regions with contextual topological relationships.

  7. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.

    PubMed

    Pereira, Sergio; Pinto, Adriano; Alves, Victor; Silva, Carlos A

    2016-05-01

    Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 ×3 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing regions, respectively.

  8. A segmentation approach for a delineation of terrestrial ecoregions

    NASA Astrophysics Data System (ADS)

    Nowosad, J.; Stepinski, T.

    2017-12-01

    Terrestrial ecoregions are the result of regionalization of land into homogeneous units of similar ecological and physiographic features. Terrestrial Ecoregions of the World (TEW) is a commonly used global ecoregionalization based on expert knowledge and in situ observations. Ecological Land Units (ELUs) is a global classification of 250 meters-sized cells into 4000 types on the basis of the categorical values of four environmental variables. ELUs are automatically calculated and reproducible but they are not a regionalization which makes them impractical for GIS-based spatial analysis and for comparison with TEW. We have regionalized terrestrial ecosystems on the basis of patterns of the same variables (land cover, soils, landform, and bioclimate) previously used in ELUs. Considering patterns of categorical variables makes segmentation and thus regionalization possible. Original raster datasets of the four variables are first transformed into regular grids of square-sized blocks of their cells called eco-sites. Eco-sites are elementary land units containing local patterns of physiographic characteristics and thus assumed to contain a single ecosystem. Next, eco-sites are locally aggregated using a procedure analogous to image segmentation. The procedure optimizes pattern homogeneity of all four environmental variables within each segment. The result is a regionalization of the landmass into land units characterized by uniform pattern of land cover, soils, landforms, climate, and, by inference, by uniform ecosystem. Because several disjoined segments may have very similar characteristics, we cluster the segments to obtain a smaller set of segment types which we identify with ecoregions. Our approach is automatic, reproducible, updatable, and customizable. It yields the first automatic delineation of ecoregions on the global scale. In the resulting vector database each ecoregion/segment is described by numerous attributes which make it a valuable GIS resource for global ecological and conservation studies.

  9. Automatic segmentation of the hippocampus for preterm neonates from early-in-life to term-equivalent age.

    PubMed

    Guo, Ting; Winterburn, Julie L; Pipitone, Jon; Duerden, Emma G; Park, Min Tae M; Chau, Vann; Poskitt, Kenneth J; Grunau, Ruth E; Synnes, Anne; Miller, Steven P; Mallar Chakravarty, M

    2015-01-01

    The hippocampus, a medial temporal lobe structure central to learning and memory, is particularly vulnerable in preterm-born neonates. To date, segmentation of the hippocampus for preterm-born neonates has not yet been performed early-in-life (shortly after birth when clinically stable). The present study focuses on the development and validation of an automatic segmentation protocol that is based on the MAGeT-Brain (Multiple Automatically Generated Templates) algorithm to delineate the hippocampi of preterm neonates on their brain MRIs acquired at not only term-equivalent age but also early-in-life. First, we present a three-step manual segmentation protocol to delineate the hippocampus for preterm neonates and apply this protocol on 22 early-in-life and 22 term images. These manual segmentations are considered the gold standard in assessing the automatic segmentations. MAGeT-Brain, automatic hippocampal segmentation pipeline, requires only a small number of input atlases and reduces the registration and resampling errors by employing an intermediate template library. We assess the segmentation accuracy of MAGeT-Brain in three validation studies, evaluate the hippocampal growth from early-in-life to term-equivalent age, and study the effect of preterm birth on the hippocampal volume. The first experiment thoroughly validates MAGeT-Brain segmentation in three sets of 10-fold Monte Carlo cross-validation (MCCV) analyses with 187 different groups of input atlases and templates. The second experiment segments the neonatal hippocampi on 168 early-in-life and 154 term images and evaluates the hippocampal growth rate of 125 infants from early-in-life to term-equivalent age. The third experiment analyzes the effect of gestational age (GA) at birth on the average hippocampal volume at early-in-life and term-equivalent age using linear regression. The final segmentations demonstrate that MAGeT-Brain consistently provides accurate segmentations in comparison to manually derived gold standards (mean Dice's Kappa > 0.79 and Euclidean distance <1.3 mm between centroids). Using this method, we demonstrate that the average volume of the hippocampus is significantly different (p < 0.0001) in early-in-life (621.8 mm(3)) and term-equivalent age (958.8 mm(3)). Using these differences, we generalize the hippocampal growth rate to 38.3 ± 11.7 mm(3)/week and 40.5 ± 12.9 mm(3)/week for the left and right hippocampi respectively. Not surprisingly, younger gestational age at birth is associated with smaller volumes of the hippocampi (p = 0.001). MAGeT-Brain is capable of segmenting hippocampi accurately in preterm neonates, even at early-in-life. Hippocampal asymmetry with a larger right side is demonstrated on early-in-life images, suggesting that this phenomenon has its onset in the 3rd trimester of gestation. Hippocampal volume assessed at the time of early-in-life and term-equivalent age is linearly associated with GA at birth, whereby smaller volumes are associated with earlier birth.

  10. Automatic segmentation of the hippocampus for preterm neonates from early-in-life to term-equivalent age

    PubMed Central

    Guo, Ting; Winterburn, Julie L.; Pipitone, Jon; Duerden, Emma G.; Park, Min Tae M.; Chau, Vann; Poskitt, Kenneth J.; Grunau, Ruth E.; Synnes, Anne; Miller, Steven P.; Mallar Chakravarty, M.

    2015-01-01

    Introduction The hippocampus, a medial temporal lobe structure central to learning and memory, is particularly vulnerable in preterm-born neonates. To date, segmentation of the hippocampus for preterm-born neonates has not yet been performed early-in-life (shortly after birth when clinically stable). The present study focuses on the development and validation of an automatic segmentation protocol that is based on the MAGeT-Brain (Multiple Automatically Generated Templates) algorithm to delineate the hippocampi of preterm neonates on their brain MRIs acquired at not only term-equivalent age but also early-in-life. Methods First, we present a three-step manual segmentation protocol to delineate the hippocampus for preterm neonates and apply this protocol on 22 early-in-life and 22 term images. These manual segmentations are considered the gold standard in assessing the automatic segmentations. MAGeT-Brain, automatic hippocampal segmentation pipeline, requires only a small number of input atlases and reduces the registration and resampling errors by employing an intermediate template library. We assess the segmentation accuracy of MAGeT-Brain in three validation studies, evaluate the hippocampal growth from early-in-life to term-equivalent age, and study the effect of preterm birth on the hippocampal volume. The first experiment thoroughly validates MAGeT-Brain segmentation in three sets of 10-fold Monte Carlo cross-validation (MCCV) analyses with 187 different groups of input atlases and templates. The second experiment segments the neonatal hippocampi on 168 early-in-life and 154 term images and evaluates the hippocampal growth rate of 125 infants from early-in-life to term-equivalent age. The third experiment analyzes the effect of gestational age (GA) at birth on the average hippocampal volume at early-in-life and term-equivalent age using linear regression. Results The final segmentations demonstrate that MAGeT-Brain consistently provides accurate segmentations in comparison to manually derived gold standards (mean Dice's Kappa > 0.79 and Euclidean distance <1.3 mm between centroids). Using this method, we demonstrate that the average volume of the hippocampus is significantly different (p < 0.0001) in early-in-life (621.8 mm3) and term-equivalent age (958.8 mm3). Using these differences, we generalize the hippocampal growth rate to 38.3 ± 11.7 mm3/week and 40.5 ± 12.9 mm3/week for the left and right hippocampi respectively. Not surprisingly, younger gestational age at birth is associated with smaller volumes of the hippocampi (p = 0.001). Conclusions MAGeT-Brain is capable of segmenting hippocampi accurately in preterm neonates, even at early-in-life. Hippocampal asymmetry with a larger right side is demonstrated on early-in-life images, suggesting that this phenomenon has its onset in the 3rd trimester of gestation. Hippocampal volume assessed at the time of early-in-life and term-equivalent age is linearly associated with GA at birth, whereby smaller volumes are associated with earlier birth. PMID:26740912

  11. A Unified Framework for Brain Segmentation in MR Images

    PubMed Central

    Yazdani, S.; Yusof, R.; Karimian, A.; Riazi, A. H.; Bennamoun, M.

    2015-01-01

    Brain MRI segmentation is an important issue for discovering the brain structure and diagnosis of subtle anatomical changes in different brain diseases. However, due to several artifacts brain tissue segmentation remains a challenging task. The aim of this paper is to improve the automatic segmentation of brain into gray matter, white matter, and cerebrospinal fluid in magnetic resonance images (MRI). We proposed an automatic hybrid image segmentation method that integrates the modified statistical expectation-maximization (EM) method and the spatial information combined with support vector machine (SVM). The combined method has more accurate results than what can be achieved with its individual techniques that is demonstrated through experiments on both real data and simulated images. Experiments are carried out on both synthetic and real MRI. The results of proposed technique are evaluated against manual segmentation results and other methods based on real T1-weighted scans from Internet Brain Segmentation Repository (IBSR) and simulated images from BrainWeb. The Kappa index is calculated to assess the performance of the proposed framework relative to the ground truth and expert segmentations. The results demonstrate that the proposed combined method has satisfactory results on both simulated MRI and real brain datasets. PMID:26089978

  12. Using deep learning in image hyper spectral segmentation, classification, and detection

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuying; Su, Zhenyu

    2018-02-01

    Recent years have shown that deep learning neural networks are a valuable tool in the field of computer vision. Deep learning method can be used in applications like remote sensing such as Land cover Classification, Detection of Vehicle in Satellite Images, Hyper spectral Image classification. This paper addresses the use of the deep learning artificial neural network in Satellite image segmentation. Image segmentation plays an important role in image processing. The hue of the remote sensing image often has a large hue difference, which will result in the poor display of the images in the VR environment. Image segmentation is a pre processing technique applied to the original images and splits the image into many parts which have different hue to unify the color. Several computational models based on supervised, unsupervised, parametric, probabilistic region based image segmentation techniques have been proposed. Recently, one of the machine learning technique known as, deep learning with convolution neural network has been widely used for development of efficient and automatic image segmentation models. In this paper, we focus on study of deep neural convolution network and its variants for automatic image segmentation rather than traditional image segmentation strategies.

  13. Learning to segment mouse embryo cells

    NASA Astrophysics Data System (ADS)

    León, Juan; Pardo, Alejandro; Arbeláez, Pablo

    2017-11-01

    Recent advances in microscopy enable the capture of temporal sequences during cell development stages. However, the study of such sequences is a complex task and time consuming task. In this paper we propose an automatic strategy to adders the problem of semantic and instance segmentation of mouse embryos using NYU's Mouse Embryo Tracking Database. We obtain our instance proposals as refined predictions from the generalized hough transform, using prior knowledge of the embryo's locations and their current cell stage. We use two main approaches to learn the priors: Hand crafted features and automatic learned features. Our strategy increases the baseline jaccard index from 0.12 up to 0.24 using hand crafted features and 0.28 by using automatic learned ones.

  14. Segmenting Student Markets with a Student Satisfaction and Priorities Survey.

    ERIC Educational Resources Information Center

    Borden, Victor M. H.

    1995-01-01

    A market segmentation analysis of 872 university students compared 2 hierarchical clustering procedures for deriving market segments: 1 using matching-type measures and an agglomerative clustering algorithm, and 1 using the chi-square based automatic interaction detection. Results and implications for planning, evaluating, and improving academic…

  15. A Fast, Automatic Segmentation Algorithm for Locating and Delineating Touching Cell Boundaries in Imaged Histopathology

    PubMed Central

    Qi, Xin; Xing, Fuyong; Foran, David J.; Yang, Lin

    2013-01-01

    Summary Background Automated analysis of imaged histopathology specimens could potentially provide support for improved reliability in detection and classification in a range of investigative and clinical cancer applications. Automated segmentation of cells in the digitized tissue microarray (TMA) is often the prerequisite for quantitative analysis. However overlapping cells usually bring significant challenges for traditional segmentation algorithms. Objectives In this paper, we propose a novel, automatic algorithm to separate overlapping cells in stained histology specimens acquired using bright-field RGB imaging. Methods It starts by systematically identifying salient regions of interest throughout the image based upon their underlying visual content. The segmentation algorithm subsequently performs a quick, voting based seed detection. Finally, the contour of each cell is obtained using a repulsive level set deformable model using the seeds generated in the previous step. We compared the experimental results with the most current literature, and the pixel wise accuracy between human experts' annotation and those generated using the automatic segmentation algorithm. Results The method is tested with 100 image patches which contain more than 1000 overlapping cells. The overall precision and recall of the developed algorithm is 90% and 78%, respectively. We also implement the algorithm on GPU. The parallel implementation is 22 times faster than its C/C++ sequential implementation. Conclusion The proposed overlapping cell segmentation algorithm can accurately detect the center of each overlapping cell and effectively separate each of the overlapping cells. GPU is proven to be an efficient parallel platform for overlapping cell segmentation. PMID:22526139

  16. Development of a fully automatic scheme for detection of masses in whole breast ultrasound images.

    PubMed

    Ikedo, Yuji; Fukuoka, Daisuke; Hara, Takeshi; Fujita, Hiroshi; Takada, Etsuo; Endo, Tokiko; Morita, Takako

    2007-11-01

    Ultrasonography has been used for breast cancer screening in Japan. Screening using a conventional hand-held probe is operator dependent and thus it is possible that some areas of the breast may not be scanned. To overcome such problems, a mechanical whole breast ultrasound (US) scanner has been proposed and developed for screening purposes. However, another issue is that radiologists might tire while interpreting all images in a large-volume screening; this increases the likelihood that masses may remain undetected. Therefore, the aim of this study is to develop a fully automatic scheme for the detection of masses in whole breast US images in order to assist the interpretations of radiologists and potentially improve the screening accuracy. The authors database comprised 109 whole breast US imagoes, which include 36 masses (16 malignant masses, 5 fibroadenomas, and 15 cysts). A whole breast US image with 84 slice images (interval between two slice images: 2 mm) was obtained by the ASU-1004 US scanner (ALOKA Co., Ltd., Japan). The feature based on the edge directions in each slice and a method for subtracting between the slice images were used for the detection of masses in the authors proposed scheme. The Canny edge detector was applied to detect edges in US images; these edges were classified as near-vertical edges or near-horizontal edges using a morphological method. The positions of mass candidates were located using the near-vertical edges as a cue. Then, the located positions were segmented by the watershed algorithm and mass candidate regions were detected using the segmented regions and the low-density regions extracted by the slice subtraction method. For the removal of false positives (FPs), rule-based schemes and a quadratic discriminant analysis were applied for the distribution between masses and FPs. As a result, the sensitivity of the authors scheme for the detection of masses was 80.6% (29/36) with 3.8 FPs per whole breast image. The authors scheme for a computer-aided detection may be useful in improving the screening performance and efficiency.

  17. Automatic airline baggage counting using 3D image segmentation

    NASA Astrophysics Data System (ADS)

    Yin, Deyu; Gao, Qingji; Luo, Qijun

    2017-06-01

    The baggage number needs to be checked automatically during baggage self-check-in. A fast airline baggage counting method is proposed in this paper using image segmentation based on height map which is projected by scanned baggage 3D point cloud. There is height drop in actual edge of baggage so that it can be detected by the edge detection operator. And then closed edge chains are formed from edge lines that is linked by morphological processing. Finally, the number of connected regions segmented by closed chains is taken as the baggage number. Multi-bag experiment that is performed on the condition of different placement modes proves the validity of the method.

  18. An automated approach to the segmentation of HEp-2 cells for the indirect immunofluorescence ANA test.

    PubMed

    Tonti, Simone; Di Cataldo, Santa; Bottino, Andrea; Ficarra, Elisa

    2015-03-01

    The automatization of the analysis of Indirect Immunofluorescence (IIF) images is of paramount importance for the diagnosis of autoimmune diseases. This paper proposes a solution to one of the most challenging steps of this process, the segmentation of HEp-2 cells, through an adaptive marker-controlled watershed approach. Our algorithm automatically conforms the marker selection pipeline to the peculiar characteristics of the input image, hence it is able to cope with different fluorescent intensities and staining patterns without any a priori knowledge. Furthermore, it shows a reduced sensitivity to over-segmentation errors and uneven illumination, that are typical issues of IIF imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Automatic segmentation of coronary arteries from computed tomography angiography data cloud using optimal thresholding

    NASA Astrophysics Data System (ADS)

    Ansari, Muhammad Ahsan; Zai, Sammer; Moon, Young Shik

    2017-01-01

    Manual analysis of the bulk data generated by computed tomography angiography (CTA) is time consuming, and interpretation of such data requires previous knowledge and expertise of the radiologist. Therefore, an automatic method that can isolate the coronary arteries from a given CTA dataset is required. We present an automatic yet effective segmentation method to delineate the coronary arteries from a three-dimensional CTA data cloud. Instead of a region growing process, which is usually time consuming and prone to leakages, the method is based on the optimal thresholding, which is applied globally on the Hessian-based vesselness measure in a localized way (slice by slice) to track the coronaries carefully to their distal ends. Moreover, to make the process automatic, we detect the aorta using the Hough transform technique. The proposed segmentation method is independent of the starting point to initiate its process and is fast in the sense that coronary arteries are obtained without any preprocessing or postprocessing steps. We used 12 real clinical datasets to show the efficiency and accuracy of the presented method. Experimental results reveal that the proposed method achieves 95% average accuracy.

  20. Segmenting Bone Parts for Bone Age Assessment using Point Distribution Model and Contour Modelling

    NASA Astrophysics Data System (ADS)

    Kaur, Amandeep; Singh Mann, Kulwinder, Dr.

    2018-01-01

    Bone age assessment (BAA) is a task performed on radiographs by the pediatricians in hospitals to predict the final adult height, to diagnose growth disorders by monitoring skeletal development. For building an automatic bone age assessment system the step in routine is to do image pre-processing of the bone X-rays so that features row can be constructed. In this research paper, an enhanced point distribution algorithm using contours has been implemented for segmenting bone parts as per well-established procedure of bone age assessment that would be helpful in building feature row and later on; it would be helpful in construction of automatic bone age assessment system. Implementation of the segmentation algorithm shows high degree of accuracy in terms of recall and precision in segmenting bone parts from left hand X-Rays.

Top