Research and Development of Fully Automatic Alien Smoke Stack and Packaging System
NASA Astrophysics Data System (ADS)
Yang, Xudong; Ge, Qingkuan; Peng, Tao; Zuo, Ping; Dong, Weifu
2017-12-01
The problem of low efficiency of manual sorting packaging for the current tobacco distribution center, which developed a set of safe efficient and automatic type of alien smoke stack and packaging system. The functions of fully automatic alien smoke stack and packaging system adopt PLC control technology, servo control technology, robot technology, image recognition technology and human-computer interaction technology. The characteristics, principles, control process and key technology of the system are discussed in detail. Through the installation and commissioning fully automatic alien smoke stack and packaging system has a good performance and has completed the requirements for shaped cigarette.
Automatic systems and the low-level wind hazard
NASA Technical Reports Server (NTRS)
Schaeffer, Dwight R.
1987-01-01
Automatic flight control systems provide means for significantly enhancing survivability in severe wind hazards. The technology required to produce the necessary control algorithms is available and has been made technically feasible by the advent of digital flight control systems and accurate, low-noise sensors, especially strap-down inertial sensors. The application of this technology and these means has not generally been enabled except for automatic landing systems, and even then the potential has not been fully exploited. To fully exploit the potential of automatic systems for enhancing safety in wind hazards requires providing incentives, creating demand, inspiring competition, education, and eliminating prejudicial disincentitives to overcome the economic penalties associated with the extensive and riskly development and certification of these systems. If these changes will come about at all, it will likely be through changes in the regulations provided by the certifying agencies.
Automatic Implementation of Ttethernet-Based Time-Triggered Avionics Applications
NASA Astrophysics Data System (ADS)
Gorcitz, Raul Adrian; Carle, Thomas; Lesens, David; Monchaux, David; Potop-Butucaruy, Dumitru; Sorel, Yves
2015-09-01
The design of safety-critical embedded systems such as those used in avionics still involves largely manual phases. But in avionics the definition of standard interfaces embodied in standards such as ARINC 653 or TTEthernet should allow the definition of fully automatic code generation flows that reduce the costs while improving the quality of the generated code, much like compilers have done when replacing manual assembly coding. In this paper, we briefly present such a fully automatic implementation tool, called Lopht, for ARINC653-based time-triggered systems, and then explain how it is currently extended to include support for TTEthernet networks.
Nondestructive Vibratory Testing and Evaluation Procedure for Military Roads and Streets.
1984-07-01
the addition of an auto- matic data acquisition system to the instrumentation control panel. This system , presently available, would automatically ...the data used to further develop and define the basic correlations. c. Consideration be given to installing an automatic data acquisi- tion system to...glows red any time the force generator is not fully elevated. Depressing this switch will stop the automatic cycle at any point and clear all system
Recent Research on the Automated Mass Measuring System
NASA Astrophysics Data System (ADS)
Yao, Hong; Ren, Xiao-Ping; Wang, Jian; Zhong, Rui-Lin; Ding, Jing-An
The research development of robotic measurement system as well as the representative automatic system were introduced in the paper, and then discussed a sub-multiple calibration scheme adopted on a fully-automatic CCR10 system effectively. Automatic robot system can be able to perform the dissemination of the mass scale without any manual intervention as well as the fast speed calibration of weight samples against a reference weight. At the last, evaluation of the expanded uncertainty was given out.
Initial clinical trial of a closed loop, fully automatic intra-aortic balloon pump.
Kantrowitz, A; Freed, P S; Cardona, R R; Gage, K; Marinescu, G N; Westveld, A H; Litch, B; Suzuki, A; Hayakawa, H; Takano, T
1992-01-01
A new generation, closed loop, fully automatic intraaortic balloon pump (CL-IABP) system continuously optimizes diastolic augmentation by adjusting balloon pump parameters beat by beat without operator intervention. In dogs in sinus rhythm and with experimentally induced arrhythmias, the new CL-IABP system provided safe, effective augmentation. To investigate the system's suitability for clinical use, 10 patients meeting standard indications for IABP were studied. The patients were pumped by the fully automatic IABP system for an average of 20 hr (range, 1-48 hr). At start-up, the system optimized pumping parameters within 7-20 sec. Evaluation of 186 recordings made at hourly intervals showed that inflation began within 20 msec of the dicrotic notch 99% of the time. In 100% of the recordings, deflation straddled the first half of ventricular ejection. Peak pressure across the balloon membrane averaged 55 mmHg and, in no case, exceeded 100 mmHg. Examination of the data showed that as soon as the system was actuated it provided consistently beneficial diastolic augmentation without any further operator intervention. Eight patients improved and two died (one of irreversible cardiogenic shock and one of ischemic cardiomyopathy). No complications were attributable to the investigational aspects of the system. A fully automated IABP is feasible in the clinical setting, and it may have advantages relative to current generation IABP systems.
Automatic detection of articulation disorders in children with cleft lip and palate.
Maier, Andreas; Hönig, Florian; Bocklet, Tobias; Nöth, Elmar; Stelzle, Florian; Nkenke, Emeka; Schuster, Maria
2009-11-01
Speech of children with cleft lip and palate (CLP) is sometimes still disordered even after adequate surgical and nonsurgical therapies. Such speech shows complex articulation disorders, which are usually assessed perceptually, consuming time and manpower. Hence, there is a need for an easy to apply and reliable automatic method. To create a reference for an automatic system, speech data of 58 children with CLP were assessed perceptually by experienced speech therapists for characteristic phonetic disorders at the phoneme level. The first part of the article aims to detect such characteristics by a semiautomatic procedure and the second to evaluate a fully automatic, thus simple, procedure. The methods are based on a combination of speech processing algorithms. The semiautomatic method achieves moderate to good agreement (kappa approximately 0.6) for the detection of all phonetic disorders. On a speaker level, significant correlations between the perceptual evaluation and the automatic system of 0.89 are obtained. The fully automatic system yields a correlation on the speaker level of 0.81 to the perceptual evaluation. This correlation is in the range of the inter-rater correlation of the listeners. The automatic speech evaluation is able to detect phonetic disorders at an experts'level without any additional human postprocessing.
McClymont, Darryl; Mehnert, Andrew; Trakic, Adnan; Kennedy, Dominic; Crozier, Stuart
2014-04-01
To present and evaluate a fully automatic method for segmentation (i.e., detection and delineation) of suspicious tissue in breast MRI. The method, based on mean-shift clustering and graph-cuts on a region adjacency graph, was developed and its parameters tuned using multimodal (T1, T2, DCE-MRI) clinical breast MRI data from 35 subjects (training data). It was then tested using two data sets. Test set 1 comprises data for 85 subjects (93 lesions) acquired using the same protocol and scanner system used to acquire the training data. Test set 2 comprises data for eight subjects (nine lesions) acquired using a similar protocol but a different vendor's scanner system. Each lesion was manually delineated in three-dimensions by an experienced breast radiographer to establish segmentation ground truth. The regions of interest identified by the method were compared with the ground truth and the detection and delineation accuracies quantitatively evaluated. One hundred percent of the lesions were detected with a mean of 4.5 ± 1.2 false positives per subject. This false-positive rate is nearly 50% better than previously reported for a fully automatic breast lesion detection system. The median Dice coefficient for Test set 1 was 0.76 (interquartile range, 0.17), and 0.75 (interquartile range, 0.16) for Test set 2. The results demonstrate the efficacy and accuracy of the proposed method as well as its potential for direct application across different MRI systems. It is (to the authors' knowledge) the first fully automatic method for breast lesion detection and delineation in breast MRI.
The Use of Opto-Electronics in Viscometry.
ERIC Educational Resources Information Center
Mazza, R. J.; Washbourn, D. H.
1982-01-01
Describes a semi-automatic viscometer which incorporates a microprocessor system and uses optoelectronics to detect flow of liquid through the capillary, flow time being displayed on a timer with accuracy of 0.01 second. The system could be made fully automatic with an additional microprocessor circuit and inclusion of a pump. (Author/JN)
INFORMATION STORAGE AND RETRIEVAL, REPORTS ON EVALUATION PROCEDURES AND RESULTS 1965-1967.
ERIC Educational Resources Information Center
SALTON, GERALD
A DETAILED ANALYSIS OF THE RETRIEVAL EVALUATION RESULTS OBTAINED WITH THE AUTOMATIC SMART DOCUMENT RETRIEVAL SYSTEM FOR DOCUMENT COLLECTIONS IN THE FIELDS OF AERODYNAMICS, COMPUTER SCIENCE, AND DOCUMENTATION IS GIVEN IN THIS REPORT. THE VARIOUS COMPONENTS OF FULLY AUTOMATIC DOCUMENT RETRIEVAL SYSTEMS ARE DISCUSSED IN DETAIL, INCLUDING THE FORMS OF…
Automatic Calibration of an Airborne Imaging System to an Inertial Navigation Unit
NASA Technical Reports Server (NTRS)
Ansar, Adnan I.; Clouse, Daniel S.; McHenry, Michael C.; Zarzhitsky, Dimitri V.; Pagdett, Curtis W.
2013-01-01
This software automatically calibrates a camera or an imaging array to an inertial navigation system (INS) that is rigidly mounted to the array or imager. In effect, it recovers the coordinate frame transformation between the reference frame of the imager and the reference frame of the INS. This innovation can automatically derive the camera-to-INS alignment using image data only. The assumption is that the camera fixates on an area while the aircraft flies on orbit. The system then, fully automatically, solves for the camera orientation in the INS frame. No manual intervention or ground tie point data is required.
Fully automatic cervical vertebrae segmentation framework for X-ray images.
Al Arif, S M Masudur Rahman; Knapp, Karen; Slabaugh, Greg
2018-04-01
The cervical spine is a highly flexible anatomy and therefore vulnerable to injuries. Unfortunately, a large number of injuries in lateral cervical X-ray images remain undiagnosed due to human errors. Computer-aided injury detection has the potential to reduce the risk of misdiagnosis. Towards building an automatic injury detection system, in this paper, we propose a deep learning-based fully automatic framework for segmentation of cervical vertebrae in X-ray images. The framework first localizes the spinal region in the image using a deep fully convolutional neural network. Then vertebra centers are localized using a novel deep probabilistic spatial regression network. Finally, a novel shape-aware deep segmentation network is used to segment the vertebrae in the image. The framework can take an X-ray image and produce a vertebrae segmentation result without any manual intervention. Each block of the fully automatic framework has been trained on a set of 124 X-ray images and tested on another 172 images, all collected from real-life hospital emergency rooms. A Dice similarity coefficient of 0.84 and a shape error of 1.69 mm have been achieved. Copyright © 2018 Elsevier B.V. All rights reserved.
Flexible Manufacturing System Handbook. Volume IV. Appendices
1983-02-01
and Acceptance Test(s)" on page 26 of this Proposal Request. 1.1.10 Options 1. Centralized Automatic Chip/Coolant Recovery System a. Scope The...viable, from manual- ly moving the pallet/fixture/part combinations from machine to machine to fully automatic , unmanned material handling systems , such...English. Where dimensions are shown in metric units, the English system (inch) equivalent will also be shown. Hydraulic, pneumatic , and electrical
Wein, Wolfgang; Karamalis, Athanasios; Baumgartner, Adrian; Navab, Nassir
2015-06-01
The transfer of preoperative CT data into the tracking system coordinates within an operating room is of high interest for computer-aided orthopedic surgery. In this work, we introduce a solution for intra-operative ultrasound-CT registration of bones. We have developed methods for fully automatic real-time bone detection in ultrasound images and global automatic registration to CT. The bone detection algorithm uses a novel bone-specific feature descriptor and was thoroughly evaluated on both in-vivo and ex-vivo data. A global optimization strategy aligns the bone surface, followed by a soft tissue aware intensity-based registration to provide higher local registration accuracy. We evaluated the system on femur, tibia and fibula anatomy in a cadaver study with human legs, where magnetically tracked bone markers were implanted to yield ground truth information. An overall median system error of 3.7 mm was achieved on 11 datasets. Global and fully automatic registration of bones aquired with ultrasound to CT is feasible, with bone detection and tracking operating in real time for immediate feedback to the surgeon.
Kim, H C; Khanwilkar, P S; Bearnson, G B; Olsen, D B
1997-01-01
An automatic physiological control system for the actively filled, alternately pumped ventricles of the volumetrically coupled, electrohydraulic total artificial heart (EHTAH) was developed for long-term use. The automatic control system must ensure that the device: 1) maintains a physiological response of cardiac output, 2) compensates for an nonphysiological condition, and 3) is stable, reliable, and operates at a high power efficiency. The developed automatic control system met these requirements both in vitro, in week-long continuous mock circulation tests, and in vivo, in acute open-chested animals (calves). Satisfactory results were also obtained in a series of chronic animal experiments, including 21 days of continuous operation of the fully automatic control mode, and 138 days of operation in a manual mode, in a 159-day calf implant.
Spanier, A B; Caplan, N; Sosna, J; Acar, B; Joskowicz, L
2018-01-01
The goal of medical content-based image retrieval (M-CBIR) is to assist radiologists in the decision-making process by retrieving medical cases similar to a given image. One of the key interests of radiologists is lesions and their annotations, since the patient treatment depends on the lesion diagnosis. Therefore, a key feature of M-CBIR systems is the retrieval of scans with the most similar lesion annotations. To be of value, M-CBIR systems should be fully automatic to handle large case databases. We present a fully automatic end-to-end method for the retrieval of CT scans with similar liver lesion annotations. The input is a database of abdominal CT scans labeled with liver lesions, a query CT scan, and optionally one radiologist-specified lesion annotation of interest. The output is an ordered list of the database CT scans with the most similar liver lesion annotations. The method starts by automatically segmenting the liver in the scan. It then extracts a histogram-based features vector from the segmented region, learns the features' relative importance, and ranks the database scans according to the relative importance measure. The main advantages of our method are that it fully automates the end-to-end querying process, that it uses simple and efficient techniques that are scalable to large datasets, and that it produces quality retrieval results using an unannotated CT scan. Our experimental results on 9 CT queries on a dataset of 41 volumetric CT scans from the 2014 Image CLEF Liver Annotation Task yield an average retrieval accuracy (Normalized Discounted Cumulative Gain index) of 0.77 and 0.84 without/with annotation, respectively. Fully automatic end-to-end retrieval of similar cases based on image information alone, rather that on disease diagnosis, may help radiologists to better diagnose liver lesions.
Fully automatic characterization and data collection from crystals of biological macromolecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svensson, Olof; Malbet-Monaco, Stéphanie; Popov, Alexander
A fully automatic system has been developed that performs X-ray centring and characterization of, and data collection from, large numbers of cryocooled crystals without human intervention. Considerable effort is dedicated to evaluating macromolecular crystals at synchrotron sources, even for well established and robust systems. Much of this work is repetitive, and the time spent could be better invested in the interpretation of the results. In order to decrease the need for manual intervention in the most repetitive steps of structural biology projects, initial screening and data collection, a fully automatic system has been developed to mount, locate, centre to themore » optimal diffraction volume, characterize and, if possible, collect data from multiple cryocooled crystals. Using the capabilities of pixel-array detectors, the system is as fast as a human operator, taking an average of 6 min per sample depending on the sample size and the level of characterization required. Using a fast X-ray-based routine, samples are located and centred systematically at the position of highest diffraction signal and important parameters for sample characterization, such as flux, beam size and crystal volume, are automatically taken into account, ensuring the calculation of optimal data-collection strategies. The system is now in operation at the new ESRF beamline MASSIF-1 and has been used by both industrial and academic users for many different sample types, including crystals of less than 20 µm in the smallest dimension. To date, over 8000 samples have been evaluated on MASSIF-1 without any human intervention.« less
Machine-Aided Translation: From Terminology Banks to Interactive Translation Systems.
ERIC Educational Resources Information Center
Greenfield, Concetta C.; Serain, Daniel
The rapid growth of the need for technical translations in recent years has led specialists to utilize computer technology to improve the efficiency and quality of translation. The two approaches considered were automatic translation and terminology banks. Since the results of fully automatic translation were considered unsatisfactory by various…
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.
1991-01-01
Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-based and moving-based real-time piloted simulations, thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.
1991-01-01
Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-base and moving-base real-time piloted simulations; thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.
Tingelhoff, K; Moral, A I; Kunkel, M E; Rilk, M; Wagner, I; Eichhorn, K G; Wahl, F M; Bootz, F
2007-01-01
Segmentation of medical image data is getting more and more important over the last years. The results are used for diagnosis, surgical planning or workspace definition of robot-assisted systems. The purpose of this paper is to find out whether manual or semi-automatic segmentation is adequate for ENT surgical workflow or whether fully automatic segmentation of paranasal sinuses and nasal cavity is needed. We present a comparison of manual and semi-automatic segmentation of paranasal sinuses and the nasal cavity. Manual segmentation is performed by custom software whereas semi-automatic segmentation is realized by a commercial product (Amira). For this study we used a CT dataset of the paranasal sinuses which consists of 98 transversal slices, each 1.0 mm thick, with a resolution of 512 x 512 pixels. For the analysis of both segmentation procedures we used volume, extension (width, length and height), segmentation time and 3D-reconstruction. The segmentation time was reduced from 960 minutes with manual to 215 minutes with semi-automatic segmentation. We found highest variances segmenting nasal cavity. For the paranasal sinuses manual and semi-automatic volume differences are not significant. Dependent on the segmentation accuracy both approaches deliver useful results and could be used for e.g. robot-assisted systems. Nevertheless both procedures are not useful for everyday surgical workflow, because they take too much time. Fully automatic and reproducible segmentation algorithms are needed for segmentation of paranasal sinuses and nasal cavity.
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Gorder, Pater J.; Jewell, Wayne F.; Coppenbarger, Richard
1990-01-01
Developing a single-pilot all-weather NOE capability requires fully automatic NOE navigation and flight control. Innovative guidance and control concepts are being investigated to (1) organize the onboard computer-based storage and real-time updating of NOE terrain profiles and obstacles; (2) define a class of automatic anticipative pursuit guidance algorithms to follow the vertical, lateral, and longitudinal guidance commands; (3) automate a decision-making process for unexpected obstacle avoidance; and (4) provide several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the recorded environment which is then used to determine an appropriate evasive maneuver if a nonconformity is observed. This research effort has been evaluated in both fixed-base and moving-base real-time piloted simulations thereby evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and reengagement of the automatic system.
Fully automated urban traffic system
NASA Technical Reports Server (NTRS)
Dobrotin, B. M.; Hansen, G. R.; Peng, T. K. C.; Rennels, D. A.
1977-01-01
The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible.
Automatic weld torch guidance control system
NASA Technical Reports Server (NTRS)
Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.
1982-01-01
A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarroll, R; UT Health Science Center, Graduate School of Biomedical Sciences, Houston, TX; Beadle, B
Purpose: To investigate and validate the use of an independent deformable-based contouring algorithm for automatic verification of auto-contoured structures in the head and neck towards fully automated treatment planning. Methods: Two independent automatic contouring algorithms [(1) Eclipse’s Smart Segmentation followed by pixel-wise majority voting, (2) an in-house multi-atlas based method] were used to create contours of 6 normal structures of 10 head-and-neck patients. After rating by a radiation oncologist, the higher performing algorithm was selected as the primary contouring method, the other used for automatic verification of the primary. To determine the ability of the verification algorithm to detect incorrectmore » contours, contours from the primary method were shifted from 0.5 to 2cm. Using a logit model the structure-specific minimum detectable shift was identified. The models were then applied to a set of twenty different patients and the sensitivity and specificity of the models verified. Results: Per physician rating, the multi-atlas method (4.8/5 point scale, with 3 rated as generally acceptable for planning purposes) was selected as primary and the Eclipse-based method (3.5/5) for verification. Mean distance to agreement and true positive rate were selected as covariates in an optimized logit model. These models, when applied to a group of twenty different patients, indicated that shifts could be detected at 0.5cm (brain), 0.75cm (mandible, cord), 1cm (brainstem, cochlea), or 1.25cm (parotid), with sensitivity and specificity greater than 0.95. If sensitivity and specificity constraints are reduced to 0.9, detectable shifts of mandible and brainstem were reduced by 0.25cm. These shifts represent additional safety margins which might be considered if auto-contours are used for automatic treatment planning without physician review. Conclusion: Automatically contoured structures can be automatically verified. This fully automated process could be used to flag auto-contours for special review or used with safety margins in a fully automatic treatment planning system.« less
Automatic Molar Extraction from Dental Panoramic Radiographs for Forensic Personal Identification
NASA Astrophysics Data System (ADS)
Samopa, Febriliyan; Asano, Akira; Taguchi, Akira
Measurement of an individual molar provides rich information for forensic personal identification. We propose a computer-based system for extracting an individual molar from dental panoramic radiographs. A molar is obtained by extracting the region-of-interest, separating the maxilla and mandible, and extracting the boundaries between teeth. The proposed system is almost fully automatic; all that the user has to do is clicking three points on the boundary between the maxilla and the mandible.
DOT National Transportation Integrated Search
2000-03-01
The Denver Regional Transportation District (RTD) acquired a CAD/AVL system that became fully operational in 1996. The CAD/AVL system added radio channels and covert alarms in buses, located vehicles in real time, and monitored schedule adherence. Th...
A real-time freehand ultrasound calibration system with automatic accuracy feedback and control.
Chen, Thomas Kuiran; Thurston, Adrian D; Ellis, Randy E; Abolmaesumi, Purang
2009-01-01
This article describes a fully automatic, real-time, freehand ultrasound calibration system. The system was designed to be simple and sterilizable, intended for operating-room usage. The calibration system employed an automatic-error-retrieval and accuracy-control mechanism based on a set of ground-truth data. Extensive validations were conducted on a data set of 10,000 images in 50 independent calibration trials to thoroughly investigate the accuracy, robustness, and performance of the calibration system. On average, the calibration accuracy (measured in three-dimensional reconstruction error against a known ground truth) of all 50 trials was 0.66 mm. In addition, the calibration errors converged to submillimeter in 98% of all trials within 12.5 s on average. Overall, the calibration system was able to consistently, efficiently and robustly achieve high calibration accuracy with real-time performance.
Point-and-stare operation and high-speed image acquisition in real-time hyperspectral imaging
NASA Astrophysics Data System (ADS)
Driver, Richard D.; Bannon, David P.; Ciccone, Domenic; Hill, Sam L.
2010-04-01
The design and optical performance of a small-footprint, low-power, turnkey, Point-And-Stare hyperspectral analyzer, capable of fully automated field deployment in remote and harsh environments, is described. The unit is packaged for outdoor operation in an IP56 protected air-conditioned enclosure and includes a mechanically ruggedized fully reflective, aberration-corrected hyperspectral VNIR (400-1000 nm) spectrometer with a board-level detector optimized for point and stare operation, an on-board computer capable of full system data-acquisition and control, and a fully functioning internal hyperspectral calibration system for in-situ system spectral calibration and verification. Performance data on the unit under extremes of real-time survey operation and high spatial and high spectral resolution will be discussed. Hyperspectral acquisition including full parameter tracking is achieved by the addition of a fiber-optic based downwelling spectral channel for solar illumination tracking during hyperspectral acquisition and the use of other sensors for spatial and directional tracking to pinpoint view location. The system is mounted on a Pan-And-Tilt device, automatically controlled from the analyzer's on-board computer, making the HyperspecTM particularly adaptable for base security, border protection and remote deployments. A hyperspectral macro library has been developed to control hyperspectral image acquisition, system calibration and scene location control. The software allows the system to be operated in a fully automatic mode or under direct operator control through a GigE interface.
The TREC Interactive Track: An Annotated Bibliography.
ERIC Educational Resources Information Center
Over, Paul
2001-01-01
Discussion of the study of interactive information retrieval (IR) at the Text Retrieval Conferences (TREC) focuses on summaries of the Interactive Track at each conference. Describes evolution of the track, which has changed from comparing human-machine systems with fully automatic systems to comparing interactive systems that focus on the search…
Buried in the Warm, Warm Ground
ERIC Educational Resources Information Center
Ellis-Tipton, John
2006-01-01
Buntingsdale Infant School in Shropshire has installed an environmentally friendly heating system. The school's heating system is called a Ground Source Heat Pump (GSHP). Buntingsdale, a three-classroom infant school in a wooden demountable building, is one of the first schools in Britain to use this system. The system is fully automatic: it is…
Aerial applications dispersal systems control requirements study. [agriculture
NASA Technical Reports Server (NTRS)
Bauchspies, J. S.; Cleary, W. L.; Rogers, W. F.; Simpson, W.; Sanders, G. S.
1980-01-01
Performance deficiencies in aerial liquid and dry dispersal systems are identified. Five control system concepts are explored: (1) end of field on/off control; (2) manual control of particle size and application rate from the aircraft; (3) manual control of deposit rate on the field; (4) automatic alarm and shut-off control; and (5) fully automatic control. Operational aspects of the concepts and specifications for improved control configurations are discussed in detail. A research plan to provide the technology needed to develop the proposed improvements is presented along with a flight program to verify the benefits achieved.
Panuccio, Giuseppe; Torsello, Giovanni Federico; Pfister, Markus; Bisdas, Theodosios; Bosiers, Michel J; Torsello, Giovanni; Austermann, Martin
2016-12-01
To assess the usability of a fully automated fusion imaging engine prototype, matching preinterventional computed tomography with intraoperative fluoroscopic angiography during endovascular aortic repair. From June 2014 to February 2015, all patients treated electively for abdominal and thoracoabdominal aneurysms were enrolled prospectively. Before each procedure, preoperative planning was performed with a fully automated fusion engine prototype based on computed tomography angiography, creating a mesh model of the aorta. In a second step, this three-dimensional dataset was registered with the two-dimensional intraoperative fluoroscopy. The main outcome measure was the applicability of the fully automated fusion engine. Secondary outcomes were freedom from failure of automatic segmentation or of the automatic registration as well as accuracy of the mesh model, measuring deviations from intraoperative angiography in millimeters, if applicable. Twenty-five patients were enrolled in this study. The fusion imaging engine could be used in successfully 92% of the cases (n = 23). Freedom from failure of automatic segmentation was 44% (n = 11). The freedom from failure of the automatic registration was 76% (n = 19), the median error of the automatic registration process was 0 mm (interquartile range, 0-5 mm). The fully automated fusion imaging engine was found to be applicable in most cases, albeit in several cases a fully automated data processing was not possible, requiring manual intervention. The accuracy of the automatic registration yielded excellent results and promises a useful and simple to use technology. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Ultramap v3 - a Revolution in Aerial Photogrammetry
NASA Astrophysics Data System (ADS)
Reitinger, B.; Sormann, M.; Zebedin, L.; Schachinger, B.; Hoefler, M.; Tomasi, R.; Lamperter, M.; Gruber, B.; Schiester, G.; Kobald, M.; Unger, M.; Klaus, A.; Bernoegger, S.; Karner, K.; Wiechert, A.; Ponticelli, M.; Gruber, M.
2012-07-01
In the last years, Microsoft has driven innovation in the aerial photogrammetry community. Besides the market leading camera technology, UltraMap has grown to an outstanding photogrammetric workflow system which enables users to effectively work with large digital aerial image blocks in a highly automated way. Best example is the project-based color balancing approach which automatically balances images to a homogeneous block. UltraMap V3 continues innovation, and offers a revolution in terms of ortho processing. A fully automated dense matching module strives for high precision digital surface models (DSMs) which are calculated either on CPUs or on GPUs using a distributed processing framework. By applying constrained filtering algorithms, a digital terrain model can be derived which in turn can be used for fully automated traditional ortho texturing. By having the knowledge about the underlying geometry, seamlines can be generated automatically by applying cost functions in order to minimize visual disturbing artifacts. By exploiting the generated DSM information, a DSMOrtho is created using the balanced input images. Again, seamlines are detected automatically resulting in an automatically balanced ortho mosaic. Interactive block-based radiometric adjustments lead to a high quality ortho product based on UltraCam imagery. UltraMap v3 is the first fully integrated and interactive solution for supporting UltraCam images at best in order to deliver DSM and ortho imagery.
Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy
NASA Astrophysics Data System (ADS)
Khidir, Jarjees; Chen, Youhua; Anderson, Gary
2013-05-01
This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.
Development of German-English Machine Translation System. Final Technical Report.
ERIC Educational Resources Information Center
Lehmann, Winfred P.; Stachowitz, Rolf A.
This report describes work on a pilot system for a fully automatic, high-quality translation of German scientific and technical text into English and gives the results of an experiment designed to show the system's capability to produce quality mechanical translation. The areas considered were: (1) grammar formalism, mainly involving the addition…
NASA Technical Reports Server (NTRS)
Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.
1993-01-01
The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.
Evaluation of new data processing algorithms for planar gated ventriculography (MUGA)
Fair, Joanna R.; Telepak, Robert J.
2009-01-01
Before implementing one of two new LVEF radionuclide gated ventriculogram (MUGA) systems, the results from 312 consecutive parallel patient studies were evaluated. Each gamma‐camera acquisition was simultaneously processed by semi‐automatic Medasys Pinnacle and by fully automatic and semiautomatic Philips nuclear medicine computer systems. The Philips systems yielded LVEF results within ±5LVEF percentage points of the Medasys system in fewer than half of the studies. The remaining values were higher or lower than those from the long‐used Medasys system. These differences might have changed cancer patient chemotherapy clinical decisions. As a result, our institution elected not to implement either new system. PACS: 87.57.U‐ Nuclear medicine imaging
NASA Astrophysics Data System (ADS)
Brook, A.; Cristofani, E.; Vandewal, M.; Matheis, C.; Jonuscheit, J.; Beigang, R.
2012-05-01
The present study proposes a fully integrated, semi-automatic and near real-time mode-operated image processing methodology developed for Frequency-Modulated Continuous-Wave (FMCW) THz images with the center frequencies around: 100 GHz and 300 GHz. The quality control of aeronautics composite multi-layered materials and structures using Non-Destructive Testing is the main focus of this work. Image processing is applied on the 3-D images to extract useful information. The data is processed by extracting areas of interest. The detected areas are subjected to image analysis for more particular investigation managed by a spatial model. Finally, the post-processing stage examines and evaluates the spatial accuracy of the extracted information.
Advances of FishNet towards a fully automatic monitoring system for fish migration
NASA Astrophysics Data System (ADS)
Kratzert, Frederik; Mader, Helmut
2017-04-01
Restoring the continuum of river networks, affected by anthropogenic constructions, is one of the main objectives of the Water Framework Directive. Regarding fish migration, fish passes are a widely used measure. Often the functionality of these fish passes needs to be assessed by monitoring. Over the last years, we developed a new semi-automatic monitoring system (FishCam) which allows the contact free observation of fish migration in fish passes through videos. The system consists of a detection tunnel, equipped with a camera, a motion sensor and artificial light sources, as well as a software (FishNet), which helps to analyze the video data. In its latest version, the software is capable of detecting and tracking objects in the videos as well as classifying them into "fish" and "no-fish" objects. This allows filtering out the videos containing at least one fish (approx. 5 % of all grabbed videos) and reduces the manual labor to the analysis of these videos. In this state the entire system has already been used in over 20 different fish passes across Austria for a total of over 140 months of monitoring resulting in more than 1.4 million analyzed videos. As a next step towards a fully automatic monitoring system, a key feature is the automatized classification of the detected fish into their species, which is still an unsolved task in a fully automatic monitoring environment. Recent advances in the field of machine learning, especially image classification with deep convolutional neural networks, sound promising in order to solve this problem. In this study, different approaches for the fish species classification are tested. Besides an image-only based classification approach using deep convolutional neural networks, various methods that combine the power of convolutional neural networks as image descriptors with additional features, such as the fish length and the time of appearance, are explored. To facilitate the development and testing phase of this approach, a subset of six fish species of Austrian rivers and streams is considered in this study. All scripts and the data to reproduce the results of this study will be made publicly available on GitHub* at the beginning of the EGU2017 General Assembly. * https://github.com/kratzert/EGU2017_public/
Real-time automatic registration in optical surgical navigation
NASA Astrophysics Data System (ADS)
Lin, Qinyong; Yang, Rongqian; Cai, Ken; Si, Xuan; Chen, Xiuwen; Wu, Xiaoming
2016-05-01
An image-guided surgical navigation system requires the improvement of the patient-to-image registration time to enhance the convenience of the registration procedure. A critical step in achieving this aim is performing a fully automatic patient-to-image registration. This study reports on a design of custom fiducial markers and the performance of a real-time automatic patient-to-image registration method using these markers on the basis of an optical tracking system for rigid anatomy. The custom fiducial markers are designed to be automatically localized in both patient and image spaces. An automatic localization method is performed by registering a point cloud sampled from the three dimensional (3D) pedestal model surface of a fiducial marker to each pedestal of fiducial markers searched in image space. A head phantom is constructed to estimate the performance of the real-time automatic registration method under four fiducial configurations. The head phantom experimental results demonstrate that the real-time automatic registration method is more convenient, rapid, and accurate than the manual method. The time required for each registration is approximately 0.1 s. The automatic localization method precisely localizes the fiducial markers in image space. The averaged target registration error for the four configurations is approximately 0.7 mm. The automatic registration performance is independent of the positions relative to the tracking system and the movement of the patient during the operation.
New York State Thruway Authority automatic vehicle classification (AVC) : research report.
DOT National Transportation Integrated Search
2008-03-31
In December 2007, the N.Y.S. Thruway Authority (Thruway) concluded a Federal : funded research effort to study technology and develop a design for retrofitting : devices required in implementing a fully automated vehicle classification system i...
A novel fully automatic scheme for fiducial marker-based alignment in electron tomography.
Han, Renmin; Wang, Liansan; Liu, Zhiyong; Sun, Fei; Zhang, Fa
2015-12-01
Although the topic of fiducial marker-based alignment in electron tomography (ET) has been widely discussed for decades, alignment without human intervention remains a difficult problem. Specifically, the emergence of subtomogram averaging has increased the demand for batch processing during tomographic reconstruction; fully automatic fiducial marker-based alignment is the main technique in this process. However, the lack of an accurate method for detecting and tracking fiducial markers precludes fully automatic alignment. In this paper, we present a novel, fully automatic alignment scheme for ET. Our scheme has two main contributions: First, we present a series of algorithms to ensure a high recognition rate and precise localization during the detection of fiducial markers. Our proposed solution reduces fiducial marker detection to a sampling and classification problem and further introduces an algorithm to solve the parameter dependence of marker diameter and marker number. Second, we propose a novel algorithm to solve the tracking of fiducial markers by reducing the tracking problem to an incomplete point set registration problem. Because a global optimization of a point set registration occurs, the result of our tracking is independent of the initial image position in the tilt series, allowing for the robust tracking of fiducial markers without pre-alignment. The experimental results indicate that our method can achieve an accurate tracking, almost identical to the current best one in IMOD with half automatic scheme. Furthermore, our scheme is fully automatic, depends on fewer parameters (only requires a gross value of the marker diameter) and does not require any manual interaction, providing the possibility of automatic batch processing of electron tomographic reconstruction. Copyright © 2015 Elsevier Inc. All rights reserved.
Fully automatic characterization and data collection from crystals of biological macromolecules.
Svensson, Olof; Malbet-Monaco, Stéphanie; Popov, Alexander; Nurizzo, Didier; Bowler, Matthew W
2015-08-01
Considerable effort is dedicated to evaluating macromolecular crystals at synchrotron sources, even for well established and robust systems. Much of this work is repetitive, and the time spent could be better invested in the interpretation of the results. In order to decrease the need for manual intervention in the most repetitive steps of structural biology projects, initial screening and data collection, a fully automatic system has been developed to mount, locate, centre to the optimal diffraction volume, characterize and, if possible, collect data from multiple cryocooled crystals. Using the capabilities of pixel-array detectors, the system is as fast as a human operator, taking an average of 6 min per sample depending on the sample size and the level of characterization required. Using a fast X-ray-based routine, samples are located and centred systematically at the position of highest diffraction signal and important parameters for sample characterization, such as flux, beam size and crystal volume, are automatically taken into account, ensuring the calculation of optimal data-collection strategies. The system is now in operation at the new ESRF beamline MASSIF-1 and has been used by both industrial and academic users for many different sample types, including crystals of less than 20 µm in the smallest dimension. To date, over 8000 samples have been evaluated on MASSIF-1 without any human intervention.
Design and realization of an automatic weather station at island
NASA Astrophysics Data System (ADS)
Chen, Yong-hua; Li, Si-ren
2011-10-01
In this paper, the design and development of an automatic weather station monitoring is described. The proposed system consists of a set of sensors for measuring meteorological parameters (temperature, wind speed & direction, rain fall, visibility, etc.). To increase the reliability of the system, wind speed & direction are measured redundantly with duplicate sensors. The sensor signals are collected by the data logger CR1000 at several analog and digital inputs. The CR1000 and the sensors form a completely autonomous system which works with the other systems installed in the container. Communication with the master PC is accomplished over the method of Code Division Multiple Access (CDMA) with the Compact Caimore6550P CDMA DTU. The data are finally stored in tables on the CPU as well as on the CF-Card. The weather station was built as an efficient autonomous system which operates with the other systems to provide the required data for a fully automatic measurement system.
The design of digital-adaptive controllers for VTOL aircraft
NASA Technical Reports Server (NTRS)
Stengel, R. F.; Broussard, J. R.; Berry, P. W.
1976-01-01
Design procedures for VTOL automatic control systems have been developed and are presented. Using linear-optimal estimation and control techniques as a starting point, digital-adaptive control laws have been designed for the VALT Research Aircraft, a tandem-rotor helicopter which is equipped for fully automatic flight in terminal area operations. These control laws are designed to interface with velocity-command and attitude-command guidance logic, which could be used in short-haul VTOL operations. Developments reported here include new algorithms for designing non-zero-set-point digital regulators, design procedures for rate-limited systems, and algorithms for dynamic control trim setting.
The calculation of aircraft collision probabilities
DOT National Transportation Integrated Search
1971-10-01
The basic limitation of, air traffic compression, from the safety point of view, is the increased risk of collision due to reduced separations. In order to evolve new procedures, and eventually a fully, automatic system, it is desirable to have a mea...
30 CFR 75.1909 - Nonpermissible diesel-powered equipment; design and performance requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... rail-mounted equipment, must be provided with a parking brake that holds the fully loaded equipment... work platforms must be provided with a means to ensure that the parking braking system is released... requirements of § 75.1908(a) must be provided with an automatic fire suppression system meeting the...
30 CFR 75.1909 - Nonpermissible diesel-powered equipment; design and performance requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... rail-mounted equipment, must be provided with a parking brake that holds the fully loaded equipment... work platforms must be provided with a means to ensure that the parking braking system is released... requirements of § 75.1908(a) must be provided with an automatic fire suppression system meeting the...
Lin, Kun-Ju; Huang, Jia-Yann; Chen, Yung-Sheng
2011-12-01
Glomerular filtration rate (GFR) is a common accepted standard estimation of renal function. Gamma camera-based methods for estimating renal uptake of (99m)Tc-diethylenetriaminepentaacetic acid (DTPA) without blood or urine sampling have been widely used. Of these, the method introduced by Gates has been the most common method. Currently, most of gamma cameras are equipped with a commercial program for GFR determination, a semi-quantitative analysis by manually drawing region of interest (ROI) over each kidney. Then, the GFR value can be computed from the scintigraphic determination of (99m)Tc-DTPA uptake within the kidney automatically. Delineating the kidney area is difficult when applying a fixed threshold value. Moreover, hand-drawn ROIs are tedious, time consuming, and dependent highly on operator skill. Thus, we developed a fully automatic renal ROI estimation system based on the temporal changes in intensity counts, intensity-pair distribution image contrast enhancement method, adaptive thresholding, and morphological operations that can locate the kidney area and obtain the GFR value from a (99m)Tc-DTPA renogram. To evaluate the performance of the proposed approach, 30 clinical dynamic renograms were introduced. The fully automatic approach failed in one patient with very poor renal function. Four patients had a unilateral kidney, and the others had bilateral kidneys. The automatic contours from the remaining 54 kidneys were compared with the contours of manual drawing. The 54 kidneys were included for area error and boundary error analyses. There was high correlation between two physicians' manual contours and the contours obtained by our approach. For area error analysis, the mean true positive area overlap is 91%, the mean false negative is 13.4%, and the mean false positive is 9.3%. The boundary error is 1.6 pixels. The GFR calculated using this automatic computer-aided approach is reproducible and may be applied to help nuclear medicine physicians in clinical practice.
NASA Astrophysics Data System (ADS)
Jacobs, Colin; Ma, Kevin; Moin, Paymann; Liu, Brent
2010-03-01
Multiple Sclerosis (MS) is a common neurological disease affecting the central nervous system characterized by pathologic changes including demyelination and axonal injury. MR imaging has become the most important tool to evaluate the disease progression of MS which is characterized by the occurrence of white matter lesions. Currently, radiologists evaluate and assess the multiple sclerosis lesions manually by estimating the lesion volume and amount of lesions. This process is extremely time-consuming and sensitive to intra- and inter-observer variability. Therefore, there is a need for automatic segmentation of the MS lesions followed by lesion quantification. We have developed a fully automatic segmentation algorithm to identify the MS lesions. The segmentation algorithm is accelerated by parallel computing using Graphics Processing Units (GPU) for practical implementation into a clinical environment. Subsequently, characterized quantification of the lesions is performed. The quantification results, which include lesion volume and amount of lesions, are stored in a structured report together with the lesion location in the brain to establish a standardized representation of the disease progression of the patient. The development of this structured report in collaboration with radiologists aims to facilitate outcome analysis and treatment assessment of the disease and will be standardized based on DICOM-SR. The results can be distributed to other DICOM-compliant clinical systems that support DICOM-SR such as PACS. In addition, the implementation of a fully automatic segmentation and quantification system together with a method for storing, distributing, and visualizing key imaging and informatics data in DICOM-SR for MS lesions improves the clinical workflow of radiologists and visualizations of the lesion segmentations and will provide 3-D insight into the distribution of lesions in the brain.
Feasibility Study on Fully Automatic High Quality Translation: Volume II. Final Technical Report.
ERIC Educational Resources Information Center
Lehmann, Winifred P.; Stachowitz, Rolf
This second volume of a two-volume report on a fully automatic high quality translation (FAHQT) contains relevant papers contributed by specialists on the topic of machine translation. The papers presented here cover such topics as syntactical analysis in transformational grammar and in machine translation, lexical features in translation and…
A Study on the Deriving Requirements of ARGO Operation System
NASA Astrophysics Data System (ADS)
Seo, Yoon-Kyung; Rew, Dong-Young; Lim, Hyung-Chul; Park, In-Kwan; Yim, Hong-Suh; Jo, Jung Hyun; Park, Jong-Uk
2009-12-01
Korea Astronomy and Space Science Institute (KASI) has been developing one mobile and one stationary SLR system since 2008 named as ARGO-M and ARGO-F, respectively. KASI finished the step of deriving the system requirements of ARGO. The requirements include definitions and scopes of various software and hardware components which are necessary for developing the ARGO-M operation system. And the requirements define function, performance, and interface requirements. The operation system consisting of ARGO-M site, ARGO-F site, and Remote Operation Center (ROC) inside KASI is designed for remote access and the automatic tracking and control system which are the main operation concept of ARGO system. To accomplish remote operation, we are considering remote access to ARGO-F and ARGO-M from ROC. The mobile-phone service allows us to access the ARGO-F remotely and to control the system in an emergency. To implement fully automatic tracking and control function in ARGO-F, we have investigated and described the requirements about the automatic aircraft detection system and the various meteorological sensors. This paper addresses the requirements of ARGO Operation System.
[Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System
NASA Technical Reports Server (NTRS)
Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed
2018-01-01
Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests were conducted at Edwards Air Force Base. Researchers in the ground control station looking at displays were able to verify the Automatic Dependent Surveillance-Broadcast target detection and collision avoidance resolutions.
AutoBayes Program Synthesis System Users Manual
NASA Technical Reports Server (NTRS)
Schumann, Johann; Jafari, Hamed; Pressburger, Tom; Denney, Ewen; Buntine, Wray; Fischer, Bernd
2008-01-01
Program synthesis is the systematic, automatic construction of efficient executable code from high-level declarative specifications. AutoBayes is a fully automatic program synthesis system for the statistical data analysis domain; in particular, it solves parameter estimation problems. It has seen many successful applications at NASA and is currently being used, for example, to analyze simulation results for Orion. The input to AutoBayes is a concise description of a data analysis problem composed of a parameterized statistical model and a goal that is a probability term involving parameters and input data. The output is optimized and fully documented C/C++ code computing the values for those parameters that maximize the probability term. AutoBayes can solve many subproblems symbolically rather than having to rely on numeric approximation algorithms, thus yielding effective, efficient, and compact code. Statistical analysis is faster and more reliable, because effort can be focused on model development and validation rather than manual development of solution algorithms and code.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Y; Huang, H; Su, T
Purpose: Texture-based quantification of image heterogeneity has been a popular topic for imaging studies in recent years. As previous studies mainly focus on oncological applications, we report our recent efforts of applying such techniques on cardiac perfusion imaging. A fully automated procedure has been developed to perform texture analysis for measuring the image heterogeneity. Clinical data were used to evaluate the preliminary performance of such methods. Methods: Myocardial perfusion images of Thallium-201 scans were collected from 293 patients with suspected coronary artery disease. Each subject underwent a Tl-201 scan and a percutaneous coronary intervention (PCI) within three months. The PCImore » Result was used as the gold standard of coronary ischemia of more than 70% stenosis. Each Tl-201 scan was spatially normalized to an image template for fully automatic segmentation of the LV. The segmented voxel intensities were then carried into the texture analysis with our open-source software Chang Gung Image Texture Analysis toolbox (CGITA). To evaluate the clinical performance of the image heterogeneity for detecting the coronary stenosis, receiver operating characteristic (ROC) analysis was used to compute the overall accuracy, sensitivity and specificity as well as the area under curve (AUC). Those indices were compared to those obtained from the commercially available semi-automatic software QPS. Results: With the fully automatic procedure to quantify heterogeneity from Tl-201 scans, we were able to achieve a good discrimination with good accuracy (74%), sensitivity (73%), specificity (77%) and AUC of 0.82. Such performance is similar to those obtained from the semi-automatic QPS software that gives a sensitivity of 71% and specificity of 77%. Conclusion: Based on fully automatic procedures of data processing, our preliminary data indicate that the image heterogeneity of myocardial perfusion imaging can provide useful information for automatic determination of the myocardial ischemia.« less
Gait analysis--precise, rapid, automatic, 3-D position and orientation kinematics and dynamics.
Mann, R W; Antonsson, E K
1983-01-01
A fully automatic optoelectronic photogrammetric technique is presented for measuring the spatial kinematics of human motion (both position and orientation) and estimating the inertial (net) dynamics. Calibration and verification showed that in a two-meter cube viewing volume, the system achieves one millimeter of accuracy and resolution in translation and 20 milliradians in rotation. Since double differentiation of generalized position data to determine accelerations amplifies noise, the frequency domain characteristics of the system were investigated. It was found that the noise and all other errors in the kinematic data contribute less than five percent error to the resulting dynamics.
Feasibility Study on Fully Automatic High Quality Translation: Volume I. Final Technical Report.
ERIC Educational Resources Information Center
Lehmann, Winifred P.; Stachowitz, Rolf
The object of this theoretical inquiry is to examine the controversial issue of a fully automatic high quality translation (FAHQT) in the light of past and projected advances in linguistic theory and hardware/software capability. This first volume of a two-volume report discusses the requirements of translation and aspects of human and machine…
Pilot control through the TAFCOS automatic flight control system
NASA Technical Reports Server (NTRS)
Wehrend, W. R., Jr.
1979-01-01
The set of flight control logic used in a recently completed flight test program to evaluate the total automatic flight control system (TAFCOS) with the controller operating in a fully automatic mode, was used to perform an unmanned simulation on an IBM 360 computer in which the TAFCOS concept was extended to provide a multilevel pilot interface. A pilot TAFCOS interface for direct pilot control by use of a velocity-control-wheel-steering mode was defined as well as a means for calling up conventional autopilot modes. It is concluded that the TAFCOS structure is easily adaptable to the addition of a pilot control through a stick-wheel-throttle control similar to conventional airplane controls. Conventional autopilot modes, such as airspeed-hold, altitude-hold, heading-hold, and flight path angle-hold, can also be included.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-22
... Reinvestment and Recovery Act of 2009 (Recovery Act) to EERE-funded projects for non-residential programmable...[hyphen]residential programmable thermostats; commercial scale fully-automatic wood pellet boiler systems...) Programmable Thermostats--Includes devices that permit adjustment of heating or air-conditioning operations...
Differential GPS/inertial navigation approach/landing flight test results
NASA Technical Reports Server (NTRS)
Snyder, Scott; Schipper, Brian; Vallot, Larry; Parker, Nigel; Spitzer, Cary
1992-01-01
In November of 1990 a joint Honeywell/NASA-Langley differential GPS/inertial flight test was conducted at Wallops Island, Virginia. The test objective was to acquire a system performance database and demonstrate automatic landing using an integrated differential GPS/INS (Global Positioning System/inertial navigation system) with barometric and radar altimeters. The flight test effort exceeded program objectives with over 120 landings, 36 of which were fully automatic differential GPS/inertial landings. Flight test results obtained from post-flight data analysis are discussed. These results include characteristics of differential GPS/inertial error, using the Wallops Island Laser Tracker as a reference. Data on the magnitude of the differential corrections and vertical channel performance with and without radar altimeter augmentation are provided.
Real-time control of focused ultrasound heating based on rapid MR thermometry.
Vimeux, F C; De Zwart, J A; Palussiére, J; Fawaz, R; Delalande, C; Canioni, P; Grenier, N; Moonen, C T
1999-03-01
Real-time control of the heating procedure is essential for hyperthermia applications of focused ultrasound (FUS). The objective of this study is to demonstrate the feasibility of MRI-controlled FUS. An automatic control system was developed using a dedicated interface between the MR system control computer and the FUS wave generator. Two algorithms were used to regulate FUS power to maintain the focal point temperature at a desired level. Automatic control of FUS power level was demonstrated ex vivo at three target temperature levels (increase of 5 degrees C, 10 degrees C, and 30 degrees C above room temperature) during 30-minute hyperthermic periods. Preliminary in vivo results on rat leg muscle confirm that necrosis estimate, calculated on-line during FUS sonication, allows prediction of tissue damage. CONCLUSIONS. The feasibility of fully automatic FUS control based on MRI thermometry has been demonstrated.
Automatization of hydrodynamic modelling in a Floreon+ system
NASA Astrophysics Data System (ADS)
Ronovsky, Ales; Kuchar, Stepan; Podhoranyi, Michal; Vojtek, David
2017-07-01
The paper describes fully automatized hydrodynamic modelling as a part of the Floreon+ system. The main purpose of hydrodynamic modelling in the disaster management is to provide an accurate overview of the hydrological situation in a given river catchment. Automatization of the process as a web service could provide us with immediate data based on extreme weather conditions, such as heavy rainfall, without the intervention of an expert. Such a service can be used by non scientific users such as fire-fighter operators or representatives of a military service organizing evacuation during floods or river dam breaks. The paper describes the whole process beginning with a definition of a schematization necessary for hydrodynamic model, gathering of necessary data and its processing for a simulation, the model itself and post processing of a result and visualization on a web service. The process is demonstrated on a real data collected during floods in our Moravian-Silesian region in 2010.
Vessel extraction in retinal images using automatic thresholding and Gabor Wavelet.
Ali, Aziah; Hussain, Aini; Wan Zaki, Wan Mimi Diyana
2017-07-01
Retinal image analysis has been widely used for early detection and diagnosis of multiple systemic diseases. Accurate vessel extraction in retinal image is a crucial step towards a fully automated diagnosis system. This work affords an efficient unsupervised method for extracting blood vessels from retinal images by combining existing Gabor Wavelet (GW) method with automatic thresholding. Green channel image is extracted from color retinal image and used to produce Gabor feature image using GW. Both green channel image and Gabor feature image undergo vessel-enhancement step in order to highlight blood vessels. Next, the two vessel-enhanced images are transformed to binary images using automatic thresholding before combined to produce the final vessel output. Combining the images results in significant improvement of blood vessel extraction performance compared to using individual image. Effectiveness of the proposed method was proven via comparative analysis with existing methods validated using publicly available database, DRIVE.
Kalal, M; Nugent, K A; Luther-Davies, B
1987-05-01
An interferometric technique which enables simultaneous phase and amplitude imaging of optically transparent objects is discussed with respect to its application for the measurement of spontaneous toroidal magnetic fields generated in laser-produced plasmas. It is shown that this technique can replace the normal independent pair of optical systems (interferometry and shadowgraphy) by one system and use computer image processing to recover both the plasma density and magnetic field information with high accuracy. A fully automatic algorithm for the numerical analysis of the data has been developed and its performance demonstrated for the case of simulated as well as experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalal, M.; Nugent, K.A.; Luther-Davies, B.
1987-05-01
An interferometric technique which enables simultaneous phase and amplitude imaging of optically transparent objects is discussed with respect to its application for the measurement of spontaneous toroidal magnetic fields generated in laser-produced plasmas. It is shown that this technique can replace the normal independent pair of optical systems (interferometry and shadowgraphy) by one system and use computer image processing to recover both the plasma density and magnetic field information with high accuracy. A fully automatic algorithm for the numerical analysis of the data has been developed and its performance demonstrated for the case of simulated as well as experimental data.
Automatic multi-organ segmentation using learning-based segmentation and level set optimization.
Kohlberger, Timo; Sofka, Michal; Zhang, Jingdan; Birkbeck, Neil; Wetzl, Jens; Kaftan, Jens; Declerck, Jérôme; Zhou, S Kevin
2011-01-01
We present a novel generic segmentation system for the fully automatic multi-organ segmentation from CT medical images. Thereby we combine the advantages of learning-based approaches on point cloud-based shape representation, such a speed, robustness, point correspondences, with those of PDE-optimization-based level set approaches, such as high accuracy and the straightforward prevention of segment overlaps. In a benchmark on 10-100 annotated datasets for the liver, the lungs, and the kidneys we show that the proposed system yields segmentation accuracies of 1.17-2.89 mm average surface errors. Thereby the level set segmentation (which is initialized by the learning-based segmentations) contributes with an 20%-40% increase in accuracy.
Machine for Automatic Bacteriological Pour Plate Preparation
Sharpe, A. N.; Biggs, D. R.; Oliver, R. J.
1972-01-01
A fully automatic system for preparing poured plates for bacteriological analyses has been constructed and tested. The machine can make decimal dilutions of bacterial suspensions, dispense measured amounts into petri dishes, add molten agar, mix the dish contents, and label the dishes with sample and dilution numbers at the rate of 2,000 dishes per 8-hr day. In addition, the machine can be programmed to select different media so that plates for different types of bacteriological analysis may be made automatically from the same sample. The machine uses only the components of the media and sterile polystyrene petri dishes; requirements for all other materials, such as sterile pipettes and capped bottles of diluents and agar, are eliminated. Images PMID:4560475
Automatic Detection and Vulnerability Analysis of Areas Endangered by Heavy Rain
NASA Astrophysics Data System (ADS)
Krauß, Thomas; Fischer, Peter
2016-08-01
In this paper we present a new method for fully automatic detection and derivation of areas endangered by heavy rainfall based only on digital elevation models. Tracking news show that the majority of occuring natural hazards are flood events. So already many flood prediction systems were developed. But most of these existing systems for deriving areas endangered by flooding events are based only on horizontal and vertical distances to existing rivers and lakes. Typically such systems take not into account dangers arising directly from heavy rain events. In a study conducted by us together with a german insurance company a new approach for detection of areas endangered by heavy rain was proven to give a high correlation of the derived endangered areas and the losses claimed at the insurance company. Here we describe three methods for classification of digital terrain models and analyze their usability for automatic detection and vulnerability analysis for areas endangered by heavy rainfall and analyze the results using the available insurance data.
Motorization of a surgical microscope for intra-operative navigation and intuitive control.
Finke, M; Schweikard, A
2010-09-01
During surgical procedures, various medical systems, e.g. microscope or C-arm, are used. Their precise and repeatable manual positioning can be very cumbersome and interrupts the surgeon's work flow. Robotized systems can assist the surgeon but they require suitable kinematics and control. However, positioning must be fast, flexible and intuitive. We describe a fully motorized surgical microscope. Hardware components as well as implemented applications are specified. The kinematic equations are described and a novel control concept is proposed. Our microscope combines fast manual handling with accurate, automatic positioning. Intuitive control is provided by a small remote control mounted to one of the surgical instruments. Positioning accuracy and repeatability are < 1 mm and vibrations caused by automatic movements fade away in about 1 s. The robotic system assists the surgeon, so that he can position the microscope precisely and repeatedly without interrupting the clinical workflow. The combination of manual und automatic control guarantees fast and flexible positioning during surgical procedures. Copyright 2010 John Wiley & Sons, Ltd.
Tashkeela: Novel corpus of Arabic vocalized texts, data for auto-diacritization systems.
Zerrouki, Taha; Balla, Amar
2017-04-01
Arabic diacritics are often missed in Arabic scripts. This feature is a handicap for new learner to read َArabic, text to speech conversion systems, reading and semantic analysis of Arabic texts. The automatic diacritization systems are the best solution to handle this issue. But such automation needs resources as diactritized texts to train and evaluate such systems. In this paper, we describe our corpus of Arabic diacritized texts. This corpus is called Tashkeela. It can be used as a linguistic resource tool for natural language processing such as automatic diacritics systems, dis-ambiguity mechanism, features and data extraction. The corpus is freely available, it contains 75 million of fully vocalized words mainly 97 books from classical and modern Arabic language. The corpus is collected from manually vocalized texts using web crawling process.
Automatic thermographic image defect detection of composites
NASA Astrophysics Data System (ADS)
Luo, Bin; Liebenberg, Bjorn; Raymont, Jeff; Santospirito, SP
2011-05-01
Detecting defects, and especially reliably measuring defect sizes, are critical objectives in automatic NDT defect detection applications. In this work, the Sentence software is proposed for the analysis of pulsed thermography and near IR images of composite materials. Furthermore, the Sentence software delivers an end-to-end, user friendly platform for engineers to perform complete manual inspections, as well as tools that allow senior engineers to develop inspection templates and profiles, reducing the requisite thermographic skill level of the operating engineer. Finally, the Sentence software can also offer complete independence of operator decisions by the fully automated "Beep on Defect" detection functionality. The end-to-end automatic inspection system includes sub-systems for defining a panel profile, generating an inspection plan, controlling a robot-arm and capturing thermographic images to detect defects. A statistical model has been built to analyze the entire image, evaluate grey-scale ranges, import sentencing criteria and automatically detect impact damage defects. A full width half maximum algorithm has been used to quantify the flaw sizes. The identified defects are imported into the sentencing engine which then sentences (automatically compares analysis results against acceptance criteria) the inspection by comparing the most significant defect or group of defects against the inspection standards.
Development of the micro-scanning optical system of yellow laser applied to the ophthalmologic area
NASA Astrophysics Data System (ADS)
Ortega, Tiago A.; Mota, Alessandro D.; Costal, Glauco Z.; Fontes, Yuri C.; Rossi, Giuliano; Yasuoka, Fatima M. M.; Stefani, Mario A.; de Castro N., Jarbas C.
2012-10-01
In this work, the development of a laser scanning system for ophthalmology with micrometric positioning precision is presented. It is a semi-automatic scanning system for retina photocoagulation and laser trabeculoplasty. The equipment is a solid state laser fully integrated to the slit lamp. An optical system is responsible for producing different laser spot sizes on the image plane and a pair of galvanometer mirrors generates the scanning patterns.
Verifying the Comprehensive Nuclear-Test-Ban Treaty by Radioxenon Monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringbom, Anders
2005-05-24
The current status of the ongoing establishment of a verification system for the Comprehensive Nuclear-Test-Ban Treaty using radioxenon detection is discussed. As an example of equipment used in this application the newly developed fully automatic noble gas sampling and detection system SAUNA is described, and data collected with this system are discussed. It is concluded that the most important remaining scientific challenges in the field concern event categorization and meteorological backtracking.
Automation of a laboratory particleboard press
Robert L. Geimer; Gordon H. Stevens; Richard E. Kinney
1982-01-01
A manually operated particleboard press was converted to a fully automatic, programable system with updated data collection capabilities. Improved control has permitted observations of very small changes in pressing variables resulting in the development of a technique capable of reducing press times by 70 percent. Accurate control of the press is obtained through an...
ARES v2: new features and improved performance
NASA Astrophysics Data System (ADS)
Sousa, S. G.; Santos, N. C.; Adibekyan, V.; Delgado-Mena, E.; Israelian, G.
2015-05-01
Aims: We present a new upgraded version of ARES. The new version includes a series of interesting new features such as automatic radial velocity correction, a fully automatic continuum determination, and an estimation of the errors for the equivalent widths. Methods: The automatic correction of the radial velocity is achieved with a simple cross-correlation function, and the automatic continuum determination, as well as the estimation of the errors, relies on a new approach to evaluating the spectral noise at the continuum level. Results: ARES v2 is totally compatible with its predecessor. We show that the fully automatic continuum determination is consistent with the previous methods applied for this task. It also presents a significant improvement on its performance thanks to the implementation of a parallel computation using the OpenMP library. Automatic Routine for line Equivalent widths in stellar Spectra - ARES webpage: http://www.astro.up.pt/~sousasag/ares/Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 075.D-0800(A).
GESA--a two-dimensional processing system using knowledge base techniques.
Rowlands, D G; Flook, A; Payne, P I; van Hoff, A; Niblett, T; McKee, S
1988-12-01
The successful analysis of two-dimensional (2-D) polyacrylamide electrophoresis gels demands considerable experience and understanding of the protein system under investigation as well as knowledge of the separation technique itself. The present work concerns the development of a computer system for analysing 2-D electrophoretic separations which incorporates concepts derived from artificial intelligence research such that non-experts can use the technique as a diagnostic or identification tool. Automatic analysis of 2-D gel separations has proved to be extremely difficult using statistical methods. Non-reproducibility of gel separations is also difficult to overcome using automatic systems. However, the human eye is extremely good at recognising patterns in images, and human intervention in semi-automatic computer systems can reduce the computational complexities of fully automatic systems. Moreover, the expertise and understanding of an "expert" is invaluable in reducing system complexity if it can be encapsulated satisfactorily in an expert system. The combination of user-intervention in the computer system together with the encapsulation of expert knowledge characterises the present system. The domain within which the system has been developed is that of wheat grain storage proteins (gliadins) which exhibit polymorphism to such an extent that cultivars can be uniquely identified by their gliadin patterns. The system can be adapted to other domains where a range of polymorpic protein sub-units exist. In its generalised form, the system can also be used for comparing more complex 2-D gel electrophoretic separations.
Automatic detection of spiculation of pulmonary nodules in computed tomography images
NASA Astrophysics Data System (ADS)
Ciompi, F.; Jacobs, C.; Scholten, E. T.; van Riel, S. J.; W. Wille, M. M.; Prokop, M.; van Ginneken, B.
2015-03-01
We present a fully automatic method for the assessment of spiculation of pulmonary nodules in low-dose Computed Tomography (CT) images. Spiculation is considered as one of the indicators of nodule malignancy and an important feature to assess in order to decide on a patient-tailored follow-up procedure. For this reason, lung cancer screening scenario would benefit from the presence of a fully automatic system for the assessment of spiculation. The presented framework relies on the fact that spiculated nodules mainly differ from non-spiculated ones in their morphology. In order to discriminate the two categories, information on morphology is captured by sampling intensity profiles along circular patterns on spherical surfaces centered on the nodule, in a multi-scale fashion. Each intensity profile is interpreted as a periodic signal, where the Fourier transform is applied, obtaining a spectrum. A library of spectra is created by clustering data via unsupervised learning. The centroids of the clusters are used to label back each spectrum in the sampling pattern. A compact descriptor encoding the nodule morphology is obtained as the histogram of labels along all the spherical surfaces and used to classify spiculated nodules via supervised learning. We tested our approach on a set of nodules from the Danish Lung Cancer Screening Trial (DLCST) dataset. Our results show that the proposed method outperforms other 3-D descriptors of morphology in the automatic assessment of spiculation.
Automatic localization of the da Vinci surgical instrument tips in 3-D transrectal ultrasound.
Mohareri, Omid; Ramezani, Mahdi; Adebar, Troy K; Abolmaesumi, Purang; Salcudean, Septimiu E
2013-09-01
Robot-assisted laparoscopic radical prostatectomy (RALRP) using the da Vinci surgical system is the current state-of-the-art treatment option for clinically confined prostate cancer. Given the limited field of view of the surgical site in RALRP, several groups have proposed the integration of transrectal ultrasound (TRUS) imaging in the surgical workflow to assist with accurate resection of the prostate and the sparing of the neurovascular bundles (NVBs). We previously introduced a robotic TRUS manipulator and a method for automatically tracking da Vinci surgical instruments with the TRUS imaging plane, in order to facilitate the integration of intraoperative TRUS in RALRP. Rapid and automatic registration of the kinematic frames of the da Vinci surgical system and the robotic TRUS probe manipulator is a critical component of the instrument tracking system. In this paper, we propose a fully automatic registration technique based on automatic 3-D TRUS localization of robot instrument tips pressed against the air-tissue boundary anterior to the prostate. The detection approach uses a multiscale filtering technique to identify and localize surgical instrument tips in the TRUS volume, and could also be used to detect other surface fiducials in 3-D ultrasound. Experiments have been performed using a tissue phantom and two ex vivo tissue samples to show the feasibility of the proposed methods. Also, an initial in vivo evaluation of the system has been carried out on a live anaesthetized dog with a da Vinci Si surgical system and a target registration error (defined as the root mean square distance of corresponding points after registration) of 2.68 mm has been achieved. Results show this method's accuracy and consistency for automatic registration of TRUS images to the da Vinci surgical system.
NASA Technical Reports Server (NTRS)
1989-01-01
001 is an integrated tool suited for automatically developing ultra reliable models, simulations and software systems. Developed and marketed by Hamilton Technologies, Inc. (HTI), it has been applied in engineering, manufacturing, banking and software tools development. The software provides the ability to simplify the complex. A system developed with 001 can be a prototype or fully developed with production quality code. It is free of interface errors, consistent, logically complete and has no data or control flow errors. Systems can be designed, developed and maintained with maximum productivity. Margaret Hamilton, President of Hamilton Technologies, also directed the research and development of USE.IT, an earlier product which was the first computer aided software engineering product in the industry to concentrate on automatically supporting the development of an ultrareliable system throughout its life cycle. Both products originated in NASA technology developed under a Johnson Space Center contract.
Automatic nipple detection on 3D images of an automated breast ultrasound system (ABUS)
NASA Astrophysics Data System (ADS)
Javanshir Moghaddam, Mandana; Tan, Tao; Karssemeijer, Nico; Platel, Bram
2014-03-01
Recent studies have demonstrated that applying Automated Breast Ultrasound in addition to mammography in women with dense breasts can lead to additional detection of small, early stage breast cancers which are occult in corresponding mammograms. In this paper, we proposed a fully automatic method for detecting the nipple location in 3D ultrasound breast images acquired from Automated Breast Ultrasound Systems. The nipple location is a valuable landmark to report the position of possible abnormalities in a breast or to guide image registration. To detect the nipple location, all images were normalized. Subsequently, features have been extracted in a multi scale approach and classification experiments were performed using a gentle boost classifier to identify the nipple location. The method was applied on a dataset of 100 patients with 294 different 3D ultrasound views from Siemens and U-systems acquisition systems. Our database is a representative sample of cases obtained in clinical practice by four medical centers. The automatic method could accurately locate the nipple in 90% of AP (Anterior-Posterior) views and in 79% of the other views.
Automatic classification of seismic events within a regional seismograph network
NASA Astrophysics Data System (ADS)
Tiira, Timo; Kortström, Jari; Uski, Marja
2015-04-01
A fully automatic method for seismic event classification within a sparse regional seismograph network is presented. The tool is based on a supervised pattern recognition technique, Support Vector Machine (SVM), trained here to distinguish weak local earthquakes from a bulk of human-made or spurious seismic events. The classification rules rely on differences in signal energy distribution between natural and artificial seismic sources. Seismic records are divided into four windows, P, P coda, S, and S coda. For each signal window STA is computed in 20 narrow frequency bands between 1 and 41 Hz. The 80 discrimination parameters are used as a training data for the SVM. The SVM models are calculated for 19 on-line seismic stations in Finland. The event data are compiled mainly from fully automatic event solutions that are manually classified after automatic location process. The station-specific SVM training events include 11-302 positive (earthquake) and 227-1048 negative (non-earthquake) examples. The best voting rules for combining results from different stations are determined during an independent testing period. Finally, the network processing rules are applied to an independent evaluation period comprising 4681 fully automatic event determinations, of which 98 % have been manually identified as explosions or noise and 2 % as earthquakes. The SVM method correctly identifies 94 % of the non-earthquakes and all the earthquakes. The results imply that the SVM tool can identify and filter out blasts and spurious events from fully automatic event solutions with a high level of confidence. The tool helps to reduce work-load in manual seismic analysis by leaving only ~5 % of the automatic event determinations, i.e. the probable earthquakes for more detailed seismological analysis. The approach presented is easy to adjust to requirements of a denser or wider high-frequency network, once enough training examples for building a station-specific data set are available.
Shaping electromagnetic waves using software-automatically-designed metasurfaces.
Zhang, Qian; Wan, Xiang; Liu, Shuo; Yuan Yin, Jia; Zhang, Lei; Jun Cui, Tie
2017-06-15
We present a fully digital procedure of designing reflective coding metasurfaces to shape reflected electromagnetic waves. The design procedure is completely automatic, controlled by a personal computer. In details, the macro coding units of metasurface are automatically divided into several types (e.g. two types for 1-bit coding, four types for 2-bit coding, etc.), and each type of the macro coding units is formed by discretely random arrangement of micro coding units. By combining an optimization algorithm and commercial electromagnetic software, the digital patterns of the macro coding units are optimized to possess constant phase difference for the reflected waves. The apertures of the designed reflective metasurfaces are formed by arranging the macro coding units with certain coding sequence. To experimentally verify the performance, a coding metasurface is fabricated by automatically designing two digital 1-bit unit cells, which are arranged in array to constitute a periodic coding metasurface to generate the required four-beam radiations with specific directions. Two complicated functional metasurfaces with circularly- and elliptically-shaped radiation beams are realized by automatically designing 4-bit macro coding units, showing excellent performance of the automatic designs by software. The proposed method provides a smart tool to realize various functional devices and systems automatically.
SPAR reference manual. [for stress analysis
NASA Technical Reports Server (NTRS)
Whetstone, W. D.
1974-01-01
SPAR is a system of related programs which may be operated either in batch or demand (teletype) mode. Information exchange between programs is automatically accomplished through one or more direct access libraries, known collectively as the data complex. Card input is command-oriented, in free-field form. Capabilities available in the first production release of the system are fully documented, and include linear stress analysis, linear bifurcation buckling analysis, and linear vibrational analysis.
Managing computer-controlled operations
NASA Technical Reports Server (NTRS)
Plowden, J. B.
1985-01-01
A detailed discussion of Launch Processing System Ground Software Production is presented to establish the interrelationships of firing room resource utilization, configuration control, system build operations, and Shuttle data bank management. The production of a test configuration identifier is traced from requirement generation to program development. The challenge of the operational era is to implement fully automated utilities to interface with a resident system build requirements document to eliminate all manual intervention in the system build operations. Automatic update/processing of Shuttle data tapes will enhance operations during multi-flow processing.
Fully automated MR liver volumetry using watershed segmentation coupled with active contouring.
Huynh, Hieu Trung; Le-Trong, Ngoc; Bao, Pham The; Oto, Aytek; Suzuki, Kenji
2017-02-01
Our purpose is to develop a fully automated scheme for liver volume measurement in abdominal MR images, without requiring any user input or interaction. The proposed scheme is fully automatic for liver volumetry from 3D abdominal MR images, and it consists of three main stages: preprocessing, rough liver shape generation, and liver extraction. The preprocessing stage reduced noise and enhanced the liver boundaries in 3D abdominal MR images. The rough liver shape was revealed fully automatically by using the watershed segmentation, thresholding transform, morphological operations, and statistical properties of the liver. An active contour model was applied to refine the rough liver shape to precisely obtain the liver boundaries. The liver volumes calculated by the proposed scheme were compared to the "gold standard" references which were estimated by an expert abdominal radiologist. The liver volumes computed by using our developed scheme excellently agreed (Intra-class correlation coefficient was 0.94) with the "gold standard" manual volumes by the radiologist in the evaluation with 27 cases from multiple medical centers. The running time was 8.4 min per case on average. We developed a fully automated liver volumetry scheme in MR, which does not require any interaction by users. It was evaluated with cases from multiple medical centers. The liver volumetry performance of our developed system was comparable to that of the gold standard manual volumetry, and it saved radiologists' time for manual liver volumetry of 24.7 min per case.
Almeida, Diogo F; Ruben, Rui B; Folgado, João; Fernandes, Paulo R; Audenaert, Emmanuel; Verhegghe, Benedict; De Beule, Matthieu
2016-12-01
Femur segmentation can be an important tool in orthopedic surgical planning. However, in order to overcome the need of an experienced user with extensive knowledge on the techniques, segmentation should be fully automatic. In this paper a new fully automatic femur segmentation method for CT images is presented. This method is also able to define automatically the medullary canal and performs well even in low resolution CT scans. Fully automatic femoral segmentation was performed adapting a template mesh of the femoral volume to medical images. In order to achieve this, an adaptation of the active shape model (ASM) technique based on the statistical shape model (SSM) and local appearance model (LAM) of the femur with a novel initialization method was used, to drive the template mesh deformation in order to fit the in-image femoral shape in a time effective approach. With the proposed method a 98% convergence rate was achieved. For high resolution CT images group the average error is less than 1mm. For the low resolution image group the results are also accurate and the average error is less than 1.5mm. The proposed segmentation pipeline is accurate, robust and completely user free. The method is robust to patient orientation, image artifacts and poorly defined edges. The results excelled even in CT images with a significant slice thickness, i.e., above 5mm. Medullary canal segmentation increases the geometric information that can be used in orthopedic surgical planning or in finite element analysis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Interactive computer aided technology, evolution in the design/manufacturing process
NASA Technical Reports Server (NTRS)
English, C. H.
1975-01-01
A powerful computer-operated three dimensional graphic system and associated auxiliary computer equipment used in advanced design, production design, and manufacturing was described. This system has made these activities more productive than when using older and more conventional methods to design and build aerospace vehicles. With the use of this graphic system, designers are now able to define parts using a wide variety of geometric entities, define parts as fully surface 3-dimensional models as well as "wire-frame" models. Once geometrically defined, the designer is able to take section cuts of the surfaced model and automatically determine all of the section properties of the planar cut, lightpen detect all of the surface patches and automatically determine the volume and weight of the part. Further, his designs are defined mathematically at a degree of accuracy never before achievable.
Yavuzer, Yasemin; Karataş, Zeynep
2013-01-01
This study aimed to examine the mediating role of anger in the relationship between automatic thoughts and physical aggression in adolescents. The study included 224 adolescents in the 9th grade of 3 different high schools in central Burdur during the 2011-2012 academic year. Participants completed the Aggression Questionnaire and Automatic Thoughts Scale in their classrooms during counseling sessions. Data were analyzed using simple and multiple linear regression analysis. There were positive correlations between the adolescents' automatic thoughts, and physical aggression, and anger. According to regression analysis, automatic thoughts effectively predicted the level of physical aggression (b= 0.233, P < 0.001)) and anger (b= 0.325, P < 0.001). Analysis of the mediating role of anger showed that anger fully mediated the relationship between automatic thoughts and physical aggression (Sobel z = 5.646, P < 0.001). Anger fully mediated the relationship between automatic thoughts and physical aggression. Providing adolescents with anger management skills training is very important for the prevention of physical aggression. Such training programs should include components related to the development of an awareness of dysfunctional and anger-triggering automatic thoughts, and how to change them. As the study group included adolescents from Burdur, the findings can only be generalized to groups with similar characteristics.
Automatic Quadcopter Control Avoiding Obstacle Using Camera with Integrated Ultrasonic Sensor
NASA Astrophysics Data System (ADS)
Anis, Hanafi; Haris Indra Fadhillah, Ahmad; Darma, Surya; Soekirno, Santoso
2018-04-01
Automatic navigation on the drone is being developed these days, a wide variety of types of drones and its automatic functions. Drones used in this study was an aircraft with four propellers or quadcopter. In this experiment, image processing used to recognize the position of an object and ultrasonic sensor used to detect obstacle distance. The method used to trace an obsctacle in image processing was the Lucas-Kanade-Tomasi Tracker, which had been widely used due to its high accuracy. Ultrasonic sensor used to complement the image processing success rate to be fully detected object. The obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors. Visual feedback control based PID controllers are used as a control of drones movement. The conclusion of the obstacle avoidance system was to observe at the program decisions from some obstacle conditions read by the camera and ultrasonic sensors.
Ihlow, Alexander; Schweizer, Patrick; Seiffert, Udo
2008-01-23
To find candidate genes that potentially influence the susceptibility or resistance of crop plants to powdery mildew fungi, an assay system based on transient-induced gene silencing (TIGS) as well as transient over-expression in single epidermal cells of barley has been developed. However, this system relies on quantitative microscopic analysis of the barley/powdery mildew interaction and will only become a high-throughput tool of phenomics upon automation of the most time-consuming steps. We have developed a high-throughput screening system based on a motorized microscope which evaluates the specimens fully automatically. A large-scale double-blind verification of the system showed an excellent agreement of manual and automated analysis and proved the system to work dependably. Furthermore, in a series of bombardment experiments an RNAi construct targeting the Mlo gene was included, which is expected to phenocopy resistance mediated by recessive loss-of-function alleles such as mlo5. In most cases, the automated analysis system recorded a shift towards resistance upon RNAi of Mlo, thus providing proof of concept for its usefulness in detecting gene-target effects. Besides saving labor and enabling a screening of thousands of candidate genes, this system offers continuous operation of expensive laboratory equipment and provides a less subjective analysis as well as a complete and enduring documentation of the experimental raw data in terms of digital images. In general, it proves the concept of enabling available microscope hardware to handle challenging screening tasks fully automatically.
Automatic external filling for the ion source gas bottle of a Van de Graaff accelerator
NASA Astrophysics Data System (ADS)
Strivay, D.; Bastin, T.; Dehove, C.; Dumont, P. D.; Marchal, A.; Garnir, H.; Weber, G.
1997-09-01
We describe a fully automatic system we developed to fill, from an external gas bottle, the ion source terminal gas storage bottle of a 2 MV Van de Graaff accelerator without depressing the 25 bar insulating gas. The system is based on a programmable automate ordering electropneumatical valves. The only manual operation is the connection of the external gas cylinder. The time needed for a gas change is reduced to typically 15 min (depending on the residual pressure wished for the gas removed from the terminal bottle). To check this system we study the ionic composition of the ion beam delivered by our accelerator after different gas changes. The switching magnet of our accelerator was used to analyse the ionic composition of the accelerated beams in order to verify the degree of elimination of the previous gases in the system.
Popular song and lyrics synchronization and its application to music information retrieval
NASA Astrophysics Data System (ADS)
Chen, Kai; Gao, Sheng; Zhu, Yongwei; Sun, Qibin
2006-01-01
An automatic synchronization system of the popular song and its lyrics is presented in the paper. The system includes two main components: a) automatically detecting vocal/non-vocal in the audio signal and b) automatically aligning the acoustic signal of the song with its lyric using speech recognition techniques and positioning the boundaries of the lyrics in its acoustic realization at the multiple levels simultaneously (e.g. the word / syllable level and phrase level). The GMM models and a set of HMM-based acoustic model units are carefully designed and trained for the detection and alignment. To eliminate the severe mismatch due to the diversity of musical signal and sparse training data available, the unsupervised adaptation technique such as maximum likelihood linear regression (MLLR) is exploited for tailoring the models to the real environment, which improves robustness of the synchronization system. To further reduce the effect of the missed non-vocal music on alignment, a novel grammar net is build to direct the alignment. As we know, this is the first automatic synchronization system only based on the low-level acoustic feature such as MFCC. We evaluate the system on a Chinese song dataset collecting from 3 popular singers. We obtain 76.1% for the boundary accuracy at the syllable level (BAS) and 81.5% for the boundary accuracy at the phrase level (BAP) using fully automatic vocal/non-vocal detection and alignment. The synchronization system has many applications such as multi-modality (audio and textual) content-based popular song browsing and retrieval. Through the study, we would like to open up the discussion of some challenging problems when developing a robust synchronization system for largescale database.
NASA Astrophysics Data System (ADS)
Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry
2015-11-01
In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.
Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry
2015-11-21
In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.
NASA Astrophysics Data System (ADS)
Morais, Pedro; Queirós, Sandro; Heyde, Brecht; Engvall, Jan; 'hooge, Jan D.; Vilaça, João L.
2017-09-01
Cardiovascular diseases are among the leading causes of death and frequently result in local myocardial dysfunction. Among the numerous imaging modalities available to detect these dysfunctional regions, cardiac deformation imaging through tagged magnetic resonance imaging (t-MRI) has been an attractive approach. Nevertheless, fully automatic analysis of these data sets is still challenging. In this work, we present a fully automatic framework to estimate left ventricular myocardial deformation from t-MRI. This strategy performs automatic myocardial segmentation based on B-spline explicit active surfaces, which are initialized using an annular model. A non-rigid image-registration technique is then used to assess myocardial deformation. Three experiments were set up to validate the proposed framework using a clinical database of 75 patients. First, automatic segmentation accuracy was evaluated by comparing against manual delineations at one specific cardiac phase. The proposed solution showed an average perpendicular distance error of 2.35 ± 1.21 mm and 2.27 ± 1.02 mm for the endo- and epicardium, respectively. Second, starting from either manual or automatic segmentation, myocardial tracking was performed and the resulting strain curves were compared. It is shown that the automatic segmentation adds negligible differences during the strain-estimation stage, corroborating its accuracy. Finally, segmental strain was compared with scar tissue extent determined by delay-enhanced MRI. The results proved that both strain components were able to distinguish between normal and infarct regions. Overall, the proposed framework was shown to be accurate, robust, and attractive for clinical practice, as it overcomes several limitations of a manual analysis.
Infrared-enhanced TV for fire detection
NASA Technical Reports Server (NTRS)
Hall, J. R.
1978-01-01
Closed-circuit television is superior to conventional smoke or heat sensors for detecting fires in large open spaces. Single TV camera scans entire area, whereas many conventional sensors and maze of interconnecting wiring might be required to get same coverage. Camera is monitored by person who would trip alarm if fire were detected, or electronic circuitry could process camera signal for fully-automatic alarm system.
ERIC Educational Resources Information Center
Alfonseca, Enrique; Rodriguez, Pilar; Perez, Diana
2007-01-01
This work describes a framework that combines techniques from Adaptive Hypermedia and Natural Language processing in order to create, in a fully automated way, on-line information systems from linear texts in electronic format, such as textbooks. The process is divided into two steps: an "off-line" processing step, which analyses the source text,…
3D image processing architecture for camera phones
NASA Astrophysics Data System (ADS)
Atanassov, Kalin; Ramachandra, Vikas; Goma, Sergio R.; Aleksic, Milivoje
2011-03-01
Putting high quality and easy-to-use 3D technology into the hands of regular consumers has become a recent challenge as interest in 3D technology has grown. Making 3D technology appealing to the average user requires that it be made fully automatic and foolproof. Designing a fully automatic 3D capture and display system requires: 1) identifying critical 3D technology issues like camera positioning, disparity control rationale, and screen geometry dependency, 2) designing methodology to automatically control them. Implementing 3D capture functionality on phone cameras necessitates designing algorithms to fit within the processing capabilities of the device. Various constraints like sensor position tolerances, sensor 3A tolerances, post-processing, 3D video resolution and frame rate should be carefully considered for their influence on 3D experience. Issues with migrating functions such as zoom and pan from the 2D usage model (both during capture and display) to 3D needs to be resolved to insure the highest level of user experience. It is also very important that the 3D usage scenario (including interactions between the user and the capture/display device) is carefully considered. Finally, both the processing power of the device and the practicality of the scheme needs to be taken into account while designing the calibration and processing methodology.
NASA Technical Reports Server (NTRS)
Stein, J. A.
1974-01-01
Fully-automatic tube-joint soldering machine can be used to make leakproof joints in aluminum tubes of 3/16 to 2 in. in diameter. Machine consists of temperature-control unit, heater transformer and heater head, vibrator, and associated circuitry controls, and indicators.
Surface smoothness: cartilage biomarkers for knee OA beyond the radiologist
NASA Astrophysics Data System (ADS)
Tummala, Sudhakar; Dam, Erik B.
2010-03-01
Fully automatic imaging biomarkers may allow quantification of patho-physiological processes that a radiologist would not be able to assess reliably. This can introduce new insight but is problematic to validate due to lack of meaningful ground truth expert measurements. Rather than quantification accuracy, such novel markers must therefore be validated against clinically meaningful end-goals such as the ability to allow correct diagnosis. We present a method for automatic cartilage surface smoothness quantification in the knee joint. The quantification is based on a curvature flow method used on tibial and femoral cartilage compartments resulting from an automatic segmentation scheme. These smoothness estimates are validated for their ability to diagnose osteoarthritis and compared to smoothness estimates based on manual expert segmentations and to conventional cartilage volume quantification. We demonstrate that the fully automatic markers eliminate the time required for radiologist annotations, and in addition provide a diagnostic marker superior to the evaluated semi-manual markers.
An artificial intelligence approach to classify and analyse EEG traces.
Castellaro, C; Favaro, G; Castellaro, A; Casagrande, A; Castellaro, S; Puthenparampil, D V; Salimbeni, C Fattorello
2002-06-01
We present a fully automatic system for the classification and analysis of adult electroencephalograms (EEGs). The system is based on an artificial neural network which classifies the single epochs of trace, and on an Expert System (ES) which studies the time and space correlation among the outputs of the neural network; compiling a final report. On the last 2000 EEGs representing different kinds of alterations according to clinical occurrences, the system was able to produce 80% good or very good final comments and 18% sufficient comments, which represent the documents delivered to the patient. In the remaining 2% the automatic comment needed some modifications prior to be presented to the patient. No clinical false-negative classifications did arise, i.e. no altered traces were classified as 'normal' by the neural network. The analysis method we describe is based on the interpretation of objective measures performed on the trace. It can improve the quality and reliability of the EEG exam and appears useful for the EEG medical reports although it cannot totally substitute the medical doctor who should now read the automatic EEG analysis in light of the patient's history and age.
Carneiro, Gustavo; Georgescu, Bogdan; Good, Sara; Comaniciu, Dorin
2008-09-01
We propose a novel method for the automatic detection and measurement of fetal anatomical structures in ultrasound images. This problem offers a myriad of challenges, including: difficulty of modeling the appearance variations of the visual object of interest, robustness to speckle noise and signal dropout, and large search space of the detection procedure. Previous solutions typically rely on the explicit encoding of prior knowledge and formulation of the problem as a perceptual grouping task solved through clustering or variational approaches. These methods are constrained by the validity of the underlying assumptions and usually are not enough to capture the complex appearances of fetal anatomies. We propose a novel system for fast automatic detection and measurement of fetal anatomies that directly exploits a large database of expert annotated fetal anatomical structures in ultrasound images. Our method learns automatically to distinguish between the appearance of the object of interest and background by training a constrained probabilistic boosting tree classifier. This system is able to produce the automatic segmentation of several fetal anatomies using the same basic detection algorithm. We show results on fully automatic measurement of biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), femur length (FL), humerus length (HL), and crown rump length (CRL). Notice that our approach is the first in the literature to deal with the HL and CRL measurements. Extensive experiments (with clinical validation) show that our system is, on average, close to the accuracy of experts in terms of segmentation and obstetric measurements. Finally, this system runs under half second on a standard dual-core PC computer.
Automatic short axis orientation of the left ventricle in 3D ultrasound recordings
NASA Astrophysics Data System (ADS)
Pedrosa, João.; Heyde, Brecht; Heeren, Laurens; Engvall, Jan; Zamorano, Jose; Papachristidis, Alexandros; Edvardsen, Thor; Claus, Piet; D'hooge, Jan
2016-04-01
The recent advent of three-dimensional echocardiography has led to an increased interest from the scientific community in left ventricle segmentation frameworks for cardiac volume and function assessment. An automatic orientation of the segmented left ventricular mesh is an important step to obtain a point-to-point correspondence between the mesh and the cardiac anatomy. Furthermore, this would allow for an automatic division of the left ventricle into the standard 17 segments and, thus, fully automatic per-segment analysis, e.g. regional strain assessment. In this work, a method for fully automatic short axis orientation of the segmented left ventricle is presented. The proposed framework aims at detecting the inferior right ventricular insertion point. 211 three-dimensional echocardiographic images were used to validate this framework by comparison to manual annotation of the inferior right ventricular insertion point. A mean unsigned error of 8, 05° +/- 18, 50° was found, whereas the mean signed error was 1, 09°. Large deviations between the manual and automatic annotations (> 30°) only occurred in 3, 79% of cases. The average computation time was 666ms in a non-optimized MATLAB environment, which potentiates real-time application. In conclusion, a successful automatic real-time method for orientation of the segmented left ventricle is proposed.
Jacobs, J A; Siegford, J M
2012-05-01
Over the last 100 yr, the dairy industry has incorporated technology to maximize yield and profit. Pressure to maximize efficiency and lower inputs has resulted in novel approaches to managing and milking dairy herds, including implementation of automatic milking systems (AMS) to reduce labor associated with milking. Although AMS have been used for almost 20 yr in Europe, they have only recently become more popular in North America. Automatic milking systems have the potential to increase milk production by up to 12%, decrease labor by as much as 18%, and simultaneously improve dairy cow welfare by allowing cows to choose when to be milked. However, producers using AMS may not fully realize these anticipated benefits for a variety of reasons. For example, producers may not see a reduction in labor because some cows do not milk voluntarily or because they have not fully or efficiently incorporated the AMS into their management routines. Following the introduction of AMS on the market in the 1990s, research has been conducted examining AMS systems versus conventional parlors focusing primarily on cow health, milk yield, and milk quality, as well as on some of the economic and social factors related to AMS adoption. Additionally, because AMS rely on cows milking themselves voluntarily, research has also been conducted on the behavior of cows in AMS facilities, with particular attention paid to cow traffic around AMS, cow use of AMS, and cows' motivation to enter the milking stall. However, the sometimes contradictory findings resulting from different studies on the same aspect of AMS suggest that differences in management and farm-level variables may be more important to AMS efficiency and milk production than features of the milking system itself. Furthermore, some of the recommendations that have been made regarding AMS facility design and management should be scientifically tested to demonstrate their validity, as not all may work as intended. As updated AMS designs, such as the automatic rotary milking parlor, continue to be introduced to the dairy industry, research must continue to be conducted on AMS to understand the causes and consequences of differences between milking systems as well as the impacts of the different facilities and management systems that surround them on dairy cow behavior, health, and welfare. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Automatic recognition of falls in gait-slip training: Harness load cell based criteria.
Yang, Feng; Pai, Yi-Chung
2011-08-11
Over-head-harness systems, equipped with load cell sensors, are essential to the participants' safety and to the outcome assessment in perturbation training. The purpose of this study was to first develop an automatic outcome recognition criterion among young adults for gait-slip training and then verify such criterion among older adults. Each of 39 young and 71 older subjects, all protected by safety harness, experienced 8 unannounced, repeated slips, while walking on a 7m walkway. Each trial was monitored with a motion capture system, bilateral ground reaction force (GRF), harness force, and video recording. The fall trials were first unambiguously indentified with careful visual inspection of all video records. The recoveries without balance loss (in which subjects' trailing foot landed anteriorly to the slipping foot) were also first fully recognized from motion and GRF analyses. These analyses then set the gold standard for the outcome recognition with load cell measurements. Logistic regression analyses based on young subjects' data revealed that the peak load cell force was the best predictor of falls (with 100% accuracy) at the threshold of 30% body weight. On the other hand, the peak moving average force of load cell across 1s period, was the best predictor (with 100% accuracy) separating recoveries with backward balance loss (in which the recovery step landed posterior to slipping foot) from harness assistance at the threshold of 4.5% body weight. These threshold values were fully verified using the data from older adults (100% accuracy in recognizing falls). Because of the increasing popularity in the perturbation training coupling with the protective over-head-harness system, this new criterion could have far reaching implications in automatic outcome recognition during the movement therapy. Copyright © 2011 Elsevier Ltd. All rights reserved.
AUTOMATIC RECOGNITION OF FALLS IN GAIT-SLIP: A HARNESS LOAD CELL BASED CRITERION
Yang, Feng; Pai, Yi-Chung
2012-01-01
Over-head-harness systems, equipped with load cell sensors, are essential to the participants’ safety and to the outcome assessment in perturbation training. The purpose of this study was to first develop an automatic outcome recognition criterion among young adults for gait-slip training and then verify such criterion among older adults. Each of 39 young and 71 older subjects, all protected by safety harness, experienced 8 unannounced, repeated slips, while walking on a 7-m walkway. Each trial was monitored with a motion capture system, bilateral ground reaction force (GRF), harness force and video recording. The fall trials were first unambiguously indentified with careful visual inspection of all video records. The recoveries without balance loss (in which subjects’ trailing foot landed anteriorly to the slipping foot) were also first fully recognized from motion and GRF analyses. These analyses then set the gold standard for the outcome recognition with load cell measurements. Logistic regression analyses based on young subjects’ data revealed that peak load cell force was the best predictor of falls (with 100% accuracy) at the threshold of 30% body weight. On the other hand, the peak moving average force of load cell across 1-s period, was the best predictor (with 100% accuracy) separating recoveries with backward balance loss (in which the recovery step landed posterior to slipping foot) from harness assistance at the threshold of 4.5% body weight. These threshold values were fully verified using the data from older adults (100% accuracy in recognizing falls). Because of the increasing popularity in the perturbation training coupling with the protective over-head-harness system, this new criterion could have far reaching implications in automatic outcome recognition during the movement therapy. PMID:21696744
NASA Technical Reports Server (NTRS)
Probst, D.; Jensen, L.
1991-01-01
Delay-insensitive VLSI systems have a certain appeal on the ground due to difficulties with clocks; they are even more attractive in space. We answer the question, is it possible to control state explosion arising from various sources during automatic verification (model checking) of delay-insensitive systems? State explosion due to concurrency is handled by introducing a partial-order representation for systems, and defining system correctness as a simple relation between two partial orders on the same set of system events (a graph problem). State explosion due to nondeterminism (chiefly arbitration) is handled when the system to be verified has a clean, finite recurrence structure. Backwards branching is a further optimization. The heart of this approach is the ability, during model checking, to discover a compact finite presentation of the verified system without prior composition of system components. The fully-implemented POM verification system has polynomial space and time performance on traditional asynchronous-circuit benchmarks that are exponential in space and time for other verification systems. We also sketch the generalization of this approach to handle delay-constrained VLSI systems.
NASA Astrophysics Data System (ADS)
Rücker, Andrea; Boss, Stefan; Von Freyberg, Jana; Zappa, Massimiliano; Kirchner, James
2016-04-01
In many mountainous catchments the seasonal snowpack stores a significant volume of water, which is released as streamflow during the melting period. The predicted change in future climate will bring new challenges in water resource management in snow-dominated headwater catchments and their receiving lowlands. To improve predictions of hydrologic extreme events, particularly summer droughts, it is important characterize the relationship between winter snowpack and summer (low) flows in such areas (e.g., Godsey et al., 2014). In this context, stable water isotopes (18O, 2H) are a powerful tool for fingerprinting the sources of streamflow and tracing water flow pathways. For this reason, we have established an isotope sampling network in the Alptal catchment (46.4 km2) in Central-Switzerland as part of the SREP-Drought project (Snow Resources and the Early Prediction of hydrological DROUGHT in mountainous streams). Samples of precipitation (daily), snow cores (weekly) and runoff (daily) are analyzed for their isotopic signature in a regular cycle. Precipitation is also sampled along a horizontal transect at the valley bottom, and along an elevational transect. Additionally, the analysis of snow meltwater is of importance. As the sample collection of snow meltwater in mountainous terrain is often impractical, we have developed a fully automatic snow lysimeter system, which measures meltwater volume and collects samples for isotope analysis at daily intervals. The system consists of three lysimeters built from Decagon-ECRN-100 High Resolution Rain Gauges as standard component that allows monitoring of meltwater flow. Each lysimeter leads the meltwater into a 10-liter container that is automatically sampled and then emptied daily. These water samples are replaced regularly and analyzed afterwards on their isotopic composition in the lab. Snow melt events as well as system status can be monitored in real time. In our presentation we describe the automatic snow lysimeter system and present initial results from field tests in winter 2015/2016 under natural conditions at an experimental field site. Fully functional deployment in a forested and an open field location in the Erlenbach subcatchment (0.7 km2) is envisaged for winter 2016/2017. Godsey, S.E.,* J.W. Kirchner and C.L. Tague, Effects of changes in winter snowpacks on summer low flows: case studies in the Sierra Nevada, California, USA, Hydrological Processes, 28, 5048-5064, doi: 10.1002/hyp.9943, 2014.
Programmable Positioner For Spot Welding
NASA Technical Reports Server (NTRS)
Roden, William A.
1989-01-01
Welding station mechanized by installing preset indexing system and gear drive. Mechanism includes a low-cost, versatile, single-axis motion control and motor drive to provide fully-automatic weld sequencing and spot-to-spot spacing. Welding station relieves operator of some difficult, tedious tasks and increases both productivity and quality of welds. Results in welds of higher quality and greater accuracy, fewer weld defects, and faster welding operation.
Yang, Zhen; Bogovic, John A; Carass, Aaron; Ye, Mao; Searson, Peter C; Prince, Jerry L
2013-03-13
With the rapid development of microscopy for cell imaging, there is a strong and growing demand for image analysis software to quantitatively study cell morphology. Automatic cell segmentation is an important step in image analysis. Despite substantial progress, there is still a need to improve the accuracy, efficiency, and adaptability to different cell morphologies. In this paper, we propose a fully automatic method for segmenting cells in fluorescence images of confluent cell monolayers. This method addresses several challenges through a combination of ideas. 1) It realizes a fully automatic segmentation process by first detecting the cell nuclei as initial seeds and then using a multi-object geometric deformable model (MGDM) for final segmentation. 2) To deal with different defects in the fluorescence images, the cell junctions are enhanced by applying an order-statistic filter and principal curvature based image operator. 3) The final segmentation using MGDM promotes robust and accurate segmentation results, and guarantees no overlaps and gaps between neighboring cells. The automatic segmentation results are compared with manually delineated cells, and the average Dice coefficient over all distinguishable cells is 0.88.
Automatic recloser circuit breaker integrated with GSM technology for power system notification
NASA Astrophysics Data System (ADS)
Lada, M. Y.; Khiar, M. S. A.; Ghani, S. A.; Nawawi, M. R. M.; Rahim, N. H.; Sinar, L. O. M.
2015-05-01
Lightning is one type of transient faults that usually cause the circuit breaker in the distribution board trip due to overload current detection. The instant tripping condition in the circuit breakers clears the fault in the system. Unfortunately most circuit breakers system is manually operated. The power line will be effectively re-energized after the clearing fault process is finished. Auto-reclose circuit is used on the transmission line to carry out the duty of supplying quality electrical power to customers. In this project, an automatic reclose circuit breaker for low voltage usage is designed. The product description is the Auto Reclose Circuit Breaker (ARCB) will trip if the current sensor detects high current which exceeds the rated current for the miniature circuit breaker (MCB) used. Then the fault condition will be cleared automatically and return the power line to normal condition. The Global System for Mobile Communication (GSM) system will send SMS to the person in charge if the tripping occurs. If the over current occurs in three times, the system will fully trip (open circuit) and at the same time will send an SMS to the person in charge. In this project a 1 A is set as the rated current and any current exceeding a 1 A will cause the system to trip or interrupted. This system also provides an additional notification for user such as the emergency light and warning system.
Detection of buried magnetic objects by a SQUID gradiometer system
NASA Astrophysics Data System (ADS)
Meyer, Hans-Georg; Hartung, Konrad; Linzen, Sven; Schneider, Michael; Stolz, Ronny; Fried, Wolfgang; Hauspurg, Sebastian
2009-05-01
We present a magnetic detection system based on superconducting gradiometric sensors (SQUID gradiometers). The system provides a unique fast mapping of large areas with a high resolution of the magnetic field gradient as well as the local position. A main part of this work is the localization and classification of magnetic objects in the ground by automatic interpretation of geomagnetic field gradients, measured by the SQUID system. In accordance with specific features the field is decomposed into segments, which allow inferences to possible objects in the ground. The global consideration of object describing properties and their optimization using error minimization methods allows the reconstruction of superimposed features and detection of buried objects. The analysis system of measured geomagnetic fields works fully automatically. By a given surface of area-measured gradients the algorithm determines within numerical limits the absolute position of objects including depth with sub-pixel accuracy and allows an arbitrary position and attitude of sources. Several SQUID gradiometer data sets were used to show the applicability of the analysis algorithm.
Comprehensive eye evaluation algorithm
NASA Astrophysics Data System (ADS)
Agurto, C.; Nemeth, S.; Zamora, G.; Vahtel, M.; Soliz, P.; Barriga, S.
2016-03-01
In recent years, several research groups have developed automatic algorithms to detect diabetic retinopathy (DR) in individuals with diabetes (DM), using digital retinal images. Studies have indicated that diabetics have 1.5 times the annual risk of developing primary open angle glaucoma (POAG) as do people without DM. Moreover, DM patients have 1.8 times the risk for age-related macular degeneration (AMD). Although numerous investigators are developing automatic DR detection algorithms, there have been few successful efforts to create an automatic algorithm that can detect other ocular diseases, such as POAG and AMD. Consequently, our aim in the current study was to develop a comprehensive eye evaluation algorithm that not only detects DR in retinal images, but also automatically identifies glaucoma suspects and AMD by integrating other personal medical information with the retinal features. The proposed system is fully automatic and provides the likelihood of each of the three eye disease. The system was evaluated in two datasets of 104 and 88 diabetic cases. For each eye, we used two non-mydriatic digital color fundus photographs (macula and optic disc centered) and, when available, information about age, duration of diabetes, cataracts, hypertension, gender, and laboratory data. Our results show that the combination of multimodal features can increase the AUC by up to 5%, 7%, and 8% in the detection of AMD, DR, and glaucoma respectively. Marked improvement was achieved when laboratory results were combined with retinal image features.
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Richards, T. R.
1977-01-01
The ERDA/NASA 100 kW Mod-0 wind turbine is operating at the NASA Plum Brook Station near Sandusky, Ohio. The operation of the wind turbine has been fully demonstrated and includes start-up, synchronization to the utility network, blade pitch control for control of power and speed, and shut-down. Also, fully automatic operation has been demonstrated by use of a remote control panel, 50 miles from the site, similar to what a utility dispatcher might use. The operation systems and experience with the wind turbine loads, electrical power and aerodynamic performance obtained from testing are described.
[Progress in the development of insulin pumps and their advanced automatic functions].
Prázný, Martin
2015-04-01
Patients with type 1 diabetes are exposed to permanent burden consisting of careful glucose self-monitoring and precise insulin dosage based on measured glucose values, carbohydrates content in the food and both planned and non-planned physical activity. Erroneous insulin dosing causes frequent both hypoglycemia and hyperglycemia. Hypoglycemia is, however, the most clinically significant complication limiting the optimal diabetes control. Automatic features for insulin dosage integrated in insulin pumps are thus very important. Low glucose suspend (LGS) and Predictive Low Glucose Management (PLGM) use glucose sensor values to prevent hypoglycemia, shorten the time spent in hypoglycemic range and present further step forward to fully closed-loop system of insulin treatment.
Automated feature detection and identification in digital point-ordered signals
Oppenlander, Jane E.; Loomis, Kent C.; Brudnoy, David M.; Levy, Arthur J.
1998-01-01
A computer-based automated method to detect and identify features in digital point-ordered signals. The method is used for processing of non-destructive test signals, such as eddy current signals obtained from calibration standards. The signals are first automatically processed to remove noise and to determine a baseline. Next, features are detected in the signals using mathematical morphology filters. Finally, verification of the features is made using an expert system of pattern recognition methods and geometric criteria. The method has the advantage that standard features can be, located without prior knowledge of the number or sequence of the features. Further advantages are that standard features can be differentiated from irrelevant signal features such as noise, and detected features are automatically verified by parameters extracted from the signals. The method proceeds fully automatically without initial operator set-up and without subjective operator feature judgement.
Optimization and automation of quantitative NMR data extraction.
Bernstein, Michael A; Sýkora, Stan; Peng, Chen; Barba, Agustín; Cobas, Carlos
2013-06-18
NMR is routinely used to quantitate chemical species. The necessary experimental procedures to acquire quantitative data are well-known, but relatively little attention has been applied to data processing and analysis. We describe here a robust expert system that can be used to automatically choose the best signals in a sample for overall concentration determination and determine analyte concentration using all accepted methods. The algorithm is based on the complete deconvolution of the spectrum which makes it tolerant of cases where signals are very close to one another and includes robust methods for the automatic classification of NMR resonances and molecule-to-spectrum multiplets assignments. With the functionality in place and optimized, it is then a relatively simple matter to apply the same workflow to data in a fully automatic way. The procedure is desirable for both its inherent performance and applicability to NMR data acquired for very large sample sets.
A two-dimensional air-to-air combat game - Toward an air-combat advisory system
NASA Technical Reports Server (NTRS)
Neuman, Frank
1987-01-01
Air-to-air combat is modeled as a discrete differential game, and by constraining the game to searching for the best guidance laws from the sets of those considered for each opponent, feedback and outcome charts are obtained which can be used to turn one of the automatic opponents into an intelligent opponent against a human pilot. A one-on-one two-dimensional fully automatic, or manned versus automatic, air-to-air combat game has been designed which includes both attack and evasion alternatives for both aircraft. Guidance law selection occurs by flooding the initial-condition space with four simulated fights for each initial condition, depicting the various attack/evasion strategies for the two opponents, and recording the outcomes. For each initial condition, the minimax method from differential games is employed to determine the best choice from the available strategies.
PRESBYOPIA OPTOMETRY METHOD BASED ON DIOPTER REGULATION AND CHARGE COUPLE DEVICE IMAGING TECHNOLOGY.
Zhao, Q; Wu, X X; Zhou, J; Wang, X; Liu, R F; Gao, J
2015-01-01
With the development of photoelectric technology and single-chip microcomputer technology, objective optometry, also known as automatic optometry, is becoming precise. This paper proposed a presbyopia optometry method based on diopter regulation and Charge Couple Device (CCD) imaging technology and, in the meantime, designed a light path that could measure the system. This method projects a test figure to the eye ground and then the reflected image from the eye ground is detected by CCD. The image is then automatically identified by computer and the far point and near point diopters are determined to calculate lens parameter. This is a fully automatic objective optometry method which eliminates subjective factors of the tested subject. Furthermore, it can acquire the lens parameter of presbyopia accurately and quickly and can be used to measure the lens parameter of hyperopia, myopia and astigmatism.
López-Linares, Karen; Aranjuelo, Nerea; Kabongo, Luis; Maclair, Gregory; Lete, Nerea; Ceresa, Mario; García-Familiar, Ainhoa; Macía, Iván; González Ballester, Miguel A
2018-05-01
Computerized Tomography Angiography (CTA) based follow-up of Abdominal Aortic Aneurysms (AAA) treated with Endovascular Aneurysm Repair (EVAR) is essential to evaluate the progress of the patient and detect complications. In this context, accurate quantification of post-operative thrombus volume is required. However, a proper evaluation is hindered by the lack of automatic, robust and reproducible thrombus segmentation algorithms. We propose a new fully automatic approach based on Deep Convolutional Neural Networks (DCNN) for robust and reproducible thrombus region of interest detection and subsequent fine thrombus segmentation. The DetecNet detection network is adapted to perform region of interest extraction from a complete CTA and a new segmentation network architecture, based on Fully Convolutional Networks and a Holistically-Nested Edge Detection Network, is presented. These networks are trained, validated and tested in 13 post-operative CTA volumes of different patients using a 4-fold cross-validation approach to provide more robustness to the results. Our pipeline achieves a Dice score of more than 82% for post-operative thrombus segmentation and provides a mean relative volume difference between ground truth and automatic segmentation that lays within the experienced human observer variance without the need of human intervention in most common cases. Copyright © 2018 Elsevier B.V. All rights reserved.
Oost, Elco; Koning, Gerhard; Sonka, Milan; Oemrawsingh, Pranobe V; Reiber, Johan H C; Lelieveldt, Boudewijn P F
2006-09-01
This paper describes a new approach to the automated segmentation of X-ray left ventricular (LV) angiograms, based on active appearance models (AAMs) and dynamic programming. A coupling of shape and texture information between the end-diastolic (ED) and end-systolic (ES) frame was achieved by constructing a multiview AAM. Over-constraining of the model was compensated for by employing dynamic programming, integrating both intensity and motion features in the cost function. Two applications are compared: a semi-automatic method with manual model initialization, and a fully automatic algorithm. The first proved to be highly robust and accurate, demonstrating high clinical relevance. Based on experiments involving 70 patient data sets, the algorithm's success rate was 100% for ED and 99% for ES, with average unsigned border positioning errors of 0.68 mm for ED and 1.45 mm for ES. Calculated volumes were accurate and unbiased. The fully automatic algorithm, with intrinsically less user interaction was less robust, but showed a high potential, mostly due to a controlled gradient descent in updating the model parameters. The success rate of the fully automatic method was 91% for ED and 83% for ES, with average unsigned border positioning errors of 0.79 mm for ED and 1.55 mm for ES.
NASA Astrophysics Data System (ADS)
Aarons, J.; Grossi, M. D.
1982-08-01
To develop and operate an adaptive system, propagation factors of the ionospheric medium must be given to the designer. The operation of the system must change as a function of multipath spread, Doppler spread, path losses, channel correlation functions, etc. In addition, NATO mid-latitude HF transmission and transauroral paths require varying system operation, which must fully utilize automatic path diversity across transauroral paths. Current research and literature are reviewed to estimate the extent of the available technical information. Additional investigations to allow designers to orient new systems on realistic models of these parameters are suggested.
Fully automatic algorithm for segmenting full human diaphragm in non-contrast CT Images
NASA Astrophysics Data System (ADS)
Karami, Elham; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas
2015-03-01
The diaphragm is a sheet of muscle which separates the thorax from the abdomen and it acts as the most important muscle of the respiratory system. As such, an accurate segmentation of the diaphragm, not only provides key information for functional analysis of the respiratory system, but also can be used for locating other abdominal organs such as the liver. However, diaphragm segmentation is extremely challenging in non-contrast CT images due to the diaphragm's similar appearance to other abdominal organs. In this paper, we present a fully automatic algorithm for diaphragm segmentation in non-contrast CT images. The method is mainly based on a priori knowledge about the human diaphragm anatomy. The diaphragm domes are in contact with the lungs and the heart while its circumference runs along the lumbar vertebrae of the spine as well as the inferior border of the ribs and sternum. As such, the diaphragm can be delineated by segmentation of these organs followed by connecting relevant parts of their outline properly. More specifically, the bottom surface of the lungs and heart, the spine borders and the ribs are delineated, leading to a set of scattered points which represent the diaphragm's geometry. Next, a B-spline filter is used to find the smoothest surface which pass through these points. This algorithm was tested on a noncontrast CT image of a lung cancer patient. The results indicate that there is an average Hausdorff distance of 2.96 mm between the automatic and manually segmented diaphragms which implies a favourable accuracy.
Long-term quality assurance of [(18)F]-fluorodeoxyglucose (FDG) manufacturing.
Gaspar, Ludovit; Reich, Michal; Kassai, Zoltan; Macasek, Fedor; Rodrigo, Luis; Kruzliak, Peter; Kovac, Peter
2016-01-01
Nine years of experience with 2286 commercial synthesis allowed us to deliver comprehensive information on the quality of (18)F-FDG production. Semi-automated FDG production line using Cyclone 18/9 machine (IBA Belgium), TRACERLab MXFDG synthesiser (GE Health, USA) using alkalic hydrolysis, grade "A" isolator with dispensing robotic unit (Tema Sinergie, Italy), and automatic control system under GAMP5 (minus2, Slovakia) was assessed by TQM tools as highly reliable aseptic production line, fully compliant with Good Manufacturing Practice and just-in-time delivery of FDG radiopharmaceutical. Fluoride-18 is received in steady yield and of very high radioactive purity. Synthesis yields exhibited high variance connected probably with quality of disposable cassettes and chemicals sets. Most performance non-conformities within the manufacturing cycle occur at mechanical nodes of dispensing unit. The long-term monitoring of 2286 commercial synthesis indicated high reliability of automatic synthesizers. Shewhart chart and ANOVA analysis showed that minor non-compliances occurred were mostly caused by the declinations of less experienced staff from standard operation procedures, and also by quality of automatic cassettes. Only 15 syntheses were found unfinished and in 4 cases the product was out-of-specification of European Pharmacopoeia. Most vulnerable step of manufacturing was dispensing and filling in grade "A" isolator. Its cleanliness and sterility was fully controlled under the investigated period by applying hydrogen peroxide vapours (VHP). Our experience with quality assurance in the production of [(18)F]-fluorodeoxyglucose (FDG) at production facility of BIONT based on TRACERlab MXFDG production module can be used for bench-marking of the emerging manufacturing and automated manufacturing systems.
Long-term quality assurance of [18F]-fluorodeoxyglucose (FDG) manufacturing
Gaspar, Ludovit; Reich, Michal; Kassai, Zoltan; Macasek, Fedor; Rodrigo, Luis; Kruzliak, Peter; Kovac, Peter
2016-01-01
Nine years of experience with 2286 commercial synthesis allowed us to deliver comprehensive information on the quality of 18F-FDG production. Semi-automated FDG production line using Cyclone 18/9 machine (IBA Belgium), TRACERLab MXFDG synthesiser (GE Health, USA) using alkalic hydrolysis, grade “A” isolator with dispensing robotic unit (Tema Sinergie, Italy), and automatic control system under GAMP5 (minus2, Slovakia) was assessed by TQM tools as highly reliable aseptic production line, fully compliant with Good Manufacturing Practice and just-in-time delivery of FDG radiopharmaceutical. Fluoride-18 is received in steady yield and of very high radioactive purity. Synthesis yields exhibited high variance connected probably with quality of disposable cassettes and chemicals sets. Most performance non-conformities within the manufacturing cycle occur at mechanical nodes of dispensing unit. The long-term monitoring of 2286 commercial synthesis indicated high reliability of automatic synthesizers. Shewhart chart and ANOVA analysis showed that minor non-compliances occurred were mostly caused by the declinations of less experienced staff from standard operation procedures, and also by quality of automatic cassettes. Only 15 syntheses were found unfinished and in 4 cases the product was out-of-specification of European Pharmacopoeia. Most vulnerable step of manufacturing was dispensing and filling in grade “A” isolator. Its cleanliness and sterility was fully controlled under the investigated period by applying hydrogen peroxide vapours (VHP). Our experience with quality assurance in the production of [18F]-fluorodeoxyglucose (FDG) at production facility of BIONT based on TRACERlab MXFDG production module can be used for bench-marking of the emerging manufacturing and automated manufacturing systems. PMID:27508102
Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil
1982-01-01
An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.
Automation of surface observations program
NASA Technical Reports Server (NTRS)
Short, Steve E.
1988-01-01
At present, surface weather observing methods are still largely manual and labor intensive. Through the nationwide implementation of Automated Surface Observing Systems (ASOS), this situation can be improved. Two ASOS capability levels are planned. The first is a basic-level system which will automatically observe the weather parameters essential for aviation operations and will operate either with or without supplemental contributions by an observer. The second is a more fully automated, stand-alone system which will observe and report the full range of weather parameters and will operate primarily in the unattended mode. Approximately 250 systems are planned by the end of the decade. When deployed, these systems will generate the standard hourly and special long-line transmitted weather observations, as well as provide continuous weather information direct to airport users. Specific ASOS configurations will vary depending upon whether the operation is unattended, minimally attended, or fully attended. The major functions of ASOS are data collection, data processing, product distribution, and system control. The program phases of development, demonstration, production system acquisition, and operational implementation are described.
Automatic neutron dosimetry system based on fluorescent nuclear track detector technology.
Akselrod, M S; Fomenko, V V; Bartz, J A; Haslett, T L
2014-10-01
For the first time, the authors are describing an automatic fluorescent nuclear track detector (FNTD) reader for neutron dosimetry. FNTD is a luminescent integrating type of detector made of aluminium oxide crystals that does not require electronics or batteries during irradiation. Non-destructive optical readout of the detector is performed using a confocal laser scanning fluorescence imaging with near-diffraction limited resolution. The fully automatic table-top reader allows one to load up to 216 detectors on a tray, read their engraved IDs using a CCD camera and optical character recognition, scan and process simultaneously two types of images in fluorescent and reflected laser light contrast to eliminate false-positive tracks related to surface and volume crystal imperfections. The FNTD dosimetry system allows one to measure neutron doses from 0.1 mSv to 20 Sv and covers neutron energies from thermal to 20 MeV. The reader is characterised by a robust, compact optical design, fast data processing electronics and user-friendly software. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Gloger, Oliver; Kühn, Jens; Stanski, Adam; Völzke, Henry; Puls, Ralf
2010-07-01
Automatic 3D liver segmentation in magnetic resonance (MR) data sets has proven to be a very challenging task in the domain of medical image analysis. There exist numerous approaches for automatic 3D liver segmentation on computer tomography data sets that have influenced the segmentation of MR images. In contrast to previous approaches to liver segmentation in MR data sets, we use all available MR channel information of different weightings and formulate liver tissue and position probabilities in a probabilistic framework. We apply multiclass linear discriminant analysis as a fast and efficient dimensionality reduction technique and generate probability maps then used for segmentation. We develop a fully automatic three-step 3D segmentation approach based upon a modified region growing approach and a further threshold technique. Finally, we incorporate characteristic prior knowledge to improve the segmentation results. This novel 3D segmentation approach is modularized and can be applied for normal and fat accumulated liver tissue properties. Copyright 2010 Elsevier Inc. All rights reserved.
Espinoza, Karlos; Valera, Diego L; Torres, José A; López, Alejandro; Molina-Aiz, Francisco D
2015-08-12
Wind tunnels are a key experimental tool for the analysis of airflow parameters in many fields of application. Despite their great potential impact on agricultural research, few contributions have dealt with the development of automatic control systems for wind tunnels in the field of greenhouse technology. The objective of this paper is to present an automatic control system that provides precision and speed of measurement, as well as efficient data processing in low-speed wind tunnel experiments for greenhouse engineering applications. The system is based on an algorithm that identifies the system model and calculates the optimum PI controller. The validation of the system was performed on a cellulose evaporative cooling pad and on insect-proof screens to assess its response to perturbations. The control system provided an accuracy of <0.06 m·s(-1) for airflow speed and <0.50 Pa for pressure drop, thus permitting the reproducibility and standardization of the tests. The proposed control system also incorporates a fully-integrated software unit that manages the tests in terms of airflow speed and pressure drop set points.
NASA Astrophysics Data System (ADS)
Patel, Ajay; van de Leemput, Sil C.; Prokop, Mathias; van Ginneken, Bram; Manniesing, Rashindra
2017-03-01
Segmentation of anatomical structures is fundamental in the development of computer aided diagnosis systems for cerebral pathologies. Manual annotations are laborious, time consuming and subject to human error and observer variability. Accurate quantification of cerebrospinal fluid (CSF) can be employed as a morphometric measure for diagnosis and patient outcome prediction. However, segmenting CSF in non-contrast CT images is complicated by low soft tissue contrast and image noise. In this paper we propose a state-of-the-art method using a multi-scale three-dimensional (3D) fully convolutional neural network (CNN) to automatically segment all CSF within the cranial cavity. The method is trained on a small dataset comprised of four manually annotated cerebral CT images. Quantitative evaluation of a separate test dataset of four images shows a mean Dice similarity coefficient of 0.87 +/- 0.01 and mean absolute volume difference of 4.77 +/- 2.70 %. The average prediction time was 68 seconds. Our method allows for fast and fully automated 3D segmentation of cerebral CSF in non-contrast CT, and shows promising results despite a limited amount of training data.
Cellular automata in photonic cavity arrays.
Li, Jing; Liew, T C H
2016-10-31
We propose theoretically a photonic Turing machine based on cellular automata in arrays of nonlinear cavities coupled with artificial gauge fields. The state of the system is recorded making use of the bistability of driven cavities, in which losses are fully compensated by an external continuous drive. The sequential update of the automaton layers is achieved automatically, by the local switching of bistable states, without requiring any additional synchronization or temporal control.
A quality score for coronary artery tree extraction results
NASA Astrophysics Data System (ADS)
Cao, Qing; Broersen, Alexander; Kitslaar, Pieter H.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke
2018-02-01
Coronary artery trees (CATs) are often extracted to aid the fully automatic analysis of coronary artery disease on coronary computed tomography angiography (CCTA) images. Automatically extracted CATs often miss some arteries or include wrong extractions which require manual corrections before performing successive steps. For analyzing a large number of datasets, a manual quality check of the extraction results is time-consuming. This paper presents a method to automatically calculate quality scores for extracted CATs in terms of clinical significance of the extracted arteries and the completeness of the extracted CAT. Both right dominant (RD) and left dominant (LD) anatomical statistical models are generated and exploited in developing the quality score. To automatically determine which model should be used, a dominance type detection method is also designed. Experiments are performed on the automatically extracted and manually refined CATs from 42 datasets to evaluate the proposed quality score. In 39 (92.9%) cases, the proposed method is able to measure the quality of the manually refined CATs with higher scores than the automatically extracted CATs. In a 100-point scale system, the average scores for automatically and manually refined CATs are 82.0 (+/-15.8) and 88.9 (+/-5.4) respectively. The proposed quality score will assist the automatic processing of the CAT extractions for large cohorts which contain both RD and LD cases. To the best of our knowledge, this is the first time that a general quality score for an extracted CAT is presented.
Strategies for automatic processing of large aftershock sequences
NASA Astrophysics Data System (ADS)
Kvaerna, T.; Gibbons, S. J.
2017-12-01
Aftershock sequences following major earthquakes present great challenges to seismic bulletin generation. The analyst resources needed to locate events increase with increased event numbers as the quality of underlying, fully automatic, event lists deteriorates. While current pipelines, designed a generation ago, are usually limited to single passes over the raw data, modern systems also allow multiple passes. Processing the raw data from each station currently generates parametric data streams that are later subject to phase-association algorithms which form event hypotheses. We consider a major earthquake scenario and propose to define a region of likely aftershock activity in which we will detect and accurately locate events using a separate, specially targeted, semi-automatic process. This effort may use either pattern detectors or more general algorithms that cover wider source regions without requiring waveform similarity. An iterative procedure to generate automatic bulletins would incorporate all the aftershock event hypotheses generated by the auxiliary process, and filter all phases from these events from the original detection lists prior to a new iteration of the global phase-association algorithm.
Evolution of the ATLAS Nightly Build System
NASA Astrophysics Data System (ADS)
Undrus, A.
2012-12-01
The ATLAS Nightly Build System is a major component in the ATLAS collaborative software organization, validation, and code approval scheme. For over 10 years of development it has evolved into a factory for automatic release production and grid distribution. The 50 multi-platform branches of ATLAS releases provide vast opportunities for testing new packages, verification of patches to existing software, and migration to new platforms and compilers for ATLAS code that currently contains 2200 packages with 4 million C++ and 1.4 million python scripting lines written by about 1000 developers. Recent development was focused on the integration of ATLAS Nightly Build and Installation systems. The nightly releases are distributed and validated and some are transformed into stable releases used for data processing worldwide. The ATLAS Nightly System is managed by the NICOS control tool on a computing farm with 50 powerful multiprocessor nodes. NICOS provides the fully automated framework for the release builds, testing, and creation of distribution kits. The ATN testing framework of the Nightly System runs unit and integration tests in parallel suites, fully utilizing the resources of multi-core machines, and provides the first results even before compilations complete. The NICOS error detection system is based on several techniques and classifies the compilation and test errors according to their severity. It is periodically tuned to place greater emphasis on certain software defects by highlighting the problems on NICOS web pages and sending automatic e-mail notifications to responsible developers. These and other recent developments will be presented and future plans will be described.
Fully automatic multi-atlas segmentation of CTA for partial volume correction in cardiac SPECT/CT
NASA Astrophysics Data System (ADS)
Liu, Qingyi; Mohy-ud-Din, Hassan; Boutagy, Nabil E.; Jiang, Mingyan; Ren, Silin; Stendahl, John C.; Sinusas, Albert J.; Liu, Chi
2017-05-01
Anatomical-based partial volume correction (PVC) has been shown to improve image quality and quantitative accuracy in cardiac SPECT/CT. However, this method requires manual segmentation of various organs from contrast-enhanced computed tomography angiography (CTA) data. In order to achieve fully automatic CTA segmentation for clinical translation, we investigated the most common multi-atlas segmentation methods. We also modified the multi-atlas segmentation method by introducing a novel label fusion algorithm for multiple organ segmentation to eliminate overlap and gap voxels. To evaluate our proposed automatic segmentation, eight canine 99mTc-labeled red blood cell SPECT/CT datasets that incorporated PVC were analyzed, using the leave-one-out approach. The Dice similarity coefficient of each organ was computed. Compared to the conventional label fusion method, our proposed label fusion method effectively eliminated gaps and overlaps and improved the CTA segmentation accuracy. The anatomical-based PVC of cardiac SPECT images with automatic multi-atlas segmentation provided consistent image quality and quantitative estimation of intramyocardial blood volume, as compared to those derived using manual segmentation. In conclusion, our proposed automatic multi-atlas segmentation method of CTAs is feasible, practical, and facilitates anatomical-based PVC of cardiac SPECT/CT images.
NASA Technical Reports Server (NTRS)
Sharp, G. R.; Gedeon, L.; Oglebay, J. C.; Shaker, F. S.; Siegert, C. E.
1978-01-01
A prototype electric power management and thruster control system for a 30 cm ion thruster is described. The system meets all of the requirements necessary to operate a thruster in a fully automatic mode. Power input to the system can vary over a full two to one dynamic range (200 to 400 V) for the solar array or other power source. The power management and control system is designed to protect the thruster, the flight system and itself from arcs and is fully compatible with standard spacecraft electronics. The system is easily integrated into flight systems which can operate over a thermal environment ranging from 0.3 to 5 AU. The complete power management and control system measures 45.7 cm (18 in.) x 15.2 cm (6 in.) x 114.8 cm (45.2 in.) and weighs 36.2 kg (79.7 lb). At full power the overall efficiency of the system is estimated to be 87.4 percent. Three systems are currently being built and a full schedule of environmental and electrical testing is planned.
A Flexible and Configurable Architecture for Automatic Control Remote Laboratories
ERIC Educational Resources Information Center
Kalúz, Martin; García-Zubía, Javier; Fikar, Miroslav; Cirka, Luboš
2015-01-01
In this paper, we propose a novel approach in hardware and software architecture design for implementation of remote laboratories for automatic control. In our contribution, we show the solution with flexible connectivity at back-end, providing features of multipurpose usage with different types of experimental devices, and fully configurable…
Real-time micro-modelling of city evacuations
NASA Astrophysics Data System (ADS)
Löhner, Rainald; Haug, Eberhard; Zinggerling, Claudio; Oñate, Eugenio
2018-01-01
A methodology to integrate geographical information system (GIS) data with large-scale pedestrian simulations has been developed. Advances in automatic data acquisition and archiving from GIS databases, automatic input for pedestrian simulations, as well as scalable pedestrian simulation tools have made it possible to simulate pedestrians at the individual level for complete cities in real time. An example that simulates the evacuation of the city of Barcelona demonstrates that this is now possible. This is the first step towards a fully integrated crowd prediction and management tool that takes into account not only data gathered in real time from cameras, cell phones or other sensors, but also merges these with advanced simulation tools to predict the future state of the crowd.
Spring is a good time to clean up your vendor contracts.
Daigrepont, Jeffery
2013-01-01
Whether it's a new purchase or renewal, every year physicians and hospitals obligate themselves financially to vendor contracts without fully understanding the terms and conditions of their commitments. Some of these contracts renew automatically without permission or approval and come with automatic price increases. In some cases, practices may even be paying for services no longer being used or maintenance fees for support services no longer needed. However, discerning what vendor and system to select or renew, based on the unique objectives of the practice or hospital, can be overwhelming. This article provides many helpful strategies for negotiating a rock-solid contract that is a win for the physician practice or hospital and holds the vendor accountable for delivery of promises.
Fully automatic detection and visualization of patient specific coronary supply regions
NASA Astrophysics Data System (ADS)
Fritz, Dominik; Wiedemann, Alexander; Dillmann, Ruediger; Scheuering, Michael
2008-03-01
Coronary territory maps, which associate myocardial regions with the corresponding coronary artery that supply them, are a common visualization technique to assist the physician in the diagnosis of coronary artery disease. However, the commonly used visualization is based on the AHA-17-segment model, which is an empirical population based model. Therefore, it does not necessarily cope with the often highly individual coronary anatomy of a specific patient. In this paper we introduce a novel fully automatic approach to compute the patient individual coronary supply regions in CTA datasets. This approach is divided in three consecutive steps. First, the aorta is fully automatically located in the dataset with a combination of a Hough transform and a cylindrical model matching approach. Having the location of the aorta, a segmentation and skeletonization of the coronary tree is triggered. In the next step, the three main branches (LAD, LCX and RCX) are automatically labeled, based on the knowledge of the pose of the aorta and the left ventricle. In the last step the labeled coronary tree is projected on the left ventricular surface, which can afterward be subdivided into the coronary supply regions, based on a Voronoi transform. The resulting supply regions can be either shown in 3D on the epicardiac surface of the left ventricle, or as a subdivision of a polarmap.
NASA Astrophysics Data System (ADS)
Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Vavruch, Ludvig; Tropp, Hans; Knutsson, Hans
2013-03-01
Reliable measurements of spinal deformities in idiopathic scoliosis are vital, since they are used for assessing the degree of scoliosis, deciding upon treatment and monitoring the progression of the disease. However, commonly used two dimensional methods (e.g. the Cobb angle) do not fully capture the three dimensional deformity at hand in scoliosis, of which axial vertebral rotation (AVR) is considered to be of great importance. There are manual methods for measuring the AVR, but they are often time-consuming and related with a high intra- and inter-observer variability. In this paper, we present a fully automatic method for estimating the AVR in images from computed tomography. The proposed method is evaluated on four scoliotic patients with 17 vertebrae each and compared with manual measurements performed by three observers using the standard method by Aaro-Dahlborn. The comparison shows that the difference in measured AVR between automatic and manual measurements are on the same level as the inter-observer difference. This is further supported by a high intraclass correlation coefficient (0.971-0.979), obtained when comparing the automatic measurements with the manual measurements of each observer. Hence, the provided results and the computational performance, only requiring approximately 10 to 15 s for processing an entire volume, demonstrate the potential clinical value of the proposed method.
Automatic detection of larynx cancer from contrast-enhanced magnetic resonance images
NASA Astrophysics Data System (ADS)
Doshi, Trushali; Soraghan, John; Grose, Derek; MacKenzie, Kenneth; Petropoulakis, Lykourgos
2015-03-01
Detection of larynx cancer from medical imaging is important for the quantification and for the definition of target volumes in radiotherapy treatment planning (RTP). Magnetic resonance imaging (MRI) is being increasingly used in RTP due to its high resolution and excellent soft tissue contrast. Manually detecting larynx cancer from sequential MRI is time consuming and subjective. The large diversity of cancer in terms of geometry, non-distinct boundaries combined with the presence of normal anatomical regions close to the cancer regions necessitates the development of automatic and robust algorithms for this task. A new automatic algorithm for the detection of larynx cancer from 2D gadoliniumenhanced T1-weighted (T1+Gd) MRI to assist clinicians in RTP is presented. The algorithm employs edge detection using spatial neighborhood information of pixels and incorporates this information in a fuzzy c-means clustering process to robustly separate different tissues types. Furthermore, it utilizes the information of the expected cancerous location for cancer regions labeling. Comparison of this automatic detection system with manual clinical detection on real T1+Gd axial MRI slices of 2 patients (24 MRI slices) with visible larynx cancer yields an average dice similarity coefficient of 0.78+/-0.04 and average root mean square error of 1.82+/-0.28 mm. Preliminary results show that this fully automatic system can assist clinicians in RTP by obtaining quantifiable and non-subjective repeatable detection results in a particular time-efficient and unbiased fashion.
An effective non-rigid registration approach for ultrasound image based on "demons" algorithm.
Liu, Yan; Cheng, H D; Huang, Jianhua; Zhang, Yingtao; Tang, Xianglong; Tian, Jiawei
2013-06-01
Medical image registration is an important component of computer-aided diagnosis system in diagnostics, therapy planning, and guidance of surgery. Because of its low signal/noise ratio (SNR), ultrasound (US) image registration is a difficult task. In this paper, a fully automatic non-rigid image registration algorithm based on demons algorithm is proposed for registration of ultrasound images. In the proposed method, an "inertia force" derived from the local motion trend of pixels in a Moore neighborhood system is produced and integrated into optical flow equation to estimate the demons force, which is helpful to handle the speckle noise and preserve the geometric continuity of US images. In the experiment, a series of US images and several similarity measure metrics are utilized for evaluating the performance. The experimental results demonstrate that the proposed method can register ultrasound images efficiently, robust to noise, quickly and automatically.
Improved pressure measurement system for calibration of the NASA LeRC 10x10 supersonic wind tunnel
NASA Technical Reports Server (NTRS)
Blumenthal, Philip Z.; Helland, Stephen M.
1994-01-01
This paper discusses a method used to provide a significant improvement in the accuracy of the Electronically Scanned Pressure (ESP) Measurement System by means of a fully automatic floating pressure generating system for the ESP calibration and reference pressures. This system was used to obtain test section Mach number and flow angularity measurements over the full envelope of test conditions for the 10 x 10 Supersonic Wind Tunnel. The uncertainty analysis and actual test data demonstrated that, for most test conditions, this method could reduce errors to about one-third to one-half that obtained with the standard system.
A deep-learning based automatic pulmonary nodule detection system
NASA Astrophysics Data System (ADS)
Zhao, Yiyuan; Zhao, Liang; Yan, Zhennan; Wolf, Matthias; Zhan, Yiqiang
2018-02-01
Lung cancer is the deadliest cancer worldwide. Early detection of lung cancer is a promising way to lower the risk of dying. Accurate pulmonary nodule detection in computed tomography (CT) images is crucial for early diagnosis of lung cancer. The development of computer-aided detection (CAD) system of pulmonary nodules contributes to making the CT analysis more accurate and with more efficiency. Recent studies from other groups have been focusing on lung cancer diagnosis CAD system by detecting medium to large nodules. However, to fully investigate the relevance between nodule features and cancer diagnosis, a CAD that is capable of detecting nodules with all sizes is needed. In this paper, we present a deep-learning based automatic all size pulmonary nodule detection system by cascading two artificial neural networks. We firstly use a U-net like 3D network to generate nodule candidates from CT images. Then, we use another 3D neural network to refine the locations of the nodule candidates generated from the previous subsystem. With the second sub-system, we bring the nodule candidates closer to the center of the ground truth nodule locations. We evaluate our system on a public CT dataset provided by the Lung Nodule Analysis (LUNA) 2016 grand challenge. The performance on the testing dataset shows that our system achieves 90% sensitivity with an average of 4 false positives per scan. This indicates that our system can be an aid for automatic nodule detection, which is beneficial for lung cancer diagnosis.
A synchronized computational architecture for generalized bilateral control of robot arms
NASA Technical Reports Server (NTRS)
Bejczy, Antal K.; Szakaly, Zoltan
1987-01-01
This paper describes a computational architecture for an interconnected high speed distributed computing system for generalized bilateral control of robot arms. The key method of the architecture is the use of fully synchronized, interrupt driven software. Since an objective of the development is to utilize the processing resources efficiently, the synchronization is done in the hardware level to reduce system software overhead. The architecture also achieves a balaced load on the communication channel. The paper also describes some architectural relations to trading or sharing manual and automatic control.
AIRSAR Web-Based Data Processing
NASA Technical Reports Server (NTRS)
Chu, Anhua; Van Zyl, Jakob; Kim, Yunjin; Hensley, Scott; Lou, Yunling; Madsen, Soren; Chapman, Bruce; Imel, David; Durden, Stephen; Tung, Wayne
2007-01-01
The AIRSAR automated, Web-based data processing and distribution system is an integrated, end-to-end synthetic aperture radar (SAR) processing system. Designed to function under limited resources and rigorous demands, AIRSAR eliminates operational errors and provides for paperless archiving. Also, it provides a yearly tune-up of the processor on flight missions, as well as quality assurance with new radar modes and anomalous data compensation. The software fully integrates a Web-based SAR data-user request subsystem, a data processing system to automatically generate co-registered multi-frequency images from both polarimetric and interferometric data collection modes in 80/40/20 MHz bandwidth, an automated verification quality assurance subsystem, and an automatic data distribution system for use in the remote-sensor community. Features include Survey Automation Processing in which the software can automatically generate a quick-look image from an entire 90-GB SAR raw data 32-MB/s tape overnight without operator intervention. Also, the software allows product ordering and distribution via a Web-based user request system. To make AIRSAR more user friendly, it has been designed to let users search by entering the desired mission flight line (Missions Searching), or to search for any mission flight line by entering the desired latitude and longitude (Map Searching). For precision image automation processing, the software generates the products according to each data processing request stored in the database via a Queue management system. Users are able to have automatic generation of coregistered multi-frequency images as the software generates polarimetric and/or interferometric SAR data processing in ground and/or slant projection according to user processing requests for one of the 12 radar modes.
Automated full-3D digitization system for documentation of paintings
NASA Astrophysics Data System (ADS)
Karaszewski, Maciej; Adamczyk, Marcin; Sitnik, Robert; Michoński, Jakub; Załuski, Wojciech; Bunsch, Eryk; Bolewicki, Paweł
2013-05-01
In this paper, a fully automated 3D digitization system for documentation of paintings is presented. It consists of a specially designed frame system for secure fixing of painting, a custom designed, structured light-based, high-resolution measurement head with no IR and UV emission. This device is automatically positioned in two axes (parallel to the surface of digitized painting) with additional manual positioning in third, perpendicular axis. Manual change of observation angle is also possible around two axes to re-measure even partially shadowed areas. The whole system is built in a way which provides full protection of digitized object (moving elements cannot reach its vicinity) and is driven by computer-controlled, highly precise servomechanisms. It can be used for automatic (without any user attention) and fast measurement of the paintings with some limitation to their properties: maximum size of the picture is 2000mm x 2000mm (with deviation of flatness smaller than 20mm) Measurement head is automatically calibrated by the system and its possible working volume starts from 50mm x 50mm x 20mm (10000 points per square mm) and ends at 120mm x 80mm x 60mm (2500 points per square mm). The directional measurements obtained with this system are automatically initially aligned due to the measurement head's position coordinates known from servomechanisms. After the whole painting is digitized, the measurements are fine-aligned with color-based ICP algorithm to remove any influence of possible inaccuracy of positioning devices. We present exemplary digitization results along with the discussion about the opportunities of analysis which appear for such high-resolution, 3D computer models of paintings.
Mathematical modeling of control system for the experimental steam generator
NASA Astrophysics Data System (ADS)
Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita
2016-03-01
A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.
Automatic Assessment of 3D Modeling Exams
ERIC Educational Resources Information Center
Sanna, A.; Lamberti, F.; Paravati, G.; Demartini, C.
2012-01-01
Computer-based assessment of exams provides teachers and students with two main benefits: fairness and effectiveness in the evaluation process. This paper proposes a fully automatic evaluation tool for the Graphic and Virtual Design (GVD) curriculum at the First School of Architecture of the Politecnico di Torino, Italy. In particular, the tool is…
Zhou, Yongxin; Bai, Jing
2007-01-01
A framework that combines atlas registration, fuzzy connectedness (FC) segmentation, and parametric bias field correction (PABIC) is proposed for the automatic segmentation of brain magnetic resonance imaging (MRI). First, the atlas is registered onto the MRI to initialize the following FC segmentation. Original techniques are proposed to estimate necessary initial parameters of FC segmentation. Further, the result of the FC segmentation is utilized to initialize a following PABIC algorithm. Finally, we re-apply the FC technique on the PABIC corrected MRI to get the final segmentation. Thus, we avoid expert human intervention and provide a fully automatic method for brain MRI segmentation. Experiments on both simulated and real MRI images demonstrate the validity of the method, as well as the limitation of the method. Being a fully automatic method, it is expected to find wide applications, such as three-dimensional visualization, radiation therapy planning, and medical database construction.
Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho
2015-10-14
Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.
Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-il Dan; Ko, Hyoungho
2015-01-01
Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms. PMID:26473877
Application of Artificial Intelligence to Improve Aircraft Survivability.
1985-12-01
may be as smooth and effective as possible. 3. Fully Automatic Digital Engine Control ( FADEC ) Under development at the Naval Weapons Center, a major...goal of the FADEC program is to significantly reduce engine vulnerability by fully automating the regulation of engine controls. Given a thrust
An automatic holographic adaptive phoropter
NASA Astrophysics Data System (ADS)
Amirsolaimani, Babak; Peyghambarian, N.; Schwiegerling, Jim; Bablumyan, Arkady; Savidis, Nickolaos; Peyman, Gholam
2017-08-01
Phoropters are the most common instrument used to detect refractive errors. During a refractive exam, lenses are flipped in front of the patient who looks at the eye chart and tries to read the symbols. The procedure is fully dependent on the cooperation of the patient to read the eye chart, provides only a subjective measurement of visual acuity, and can at best provide a rough estimate of the patient's vision. Phoropters are difficult to use for mass screenings requiring a skilled examiner, and it is hard to screen young children and the elderly etc. We have developed a simplified, lightweight automatic phoropter that can measure the optical error of the eye objectively without requiring the patient's input. The automatic holographic adaptive phoropter is based on a Shack-Hartmann wave front sensor and three computercontrolled fluidic lenses. The fluidic lens system is designed to be able to provide power and astigmatic corrections over a large range of corrections without the need for verbal feedback from the patient in less than 20 seconds.
NASA Technical Reports Server (NTRS)
1996-01-01
Released in 1995, the Trilogy cardiac pacemaker is the fourth generation of a unit developed in the 1970s by NASA, Johns Hopkins Applied Physics Laboratory and St. Jude Medical's Cardiac Rhythm Management Division (formerly known as Pacesetter Systems, Inc.). The new system incorporates the company's PDx diagnostic and programming software and a powerful microprocessor that allows more functions to be fully automatic and gives more detailed information on the patient's health and the performance of the pacing systems. The pacemaker incorporates bidirectional telemetry used for space communications for noninvasive communication with the implanted pacemaker, smaller implantable pulse generators from space microminiaturization, and longer-life batteries from technology for spacecraft electrical power systems.
Lighting design for globally illuminated volume rendering.
Zhang, Yubo; Ma, Kwan-Liu
2013-12-01
With the evolution of graphics hardware, high quality global illumination becomes available for real-time volume rendering. Compared to local illumination, global illumination can produce realistic shading effects which are closer to real world scenes, and has proven useful for enhancing volume data visualization to enable better depth and shape perception. However, setting up optimal lighting could be a nontrivial task for average users. There were lighting design works for volume visualization but they did not consider global light transportation. In this paper, we present a lighting design method for volume visualization employing global illumination. The resulting system takes into account view and transfer-function dependent content of the volume data to automatically generate an optimized three-point lighting environment. Our method fully exploits the back light which is not used by previous volume visualization systems. By also including global shadow and multiple scattering, our lighting system can effectively enhance the depth and shape perception of volumetric features of interest. In addition, we propose an automatic tone mapping operator which recovers visual details from overexposed areas while maintaining sufficient contrast in the dark areas. We show that our method is effective for visualizing volume datasets with complex structures. The structural information is more clearly and correctly presented under the automatically generated light sources.
MatchGUI: A Graphical MATLAB-Based Tool for Automatic Image Co-Registration
NASA Technical Reports Server (NTRS)
Ansar, Adnan I.
2011-01-01
MatchGUI software, based on MATLAB, automatically matches two images and displays the match result by superimposing one image on the other. A slider bar allows focus to shift between the two images. There are tools for zoom, auto-crop to overlap region, and basic image markup. Given a pair of ortho-rectified images (focused primarily on Mars orbital imagery for now), this software automatically co-registers the imagery so that corresponding image pixels are aligned. MatchGUI requires minimal user input, and performs a registration over scale and inplane rotation fully automatically
Automatically measuring brain ventricular volume within PACS using artificial intelligence.
Yepes-Calderon, Fernando; Nelson, Marvin D; McComb, J Gordon
2018-01-01
The picture archiving and communications system (PACS) is currently the standard platform to manage medical images but lacks analytical capabilities. Staying within PACS, the authors have developed an automatic method to retrieve the medical data and access it at a voxel level, decrypted and uncompressed that allows analytical capabilities while not perturbing the system's daily operation. Additionally, the strategy is secure and vendor independent. Cerebral ventricular volume is important for the diagnosis and treatment of many neurological disorders. A significant change in ventricular volume is readily recognized, but subtle changes, especially over longer periods of time, may be difficult to discern. Clinical imaging protocols and parameters are often varied making it difficult to use a general solution with standard segmentation techniques. Presented is a segmentation strategy based on an algorithm that uses four features extracted from the medical images to create a statistical estimator capable of determining ventricular volume. When compared with manual segmentations, the correlation was 94% and holds promise for even better accuracy by incorporating the unlimited data available. The volume of any segmentable structure can be accurately determined utilizing the machine learning strategy presented and runs fully automatically within the PACS.
A new user-assisted segmentation and tracking technique for an object-based video editing system
NASA Astrophysics Data System (ADS)
Yu, Hong Y.; Hong, Sung-Hoon; Lee, Mike M.; Choi, Jae-Gark
2004-03-01
This paper presents a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the user-guided and selected objects are continuously separated from the unselected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on these results, we have developed objects based video editing system with several convenient editing functions.
EARLINET Single Calculus Chain - overview on methodology and strategy
NASA Astrophysics Data System (ADS)
D'Amico, G.; Amodeo, A.; Baars, H.; Binietoglou, I.; Freudenthaler, V.; Mattis, I.; Wandinger, U.; Pappalardo, G.
2015-11-01
In this paper we describe the EARLINET Single Calculus Chain (SCC), a tool for the automatic analysis of lidar measurements. The development of this tool started in the framework of EARLINET-ASOS (European Aerosol Research Lidar Network - Advanced Sustainable Observation System); it was extended within ACTRIS (Aerosol, Clouds and Trace gases Research InfraStructure Network), and it is continuing within ACTRIS-2. The main idea was to develop a data processing chain that allows all EARLINET stations to retrieve, in a fully automatic way, the aerosol backscatter and extinction profiles starting from the raw lidar data of the lidar systems they operate. The calculus subsystem of the SCC is composed of two modules: a pre-processor module which handles the raw lidar data and corrects them for instrumental effects and an optical processing module for the retrieval of aerosol optical products from the pre-processed data. All input parameters needed to perform the lidar analysis are stored in a database to keep track of all changes which may occur for any EARLINET lidar system over the time. The two calculus modules are coordinated and synchronized by an additional module (daemon) which makes the whole analysis process fully automatic. The end user can interact with the SCC via a user-friendly web interface. All SCC modules are developed using open-source and freely available software packages. The final products retrieved by the SCC fulfill all requirements of the EARLINET quality assurance programs on both instrumental and algorithm levels. Moreover, the manpower needed to provide aerosol optical products is greatly reduced and thus the near-real-time availability of lidar data is improved. The high-quality of the SCC products is proven by the good agreement between the SCC analysis, and the corresponding independent manual retrievals. Finally, the ability of the SCC to provide high-quality aerosol optical products is demonstrated for an EARLINET intense observation period.
FALCON: A distributed scheduler for MIMD architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimshaw, A.S.; Vivas, V.E. Jr.
1991-01-01
This paper describes FALCON (Fully Automatic Load COordinator for Networks), the scheduler for the Mentat parallel processing system. FALCON has a modular structure and is designed for systems that use a task scheduling mechanism. FALCON is distributed, stable, supports system heterogeneities, and employs a sender-initiated adaptive load sharing policy with static task assignment. FALCON is parameterizable and is implemented in Mentat, a working distributed system. We present the design and implementation of FALCON as well as a brief introduction to those features of the Mentat run-time system that influence FALCON. Performance measures under different scheduler configurations are also presented andmore » analyzed with respect to the system parameters. 36 refs., 8 figs.« less
Espinoza, Karlos; Valera, Diego L.; Torres, José A.; López, Alejandro; Molina-Aiz, Francisco D.
2015-01-01
Wind tunnels are a key experimental tool for the analysis of airflow parameters in many fields of application. Despite their great potential impact on agricultural research, few contributions have dealt with the development of automatic control systems for wind tunnels in the field of greenhouse technology. The objective of this paper is to present an automatic control system that provides precision and speed of measurement, as well as efficient data processing in low-speed wind tunnel experiments for greenhouse engineering applications. The system is based on an algorithm that identifies the system model and calculates the optimum PI controller. The validation of the system was performed on a cellulose evaporative cooling pad and on insect-proof screens to assess its response to perturbations. The control system provided an accuracy of <0.06 m·s−1 for airflow speed and <0.50 Pa for pressure drop, thus permitting the reproducibility and standardization of the tests. The proposed control system also incorporates a fully-integrated software unit that manages the tests in terms of airflow speed and pressure drop set points. PMID:26274962
I-SCAD® standoff chemical agent detector overview
NASA Astrophysics Data System (ADS)
Popa, Mirela O.; Griffin, Matthew T.
2012-06-01
This paper presents a system-level description of the I-SCAD® Standoff Chemical Agent Detector, a passive Fourier Transform InfraRed (FTIR) based remote sensing system, for detecting chemical vapor threats. The passive infrared detection system automatically searches the 7 to 14 micron region of the surrounding atmosphere for agent vapor clouds. It is capable of operating while on the move to accomplish reconnaissance, surveillance, and contamination avoidance missions. Additionally, the system is designed to meet the needs for application on air and sea as well as ground mobile and fixed site platforms. The lightweight, passive, and fully automatic detection system scans the surrounding atmosphere for chemical warfare agent vapors. It provides on-the-move, 360-deg coverage from a variety of tactical and reconnaissance platforms at distances up to 5 km. The core of the system is a rugged Michelson interferometer with a flexure spring bearing mechanism and bi-directional data acquisition capability. The modular system design facilitates interfacing to many platforms. A Reduced Field of View (RFOV) variant includes novel modifications to the scanner subcomponent assembly optical design that gives extended performance in detection range and detection probability without sacrificing existing radiometric sensitivity performance. This paper will deliver an overview of system.
NASA Technical Reports Server (NTRS)
Rouff, Christopher A. (Inventor); Sterritt, Roy (Inventor); Truszkowski, Walter F. (Inventor); Hinchey, Michael G. (Inventor); Gracanin, Denis (Inventor); Rash, James L. (Inventor)
2011-01-01
Described herein is a method that produces fully (mathematically) tractable development of policies for autonomic systems from requirements through to code generation. This method is illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming method described provides faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.Further, the systems, methods and apparatus described herein provide a way of analyzing policies for autonomic systems and facilities the generation of provably correct implementations automatically, which in turn provides reduced development time, reduced testing requirements, guarantees of correctness of the implementation with respect to the policies specified at the outset, and provides a higher degree of confidence that the policies are both complete and reasonable. The ability to specify the policy for the management of a system and then automatically generate an equivalent implementation greatly improves the quality of software, the survivability of future missions, in particular when the system will operate untended in very remote environments, and greatly reduces development lead times and costs.
Automatic, Rapid Replanning of Satellite Operations for Space Situational Awareness (SSA)
NASA Astrophysics Data System (ADS)
Stottler, D.; Mahan, K.
An important component of Space Situational Awareness (SSA) is knowledge of the status and tasking of blue forces (e.g. satellites and ground stations) and the rapid determination of the impacts of real or hypothetical changes and the ability to quickly replan based on those changes. For example, if an antenna goes down (either for benign reasons or from purposeful interference) determining which missions will be impacted is important. It is not simply the set of missions that were scheduled to utilize that antenna, because highly expert human schedulers will respond to the outage by intelligently replanning the real-time schedule. We have developed an automatic scheduling and deconfliction engine, called MIDAS (for Managed Intelligent Deconfliction And Scheduling) that interfaces to the current legacy system (ESD 2.7) which can perform this replanning function automatically. In addition to determining the impact of failed resources, MIDAS can also replan in response to a satellite under attack. In this situation, additional supports must be quickly scheduled and executed (while minimizing impacts to other missions). Because MIDAS is a fully automatic system, replacing a current human labor-intensive process, and provides very rapid turnaround (seconds) it can also be used by commanders to consider what-if questions and focus limited protection resources on the most critical resources. For example, the commander can determine the impact of a successful attack on one of two ground stations and place heavier emphasis on protecting the station whose loss would create the most severe impacts. The system is currently transitioning to operational use. The MIDAS system and its interface to the legacy ESD 2.7 system will be described along with the ConOps for different types of detailed operational scenarios.
Automatic Figure Ranking and User Interfacing for Intelligent Figure Search
Yu, Hong; Liu, Feifan; Ramesh, Balaji Polepalli
2010-01-01
Background Figures are important experimental results that are typically reported in full-text bioscience articles. Bioscience researchers need to access figures to validate research facts and to formulate or to test novel research hypotheses. On the other hand, the sheer volume of bioscience literature has made it difficult to access figures. Therefore, we are developing an intelligent figure search engine (http://figuresearch.askhermes.org). Existing research in figure search treats each figure equally, but we introduce a novel concept of “figure ranking”: figures appearing in a full-text biomedical article can be ranked by their contribution to the knowledge discovery. Methodology/Findings We empirically validated the hypothesis of figure ranking with over 100 bioscience researchers, and then developed unsupervised natural language processing (NLP) approaches to automatically rank figures. Evaluating on a collection of 202 full-text articles in which authors have ranked the figures based on importance, our best system achieved a weighted error rate of 0.2, which is significantly better than several other baseline systems we explored. We further explored a user interfacing application in which we built novel user interfaces (UIs) incorporating figure ranking, allowing bioscience researchers to efficiently access important figures. Our evaluation results show that 92% of the bioscience researchers prefer as the top two choices the user interfaces in which the most important figures are enlarged. With our automatic figure ranking NLP system, bioscience researchers preferred the UIs in which the most important figures were predicted by our NLP system than the UIs in which the most important figures were randomly assigned. In addition, our results show that there was no statistical difference in bioscience researchers' preference in the UIs generated by automatic figure ranking and UIs by human ranking annotation. Conclusion/Significance The evaluation results conclude that automatic figure ranking and user interfacing as we reported in this study can be fully implemented in online publishing. The novel user interface integrated with the automatic figure ranking system provides a more efficient and robust way to access scientific information in the biomedical domain, which will further enhance our existing figure search engine to better facilitate accessing figures of interest for bioscientists. PMID:20949102
Shen, Jun; Baum, Thomas; Cordes, Christian; Ott, Beate; Skurk, Thomas; Kooijman, Hendrik; Rummeny, Ernst J; Hauner, Hans; Menze, Bjoern H; Karampinos, Dimitrios C
2016-09-01
To develop a fully automatic algorithm for abdominal organs and adipose tissue compartments segmentation and to assess organ and adipose tissue volume changes in longitudinal water-fat magnetic resonance imaging (MRI) data. Axial two-point Dixon images were acquired in 20 obese women (age range 24-65, BMI 34.9±3.8kg/m(2)) before and after a four-week calorie restriction. Abdominal organs, subcutaneous adipose tissue (SAT) compartments (abdominal, anterior, posterior), SAT regions along the feet-head direction and regional visceral adipose tissue (VAT) were assessed by a fully automatic algorithm using morphological operations and a multi-atlas-based segmentation method. The accuracy of organ segmentation represented by Dice coefficients ranged from 0.672±0.155 for the pancreas to 0.943±0.023 for the liver. Abdominal SAT changes were significantly greater in the posterior than the anterior SAT compartment (-11.4%±5.1% versus -9.5%±6.3%, p<0.001). The loss of VAT that was not located around any organ (-16.1%±8.9%) was significantly greater than the loss of VAT 5cm around liver, left and right kidney, spleen, and pancreas (p<0.05). The presented fully automatic algorithm showed good performance in abdominal adipose tissue and organ segmentation, and allowed the detection of SAT and VAT subcompartments changes during weight loss. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Automatic measurement; Mesures automatiques (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringeard, C.
1974-11-28
By its ability to link-up operations sequentially and memorize the data collected, the computer can introduce a statistical approach in the evaluation of a result. To benefit fully from the advantages of automation, a special effort was made to reduce the programming time to a minimum and to simplify link-ups between the existing system and instruments from different sources. The practical solution of the test laboratory of the C.E.A. Centralized Administration Groupe (GEC) is given.
Fully Automated Data Collection Using PAM and the Development of PAM/SPACE Reversible Cassettes
NASA Astrophysics Data System (ADS)
Hiraki, Masahiko; Watanabe, Shokei; Chavas, Leonard M. G.; Yamada, Yusuke; Matsugaki, Naohiro; Igarashi, Noriyuki; Wakatsuki, Soichi; Fujihashi, Masahiro; Miki, Kunio; Baba, Seiki; Ueno, Go; Yamamoto, Masaki; Suzuki, Mamoru; Nakagawa, Atsushi; Watanabe, Nobuhisa; Tanaka, Isao
2010-06-01
To remotely control and automatically collect data in high-throughput X-ray data collection experiments, the Structural Biology Research Center at the Photon Factory (PF) developed and installed sample exchange robots PAM (PF Automated Mounting system) at PF macromolecular crystallography beamlines; BL-5A, BL-17A, AR-NW12A and AR-NE3A. We developed and installed software that manages the flow of the automated X-ray experiments; sample exchanges, loop-centering and X-ray diffraction data collection. The fully automated data collection function has been available since February 2009. To identify sample cassettes, PAM employs a two-dimensional bar code reader. New beamlines, BL-1A at the Photon Factory and BL32XU at SPring-8, are currently under construction as part of Targeted Proteins Research Program (TPRP) by the Ministry of Education, Culture, Sports, Science and Technology of Japan. However, different robots, PAM and SPACE (SPring-8 Precise Automatic Cryo-sample Exchanger), will be installed at BL-1A and BL32XU, respectively. For the convenience of the users of both facilities, pins and cassettes for PAM and SPACE are developed as part of the TPRP.
NASA Astrophysics Data System (ADS)
Li, Senhu; Sarment, David
2015-12-01
Minimally invasive neurosurgery needs intraoperative imaging updates and high efficient image guide system to facilitate the procedure. An automatic image guided system utilized with a compact and mobile intraoperative CT imager was introduced in this work. A tracking frame that can be easily attached onto the commercially available skull clamp was designed. With known geometry of fiducial and tracking sensor arranged on this rigid frame that was fabricated through high precision 3D printing, not only was an accurate, fully automatic registration method developed in a simple and less-costly approach, but also it helped in estimating the errors from fiducial localization in image space through image processing, and in patient space through the calibration of tracking frame. Our phantom study shows the fiducial registration error as 0.348+/-0.028mm, comparing the manual registration error as 1.976+/-0.778mm. The system in this study provided a robust and accurate image-to-patient registration without interruption of routine surgical workflow and any user interactions involved through the neurosurgery.
Fully automated three-dimensional microscopy system
NASA Astrophysics Data System (ADS)
Kerschmann, Russell L.
2000-04-01
Tissue-scale structures such as vessel networks are imaged at micron resolution with the Virtual Tissue System (VT System). VT System imaging of cubic millimeters of tissue and other material extends the capabilities of conventional volumetric techniques such as confocal microscopy, and allows for the first time the integrated 2D and 3D analysis of important tissue structural relationships. The VT System eliminates the need for glass slide-mounted tissue sections and instead captures images directly from the surface of a block containing a sample. Tissues are en bloc stained with fluorochrome compounds, embedded in an optically conditioned polymer that suppresses image signals form dep within the block , and serially sectioned for imaging. Thousands of fully registered 2D images are automatically captured digitally to completely convert tissue samples into blocks of high-resolution information. The resulting multi gigabyte data sets constitute the raw material for precision visualization and analysis. Cellular function may be seen in a larger anatomical context. VT System technology makes tissue metrics, accurate cell enumeration and cell cycle analyses possible while preserving full histologic setting.
Automatic chemical vapor deposition
NASA Technical Reports Server (NTRS)
Kennedy, B. W.
1981-01-01
Report reviews chemical vapor deposition (CVD) for processing integrated circuits and describes fully automatic machine for CVD. CVD proceeds at relatively low temperature, allows wide choice of film compositions (including graded or abruptly changing compositions), and deposits uniform films of controllable thickness at fairly high growth rate. Report gives overview of hardware, reactants, and temperature ranges used with CVD machine.
From functional structure to packaging: full-printing fabrication of a microfluidic chip.
Zheng, Fengyi; Pu, Zhihua; He, Enqi; Huang, Jiasheng; Yu, Bocheng; Li, Dachao; Li, Zhihong
2018-05-24
This paper presents a concept of a full-printing methodology aiming at convenient and fast fabrication of microfluidic devices. For the first time, we achieved a microfluidic biochemical sensor with all functional structures fabricated by inkjet printing, including electrodes, immobilized enzymes, microfluidic components and packaging. With the cost-effective and rapid process, this method provides the possibility of quick model validation of a novel lab-on-chip system. In this study, a three-electrode electrochemical system was integrated successfully with glucose oxidase immobilization gel and sealed in an ice channel, forming a disposable microfluidic sensor for glucose detection. This fully-printed chip was characterized and showed good sensitivity and a linear section at a low-level concentration of glucose (0-10 mM). With the aid of automatic equipment, the fully-printed sensor can be massively produced with low cost.
Reverse osmosis water purification system
NASA Technical Reports Server (NTRS)
Ahlstrom, H. G.; Hames, P. S.; Menninger, F. J.
1986-01-01
A reverse osmosis water purification system, which uses a programmable controller (PC) as the control system, was designed and built to maintain the cleanliness and level of water for various systems of a 64-m antenna. The installation operates with other equipment of the antenna at the Goldstone Deep Space Communication Complex. The reverse osmosis system was designed to be fully automatic; with the PC, many complex sequential and timed logic networks were easily implemented and are modified. The PC monitors water levels, pressures, flows, control panel requests, and set points on analog meters; with this information various processes are initiated, monitored, modified, halted, or eliminated as required by the equipment being supplied pure water.
Motor automaticity in Parkinson’s disease
Wu, Tao; Hallett, Mark; Chan, Piu
2017-01-01
Bradykinesia is the most important feature contributing to motor difficulties in Parkinson’s disease (PD). However, the pathophysiology underlying bradykinesia is not fully understood. One important aspect is that PD patients have difficulty in performing learned motor skills automatically, but this problem has been generally overlooked. Here we review motor automaticity associated motor deficits in PD, such as reduced arm swing, decreased stride length, freezing of gait, micrographia and reduced facial expression. Recent neuroimaging studies have revealed some neural mechanisms underlying impaired motor automaticity in PD, including less efficient neural coding of movement, failure to shift automated motor skills to the sensorimotor striatum, instability of the automatic mode within the striatum, and use of attentional control and/or compensatory efforts to execute movements usually performed automatically in healthy people. PD patients lose previously acquired automatic skills due to their impaired sensorimotor striatum, and have difficulty in acquiring new automatic skills or restoring lost motor skills. More investigations on the pathophysiology of motor automaticity, the effect of L-dopa or surgical treatments on automaticity, and the potential role of using measures of automaticity in early diagnosis of PD would be valuable. PMID:26102020
Develop Advanced Nonlinear Signal Analysis Topographical Mapping System
NASA Technical Reports Server (NTRS)
Jong, Jen-Yi
1997-01-01
During the development of the SSME, a hierarchy of advanced signal analysis techniques for mechanical signature analysis has been developed by NASA and AI Signal Research Inc. (ASRI) to improve the safety and reliability for Space Shuttle operations. These techniques can process and identify intelligent information hidden in a measured signal which is often unidentifiable using conventional signal analysis methods. Currently, due to the highly interactive processing requirements and the volume of dynamic data involved, detailed diagnostic analysis is being performed manually which requires immense man-hours with extensive human interface. To overcome this manual process, NASA implemented this program to develop an Advanced nonlinear signal Analysis Topographical Mapping System (ATMS) to provide automatic/unsupervised engine diagnostic capabilities. The ATMS will utilize a rule-based Clips expert system to supervise a hierarchy of diagnostic signature analysis techniques in the Advanced Signal Analysis Library (ASAL). ASAL will perform automatic signal processing, archiving, and anomaly detection/identification tasks in order to provide an intelligent and fully automated engine diagnostic capability. The ATMS has been successfully developed under this contract. In summary, the program objectives to design, develop, test and conduct performance evaluation for an automated engine diagnostic system have been successfully achieved. Software implementation of the entire ATMS system on MSFC's OISPS computer has been completed. The significance of the ATMS developed under this program is attributed to the fully automated coherence analysis capability for anomaly detection and identification which can greatly enhance the power and reliability of engine diagnostic evaluation. The results have demonstrated that ATMS can significantly save time and man-hours in performing engine test/flight data analysis and performance evaluation of large volumes of dynamic test data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, H.S.; Ables, E.; Barthelmy, S.D.
LOTIS is a rapidly slewing wide-field-of-view telescope which was designed and constructed to search for simultaneous gamma-ray burst (GRB) optical counterparts. This experiment requires a rapidly slewing ({lt} 10 sec), wide-field-of-view ({gt} 15{degrees}), automatic and dedicated telescope. LOTIS utilizes commercial tele-photo lenses and custom 2048 x 2048 CCD cameras to view a 17.6 x 17.6{degrees} field of view. It can point to any part of the sky within 5 sec and is fully automated. It is connected via Internet socket to the GRB coordinate distribution network which analyzes telemetry from the satellite and delivers GRB coordinate information in real-time. LOTISmore » started routine operation in Oct. 1996. In the idle time between GRB triggers, LOTIS systematically surveys the entire available sky every night for new optical transients. This paper will describe the system design and performance.« less
An Open-Source Automated Peptide Synthesizer Based on Arduino and Python.
Gali, Hariprasad
2017-10-01
The development of the first open-source automated peptide synthesizer, PepSy, using Arduino UNO and readily available components is reported. PepSy was primarily designed to synthesize small peptides in a relatively small scale (<100 µmol). Scripts to operate PepSy in a fully automatic or manual mode were written in Python. Fully automatic script includes functions to carry out resin swelling, resin washing, single coupling, double coupling, Fmoc deprotection, ivDde deprotection, on-resin oxidation, end capping, and amino acid/reagent line cleaning. Several small peptides and peptide conjugates were successfully synthesized on PepSy with reasonably good yields and purity depending on the complexity of the peptide.
NASA Technical Reports Server (NTRS)
Vallot, Lawrence; Snyder, Scott; Schipper, Brian; Parker, Nigel; Spitzer, Cary
1991-01-01
NASA-Langley has conducted a flight test program evaluating a differential GPS/inertial navigation system's (DGPS/INS) utility as an approach/landing aid. The DGPS/INS airborne and ground components are based on off-the-shelf transport aircraft avionics, namely a global positioning/inertial reference unit (GPIRU) and two GPS sensor units (GPSSUs). Systematic GPS errors are measured by the ground GPSSU and transmitted to the aircraft GPIRU, allowing the errors to be eliminated or greatly reduced in the airborne equipment. Over 120 landings were flown; 36 of these were fully automatic DGPS/INS landings.
Assessing the impact of graphical quality on automatic text recognition in digital maps
NASA Astrophysics Data System (ADS)
Chiang, Yao-Yi; Leyk, Stefan; Honarvar Nazari, Narges; Moghaddam, Sima; Tan, Tian Xiang
2016-08-01
Converting geographic features (e.g., place names) in map images into a vector format is the first step for incorporating cartographic information into a geographic information system (GIS). With the advancement in computational power and algorithm design, map processing systems have been considerably improved over the last decade. However, the fundamental map processing techniques such as color image segmentation, (map) layer separation, and object recognition are sensitive to minor variations in graphical properties of the input image (e.g., scanning resolution). As a result, most map processing results would not meet user expectations if the user does not "properly" scan the map of interest, pre-process the map image (e.g., using compression or not), and train the processing system, accordingly. These issues could slow down the further advancement of map processing techniques as such unsuccessful attempts create a discouraged user community, and less sophisticated tools would be perceived as more viable solutions. Thus, it is important to understand what kinds of maps are suitable for automatic map processing and what types of results and process-related errors can be expected. In this paper, we shed light on these questions by using a typical map processing task, text recognition, to discuss a number of map instances that vary in suitability for automatic processing. We also present an extensive experiment on a diverse set of scanned historical maps to provide measures of baseline performance of a standard text recognition tool under varying map conditions (graphical quality) and text representations (that can vary even within the same map sheet). Our experimental results help the user understand what to expect when a fully or semi-automatic map processing system is used to process a scanned map with certain (varying) graphical properties and complexities in map content.
Sentry: An Automated Close Approach Monitoring System for Near-Earth Objects
NASA Astrophysics Data System (ADS)
Chamberlin, A. B.; Chesley, S. R.; Chodas, P. W.; Giorgini, J. D.; Keesey, M. S.; Wimberly, R. N.; Yeomans, D. K.
2001-11-01
In response to international concern about potential asteroid impacts on Earth, NASA's Near-Earth Object (NEO) Program Office has implemented a new system called ``Sentry'' to automatically update the orbits of all NEOs on a daily basis and compute Earth close approaches up to 100 years into the future. Results are published on our web site (http://neo.jpl.nasa.gov/) and updated orbits and ephemerides made available via the JPL Horizons ephemeris service (http://ssd.jpl.nasa.gov/horizons.html). Sentry collects new and revised astrometric observations from the Minor Planet Center (MPC) via their electronic circulars (MPECs) in near real time as well as radar and optical astrometry sent directly from observers. NEO discoveries and identifications are detected in MPECs and processed appropriately. In addition to these daily updates, Sentry synchronizes with each monthly batch of MPC astrometry and automatically updates all NEO observation files. Daily and monthly processing of NEO astrometry is managed using a queuing system which allows for manual intervention of selected NEOs without interfering with the automatic system. At the heart of Sentry is a fully automatic orbit determination program which handles outlier rejection and ensures convergence in the new solution. Updated orbital elements and their covariances are published via Horizons and our NEO web site, typically within 24 hours. A new version of Horizons, in development, will allow computation of ephemeris uncertainties using covariance data. The positions of NEOs with updated orbits are numerically integrated up to 100 years into the future and each close approach to any perturbing body in our dynamic model (all planets, Moon, Ceres, Pallas, Vesta) is recorded. Significant approaches are flagged for extended analysis including Monte Carlo studies. Results, such as minimum encounter distances and future Earth impact probabilities, are published on our NEO web site.
Active optics - The NTT and the future
NASA Astrophysics Data System (ADS)
Wilson, R. N.; Franza, F.; Giordano, P.; Noethe, L.; Tarenghi, M.
1988-09-01
An account is given of the essential design features and advantages of the ESO's NTT system optics, constituting an active telescope in which the optical correction process exhibited in histograms can be performed at will, on-line, so that the intrinsic quality of the telescope can be fully realized. This technology allows the relaxation of low spatial frequency (long-wave) manufacturing tolerances, and accomplishes automatic maintenance with respect to errors due to optics' maladjustment. Linearity, convergence, and orthogonality laws are used by the optical correction process algorithm.
Harati, Vida; Khayati, Rasoul; Farzan, Abdolreza
2011-07-01
Uncontrollable and unlimited cell growth leads to tumor genesis in the brain. If brain tumors are not diagnosed early and cured properly, they could cause permanent brain damage or even death to patients. As in all methods of treatments, any information about tumor position and size is important for successful treatment; hence, finding an accurate and a fully automated method to give information to physicians is necessary. A fully automatic and accurate method for tumor region detection and segmentation in brain magnetic resonance (MR) images is suggested. The presented approach is an improved fuzzy connectedness (FC) algorithm based on a scale in which the seed point is selected automatically. This algorithm is independent of the tumor type in terms of its pixels intensity. Tumor segmentation evaluation results based on similarity criteria (similarity index (SI), overlap fraction (OF), and extra fraction (EF) are 92.89%, 91.75%, and 3.95%, respectively) indicate a higher performance of the proposed approach compared to the conventional methods, especially in MR images, in tumor regions with low contrast. Thus, the suggested method is useful for increasing the ability of automatic estimation of tumor size and position in brain tissues, which provides more accurate investigation of the required surgery, chemotherapy, and radiotherapy procedures. Copyright © 2011 Elsevier Ltd. All rights reserved.
Quantification of regional fat volume in rat MRI
NASA Astrophysics Data System (ADS)
Sacha, Jaroslaw P.; Cockman, Michael D.; Dufresne, Thomas E.; Trokhan, Darren
2003-05-01
Multiple initiatives in the pharmaceutical and beauty care industries are directed at identifying therapies for weight management. Body composition measurements are critical for such initiatives. Imaging technologies that can be used to measure body composition noninvasively include DXA (dual energy x-ray absorptiometry) and MRI (magnetic resonance imaging). Unlike other approaches, MRI provides the ability to perform localized measurements of fat distribution. Several factors complicate the automatic delineation of fat regions and quantification of fat volumes. These include motion artifacts, field non-uniformity, brightness and contrast variations, chemical shift misregistration, and ambiguity in delineating anatomical structures. We have developed an approach to deal practically with those challenges. The approach is implemented in a package, the Fat Volume Tool, for automatic detection of fat tissue in MR images of the rat abdomen, including automatic discrimination between abdominal and subcutaneous regions. We suppress motion artifacts using masking based on detection of implicit landmarks in the images. Adaptive object extraction is used to compensate for intensity variations. This approach enables us to perform fat tissue detection and quantification in a fully automated manner. The package can also operate in manual mode, which can be used for verification of the automatic analysis or for performing supervised segmentation. In supervised segmentation, the operator has the ability to interact with the automatic segmentation procedures to touch-up or completely overwrite intermediate segmentation steps. The operator's interventions steer the automatic segmentation steps that follow. This improves the efficiency and quality of the final segmentation. Semi-automatic segmentation tools (interactive region growing, live-wire, etc.) improve both the accuracy and throughput of the operator when working in manual mode. The quality of automatic segmentation has been evaluated by comparing the results of fully automated analysis to manual analysis of the same images. The comparison shows a high degree of correlation that validates the quality of the automatic segmentation approach.
Gordien, Jean-Baptiste; Pigneux, Arnaud; Vigouroux, Stephane; Tabrizi, Reza; Accoceberry, Isabelle; Bernadou, Jean-Marc; Rouault, Audrey; Saux, Marie-Claude; Breilh, Dominique
2009-12-05
A simple, specific and automatable HPLC assay was developed for a simultaneous determination of systemic azoles (fluconazole, posaconazole, voriconazole, itraconazole and its metabolite hydroxyl-itraconazole, and ketoconazole) in plasma. The major advantage of this assay was sample preparation by a fully automatable solid phase extraction with Varian Plexa cartridges. C6-phenyl column was used for chromatographic separation, and UV detection was set at a wavelength of 260 nm. Linezolid was used as an internal standard. The assay was specific and linear over the concentration range of 0.05 to 40 microg/ml excepted for fluconazole which was between 0.05 and 100 microg/ml, and itraconazole between 0.1 and 40 microg/ml. Validation data for accuracy and precision for intra- and inter-day were good and satisfied FDA's guidance: CV between 0.24% and 11.66% and accuracy between 93.8% and 108.7% for all molecules. This assay was applied to therapeutic drug monitoring on patients hospitalized in intensive care and onco-hematologic units.
Automatic zebrafish heartbeat detection and analysis for zebrafish embryos.
Pylatiuk, Christian; Sanchez, Daniela; Mikut, Ralf; Alshut, Rüdiger; Reischl, Markus; Hirth, Sofia; Rottbauer, Wolfgang; Just, Steffen
2014-08-01
A fully automatic detection and analysis method of heartbeats in videos of nonfixed and nonanesthetized zebrafish embryos is presented. This method reduces the manual workload and time needed for preparation and imaging of the zebrafish embryos, as well as for evaluating heartbeat parameters such as frequency, beat-to-beat intervals, and arrhythmicity. The method is validated by a comparison of the results from automatic and manual detection of the heart rates of wild-type zebrafish embryos 36-120 h postfertilization and of embryonic hearts with bradycardia and pauses in the cardiac contraction.
Ben Younes, Lassad; Nakajima, Yoshikazu; Saito, Toki
2014-03-01
Femur segmentation is well established and widely used in computer-assisted orthopedic surgery. However, most of the robust segmentation methods such as statistical shape models (SSM) require human intervention to provide an initial position for the SSM. In this paper, we propose to overcome this problem and provide a fully automatic femur segmentation method for CT images based on primitive shape recognition and SSM. Femur segmentation in CT scans was performed using primitive shape recognition based on a robust algorithm such as the Hough transform and RANdom SAmple Consensus. The proposed method is divided into 3 steps: (1) detection of the femoral head as sphere and the femoral shaft as cylinder in the SSM and the CT images, (2) rigid registration between primitives of SSM and CT image to initialize the SSM into the CT image, and (3) fitting of the SSM to the CT image edge using an affine transformation followed by a nonlinear fitting. The automated method provided good results even with a high number of outliers. The difference of segmentation error between the proposed automatic initialization method and a manual initialization method is less than 1 mm. The proposed method detects primitive shape position to initialize the SSM into the target image. Based on primitive shapes, this method overcomes the problem of inter-patient variability. Moreover, the results demonstrate that our method of primitive shape recognition can be used for 3D SSM initialization to achieve fully automatic segmentation of the femur.
Automatic segmentation of vessels in in-vivo ultrasound scans
NASA Astrophysics Data System (ADS)
Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin; Arendt Jensen, Jørgen
2017-03-01
Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs a vessel segmentation by use of the marker-controlled watershed transform. The ultrasound images used in the study were acquired using the bk3000 ultrasound scanner (BK Ultrasound, Herlev, Denmark) with two transducers "8L2 Linear" and "10L2w Wide Linear" (BK Ultrasound, Herlev, Denmark). The algorithm was evaluated empirically and applied to a dataset of in-vivo 1770 images recorded from 8 healthy subjects. The segmentation results were compared to manual delineation performed by two experienced users. The results showed a sensitivity and specificity of 90.41+/-11.2 % and 97.93+/-5.7% (mean+/-standard deviation), respectively. The amount of overlap of segmentation and manual segmentation, was measured by the Dice similarity coefficient, which was 91.25+/-11.6%. The empirical results demonstrated the feasibility of segmenting the vessel lumen in ultrasound scans using a fully automatic algorithm.
Nowinski, Wieslaw L; Thirunavuukarasuu, Arumugam; Ananthasubramaniam, Anand; Chua, Beng Choon; Qian, Guoyu; Nowinska, Natalia G; Marchenko, Yevgen; Volkau, Ihar
2009-10-01
Preparation of tests and student's assessment by the instructor are time consuming. We address these two tasks in neuroanatomy education by employing a digital media application with a three-dimensional (3D), interactive, fully segmented, and labeled brain atlas. The anatomical and vascular models in the atlas are linked to Terminologia Anatomica. Because the cerebral models are fully segmented and labeled, our approach enables automatic and random atlas-derived generation of questions to test location and naming of cerebral structures. This is done in four steps: test individualization by the instructor, test taking by the students at their convenience, automatic student assessment by the application, and communication of the individual assessment to the instructor. A computer-based application with an interactive 3D atlas and a preliminary mobile-based application were developed to realize this approach. The application works in two test modes: instructor and student. In the instructor mode, the instructor customizes the test by setting the scope of testing and student performance criteria, which takes a few seconds. In the student mode, the student is tested and automatically assessed. Self-testing is also feasible at any time and pace. Our approach is automatic both with respect to test generation and student assessment. It is also objective, rapid, and customizable. We believe that this approach is novel from computer-based, mobile-based, and atlas-assisted standpoints.
Xiao, Bo; Huang, Chewei; Imel, Zac E; Atkins, David C; Georgiou, Panayiotis; Narayanan, Shrikanth S
2016-04-01
Scaling up psychotherapy services such as for addiction counseling is a critical societal need. One challenge is ensuring quality of therapy, due to the heavy cost of manual observational assessment. This work proposes a speech technology-based system to automate the assessment of therapist empathy-a key therapy quality index-from audio recordings of the psychotherapy interactions. We designed a speech processing system that includes voice activity detection and diarization modules, and an automatic speech recognizer plus a speaker role matching module to extract the therapist's language cues. We employed Maximum Entropy models, Maximum Likelihood language models, and a Lattice Rescoring method to characterize high vs. low empathic language. We estimated therapy-session level empathy codes using utterance level evidence obtained from these models. Our experiments showed that the fully automated system achieved a correlation of 0.643 between expert annotated empathy codes and machine-derived estimations, and an accuracy of 81% in classifying high vs. low empathy, in comparison to a 0.721 correlation and 86% accuracy in the oracle setting using manual transcripts. The results show that the system provides useful information that can contribute to automatic quality insurance and therapist training.
Xiao, Bo; Huang, Chewei; Imel, Zac E.; Atkins, David C.; Georgiou, Panayiotis; Narayanan, Shrikanth S.
2016-01-01
Scaling up psychotherapy services such as for addiction counseling is a critical societal need. One challenge is ensuring quality of therapy, due to the heavy cost of manual observational assessment. This work proposes a speech technology-based system to automate the assessment of therapist empathy—a key therapy quality index—from audio recordings of the psychotherapy interactions. We designed a speech processing system that includes voice activity detection and diarization modules, and an automatic speech recognizer plus a speaker role matching module to extract the therapist's language cues. We employed Maximum Entropy models, Maximum Likelihood language models, and a Lattice Rescoring method to characterize high vs. low empathic language. We estimated therapy-session level empathy codes using utterance level evidence obtained from these models. Our experiments showed that the fully automated system achieved a correlation of 0.643 between expert annotated empathy codes and machine-derived estimations, and an accuracy of 81% in classifying high vs. low empathy, in comparison to a 0.721 correlation and 86% accuracy in the oracle setting using manual transcripts. The results show that the system provides useful information that can contribute to automatic quality insurance and therapist training. PMID:28286867
Adaptive road crack detection system by pavement classification.
Gavilán, Miguel; Balcones, David; Marcos, Oscar; Llorca, David F; Sotelo, Miguel A; Parra, Ignacio; Ocaña, Manuel; Aliseda, Pedro; Yarza, Pedro; Amírola, Alejandro
2011-01-01
This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS) with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement.
Adaptive Road Crack Detection System by Pavement Classification
Gavilán, Miguel; Balcones, David; Marcos, Oscar; Llorca, David F.; Sotelo, Miguel A.; Parra, Ignacio; Ocaña, Manuel; Aliseda, Pedro; Yarza, Pedro; Amírola, Alejandro
2011-01-01
This paper presents a road distress detection system involving the phases needed to properly deal with fully automatic road distress assessment. A vehicle equipped with line scan cameras, laser illumination and acquisition HW-SW is used to storage the digital images that will be further processed to identify road cracks. Pre-processing is firstly carried out to both smooth the texture and enhance the linear features. Non-crack features detection is then applied to mask areas of the images with joints, sealed cracks and white painting, that usually generate false positive cracking. A seed-based approach is proposed to deal with road crack detection, combining Multiple Directional Non-Minimum Suppression (MDNMS) with a symmetry check. Seeds are linked by computing the paths with the lowest cost that meet the symmetry restrictions. The whole detection process involves the use of several parameters. A correct setting becomes essential to get optimal results without manual intervention. A fully automatic approach by means of a linear SVM-based classifier ensemble able to distinguish between up to 10 different types of pavement that appear in the Spanish roads is proposed. The optimal feature vector includes different texture-based features. The parameters are then tuned depending on the output provided by the classifier. Regarding non-crack features detection, results show that the introduction of such module reduces the impact of false positives due to non-crack features up to a factor of 2. In addition, the observed performance of the crack detection system is significantly boosted by adapting the parameters to the type of pavement. PMID:22163717
SIMULATING LOCAL DENSE AREAS USING PMMA TO ASSESS AUTOMATIC EXPOSURE CONTROL IN DIGITAL MAMMOGRAPHY.
Bouwman, R W; Binst, J; Dance, D R; Young, K C; Broeders, M J M; den Heeten, G J; Veldkamp, W J H; Bosmans, H; van Engen, R E
2016-06-01
Current digital mammography (DM) X-ray systems are equipped with advanced automatic exposure control (AEC) systems, which determine the exposure factors depending on breast composition. In the supplement of the European guidelines for quality assurance in breast cancer screening and diagnosis, a phantom-based test is included to evaluate the AEC response to local dense areas in terms of signal-to-noise ratio (SNR). This study evaluates the proposed test in terms of SNR and dose for four DM systems. The glandular fraction represented by the local dense area was assessed by analytic calculations. It was found that the proposed test simulates adipose to fully glandular breast compositions in attenuation. The doses associated with the phantoms were found to match well with the patient dose distribution. In conclusion, after some small adaptations, the test is valuable for the assessment of the AEC performance in terms of both SNR and dose. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Development of an intelligent controller for power generators
NASA Astrophysics Data System (ADS)
Maxted, Clive; Waller, Winston
2005-01-01
This paper is a description of the development of an embedded controller for high power industrial diesel generators. The aim of the project was to replace the existing discrete logic design by an intelligent versatile and user configurable control system. A prototype embedded PC controlled system was developed, capable of fully replacing the existing system, with a colour TFT display and keypad. Features include fully automatic generator control as before with status and alarm display and monitoring of engine parameters, along with data logging, remote communications and a means of analysing data. The unit was tested on the bench and on diesel generators for the core controlling functionality to prove compliance with the specifications. The results of the testing proved the unit's suitability as a replacement for the existing system in its intended environment. The significance of this study is that a low cost replacement solution has been found for an industrial application by transferring modern technological knowledge to a small business. The company are now able to build on the design and take it into production, reducing servicing and production costs.
Automatic Blocking Of QR and LU Factorizations for Locality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Q; Kennedy, K; You, H
2004-03-26
QR and LU factorizations for dense matrices are important linear algebra computations that are widely used in scientific applications. To efficiently perform these computations on modern computers, the factorization algorithms need to be blocked when operating on large matrices to effectively exploit the deep cache hierarchy prevalent in today's computer memory systems. Because both QR (based on Householder transformations) and LU factorization algorithms contain complex loop structures, few compilers can fully automate the blocking of these algorithms. Though linear algebra libraries such as LAPACK provides manually blocked implementations of these algorithms, by automatically generating blocked versions of the computations, moremore » benefit can be gained such as automatic adaptation of different blocking strategies. This paper demonstrates how to apply an aggressive loop transformation technique, dependence hoisting, to produce efficient blockings for both QR and LU with partial pivoting. We present different blocking strategies that can be generated by our optimizer and compare the performance of auto-blocked versions with manually tuned versions in LAPACK, both using reference BLAS, ATLAS BLAS and native BLAS specially tuned for the underlying machine architectures.« less
Temporal Cyber Attack Detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingram, Joey Burton; Draelos, Timothy J.; Galiardi, Meghan
Rigorous characterization of the performance and generalization ability of cyber defense systems is extremely difficult, making it hard to gauge uncertainty, and thus, confidence. This difficulty largely stems from a lack of labeled attack data that fully explores the potential adversarial space. Currently, performance of cyber defense systems is typically evaluated in a qualitative manner by manually inspecting the results of the system on live data and adjusting as needed. Additionally, machine learning has shown promise in deriving models that automatically learn indicators of compromise that are more robust than analyst-derived detectors. However, to generate these models, most algorithms requiremore » large amounts of labeled data (i.e., examples of attacks). Algorithms that do not require annotated data to derive models are similarly at a disadvantage, because labeled data is still necessary when evaluating performance. In this work, we explore the use of temporal generative models to learn cyber attack graph representations and automatically generate data for experimentation and evaluation. Training and evaluating cyber systems and machine learning models requires significant, annotated data, which is typically collected and labeled by hand for one-off experiments. Automatically generating such data helps derive/evaluate detection models and ensures reproducibility of results. Experimentally, we demonstrate the efficacy of generative sequence analysis techniques on learning the structure of attack graphs, based on a realistic example. These derived models can then be used to generate more data. Additionally, we provide a roadmap for future research efforts in this area.« less
Automatic representation of urban terrain models for simulations on the example of VBS2
NASA Astrophysics Data System (ADS)
Bulatov, Dimitri; Häufel, Gisela; Solbrig, Peter; Wernerus, Peter
2014-10-01
Virtual simulations have been on the rise together with the fast progress of rendering engines and graphics hardware. Especially in military applications, offensive actions in modern peace-keeping missions have to be quick, firm and precise, especially under the conditions of asymmetric warfare, non-cooperative urban terrain and rapidly developing situations. Going through the mission in simulation can prepare the minds of soldiers and leaders, increase selfconfidence and tactical awareness, and finally save lives. This work is dedicated to illustrate the potential and limitations of integration of semantic urban terrain models into a simulation. Our system of choice is Virtual Battle Space 2, a simulation system created by Bohemia Interactive System. The topographic object types that we are able to export into this simulation engine are either results of the sensor data evaluation (building, trees, grass, and ground), which is done fully-automatically, or entities obtained from publicly available sources (streets and water-areas), which can be converted into the system-proper format with a few mouse clicks. The focus of this work lies in integrating of information about building façades into the simulation. We are inspired by state-of the art methods that allow for automatic extraction of doors and windows in laser point clouds captured from building walls and thus increase the level of details of building models. As a consequence, it is important to simulate these animationable entities. Doing so, we are able to make accessible some of the buildings in the simulation.
Huang, Hsiao-Hui; Huang, Chun-Yu; Chen, Chiao-Ning; Wang, Yun-Wen; Huang, Teng-Yi
2018-01-01
Native T1 value is emerging as a reliable indicator of abnormal heart conditions related to myocardial fibrosis. Investigators have extensively used the standardized myocardial segmentation of the American Heart Association (AHA) to measure regional T1 values of the left ventricular (LV) walls. In this paper, we present a fully automatic system to analyze modified Look-Locker inversion recovery images and to report regional T1 values of AHA segments. Ten healthy individuals participated in the T1 mapping study with a 3.0 T scanner after providing informed consent. First, we obtained masks of an LV blood-pool region and LV walls by using an image synthesis method and a layer-growing method. Subsequently, the LV walls were divided into AHA segments by identifying the boundaries of the septal regions and by using a radial projection method. The layer-growing method significantly enhanced the accuracy of the derived myocardium mask. We compared the T1 values that were obtained using manual region of interest selections and those obtained using the automatic system. The average T1 difference of the calculated segments was 4.6 ± 1.5%. This study demonstrated a practical and robust method of obtaining native T1 values of AHA segments in LV walls.
NASA Astrophysics Data System (ADS)
Paiè, Petra; Bassi, Andrea; Bragheri, Francesca; Osellame, Roberto
2017-02-01
Selective plane illumination microscopy (SPIM) is an optical sectioning technique that allows imaging of biological samples at high spatio-temporal resolution. Standard SPIM devices require dedicated set-ups, complex sample preparation and accurate system alignment, thus limiting the automation of the technique, its accessibility and throughput. We present a millimeter-scaled optofluidic device that incorporates selective plane illumination and fully automatic sample delivery and scanning. To this end an integrated cylindrical lens and a three-dimensional fluidic network were fabricated by femtosecond laser micromachining into a single glass chip. This device can upgrade any standard fluorescence microscope to a SPIM system. We used SPIM on a CHIP to automatically scan biological samples under a conventional microscope, without the need of any motorized stage: tissue spheroids expressing fluorescent proteins were flowed in the microchannel at constant speed and their sections were acquired while passing through the light sheet. We demonstrate high-throughput imaging of the entire sample volume (with a rate of 30 samples/min), segmentation and quantification in thick (100-300 μm diameter) cellular spheroids. This optofluidic device gives access to SPIM analyses to non-expert end-users, opening the way to automatic and fast screening of a high number of samples at subcellular resolution.
Towards automatic patient positioning and scan planning using continuously moving table MR imaging.
Koken, Peter; Dries, Sebastian P M; Keupp, Jochen; Bystrov, Daniel; Pekar, Vladimir; Börnert, Peter
2009-10-01
A concept is proposed to simplify patient positioning and scan planning to improve ease of use and workflow in MR. After patient preparation in front of the scanner the operator selects the anatomy of interest by a single push-button action. Subsequently, the patient table is moved automatically into the scanner, while real-time 3D isotropic low-resolution continuously moving table scout scanning is performed using patient-independent MR system settings. With a real-time organ identification process running in parallel and steering the scanner, the target anatomy can be positioned fully automatically in the scanner's sensitive volume. The desired diagnostic examination of the anatomy of interest can be planned and continued immediately using the geometric information derived from the acquired 3D data. The concept was implemented and successfully tested in vivo in 12 healthy volunteers, focusing on the liver as the target anatomy. The positioning accuracy achieved was on the order of several millimeters, which turned out to be sufficient for initial planning purposes. Furthermore, the impact of nonoptimal system settings on the positioning performance, the signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) was investigated. The present work proved the basic concept of the proposed approach as an element of future scan automation. (c) 2009 Wiley-Liss, Inc.
Development of a Global Agricultural Hotspot Detection and Early Warning System
NASA Astrophysics Data System (ADS)
Lemoine, G.; Rembold, F.; Urbano, F.; Csak, G.
2015-12-01
The number of web based platforms for crop monitoring has grown rapidly over the last years and anomaly maps and time profiles of remote sensing derived indicators can be accessed online thanks to a number of web based portals. However, while these systems make available a large amount of crop monitoring data to the agriculture and food security analysts, there is no global platform which provides agricultural production hotspot warning in a highly automatic and timely manner. Therefore a web based system providing timely warning evidence as maps and short narratives is currently under development by the Joint Research Centre. The system (called "HotSpot Detection System of Agriculture Production Anomalies", HSDS) will focus on water limited agricultural systems worldwide. The automatic analysis of relevant meteorological and vegetation indicators at selected administrative units (Gaul 1 level) will trigger warning messages for the areas where anomalous conditions are observed. The level of warning (ranging from "watch" to "alert") will depend on the nature and number of indicators for which an anomaly is detected. Information regarding the extent of the agricultural areas concerned by the anomaly and the progress of the agricultural season will complement the warning label. In addition, we are testing supplementary detailed information from other sources for the areas triggering a warning. These regard the automatic web-based and food security-tailored analysis of media (using the JRC Media Monitor semantic search engine) and the automatic detection of active crop area using Sentinel 1, upcoming Sentinel-2 and Landsat 8 imagery processed in Google Earth Engine. The basic processing will be fully automated and updated every 10 days exploiting low resolution rainfall estimates and satellite vegetation indices. Maps, trend graphs and statistics accompanied by short narratives edited by a team of crop monitoring experts, will be made available on the website on a monthly basis.
Hayashi, Nobuyoshi; Sugawara, Tohru; Shintani, Motoaki; Kato, Shinji
1989-01-01
A versatile automated apparatus, equipped with an artificial intelligence has been developed which may be used to prepare and isolate a wide variety of compounds. The prediction of the optimum reaction conditions and the reaction control in real time, are accomplished using novel kinetic equations and substituent effects in an artificial intelligence software which has already reported [1]. This paper deals with the design and construction of the fully automated system, and its application to the synthesis of a substituted N-(carboxyalkyl)amino acid. The apparatus is composed of units for perfoming various tasks, e.g. reagent supply, reaction, purification and separation, each linked to a control system. All synthetic processes including washing and drying of the apparatus after each synthetic run were automatically performed from the mixing of the reactants to the isolation of the products as powders with purities of greater than 98%. The automated apparatus has been able to run for 24 hours per day, and the average rate of synthesis of substituted N-(carboxyalkyl)amino acids has been three compounds daily. The apparatus is extremely valuable for synthesizing many derivatives of one particular compound structure. Even if the chemical yields are low under the optimum conditions, it is still possible to obtain a sufficient amount of the desired product by repetition of the reaction. Moreover it was possible to greatly reduce the manual involvement of the many syntheses which are a necessary part of pharmaceutical research. PMID:18924679
Shared control on lunar spacecraft teleoperation rendezvous operations with large time delay
NASA Astrophysics Data System (ADS)
Ya-kun, Zhang; Hai-yang, Li; Rui-xue, Huang; Jiang-hui, Liu
2017-08-01
Teleoperation could be used in space on-orbit serving missions, such as object deorbits, spacecraft approaches, and automatic rendezvous and docking back-up systems. Teleoperation rendezvous and docking in lunar orbit may encounter bottlenecks for the inherent time delay in the communication link and the limited measurement accuracy of sensors. Moreover, human intervention is unsuitable in view of the partial communication coverage problem. To solve these problems, a shared control strategy for teleoperation rendezvous and docking is detailed. The control authority in lunar orbital maneuvers that involves two spacecraft as rendezvous and docking in the final phase was discussed in this paper. The predictive display model based on the relative dynamic equations is established to overcome the influence of the large time delay in communication link. We discuss and attempt to prove via consistent, ground-based simulations the relative merits of fully autonomous control mode (i.e., onboard computer-based), fully manual control (i.e., human-driven at the ground station) and shared control mode. The simulation experiments were conducted on the nine-degrees-of-freedom teleoperation rendezvous and docking simulation platform. Simulation results indicated that the shared control methods can overcome the influence of time delay effects. In addition, the docking success probability of shared control method was enhanced compared with automatic and manual modes.
3D ultrasound-based patient positioning for radiotherapy
NASA Astrophysics Data System (ADS)
Wang, Michael H.; Rohling, Robert N.; Archip, Neculai; Clark, Brenda G.
2006-03-01
A new 3D ultrasound-based patient positioning system for target localisation during radiotherapy is described. Our system incorporates the use of tracked 3D ultrasound scans of the target anatomy acquired using a dedicated 3D ultrasound probe during both the simulation and treatment sessions, fully automatic 3D ultrasound-toultrasound registration, and OPTOTRAK IRLEDs for registering simulation CT to ultrasound data. The accuracy of the entire radiotherapy treatment process resulting from the use of our system, from simulation to the delivery of radiation, has been validated on a phantom. The overall positioning error is less than 5mm, which includes errors from estimation of the irradiated region location in the phantom.
Automated Generation of Fault Management Artifacts from a Simple System Model
NASA Technical Reports Server (NTRS)
Kennedy, Andrew K.; Day, John C.
2013-01-01
Our understanding of off-nominal behavior - failure modes and fault propagation - in complex systems is often based purely on engineering intuition; specific cases are assessed in an ad hoc fashion as a (fallible) fault management engineer sees fit. This work is an attempt to provide a more rigorous approach to this understanding and assessment by automating the creation of a fault management artifact, the Failure Modes and Effects Analysis (FMEA) through querying a representation of the system in a SysML model. This work builds off the previous development of an off-nominal behavior model for the upcoming Soil Moisture Active-Passive (SMAP) mission at the Jet Propulsion Laboratory. We further developed the previous system model to more fully incorporate the ideas of State Analysis, and it was restructured in an organizational hierarchy that models the system as layers of control systems while also incorporating the concept of "design authority". We present software that was developed to traverse the elements and relationships in this model to automatically construct an FMEA spreadsheet. We further discuss extending this model to automatically generate other typical fault management artifacts, such as Fault Trees, to efficiently portray system behavior, and depend less on the intuition of fault management engineers to ensure complete examination of off-nominal behavior.
Prevention of gross setup errors in radiotherapy with an efficient automatic patient safety system.
Yan, Guanghua; Mittauer, Kathryn; Huang, Yin; Lu, Bo; Liu, Chihray; Li, Jonathan G
2013-11-04
Treatment of the wrong body part due to incorrect setup is among the leading types of errors in radiotherapy. The purpose of this paper is to report an efficient automatic patient safety system (PSS) to prevent gross setup errors. The system consists of a pair of charge-coupled device (CCD) cameras mounted in treatment room, a single infrared reflective marker (IRRM) affixed on patient or immobilization device, and a set of in-house developed software. Patients are CT scanned with a CT BB placed over their surface close to intended treatment site. Coordinates of the CT BB relative to treatment isocenter are used as reference for tracking. The CT BB is replaced with an IRRM before treatment starts. PSS evaluates setup accuracy by comparing real-time IRRM position with reference position. To automate system workflow, PSS synchronizes with the record-and-verify (R&V) system in real time and automatically loads in reference data for patient under treatment. Special IRRMs, which can permanently stick to patient face mask or body mold throughout the course of treatment, were designed to minimize therapist's workload. Accuracy of the system was examined on an anthropomorphic phantom with a designed end-to-end test. Its performance was also evaluated on head and neck as well as abdominalpelvic patients using cone-beam CT (CBCT) as standard. The PSS system achieved a seamless clinic workflow by synchronizing with the R&V system. By permanently mounting specially designed IRRMs on patient immobilization devices, therapist intervention is eliminated or minimized. Overall results showed that the PSS system has sufficient accuracy to catch gross setup errors greater than 1 cm in real time. An efficient automatic PSS with sufficient accuracy has been developed to prevent gross setup errors in radiotherapy. The system can be applied to all treatment sites for independent positioning verification. It can be an ideal complement to complex image-guidance systems due to its advantages of continuous tracking ability, no radiation dose, and fully automated clinic workflow.
Improving reticle defect disposition via fully automated lithography simulation
NASA Astrophysics Data System (ADS)
Mann, Raunak; Goodman, Eliot; Lao, Keith; Ha, Steven; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan
2016-03-01
Most advanced wafer fabs have embraced complex pattern decoration, which creates numerous challenges during in-fab reticle qualification. These optical proximity correction (OPC) techniques create assist features that tend to be very close in size and shape to the main patterns as seen in Figure 1. A small defect on an assist feature will most likely have little or no impact on the fidelity of the wafer image, whereas the same defect on a main feature could significantly decrease device functionality. In order to properly disposition these defects, reticle inspection technicians need an efficient method that automatically separates main from assist features and predicts the resulting defect impact on the wafer image. Analysis System (ADAS) defect simulation system[1]. Up until now, using ADAS simulation was limited to engineers due to the complexity of the settings that need to be manually entered in order to create an accurate result. A single error in entering one of these values can cause erroneous results, therefore full automation is necessary. In this study, we propose a new method where all needed simulation parameters are automatically loaded into ADAS. This is accomplished in two parts. First we have created a scanner parameter database that is automatically identified from mask product and level names. Second, we automatically determine the appropriate simulation printability threshold by using a new reference image (provided by the inspection tool) that contains a known measured value of the reticle critical dimension (CD). This new method automatically loads the correct scanner conditions, sets the appropriate simulation threshold, and automatically measures the percentage of CD change caused by the defect. This streamlines qualification and reduces the number of reticles being put on hold, waiting for engineer review. We also present data showing the consistency and reliability of the new method, along with the impact on the efficiency of in-fab reticle qualification.
Highly automated on-orbit operations of the NuSTAR telescope
NASA Astrophysics Data System (ADS)
Roberts, Bryce; Bester, Manfred; Dumlao, Renee; Eckert, Marty; Johnson, Sam; Lewis, Mark; McDonald, John; Pease, Deron; Picard, Greg; Thorsness, Jeremy
2014-08-01
UC Berkeley's Space Sciences Laboratory (SSL) currently operates a fleet of seven NASA satellites, which conduct research in the fields of space physics and astronomy. The newest addition to this fleet is a high-energy X-ray telescope called the Nuclear Spectroscopic Telescope Array (NuSTAR). Since 2012, SSL has conducted on-orbit operations for NuSTAR on behalf of the lead institution, principle investigator, and Science Operations Center at the California Institute of Technology. NuSTAR operations benefit from a truly multi-mission ground system architecture design focused on automation and autonomy that has been honed by over a decade of continual improvement and ground network expansion. This architecture has made flight operations possible with nominal 40 hours per week staffing, while not compromising mission safety. The remote NuSTAR Science Operation Center (SOC) and Mission Operations Center (MOC) are joined by a two-way electronic interface that allows the SOC to submit automatically validated telescope pointing requests, and also to receive raw data products that are automatically produced after downlink. Command loads are built and uploaded weekly, and a web-based timeline allows both the SOC and MOC to monitor the state of currently scheduled spacecraft activities. Network routing and the command and control system are fully automated by MOC's central scheduling system. A closed-loop data accounting system automatically detects and retransmits data gaps. All passes are monitored by two independent paging systems, which alert staff of pass support problems or anomalous telemetry. NuSTAR mission operations now require less than one attended pass support per workday.
Fu, Yili; Gao, Wenpeng; Chen, Xiaoguang; Zhu, Minwei; Shen, Weigao; Wang, Shuguo
2010-01-01
The reference system based on the fourth ventricular landmarks (including the fastigial point and ventricular floor plane) is used in medical image analysis of the brain stem. The objective of this study was to develop a rapid, robust, and accurate method for the automatic identification of this reference system on T1-weighted magnetic resonance images. The fully automated method developed in this study consisted of four stages: preprocessing of the data set, expectation-maximization algorithm-based extraction of the fourth ventricle in the region of interest, a coarse-to-fine strategy for identifying the fastigial point, and localization of the base point. The method was evaluated on 27 Brain Web data sets qualitatively and 18 Internet Brain Segmentation Repository data sets and 30 clinical scans quantitatively. The results of qualitative evaluation indicated that the method was robust to rotation, landmark variation, noise, and inhomogeneity. The results of quantitative evaluation indicated that the method was able to identify the reference system with an accuracy of 0.7 +/- 0.2 mm for the fastigial point and 1.1 +/- 0.3 mm for the base point. It took <6 seconds for the method to identify the related landmarks on a personal computer with an Intel Core 2 6300 processor and 2 GB of random-access memory. The proposed method for the automatic identification of the reference system based on the fourth ventricular landmarks was shown to be rapid, robust, and accurate. The method has potentially utility in image registration and computer-aided surgery.
3D Cryo-Imaging: A Very High-Resolution View of the Whole Mouse
Roy, Debashish; Steyer, Grant J.; Gargesha, Madhusudhana; Stone, Meredith E.; Wilson, David L.
2009-01-01
We developed the Case Cryo-imaging system that provides information rich, very high-resolution, color brightfield, and molecular fluorescence images of a whole mouse using a section-and-image block-face imaging technology. The system consists of a mouse-sized, motorized cryo-microtome with special features for imaging, a modified, brightfield/ fluorescence microscope, and a robotic xyz imaging system positioner, all of which is fully automated by a control system. Using the robotic system, we acquired microscopic tiled images at a pixel size of 15.6 µm over the block face of a whole mouse sectioned at 40 µm, with a total data volume of 55 GB. Viewing 2D images at multiple resolutions, we identified small structures such as cardiac vessels, muscle layers, villi of the small intestine, the optic nerve, and layers of the eye. Cryo-imaging was also suitable for imaging embryo mutants in 3D. A mouse, in which enhanced green fluorescent protein was expressed under gamma actin promoter in smooth muscle cells, gave clear 3D views of smooth muscle in the urogenital and gastrointestinal tracts. With cryo-imaging, we could obtain 3D vasculature down to 10 µm, over very large regions of mouse brain. Software is fully automated with fully programmable imaging/sectioning protocols, email notifications, and automatic volume visualization. With a unique combination of field-of-view, depth of field, contrast, and resolution, the Case Cryo-imaging system fills the gap between whole animal in vivo imaging and histology. PMID:19248166
Autonomous software: Myth or magic?
NASA Astrophysics Data System (ADS)
Allan, A.; Naylor, T.; Saunders, E. S.
2008-03-01
We discuss work by the eSTAR project which demonstrates a fully closed loop autonomous system for the follow up of possible micro-lensing anomalies. Not only are the initial micro-lensing detections followed up in real time, but ongoing events are prioritised and continually monitored, with the returned data being analysed automatically. If the ``smart software'' running the observing campaign detects a planet-like anomaly, further follow-up will be scheduled autonomously and other telescopes and telescope networks alerted to the possible planetary detection. We further discuss the implications of this, and how such projects can be used to build more general autonomous observing and control systems.
A new order-theoretic characterisation of the polytime computable functions☆
Avanzini, Martin; Eguchi, Naohi; Moser, Georg
2015-01-01
We propose a new order-theoretic characterisation of the class of polytime computable functions. To this avail we define the small polynomial path order (sPOP⁎ for short). This termination order entails a new syntactic method to analyse the innermost runtime complexity of term rewrite systems fully automatically: for any rewrite system compatible with sPOP⁎ that employs recursion up to depth d, the (innermost) runtime complexity is polynomially bounded of degree d. This bound is tight. Thus we obtain a direct correspondence between a syntactic (and easily verifiable) condition of a program and the asymptotic worst-case complexity of the program. PMID:26412933
On Building a Search Interface Discovery System
NASA Astrophysics Data System (ADS)
Shestakov, Denis
A huge portion of the Web known as the deep Web is accessible via search interfaces to myriads of databases on the Web. While relatively good approaches for querying the contents of web databases have been recently proposed, one cannot fully utilize them having most search interfaces unlocated. Thus, the automatic recognition of search interfaces to online databases is crucial for any application accessing the deep Web. This paper describes the architecture of the I-Crawler, a system for finding and classifying search interfaces. The I-Crawler is intentionally designed to be used in the deep web characterization surveys and for constructing directories of deep web resources.
Instrumentation for a dry-pond detention study
Pope, L.M.; Jennings, M.E.; Thibodeaux, K.G.
1988-01-01
A 12.3-acre, fully urbanized, residential land-use catchment was instrumented by the U. S. Geological Survey in Topeka, Kansas. Hydraulic instrumentation for flow measurement includes two types of flumes, a pipe-insert flume and a culvert-inlet (manhole) flume. Samples of rainfall and runoff for water-quality analyses were collected by automatic, 3-liter, 24-sample capacity water samples controlled by multichannel data loggers. Ancillary equipment included a raingage and wet/dry atmospheric-deposition sampler. Nineteen stormwater runoff events were monitored at the site using the instrumentation system. The system has a high reliability of data capture and permits an accurate determination of storm-water loads.
Semiautomatic cold wire feeder systems increase GTA productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, M.
1995-01-01
Often, the focus of attempts to increase GTA welding productivity is on studies to determine if justification exists for additional workstations, or for the investment in new fully automated dedicated welding fixtures. Often less costly and simpler solutions can bring about the necessary means to increase production rates and reduce operating costs. For short-run production applications, it is almost impossible to justify the substantial investment in a dedicated automatic fixture. Now, low cost GTA cold wire feeder systems are within the reach of even small shops. The paper views how cold wire equipment has been applied in several GTAW applicationsmore » to improve results.« less
Automatic high throughput empty ISO container verification
NASA Astrophysics Data System (ADS)
Chalmers, Alex
2007-04-01
Encouraging results are presented for the automatic analysis of radiographic images of a continuous stream of ISO containers to confirm they are truly empty. A series of image processing algorithms are described that process real-time data acquired during the actual inspection of each container and assigns each to one of the classes "empty", "not empty" or "suspect threat". This research is one step towards achieving fully automated analysis of cargo containers.
Hu, Peijun; Wu, Fa; Peng, Jialin; Bao, Yuanyuan; Chen, Feng; Kong, Dexing
2017-03-01
Multi-organ segmentation from CT images is an essential step for computer-aided diagnosis and surgery planning. However, manual delineation of the organs by radiologists is tedious, time-consuming and poorly reproducible. Therefore, we propose a fully automatic method for the segmentation of multiple organs from three-dimensional abdominal CT images. The proposed method employs deep fully convolutional neural networks (CNNs) for organ detection and segmentation, which is further refined by a time-implicit multi-phase evolution method. Firstly, a 3D CNN is trained to automatically localize and delineate the organs of interest with a probability prediction map. The learned probability map provides both subject-specific spatial priors and initialization for subsequent fine segmentation. Then, for the refinement of the multi-organ segmentation, image intensity models, probability priors as well as a disjoint region constraint are incorporated into an unified energy functional. Finally, a novel time-implicit multi-phase level-set algorithm is utilized to efficiently optimize the proposed energy functional model. Our method has been evaluated on 140 abdominal CT scans for the segmentation of four organs (liver, spleen and both kidneys). With respect to the ground truth, average Dice overlap ratios for the liver, spleen and both kidneys are 96.0, 94.2 and 95.4%, respectively, and average symmetric surface distance is less than 1.3 mm for all the segmented organs. The computation time for a CT volume is 125 s in average. The achieved accuracy compares well to state-of-the-art methods with much higher efficiency. A fully automatic method for multi-organ segmentation from abdominal CT images was developed and evaluated. The results demonstrated its potential in clinical usage with high effectiveness, robustness and efficiency.
Fully automatic oil spill detection from COSMO-SkyMed imagery using a neural network approach
NASA Astrophysics Data System (ADS)
Avezzano, Ruggero G.; Del Frate, Fabio; Latini, Daniele
2012-09-01
The increased amount of available Synthetic Aperture Radar (SAR) images acquired over the ocean represents an extraordinary potential for improving oil spill detection activities. On the other side this involves a growing workload on the operators at analysis centers. In addition, even if the operators go through extensive training to learn manual oil spill detection, they can provide different and subjective responses. Hence, the upgrade and improvements of algorithms for automatic detection that can help in screening the images and prioritizing the alarms are of great benefit. In the framework of an ASI Announcement of Opportunity for the exploitation of COSMO-SkyMed data, a research activity (ASI contract L/020/09/0) aiming at studying the possibility to use neural networks architectures to set up fully automatic processing chains using COSMO-SkyMed imagery has been carried out and results are presented in this paper. The automatic identification of an oil spill is seen as a three step process based on segmentation, feature extraction and classification. We observed that a PCNN (Pulse Coupled Neural Network) was capable of providing a satisfactory performance in the different dark spots extraction, close to what it would be produced by manual editing. For the classification task a Multi-Layer Perceptron (MLP) Neural Network was employed.
Fang, Yu-Hua Dean; Chiu, Shao-Chieh; Lu, Chin-Song; Weng, Yi-Hsin
2015-01-01
Purpose. We aimed at improving the existing methods for the fully automatic quantification of striatal uptake of [99mTc]-TRODAT with SPECT imaging. Procedures. A normal [99mTc]-TRODAT template was first formed based on 28 healthy controls. Images from PD patients (n = 365) and nPD subjects (28 healthy controls and 33 essential tremor patients) were spatially normalized to the normal template. We performed an inverse transform on the predefined striatal and reference volumes of interest (VOIs) and applied the transformed VOIs to the original image data to calculate the striatal-to-reference ratio (SRR). The diagnostic performance of the SRR was determined through receiver operating characteristic (ROC) analysis. Results. The SRR measured with our new and automatic method demonstrated excellent diagnostic performance with 92% sensitivity, 90% specificity, 92% accuracy, and an area under the curve (AUC) of 0.94. For the evaluation of the mean SRR and the clinical duration, a quadratic function fit the data with R 2 = 0.84. Conclusions. We developed and validated a fully automatic method for the quantification of the SRR in a large study sample. This method has an excellent diagnostic performance and exhibits a strong correlation between the mean SRR and the clinical duration in PD patients. PMID:26366413
Fang, Yu-Hua Dean; Chiu, Shao-Chieh; Lu, Chin-Song; Yen, Tzu-Chen; Weng, Yi-Hsin
2015-01-01
We aimed at improving the existing methods for the fully automatic quantification of striatal uptake of [(99m)Tc]-TRODAT with SPECT imaging. A normal [(99m)Tc]-TRODAT template was first formed based on 28 healthy controls. Images from PD patients (n = 365) and nPD subjects (28 healthy controls and 33 essential tremor patients) were spatially normalized to the normal template. We performed an inverse transform on the predefined striatal and reference volumes of interest (VOIs) and applied the transformed VOIs to the original image data to calculate the striatal-to-reference ratio (SRR). The diagnostic performance of the SRR was determined through receiver operating characteristic (ROC) analysis. The SRR measured with our new and automatic method demonstrated excellent diagnostic performance with 92% sensitivity, 90% specificity, 92% accuracy, and an area under the curve (AUC) of 0.94. For the evaluation of the mean SRR and the clinical duration, a quadratic function fit the data with R (2) = 0.84. We developed and validated a fully automatic method for the quantification of the SRR in a large study sample. This method has an excellent diagnostic performance and exhibits a strong correlation between the mean SRR and the clinical duration in PD patients.
Pipeline Reduction of Binary Light Curves from Large-Scale Surveys
NASA Astrophysics Data System (ADS)
Prša, Andrej; Zwitter, Tomaž
2007-08-01
One of the most important changes in observational astronomy of the 21st Century is a rapid shift from classical object-by-object observations to extensive automatic surveys. As CCD detectors are getting better and their prices are getting lower, more and more small and medium-size observatories are refocusing their attention to detection of stellar variability through systematic sky-scanning missions. This trend is additionally powered by the success of pioneering surveys such as ASAS, DENIS, OGLE, TASS, their space counterpart Hipparcos and others. Such surveys produce massive amounts of data and it is not at all clear how these data are to be reduced and analysed. This is especially striking in the eclipsing binary (EB) field, where most frequently used tools are optimized for object-by-object analysis. A clear need for thorough, reliable and fully automated approaches to modeling and analysis of EB data is thus obvious. This task is very difficult because of limited data quality, non-uniform phase coverage and parameter degeneracy. The talk will review recent advancements in putting together semi-automatic and fully automatic pipelines for EB data processing. Automatic procedures have already been used to process the Hipparcos data, LMC/SMC observations, OGLE and ASAS catalogs etc. We shall discuss the advantages and shortcomings of these procedures and overview the current status of automatic EB modeling pipelines for the upcoming missions such as CoRoT, Kepler, Gaia and others.
Electromagnetic Thermography Nondestructive Evaluation: Physics-based Modeling and Pattern Mining
Gao, Bin; Woo, Wai Lok; Tian, Gui Yun
2016-01-01
Electromagnetic mechanism of Joule heating and thermal conduction on conductive material characterization broadens their scope for implementation in real thermography based Nondestructive testing and evaluation (NDT&E) systems by imparting sensitivity, conformability and allowing fast and imaging detection, which is necessary for efficiency. The issue of automatic material evaluation has not been fully addressed by researchers and it marks a crucial first step to analyzing the structural health of the material, which in turn sheds light on understanding the production of the defects mechanisms. In this study, we bridge the gap between the physics world and mathematical modeling world. We generate physics-mathematical modeling and mining route in the spatial-, time-, frequency-, and sparse-pattern domains. This is a significant step towards realizing the deeper insight in electromagnetic thermography (EMT) and automatic defect identification. This renders the EMT a promising candidate for the highly efficient and yet flexible NDT&E. PMID:27158061
volBrain: An Online MRI Brain Volumetry System
Manjón, José V.; Coupé, Pierrick
2016-01-01
The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es), which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results. PMID:27512372
A vibration-based health monitoring program for a large and seismically vulnerable masonry dome
NASA Astrophysics Data System (ADS)
Pecorelli, M. L.; Ceravolo, R.; De Lucia, G.; Epicoco, R.
2017-05-01
Vibration-based health monitoring of monumental structures must rely on efficient and, as far as possible, automatic modal analysis procedures. Relatively low excitation energy provided by traffic, wind and other sources is usually sufficient to detect structural changes, as those produced by earthquakes and extreme events. Above all, in-operation modal analysis is a non-invasive diagnostic technique that can support optimal strategies for the preservation of architectural heritage, especially if complemented by model-driven procedures. In this paper, the preliminary steps towards a fully automated vibration-based monitoring of the world’s largest masonry oval dome (internal axes of 37.23 by 24.89 m) are presented. More specifically, the paper reports on signal treatment operations conducted to set up the permanent dynamic monitoring system of the dome and to realise a robust automatic identification procedure. Preliminary considerations on the effects of temperature on dynamic parameters are finally reported.
volBrain: An Online MRI Brain Volumetry System.
Manjón, José V; Coupé, Pierrick
2016-01-01
The amount of medical image data produced in clinical and research settings is rapidly growing resulting in vast amount of data to analyze. Automatic and reliable quantitative analysis tools, including segmentation, allow to analyze brain development and to understand specific patterns of many neurological diseases. This field has recently experienced many advances with successful techniques based on non-linear warping and label fusion. In this work we present a novel and fully automatic pipeline for volumetric brain analysis based on multi-atlas label fusion technology that is able to provide accurate volumetric information at different levels of detail in a short time. This method is available through the volBrain online web interface (http://volbrain.upv.es), which is publically and freely accessible to the scientific community. Our new framework has been compared with current state-of-the-art methods showing very competitive results.
Convolutional neural networks with balanced batches for facial expressions recognition
NASA Astrophysics Data System (ADS)
Battini Sönmez, Elena; Cangelosi, Angelo
2017-03-01
This paper considers the issue of fully automatic emotion classification on 2D faces. In spite of the great effort done in recent years, traditional machine learning approaches based on hand-crafted feature extraction followed by the classification stage failed to develop a real-time automatic facial expression recognition system. The proposed architecture uses Convolutional Neural Networks (CNN), which are built as a collection of interconnected processing elements to simulate the brain of human beings. The basic idea of CNNs is to learn a hierarchical representation of the input data, which results in a better classification performance. In this work we present a block-based CNN algorithm, which uses noise, as data augmentation technique, and builds batches with a balanced number of samples per class. The proposed architecture is a very simple yet powerful CNN, which can yield state-of-the-art accuracy on the very competitive benchmark algorithm of the Extended Cohn Kanade database.
NASA Astrophysics Data System (ADS)
Armando, Alessandro; Giunchiglia, Enrico; Ponta, Serena Elisa
We present an approach to the formal specification and automatic analysis of business processes under authorization constraints based on the action language \\cal{C}. The use of \\cal{C} allows for a natural and concise modeling of the business process and the associated security policy and for the automatic analysis of the resulting specification by using the Causal Calculator (CCALC). Our approach improves upon previous work by greatly simplifying the specification step while retaining the ability to perform a fully automatic analysis. To illustrate the effectiveness of the approach we describe its application to a version of a business process taken from the banking domain and use CCALC to determine resource allocation plans complying with the security policy.
[A quickly methodology for drug intelligence using profiling of illicit heroin samples].
Zhang, Jianxin; Chen, Cunyi
2012-07-01
The aim of the paper was to evaluate a link between two heroin seizures using a descriptive method. The system involved the derivation and gas chromatographic separation of samples followed by a fully automatic data analysis and transfer to a database. Comparisons used the square cosine function between two chromatograms assimilated to vectors. The method showed good discriminatory capabilities. The probability of false positives was extremely slight. In conclusion, this method proved to be efficient and reliable, which appeared suitable for estimating the links between illicit heroin samples.
Designing a low cost bedside workstation for intensive care units.
Michel, A.; Zörb, L.; Dudeck, J.
1996-01-01
The paper describes the design and implementation of a software architecture for a low cost bedside workstation for intensive care units. The development is fully integrated into the information infrastructure of the existing hospital information system (HIS) at the University Hospital of Giessen. It provides cost efficient and reliable access for data entry and review from the HIS database from within patient rooms, even in very space limited environments. The architecture further supports automatical data input from medical devices. First results from three different intensive care units are reported. PMID:8947771
3D model assisted fully automated scanning laser Doppler vibrometer measurements
NASA Astrophysics Data System (ADS)
Sels, Seppe; Ribbens, Bart; Bogaerts, Boris; Peeters, Jeroen; Vanlanduit, Steve
2017-12-01
In this paper, a new fully automated scanning laser Doppler vibrometer (LDV) measurement technique is presented. In contrast to existing scanning LDV techniques which use a 2D camera for the manual selection of sample points, we use a 3D Time-of-Flight camera in combination with a CAD file of the test object to automatically obtain measurements at pre-defined locations. The proposed procedure allows users to test prototypes in a shorter time because physical measurement locations are determined without user interaction. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. The proposed method is illustrated with vibration measurements of an unmanned aerial vehicle
2010-01-01
Background Cell motility is a critical parameter in many physiological as well as pathophysiological processes. In time-lapse video microscopy, manual cell tracking remains the most common method of analyzing migratory behavior of cell populations. In addition to being labor-intensive, this method is susceptible to user-dependent errors regarding the selection of "representative" subsets of cells and manual determination of precise cell positions. Results We have quantitatively analyzed these error sources, demonstrating that manual cell tracking of pancreatic cancer cells lead to mis-calculation of migration rates of up to 410%. In order to provide for objective measurements of cell migration rates, we have employed multi-target tracking technologies commonly used in radar applications to develop fully automated cell identification and tracking system suitable for high throughput screening of video sequences of unstained living cells. Conclusion We demonstrate that our automatic multi target tracking system identifies cell objects, follows individual cells and computes migration rates with high precision, clearly outperforming manual procedures. PMID:20377897
NASA Astrophysics Data System (ADS)
Sidiropoulos, Panagiotis; Muller, Jan-Peter; Watson, Gillian; Michael, Gregory; Walter, Sebastian
2018-02-01
This work presents the coregistered, orthorectified and mosaiced high-resolution products of the MC11 quadrangle of Mars, which have been processed using novel, fully automatic, techniques. We discuss the development of a pipeline that achieves fully automatic and parameter independent geometric alignment of high-resolution planetary images, starting from raw input images in NASA PDS format and following all required steps to produce a coregistered geotiff image, a corresponding footprint and useful metadata. Additionally, we describe the development of a radiometric calibration technique that post-processes coregistered images to make them radiometrically consistent. Finally, we present a batch-mode application of the developed techniques over the MC11 quadrangle to validate their potential, as well as to generate end products, which are released to the planetary science community, thus assisting in the analysis of Mars static and dynamic features. This case study is a step towards the full automation of signal processing tasks that are essential to increase the usability of planetary data, but currently, require the extensive use of human resources.
Brain tumor segmentation in MR slices using improved GrowCut algorithm
NASA Astrophysics Data System (ADS)
Ji, Chunhong; Yu, Jinhua; Wang, Yuanyuan; Chen, Liang; Shi, Zhifeng; Mao, Ying
2015-12-01
The detection of brain tumor from MR images is very significant for medical diagnosis and treatment. However, the existing methods are mostly based on manual or semiautomatic segmentation which are awkward when dealing with a large amount of MR slices. In this paper, a new fully automatic method for the segmentation of brain tumors in MR slices is presented. Based on the hypothesis of the symmetric brain structure, the method improves the interactive GrowCut algorithm by further using the bounding box algorithm in the pre-processing step. More importantly, local reflectional symmetry is used to make up the deficiency of the bounding box method. After segmentation, 3D tumor image is reconstructed. We evaluate the accuracy of the proposed method on MR slices with synthetic tumors and actual clinical MR images. Result of the proposed method is compared with the actual position of simulated 3D tumor qualitatively and quantitatively. In addition, our automatic method produces equivalent performance as manual segmentation and the interactive GrowCut with manual interference while providing fully automatic segmentation.
Determinants of wood dust exposure in the Danish furniture industry.
Mikkelsen, Anders B; Schlunssen, Vivi; Sigsgaard, Torben; Schaumburg, Inger
2002-11-01
This paper investigates the relation between wood dust exposure in the furniture industry and occupational hygiene variables. During the winter 1997-98 54 factories were visited and 2362 personal, passive inhalable dust samples were obtained; the geometric mean was 0.95 mg/m(3) and the geometric standard deviation was 2.08. In a first measuring round 1685 dust concentrations were obtained. For some of the workers repeated measurements were carried out 1 (351) and 2 weeks (326) after the first measurement. Hygiene variables like job, exhaust ventilation, cleaning procedures, etc., were documented. A multivariate analysis based on mixed effects models was used with hygiene variables being fixed effects and worker, machine, department and factory being random effects. A modified stepwise strategy of model making was adopted taking into account the hierarchically structured variables and making possible the exclusion of non-influential random as well as fixed effects. For woodworking, the following determinants of exposure increase the dust concentration: manual and automatic sanding and use of compressed air with fully automatic and semi-automatic machines and for cleaning of work pieces. Decreased dust exposure resulted from the use of compressed air with manual machines, working at fully automatic or semi-automatic machines, functioning exhaust ventilation, work on the night shift, daily cleaning of rooms, cleaning of work pieces with a brush, vacuum cleaning of machines, supplementary fresh air intake and safety representative elected within the last 2 yr. For handling and assembling, increased exposure results from work at automatic machines and presence of wood dust on the workpieces. Work on the evening shift, supplementary fresh air intake, work in a chair factory and special cleaning staff produced decreased exposure to wood dust. The implications of the results for the prevention of wood dust exposure are discussed.
NASA Astrophysics Data System (ADS)
Shahzad, Rahil; Bos, Daniel; Budde, Ricardo P. J.; Pellikaan, Karlijn; Niessen, Wiro J.; van der Lugt, Aad; van Walsum, Theo
2017-05-01
Early structural changes to the heart, including the chambers and the coronary arteries, provide important information on pre-clinical heart disease like cardiac failure. Currently, contrast-enhanced cardiac computed tomography angiography (CCTA) is the preferred modality for the visualization of the cardiac chambers and the coronaries. In clinical practice not every patient undergoes a CCTA scan; many patients receive only a non-contrast-enhanced calcium scoring CT scan (CTCS), which has less radiation dose and does not require the administration of contrast agent. Quantifying cardiac structures in such images is challenging, as they lack the contrast present in CCTA scans. Such quantification would however be relevant, as it enables population based studies with only a CTCS scan. The purpose of this work is therefore to investigate the feasibility of automatic segmentation and quantification of cardiac structures viz whole heart, left atrium, left ventricle, right atrium, right ventricle and aortic root from CTCS scans. A fully automatic multi-atlas-based segmentation approach is used to segment the cardiac structures. Results show that the segmentation overlap between the automatic method and that of the reference standard have a Dice similarity coefficient of 0.91 on average for the cardiac chambers. The mean surface-to-surface distance error over all the cardiac structures is 1.4+/- 1.7 mm. The automatically obtained cardiac chamber volumes using the CTCS scans have an excellent correlation when compared to the volumes in corresponding CCTA scans, a Pearson correlation coefficient (R) of 0.95 is obtained. Our fully automatic method enables large-scale assessment of cardiac structures on non-contrast-enhanced CT scans.
NASA Astrophysics Data System (ADS)
Preuss, R.
2014-12-01
This article discusses the current capabilities of automate processing of the image data on the example of using PhotoScan software by Agisoft. At present, image data obtained by various registration systems (metric and non - metric cameras) placed on airplanes, satellites, or more often on UAVs is used to create photogrammetric products. Multiple registrations of object or land area (large groups of photos are captured) are usually performed in order to eliminate obscured area as well as to raise the final accuracy of the photogrammetric product. Because of such a situation t he geometry of the resulting image blocks is far from the typical configuration of images. For fast images georeferencing automatic image matching algorithms are currently applied. They can create a model of a block in the local coordinate system or using initial exterior orientation and measured control points can provide image georeference in an external reference frame. In the case of non - metric image application, it is also possible to carry out self - calibration process at this stage. Image matching algorithm is also used in generation of dense point clouds reconstructing spatial shape of the object (area). In subsequent processing steps it is possible to obtain typical photogrammetric products such as orthomosaic, DSM or DTM and a photorealistic solid model of an object . All aforementioned processing steps are implemented in a single program in contrary to standard commercial software dividing all steps into dedicated modules. Image processing leading to final geo referenced products can be fully automated including sequential implementation of the processing steps at predetermined control parameters. The paper presents the practical results of the application fully automatic generation of othomosaic for both images obtained by a metric Vexell camera and a block of images acquired by a non - metric UAV system
Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.
Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo
2015-11-17
Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells.
Sharing control with haptics: seamless driver support from manual to automatic control.
Mulder, Mark; Abbink, David A; Boer, Erwin R
2012-10-01
Haptic shared control was investigated as a human-machine interface that can intuitively share control between drivers and an automatic controller for curve negotiation. As long as automation systems are not fully reliable, a role remains for the driver to be vigilant to the system and the environment to catch any automation errors. The conventional binary switches between supervisory and manual control has many known issues, and haptic shared control is a promising alternative. A total of 42 respondents of varying age and driving experience participated in a driving experiment in a fixed-base simulator, in which curve negotiation behavior during shared control was compared to during manual control, as well as to three haptic tunings of an automatic controller without driver intervention. Under the experimental conditions studied, the main beneficial effect of haptic shared control compared to manual control was that less control activity (16% in steering wheel reversal rate, 15% in standard deviation of steering wheel angle) was needed for realizing an improved safety performance (e.g., 11% in peak lateral error). Full automation removed the need for any human control activity and improved safety performance (e.g., 35% in peak lateral error) but put the human in a supervisory position. Haptic shared control kept the driver in the loop, with enhanced performance at reduced control activity, mitigating the known issues that plague full automation. Haptic support for vehicular control ultimately seeks to intuitively combine human intelligence and creativity with the benefits of automation systems.
4D Near Real-Time Environmental Monitoring Using Highly Temporal LiDAR
NASA Astrophysics Data System (ADS)
Höfle, Bernhard; Canli, Ekrem; Schmitz, Evelyn; Crommelinck, Sophie; Hoffmeister, Dirk; Glade, Thomas
2016-04-01
The last decade has witnessed extensive applications of 3D environmental monitoring with the LiDAR technology, also referred to as laser scanning. Although several automatic methods were developed to extract environmental parameters from LiDAR point clouds, only little research has focused on highly multitemporal near real-time LiDAR (4D-LiDAR) for environmental monitoring. Large potential of applying 4D-LiDAR is given for landscape objects with high and varying rates of change (e.g. plant growth) and also for phenomena with sudden unpredictable changes (e.g. geomorphological processes). In this presentation we will report on the most recent findings of the research projects 4DEMON (http://uni-heidelberg.de/4demon) and NoeSLIDE (https://geomorph.univie.ac.at/forschung/projekte/aktuell/noeslide/). The method development in both projects is based on two real-world use cases: i) Surface parameter derivation of agricultural crops (e.g. crop height) and ii) change detection of landslides. Both projects exploit the "full history" contained in the LiDAR point cloud time series. One crucial initial step of 4D-LiDAR analysis is the co-registration over time, 3D-georeferencing and time-dependent quality assessment of the LiDAR point cloud time series. Due to the high amount of datasets (e.g. one full LiDAR scan per day), the procedure needs to be performed fully automatically. Furthermore, the online near real-time 4D monitoring system requires to set triggers that can detect removal or moving of tie reflectors (used for co-registration) or the scanner itself. This guarantees long-term data acquisition with high quality. We will present results from a georeferencing experiment for 4D-LiDAR monitoring, which performs benchmarking of co-registration, 3D-georeferencing and also fully automatic detection of events (e.g. removal/moving of reflectors or scanner). Secondly, we will show our empirical findings of an ongoing permanent LiDAR observation of a landslide (Gresten, Austria) and an agricultural maize crop stand (Heidelberg, Germany). This research demonstrates the potential and also limitations of fully automated, near real-time 4D LiDAR monitoring in geosciences.
Considerations in Phase Estimation and Event Location Using Small-aperture Regional Seismic Arrays
NASA Astrophysics Data System (ADS)
Gibbons, Steven J.; Kværna, Tormod; Ringdal, Frode
2010-05-01
The global monitoring of earthquakes and explosions at decreasing magnitudes necessitates the fully automatic detection, location and classification of an ever increasing number of seismic events. Many seismic stations of the International Monitoring System are small-aperture arrays designed to optimize the detection and measurement of regional phases. Collaboration with operators of mines within regional distances of the ARCES array, together with waveform correlation techniques, has provided an unparalleled opportunity to assess the ability of a small-aperture array to provide robust and accurate direction and slowness estimates for phase arrivals resulting from well-constrained events at sites of repeating seismicity. A significant reason for the inaccuracy of current fully-automatic event location estimates is the use of f- k slowness estimates measured in variable frequency bands. The variability of slowness and azimuth measurements for a given phase from a given source region is reduced by the application of almost any constant frequency band. However, the frequency band resulting in the most stable estimates varies greatly from site to site. Situations are observed in which regional P- arrivals from two sites, far closer than the theoretical resolution of the array, result in highly distinct populations in slowness space. This means that the f- k estimates, even at relatively low frequencies, can be sensitive to source and path-specific characteristics of the wavefield and should be treated with caution when inferring a geographical backazimuth under the assumption of a planar wavefront arriving along the great-circle path. Moreover, different frequency bands are associated with different biases meaning that slowness and azimuth station corrections (commonly denoted SASCs) cannot be calibrated, and should not be used, without reference to the frequency band employed. We demonstrate an example where fully-automatic locations based on a source-region specific fixed-parameter template are more stable than the corresponding analyst reviewed estimates. The reason is that the analyst selects a frequency band and analysis window which appears optimal for each event. In this case, the frequency band which produces the most consistent direction estimates has neither the best SNR or the greatest beam-gain, and is therefore unlikely to be chosen by an analyst without calibration data.
Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
Xu, Xuanang; Zhou, Fugen; Liu, Bo
2018-03-19
Automatic approach for bladder segmentation from computed tomography (CT) images is highly desirable in clinical practice. It is a challenging task since the bladder usually suffers large variations of appearance and low soft-tissue contrast in CT images. In this study, we present a deep learning-based approach which involves a convolutional neural network (CNN) and a 3D fully connected conditional random fields recurrent neural network (CRF-RNN) to perform accurate bladder segmentation. We also propose a novel preprocessing method, called dual-channel preprocessing, to further advance the segmentation performance of our approach. The presented approach works as following: first, we apply our proposed preprocessing method on the input CT image and obtain a dual-channel image which consists of the CT image and an enhanced bladder density map. Second, we exploit a CNN to predict a coarse voxel-wise bladder score map on this dual-channel image. Finally, a 3D fully connected CRF-RNN refines the coarse bladder score map and produce final fine-localized segmentation result. We compare our approach to the state-of-the-art V-net on a clinical dataset. Results show that our approach achieves superior segmentation accuracy, outperforming the V-net by a significant margin. The Dice Similarity Coefficient of our approach (92.24%) is 8.12% higher than that of the V-net. Moreover, the bladder probability maps performed by our approach present sharper boundaries and more accurate localizations compared with that of the V-net. Our approach achieves higher segmentation accuracy than the state-of-the-art method on clinical data. Both the dual-channel processing and the 3D fully connected CRF-RNN contribute to this improvement. The united deep network composed of the CNN and 3D CRF-RNN also outperforms a system where the CRF model acts as a post-processing method disconnected from the CNN.
Development of a multiplexed bypass control system for aerospace batteries
NASA Technical Reports Server (NTRS)
Frank, H. A.
1977-01-01
A breadboard bypass control system was developed to control a battery comprised of 26 JPL-developed negative limited Ni-Cd cells. The system was designed to automatically remove cells from the circuit when their voltages exceeded a fixed limit on charge and fell below a fixed limit on discharge. Major components of the system consisted of a cell voltage monitor, a multiplexing circuit, and individual electromechanical relays for each cell. The system was found to function well in controlling the battery during a simulated 10-month MM-71 mission and a 2-month simulated low earth orbit cycling mission. A flight version of the bypass system was estimated to have a total parts count of 150 and total weight of 1.63 kg. When fully developed, the system shows promise for improving life and reliability of spacecraft batteries.
Gelfusa, M; Gaudio, P; Malizia, A; Murari, A; Vega, J; Richetta, M; Gonzalez, S
2014-06-01
Recently, surveying large areas in an automatic way, for early detection of both harmful chemical agents and forest fires, has become a strategic objective of defence and public health organisations. The Lidar and Dial techniques are widely recognized as a cost-effective alternative to monitor large portions of the atmosphere. To maximize the effectiveness of the measurements and to guarantee reliable monitoring of large areas, new data analysis techniques are required. In this paper, an original tool, the Universal Multi Event Locator, is applied to the problem of automatically identifying the time location of peaks in Lidar and Dial measurements for environmental physics applications. This analysis technique improves various aspects of the measurements, ranging from the resilience to drift in the laser sources to the increase of the system sensitivity. The method is also fully general, purely software, and can therefore be applied to a large variety of problems without any additional cost. The potential of the proposed technique is exemplified with the help of data of various instruments acquired during several experimental campaigns in the field.
NASA Astrophysics Data System (ADS)
Setiawan, A.; Wangsaputra, R.; Martawirya, Y. Y.; Halim, A. H.
2016-02-01
This paper deals with Flexible Manufacturing System (FMS) production rescheduling due to unavailability of cutting tools caused either of cutting tool failure or life time limit. The FMS consists of parallel identical machines integrated with an automatic material handling system and it runs fully automatically. Each machine has a same cutting tool configuration that consists of different geometrical cutting tool types on each tool magazine. The job usually takes two stages. Each stage has sequential operations allocated to machines considering the cutting tool life. In the real situation, the cutting tool can fail before the cutting tool life is reached. The objective in this paper is to develop a dynamic scheduling algorithm when a cutting tool is broken during unmanned and a rescheduling needed. The algorithm consists of four steps. The first step is generating initial schedule, the second step is determination the cutting tool failure time, the third step is determination of system status at cutting tool failure time and the fourth step is the rescheduling for unfinished jobs. The approaches to solve the problem are complete-reactive scheduling and robust-proactive scheduling. The new schedules result differences starting time and completion time of each operations from the initial schedule.
Flow-Based Assembly of Layer-by-Layer Capsules through Tangential Flow Filtration.
Björnmalm, Mattias; Roozmand, Ali; Noi, Ka Fung; Guo, Junling; Cui, Jiwei; Richardson, Joseph J; Caruso, Frank
2015-08-25
Layer-by-layer (LbL) assembly on nano- and microparticles is of interest for a range of applications, including catalysis, optics, sensors, and drug delivery. One current limitation is the standard use of manual, centrifugation-based (pellet/resuspension) methods to perform the layering steps, which can make scalable, highly controllable, and automatable production difficult to achieve. Here, we develop a fully flow-based technique using tangential flow filtration (TFF) for LbL assembly on particles. We demonstrate that multilayered particles and capsules with different sizes (from micrometers to submicrometers in diameter) can be assembled on different templates (e.g., silica and calcium carbonate) using several polymers (e.g., poly(allylamine hydrochloride), poly(styrenesulfonate), and poly(diallyldimethylammonium chloride)). The full system only contains fluidic components routinely used (and automated) in industry, such as pumps, tanks, valves, and tubing in addition to the TFF filter modules. Using the TFF LbL system, we also demonstrate the centrifugation-free assembly, including core dissolution, of drug-loaded capsules. The well-controlled, integrated, and automatable nature of the TFF LbL system provides scientific, engineering, and practical processing benefits, making it valuable for research environments and potentially useful for translating LbL assembled particles into diverse applications.
AISLE: an automatic volumetric segmentation method for the study of lung allometry.
Ren, Hongliang; Kazanzides, Peter
2011-01-01
We developed a fully automatic segmentation method for volumetric CT (computer tomography) datasets to support construction of a statistical atlas for the study of allometric laws of the lung. The proposed segmentation method, AISLE (Automated ITK-Snap based on Level-set), is based on the level-set implementation from an existing semi-automatic segmentation program, ITK-Snap. AISLE can segment the lung field without human interaction and provide intermediate graphical results as desired. The preliminary experimental results show that the proposed method can achieve accurate segmentation, in terms of volumetric overlap metric, by comparing with the ground-truth segmentation performed by a radiologist.
Computer-aided diagnostic detection system of venous beading in retinal images
NASA Astrophysics Data System (ADS)
Yang, Ching-Wen; Ma, DyeJyun; Chao, ShuennChing; Wang, ChuinMu; Wen, Chia-Hsien; Lo, ChienShun; Chung, Pau-Choo; Chang, Chein-I.
2000-05-01
The detection of venous beading in retinal images provides an early sign of diabetic retinopathy and plays an important role as a preprocessing step in diagnosing ocular diseases. We present a computer-aided diagnostic system to automatically detect venous beading of blood vessels. It comprises of two modules, referred to as the blood vessel extraction module and the venus beading detection module. The former uses a bell-shaped Gaussian kernel with 12 azimuths to extract blood vessels while the latter applies a neural network-based shape cognitron to detect venous beading among the extracted blood vessels for diagnosis. Both modules are fully computer-automated. To evaluate the proposed system, 61 retinal images (32 beaded and 29 normal images) are used for performance evaluation.
CleAir Monitoring System for Particulate Matter: A Case in the Napoleonic Museum in Rome
Bonacquisti, Valerio; Di Michele, Marta; Frasca, Francesca; Chianese, Angelo; Siani, Anna Maria
2017-01-01
Monitoring the air particulate concentration both outdoors and indoors is becoming a more relevant issue in the past few decades. An innovative, fully automatic, monitoring system called CleAir is presented. Such a system wants to go beyond the traditional technique (gravimetric analysis), allowing for a double monitoring approach: the traditional gravimetric analysis as well as the optical spectroscopic analysis of the scattering on the same filters in steady-state conditions. The experimental data are interpreted in terms of light percolation through highly scattering matter by means of the stretched exponential evolution. CleAir has been applied to investigate the daily distribution of particulate matter within the Napoleonic Museum in Rome as a test case. PMID:28892016
Radiation Planning Assistant - A Streamlined, Fully Automated Radiotherapy Treatment Planning System
Court, Laurence E.; Kisling, Kelly; McCarroll, Rachel; Zhang, Lifei; Yang, Jinzhong; Simonds, Hannah; du Toit, Monique; Trauernicht, Chris; Burger, Hester; Parkes, Jeannette; Mejia, Mike; Bojador, Maureen; Balter, Peter; Branco, Daniela; Steinmann, Angela; Baltz, Garrett; Gay, Skylar; Anderson, Brian; Cardenas, Carlos; Jhingran, Anuja; Shaitelman, Simona; Bogler, Oliver; Schmeller, Kathleen; Followill, David; Howell, Rebecca; Nelson, Christopher; Peterson, Christine; Beadle, Beth
2018-01-01
The Radiation Planning Assistant (RPA) is a system developed for the fully automated creation of radiotherapy treatment plans, including volume-modulated arc therapy (VMAT) plans for patients with head/neck cancer and 4-field box plans for patients with cervical cancer. It is a combination of specially developed in-house software that uses an application programming interface to communicate with a commercial radiotherapy treatment planning system. It also interfaces with a commercial secondary dose verification software. The necessary inputs to the system are a Treatment Plan Order, approved by the radiation oncologist, and a simulation computed tomography (CT) image, approved by the radiographer. The RPA then generates a complete radiotherapy treatment plan. For the cervical cancer treatment plans, no additional user intervention is necessary until the plan is complete. For head/neck treatment plans, after the normal tissue and some of the target structures are automatically delineated on the CT image, the radiation oncologist must review the contours, making edits if necessary. They also delineate the gross tumor volume. The RPA then completes the treatment planning process, creating a VMAT plan. Finally, the completed plan must be reviewed by qualified clinical staff. PMID:29708544
Baur, Christoph; Milletari, Fausto; Belagiannis, Vasileios; Navab, Nassir; Fallavollita, Pascal
2016-07-01
Catheter guidance is a vital task for the success of electrophysiology interventions. It is usually provided through fluoroscopic images that are taken intra-operatively. The cardiologists, who are typically equipped with C-arm systems, scan the patient from multiple views rotating the fluoroscope around one of its axes. The resulting sequences allow the cardiologists to build a mental model of the 3D position of the catheters and interest points from the multiple views. We describe and compare different 3D catheter reconstruction strategies and ultimately propose a novel and robust method for the automatic reconstruction of 3D catheters in non-synchronized fluoroscopic sequences. This approach does not purely rely on triangulation but incorporates prior knowledge about the catheters. In conjunction with an automatic detection method, we demonstrate the performance of our method compared to ground truth annotations. In our experiments that include 20 biplane datasets, we achieve an average reprojection error of 0.43 mm and an average reconstruction error of 0.67 mm compared to gold standard annotation. In clinical practice, catheters suffer from complex motion due to the combined effect of heartbeat and respiratory motion. As a result, any 3D reconstruction algorithm via triangulation is imprecise. We have proposed a new method that is fully automatic and highly accurate to reconstruct catheters in three dimensions.
Looney, Pádraig; Stevenson, Gordon N; Nicolaides, Kypros H; Plasencia, Walter; Molloholli, Malid; Natsis, Stavros; Collins, Sally L
2018-06-07
We present a new technique to fully automate the segmentation of an organ from 3D ultrasound (3D-US) volumes, using the placenta as the target organ. Image analysis tools to estimate organ volume do exist but are too time consuming and operator dependant. Fully automating the segmentation process would potentially allow the use of placental volume to screen for increased risk of pregnancy complications. The placenta was segmented from 2,393 first trimester 3D-US volumes using a semiautomated technique. This was quality controlled by three operators to produce the "ground-truth" data set. A fully convolutional neural network (OxNNet) was trained using this ground-truth data set to automatically segment the placenta. OxNNet delivered state-of-the-art automatic segmentation. The effect of training set size on the performance of OxNNet demonstrated the need for large data sets. The clinical utility of placental volume was tested by looking at predictions of small-for-gestational-age babies at term. The receiver-operating characteristics curves demonstrated almost identical results between OxNNet and the ground-truth). Our results demonstrated good similarity to the ground-truth and almost identical clinical results for the prediction of SGA.
Location Privacy in RFID Applications
NASA Astrophysics Data System (ADS)
Sadeghi, Ahmad-Reza; Visconti, Ivan; Wachsmann, Christian
RFID-enabled systems allow fully automatic wireless identification of objects and are rapidly becoming a pervasive technology with various applications. However, despite their benefits, RFID-based systems also pose challenging risks, in particular concerning user privacy. Indeed, improvident use of RFID can disclose sensitive information about users and their locations allowing detailed user profiles. Hence, it is crucial to identify and to enforce appropriate security and privacy requirements of RFID applications (that are also compliant to legislation). This chapter first discusses security and privacy requirements for RFID-enabled systems, focusing in particular on location privacy issues. Then it explores the advances in RFID applications, stressing the security and privacy shortcomings of existing proposals. Finally, it presents new promising directions for privacy-preserving RFID systems, where as a case study we focus electronic tickets (e-tickets) for public transportation.
Automatic lung segmentation using control feedback system: morphology and texture paradigm.
Noor, Norliza M; Than, Joel C M; Rijal, Omar M; Kassim, Rosminah M; Yunus, Ashari; Zeki, Amir A; Anzidei, Michele; Saba, Luca; Suri, Jasjit S
2015-03-01
Interstitial Lung Disease (ILD) encompasses a wide array of diseases that share some common radiologic characteristics. When diagnosing such diseases, radiologists can be affected by heavy workload and fatigue thus decreasing diagnostic accuracy. Automatic segmentation is the first step in implementing a Computer Aided Diagnosis (CAD) that will help radiologists to improve diagnostic accuracy thereby reducing manual interpretation. Automatic segmentation proposed uses an initial thresholding and morphology based segmentation coupled with feedback that detects large deviations with a corrective segmentation. This feedback is analogous to a control system which allows detection of abnormal or severe lung disease and provides a feedback to an online segmentation improving the overall performance of the system. This feedback system encompasses a texture paradigm. In this study we studied 48 males and 48 female patients consisting of 15 normal and 81 abnormal patients. A senior radiologist chose the five levels needed for ILD diagnosis. The results of segmentation were displayed by showing the comparison of the automated and ground truth boundaries (courtesy of ImgTracer™ 1.0, AtheroPoint™ LLC, Roseville, CA, USA). The left lung's performance of segmentation was 96.52% for Jaccard Index and 98.21% for Dice Similarity, 0.61 mm for Polyline Distance Metric (PDM), -1.15% for Relative Area Error and 4.09% Area Overlap Error. The right lung's performance of segmentation was 97.24% for Jaccard Index, 98.58% for Dice Similarity, 0.61 mm for PDM, -0.03% for Relative Area Error and 3.53% for Area Overlap Error. The segmentation overall has an overall similarity of 98.4%. The segmentation proposed is an accurate and fully automated system.
COSMOS: Carnegie Observatories System for MultiObject Spectroscopy
NASA Astrophysics Data System (ADS)
Oemler, A.; Clardy, K.; Kelson, D.; Walth, G.; Villanueva, E.
2017-05-01
COSMOS (Carnegie Observatories System for MultiObject Spectroscopy) reduces multislit spectra obtained with the IMACS and LDSS3 spectrographs on the Magellan Telescopes. It can be used for the quick-look analysis of data at the telescope as well as for pipeline reduction of large data sets. COSMOS is based on a precise optical model of the spectrographs, which allows (after alignment and calibration) an accurate prediction of the location of spectra features. This eliminates the line search procedure which is fundamental to many spectral reduction programs, and allows a robust data pipeline to be run in an almost fully automatic mode, allowing large amounts of data to be reduced with minimal intervention.
Force-controlled automatic microassembly of tissue engineering scaffolds
NASA Astrophysics Data System (ADS)
Zhao, Guoyong; Teo, Chee Leong; Hutmacher, Dietmar Werner; Burdet, Etienne
2010-03-01
This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.
Design and economics of a photovoltaic concentrator array for off-grid applications
NASA Astrophysics Data System (ADS)
Maish, A. B.; Rios, M., Jr.
1982-09-01
The array design and expected operation of a photovoltaic concentrator are discussed. A second generation stand alone 680 W/sub p/ photovoltaic (PV) concentrating array for low power, nongrid connected applications was designed. The array consists of six passive cooled point focus Fresnel lens concentrating modules on a two axis polar mount tracking structure. The new array design incorporates several major improvements to the first generation design. These include 50% more array area and a control system which allows unattended, fully automatic operation. The life cycle energy costs are calculated and compared to the equivalent energy costs of a 3 kW diesel electric generator set and an equivalent flat panel PV system.
NASA Astrophysics Data System (ADS)
Xie, Dengling; Xie, Yanjun; Liu, Peng; Tong, Lieshu; Chu, Kaiqin; Smith, Zachary J.
2017-02-01
Current flow-based blood counting devices require expensive and centralized medical infrastructure and are not appropriate for field use. In this paper we report a method to count red blood cells, white blood cells as well as platelets through a low-cost and fully-automated blood counting system. The approach consists of using a compact, custom-built microscope with large field-of-view to record bright-field and fluorescence images of samples that are diluted with a single, stable reagent mixture and counted using automatic algorithms. Sample collection is performed manually using a spring loaded lancet, and volume-metering capillary tubes. The capillaries are then dropped into a tube of pre-measured reagents and gently shaken for 10-30 seconds. The sample is loaded into a measurement chamber and placed on a custom 3D printed platform. Sample translation and focusing is fully automated, and a user has only to press a button for the measurement and analysis to commence. Cost of the system is minimized through the use of custom-designed motorized components. We performed a series of comparative experiments by trained and untrained users on blood from adults and children. We compare the performance of our system, as operated by trained and untrained users, to the clinical gold standard using a Bland-Altman analysis, demonstrating good agreement of our system to the clinical standard. The system's low cost, complete automation, and good field performance indicate that it can be successfully translated for use in low-resource settings where central hematology laboratories are not accessible.
Fully automatic segmentation of white matter hyperintensities in MR images of the elderly.
Admiraal-Behloul, F; van den Heuvel, D M J; Olofsen, H; van Osch, M J P; van der Grond, J; van Buchem, M A; Reiber, J H C
2005-11-15
The role of quantitative image analysis in large clinical trials is continuously increasing. Several methods are available for performing white matter hyperintensity (WMH) volume quantification. They vary in the amount of the human interaction involved. In this paper, we describe a fully automatic segmentation that was used to quantify WMHs in a large clinical trial on elderly subjects. Our segmentation method combines information from 3 different MR images: proton density (PD), T2-weighted and fluid-attenuated inversion recovery (FLAIR) images; our method uses an established artificial intelligent technique (fuzzy inference system) and does not require extensive computations. The reproducibility of the segmentation was evaluated in 9 patients who underwent scan-rescan with repositioning; an inter-class correlation coefficient (ICC) of 0.91 was obtained. The effect of differences in image resolution was tested in 44 patients, scanned with 6- and 3-mm slice thickness FLAIR images; we obtained an ICC value of 0.99. The accuracy of the segmentation was evaluated on 100 patients for whom manual delineation of WMHs was available; the obtained ICC was 0.98 and the similarity index was 0.75. Besides the fact that the approach demonstrated very high volumetric and spatial agreement with expert delineation, the software did not require more than 2 min per patient (from loading the images to saving the results) on a Pentium-4 processor (512 MB RAM).
NASA Astrophysics Data System (ADS)
Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping
2017-02-01
Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it not only relates to the properties of the laser and the scattering particles, but also relates to the geometry of both directions of the laser beam and the flow. In this paper, focusing on the analysis of cerebral hemodynamics, we presents a method to quantify the total absolute blood flow velocity in middle cerebral artery (MCA) based on volumetric vessel reconstruction from pure DOCT images. A modified region growing segmentation method is first used to localize the MCA on successive DOCT B-scan images. Vessel skeletonization, followed by an averaging gradient angle calculation method, is then carried out to obtain Doppler angles along the entire MCA. Once the Doppler angles are determined, the absolute blood flow velocity of each position on the MCA is easily found. Given a seed point position on the MCA, our approach could achieve automatic quantification of the fully distributed absolute BFV. Based on experiments conducted using a swept-source optical coherence tomography system, our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches in the rodent brain.
Valente, Virgilio; Dai Jiang; Demosthenous, Andreas
2015-08-01
This paper presents the preliminary design and simulation of a flexible and programmable analog front-end (AFE) circuit with current and voltage readout capabilities for electric impedance spectroscopy (EIS). The AFE is part of a fully integrated multifrequency EIS platform. The current readout comprises of a transimpedance stage and an automatic gain control (AGC) unit designed to accommodate impedance changes larger than 3 order of magnitude. The AGC is based on a dynamic peak detector that tracks changes in the input current over time and regulates the gain of a programmable gain amplifier in order to optimise the signal-to-noise ratio. The system works up to 1 MHz. The voltage readout consists of a 2 stages of fully differential current-feedback instrumentation amplifier which provide 100 dB of CMRR and a programmable gain up to 20 V/V per stage with a bandwidth in excess of 10MHz.
Dual-beam laser autofocusing system based on liquid lens
NASA Astrophysics Data System (ADS)
Zhang, Fumin; Yao, Yannan; Qu, Xinghua; Zhang, Tong; Pei, Bing
2017-02-01
A dual-beam laser autofocusing system is designed in this paper. The autofocusing system is based on a liquid lens with less moving parts and fast response time, which makes the system simple, reliable, compact and fast. A novel scheme ;Time-sharing focus, fast conversion; is innovatively proposed. The scheme effectively solves the problem that the guiding laser and the working laser cannot focus at the same target point because of the existence of chromatic aberration. This scheme not only makes both guiding laser and working laser achieve optimal focusing in guiding stage and working stage respectively, but also greatly reduces the system complexity and simplifies the focusing process as well as makes autofocusing time of the working laser reduce to about 10 ms. In the distance range of 1 m to 30 m, the autofocusing spot size is kept under 4.3 mm at 30 m and just 0.18 mm at 1 m. The spot size is much less influenced by the target distance compared with the collimated laser with a micro divergence angle for its self-adaptivity. The dual-beam laser autofocusing system based on liquid lens is fully automatic, compact and efficient. It is fully meet the need of dynamicity and adaptivity and it will play an important role in a number of long-range control applications.
NASA Technical Reports Server (NTRS)
Gilbert, W. P.; Nguyen, L. T.; Vangunst, R. W.
1976-01-01
A piloted, fixed-base simulation was conducted to study the effectiveness of some automatic control system features designed to improve the stability and control characteristics of fighter airplanes at high angles of attack. These features include an angle-of-attack limiter, a normal-acceleration limiter, an aileron-rudder interconnect, and a stability-axis yaw damper. The study was based on a current lightweight fighter prototype. The aerodynamic data used in the simulation were measured on a 0.15-scale model at low Reynolds number and low subsonic Mach number. The simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative combat maneuvering. Results of the investigation show the fully augmented airplane to be quite stable and maneuverable throughout the operational angle-of-attack range. The angle-of-attack/normal-acceleration limiting feature of the pitch control system is found to be a necessity to avoid angle-of-attack excursions at high angles of attack. The aileron-rudder interconnect system is shown to be very effective in making the airplane departure resistant while the stability-axis yaw damper provided improved high-angle-of-attack roll performance with a minimum of sideslip excursions.
NASA Technical Reports Server (NTRS)
1981-01-01
Mechanical Technology, Incorporated developed a fully automatic laser machining process that allows more precise balancing removes metal faster, eliminates excess metal removal and other operator induced inaccuracies, and provides significant reduction in balancing time. Manufacturing costs are reduced as a result.
An experimental version of the MZT (speech-from-text) system with external F(sub 0) control
NASA Astrophysics Data System (ADS)
Nowak, Ignacy
1994-12-01
The version of a Polish speech from text system described in this article was developed using the speech-from-text system. The new system has additional functions which make it possible to enter commands in edited orthographic text to control the phrase component and accentuation parameters. This makes it possible to generate a series of modified intonation contours in the texts spoken by the system. The effects obtained are made easier to control by a graphic illustration of the base frequency pattern in phrases that were last 'spoken' by the system. This version of the system was designed as a test prototype which will help us expand and refine our set of rules for automatic generation of intonation contours, which in turn will enable the fully automated speech-from-text system to generate speech with a more varied and precisely formed fundamental frequency pattern.
A System to Measure Both Inner and Outer Car Tire Temperatures ``in situ''
NASA Astrophysics Data System (ADS)
Koštial, P.; Mokryšová, M.; Šišáková, J.; Mošková, Z.; Rusnáková, S.
2009-02-01
In the paper, a system for the complex analysis of the internal and external tire temperatures and pressure of sporty tires is presented. Tests were performed on the test circuit of a tire producer. The CTPA 05 measuring system (complex temperature-pressure analyzer) enables simultaneous measurements of the internal temperature and pressure in a passenger or sports tire. The experimentalist determines that the CTPA 05 can be used to measure independently the external temperature of the overcoat on the front wheel driving tires at three points. Measurements of both the internal tire temperature and pressure, as well as of the external tire temperature, are collected together with GPS (global position system) data. The system of measurement is fully automatic and contactless. The obtained results are in very good agreement with those obtained by independent methods.
Extracting semantically enriched events from biomedical literature
2012-01-01
Background Research into event-based text mining from the biomedical literature has been growing in popularity to facilitate the development of advanced biomedical text mining systems. Such technology permits advanced search, which goes beyond document or sentence-based retrieval. However, existing event-based systems typically ignore additional information within the textual context of events that can determine, amongst other things, whether an event represents a fact, hypothesis, experimental result or analysis of results, whether it describes new or previously reported knowledge, and whether it is speculated or negated. We refer to such contextual information as meta-knowledge. The automatic recognition of such information can permit the training of systems allowing finer-grained searching of events according to the meta-knowledge that is associated with them. Results Based on a corpus of 1,000 MEDLINE abstracts, fully manually annotated with both events and associated meta-knowledge, we have constructed a machine learning-based system that automatically assigns meta-knowledge information to events. This system has been integrated into EventMine, a state-of-the-art event extraction system, in order to create a more advanced system (EventMine-MK) that not only extracts events from text automatically, but also assigns five different types of meta-knowledge to these events. The meta-knowledge assignment module of EventMine-MK performs with macro-averaged F-scores in the range of 57-87% on the BioNLP’09 Shared Task corpus. EventMine-MK has been evaluated on the BioNLP’09 Shared Task subtask of detecting negated and speculated events. Our results show that EventMine-MK can outperform other state-of-the-art systems that participated in this task. Conclusions We have constructed the first practical system that extracts both events and associated, detailed meta-knowledge information from biomedical literature. The automatically assigned meta-knowledge information can be used to refine search systems, in order to provide an extra search layer beyond entities and assertions, dealing with phenomena such as rhetorical intent, speculations, contradictions and negations. This finer grained search functionality can assist in several important tasks, e.g., database curation (by locating new experimental knowledge) and pathway enrichment (by providing information for inference). To allow easy integration into text mining systems, EventMine-MK is provided as a UIMA component that can be used in the interoperable text mining infrastructure, U-Compare. PMID:22621266
Extracting semantically enriched events from biomedical literature.
Miwa, Makoto; Thompson, Paul; McNaught, John; Kell, Douglas B; Ananiadou, Sophia
2012-05-23
Research into event-based text mining from the biomedical literature has been growing in popularity to facilitate the development of advanced biomedical text mining systems. Such technology permits advanced search, which goes beyond document or sentence-based retrieval. However, existing event-based systems typically ignore additional information within the textual context of events that can determine, amongst other things, whether an event represents a fact, hypothesis, experimental result or analysis of results, whether it describes new or previously reported knowledge, and whether it is speculated or negated. We refer to such contextual information as meta-knowledge. The automatic recognition of such information can permit the training of systems allowing finer-grained searching of events according to the meta-knowledge that is associated with them. Based on a corpus of 1,000 MEDLINE abstracts, fully manually annotated with both events and associated meta-knowledge, we have constructed a machine learning-based system that automatically assigns meta-knowledge information to events. This system has been integrated into EventMine, a state-of-the-art event extraction system, in order to create a more advanced system (EventMine-MK) that not only extracts events from text automatically, but also assigns five different types of meta-knowledge to these events. The meta-knowledge assignment module of EventMine-MK performs with macro-averaged F-scores in the range of 57-87% on the BioNLP'09 Shared Task corpus. EventMine-MK has been evaluated on the BioNLP'09 Shared Task subtask of detecting negated and speculated events. Our results show that EventMine-MK can outperform other state-of-the-art systems that participated in this task. We have constructed the first practical system that extracts both events and associated, detailed meta-knowledge information from biomedical literature. The automatically assigned meta-knowledge information can be used to refine search systems, in order to provide an extra search layer beyond entities and assertions, dealing with phenomena such as rhetorical intent, speculations, contradictions and negations. This finer grained search functionality can assist in several important tasks, e.g., database curation (by locating new experimental knowledge) and pathway enrichment (by providing information for inference). To allow easy integration into text mining systems, EventMine-MK is provided as a UIMA component that can be used in the interoperable text mining infrastructure, U-Compare.
Ebert, Lars Christian; Ptacek, Wolfgang; Breitbeck, Robert; Fürst, Martin; Kronreif, Gernot; Martinez, Rosa Maria; Thali, Michael; Flach, Patricia M
2014-06-01
In this paper we present the second prototype of a robotic system to be used in forensic medicine. The system is capable of performing automated surface documentation using photogrammetry, optical surface scanning and image-guided, post-mortem needle placement for tissue sampling, liquid sampling, or the placement of guide wires. The upgraded system includes workflow optimizations, an automatic tool-change mechanism, a new software module for trajectory planning and a fully automatic computed tomography-data-set registration algorithm. We tested the placement accuracy of the system by using a needle phantom with radiopaque markers as targets. The system is routinely used for surface documentation and resulted in 24 surface documentations over the course of 11 months. We performed accuracy tests for needle placement using a biopsy phantom, and the Virtobot placed introducer needles with an accuracy of 1.4 mm (±0.9 mm). The second prototype of the Virtobot system is an upgrade of the first prototype but mainly focuses on streamlining the workflow and increasing the level of automation and also has an easier user interface. These upgrades make the Virtobot a potentially valuable tool for case documentation in a scalpel-free setting that uses purely imaging techniques and minimally invasive procedures and is the next step toward the future of virtual autopsy.
Force-reflective teleoperated system with shared and compliant control capabilities
NASA Technical Reports Server (NTRS)
Szakaly, Z.; Kim, W. S.; Bejczy, A. K.
1989-01-01
The force-reflecting teleoperator breadboard is described. It is the first system among available Research and Development systems with the following combined capabilities: (1) The master input device is not a replica of the slave arm. It is a general purpose device which can be applied to the control of different robot arms through proper mathematical transformations. (2) Force reflection generated in the master hand controller is referenced to forces and moments measured by a six DOF force-moment sensor at the base of the robot hand. (3) The system permits a smooth spectrum of operations between full manual, shared manual and automatic, and full automatic (called traded) control. (4) The system can be operated with variable compliance or stiffness in force-reflecting control. Some of the key points of the system are the data handling and computing architecture, the communication method, and the handling of mathematical transformations. The architecture is a fully synchronized pipeline. The communication method achieves optimal use of a parallel communication channel between the local and remote computing nodes. A time delay box is also implemented in this communication channel permitting experiments with up to 8 sec time delay. The mathematical transformations are computed faster than 1 msec so that control at each node can be operated at 1 kHz servo rate without interpolation. This results in an overall force-reflecting loop rate of 200 Hz.
A Program Certification Assistant Based on Fully Automated Theorem Provers
NASA Technical Reports Server (NTRS)
Denney, Ewen; Fischer, Bernd
2005-01-01
We describe a certification assistant to support formal safety proofs for programs. It is based on a graphical user interface that hides the low-level details of first-order automated theorem provers while supporting limited interactivity: it allows users to customize and control the proof process on a high level, manages the auxiliary artifacts produced during this process, and provides traceability between the proof obligations and the relevant parts of the program. The certification assistant is part of a larger program synthesis system and is intended to support the deployment of automatically generated code in safety-critical applications.
Measuring Thicknesses of Coatings on Metals
NASA Technical Reports Server (NTRS)
Cotty, Glenn M., Jr.
1986-01-01
Digital light sensor and eddy-current sensor measure thickness without contact. Surface of Coating reflects laser beam to optical sensor. Position of reflected spot on sensor used by microcomputer to calculate coating thickness. Eddy-current sensor maintains constant distance between optical sensor and metal substrate. When capabilities of available components fully exploited, instrument measures coatings from 0.001 to 6 in. (0.0025 to 15 cm) thick with accuracy of 1 part in 4,000. Instrument readily incorporated in automatic production and inspection systems. Used to inspect thermal-insulation layers, paint, and protective coatings. Also used to control application of coatings to preset thicknesses.
SU-F-T-94: Plan2pdf - a Software Tool for Automatic Plan Report for Philips Pinnacle TPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C
Purpose: To implement an automatic electronic PDF plan reporting tool for Philips Pinnacle treatment planning system (TPS) Methods: An electronic treatment plan reporting software is developed by us to enable fully automatic PDF report from Pinnacle TPS to external EMR programs such as MOSAIQ. The tool is named “plan2pdf”. plan2pdf is implemented using Pinnacle scripts, Java and UNIX shell scripts, without any external program needed. plan2pdf supports full auto-mode and manual mode reporting. In full auto-mode, with a single mouse click, plan2pdf will generate a detailed Pinnacle plan report in PDF format, which includes customizable cover page, Pinnacle plan summary,more » orthogonal views through each plan POI and maximum dose point, DRR for each beam, serial transverse views captured throughout the dose grid at a user specified interval, DVH and scorecard windows. The final PDF report is also automatically bookmarked for each section above for convenient plan review. The final PDF report can either be saved on a user specified folder on Pinnacle, or it can be automatically exported to an EMR import folder via a user configured FTP service. In manual capture mode, plan2pdf allows users to capture any Pinnacle plan by full screen, individual window or rectangular ROI drawn on screen. Furthermore, to avoid possible patients’ plan mix-up during auto-mode reporting, a user conflict check feature is included in plan2pdf: it prompts user to wait if another patient is being exported by plan2pdf by another user. Results: plan2pdf is tested extensively and successfully at our institution consists of 5 centers, 15 dosimetrists and 10 physicists, running Pinnacle version 9.10 on Enterprise servers. Conclusion: plan2pdf provides a highly efficient, user friendly and clinical proven platform for all Philips Pinnacle users, to generate a detailed plan report in PDF format for external EMR systems.« less
NASA Technical Reports Server (NTRS)
Wilckens, V.
1972-01-01
Present information display concepts for pilot landing guidance are outlined considering manual control as well as substitution of man by fully competent automatics. Display improvements are achieved by compressing the distributed indicators into an accumulative display and thus reducing information scanning. Complete integration of quantitative indications, outer loop information, and real world display in a pictorial information channel geometry constitutes an interface with human ability to differentiate and integrate for optimal manual control of the aircraft.
Castillo, Andrés M; Bernal, Andrés; Patiny, Luc; Wist, Julien
2015-08-01
We present a method for the automatic assignment of small molecules' NMR spectra. The method includes an automatic and novel self-consistent peak-picking routine that validates NMR peaks in each spectrum against peaks in the same or other spectra that are due to the same resonances. The auto-assignment routine used is based on branch-and-bound optimization and relies predominantly on integration and correlation data; chemical shift information may be included when available to fasten the search and shorten the list of viable assignments, but in most cases tested, it is not required in order to find the correct assignment. This automatic assignment method is implemented as a web-based tool that runs without any user input other than the acquired spectra. Copyright © 2015 John Wiley & Sons, Ltd.
[Computerized monitoring system in the operating center with UNIX and X-window].
Tanaka, Y; Hashimoto, S; Chihara, E; Kinoshita, T; Hirose, M; Nakagawa, M; Murakami, T
1992-01-01
We previously reported the fully automated data logging system in the operating center. Presently, we revised the system using a highly integrated operating system, UNIX instead of OS/9. With this multi-task and multi-window (X-window) system, we could monitor all 12 rooms in the operating center at a time. The system in the operating center consists of 2 computers, SONY NEWS1450 (UNIX workstation) and Sord M223 (CP/M, data logger). On the bitmapped display of the workstation, using X-window, the data of all the operating rooms can be visualized. Furthermore, 2 other minicomputers (Fujitsu A50 in the conference room, and A60 in the ICU) and a workstation (Sun3-80 in the ICU) were connected with ethernet. With the remote login function (NFS), we could easily obtain the data during the operation from outside the operating center. This system works automatically and needs no routine maintenance.
NASA Astrophysics Data System (ADS)
Nagel, Markus; Hoheisel, Martin; Petzold, Ralf; Kalender, Willi A.; Krause, Ulrich H. W.
2007-03-01
Integrated solutions for navigation systems with CT, MR or US systems become more and more popular for medical products. Such solutions improve the medical workflow, reduce hardware, space and costs requirements. The purpose of our project was to develop a new electromagnetic navigation system for interventional radiology which is integrated into C-arm CT systems. The application is focused on minimally invasive percutaneous interventions performed under local anaesthesia. Together with a vacuum-based patient immobilization device and newly developed navigation tools (needles, panels) we developed a safe and fully automatic navigation system. The radiologist can directly start with navigated interventions after loading images without any prior user interaction. The complete system is adapted to the requirements of the radiologist and to the clinical workflow. For evaluation of the navigation system we performed different phantom studies and achieved an average accuracy of better than 2.0 mm.
Figl, Michael; Ede, Christopher; Hummel, Johann; Wanschitz, Felix; Ewers, Rolf; Bergmann, Helmar; Birkfellner, Wolfgang
2005-11-01
Ever since the development of the first applications in image-guided therapy (IGT), the use of head-mounted displays (HMDs) was considered an important extension of existing IGT technologies. Several approaches to utilizing HMDs and modified medical devices for augmented reality (AR) visualization were implemented. These approaches include video-see through systems, semitransparent mirrors, modified endoscopes, and modified operating microscopes. Common to all these devices is the fact that a precise calibration between the display and three-dimensional coordinates in the patient's frame of reference is compulsory. In optical see-through devices based on complex optical systems such as operating microscopes or operating binoculars-as in the case of the system presented in this paper-this procedure can become increasingly difficult since precise camera calibration for every focus and zoom position is required. We present a method for fully automatic calibration of the operating binocular Varioscope M5 AR for the full range of zoom and focus settings available. Our method uses a special calibration pattern, a linear guide driven by a stepping motor, and special calibration software. The overlay error in the calibration plane was found to be 0.14-0.91 mm, which is less than 1% of the field of view. Using the motorized calibration rig as presented in the paper, we were also able to assess the dynamic latency when viewing augmentation graphics on a mobile target; spatial displacement due to latency was found to be in the range of 1.1-2.8 mm maximum, the disparity between the true object and its computed overlay represented latency of 0.1 s. We conclude that the automatic calibration method presented in this paper is sufficient in terms of accuracy and time requirements for standard uses of optical see-through systems in a clinical environment.
Castillo, Andrés M; Bernal, Andrés; Dieden, Reiner; Patiny, Luc; Wist, Julien
2016-01-01
We present "Ask Ernö", a self-learning system for the automatic analysis of NMR spectra, consisting of integrated chemical shift assignment and prediction tools. The output of the automatic assignment component initializes and improves a database of assigned protons that is used by the chemical shift predictor. In turn, the predictions provided by the latter facilitate improvement of the assignment process. Iteration on these steps allows Ask Ernö to improve its ability to assign and predict spectra without any prior knowledge or assistance from human experts. This concept was tested by training such a system with a dataset of 2341 molecules and their (1)H-NMR spectra, and evaluating the accuracy of chemical shift predictions on a test set of 298 partially assigned molecules (2007 assigned protons). After 10 iterations, Ask Ernö was able to decrease its prediction error by 17 %, reaching an average error of 0.265 ppm. Over 60 % of the test chemical shifts were predicted within 0.2 ppm, while only 5 % still presented a prediction error of more than 1 ppm. Ask Ernö introduces an innovative approach to automatic NMR analysis that constantly learns and improves when provided with new data. Furthermore, it completely avoids the need for manually assigned spectra. This system has the potential to be turned into a fully autonomous tool able to compete with the best alternatives currently available.Graphical abstractSelf-learning loop. Any progress in the prediction (forward problem) will improve the assignment ability (reverse problem) and vice versa.
24 CFR 1710.506 - State/Federal filing requirements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... fully explaining the purpose and significance of the amendment and referring to that section and page of... automatically suspended as a result of the state action. No action need be taken by the Secretary to effect the...
24 CFR 1710.506 - State/Federal filing requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... fully explaining the purpose and significance of the amendment and referring to that section and page of... automatically suspended as a result of the state action. No action need be taken by the Secretary to effect the...
Xenon International Automated Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
2016-08-05
The Xenon International Automated Control software monitors, displays status, and allows for manual operator control as well as fully automatic control of multiple commercial and PNNL designed hardware components to generate and transmit atmospheric radioxenon concentration measurements every six hours.
A fully-automatic fast segmentation of the sub-basal layer nerves in corneal images.
Guimarães, Pedro; Wigdahl, Jeff; Poletti, Enea; Ruggeri, Alfredo
2014-01-01
Corneal nerves changes have been linked to damage caused by surgical interventions or prolonged contact lens wear. Furthermore nerve tortuosity has been shown to correlate with the severity of diabetic neuropathy. For these reasons there has been an increasing interest on the analysis of these structures. In this work we propose a novel, robust, and fast fully automatic algorithm capable of tracing the sub-basal plexus nerves from human corneal confocal images. We resort to logGabor filters and support vector machines to trace the corneal nerves. The proposed algorithm traced most of the corneal nerves correctly (sensitivity of 0.88 ± 0.06 and false discovery rate of 0.08 ± 0.06). The displayed performance is comparable to a human grader. We believe that the achieved processing time (0.661 ± 0.07 s) and tracing quality are major advantages for the daily clinical practice.
Post-TRANSPO test program: summary report. Volume I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cusick, R.T.; Mooring, E.E.
1973-06-01
The report given encompasses the Post-TRANSPO Test Program (PTTP) operation, organization, and instrumentation. The more significant tests are described and a summary of the analyses performed to data is provided for the construction and testing of four prototype Personal Rapid Transit (PRT) Systems at Dulles International Airport. These systems are the Bendix Dashaveyor, the Ford Motor ACT, the Rohr Monocab and the Transportation Technology TTI. Each prototype featured two vehicles with a minimum of 1000 feet of guideway, off-line stations and fully automatic control. The TTI used air cushions for vertical support and a linear induction motor for propulsion. Themore » other systems used rubber tires, two supported from a roadway and the other, the Monocab, suspended from an overhead guidebeam. Conclusions and recommendations for further work are presented.« less
Automatic spatiotemporal matching of detected pleural thickenings
NASA Astrophysics Data System (ADS)
Chaisaowong, Kraisorn; Keller, Simon Kai; Kraus, Thomas
2014-01-01
Pleural thickenings can be found in asbestos exposed patient's lung. Non-invasive diagnosis including CT imaging can detect aggressive malignant pleural mesothelioma in its early stage. In order to create a quantitative documentation of automatic detected pleural thickenings over time, the differences in volume and thickness of the detected thickenings have to be calculated. Physicians usually estimate the change of each thickening via visual comparison which provides neither quantitative nor qualitative measures. In this work, automatic spatiotemporal matching techniques of the detected pleural thickenings at two points of time based on the semi-automatic registration have been developed, implemented, and tested so that the same thickening can be compared fully automatically. As result, the application of the mapping technique using the principal components analysis turns out to be advantageous than the feature-based mapping using centroid and mean Hounsfield Units of each thickening, since the resulting sensitivity was improved to 98.46% from 42.19%, while the accuracy of feature-based mapping is only slightly higher (84.38% to 76.19%).
Hutson, Joel David; Hutson, Kelda Nadine
2014-07-01
A recent study hypothesized that avian-like wrist folding in quadrupedal dinosaurs could have aided their distinctive style of locomotion with semi-pronated and therefore medially facing palms. However, soft tissues that automatically guide avian wrist folding rarely fossilize, and automatic wrist folding of unknown function in extant crocodilians has not been used to test this hypothesis. Therefore, an investigation of the relative contributions of soft tissues to wrist range of motion (ROM) in the extant phylogenetic bracket of dinosaurs, and the quadrupedal function of crocodilian wrist folding, could inform these questions. Here, we repeatedly measured wrist ROM in degrees through fully fleshed, skinned, minus muscles/tendons, minus ligaments, and skeletonized stages in the American alligator Alligator mississippiensis and the ostrich Struthio camelus. The effects of dissection treatment and observer were statistically significant for alligator wrist folding and ostrich wrist flexion, but not ostrich wrist folding. Final skeletonized wrist folding ROM was higher than (ostrich) or equivalent to (alligator) initial fully fleshed ROM, while final ROM was lower than initial ROM for ostrich wrist flexion. These findings suggest that, unlike the hinge/ball and socket-type elbow and shoulder joints in these archosaurs, ROM within gliding/planar diarthrotic joints is more restricted to the extent of articular surfaces. The alligator data indicate that the crocodilian wrist mechanism functions to automatically lock their semi-pronated palms into a rigid column, which supports the hypothesis that this palmar orientation necessitated soft tissue stiffening mechanisms in certain dinosaurs, although ROM-restricted articulations argue against the presence of an extensive automatic mechanism. Anat Rec, 297:1228-1249, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
Requirements to Design to Code: Towards a Fully Formal Approach to Automatic Code Generation
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2004-01-01
A general-purpose method to mechanically transform system requirements into a provably equivalent model has yet to appear. Such a method represents a necessary step toward high-dependability system engineering for numerous possible application domains, including sensor networks and autonomous systems. Currently available tools and methods that start with a formal model of a system and mechanically produce a provably equivalent implementation are valuable but not sufficient. The gap that current tools and methods leave unfilled is that their formal models cannot be proven to be equivalent to the system requirements as originated by the customer. For the classes of systems whose behavior can be described as a finite (but significant) set of scenarios, we offer a method for mechanically transforming requirements (expressed in restricted natural language, or in other appropriate graphical notations) into a provably equivalent formal model that can be used as the basis for code generation and other transformations.
Three years of operational experience from Schauinsland CTBT monitoring station.
Zähringer, M; Bieringer, J; Schlosser, C
2008-04-01
Data from three years of operation of a low-level aerosol sampler and analyzer (RASA) at Schauinsland monitoring station are reported. The system is part of the International Monitoring System (IMS) for verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The fully automatic system is capable to measure aerosol borne gamma emitters with high sensitivity and routinely quantifies 7Be and 212Pb. The system had a high level of data availability of 90% within the reporting period. A daily screening process rendered 66 tentative identifications of verification relevant radionuclides since the system entered IMS operation in February 2004. Two of these were real events and associated to a plausible source. The remaining 64 cases can consistently be explained by detector background and statistical phenomena. Inter-comparison with data from a weekly sampler operated at the same station shows instabilities of the calibration during the test phase and a good agreement since certification of the system.
Advanced Caution and Warning System, Final Report - 2011
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Aaseng, Gordon; Iverson, David; McCann, Robert S.; Robinson, Peter; Dittemore, Gary; Liolios, Sotirios; Baskaran, Vijay; Johnson, Jeremy; Lee, Charles;
2013-01-01
The work described in this report is a continuation of the ACAWS work funded in fiscal year (FY) 2010 under the Exploration Technology Development Program (ETDP), Integrated Systems Health Management (ISHM) project. In FY 2010, we developed requirements for an ACAWS system and vetted the requirements with potential users via a concept demonstration system. In FY 2011, we developed a working prototype of aspects of that concept, with placeholders for technologies to be fully developed in future phases of the project. The objective is to develop general capability to assist operators with system health monitoring and failure diagnosis. Moreover, ACAWS was integrated with the Discrete Controls (DC) task of the Autonomous Systems and Avionics (ASA) project. The primary objective of DC is to demonstrate an electronic and interactive procedure display environment and multiple levels of automation (automatic execution by computer, execution by computer if the operator consents, and manual execution by the operator).
Ross, James C; San José Estépar, Rail; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K; Washko, George R
2010-01-01
We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases.
Ross, James C.; Estépar, Raúl San José; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K.; Washko, George R.
2011-01-01
We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases. PMID:20879396
Digital holographic microscopy for detection of Trypanosoma cruzi parasites in fresh blood mounts
NASA Astrophysics Data System (ADS)
Romero, G. G.; Monaldi, A. C.; Alanís, E. E.
2012-03-01
An off-axis holographic microscope, in a transmission mode, calibrated to automatically detect the presence of Trypanosoma cruzi in blood is developed as an alternative diagnosis tool for Chagas disease. Movements of the microorganisms are detected by measuring the phase shift they produce on the transmitted wave front. A thin layer of blood infected by Trypanosoma cruzi parasites is examined in the holographic microscope, the images of the visual field being registered with a CCD camera. Two consecutive holograms of the same visual field are subtracted point by point and a phase contrast image of the resulting hologram is reconstructed by means of the angular spectrum propagation algorithm. This method enables the measurement of phase distributions corresponding to temporal differences between digital holograms in order to detect whether parasites are present or not. Experimental results obtained using this technique show that it is an efficient alternative that can be incorporated successfully as a part of a fully automatic system for detection and counting of this type of microorganisms.
Industrial applications of shearography for inspection of aircraft components
NASA Astrophysics Data System (ADS)
Krupka, Rene; Walz, Thomas; Ettemeyer, Andreas
2005-04-01
Shearography has been validated as fast and reliable inspection technique for aerospace components. Following several years phase of evaluation of the technique, meanwhile, shearography has entered the industrial production inspection. The applications basically range from serial inspection in the production line to field inspection in assembly and to applications in the maintenance and repair area. In all applications, the main advantages of shearography, as very fast and full field insection and high sensitivity even on very complex on composite materials have led to the decision for laser shearography as inspection tool. In this paper, we present some highlights of industrial shearography inspection. One of the first industrial installations of laser shearography in Europe was a fully automatic inspection system for helicopter rotorblades. Complete rotor blades are inspected within 10 minutes on delaminations and debondingg in the composite structure. In case of more complex components, robotic manipulation of the shearography camera has proven to be the optimal solution. An industry 6-axis robot give utmost flexibility to position the camera in any angle and distance. Automatic defect marking systems have also been introduced to indicate the exact position of the defect directly on the inspected component. Other applications are shearography inspection systems for abradable seals in jet engines and portable shearography inspection systems for maintenance and repair inspection in the field. In this paper, recent installations of automatice inspection systems in aerospace industries are presented.
Building Extraction from Remote Sensing Data Using Fully Convolutional Networks
NASA Astrophysics Data System (ADS)
Bittner, K.; Cui, S.; Reinartz, P.
2017-05-01
Building detection and footprint extraction are highly demanded for many remote sensing applications. Though most previous works have shown promising results, the automatic extraction of building footprints still remains a nontrivial topic, especially in complex urban areas. Recently developed extensions of the CNN framework made it possible to perform dense pixel-wise classification of input images. Based on these abilities we propose a methodology, which automatically generates a full resolution binary building mask out of a Digital Surface Model (DSM) using a Fully Convolution Network (FCN) architecture. The advantage of using the depth information is that it provides geometrical silhouettes and allows a better separation of buildings from background as well as through its invariance to illumination and color variations. The proposed framework has mainly two steps. Firstly, the FCN is trained on a large set of patches consisting of normalized DSM (nDSM) as inputs and available ground truth building mask as target outputs. Secondly, the generated predictions from FCN are viewed as unary terms for a Fully connected Conditional Random Fields (FCRF), which enables us to create a final binary building mask. A series of experiments demonstrate that our methodology is able to extract accurate building footprints which are close to the buildings original shapes to a high degree. The quantitative and qualitative analysis show the significant improvements of the results in contrast to the multy-layer fully connected network from our previous work.
NASA Astrophysics Data System (ADS)
Yu, Le; Zhang, Dengrong; Holden, Eun-Jung
2008-07-01
Automatic registration of multi-source remote-sensing images is a difficult task as it must deal with the varying illuminations and resolutions of the images, different perspectives and the local deformations within the images. This paper proposes a fully automatic and fast non-rigid image registration technique that addresses those issues. The proposed technique performs a pre-registration process that coarsely aligns the input image to the reference image by automatically detecting their matching points by using the scale invariant feature transform (SIFT) method and an affine transformation model. Once the coarse registration is completed, it performs a fine-scale registration process based on a piecewise linear transformation technique using feature points that are detected by the Harris corner detector. The registration process firstly finds in succession, tie point pairs between the input and the reference image by detecting Harris corners and applying a cross-matching strategy based on a wavelet pyramid for a fast search speed. Tie point pairs with large errors are pruned by an error-checking step. The input image is then rectified by using triangulated irregular networks (TINs) to deal with irregular local deformations caused by the fluctuation of the terrain. For each triangular facet of the TIN, affine transformations are estimated and applied for rectification. Experiments with Quickbird, SPOT5, SPOT4, TM remote-sensing images of the Hangzhou area in China demonstrate the efficiency and the accuracy of the proposed technique for multi-source remote-sensing image registration.
Distributed pheromone-based swarming control of unmanned air and ground vehicles for RSTA
NASA Astrophysics Data System (ADS)
Sauter, John A.; Mathews, Robert S.; Yinger, Andrew; Robinson, Joshua S.; Moody, John; Riddle, Stephanie
2008-04-01
The use of unmanned vehicles in Reconnaissance, Surveillance, and Target Acquisition (RSTA) applications has received considerable attention recently. Cooperating land and air vehicles can support multiple sensor modalities providing pervasive and ubiquitous broad area sensor coverage. However coordination of multiple air and land vehicles serving different mission objectives in a dynamic and complex environment is a challenging problem. Swarm intelligence algorithms, inspired by the mechanisms used in natural systems to coordinate the activities of many entities provide a promising alternative to traditional command and control approaches. This paper describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of swarming unmanned systems. The results of a recent demonstration at NASA's Wallops Island of multiple Aerosonde Unmanned Air Vehicles (UAVs) and Pioneer Unmanned Ground Vehicles (UGVs) cooperating in a coordinated RSTA application are discussed. The vehicles were autonomously controlled by the onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm self-organized to perform total area surveillance, automatic target detection, sensor cueing, and automatic target recognition with no central processing or control and minimal operator input. Complete autonomy adds several safety and fault tolerance requirements which were integrated into the basic pheromone framework. The adaptive algorithms demonstrated the ability to handle some unplanned hardware failures during the demonstration without any human intervention. The paper describes lessons learned and the next steps for this promising technology.
Terrain Commander: a next-generation remote surveillance system
NASA Astrophysics Data System (ADS)
Finneral, Henry J.
2003-09-01
Terrain Commander is a fully automated forward observation post that provides the most advanced capability in surveillance and remote situational awareness. The Terrain Commander system was selected by the Australian Government for its NINOX Phase IIB Unattended Ground Sensor Program with the first systems delivered in August of 2002. Terrain Commander offers next generation target detection using multi-spectral peripheral sensors coupled with autonomous day/night image capture and processing. Subsequent intelligence is sent back through satellite communications with unlimited range to a highly sophisticated central monitoring station. The system can "stakeout" remote locations clandestinely for 24 hours a day for months at a time. With its fully integrated SATCOM system, almost any site in the world can be monitored from virtually any other location in the world. Terrain Commander automatically detects and discriminates intruders by precisely cueing its advanced EO subsystem. The system provides target detection capabilities with minimal nuisance alarms combined with the positive visual identification that authorities demand before committing a response. Terrain Commander uses an advanced beamforming acoustic sensor and a distributed array of seismic, magnetic and passive infrared sensors to detect, capture images and accurately track vehicles and personnel. Terrain Commander has a number of emerging military and non-military applications including border control, physical security, homeland defense, force protection and intelligence gathering. This paper reviews the development, capabilities and mission applications of the Terrain Commander system.
NASA Astrophysics Data System (ADS)
Shimchuk, G.; Shimchuk, Gr; Pakhomov, G.; Avalishvili, G.; Zavrazhnov, G.; Polonsky-Byslaev, I.; Fedotov, A.; Polozov, P.
2017-01-01
One of the prospective directions of PET development is using generator positron radiating nuclides [1,2]. Introduction of this technology is financially promising, since it does not require expensive special accelerator and radiochemical laboratory in the medical institution, which considerably reduces costs of PET diagnostics and makes it available to more patients. POZITOM-PRO RPC LLC developed and produced an 82Sr-82Rb generator, an automated injection system, designed for automatic and fully-controlled injections of 82RbCl produced by this generator, automated radiopharmaceutical synthesis units based on generated 68Ga produced using a domestically-manufactured 68Ge-68Ga generator for preparing two pharmaceuticals: Ga-68-DOTA-TATE and Vascular Ga-68.
Geometric aspects in digital analysis of Multi-Spectral Scanner (MSS) data
NASA Technical Reports Server (NTRS)
Mikhail, E. M.; Baker, J. R.
1973-01-01
Present automated systems of interpretation which apply pattern recognition techniques on MSS data do not fully consider the geometry of the acquisition system. In an effort to improve the usefulness of the MSS data when digitally treated, geometric aspects are analyzed and discussed. Attempts to correct for scanner instabilities in position and orientation by affine and polynomial transformations, as well as by modified collinearity equations are described. Methods of accounting for panoramic and relief effects are also discussed. It is anticipated that reliable area as well as position determinations can be accomplished during the process of automatic interpretation. A concept for a unified approach to the treatment of remote sensing data, both metric and nonmetric is presented.
NASA Technical Reports Server (NTRS)
Clement, Warren F.; Mcruer, Duane T.; Magdeleno, Raymond E.
1987-01-01
Nap-Of-the-Earth (NOE) flight in a conventional helicopter is extremely taxing for two pilots under visual conditions. Developing a single pilot all-weather NOE capability will require a fully automatic NOE navigation and flight control capability for which innovative guidance and control concepts were examined. Constrained time-optimality provides a validated criterion for automatically controlled NOE maneuvers if the pilot is to have confidence in the automated maneuvering technique. A second focus was to organize the storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan. A method is presented for using pre-flight geodetic parameter identification to establish guidance commands for planned flight profiles and alternates. A method is then suggested for interpolating this guidance command information with the aid of forward and side looking sensors within the resolution of the stored data base, enriching the data content with real-time display, guidance, and control purposes. A third focus defined a class of automatic anticipative guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles and to address the effects of processing delays in digital guidance and control system candidates. The results of this three-fold research effort offer promising alternatives designed to gain pilot acceptance for automatic guidance and control of rotorcraft in NOE operations.
Automatic selection of dynamic data partitioning schemes for distributed memory multicomputers
NASA Technical Reports Server (NTRS)
Palermo, Daniel J.; Banerjee, Prithviraj
1995-01-01
For distributed memory multicomputers such as the Intel Paragon, the IBM SP-2, the NCUBE/2, and the Thinking Machines CM-5, the quality of the data partitioning for a given application is crucial to obtaining high performance. This task has traditionally been the user's responsibility, but in recent years much effort has been directed to automating the selection of data partitioning schemes. Several researchers have proposed systems that are able to produce data distributions that remain in effect for the entire execution of an application. For complex programs, however, such static data distributions may be insufficient to obtain acceptable performance. The selection of distributions that dynamically change over the course of a program's execution adds another dimension to the data partitioning problem. In this paper, we present a technique that can be used to automatically determine which partitionings are most beneficial over specific sections of a program while taking into account the added overhead of performing redistribution. This system is being built as part of the PARADIGM (PARAllelizing compiler for DIstributed memory General-purpose Multicomputers) project at the University of Illinois. The complete system will provide a fully automated means to parallelize programs written in a serial programming model obtaining high performance on a wide range of distributed-memory multicomputers.
Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin
2017-01-01
With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO2) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally. PMID:28398266
Wang, Jing-Min; Yang, Ming-Ta; Chen, Po-Lin
2017-04-11
With the advance of science and technology, people have a desire for convenient and comfortable living. Creating comfortable and healthy indoor environments is a major consideration for designing smart homes. As handheld devices become increasingly powerful and ubiquitous, this paper proposes an innovative use of smart handheld devices (SHD), using MIT App Inventor and fuzzy control, to perform the real-time monitoring and smart control of the designed intelligent windowsill system (IWS) in a smart home. A compact weather station that consists of environment sensors was constructed in the IWS for measuring of indoor illuminance, temperature-humidity, carbon dioxide (CO₂) concentration and outdoor rain and wind direction. According to the measured environment information, the proposed system can automatically send a command to a fuzzy microcontroller performed by Arduino UNO to fully or partly open the electric curtain and electric window for adapting to climate changes in the indoor and outdoor environment. Moreover, the IWS can automatically close windows for rain splashing on the window. The presented novel control method for the windowsill not only expands the SHD applications, but greatly enhances convenience to users. To validate the feasibility and effectiveness of the IWS, a laboratory prototype was built and confirmed experimentally.
Automatic and semi-automatic approaches for arteriolar-to-venular computation in retinal photographs
NASA Astrophysics Data System (ADS)
Mendonça, Ana Maria; Remeseiro, Beatriz; Dashtbozorg, Behdad; Campilho, Aurélio
2017-03-01
The Arteriolar-to-Venular Ratio (AVR) is a popular dimensionless measure which allows the assessment of patients' condition for the early diagnosis of different diseases, including hypertension and diabetic retinopathy. This paper presents two new approaches for AVR computation in retinal photographs which include a sequence of automated processing steps: vessel segmentation, caliber measurement, optic disc segmentation, artery/vein classification, region of interest delineation, and AVR calculation. Both approaches have been tested on the INSPIRE-AVR dataset, and compared with a ground-truth provided by two medical specialists. The obtained results demonstrate the reliability of the fully automatic approach which provides AVR ratios very similar to at least one of the observers. Furthermore, the semi-automatic approach, which includes the manual modification of the artery/vein classification if needed, allows to significantly reduce the error to a level below the human error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciller, Carlos, E-mail: carlos.cillerruiz@unil.ch; Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern; Centre d’Imagerie BioMédicale, University of Lausanne, Lausanne
Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manualmore » and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.« less
Ciller, Carlos; De Zanet, Sandro I; Rüegsegger, Michael B; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L; Kowal, Jens H; Cuadra, Meritxell Bach
2015-07-15
Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor. Copyright © 2015 Elsevier Inc. All rights reserved.
Automated detection of diabetic retinopathy on digital fundus images.
Sinthanayothin, C; Boyce, J F; Williamson, T H; Cook, H L; Mensah, E; Lal, S; Usher, D
2002-02-01
The aim was to develop an automated screening system to analyse digital colour retinal images for important features of non-proliferative diabetic retinopathy (NPDR). High performance pre-processing of the colour images was performed. Previously described automated image analysis systems were used to detect major landmarks of the retinal image (optic disc, blood vessels and fovea). Recursive region growing segmentation algorithms combined with the use of a new technique, termed a 'Moat Operator', were used to automatically detect features of NPDR. These features included haemorrhages and microaneurysms (HMA), which were treated as one group, and hard exudates as another group. Sensitivity and specificity data were calculated by comparison with an experienced fundoscopist. The algorithm for exudate recognition was applied to 30 retinal images of which 21 contained exudates and nine were without pathology. The sensitivity and specificity for exudate detection were 88.5% and 99.7%, respectively, when compared with the ophthalmologist. HMA were present in 14 retinal images. The algorithm achieved a sensitivity of 77.5% and specificity of 88.7% for detection of HMA. Fully automated computer algorithms were able to detect hard exudates and HMA. This paper presents encouraging results in automatic identification of important features of NPDR.
3D Convolutional Neural Network for Automatic Detection of Lung Nodules in Chest CT.
Hamidian, Sardar; Sahiner, Berkman; Petrick, Nicholas; Pezeshk, Aria
2017-01-01
Deep convolutional neural networks (CNNs) form the backbone of many state-of-the-art computer vision systems for classification and segmentation of 2D images. The same principles and architectures can be extended to three dimensions to obtain 3D CNNs that are suitable for volumetric data such as CT scans. In this work, we train a 3D CNN for automatic detection of pulmonary nodules in chest CT images using volumes of interest extracted from the LIDC dataset. We then convert the 3D CNN which has a fixed field of view to a 3D fully convolutional network (FCN) which can generate the score map for the entire volume efficiently in a single pass. Compared to the sliding window approach for applying a CNN across the entire input volume, the FCN leads to a nearly 800-fold speed-up, and thereby fast generation of output scores for a single case. This screening FCN is used to generate difficult negative examples that are used to train a new discriminant CNN. The overall system consists of the screening FCN for fast generation of candidate regions of interest, followed by the discrimination CNN.
Sauer, Juergen; Chavaillaz, Alain; Wastell, David
2016-06-01
This work examined the effects of operators' exposure to various types of automation failures in training. Forty-five participants were trained for 3.5 h on a simulated process control environment. During training, participants either experienced a fully reliable, automatic fault repair facility (i.e. faults detected and correctly diagnosed), a misdiagnosis-prone one (i.e. faults detected but not correctly diagnosed) or a miss-prone one (i.e. faults not detected). One week after training, participants were tested for 3 h, experiencing two types of automation failures (misdiagnosis, miss). The results showed that automation bias was very high when operators trained on miss-prone automation encountered a failure of the diagnostic system. Operator errors resulting from automation bias were much higher when automation misdiagnosed a fault than when it missed one. Differences in trust levels that were instilled by the different training experiences disappeared during the testing session. Practitioner Summary: The experience of automation failures during training has some consequences. A greater potential for operator errors may be expected when an automatic system failed to diagnose a fault than when it failed to detect one.
3D convolutional neural network for automatic detection of lung nodules in chest CT
NASA Astrophysics Data System (ADS)
Hamidian, Sardar; Sahiner, Berkman; Petrick, Nicholas; Pezeshk, Aria
2017-03-01
Deep convolutional neural networks (CNNs) form the backbone of many state-of-the-art computer vision systems for classification and segmentation of 2D images. The same principles and architectures can be extended to three dimensions to obtain 3D CNNs that are suitable for volumetric data such as CT scans. In this work, we train a 3D CNN for automatic detection of pulmonary nodules in chest CT images using volumes of interest extracted from the LIDC dataset. We then convert the 3D CNN which has a fixed field of view to a 3D fully convolutional network (FCN) which can generate the score map for the entire volume efficiently in a single pass. Compared to the sliding window approach for applying a CNN across the entire input volume, the FCN leads to a nearly 800-fold speed-up, and thereby fast generation of output scores for a single case. This screening FCN is used to generate difficult negative examples that are used to train a new discriminant CNN. The overall system consists of the screening FCN for fast generation of candidate regions of interest, followed by the discrimination CNN.
Validation of artificial skin equivalents as in vitro testing systems
NASA Astrophysics Data System (ADS)
Schmitt, Robert; Marx, Ulrich; Walles, Heike; Schober, Lena
2011-03-01
With the increasing complexity of the chemical composition of pharmaceuticals, cosmetics and everyday substances, the awareness of potential health issues and long term damages for humanoid organs is shifting into focus. Artificial in vitro testing systems play an important role in providing reliable test conditions and replacing precarious animal testing. Especially artificial skin equivalents ASEs are used for a broad spectrum of studies like penetration, irritation and corrosion of substances. One major challenge in tissue engineering is the qualification of each individual ASE as in vitro testing system. Due to biological fluctuations, the stratum corneum hornified layer of some ASEs may not fully develop or other defects might occur. For monitoring these effects we developed an fully automated Optical Coherence Tomography device. Here, we present different methods to characterize and evaluate the quality of the ASEs based on image and data processing of OCT B-scans. By analysing the surface structure, defects, like cuts or tears, are detectable. A further indicator for the quality of the ASE is the morphology of the tissue. This allows to determine if the skin model has reached the final growth state. We found, that OCT is a well suited technology for automatically characterizing artificial skin equivalents and validating the application as testing system.
Computer-aided diagnosis system: a Bayesian hybrid classification method.
Calle-Alonso, F; Pérez, C J; Arias-Nicolás, J P; Martín, J
2013-10-01
A novel method to classify multi-class biomedical objects is presented. The method is based on a hybrid approach which combines pairwise comparison, Bayesian regression and the k-nearest neighbor technique. It can be applied in a fully automatic way or in a relevance feedback framework. In the latter case, the information obtained from both an expert and the automatic classification is iteratively used to improve the results until a certain accuracy level is achieved, then, the learning process is finished and new classifications can be automatically performed. The method has been applied in two biomedical contexts by following the same cross-validation schemes as in the original studies. The first one refers to cancer diagnosis, leading to an accuracy of 77.35% versus 66.37%, originally obtained. The second one considers the diagnosis of pathologies of the vertebral column. The original method achieves accuracies ranging from 76.5% to 96.7%, and from 82.3% to 97.1% in two different cross-validation schemes. Even with no supervision, the proposed method reaches 96.71% and 97.32% in these two cases. By using a supervised framework the achieved accuracy is 97.74%. Furthermore, all abnormal cases were correctly classified. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Automatic estimation of elasticity parameters in breast tissue
NASA Astrophysics Data System (ADS)
Skerl, Katrin; Cochran, Sandy; Evans, Andrew
2014-03-01
Shear wave elastography (SWE), a novel ultrasound imaging technique, can provide unique information about cancerous tissue. To estimate elasticity parameters, a region of interest (ROI) is manually positioned over the stiffest part of the shear wave image (SWI). The aim of this work is to estimate the elasticity parameters i.e. mean elasticity, maximal elasticity and standard deviation, fully automatically. Ultrasonic SWI of a breast elastography phantom and breast tissue in vivo were acquired using the Aixplorer system (SuperSonic Imagine, Aix-en-Provence, France). First, the SWI within the ultrasonic B-mode image was detected using MATLAB then the elasticity values were extracted. The ROI was automatically positioned over the stiffest part of the SWI and the elasticity parameters were calculated. Finally all values were saved in a spreadsheet which also contains the patient's study ID. This spreadsheet is easily available for physicians and clinical staff for further evaluation and so increase efficiency. Therewith the efficiency is increased. This algorithm simplifies the handling, especially for the performance and evaluation of clinical trials. The SWE processing method allows physicians easy access to the elasticity parameters of the examinations from their own and other institutions. This reduces clinical time and effort and simplifies evaluation of data in clinical trials. Furthermore, reproducibility will be improved.
NASA Astrophysics Data System (ADS)
Barufaldi, Bruno; Borges, Lucas R.; Bakic, Predrag R.; Vieira, Marcelo A. C.; Schiabel, Homero; Maidment, Andrew D. A.
2017-03-01
Automatic exposure control (AEC) is used in mammography to obtain acceptable radiation dose and adequate image quality regardless of breast thickness and composition. Although there are physics methods for assessing the AEC, it is not clear whether mammography systems operate with optimal dose and image quality in clinical practice. In this work, we propose the use of a normalized anisotropic quality index (NAQI), validated in previous studies, to evaluate the quality of mammograms acquired using AEC. The authors used a clinical dataset that consists of 561 patients and 1,046 mammograms (craniocaudal breast views). The results show that image quality is often maintained, even at various radiation levels (mean NAQI = 0.14 +/- 0.02). However, a more careful analysis of NAQI reveals that the average image quality decreases as breast thickness increases. The NAQI is reduced by 32% on average, when the breast thickness increases from 31 to 71 mm. NAQI also decreases with lower breast density. The variation in breast parenchyma alone cannot fully account for the decrease of NAQI with thickness. Examination of images shows that images of large, fatty breasts are often inadequately processed. This work shows that NAQI can be applied in clinical mammograms to assess mammographic image quality, and highlights the limitations of the automatic exposure control for some images.
Igual, Laura; Soliva, Joan Carles; Escalera, Sergio; Gimeno, Roger; Vilarroya, Oscar; Radeva, Petia
2012-12-01
We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods. Copyright © 2012 Elsevier Ltd. All rights reserved.
Automatic three-dimensional measurement of large-scale structure based on vision metrology.
Zhu, Zhaokun; Guan, Banglei; Zhang, Xiaohu; Li, Daokui; Yu, Qifeng
2014-01-01
All relevant key techniques involved in photogrammetric vision metrology for fully automatic 3D measurement of large-scale structure are studied. A new kind of coded target consisting of circular retroreflective discs is designed, and corresponding detection and recognition algorithms based on blob detection and clustering are presented. Then a three-stage strategy starting with view clustering is proposed to achieve automatic network orientation. As for matching of noncoded targets, the concept of matching path is proposed, and matches for each noncoded target are found by determination of the optimal matching path, based on a novel voting strategy, among all possible ones. Experiments on a fixed keel of airship have been conducted to verify the effectiveness and measuring accuracy of the proposed methods.
Automatic extraction of road features in urban environments using dense ALS data
NASA Astrophysics Data System (ADS)
Soilán, Mario; Truong-Hong, Linh; Riveiro, Belén; Laefer, Debra
2018-02-01
This paper describes a methodology that automatically extracts semantic information from urban ALS data for urban parameterization and road network definition. First, building façades are segmented from the ground surface by combining knowledge-based information with both voxel and raster data. Next, heuristic rules and unsupervised learning are applied to the ground surface data to distinguish sidewalk and pavement points as a means for curb detection. Then radiometric information was employed for road marking extraction. Using high-density ALS data from Dublin, Ireland, this fully automatic workflow was able to generate a F-score close to 95% for pavement and sidewalk identification with a resolution of 20 cm and better than 80% for road marking detection.
Automatic detection of sleep macrostructure based on a sensorized T-shirt.
Bianchi, Anna M; Mendez, Martin O
2010-01-01
In the present work we apply a fully automatic procedure to the analysis of signal coming from a sensorized T-shit, worn during the night, for sleep evaluation. The goodness and reliability of the signals recorded trough the T-shirt was previously tested, while the employed algorithms for feature extraction and sleep classification were previously developed on standard ECG recordings and the obtained classification was compared to the standard clinical practice based on polysomnography (PSG). In the present work we combined T-shirt recordings and automatic classification and could obtain reliable sleep profiles, i.e. the sleep classification in WAKE, REM (rapid eye movement) and NREM stages, based on heart rate variability (HRV), respiration and movement signals.
NASA Astrophysics Data System (ADS)
Lu, Xiaoguang; Xue, Hui; Jolly, Marie-Pierre; Guetter, Christoph; Kellman, Peter; Hsu, Li-Yueh; Arai, Andrew; Zuehlsdorff, Sven; Littmann, Arne; Georgescu, Bogdan; Guehring, Jens
2011-03-01
Cardiac perfusion magnetic resonance imaging (MRI) has proven clinical significance in diagnosis of heart diseases. However, analysis of perfusion data is time-consuming, where automatic detection of anatomic landmarks and key-frames from perfusion MR sequences is helpful for anchoring structures and functional analysis of the heart, leading toward fully automated perfusion analysis. Learning-based object detection methods have demonstrated their capabilities to handle large variations of the object by exploring a local region, i.e., context. Conventional 2D approaches take into account spatial context only. Temporal signals in perfusion data present a strong cue for anchoring. We propose a joint context model to encode both spatial and temporal evidence. In addition, our spatial context is constructed not only based on the landmark of interest, but also the landmarks that are correlated in the neighboring anatomies. A discriminative model is learned through a probabilistic boosting tree. A marginal space learning strategy is applied to efficiently learn and search in a high dimensional parameter space. A fully automatic system is developed to simultaneously detect anatomic landmarks and key frames in both RV and LV from perfusion sequences. The proposed approach was evaluated on a database of 373 cardiac perfusion MRI sequences from 77 patients. Experimental results of a 4-fold cross validation show superior landmark detection accuracies of the proposed joint spatial-temporal approach to the 2D approach that is based on spatial context only. The key-frame identification results are promising.
Tuned grid generation with ICEM CFD
NASA Technical Reports Server (NTRS)
Wulf, Armin; Akdag, Vedat
1995-01-01
ICEM CFD is a CAD based grid generation package that supports multiblock structured, unstructured tetrahedral and unstructured hexahedral grids. Major development efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral unstructured grid generation capabilities. The modules added are: a parametric grid generation module and a semi-automatic hexahedral grid generation module. A fully automatic version of the hexahedral grid generation module for around a set of predefined objects in rectilinear enclosures has been developed. These modules will be presented and the procedures used will be described, and examples will be discussed.
2011-01-01
Background The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community. Description SADI - Semantic Automated Discovery and Integration - is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services "stack", SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers. Conclusions SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behaviour we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies. PMID:22024447
Wilkinson, Mark D; Vandervalk, Benjamin; McCarthy, Luke
2011-10-24
The complexity and inter-related nature of biological data poses a difficult challenge for data and tool integration. There has been a proliferation of interoperability standards and projects over the past decade, none of which has been widely adopted by the bioinformatics community. Recent attempts have focused on the use of semantics to assist integration, and Semantic Web technologies are being welcomed by this community. SADI - Semantic Automated Discovery and Integration - is a lightweight set of fully standards-compliant Semantic Web service design patterns that simplify the publication of services of the type commonly found in bioinformatics and other scientific domains. Using Semantic Web technologies at every level of the Web services "stack", SADI services consume and produce instances of OWL Classes following a small number of very straightforward best-practices. In addition, we provide codebases that support these best-practices, and plug-in tools to popular developer and client software that dramatically simplify deployment of services by providers, and the discovery and utilization of those services by their consumers. SADI Services are fully compliant with, and utilize only foundational Web standards; are simple to create and maintain for service providers; and can be discovered and utilized in a very intuitive way by biologist end-users. In addition, the SADI design patterns significantly improve the ability of software to automatically discover appropriate services based on user-needs, and automatically chain these into complex analytical workflows. We show that, when resources are exposed through SADI, data compliant with a given ontological model can be automatically gathered, or generated, from these distributed, non-coordinating resources - a behaviour we have not observed in any other Semantic system. Finally, we show that, using SADI, data dynamically generated from Web services can be explored in a manner very similar to data housed in static triple-stores, thus facilitating the intersection of Web services and Semantic Web technologies.
Web-based computer-aided-diagnosis (CAD) system for bone age assessment (BAA) of children
NASA Astrophysics Data System (ADS)
Zhang, Aifeng; Uyeda, Joshua; Tsao, Sinchai; Ma, Kevin; Vachon, Linda A.; Liu, Brent J.; Huang, H. K.
2008-03-01
Bone age assessment (BAA) of children is a clinical procedure frequently performed in pediatric radiology to evaluate the stage of skeletal maturation based on a left hand and wrist radiograph. The most commonly used standard: Greulich and Pyle (G&P) Hand Atlas was developed 50 years ago and exclusively based on Caucasian population. Moreover, inter- & intra-observer discrepancies using this method create a need of an objective and automatic BAA method. A digital hand atlas (DHA) has been collected with 1,400 hand images of normal children from Asian, African American, Caucasian and Hispanic descends. Based on DHA, a fully automatic, objective computer-aided-diagnosis (CAD) method was developed and it was adapted to specific population. To bring DHA and CAD method to the clinical environment as a useful tool in assisting radiologist to achieve higher accuracy in BAA, a web-based system with direct connection to a clinical site is designed as a novel clinical implementation approach for online and real time BAA. The core of the system, a CAD server receives the image from clinical site, processes it by the CAD method and finally, generates report. A web service publishes the results and radiologists at the clinical site can review it online within minutes. This prototype can be easily extended to multiple clinical sites and will provide the foundation for broader use of the CAD system for BAA.
Industrial applications of shearography for inspections of aircraft components
NASA Astrophysics Data System (ADS)
Krupka, Rene; Waltz, T.; Ettemeyer, Andreas
2003-05-01
Shearography has been validated as fast and reliable inspection technique for aerospace components. Following several years phase of evaluation of the technique, meanwhile, shearography has entered the industrial production inspection. The applications basically range from serial inspection in the production line to field inspection in assembly and to applications in the maintenance and repair area. In all applications, the main advantages of shearography, as very fast and full field inspection and high sensitivity even on very complex composite materials have led to the decision for laser shearography as inspection tool. In this paper, we present examples of recent industrial shearography inspection systems in the field of aerospace. One of the first industrial installations of laser shearography in Europe was a fully automatic inspection system for helicopter rotorblades. Complete rotor blades are inspected within 10 minutes on delaminations and debondings in the composite structure. In case of more complex components, robotic manipulation of the shearography camera has proven to be the optimum solution. An industry 6-axis robot gives utmost flexibility to position the camera in any angle and distance. Automatic defect marking systems have also been introduced to indicate the exact position of the defect directly on the inspected component. Other applications cover the inspection of abradable seals in jet engines and portable shearography inspection systems for maintenance and repair inspection in the field.
NASA Astrophysics Data System (ADS)
Dang, Jie; Chen, Hao
2016-12-01
The methodology and procedures are discussed on designing merchant ships to achieve fully-integrated and optimized hull-propulsion systems by using asymmetric aftbodies. Computational fluid dynamics (CFD) has been used to evaluate the powering performance through massive calculations with automatic deformation algorisms for the hull forms and the propeller blades. Comparative model tests of the designs to the optimized symmetric hull forms have been carried out to verify the efficiency gain. More than 6% improvement on the propulsive efficiency of an oil tanker has been measured during the model tests. Dedicated sea-trials show good agreement with the predicted performance from the test results.
Avendi, M R; Kheradvar, Arash; Jafarkhani, Hamid
2016-05-01
Segmentation of the left ventricle (LV) from cardiac magnetic resonance imaging (MRI) datasets is an essential step for calculation of clinical indices such as ventricular volume and ejection fraction. In this work, we employ deep learning algorithms combined with deformable models to develop and evaluate a fully automatic LV segmentation tool from short-axis cardiac MRI datasets. The method employs deep learning algorithms to learn the segmentation task from the ground true data. Convolutional networks are employed to automatically detect the LV chamber in MRI dataset. Stacked autoencoders are used to infer the LV shape. The inferred shape is incorporated into deformable models to improve the accuracy and robustness of the segmentation. We validated our method using 45 cardiac MR datasets from the MICCAI 2009 LV segmentation challenge and showed that it outperforms the state-of-the art methods. Excellent agreement with the ground truth was achieved. Validation metrics, percentage of good contours, Dice metric, average perpendicular distance and conformity, were computed as 96.69%, 0.94, 1.81 mm and 0.86, versus those of 79.2-95.62%, 0.87-0.9, 1.76-2.97 mm and 0.67-0.78, obtained by other methods, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
Dietz, Hans Peter; D’hooge, Jan; Barratt, Dean; Deprest, Jan
2018-01-01
Abstract. Segmentation of the levator hiatus in ultrasound allows the extraction of biometrics, which are of importance for pelvic floor disorder assessment. We present a fully automatic method using a convolutional neural network (CNN) to outline the levator hiatus in a two-dimensional image extracted from a three-dimensional ultrasound volume. In particular, our method uses a recently developed scaled exponential linear unit (SELU) as a nonlinear self-normalizing activation function, which for the first time has been applied in medical imaging with CNN. SELU has important advantages such as being parameter-free and mini-batch independent, which may help to overcome memory constraints during training. A dataset with 91 images from 35 patients during Valsalva, contraction, and rest, all labeled by three operators, is used for training and evaluation in a leave-one-patient-out cross validation. Results show a median Dice similarity coefficient of 0.90 with an interquartile range of 0.08, with equivalent performance to the three operators (with a Williams’ index of 1.03), and outperforming a U-Net architecture without the need for batch normalization. We conclude that the proposed fully automatic method achieved equivalent accuracy in segmenting the pelvic floor levator hiatus compared to a previous semiautomatic approach. PMID:29340289
Bonmati, Ester; Hu, Yipeng; Sindhwani, Nikhil; Dietz, Hans Peter; D'hooge, Jan; Barratt, Dean; Deprest, Jan; Vercauteren, Tom
2018-04-01
Segmentation of the levator hiatus in ultrasound allows the extraction of biometrics, which are of importance for pelvic floor disorder assessment. We present a fully automatic method using a convolutional neural network (CNN) to outline the levator hiatus in a two-dimensional image extracted from a three-dimensional ultrasound volume. In particular, our method uses a recently developed scaled exponential linear unit (SELU) as a nonlinear self-normalizing activation function, which for the first time has been applied in medical imaging with CNN. SELU has important advantages such as being parameter-free and mini-batch independent, which may help to overcome memory constraints during training. A dataset with 91 images from 35 patients during Valsalva, contraction, and rest, all labeled by three operators, is used for training and evaluation in a leave-one-patient-out cross validation. Results show a median Dice similarity coefficient of 0.90 with an interquartile range of 0.08, with equivalent performance to the three operators (with a Williams' index of 1.03), and outperforming a U-Net architecture without the need for batch normalization. We conclude that the proposed fully automatic method achieved equivalent accuracy in segmenting the pelvic floor levator hiatus compared to a previous semiautomatic approach.
Dynamic gamma knife radiosurgery
NASA Astrophysics Data System (ADS)
Luan, Shuang; Swanson, Nathan; Chen, Zhe; Ma, Lijun
2009-03-01
Gamma knife has been the treatment of choice for various brain tumors and functional disorders. Current gamma knife radiosurgery is planned in a 'ball-packing' approach and delivered in a 'step-and-shoot' manner, i.e. it aims to 'pack' the different sized spherical high-dose volumes (called 'shots') into a tumor volume. We have developed a dynamic scheme for gamma knife radiosurgery based on the concept of 'dose-painting' to take advantage of the new robotic patient positioning system on the latest Gamma Knife C™ and Perfexion™ units. In our scheme, the spherical high dose volume created by the gamma knife unit will be viewed as a 3D spherical 'paintbrush', and treatment planning reduces to finding the best route of this 'paintbrush' to 'paint' a 3D tumor volume. Under our dose-painting concept, gamma knife radiosurgery becomes dynamic, where the patient moves continuously under the robotic positioning system. We have implemented a fully automatic dynamic gamma knife radiosurgery treatment planning system, where the inverse planning problem is solved as a traveling salesman problem combined with constrained least-square optimizations. We have also carried out experimental studies of dynamic gamma knife radiosurgery and showed the following. (1) Dynamic gamma knife radiosurgery is ideally suited for fully automatic inverse planning, where high quality radiosurgery plans can be obtained in minutes of computation. (2) Dynamic radiosurgery plans are more conformal than step-and-shoot plans and can maintain a steep dose gradient (around 13% per mm) between the target tumor volume and the surrounding critical structures. (3) It is possible to prescribe multiple isodose lines with dynamic gamma knife radiosurgery, so that the treatment can cover the periphery of the target volume while escalating the dose for high tumor burden regions. (4) With dynamic gamma knife radiosurgery, one can obtain a family of plans representing a tradeoff between the delivery time and the dose distributions, thus giving the clinician one more dimension of flexibility of choosing a plan based on the clinical situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkel, D; Bol, GH; Asselen, B van
Purpose: To develop an automated radiotherapy treatment planning and optimization workflow for prostate cancer in order to generate clinical treatment plans. Methods: A fully automated radiotherapy treatment planning and optimization workflow was developed based on the treatment planning system Monaco (Elekta AB, Stockholm, Sweden). To evaluate our method, a retrospective planning study (n=100) was performed on patients treated for prostate cancer with 5 field intensity modulated radiotherapy, receiving a dose of 35×2Gy to the prostate and vesicles and a simultaneous integrated boost of 35×0.2Gy to the prostate only. A comparison was made between the dosimetric values of the automatically andmore » manually generated plans. Operator time to generate a plan and plan efficiency was measured. Results: A comparison of the dosimetric values show that automatically generated plans yield more beneficial dosimetric values. In automatic plans reductions of 43% in the V72Gy of the rectum and 13% in the V72Gy of the bladder are observed when compared to the manually generated plans. Smaller variance in dosimetric values is seen, i.e. the intra- and interplanner variability is decreased. For 97% of the automatically generated plans and 86% of the clinical plans all criteria for target coverage and organs at risk constraints are met. The amount of plan segments and monitor units is reduced by 13% and 9% respectively. Automated planning requires less than one minute of operator time compared to over an hour for manual planning. Conclusion: The automatically generated plans are highly suitable for clinical use. The plans have less variance and a large gain in time efficiency has been achieved. Currently, a pilot study is performed, comparing the preference of the clinician and clinical physicist for the automatic versus manual plan. Future work will include expanding our automated treatment planning method to other tumor sites and develop other automated radiotherapy workflows.« less
A plug-in to Eclipse for VHDL source codes: functionalities
NASA Astrophysics Data System (ADS)
Niton, B.; Poźniak, K. T.; Romaniuk, R. S.
The paper presents an original application, written by authors, which supports writing and edition of source codes in VHDL language. It is a step towards fully automatic, augmented code writing for photonic and electronic systems, also systems based on FPGA and/or DSP processors. An implementation is described, based on VEditor. VEditor is a free license program. Thus, the work presented in this paper supplements and extends this free license. The introduction characterizes shortly available tools on the market which serve for aiding the design processes of electronic systems in VHDL. Particular attention was put on plug-ins to the Eclipse environment and Emacs program. There are presented detailed properties of the written plug-in such as: programming extension conception, and the results of the activities of formatter, re-factorizer, code hider, and other new additions to the VEditor program.
Automatic electrochemical ambient air monitor for chloride and chlorine
Mueller, Theodore R.
1976-07-13
An electrochemical monitoring system has been provided for determining chloride and chlorine in air at levels of from about 10-1000 parts per billion. The chloride is determined by oxidation to chlorine followed by reduction to chloride in a closed system. Chlorine is determined by direct reduction at a platinum electrode in 6 M H.sub.2 SO.sub.4 electrolyte. A fully automated system is utilized to (1) acquire and store a value corresponding to electrolyte-containing impurities, (2) subtract this value from that obtained in the presence of air, (3) generate coulometrically a standard sample of chlorine mixed with air sample, and determine it as chlorine and/or chloride, and (4) calculate, display, and store for permanent record the ratio of the signal obtained from the air sample and that obtained with the standard.
Video repairing under variable illumination using cyclic motions.
Jia, Jiaya; Tai, Yu-Wing; Wu, Tai-Pang; Tang, Chi-Keung
2006-05-01
This paper presents a complete system capable of synthesizing a large number of pixels that are missing due to occlusion or damage in an uncalibrated input video. These missing pixels may correspond to the static background or cyclic motions of the captured scene. Our system employs user-assisted video layer segmentation, while the main processing in video repair is fully automatic. The input video is first decomposed into the color and illumination videos. The necessary temporal consistency is maintained by tensor voting in the spatio-temporal domain. Missing colors and illumination of the background are synthesized by applying image repairing. Finally, the occluded motions are inferred by spatio-temporal alignment of collected samples at multiple scales. We experimented on our system with some difficult examples with variable illumination, where the capturing camera can be stationary or in motion.
Analysis of navigation and guidance requirements for commercial VTOL operations
NASA Technical Reports Server (NTRS)
Hoffman, W. C.; Zvara, J.; Hollister, W. M.
1975-01-01
The paper presents some results of a program undertaken to define navigation and guidance requirements for commercial VTOL operations in the takeoff, cruise, terminal and landing phases of flight in weather conditions up to and including Category III. Quantitative navigation requirements are given for the parameters range, coverage, operation near obstacles, horizontal accuracy, multiple landing aircraft, multiple pad requirements, inertial/radio-inertial requirements, reliability/redundancy, update rate, and data link requirements in all flight phases. A multi-configuration straw-man navigation and guidance system for commercial VTOL operations is presented. Operation of the system is keyed to a fully automatic approach for navigation, guidance and control, with pilot as monitor-manager. The system is a hybrid navigator using a relatively low-cost inertial sensor with DME updates and MLS in the approach/departure phases.
Nguyen, Thanh; Bui, Vy; Lam, Van; Raub, Christopher B; Chang, Lin-Ching; Nehmetallah, George
2017-06-26
We propose a fully automatic technique to obtain aberration free quantitative phase imaging in digital holographic microscopy (DHM) based on deep learning. The traditional DHM solves the phase aberration compensation problem by manually detecting the background for quantitative measurement. This would be a drawback in real time implementation and for dynamic processes such as cell migration phenomena. A recent automatic aberration compensation approach using principle component analysis (PCA) in DHM avoids human intervention regardless of the cells' motion. However, it corrects spherical/elliptical aberration only and disregards the higher order aberrations. Traditional image segmentation techniques can be employed to spatially detect cell locations. Ideally, automatic image segmentation techniques make real time measurement possible. However, existing automatic unsupervised segmentation techniques have poor performance when applied to DHM phase images because of aberrations and speckle noise. In this paper, we propose a novel method that combines a supervised deep learning technique with convolutional neural network (CNN) and Zernike polynomial fitting (ZPF). The deep learning CNN is implemented to perform automatic background region detection that allows for ZPF to compute the self-conjugated phase to compensate for most aberrations.
Automatic Exposure Control Device for Digital Mammography
2001-08-01
developing innovative approaches for controlling DM exposures. These approaches entail using the digital detector and an artificial neural network to...of interest that determine the exposure parameters for the fully exposed image; and (2) to use an artificial neural network to select exposure
Automatic Exposure Control Device for Digital Mammography
2004-08-01
developing innovative approaches for controlling DM exposures. These approaches entail using the digital detector and an artificial neural network to...of interest that determine the exposure parameters for the fully exposed image; and (2) to use an artificial neural network to select exposure
Automatic vision system for analysis of microscopic behavior of flow and transport in porous media
NASA Astrophysics Data System (ADS)
Rashidi, Mehdi; Dehmeshki, Jamshid; Dickenson, Eric; Daemi, M. Farhang
1997-10-01
This paper describes the development of a novel automated and efficient vision system to obtain velocity and concentration measurement within a porous medium. An aqueous fluid lace with a fluorescent dye to microspheres flows through a transparent, refractive-index-matched column packed with transparent crystals. For illumination purposes, a planar sheet of laser passes through the column as a CCD camera records all the laser illuminated planes. Detailed microscopic velocity and concentration fields have been computed within a 3D volume of the column. For measuring velocities, while the aqueous fluid, laced with fluorescent microspheres, flows through the transparent medium, a CCD camera records the motions of the fluorescing particles by a video cassette recorder. The recorded images are acquired automatically frame by frame and transferred to the computer for processing, by using a frame grabber an written relevant algorithms through an RS-232 interface. Since the grabbed image is poor in this stage, some preprocessings are used to enhance particles within images. Finally, these enhanced particles are monitored to calculate velocity vectors in the plane of the beam. For concentration measurements, while the aqueous fluid, laced with a fluorescent organic dye, flows through the transparent medium, a CCD camera sweeps back and forth across the column and records concentration slices on the planes illuminated by the laser beam traveling simultaneously with the camera. Subsequently, these recorded images are transferred to the computer for processing in similar fashion to the velocity measurement. In order to have a fully automatic vision system, several detailed image processing techniques are developed to match exact images that have different intensities values but the same topological characteristics. This results in normalized interstitial chemical concentrations as a function of time within the porous column.
49 CFR 236.504 - Operation interconnected with automatic block-signal system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false Operation interconnected with automatic block... Operation interconnected with automatic block-signal system. (a) A continuous inductive automatic train stop or train control system shall operate in connection with an automatic block signal system and shall...
Implementation of a high-speed face recognition system that uses an optical parallel correlator.
Watanabe, Eriko; Kodate, Kashiko
2005-02-10
We implement a fully automatic fast face recognition system by using a 1000 frame/s optical parallel correlator designed and assembled by us. The operational speed for the 1:N (i.e., matching one image against N, where N refers to the number of images in the database) identification experiment (4000 face images) amounts to less than 1.5 s, including the preprocessing and postprocessing times. The binary real-only matched filter is devised for the sake of face recognition, and the system is optimized by the false-rejection rate (FRR) and the false-acceptance rate (FAR), according to 300 samples selected by the biometrics guideline. From trial 1:N identification experiments with the optical parallel correlator, we acquired low error rates of 2.6% FRR and 1.3% FAR. Facial images of people wearing thin glasses or heavy makeup that rendered identification difficult were identified with this system.
Automated structure determination of proteins with the SAIL-FLYA NMR method.
Takeda, Mitsuhiro; Ikeya, Teppei; Güntert, Peter; Kainosho, Masatsune
2007-01-01
The labeling of proteins with stable isotopes enhances the NMR method for the determination of 3D protein structures in solution. Stereo-array isotope labeling (SAIL) provides an optimal stereospecific and regiospecific pattern of stable isotopes that yields sharpened lines, spectral simplification without loss of information, and the ability to collect rapidly and evaluate fully automatically the structural restraints required to solve a high-quality solution structure for proteins up to twice as large as those that can be analyzed using conventional methods. Here, we describe a protocol for the preparation of SAIL proteins by cell-free methods, including the preparation of S30 extract and their automated structure analysis using the FLYA algorithm and the program CYANA. Once efficient cell-free expression of the unlabeled or uniformly labeled target protein has been achieved, the NMR sample preparation of a SAIL protein can be accomplished in 3 d. A fully automated FLYA structure calculation can be completed in 1 d on a powerful computer system.
Kim, Jungkyu; Jensen, Erik C; Stockton, Amanda M; Mathies, Richard A
2013-08-20
A fully integrated multilayer microfluidic chemical analyzer for automated sample processing and labeling, as well as analysis using capillary zone electrophoresis is developed and characterized. Using lifting gate microfluidic control valve technology, a microfluidic automaton consisting of a two-dimensional microvalve cellular array is fabricated with soft lithography in a format that enables facile integration with a microfluidic capillary electrophoresis device. The programmable sample processor performs precise mixing, metering, and routing operations that can be combined to achieve automation of complex and diverse assay protocols. Sample labeling protocols for amino acid, aldehyde/ketone and carboxylic acid analysis are performed automatically followed by automated transfer and analysis by the integrated microfluidic capillary electrophoresis chip. Equivalent performance to off-chip sample processing is demonstrated for each compound class; the automated analysis resulted in a limit of detection of ~16 nM for amino acids. Our microfluidic automaton provides a fully automated, portable microfluidic analysis system capable of autonomous analysis of diverse compound classes in challenging environments.
A Modular Hierarchical Approach to 3D Electron Microscopy Image Segmentation
Liu, Ting; Jones, Cory; Seyedhosseini, Mojtaba; Tasdizen, Tolga
2014-01-01
The study of neural circuit reconstruction, i.e., connectomics, is a challenging problem in neuroscience. Automated and semi-automated electron microscopy (EM) image analysis can be tremendously helpful for connectomics research. In this paper, we propose a fully automatic approach for intra-section segmentation and inter-section reconstruction of neurons using EM images. A hierarchical merge tree structure is built to represent multiple region hypotheses and supervised classification techniques are used to evaluate their potentials, based on which we resolve the merge tree with consistency constraints to acquire final intra-section segmentation. Then, we use a supervised learning based linking procedure for the inter-section neuron reconstruction. Also, we develop a semi-automatic method that utilizes the intermediate outputs of our automatic algorithm and achieves intra-segmentation with minimal user intervention. The experimental results show that our automatic method can achieve close-to-human intra-segmentation accuracy and state-of-the-art inter-section reconstruction accuracy. We also show that our semi-automatic method can further improve the intra-segmentation accuracy. PMID:24491638
Automatic intraaortic balloon pump timing using an intrabeat dicrotic notch prediction algorithm.
Schreuder, Jan J; Castiglioni, Alessandro; Donelli, Andrea; Maisano, Francesco; Jansen, Jos R C; Hanania, Ramzi; Hanlon, Pat; Bovelander, Jan; Alfieri, Ottavio
2005-03-01
The efficacy of intraaortic balloon counterpulsation (IABP) during arrhythmic episodes is questionable. A novel algorithm for intrabeat prediction of the dicrotic notch was used for real time IABP inflation timing control. A windkessel model algorithm was used to calculate real-time aortic flow from aortic pressure. The dicrotic notch was predicted using a percentage of calculated peak flow. Automatic inflation timing was set at intrabeat predicted dicrotic notch and was combined with automatic IAB deflation. Prophylactic IABP was applied in 27 patients with low ejection fraction (< 35%) undergoing cardiac surgery. Analysis of IABP at a 1:4 ratio revealed that IAB inflation occurred at a mean of 0.6 +/- 5 ms from the dicrotic notch. In all patients accurate automatic timing at a 1:1 assist ratio was performed. Seventeen patients had episodes of severe arrhythmia, the novel IABP inflation algorithm accurately assisted 318 of 320 arrhythmic beats at a 1:1 ratio. The novel real-time intrabeat IABP inflation timing algorithm performed accurately in all patients during both regular rhythms and severe arrhythmia, allowing fully automatic intrabeat IABP timing.
Fully automatic hp-adaptivity for acoustic and electromagnetic scattering in three dimensions
NASA Astrophysics Data System (ADS)
Kurtz, Jason Patrick
We present an algorithm for fully automatic hp-adaptivity for finite element approximations of elliptic and Maxwell boundary value problems in three dimensions. The algorithm automatically generates a sequence of coarse grids, and a corresponding sequence of fine grids, such that the energy norm of the error decreases exponentially with respect to the number of degrees of freedom in either sequence. At each step, we employ a discrete optimization algorithm to determine the refinements for the current coarse grid such that the projection-based interpolation error for the current fine grid solution decreases with an optimal rate with respect to the number of degrees of freedom added by the refinement. The refinements are restricted only by the requirement that the resulting mesh is at most 1-irregular, but they may be anisotropic in both element size h and order of approximation p. While we cannot prove that our method converges at all, we present numerical evidence of exponential convergence for a diverse suite of model problems from acoustic and electromagnetic scattering. In particular we show that our method is well suited to the automatic resolution of exterior problems truncated by the introduction of a perfectly matched layer. To enable and accelerate the solution of these problems on commodity hardware, we include a detailed account of three critical aspects of our implementation, namely an efficient implementation of sum factorization, several efficient interfaces to the direct multi-frontal solver MUMPS, and some fast direct solvers for the computation of a sequence of nested projections.
Code of Federal Regulations, 2010 CFR
2010-07-01
... objective should an automatic sprinkler system be capable of meeting? 102-80.100 Section 102-80.100 Public... Automatic Sprinkler Systems § 102-80.100 What performance objective should an automatic sprinkler system be capable of meeting? The performance objective of the automatic sprinkler system is that it must be capable...
Code of Federal Regulations, 2013 CFR
2013-07-01
... objective should an automatic sprinkler system be capable of meeting? 102-80.100 Section 102-80.100 Public... Automatic Sprinkler Systems § 102-80.100 What performance objective should an automatic sprinkler system be capable of meeting? The performance objective of the automatic sprinkler system is that it must be capable...
Code of Federal Regulations, 2014 CFR
2014-01-01
... objective should an automatic sprinkler system be capable of meeting? 102-80.100 Section 102-80.100 Public... Automatic Sprinkler Systems § 102-80.100 What performance objective should an automatic sprinkler system be capable of meeting? The performance objective of the automatic sprinkler system is that it must be capable...
Code of Federal Regulations, 2012 CFR
2012-01-01
... objective should an automatic sprinkler system be capable of meeting? 102-80.100 Section 102-80.100 Public... Automatic Sprinkler Systems § 102-80.100 What performance objective should an automatic sprinkler system be capable of meeting? The performance objective of the automatic sprinkler system is that it must be capable...
Code of Federal Regulations, 2011 CFR
2011-01-01
... objective should an automatic sprinkler system be capable of meeting? 102-80.100 Section 102-80.100 Public... Automatic Sprinkler Systems § 102-80.100 What performance objective should an automatic sprinkler system be capable of meeting? The performance objective of the automatic sprinkler system is that it must be capable...
Motion effects in multistatic millimeter-wave imaging systems
NASA Astrophysics Data System (ADS)
Schiessl, Andreas; Ahmed, Sherif Sayed; Schmidt, Lorenz-Peter
2013-10-01
At airport security checkpoints, authorities are demanding improved personnel screening devices for increased security. Active mm-wave imaging systems deliver the high quality images needed for reliable automatic detection of hidden threats. As mm-wave imaging systems assume static scenarios, motion effects caused by movement of persons during the screening procedure can degrade image quality, so very short measurement time is required. Multistatic imaging array designs and fully electronic scanning in combination with digital beamforming offer short measurement time together with high resolution and high image dynamic range, which are critical parameters for imaging systems used for passenger screening. In this paper, operational principles of such systems are explained, and the performance of the imaging systems with respect to motion within the scenarios is demonstrated using mm-wave images of different test objects and standing as well as moving persons. Electronic microwave imaging systems using multistatic sparse arrays are suitable for next generation screening systems, which will support on the move screening of passengers.
Pérez, D; Martínez-Flores, J A; Serrano, M; Lora, D; Paz-Artal, E; Morales, J M; Serrano, A
2016-10-01
In recent years, we have been witnessing increased clinical interest in the determination of IgA anti-beta 2-glycoprotein I (aB2GPI) antibodies as well as increased demand for this test. Some ELISA-based diagnostic systems for IgA aB2GPI antibodies detection are suboptimal to detect it. The aim of our study was to determine whether the diagnostic yield of modern detection systems based on automatic platforms to measure IgA aB2GPI is equivalent to that of the well-optimized ELISA-based assays. In total, 130 patients were analyzed for IgA aB2GPI by three fully automated immunoassays using an ELISA-based assay as reference. The three systems were also analyzed for IgG aB2GPI with 58 patients. System 1 was able to detect IgA aB2GPI with good sensitivity and kappa index (99% and 0.72, respectively). The other two systems had also poor sensitivity (20% and 15%) and kappa index (0.10 and 0.07), respectively. On the other hand, kappa index for IgG aB2GPI was >0.89 in the three systems. Some analytical methods to detect IgA aB2GPI are suboptimal as well as some ELISA-based diagnostic systems. It is important that the scientific community work to standardize analytical methods to determine IgA aB2GPI antibodies. © 2016 John Wiley & Sons Ltd.
49 CFR 236.552 - Insulation resistance; requirement.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic... control system, or automatic train stop system shall be not less than one megohm, and that of an... system, automatic train control system, or automatic train stop system, and 20,000 ohms for an...
Automatic Abstraction in Planning
NASA Technical Reports Server (NTRS)
Christensen, J.
1991-01-01
Traditionally, abstraction in planning has been accomplished by either state abstraction or operator abstraction, neither of which has been fully automatic. We present a new method, predicate relaxation, for automatically performing state abstraction. PABLO, a nonlinear hierarchical planner, implements predicate relaxation. Theoretical, as well as empirical results are presented which demonstrate the potential advantages of using predicate relaxation in planning. We also present a new definition of hierarchical operators that allows us to guarantee a limited form of completeness. This new definition is shown to be, in some ways, more flexible than previous definitions of hierarchical operators. Finally, a Classical Truth Criterion is presented that is proven to be sound and complete for a planning formalism that is general enough to include most classical planning formalisms that are based on the STRIPS assumption.
A fast and automatic mosaic method for high-resolution satellite images
NASA Astrophysics Data System (ADS)
Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing
2015-12-01
We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.
Solar-Powered Water Distillation
NASA Technical Reports Server (NTRS)
Menninger, F. J.; Elder, R. J.
1985-01-01
Solar-powered still produces pure water at rate of 6,000 gallons per year. Still fully automatic and gravity-fed. Only outside electric power is timer clock and solenoid-operated valve. Still saves $5,000 yearly in energy costs and pays for itself in 3 1/2 years.
``Carbon Credits'' for Resource-Bounded Computations Using Amortised Analysis
NASA Astrophysics Data System (ADS)
Jost, Steffen; Loidl, Hans-Wolfgang; Hammond, Kevin; Scaife, Norman; Hofmann, Martin
Bounding resource usage is important for a number of areas, notably real-time embedded systems and safety-critical systems. In this paper, we present a fully automatic static type-based analysis for inferring upper bounds on resource usage for programs involving general algebraic datatypes and full recursion. Our method can easily be used to bound any countable resource, without needing to revisit proofs. We apply the analysis to the important metrics of worst-case execution time, stack- and heap-space usage. Our results from several realistic embedded control applications demonstrate good matches between our inferred bounds and measured worst-case costs for heap and stack usage. For time usage we infer good bounds for one application. Where we obtain less tight bounds, this is due to the use of software floating-point libraries.
Joshi, Vinayak; Agurto, Carla; VanNess, Richard; Nemeth, Sheila; Soliz, Peter; Barriga, Simon
2014-01-01
One of the most important signs of systemic disease that presents on the retina is vascular abnormalities such as in hypertensive retinopathy. Manual analysis of fundus images by human readers is qualitative and lacks in accuracy, consistency and repeatability. Present semi-automatic methods for vascular evaluation are reported to increase accuracy and reduce reader variability, but require extensive reader interaction; thus limiting the software-aided efficiency. Automation thus holds a twofold promise. First, decrease variability while increasing accuracy, and second, increasing the efficiency. In this paper we propose fully automated software as a second reader system for comprehensive assessment of retinal vasculature; which aids the readers in the quantitative characterization of vessel abnormalities in fundus images. This system provides the reader with objective measures of vascular morphology such as tortuosity, branching angles, as well as highlights of areas with abnormalities such as artery-venous nicking, copper and silver wiring, and retinal emboli; in order for the reader to make a final screening decision. To test the efficacy of our system, we evaluated the change in performance of a newly certified retinal reader when grading a set of 40 color fundus images with and without the assistance of the software. The results demonstrated an improvement in reader's performance with the software assistance, in terms of accuracy of detection of vessel abnormalities, determination of retinopathy, and reading time. This system enables the reader in making computer-assisted vasculature assessment with high accuracy and consistency, at a reduced reading time.
First tests of a multi-wavelength mini-DIAL system for the automatic detection of greenhouse gases
NASA Astrophysics Data System (ADS)
Parracino, S.; Gelfusa, M.; Lungaroni, M.; Murari, A.; Peluso, E.; Ciparisse, J. F.; Malizia, A.; Rossi, R.; Ventura, P.; Gaudio, P.
2017-10-01
Considering the increase of atmospheric pollution levels in our cities, due to emissions from vehicles and domestic heating, and the growing threat of terrorism, it is necessary to develop instrumentation and gather know-how for the automatic detection and measurement of dangerous substances as quickly and far away as possible. The Multi- Wavelength DIAL, an extension of the conventional DIAL technique, is one of the most powerful remote sensing methods for the identification of multiple substances and seems to be a promising solution compared to existing alternatives. In this paper, first in-field tests of a smart and fully automated Multi-Wavelength mini-DIAL will be presented and discussed in details. The recently developed system, based on a long-wavelength infrared (IR-C) CO2 laser source, has the potential of giving an early warning, whenever something strange is found in the atmosphere, followed by identification and simultaneous concentration measurements of many chemical species, ranging from the most important Greenhouse Gases (GHG) to other harmful Volatile Organic Compounds (VOCs). Preliminary studies, regarding the fingerprint of the investigated substances, have been carried out by cross-referencing database of infrared (IR) spectra, obtained using in-cell measurements, and typical Mixing Ratios in the examined region, extrapolated from the literature. First experiments in atmosphere have been performed into a suburban and moderately-busy area of Rome. Moreover, to optimize the automatic identification of the harmful species to be recognized on the basis of in cell measurements of the absorption coefficient spectra, an advanced multivariate statistical method for classification has been developed and tested.
Psoriasis skin biopsy image segmentation using Deep Convolutional Neural Network.
Pal, Anabik; Garain, Utpal; Chandra, Aditi; Chatterjee, Raghunath; Senapati, Swapan
2018-06-01
Development of machine assisted tools for automatic analysis of psoriasis skin biopsy image plays an important role in clinical assistance. Development of automatic approach for accurate segmentation of psoriasis skin biopsy image is the initial prerequisite for developing such system. However, the complex cellular structure, presence of imaging artifacts, uneven staining variation make the task challenging. This paper presents a pioneering attempt for automatic segmentation of psoriasis skin biopsy images. Several deep neural architectures are tried for segmenting psoriasis skin biopsy images. Deep models are used for classifying the super-pixels generated by Simple Linear Iterative Clustering (SLIC) and the segmentation performance of these architectures is compared with the traditional hand-crafted feature based classifiers built on popularly used classifiers like K-Nearest Neighbor (KNN), Support Vector Machine (SVM) and Random Forest (RF). A U-shaped Fully Convolutional Neural Network (FCN) is also used in an end to end learning fashion where input is the original color image and the output is the segmentation class map for the skin layers. An annotated real psoriasis skin biopsy image data set of ninety (90) images is developed and used for this research. The segmentation performance is evaluated with two metrics namely, Jaccard's Coefficient (JC) and the Ratio of Correct Pixel Classification (RCPC) accuracy. The experimental results show that the CNN based approaches outperform the traditional hand-crafted feature based classification approaches. The present research shows that practical system can be developed for machine assisted analysis of psoriasis disease. Copyright © 2018 Elsevier B.V. All rights reserved.
Freire, Paulo G L; Ferrari, Ricardo J
2016-06-01
Multiple sclerosis (MS) is a demyelinating autoimmune disease that attacks the central nervous system (CNS) and affects more than 2 million people worldwide. The segmentation of MS lesions in magnetic resonance imaging (MRI) is a very important task to assess how a patient is responding to treatment and how the disease is progressing. Computational approaches have been proposed over the years to segment MS lesions and reduce the amount of time spent on manual delineation and inter- and intra-rater variability and bias. However, fully-automatic segmentation of MS lesions still remains an open problem. In this work, we propose an iterative approach using Student's t mixture models and probabilistic anatomical atlases to automatically segment MS lesions in Fluid Attenuated Inversion Recovery (FLAIR) images. Our technique resembles a refinement approach by iteratively segmenting brain tissues into smaller classes until MS lesions are grouped as the most hyperintense one. To validate our technique we used 21 clinical images from the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge dataset. Evaluation using Dice Similarity Coefficient (DSC), True Positive Ratio (TPR), False Positive Ratio (FPR), Volume Difference (VD) and Pearson's r coefficient shows that our technique has a good spatial and volumetric agreement with raters' manual delineations. Also, a comparison between our proposal and the state-of-the-art shows that our technique is comparable and, in some cases, better than some approaches, thus being a viable alternative for automatic MS lesion segmentation in MRI. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fujita, Hiroyuki; Honda, Katsuhisa; Hamada, Noriaki; Yasunaga, Genta; Fujise, Yoshihiro
2009-02-01
Validation of a high-throughput measurement system with microwave-assisted extraction (MAE), fully automated sample preparation device (SPD), and gas chromatography-electron capture detector (GC-ECD) for the determination of polychlorinated biphenyls (PCBs) in minke whale blubber was performed. PCB congeners accounting for > 95% of the total PCBs burden in blubber were efficiently extracted with a small volume (20 mL) of n-hexane using MAE due to simultaneous saponification and extraction. Further, the crude extract obtained by MAE was rapidly purified and automatically substituted to a small volume (1 mL) of toluene using SPD without using concentrators. Furthermore, the concentration of PCBs in the purified and concentrated solution was accurately determined by GC-ECD. Moreover, the result of accuracy test using a certified material (SRM 1588b; Cod liver oil) showed good agreement with the NIST certified concentration values. In addition, the method quantification limit of total-PCB in whale blubbers was 41 ng g(-1). This new measurement system for PCBs takes only four hours. Consequently, it indicated this method is the most suitable for the monitoring and screening of PCBs in the conservation of the marine ecosystem and safe distribution of foods.
Requirements to Design to Code: Towards a Fully Formal Approach to Automatic Code Generation
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2005-01-01
A general-purpose method to mechanically transform system requirements into a provably equivalent model has yet to appear. Such a method represents a necessary step toward high-dependability system engineering for numerous possible application domains, including distributed software systems, sensor networks, robot operation, complex scripts for spacecraft integration and testing, and autonomous systems. Currently available tools and methods that start with a formal model of a system and mechanically produce a provably equivalent implementation are valuable but not sufficient. The gap that current tools and methods leave unfilled is that their formal models cannot be proven to be equivalent to the system requirements as originated by the customer. For the classes of systems whose behavior can be described as a finite (but significant) set of scenarios, we offer a method for mechanically transforming requirements (expressed in restricted natural language, or in other appropriate graphical notations) into a provably equivalent formal model that can be used as the basis for code generation and other transformations.
Requirements to Design to Code: Towards a Fully Formal Approach to Automatic Code Generation
NASA Technical Reports Server (NTRS)
Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2005-01-01
A general-purpose method to mechanically transform system requirements into a provably equivalent model has yet to appear. Such a method represents a necessary step toward high-dependability system engineering for numerous possible application domains, including distributed software systems, sensor networks, robot operation, complex scripts for spacecraft integration and testing, and autonomous systems. Currently available tools and methods that start with a formal model of a: system and mechanically produce a provably equivalent implementation are valuable but not sufficient. The "gap" that current tools and methods leave unfilled is that their formal models cannot be proven to be equivalent to the system requirements as originated by the customer. For the ciasses of systems whose behavior can be described as a finite (but significant) set of scenarios, we offer a method for mechanically transforming requirements (expressed in restricted natural language, or in other appropriate graphical notations) into a provably equivalent formal model that can be used as the basis for code generation and other transformations.
Colombi, Davide; Dinkel, Julien; Weinheimer, Oliver; Obermayer, Berenike; Buzan, Teodora; Nabers, Diana; Bauer, Claudia; Oltmanns, Ute; Palmowski, Karin; Herth, Felix; Kauczor, Hans Ulrich; Sverzellati, Nicola
2015-01-01
Objectives To describe changes over time in extent of idiopathic pulmonary fibrosis (IPF) at multidetector computed tomography (MDCT) assessed by semi-quantitative visual scores (VSs) and fully automatic histogram-based quantitative evaluation and to test the relationship between these two methods of quantification. Methods Forty IPF patients (median age: 70 y, interquartile: 62-75 years; M:F, 33:7) that underwent 2 MDCT at different time points with a median interval of 13 months (interquartile: 10-17 months) were retrospectively evaluated. In-house software YACTA quantified automatically lung density histogram (10th-90th percentile in 5th percentile steps). Longitudinal changes in VSs and in the percentiles of attenuation histogram were obtained in 20 untreated patients and 20 patients treated with pirfenidone. Pearson correlation analysis was used to test the relationship between VSs and selected percentiles. Results In follow-up MDCT, visual overall extent of parenchymal abnormalities (OE) increased in median by 5 %/year (interquartile: 0 %/y; +11 %/y). Substantial difference was found between treated and untreated patients in HU changes of the 40th and of the 80th percentiles of density histogram. Correlation analysis between VSs and selected percentiles showed higher correlation between the changes (Δ) in OE and Δ 40th percentile (r=0.69; p<0.001) as compared to Δ 80th percentile (r=0.58; p<0.001); closer correlation was found between Δ ground-glass extent and Δ 40th percentile (r=0.66, p<0.001) as compared to Δ 80th percentile (r=0.47, p=0.002), while the Δ reticulations correlated better with the Δ 80th percentile (r=0.56, p<0.001) in comparison to Δ 40th percentile (r=0.43, p=0.003). Conclusions There is a relevant and fully automatically measurable difference at MDCT in VSs and in histogram analysis at one year follow-up of IPF patients, whether treated or untreated: Δ 40th percentile might reflect the change in overall extent of lung abnormalities, notably of ground-glass pattern; furthermore Δ 80th percentile might reveal the course of reticular opacities. PMID:26110421
49 CFR 236.825 - System, automatic train control.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false System, automatic train control. 236.825 Section..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.825 System, automatic train control. A system so arranged that its operation will automatically...
49 CFR 236.825 - System, automatic train control.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false System, automatic train control. 236.825 Section..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.825 System, automatic train control. A system so arranged that its operation will automatically...
Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L.; Page, Terry L.; Bhuva, Bharat; Broadie, Kendal
2016-01-01
Background Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. New Method The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. Results The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24 hours) are comparable to traditional manual experiments, while minimizing experimenter involvement. Comparison with Existing Methods The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ~$500US, making it affordable to a wide range of investigators. Conclusions This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. PMID:26703418
Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L; Page, Terry L; Bhuva, Bharat; Broadie, Kendal
2016-03-01
Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24h) are comparable to traditional manual experiments, while minimizing experimenter involvement. The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ∼$500US, making it affordable to a wide range of investigators. This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. Copyright © 2015 Elsevier B.V. All rights reserved.
Automatic inference of multicellular regulatory networks using informative priors.
Sun, Xiaoyun; Hong, Pengyu
2009-01-01
To fully understand the mechanisms governing animal development, computational models and algorithms are needed to enable quantitative studies of the underlying regulatory networks. We developed a mathematical model based on dynamic Bayesian networks to model multicellular regulatory networks that govern cell differentiation processes. A machine-learning method was developed to automatically infer such a model from heterogeneous data. We show that the model inference procedure can be greatly improved by incorporating interaction data across species. The proposed approach was applied to C. elegans vulval induction to reconstruct a model capable of simulating C. elegans vulval induction under 73 different genetic conditions.
a Low-Cost and Portable System for 3d Reconstruction of Texture-Less Objects
NASA Astrophysics Data System (ADS)
Hosseininaveh, A.; Yazdan, R.; Karami, A.; Moradi, M.; Ghorbani, F.
2015-12-01
The optical methods for 3D modelling of objects can be classified into two categories including image-based and range-based methods. Structure from Motion is one of the image-based methods implemented in commercial software. In this paper, a low-cost and portable system for 3D modelling of texture-less objects is proposed. This system includes a rotating table designed and developed by using a stepper motor and a very light rotation plate. The system also has eight laser light sources with very dense and strong beams which provide a relatively appropriate pattern on texture-less objects. In this system, regarding to the step of stepper motor, images are semi automatically taken by a camera. The images can be used in structure from motion procedures implemented in Agisoft software.To evaluate the performance of the system, two dark objects were used. The point clouds of these objects were obtained by spraying a light powders on the objects and exploiting a GOM laser scanner. Then these objects were placed on the proposed turntable. Several convergent images were taken from each object while the laser light sources were projecting the pattern on the objects. Afterward, the images were imported in VisualSFM as a fully automatic software package for generating an accurate and complete point cloud. Finally, the obtained point clouds were compared to the point clouds generated by the GOM laser scanner. The results showed the ability of the proposed system to produce a complete 3D model from texture-less objects.
49 CFR 236.826 - System, automatic train stop.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 4 2011-10-01 2011-10-01 false System, automatic train stop. 236.826 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.826 System, automatic train stop. A system so arranged that its operation will automatically...
49 CFR 236.826 - System, automatic train stop.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false System, automatic train stop. 236.826 Section 236..., INSPECTION, MAINTENANCE, AND REPAIR OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.826 System, automatic train stop. A system so arranged that its operation will automatically...
Semi-automatic brain tumor segmentation by constrained MRFs using structural trajectories.
Zhao, Liang; Wu, Wei; Corso, Jason J
2013-01-01
Quantifying volume and growth of a brain tumor is a primary prognostic measure and hence has received much attention in the medical imaging community. Most methods have sought a fully automatic segmentation, but the variability in shape and appearance of brain tumor has limited their success and further adoption in the clinic. In reaction, we present a semi-automatic brain tumor segmentation framework for multi-channel magnetic resonance (MR) images. This framework does not require prior model construction and only requires manual labels on one automatically selected slice. All other slices are labeled by an iterative multi-label Markov random field optimization with hard constraints. Structural trajectories-the medical image analog to optical flow and 3D image over-segmentation are used to capture pixel correspondences between consecutive slices for pixel labeling. We show robustness and effectiveness through an evaluation on the 2012 MICCAI BRATS Challenge Dataset; our results indicate superior performance to baselines and demonstrate the utility of the constrained MRF formulation.
A new method for the automatic interpretation of Schlumberger and Wenner sounding curves
Zohdy, A.A.R.
1989-01-01
A fast iterative method for the automatic interpretation of Schlumberger and Wenner sounding curves is based on obtaining interpreted depths and resistivities from shifted electrode spacings and adjusted apparent resistivities, respectively. The method is fully automatic. It does not require an initial guess of the number of layers, their thicknesses, or their resistivities; and it does not require extrapolation of incomplete sounding curves. The number of layers in the interpreted model equals the number of digitized points on the sounding curve. The resulting multilayer model is always well-behaved with no thin layers of unusually high or unusually low resistivities. For noisy data, interpretation is done in two sets of iterations (two passes). Anomalous layers, created because of noise in the first pass, are eliminated in the second pass. Such layers are eliminated by considering the best-fitting curve from the first pass to be a smoothed version of the observed curve and automatically reinterpreting it (second pass). The application of the method is illustrated by several examples. -Author
NASA Astrophysics Data System (ADS)
Maklad, Ahmed S.; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Shimada, Mitsuo; Iinuma, Gen
2017-03-01
In abdominal disease diagnosis and various abdominal surgeries planning, segmentation of abdominal blood vessel (ABVs) is a very imperative task. Automatic segmentation enables fast and accurate processing of ABVs. We proposed a fully automatic approach for segmenting ABVs through contrast enhanced CT images by a hybrid of 3D region growing and 4D curvature analysis. The proposed method comprises three stages. First, candidates of bone, kidneys, ABVs and heart are segmented by an auto-adapted threshold. Second, bone is auto-segmented and classified into spine, ribs and pelvis. Third, ABVs are automatically segmented in two sub-steps: (1) kidneys and abdominal part of the heart are segmented, (2) ABVs are segmented by a hybrid approach that integrates a 3D region growing and 4D curvature analysis. Results are compared with two conventional methods. Results show that the proposed method is very promising in segmenting and classifying bone, segmenting whole ABVs and may have potential utility in clinical use.
NASA Astrophysics Data System (ADS)
Álvarez, Charlens; Martínez, Fabio; Romero, Eduardo
2015-01-01
The pelvic magnetic Resonance images (MRI) are used in Prostate cancer radiotherapy (RT), a process which is part of the radiation planning. Modern protocols require a manual delineation, a tedious and variable activity that may take about 20 minutes per patient, even for trained experts. That considerable time is an important work ow burden in most radiological services. Automatic or semi-automatic methods might improve the efficiency by decreasing the measure times while conserving the required accuracy. This work presents a fully automatic atlas- based segmentation strategy that selects the more similar templates for a new MRI using a robust multi-scale SURF analysis. Then a new segmentation is achieved by a linear combination of the selected templates, which are previously non-rigidly registered towards the new image. The proposed method shows reliable segmentations, obtaining an average DICE Coefficient of 79%, when comparing with the expert manual segmentation, under a leave-one-out scheme with the training database.
Eccles, B A; Klevecz, R R
1986-06-01
Mitotic frequency in a synchronous culture of mammalian cells was determined fully automatically and in real time using low-intensity phase-contrast microscopy and a newvicon video camera connected to an EyeCom III image processor. Image samples, at a frequency of one per minute for 50 hours, were analyzed by first extracting the high-frequency picture components, then thresholding and probing for annular objects indicative of putative mitotic cells. Both the extraction of high-frequency components and the recognition of rings of varying radii and discontinuities employed novel algorithms. Spatial and temporal relationships between annuli were examined to discern the occurrences of mitoses, and such events were recorded in a computer data file. At present, the automatic analysis is suited for random cell proliferation rate measurements or cell cycle studies. The automatic identification of mitotic cells as described here provides a measure of the average proliferative activity of the cell population as a whole and eliminates more than eight hours of manual review per time-lapse video recording.
Automatic estimation of extent of resection and residual tumor volume of patients with glioblastoma.
Meier, Raphael; Porz, Nicole; Knecht, Urspeter; Loosli, Tina; Schucht, Philippe; Beck, Jürgen; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio
2017-10-01
OBJECTIVE In the treatment of glioblastoma, residual tumor burden is the only prognostic factor that can be actively influenced by therapy. Therefore, an accurate, reproducible, and objective measurement of residual tumor burden is necessary. This study aimed to evaluate the use of a fully automatic segmentation method-brain tumor image analysis (BraTumIA)-for estimating the extent of resection (EOR) and residual tumor volume (RTV) of contrast-enhancing tumor after surgery. METHODS The imaging data of 19 patients who underwent primary resection of histologically confirmed supratentorial glioblastoma were retrospectively reviewed. Contrast-enhancing tumors apparent on structural preoperative and immediate postoperative MR imaging in this patient cohort were segmented by 4 different raters and the automatic segmentation BraTumIA software. The manual and automatic results were quantitatively compared. RESULTS First, the interrater variabilities in the estimates of EOR and RTV were assessed for all human raters. Interrater agreement in terms of the coefficient of concordance (W) was higher for RTV (W = 0.812; p < 0.001) than for EOR (W = 0.775; p < 0.001). Second, the volumetric estimates of BraTumIA for all 19 patients were compared with the estimates of the human raters, which showed that for both EOR (W = 0.713; p < 0.001) and RTV (W = 0.693; p < 0.001) the estimates of BraTumIA were generally located close to or between the estimates of the human raters. No statistically significant differences were detected between the manual and automatic estimates. BraTumIA showed a tendency to overestimate contrast-enhancing tumors, leading to moderate agreement with expert raters with respect to the literature-based, survival-relevant threshold values for EOR. CONCLUSIONS BraTumIA can generate volumetric estimates of EOR and RTV, in a fully automatic fashion, which are comparable to the estimates of human experts. However, automated analysis showed a tendency to overestimate the volume of a contrast-enhancing tumor, whereas manual analysis is prone to subjectivity, thereby causing considerable interrater variability.
NASA Astrophysics Data System (ADS)
Wojenski, Andrzej; Kasprowicz, Grzegorz; Pozniak, Krzysztof T.; Romaniuk, Ryszard
2013-10-01
The paper describes a concept of automatic firmware generation for reconfigurable measurement systems, which uses FPGA devices and measurement cards in FMC standard. Following sections are described in details: automatic HDL code generation for FPGA devices, automatic communication interfaces implementation, HDL drivers for measurement cards, automatic serial connection between multiple measurement backplane boards, automatic build of memory map (address space), automatic generated firmware management. Presented solutions are required in many advanced measurement systems, like Beam Position Monitors or GEM detectors. This work is a part of a wider project for automatic firmware generation and management of reconfigurable systems. Solutions presented in this paper are based on previous publication in SPIE.
Angular relational signature-based chest radiograph image view classification.
Santosh, K C; Wendling, Laurent
2018-01-22
In a computer-aided diagnosis (CAD) system, especially for chest radiograph or chest X-ray (CXR) screening, CXR image view information is required. Automatically separating CXR image view, frontal and lateral can ease subsequent CXR screening process, since the techniques may not equally work for both views. We present a novel technique to classify frontal and lateral CXR images, where we introduce angular relational signature through force histogram to extract features and apply three different state-of-the-art classifiers: multi-layer perceptron, random forest, and support vector machine to make a decision. We validated our fully automatic technique on a set of 8100 images hosted by the U.S. National Library of Medicine (NLM), National Institutes of Health (NIH), and achieved an accuracy close to 100%. Our method outperforms the state-of-the-art methods in terms of processing time (less than or close to 2 s for the whole test data) while the accuracies can be compared, and therefore, it justifies its practicality. Graphical Abstract Interpreting chest X-ray (CXR) through the angular relational signature.
Automatic prediction of protein domains from sequence information using a hybrid learning system.
Nagarajan, Niranjan; Yona, Golan
2004-06-12
We describe a novel method for detecting the domain structure of a protein from sequence information alone. The method is based on analyzing multiple sequence alignments that are derived from a database search. Multiple measures are defined to quantify the domain information content of each position along the sequence and are combined into a single predictor using a neural network. The output is further smoothed and post-processed using a probabilistic model to predict the most likely transition positions between domains. The method was assessed using the domain definitions in SCOP and CATH for proteins of known structure and was compared with several other existing methods. Our method performs well both in terms of accuracy and sensitivity. It improves significantly over the best methods available, even some of the semi-manual ones, while being fully automatic. Our method can also be used to suggest and verify domain partitions based on structural data. A few examples of predicted domain definitions and alternative partitions, as suggested by our method, are also discussed. An online domain-prediction server is available at http://biozon.org/tools/domains/
Tooth labeling in cone-beam CT using deep convolutional neural network for forensic identification
NASA Astrophysics Data System (ADS)
Miki, Yuma; Muramatsu, Chisako; Hayashi, Tatsuro; Zhou, Xiangrong; Hara, Takeshi; Katsumata, Akitoshi; Fujita, Hiroshi
2017-03-01
In large disasters, dental record plays an important role in forensic identification. However, filing dental charts for corpses is not an easy task for general dentists. Moreover, it is laborious and time-consuming work in cases of large scale disasters. We have been investigating a tooth labeling method on dental cone-beam CT images for the purpose of automatic filing of dental charts. In our method, individual tooth in CT images are detected and classified into seven tooth types using deep convolutional neural network. We employed the fully convolutional network using AlexNet architecture for detecting each tooth and applied our previous method using regular AlexNet for classifying the detected teeth into 7 tooth types. From 52 CT volumes obtained by two imaging systems, five images each were randomly selected as test data, and the remaining 42 cases were used as training data. The result showed the tooth detection accuracy of 77.4% with the average false detection of 5.8 per image. The result indicates the potential utility of the proposed method for automatic recording of dental information.
New software tools for enhanced precision in robot-assisted laser phonomicrosurgery.
Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G
2012-01-01
This paper describes a new software package created to enhance precision during robot-assisted laser phonomicrosurgery procedures. The new software is composed of three tools for camera calibration, automatic tumor segmentation, and laser tracking. These were designed and developed to improve the outcome of this demanding microsurgical technique, and were tested herein to produce quantitative performance data. The experimental setup was based on the motorized laser micromanipulator created by Istituto Italiano di Tecnologia and the experimental protocols followed are fully described in this paper. The results show the new tools are robust and effective: The camera calibration tool reduced residual errors (RMSE) to 0.009 ± 0.002 mm under 40× microscope magnification; the automatic tumor segmentation tool resulted in deep lesion segmentations comparable to manual segmentations (RMSE= 0.160 ± 0.028 mm under 40× magnification); and the laser tracker tool proved to be reliable even during cutting procedures (RMSE= 0.073 ± 0.023 mm under 40× magnification). These results demonstrate the new software package can provide excellent improvements to the previous microsurgical system, leading to important enhancements in surgical outcome.
Gorzalczany, Marian B; Rudzinski, Filip
2017-06-07
This paper presents a generalization of self-organizing maps with 1-D neighborhoods (neuron chains) that can be effectively applied to complex cluster analysis problems. The essence of the generalization consists in introducing mechanisms that allow the neuron chain--during learning--to disconnect into subchains, to reconnect some of the subchains again, and to dynamically regulate the overall number of neurons in the system. These features enable the network--working in a fully unsupervised way (i.e., using unlabeled data without a predefined number of clusters)--to automatically generate collections of multiprototypes that are able to represent a broad range of clusters in data sets. First, the operation of the proposed approach is illustrated on some synthetic data sets. Then, this technique is tested using several real-life, complex, and multidimensional benchmark data sets available from the University of California at Irvine (UCI) Machine Learning repository and the Knowledge Extraction based on Evolutionary Learning data set repository. A sensitivity analysis of our approach to changes in control parameters and a comparative analysis with an alternative approach are also performed.
Computerized image analysis for acetic acid induced intraepithelial lesions
NASA Astrophysics Data System (ADS)
Li, Wenjing; Ferris, Daron G.; Lieberman, Rich W.
2008-03-01
Cervical Intraepithelial Neoplasia (CIN) exhibits certain morphologic features that can be identified during a visual inspection exam. Immature and dysphasic cervical squamous epithelium turns white after application of acetic acid during the exam. The whitening process occurs visually over several minutes and subjectively discriminates between dysphasic and normal tissue. Digital imaging technologies allow us to assist the physician analyzing the acetic acid induced lesions (acetowhite region) in a fully automatic way. This paper reports a study designed to measure multiple parameters of the acetowhitening process from two images captured with a digital colposcope. One image is captured before the acetic acid application, and the other is captured after the acetic acid application. The spatial change of the acetowhitening is extracted using color and texture information in the post acetic acid image; the temporal change is extracted from the intensity and color changes between the post acetic acid and pre acetic acid images with an automatic alignment. The imaging and data analysis system has been evaluated with a total of 99 human subjects and demonstrate its potential to screening underserved women where access to skilled colposcopists is limited.
Afanasyev, Vsevolod; Buldyrev, Sergey V; Dunn, Michael J; Robst, Jeremy; Preston, Mark; Bremner, Steve F; Briggs, Dirk R; Brown, Ruth; Adlard, Stacey; Peat, Helen J
2015-01-01
A fully automated weighbridge using a new algorithm and mechanics integrated with a Radio Frequency Identification System is described. It is currently in use collecting data on Macaroni penguins (Eudyptes chrysolophus) at Bird Island, South Georgia. The technology allows researchers to collect very large, highly accurate datasets of both penguin weight and direction of their travel into or out of a breeding colony, providing important contributory information to help understand penguin breeding success, reproductive output and availability of prey. Reliable discrimination between single and multiple penguin crossings is demonstrated. Passive radio frequency tags implanted into penguins allow researchers to match weight and trip direction to individual birds. Low unit and operation costs, low maintenance needs, simple operator requirements and accurate time stamping of every record are all important features of this type of weighbridge, as is its proven ability to operate 24 hours a day throughout a breeding season, regardless of temperature or weather conditions. Users are able to define required levels of accuracy by adjusting filters and raw data are automatically recorded and stored allowing for a range of processing options. This paper presents the underlying principles, design specification and system description, provides evidence of the weighbridge's accurate performance and demonstrates how its design is a significant improvement on existing systems.
Performance of wavelet analysis and neural networks for pathological voices identification
NASA Astrophysics Data System (ADS)
Salhi, Lotfi; Talbi, Mourad; Abid, Sabeur; Cherif, Adnane
2011-09-01
Within the medical environment, diverse techniques exist to assess the state of the voice of the patient. The inspection technique is inconvenient for a number of reasons, such as its high cost, the duration of the inspection, and above all, the fact that it is an invasive technique. This study focuses on a robust, rapid and accurate system for automatic identification of pathological voices. This system employs non-invasive, non-expensive and fully automated method based on hybrid approach: wavelet transform analysis and neural network classifier. First, we present the results obtained in our previous study while using classic feature parameters. These results allow visual identification of pathological voices. Second, quantified parameters drifting from the wavelet analysis are proposed to characterise the speech sample. On the other hand, a system of multilayer neural networks (MNNs) has been developed which carries out the automatic detection of pathological voices. The developed method was evaluated using voice database composed of recorded voice samples (continuous speech) from normophonic or dysphonic speakers. The dysphonic speakers were patients of a National Hospital 'RABTA' of Tunis Tunisia and a University Hospital in Brussels, Belgium. Experimental results indicate a success rate ranging between 75% and 98.61% for discrimination of normal and pathological voices using the proposed parameters and neural network classifier. We also compared the average classification rate based on the MNN, Gaussian mixture model and support vector machines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
HENSINGER, DAVID M.; JOHNSTON, GABRIEL A.; HINMAN-SWEENEY, ELAINE M.
2002-10-01
A distributed reconfigurable micro-robotic system is a collection of unlimited numbers of distributed small, homogeneous robots designed to autonomously organize and reorganize in order to achieve mission-specified geometric shapes and functions. This project investigated the design, control, and planning issues for self-configuring and self-organizing robots. In the 2D space a system consisting of two robots was prototyped and successfully displayed automatic docking/undocking to operate dependently or independently. Additional modules were constructed to display the usefulness of a self-configuring system in various situations. In 3D a self-reconfiguring robot system of 4 identical modules was built. Each module connects to its neighborsmore » using rotating actuators. An individual component can move in three dimensions on its neighbors. We have also built a self-reconfiguring robot system consisting of 9-module Crystalline Robot. Each module in this robot is actuated by expansion/contraction. The system is fully distributed, has local communication (to neighbors) capabilities and it has global sensing capabilities.« less
49 CFR 236.824 - System, automatic block signal.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 4 2010-10-01 2010-10-01 false System, automatic block signal. 236.824 Section... § 236.824 System, automatic block signal. A block signal system wherein the use of each block is governed by an automatic block signal, cab signal, or both. ...
Wang, Yang; Wang, Xiaohua; Liu, Fangnan; Jiang, Xiaoning; Xiao, Yun; Dong, Xuehan; Kong, Xianglei; Yang, Xuemei; Tian, Donghua; Qu, Zhiyong
2016-01-01
Few studies have looked at the relationship between psychological and the mental health status of pregnant women in rural China. The current study aims to explore the potential mediating effect of negative automatic thoughts between negative life events and antenatal depression. Data were collected in June 2012 and October 2012. 495 rural pregnant women were interviewed. Depressive symptoms were measured by the Edinburgh postnatal depression scale, stresses of pregnancy were measured by the pregnancy pressure scale, negative automatic thoughts were measured by the automatic thoughts questionnaire, and negative life events were measured by the life events scale for pregnant women. We used logistic regression and path analysis to test the mediating effect. The prevalence of antenatal depression was 13.7%. In the logistic regression, the only socio-demographic and health behavior factor significantly related to antenatal depression was sleep quality. Negative life events were not associated with depression in the fully adjusted model. Path analysis showed that the eventual direct and general effects of negative automatic thoughts were 0.39 and 0.51, which were larger than the effects of negative life events. This study suggested that there was a potentially significant mediating effect of negative automatic thoughts. Pregnant women who had lower scores of negative automatic thoughts were more likely to suffer less from negative life events which might lead to antenatal depression.
The automaticity of face perception is influenced by familiarity.
Yan, Xiaoqian; Young, Andrew W; Andrews, Timothy J
2017-10-01
In this study, we explore the automaticity of encoding for different facial characteristics and ask whether it is influenced by face familiarity. We used a matching task in which participants had to report whether the gender, identity, race, or expression of two briefly presented faces was the same or different. The task was made challenging by allowing nonrelevant dimensions to vary across trials. To test for automaticity, we compared performance on trials in which the task instruction was given at the beginning of the trial, with trials in which the task instruction was given at the end of the trial. As a strong criterion for automatic processing, we reasoned that if perception of a given characteristic (gender, race, identity, or emotion) is fully automatic, the timing of the instruction should not influence performance. We compared automaticity for the perception of familiar and unfamiliar faces. Performance with unfamiliar faces was higher for all tasks when the instruction was given at the beginning of the trial. However, we found a significant interaction between instruction and task with familiar faces. Accuracy of gender and identity judgments to familiar faces was the same regardless of whether the instruction was given before or after the trial, suggesting automatic processing of these properties. In contrast, there was an effect of instruction for judgments of expression and race to familiar faces. These results show that familiarity enhances the automatic processing of some types of facial information more than others.
Generalized procrustean image deformation for subtraction of mammograms
NASA Astrophysics Data System (ADS)
Good, Walter F.; Zheng, Bin; Chang, Yuan-Hsiang; Wang, Xiao Hui; Maitz, Glenn S.
1999-05-01
This project is a preliminary evaluation of two simple fully automatic nonlinear transformations which can map any mammographic image onto a reference image while guaranteeing registration of specific features. The first method automatically identifies skin lines, after which each pixel is given coordinates in the range [0,1] X [0,1], where the actual value of a coordinate is the fractional distance of the pixel between tissue boundaries in either the horizontal or vertical direction. This insures that skin lines are put in registration. The second method, which is the method of primary interest, automatically detects pectoral muscles, skin lines and nipple locations. For each image, a polar coordinate system is established with its origin at the intersection of the nipple axes line (NAL) and a line indicating the pectoral muscle. Points within a mammogram are identified by the angle of their position vector, relative to the NAL, and by their fractional distance between the origin and the skin line. This deforms mammograms in such a way that their pectoral lines, NALs and skin lines are all in registration. After images are deformed, their grayscales are adjusted by applying linear regression to pixel value pairs for corresponding tissue pixels. In a comparison of these methods to a previously reported 'translation/rotation' technique, evaluation of difference images clearly indicates that the polar coordinates method results in the most accurate registration of the transformations considered.
Mazzone, P; Arena, P; Cantelli, L; Spampinato, G; Sposato, S; Cozzolino, S; Demarinis, P; Muscato, G
2016-07-01
The use of robotics in neurosurgery and, particularly, in stereotactic neurosurgery, is becoming more and more adopted because of the great advantages that it offers. Robotic manipulators easily allow to achieve great precision, reliability, and rapidity in the positioning of surgical instruments or devices in the brain. The aim of this work was to experimentally verify a fully automatic "no hands" surgical procedure. The integration of neuroimaging to data for planning the surgery, followed by application of new specific surgical tools, permitted the realization of a fully automated robotic implantation of leads in brain targets. An anthropomorphic commercial manipulator was utilized. In a preliminary phase, a software to plan surgery was developed, and the surgical tools were tested first during a simulation and then on a skull mock-up. In such a way, several tools were developed and tested, and the basis for an innovative surgical procedure arose. The final experimentation was carried out on anesthetized "large white" pigs. The determination of stereotactic parameters for the correct planning to reach the intended target was performed with the same technique currently employed in human stereotactic neurosurgery, and the robotic system revealed to be reliable and precise in reaching the target. The results of this work strengthen the possibility that a neurosurgeon may be substituted by a machine, and may represent the beginning of a new approach in the current clinical practice. Moreover, this possibility may have a great impact not only on stereotactic functional procedures but also on the entire domain of neurosurgery.
NASA Astrophysics Data System (ADS)
Meygret, Aimé; Santer, Richard P.; Berthelot, Béatrice
2011-10-01
La Crau test site is used by CNES since 1987 for vicarious calibration of SPOT cameras. The former calibration activities were conducted during field campaigns devoted to the characterization of the atmosphere and the site reflectances. Since 1997, au automatic photometric station (ROSAS) was set up on the site on a 10m height pole. This station measures at different wavelengths, the solar extinction and the sky radiances to fully characterize the optical properties of the atmosphere. It also measures the upwelling radiance over the ground to fully characterize the surface reflectance properties. The photometer samples the spectrum from 380nm to 1600nm with 9 narrow bands. Every non cloudy days the photometer automatically and sequentially performs its measurements. Data are transmitted by GSM (Global System for Mobile communications) to CNES and processed. The photometer is calibrated in situ over the sun for irradiance and cross-band calibration, and over the Rayleigh scattering for the short wavelengths radiance calibration. The data are processed by an operational software which calibrates the photometer, estimates the atmosphere properties, computes the bidirectional reflectance distribution function of the site, then simulates the top of atmosphere radiance seen by any sensor over-passing the site and calibrates it. This paper describes the instrument, its measurement protocol and its calibration principle. Calibration results are discussed and compared to laboratory calibration. It details the surface reflectance characterization and presents SPOT4 calibration results deduced from the estimated TOA radiance. The results are compared to the official calibration.
Towards a new modality-independent interface for a robotic wheelchair.
Bastos-Filho, Teodiano Freire; Cheein, Fernando Auat; Müller, Sandra Mara Torres; Celeste, Wanderley Cardoso; de la Cruz, Celso; Cavalieri, Daniel Cruz; Sarcinelli-Filho, Mário; Amaral, Paulo Faria Santos; Perez, Elisa; Soria, Carlos Miguel; Carelli, Ricardo
2014-05-01
This work presents the development of a robotic wheelchair that can be commanded by users in a supervised way or by a fully automatic unsupervised navigation system. It provides flexibility to choose different modalities to command the wheelchair, in addition to be suitable for people with different levels of disabilities. Users can command the wheelchair based on their eye blinks, eye movements, head movements, by sip-and-puff and through brain signals. The wheelchair can also operate like an auto-guided vehicle, following metallic tapes, or in an autonomous way. The system is provided with an easy to use and flexible graphical user interface onboard a personal digital assistant, which is used to allow users to choose commands to be sent to the robotic wheelchair. Several experiments were carried out with people with disabilities, and the results validate the developed system as an assistive tool for people with distinct levels of disability.
A FPGA Implementation of the CAR-FAC Cochlear Model.
Xu, Ying; Thakur, Chetan S; Singh, Ram K; Hamilton, Tara Julia; Wang, Runchun M; van Schaik, André
2018-01-01
This paper presents a digital implementation of the Cascade of Asymmetric Resonators with Fast-Acting Compression (CAR-FAC) cochlear model. The CAR part simulates the basilar membrane's (BM) response to sound. The FAC part models the outer hair cell (OHC), the inner hair cell (IHC), and the medial olivocochlear efferent system functions. The FAC feeds back to the CAR by moving the poles and zeros of the CAR resonators automatically. We have implemented a 70-section, 44.1 kHz sampling rate CAR-FAC system on an Altera Cyclone V Field Programmable Gate Array (FPGA) with 18% ALM utilization by using time-multiplexing and pipeline parallelizing techniques and present measurement results here. The fully digital reconfigurable CAR-FAC system is stable, scalable, easy to use, and provides an excellent input stage to more complex machine hearing tasks such as sound localization, sound segregation, speech recognition, and so on.
A FPGA Implementation of the CAR-FAC Cochlear Model
Xu, Ying; Thakur, Chetan S.; Singh, Ram K.; Hamilton, Tara Julia; Wang, Runchun M.; van Schaik, André
2018-01-01
This paper presents a digital implementation of the Cascade of Asymmetric Resonators with Fast-Acting Compression (CAR-FAC) cochlear model. The CAR part simulates the basilar membrane's (BM) response to sound. The FAC part models the outer hair cell (OHC), the inner hair cell (IHC), and the medial olivocochlear efferent system functions. The FAC feeds back to the CAR by moving the poles and zeros of the CAR resonators automatically. We have implemented a 70-section, 44.1 kHz sampling rate CAR-FAC system on an Altera Cyclone V Field Programmable Gate Array (FPGA) with 18% ALM utilization by using time-multiplexing and pipeline parallelizing techniques and present measurement results here. The fully digital reconfigurable CAR-FAC system is stable, scalable, easy to use, and provides an excellent input stage to more complex machine hearing tasks such as sound localization, sound segregation, speech recognition, and so on. PMID:29692700
Adaptive pseudolinear compensators of dynamic characteristics of automatic control systems
NASA Astrophysics Data System (ADS)
Skorospeshkin, M. V.; Sukhodoev, M. S.; Timoshenko, E. A.; Lenskiy, F. V.
2016-04-01
Adaptive pseudolinear gain and phase compensators of dynamic characteristics of automatic control systems are suggested. The automatic control system performance with adaptive compensators has been explored. The efficiency of pseudolinear adaptive compensators in the automatic control systems with time-varying parameters has been demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Homer; Ashok Varikuti; Xinming Ou
Various tools exist to analyze enterprise network systems and to produce attack graphs detailing how attackers might penetrate into the system. These attack graphs, however, are often complex and difficult to comprehend fully, and a human user may find it problematic to reach appropriate configuration decisions. This paper presents methodologies that can 1) automatically identify portions of an attack graph that do not help a user to understand the core security problems and so can be trimmed, and 2) automatically group similar attack steps as virtual nodes in a model of the network topology, to immediately increase the understandability ofmore » the data. We believe both methods are important steps toward improving visualization of attack graphs to make them more useful in configuration management for large enterprise networks. We implemented our methods using one of the existing attack-graph toolkits. Initial experimentation shows that the proposed approaches can 1) significantly reduce the complexity of attack graphs by trimming a large portion of the graph that is not needed for a user to understand the security problem, and 2) significantly increase the accessibility and understandability of the data presented in the attack graph by clearly showing, within a generated visualization of the network topology, the number and type of potential attacks to which each host is exposed.« less
Kume, Teruyoshi; Kim, Byeong-Keuk; Waseda, Katsuhisa; Sathyanarayana, Shashidhar; Li, Wenguang; Teo, Tat-Jin; Yock, Paul G; Fitzgerald, Peter J; Honda, Yasuhiro
2013-02-01
The aim of this study was to evaluate a new fully automated lumen border tracing system based on a novel multifrequency processing algorithm. We developed the multifrequency processing method to enhance arterial lumen detection by exploiting the differential scattering characteristics of blood and arterial tissue. The implementation of the method can be integrated into current intravascular ultrasound (IVUS) hardware. This study was performed in vivo with conventional 40-MHz IVUS catheters (Atlantis SR Pro™, Boston Scientific Corp, Natick, MA) in 43 clinical patients with coronary artery disease. A total of 522 frames were randomly selected, and lumen areas were measured after automatically tracing lumen borders with the new tracing system and a commercially available tracing system (TraceAssist™) referred to as the "conventional tracing system." The data assessed by the two automated systems were compared with the results of manual tracings by experienced IVUS analysts. New automated lumen measurements showed better agreement with manual lumen area tracings compared with those of the conventional tracing system (correlation coefficient: 0.819 vs. 0.509). When compared against manual tracings, the new algorithm also demonstrated improved systematic error (mean difference: 0.13 vs. -1.02 mm(2) ) and random variability (standard deviation of difference: 2.21 vs. 4.02 mm(2) ) compared with the conventional tracing system. This preliminary study showed that the novel fully automated tracing system based on the multifrequency processing algorithm can provide more accurate lumen border detection than current automated tracing systems and thus, offer a more reliable quantitative evaluation of lumen geometry. Copyright © 2011 Wiley Periodicals, Inc.
Towards fully automated Identification of Vesicle-Membrane Fusion Events in TIRF Microscopy
NASA Astrophysics Data System (ADS)
Vallotton, Pascal; James, David E.; Hughes, William E.
2007-11-01
Total Internal Reflection Fluorescence Microscopy (TIRFM) is imposing itself as the tool of choice for studying biological activity in close proximity to the plasma membrane. For example, the exquisite selectivity of TIRFM allows monitoring the diffusion of GFP-phogrin vesicles and their recruitment to the plasma membrane in pancreatic β-cells. We present a novel computer vision system for automatically identifying the elusive fusion events of GFP-phogrin vesicles with the plasma membrane. Our method is based on robust object tracking and matched filtering. It should accelerate the quantification of TIRFM data and allow the extraction of more biological information from image data to support research in diabetes and obesity.
Automated Analysis of siRNA Screens of Virus Infected Cells Based on Immunofluorescence Microscopy
NASA Astrophysics Data System (ADS)
Matula, Petr; Kumar, Anil; Wörz, Ilka; Harder, Nathalie; Erfle, Holger; Bartenschlager, Ralf; Eils, Roland; Rohr, Karl
We present an image analysis approach as part of a high-throughput microscopy screening system based on cell arrays for the identification of genes involved in Hepatitis C and Dengue virus replication. Our approach comprises: cell nucleus segmentation, quantification of virus replication level in cells, localization of regions with transfected cells, cell classification by infection status, and quality assessment of an experiment. The approach is fully automatic and has been successfully applied to a large number of cell array images from screening experiments. The experimental results show a good agreement with the expected behavior of positive as well as negative controls and encourage the application to screens from further high-throughput experiments.
The design of an irradiator for the continuous processing of liquid latex
NASA Astrophysics Data System (ADS)
Reuter, O.; Langley, R.; Zn, Wan Manshol Bin W.
1998-06-01
This paper presents anew design concept for a gamma irradiation plant for the continuous processing of pumpable liquids. Typical applications of such a plant include ∗ the irradiation vulcanisation of natural latex rubber ∗ disinfection of municipal sewage sludge for agricultural use ∗ sterilisation of liquids in the pharmaceutical and cosmetics industries ∗ industrial processing of bulk liquids The authors describe the design and operation of the latex irradiator now operating on a small production scale in Malaysia and proposed developments. The design allows irradiation processing to be carried out under an inert or other gaseous environment. State-of-the-art computer control system ensures the fully automatic processing operation needed by industrial computers.
Rapid, Optimized Interactomic Screening
Hakhverdyan, Zhanna; Domanski, Michal; Hough, Loren; Oroskar, Asha A.; Oroskar, Anil R.; Keegan, Sarah; Dilworth, David J.; Molloy, Kelly R.; Sherman, Vadim; Aitchison, John D.; Fenyö, David; Chait, Brian T.; Jensen, Torben Heick; Rout, Michael P.; LaCava, John
2015-01-01
We must reliably map the interactomes of cellular macromolecular complexes in order to fully explore and understand biological systems. However, there are no methods to accurately predict how to capture a given macromolecular complex with its physiological binding partners. Here, we present a screen that comprehensively explores the parameters affecting the stability of interactions in affinity-captured complexes, enabling the discovery of physiological binding partners and the elucidation of their functional interactions in unparalleled detail. We have implemented this screen on several macromolecular complexes from a variety of organisms, revealing novel profiles even for well-studied proteins. Our approach is robust, economical and automatable, providing an inroad to the rigorous, systematic dissection of cellular interactomes. PMID:25938370
NASA Astrophysics Data System (ADS)
Dan, Wang; Jin-Ze, Wu; Jun-Xiang, Zhang
2016-06-01
A kind of photonic crystal structure with modulation of the refractive index is investigated both experimentally and theoretically for exploiting electromagnetically induced transparency (EIT). The combination of EIT with periodically modulated refractive index medium gives rise to high efficiency reflection as well as forbidden transmission in a three-level atomic system coupled by standing wave. We show an accurate theoretical simulation via transfer-matrix theory, automatically accounting for multilayer reflections, thus fully demonstrate the existence of photonic crystal structure in atomic vapor. Project supported by the National Natural Science Foundation of China (Grant No. 11574188) and the Project for Excellent Research Team of the National Natural Science Foundation of China (Grant No. 61121064).
Proving refinement transformations using extended denotational semantics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, V.L.; Boyle, J.M.
1996-04-01
TAMPR is a fully automatic transformation system based on syntactic rewrites. Our approach in a correctness proof is to map the transformation into an axiomatized mathematical domain where formal (and automated) reasoning can be performed. This mapping is accomplished via an extended denotational semantic paradigm. In this approach, the abstract notion of a program state is distributed between an environment function and a store function. Such a distribution introduces properties that go beyond the abstract state that is being modeled. The reasoning framework needs to be aware of these properties in order to successfully complete a correctness proof. This papermore » discusses some of our experiences in proving the correctness of TAMPR transformations.« less
Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry
NASA Astrophysics Data System (ADS)
Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio
2016-03-01
Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.
Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry.
Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio
2016-03-22
Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83-0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments.
Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks With Jaccard Distance.
Yuan, Yading; Chao, Ming; Lo, Yeh-Chi
2017-09-01
Automatic skin lesion segmentation in dermoscopic images is a challenging task due to the low contrast between lesion and the surrounding skin, the irregular and fuzzy lesion borders, the existence of various artifacts, and various imaging acquisition conditions. In this paper, we present a fully automatic method for skin lesion segmentation by leveraging 19-layer deep convolutional neural networks that is trained end-to-end and does not rely on prior knowledge of the data. We propose a set of strategies to ensure effective and efficient learning with limited training data. Furthermore, we design a novel loss function based on Jaccard distance to eliminate the need of sample re-weighting, a typical procedure when using cross entropy as the loss function for image segmentation due to the strong imbalance between the number of foreground and background pixels. We evaluated the effectiveness, efficiency, as well as the generalization capability of the proposed framework on two publicly available databases. One is from ISBI 2016 skin lesion analysis towards melanoma detection challenge, and the other is the PH2 database. Experimental results showed that the proposed method outperformed other state-of-the-art algorithms on these two databases. Our method is general enough and only needs minimum pre- and post-processing, which allows its adoption in a variety of medical image segmentation tasks.
Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos
2014-01-01
Assessing the structural integrity of the hippocampus (HC) is an essential step toward prevention, diagnosis, and follow-up of various brain disorders due to the implication of the structural changes of the HC in those disorders. In this respect, the development of automatic segmentation methods that can accurately, reliably, and reproducibly segment the HC has attracted considerable attention over the past decades. This paper presents an innovative 3-D fully automatic method to be used on top of the multiatlas concept for the HC segmentation. The method is based on a subject-specific set of 3-D optimal local maps (OLMs) that locally control the influence of each energy term of a hybrid active contour model (ACM). The complete set of the OLMs for a set of training images is defined simultaneously via an optimization scheme. At the same time, the optimal ACM parameters are also calculated. Therefore, heuristic parameter fine-tuning is not required. Training OLMs are subsequently combined, by applying an extended multiatlas concept, to produce the OLMs that are anatomically more suitable to the test image. The proposed algorithm was tested on three different and publicly available data sets. Its accuracy was compared with that of state-of-the-art methods demonstrating the efficacy and robustness of the proposed method. PMID:27170866
Clinical Evaluation of a Fully-automatic Segmentation Method for Longitudinal Brain Tumor Volumetry
Meier, Raphael; Knecht, Urspeter; Loosli, Tina; Bauer, Stefan; Slotboom, Johannes; Wiest, Roland; Reyes, Mauricio
2016-01-01
Information about the size of a tumor and its temporal evolution is needed for diagnosis as well as treatment of brain tumor patients. The aim of the study was to investigate the potential of a fully-automatic segmentation method, called BraTumIA, for longitudinal brain tumor volumetry by comparing the automatically estimated volumes with ground truth data acquired via manual segmentation. Longitudinal Magnetic Resonance (MR) Imaging data of 14 patients with newly diagnosed glioblastoma encompassing 64 MR acquisitions, ranging from preoperative up to 12 month follow-up images, was analysed. Manual segmentation was performed by two human raters. Strong correlations (R = 0.83–0.96, p < 0.001) were observed between volumetric estimates of BraTumIA and of each of the human raters for the contrast-enhancing (CET) and non-enhancing T2-hyperintense tumor compartments (NCE-T2). A quantitative analysis of the inter-rater disagreement showed that the disagreement between BraTumIA and each of the human raters was comparable to the disagreement between the human raters. In summary, BraTumIA generated volumetric trend curves of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments comparable to estimates of human raters. These findings suggest the potential of automated longitudinal tumor segmentation to substitute manual volumetric follow-up of contrast-enhancing and non-enhancing T2-hyperintense tumor compartments. PMID:27001047
Using Machine Learning to Increase Research Efficiency: A New Approach in Environmental Sciences
USDA-ARS?s Scientific Manuscript database
Data collection has evolved from tedious in-person fieldwork to automatic data gathering from multiple sensor remotely. Scientist in environmental sciences have not fully exploited this data deluge, including legacy and new data, because the traditional scientific method is focused on small, high qu...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...
14 CFR 25.904 - Automatic takeoff thrust control system (ATTCS).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Automatic takeoff thrust control system... Automatic takeoff thrust control system (ATTCS). Each applicant seeking approval for installation of an engine power control system that automatically resets the power or thrust on the operating engine(s) when...
14 CFR 25.904 - Automatic takeoff thrust control system (ATTCS).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Automatic takeoff thrust control system... Automatic takeoff thrust control system (ATTCS). Each applicant seeking approval for installation of an engine power control system that automatically resets the power or thrust on the operating engine(s) when...
Computer-automated silica aerosol generator and animal inhalation exposure system
McKinney, Walter; Chen, Bean; Schwegler-Berry, Diane; Frazer, Dave G.
2015-01-01
Inhalation exposure systems are necessary tools for determining the dose response relationship of inhaled toxicants under a variety of exposure conditions. The objective of this study was to develop an automated computer controlled system to expose small laboratory animals to precise concentrations of uniformly dispersed airborne silica particles. An acoustical aerosol generator was developed which was capable of re-suspending particles from bulk powder. The aerosolized silica output from the generator was introduced into the throat of a venturi tube. The turbulent high-velocity air stream within the venturi tube increased the dispersion of the re-suspended powder. That aerosol was then used to expose small laboratory animals to constant aerosol concentrations, up to 20mg/m3, for durations lasting up to 8h. Particle distribution and morphology of the silica aerosol delivered to the exposure chamber were characterized to verify that a fully dispersed and respirable aerosol was being produced. The inhalation exposure system utilized a combination of airflow controllers, particle monitors, data acquisition devices and custom software with automatic feedback control to achieve constant and repeatable exposure environments. The automatic control algorithm was capable of maintaining median aerosol concentrations to within ±0.2 mg/m3 of a user selected target concentration during exposures lasting from 2 to 8 h. The system was able to reach 95% of the desired target value in <10min during the beginning phase of an exposure. This exposure system provided a highly automated tool for conducting inhalation toxicology studies involving silica particles. PMID:23796015
Fully Automatic Segmentation of Fluorescein Leakage in Subjects With Diabetic Macular Edema
Rabbani, Hossein; Allingham, Michael J.; Mettu, Priyatham S.; Cousins, Scott W.; Farsiu, Sina
2015-01-01
Purpose. To create and validate software to automatically segment leakage area in real-world clinical fluorescein angiography (FA) images of subjects with diabetic macular edema (DME). Methods. Fluorescein angiography images obtained from 24 eyes of 24 subjects with DME were retrospectively analyzed. Both video and still-frame images were obtained using a Heidelberg Spectralis 6-mode HRA/OCT unit. We aligned early and late FA frames in the video by a two-step nonrigid registration method. To remove background artifacts, we subtracted early and late FA frames. Finally, after postprocessing steps, including detection and inpainting of the vessels, a robust active contour method was utilized to obtain leakage area in a 1500-μm-radius circular region centered at the fovea. Images were captured at different fields of view (FOVs) and were often contaminated with outliers, as is the case in real-world clinical imaging. Our algorithm was applied to these images with no manual input. Separately, all images were manually segmented by two retina specialists. The sensitivity, specificity, and accuracy of manual interobserver, manual intraobserver, and automatic methods were calculated. Results. The mean accuracy was 0.86 ± 0.08 for automatic versus manual, 0.83 ± 0.16 for manual interobserver, and 0.90 ± 0.08 for manual intraobserver segmentation methods. Conclusions. Our fully automated algorithm can reproducibly and accurately quantify the area of leakage of clinical-grade FA video and is congruent with expert manual segmentation. The performance was reliable for different DME subtypes. This approach has the potential to reduce time and labor costs and may yield objective and reproducible quantitative measurements of DME imaging biomarkers. PMID:25634978
Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular edema.
Rabbani, Hossein; Allingham, Michael J; Mettu, Priyatham S; Cousins, Scott W; Farsiu, Sina
2015-01-29
To create and validate software to automatically segment leakage area in real-world clinical fluorescein angiography (FA) images of subjects with diabetic macular edema (DME). Fluorescein angiography images obtained from 24 eyes of 24 subjects with DME were retrospectively analyzed. Both video and still-frame images were obtained using a Heidelberg Spectralis 6-mode HRA/OCT unit. We aligned early and late FA frames in the video by a two-step nonrigid registration method. To remove background artifacts, we subtracted early and late FA frames. Finally, after postprocessing steps, including detection and inpainting of the vessels, a robust active contour method was utilized to obtain leakage area in a 1500-μm-radius circular region centered at the fovea. Images were captured at different fields of view (FOVs) and were often contaminated with outliers, as is the case in real-world clinical imaging. Our algorithm was applied to these images with no manual input. Separately, all images were manually segmented by two retina specialists. The sensitivity, specificity, and accuracy of manual interobserver, manual intraobserver, and automatic methods were calculated. The mean accuracy was 0.86 ± 0.08 for automatic versus manual, 0.83 ± 0.16 for manual interobserver, and 0.90 ± 0.08 for manual intraobserver segmentation methods. Our fully automated algorithm can reproducibly and accurately quantify the area of leakage of clinical-grade FA video and is congruent with expert manual segmentation. The performance was reliable for different DME subtypes. This approach has the potential to reduce time and labor costs and may yield objective and reproducible quantitative measurements of DME imaging biomarkers. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
NASA Astrophysics Data System (ADS)
Hopp, T.; Zapf, M.; Ruiter, N. V.
2014-03-01
An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.
NASA Technical Reports Server (NTRS)
Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)
2002-01-01
The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.
Designing non-Hermitian dynamics for conservative state evolution on the Bloch sphere
NASA Astrophysics Data System (ADS)
Yu, Sunkyu; Piao, Xianji; Park, Namkyoo
2018-03-01
An evolution on the Bloch sphere is the fundamental state transition, including optical polarization controls and qubit operations. Conventional evolution of a polarization state or qubit is implemented within a closed system that automatically satisfies energy conservation from the Hermitian formalism. Although particular forms of static non-Hermitian Hamiltonians, such as parity-time-symmetric Hamiltonians, allow conservative states in an open system, the criteria for the energy conservation in a dynamical open system have not been fully explored. Here, we derive the condition of conservative state evolution in open-system dynamics and its inverse design method, by developing the non-Hermitian modification of the Larmor precession equation. We show that the geometrically designed locus on the Bloch sphere can be realized by different forms of dynamics, leading to the isolocus family of non-Hermitian dynamics. This increased degree of freedom allows the complementary phenomena of error-robust and highly sensitive evolutions on the Bloch sphere, which could be applicable to stable polarizers, quantum gates, and optimized sensors in dynamical open systems.
Permanent 3D laser scanning system for an active landslide in Gresten (Austria)
NASA Astrophysics Data System (ADS)
Canli, Ekrem; Höfle, Bernhard; Hämmerle, Martin; Benni, Thiebes; Glade, Thomas
2015-04-01
Terrestrial laser scanners (TLS) have widely been used for high spatial resolution data acquisition of topographic features and geomorphic analyses. Existing applications encompass different landslides including rockfall, translational or rotational landslides, debris flow, but also coastal cliff erosion, braided river evolution or river bank erosion. The main advantages of TLS are (a) the high spatial sampling density of XYZ-measurements (e.g. 1 point every 2-3 mm at 10 m distance), particularly in comparison with the low data density monitoring techniques such as GNSS or total stations, (b) the millimeter accuracy and precision of the range measurement to centimeter accuracy of the final DEM, and (c) the highly dense area-wide scanning that enables to look through vegetation and to measure bare ground. One of its main constraints is the temporal resolution of acquired data due to labor costs and time requirements for field campaigns. Thus, repetition measurements are generally performed only episodically. However, for an increased scientific understanding of the processes as well as for early warning purposes, we present a novel permanent 3D monitoring setup to increase the temporal resolution of TLS measurements. This accounts for different potential monitoring deliverables such as volumetric calculations, spatio-temporal movement patterns, predictions and even alerting. This system was installed at the active Salcher landslide in Gresten (Austria) that is situated in the transition zone of the Gresten Klippenbelt (Helvetic) and the Flyschzone (Penninic). The characteristic lithofacies are the Gresten Beds of Early Jurassic age that are covered by a sequence of marly and silty beds with intercalated sandy limestones. Permanent data acquisition can be implemented into our workflow with any long-range TLS system offering fully automated capturing. We utilize an Optech ILRIS-3D scanner. The time interval between two scans is currently set to 24 hours, but can be set as low as a full scan requires. The field of view (FoV) from the fixed scanner position covers most of the active landslide surface (with a maximum distance of 300 m). To initiate the scan acquisition, command line tools are run automatically on an attached notebook computer in the given time interval. The acquired 3D point cloud (including signal intensity recordings) are then sent to a server via automatic internet transfer. Each new point cloud is automatically compared with an initial 'zero' survey. Furthermore, highly detailed reference surveys are performed several times per year with the most recent Riegl VZ-6000 scanner from multiple scan positions in order to provide high quality independent ground truth. The change detection is carried out by fully automatic batch processing without the need for manual interaction. One of the applied change detection approaches is the M3C2 algorithm (Multiscale Model to Model Cloud Comparison) which is available as open source software. The field site in Gresten also contains different other monitoring systems such as inclinometers and piezometers that complement in the interpretation of the obtained TLS data. Future analysis will include the combination of surface movement with subsurface hydrology as well as with climatic data obtained from an on-site climatic station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukov, A. V.; Komarov, A. N.; Safronov, A. N.
The principles of central control of the power generating units of thermal power plants by automatic secondary frequency and active power overcurrent regulation systems, and the algorithms for interactions between automatic power control systems for the power production units in thermal power plants and centralized systems for automatic frequency and power regulation, are discussed. The order of switching the power generating units of thermal power plants over to control by a centralized system for automatic frequency and power regulation and by the Central Coordinating System for automatic frequency and power regulation is presented. The results of full-scale system tests ofmore » the control of power generating units of the Kirishskaya, Stavropol, and Perm GRES (State Regional Electric Power Plants) by the Central Coordinating System for automatic frequency and power regulation at the United Power System of Russia on September 23-25, 2008, are reported.« less
Diatomite filters--methods of automation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, G.F.
1966-01-01
Following an introduction of subject material, diatomite filters are discussed in the following categories: a filter system, the manual station, the decision to automate, equipment, the automated filter, and the fail-safe methods. Diagrams and pictures of the equipment and its operation are included. Many aspects of the uses of both the automatic and manually operated diatomite filtering systems are reviewed. The fully automated station may be ideally suited to the remotely located waterflood since it requires virtually no attention or perhaps only periodic inspection. On the other hand, floods large enough to employ full-time personnel, who can maintain a constantmore » vigil and peiodically scrutinize the filtering operation, probably require nothing more than a semiautomatic operation. The reduction of human error can save money, and the introduction of consistency into any unit operation is certain to be beneficial.« less
NASA Technical Reports Server (NTRS)
Lala, J. H.; Smith, T. B., III
1983-01-01
The software developed for the Fault-Tolerant Multiprocessor (FTMP) is described. The FTMP executive is a timer-interrupt driven dispatcher that schedules iterative tasks which run at 3.125, 12.5, and 25 Hz. Major tasks which run under the executive include system configuration control, flight control, and display. The flight control task includes autopilot and autoland functions for a jet transport aircraft. System Displays include status displays of all hardware elements (processors, memories, I/O ports, buses), failure log displays showing transient and hard faults, and an autopilot display. All software is in a higher order language (AED, an ALGOL derivative). The executive is a fully distributed general purpose executive which automatically balances the load among available processor triads. Provisions for graceful performance degradation under processing overload are an integral part of the scheduling algorithms.
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water systems...
The unbalanced signal measuring of automotive brake drum
NASA Astrophysics Data System (ADS)
Wang, Xiao-Dong; Ye, Sheng-Hua; Zhang, Bang-Cheng
2005-04-01
For the purpose of the research and development of automatic balancing system by mass removing, the dissertation deals with the measuring method of the unbalance signal, the design the automatic balance equipment and the software. This paper emphases the testing system of the balancer of automotive brake drum. The paper designs the band-pass filter product with favorable automatic follow of electronic product, and with favorable automatic follow capability, filtration effect and stability. The system of automatic balancing system by mass removing based on virtual instrument is designed in this paper. A lab system has been constructed. The results of contrast experiments indicate the notable effect of 1-plane automatic balance and the high precision of dynamic balance, and demonstrate the application value of the system.
NASA Astrophysics Data System (ADS)
Jiménez del Toro, Oscar; Atzori, Manfredo; Otálora, Sebastian; Andersson, Mats; Eurén, Kristian; Hedlund, Martin; Rönnquist, Peter; Müller, Henning
2017-03-01
The Gleason grading system was developed for assessing prostate histopathology slides. It is correlated to the outcome and incidence of relapse in prostate cancer. Although this grading is part of a standard protocol performed by pathologists, visual inspection of whole slide images (WSIs) has an inherent subjectivity when evaluated by different pathologists. Computer aided pathology has been proposed to generate an objective and reproducible assessment that can help pathologists in their evaluation of new tissue samples. Deep convolutional neural networks are a promising approach for the automatic classification of histopathology images and can hierarchically learn subtle visual features from the data. However, a large number of manual annotations from pathologists are commonly required to obtain sufficient statistical generalization when training new models that can evaluate the daily generated large amounts of pathology data. A fully automatic approach that detects prostatectomy WSIs with high-grade Gleason score is proposed. We evaluate the performance of various deep learning architectures training them with patches extracted from automatically generated regions-of-interest rather than from manually segmented ones. Relevant parameters for training the deep learning model such as size and number of patches as well as the inclusion or not of data augmentation are compared between the tested deep learning architectures. 235 prostate tissue WSIs with their pathology report from the publicly available TCGA data set were used. An accuracy of 78% was obtained in a balanced set of 46 unseen test images with different Gleason grades in a 2-class decision: high vs. low Gleason grade. Grades 7-8, which represent the boundary decision of the proposed task, were particularly well classified. The method is scalable to larger data sets with straightforward re-training of the model to include data from multiple sources, scanners and acquisition techniques. Automatically generated heatmaps for theWSIs could be useful for improving the selection of patches when training networks for big data sets and to guide the visual inspection of these images.
NASA Astrophysics Data System (ADS)
Al-Jumaili, Safaa Kh.; Pearson, Matthew R.; Holford, Karen M.; Eaton, Mark J.; Pullin, Rhys
2016-05-01
An easy to use, fast to apply, cost-effective, and very accurate non-destructive testing (NDT) technique for damage localisation in complex structures is key for the uptake of structural health monitoring systems (SHM). Acoustic emission (AE) is a viable technique that can be used for SHM and one of the most attractive features is the ability to locate AE sources. The time of arrival (TOA) technique is traditionally used to locate AE sources, and relies on the assumption of constant wave speed within the material and uninterrupted propagation path between the source and the sensor. In complex structural geometries and complex materials such as composites, this assumption is no longer valid. Delta T mapping was developed in Cardiff in order to overcome these limitations; this technique uses artificial sources on an area of interest to create training maps. These are used to locate subsequent AE sources. However operator expertise is required to select the best data from the training maps and to choose the correct parameter to locate the sources, which can be a time consuming process. This paper presents a new and improved fully automatic delta T mapping technique where a clustering algorithm is used to automatically identify and select the highly correlated events at each grid point whilst the "Minimum Difference" approach is used to determine the source location. This removes the requirement for operator expertise, saving time and preventing human errors. A thorough assessment is conducted to evaluate the performance and the robustness of the new technique. In the initial test, the results showed excellent reduction in running time as well as improved accuracy of locating AE sources, as a result of the automatic selection of the training data. Furthermore, because the process is performed automatically, this is now a very simple and reliable technique due to the prevention of the potential source of error related to manual manipulation.
Schmidt, Thomas H; Kandt, Christian
2012-10-22
At the beginning of each molecular dynamics membrane simulation stands the generation of a suitable starting structure which includes the working steps of aligning membrane and protein and seamlessly accommodating the protein in the membrane. Here we introduce two efficient and complementary methods based on pre-equilibrated membrane patches, automating these steps. Using a voxel-based cast of the coarse-grained protein, LAMBADA computes a hydrophilicity profile-derived scoring function based on which the optimal rotation and translation operations are determined to align protein and membrane. Employing an entirely geometrical approach, LAMBADA is independent from any precalculated data and aligns even large membrane proteins within minutes on a regular workstation. LAMBADA is the first tool performing the entire alignment process automatically while providing the user with the explicit 3D coordinates of the aligned protein and membrane. The second tool is an extension of the InflateGRO method addressing the shortcomings of its predecessor in a fully automated workflow. Determining the exact number of overlapping lipids based on the area occupied by the protein and restricting expansion, compression and energy minimization steps to a subset of relevant lipids through automatically calculated and system-optimized operation parameters, InflateGRO2 yields optimal lipid packing and reduces lipid vacuum exposure to a minimum preserving as much of the equilibrated membrane structure as possible. Applicable to atomistic and coarse grain structures in MARTINI format, InflateGRO2 offers high accuracy, fast performance, and increased application flexibility permitting the easy preparation of systems exhibiting heterogeneous lipid composition as well as embedding proteins into multiple membranes. Both tools can be used separately, in combination with other methods, or in tandem permitting a fully automated workflow while retaining a maximum level of usage control and flexibility. To assess the performance of both methods, we carried out test runs using 22 membrane proteins of different size and transmembrane structure.
Automatic extraction of disease-specific features from Doppler images
NASA Astrophysics Data System (ADS)
Negahdar, Mohammadreza; Moradi, Mehdi; Parajuli, Nripesh; Syeda-Mahmood, Tanveer
2017-03-01
Flow Doppler imaging is widely used by clinicians to detect diseases of the valves. In particular, continuous wave (CW) Doppler mode scan is routinely done during echocardiography and shows Doppler signal traces over multiple heart cycles. Traditionally, echocardiographers have manually traced such velocity envelopes to extract measurements such as decay time and pressure gradient which are then matched to normal and abnormal values based on clinical guidelines. In this paper, we present a fully automatic approach to deriving these measurements for aortic stenosis retrospectively from echocardiography videos. Comparison of our method with measurements made by echocardiographers shows large agreement as well as identification of new cases missed by echocardiographers.
Online fully automated three-dimensional surface reconstruction of unknown objects
NASA Astrophysics Data System (ADS)
Khalfaoui, Souhaiel; Aigueperse, Antoine; Fougerolle, Yohan; Seulin, Ralph; Fofi, David
2015-04-01
This paper presents a novel scheme for automatic and intelligent 3D digitization using robotic cells. The advantage of our procedure is that it is generic since it is not performed for a specific scanning technology. Moreover, it is not dependent on the methods used to perform the tasks associated with each elementary process. The comparison of results between manual and automatic scanning of complex objects shows that our digitization strategy is very efficient and faster than trained experts. The 3D models of the different objects are obtained with a strongly reduced number of acquisitions while moving efficiently the ranging device.
Caboche, Ségolène; Even, Gaël; Loywick, Alexandre; Audebert, Christophe; Hot, David
2017-12-19
The increase in available sequence data has advanced the field of microbiology; however, making sense of these data without bioinformatics skills is still problematic. We describe MICRA, an automatic pipeline, available as a web interface, for microbial identification and characterization through reads analysis. MICRA uses iterative mapping against reference genomes to identify genes and variations. Additional modules allow prediction of antibiotic susceptibility and resistance and comparing the results of several samples. MICRA is fast, producing few false-positive annotations and variant calls compared to current methods, making it a tool of great interest for fully exploiting sequencing data.
NASA Astrophysics Data System (ADS)
Přibil, Jiří; Přibilová, Anna; Frollo, Ivan
2017-12-01
The paper focuses on two methods of evaluation of successfulness of speech signal enhancement recorded in the open-air magnetic resonance imager during phonation for the 3D human vocal tract modeling. The first approach enables to obtain a comparison based on statistical analysis by ANOVA and hypothesis tests. The second method is based on classification by Gaussian mixture models (GMM). The performed experiments have confirmed that the proposed ANOVA and GMM classifiers for automatic evaluation of the speech quality are functional and produce fully comparable results with the standard evaluation based on the listening test method.
Iterative Strategies for Aftershock Classification in Automatic Seismic Processing Pipelines
NASA Astrophysics Data System (ADS)
Gibbons, Steven J.; Kværna, Tormod; Harris, David B.; Dodge, Douglas A.
2016-04-01
Aftershock sequences following very large earthquakes present enormous challenges to near-realtime generation of seismic bulletins. The increase in analyst resources needed to relocate an inflated number of events is compounded by failures of phase association algorithms and a significant deterioration in the quality of underlying fully automatic event bulletins. Current processing pipelines were designed a generation ago and, due to computational limitations of the time, are usually limited to single passes over the raw data. With current processing capability, multiple passes over the data are feasible. Processing the raw data at each station currently generates parametric data streams which are then scanned by a phase association algorithm to form event hypotheses. We consider the scenario where a large earthquake has occurred and propose to define a region of likely aftershock activity in which events are detected and accurately located using a separate specially targeted semi-automatic process. This effort may focus on so-called pattern detectors, but here we demonstrate a more general grid search algorithm which may cover wider source regions without requiring waveform similarity. Given many well-located aftershocks within our source region, we may remove all associated phases from the original detection lists prior to a new iteration of the phase association algorithm. We provide a proof-of-concept example for the 2015 Gorkha sequence, Nepal, recorded on seismic arrays of the International Monitoring System. Even with very conservative conditions for defining event hypotheses within the aftershock source region, we can automatically remove over half of the original detections which could have been generated by Nepal earthquakes and reduce the likelihood of false associations and spurious event hypotheses. Further reductions in the number of detections in the parametric data streams are likely using correlation and subspace detectors and/or empirical matched field processing.
Software framework for automatic learning of telescope operation
NASA Astrophysics Data System (ADS)
Rodríguez, Jose A.; Molgó, Jordi; Guerra, Dailos
2016-07-01
The "Gran Telescopio de Canarias" (GTC) is an optical-infrared 10-meter segmented mirror telescope at the ORM observatory in Canary Islands (Spain). The GTC Control System (GCS) is a distributed object and component oriented system based on RT-CORBA and it is responsible for the operation of the telescope, including its instrumentation. The current development state of GCS is mature and fully operational. On the one hand telescope users as PI's implement the sequences of observing modes of future scientific instruments that will be installed in the telescope and operators, in turn, design their own sequences for maintenance. On the other hand engineers develop new components that provide new functionality required by the system. This great work effort is possible to minimize so that costs are reduced, especially if one considers that software maintenance is the most expensive phase of the software life cycle. Could we design a system that allows the progressive assimilation of sequences of operation and maintenance of the telescope, through an automatic self-programming system, so that it can evolve from one Component oriented organization to a Service oriented organization? One possible way to achieve this is to use mechanisms of learning and knowledge consolidation to reduce to the minimum expression the effort to transform the specifications of the different telescope users to the operational deployments. This article proposes a framework for solving this problem based on the combination of the following tools: data mining, self-Adaptive software, code generation, refactoring based on metrics, Hierarchical Agglomerative Clustering and Service Oriented Architectures.
Smart Cruise Control: UAV sensor operator intent estimation and its application
NASA Astrophysics Data System (ADS)
Cheng, Hui; Butler, Darren; Kumar, Rakesh
2006-05-01
Due to their long endurance, superior mobility and the low risk posed to the pilot and sensor operator, UAVs have become the preferred platform for persistent ISR missions. However, currently most UAV based ISR missions are conducted through manual operation. Event the simplest tasks, such as vehicle tracking, route reconnaissance and site monitoring, need the sensor operator's undivided attention and constant adjustment of the sensor control. The lack of autonomous behaviour greatly limits of the effectiveness and the capability of UAV-based ISR, especially the use of a large number of UAVs simultaneously. Although fully autonomous UAV based ISR system is desirable, it is still a distant dream due to the complexity and diversity of combat and ISR missions. In this paper, we propose a Smart Cruise Control system that can learn UAV sensor operator's intent and use it to complete tasks automatically, such as route reconnaissance and site monitoring. Using an operator attention model, the proposed system can estimate the operator's intent from how they control the sensor (e.g. camera) and the content of the imagery that is acquired. Therefore, for example, from initially manually controlling the UAV sensor to follow a road, the system can learn not only the preferred operation, "tracking", but also the road appearance, "what to track" in real-time. Then, the learnt models of both road and the desired operation can be used to complete the task automatically. We have demonstrated the Smart Cruise Control system using real UAV videos where roads need to be tracked and buildings need to be monitored.
A Semi-Automatic Image-Based Close Range 3D Modeling Pipeline Using a Multi-Camera Configuration
Rau, Jiann-Yeou; Yeh, Po-Chia
2012-01-01
The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR) cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum. PMID:23112656
A semi-automatic image-based close range 3D modeling pipeline using a multi-camera configuration.
Rau, Jiann-Yeou; Yeh, Po-Chia
2012-01-01
The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR) cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum.
Ferrández, Oscar; South, Brett R; Shen, Shuying; Friedlin, F Jeffrey; Samore, Matthew H; Meystre, Stéphane M
2012-07-27
The increased use and adoption of Electronic Health Records (EHR) causes a tremendous growth in digital information useful for clinicians, researchers and many other operational purposes. However, this information is rich in Protected Health Information (PHI), which severely restricts its access and possible uses. A number of investigators have developed methods for automatically de-identifying EHR documents by removing PHI, as specified in the Health Insurance Portability and Accountability Act "Safe Harbor" method.This study focuses on the evaluation of existing automated text de-identification methods and tools, as applied to Veterans Health Administration (VHA) clinical documents, to assess which methods perform better with each category of PHI found in our clinical notes; and when new methods are needed to improve performance. We installed and evaluated five text de-identification systems "out-of-the-box" using a corpus of VHA clinical documents. The systems based on machine learning methods were trained with the 2006 i2b2 de-identification corpora and evaluated with our VHA corpus, and also evaluated with a ten-fold cross-validation experiment using our VHA corpus. We counted exact, partial, and fully contained matches with reference annotations, considering each PHI type separately, or only one unique 'PHI' category. Performance of the systems was assessed using recall (equivalent to sensitivity) and precision (equivalent to positive predictive value) metrics, as well as the F(2)-measure. Overall, systems based on rules and pattern matching achieved better recall, and precision was always better with systems based on machine learning approaches. The highest "out-of-the-box" F(2)-measure was 67% for partial matches; the best precision and recall were 95% and 78%, respectively. Finally, the ten-fold cross validation experiment allowed for an increase of the F(2)-measure to 79% with partial matches. The "out-of-the-box" evaluation of text de-identification systems provided us with compelling insight about the best methods for de-identification of VHA clinical documents. The errors analysis demonstrated an important need for customization to PHI formats specific to VHA documents. This study informed the planning and development of a "best-of-breed" automatic de-identification application for VHA clinical text.
46 CFR 161.002-9 - Automatic fire detecting system, power supply.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Automatic fire detecting system, power supply. 161.002-9 Section 161.002-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT...-9 Automatic fire detecting system, power supply. The power supply for an automatic fire detecting...
46 CFR 161.002-9 - Automatic fire detecting system, power supply.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Automatic fire detecting system, power supply. 161.002-9 Section 161.002-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT...-9 Automatic fire detecting system, power supply. The power supply for an automatic fire detecting...
Validation of a fully automated HER2 staining kit in breast cancer.
Moelans, Cathy B; Kibbelaar, Robby E; van den Heuvel, Marius C; Castigliego, Domenico; de Weger, Roel A; van Diest, Paul J
2010-01-01
Testing for HER2 amplification and/or overexpression is currently routine practice to guide Herceptin therapy in invasive breast cancer. At present, HER2 status is most commonly assessed by immunohistochemistry (IHC). Standardization of HER2 IHC assays is of utmost clinical and economical importance. At present, HER2 IHC is most commonly performed with the HercepTest which contains a polyclonal antibody and applies a manual staining procedure. Analytical variability in HER2 IHC testing could be diminished by a fully automatic staining system with a monoclonal antibody. 219 invasive breast cancers were fully automatically stained with the monoclonal antibody-based Oracle HER2 Bond IHC kit and manually with the HercepTest. All cases were tested for amplification with chromogenic in situ hybridization (CISH). HercepTest yielded an overall sharper membrane staining, with less cytoplasmic and stromal background than Oracle in 17% of cases. Overall concordance between both IHC techniques was 89% (195/219) with a kappa value of 0.776 (95% CI 0.698-0.854), indicating a substantial agreement. Most (22/24) discrepancies between HercepTest and Oracle showed a weaker staining for Oracle. Thirteen of the 24 discrepant cases were high-level HER2 amplified by CISH, and in 12 of these HercepTest IHC better reflected gene amplification status. All the 13 HER2 amplified discrepant cases were at least 2+ by HercepTest, while 10/13 of these were at least 2+ for Oracle. Considering CISH as gold standard, sensitivity of HercepTest and Oracle was 91% and 83%, and specificity was 94% and 98%, respectively. Positive and negative predictive values for HercepTest and Oracle were 90% and 95% for HercepTest and 96% and 91% for Oracle, respectively. Fully-automated HER2 staining with the monoclonal antibody in the Oracle kit shows a high level of agreement with manual staining by the polyclonal antibody in the HercepTest. Although Oracle shows in general some more cytoplasmic staining and may be slightly less sensitive in picking up HER2 amplified cases, it shows a higher specificity and may be considered as an alternative method to evaluate the HER2 expression in breast cancer with potentially less analytical variability.
Kohn, Nils; Fernández, Guillén
2017-12-06
Our surrounding provides a host of sensory input, which we cannot fully process without streamlining and automatic processing. Levels of automaticity differ for different cognitive and affective processes. Situational and contextual interactions between cognitive and affective processes in turn influence the level of automaticity. Automaticity can be measured by interference in Stroop tasks. We applied an emotional version of the Stroop task to investigate how stress as a contextual factor influences the affective valence-dependent level of automaticity. 120 young, healthy men were investigated for behavioral and brain interference following a stress induction or control procedure in a counter-balanced cross-over-design. Although Stroop interference was always observed, sex and emotion of the face strongly modulated interference, which was larger for fearful and male faces. These effects suggest higher automaticity when processing happy and also female faces. Supporting behavioral patterns, brain data show lower interference related brain activity in executive control related regions in response to happy and female faces. In the absence of behavioral stress effects, congruent compared to incongruent trials (reverse interference) showed little to no deactivation under stress in response to happy female and fearful male trials. These congruency effects are potentially based on altered context- stress-related facial processing that interact with sex-emotion stereotypes. Results indicate that sex and facial emotion modulate Stroop interference in brain and behavior. These effects can be explained by altered response difficulty as a consequence of the contextual and stereotype related modulation of automaticity. Copyright © 2017 Elsevier Ltd. All rights reserved.
The personal aircraft: Status and issues
NASA Technical Reports Server (NTRS)
Anders, Scott G.; Asbury, Scott C.; Brentner, Kenneth S.; Bushnell, Dennis M.; Glass, Christopher E.; Hodges, William T.; Morris, Shelby J., Jr.; Scott, Michael A.
1994-01-01
Paper summarizes the status of personal air transportation with emphasis upon VTOL and converticar capability. The former obviates the need for airport operations for personal aircraft whereas the latter provides both ground and air capability in the same vehicle. Fully automatic operation, ATC and navigation is stressed along with consideration of acoustic, environmental and cost issues.
Avatars, Virtual Reality Technology, and the U.S. Military: Emerging Policy Issues
2008-04-09
called “ Sentient Worldwide Simulation,” which will “mirror” real life and automatically follow real-world events in real time. Some virtual world...cities, with the final goal of creating a fully functioning virtual model of the entire world, which will be known as the Sentient Worldwide Simulation
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-13
... Front. A number of issues have not been fully addressed, however, including growing poverty, economic... intercommunal violence caused civilian deaths, continued displacement of the population, and general instability... environmental and economic factors, have created one of the worst humanitarian crises in the world. Despite...
44 CFR 60.3 - Flood plain management criteria for flood-prone areas.
Code of Federal Regulations, 2010 CFR
2010-10-01
... improvements, that fully enclosed areas below the lowest floor that are usable solely for parking of vehicles... that they permit the automatic entry and exit of floodwaters. (6) Require that manufactured homes that... building standards. Such enclosed space shall be useable solely for parking of vehicles, building access...
44 CFR 60.3 - Flood plain management criteria for flood-prone areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... improvements, that fully enclosed areas below the lowest floor that are usable solely for parking of vehicles... that they permit the automatic entry and exit of floodwaters. (6) Require that manufactured homes that... building standards. Such enclosed space shall be useable solely for parking of vehicles, building access...
Cunefare, David; Cooper, Robert F; Higgins, Brian; Katz, David F; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina
2016-05-01
Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice's coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice's coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images.
46 CFR 161.002-2 - Types of fire-protective systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., but not be limited to, automatic fire and smoke detecting systems, manual fire alarm systems, sample extraction smoke detection systems, watchman's supervisory systems, and combinations of these systems. (b) Automatic fire detecting systems. For the purpose of this subpart, automatic fire and smoke detecting...
46 CFR 161.002-2 - Types of fire-protective systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., but not be limited to, automatic fire and smoke detecting systems, manual fire alarm systems, sample extraction smoke detection systems, watchman's supervisory systems, and combinations of these systems. (b) Automatic fire detecting systems. For the purpose of this subpart, automatic fire and smoke detecting...
Carraro, Luciana; Castelli, Luigi; Macchiella, Claudia
2011-01-01
Research has widely explored the differences between conservatives and liberals, and it has been also recently demonstrated that conservatives display different reactions toward valenced stimuli. However, previous studies have not yet fully illuminated the cognitive underpinnings of these differences. In the current work, we argued that political ideology is related to selective attention processes, so that negative stimuli are more likely to automatically grab the attention of conservatives as compared to liberals. In Experiment 1, we demonstrated that negative (vs. positive) information impaired the performance of conservatives, more than liberals, in an Emotional Stroop Task. This finding was confirmed in Experiment 2 and in Experiment 3 employing a Dot-Probe Task, demonstrating that threatening stimuli were more likely to attract the attention of conservatives. Overall, results support the conclusion that people embracing conservative views of the world display an automatic selective attention for negative stimuli. PMID:22096486
Film grain synthesis and its application to re-graining
NASA Astrophysics Data System (ADS)
Schallauer, Peter; Mörzinger, Roland
2006-01-01
Digital film restoration and special effects compositing require more and more automatic procedures for movie regraining. Missing or inhomogeneous grain decreases perceived quality. For the purpose of grain synthesis an existing texture synthesis algorithm has been evaluated and optimized. We show that this algorithm can produce synthetic grain which is perceptually similar to a given grain template, which has high spatial and temporal variation and which can be applied to multi-spectral images. Furthermore a re-grain application framework is proposed, which synthesises based on an input grain template artificial grain and composites this together with the original image content. Due to its modular approach this framework supports manual as well as automatic re-graining applications. Two example applications are presented, one for re-graining an entire movie and one for fully automatic re-graining of image regions produced by restoration algorithms. Low computational cost of the proposed algorithms allows application in industrial grade software.
Efficient content-based low-altitude images correlated network and strips reconstruction
NASA Astrophysics Data System (ADS)
He, Haiqing; You, Qi; Chen, Xiaoyong
2017-01-01
The manual intervention method is widely used to reconstruct strips for further aerial triangulation in low-altitude photogrammetry. Clearly the method for fully automatic photogrammetric data processing is not an expected way. In this paper, we explore a content-based approach without manual intervention or external information for strips reconstruction. Feature descriptors in the local spatial patterns are extracted by SIFT to construct vocabulary tree, in which these features are encoded in terms of TF-IDF numerical statistical algorithm to generate new representation for each low-altitude image. Then images correlated network is reconstructed by similarity measure, image matching and geometric graph theory. Finally, strips are reconstructed automatically by tracing straight lines and growing adjacent images gradually. Experimental results show that the proposed approach is highly effective in automatically rearranging strips of lowaltitude images and can provide rough relative orientation for further aerial triangulation.
An automatic rat brain extraction method based on a deformable surface model.
Li, Jiehua; Liu, Xiaofeng; Zhuo, Jiachen; Gullapalli, Rao P; Zara, Jason M
2013-08-15
The extraction of the brain from the skull in medical images is a necessary first step before image registration or segmentation. While pre-clinical MR imaging studies on small animals, such as rats, are increasing, fully automatic imaging processing techniques specific to small animal studies remain lacking. In this paper, we present an automatic rat brain extraction method, the Rat Brain Deformable model method (RBD), which adapts the popular human brain extraction tool (BET) through the incorporation of information on the brain geometry and MR image characteristics of the rat brain. The robustness of the method was demonstrated on T2-weighted MR images of 64 rats and compared with other brain extraction methods (BET, PCNN, PCNN-3D). The results demonstrate that RBD reliably extracts the rat brain with high accuracy (>92% volume overlap) and is robust against signal inhomogeneity in the images. Copyright © 2013 Elsevier B.V. All rights reserved.
A micro-fluidic treadmill for observing suspended plankton in the lab
NASA Astrophysics Data System (ADS)
Jaffe, J. S.; Laxton, B.; Garwood, J. C.; Franks, P. J. S.; Roberts, P. L.
2016-02-01
A significant obstacle to laboratory studies of interactions between small organisms ( mm) and their fluid environment is our ability to obtain high-resolution images while allowing freedom of motion. This is because as the organisms sink, they will often move out of the field of view of the observation system. One solution to this problem is to impose a water circulation pattern that preserves their location relative to the camera system while imaging the organisms away from the glass walls. To accomplish this we have designed and created a plankton treadmill. Our computer-controlled system consists of a digital video camera attached to a macro or microscope and a micro-fluidic pump whose flow is regulated to maintain a suspended organism's position relative to the field of view. Organisms are detected and tracked in real time in the video frames, allowing a control algorithm to compensate for any vertical movement by adjusting the flow. The flow control can be manually adjusted using on-screen controls, semi-automatically adjusted to allow the user to select a particular organism to be tracked or fully automatic through the use of classification and tracking algorithms. Experiments with a simple cm-sized cuvette and a number of organisms that are both positively and negatively buoyant have demonstrated the success of the system in permitting longer observation times than would be possible in the absence of a controlled-flow environment. The subjects were observed using a new dual-view, holographic imaging system that provides 3-dimensional microscopic observations with relatively isotropic resolution. We will present the system design, construction, the control algorithm, and some images obtained with the holographic system, demonstrating its effectiveness. Small particles seeded into the flow clearly show the 3D flow fields around the subjects as they freely sink or swim.
Differentiation of arterioles from venules in mouse histology images using machine learning
NASA Astrophysics Data System (ADS)
Elkerton, J. S.; Xu, Yiwen; Pickering, J. G.; Ward, Aaron D.
2016-03-01
Analysis and morphological comparison of arteriolar and venular networks are essential to our understanding of multiple diseases affecting every organ system. We have developed and evaluated the first fully automatic software system for differentiation of arterioles from venules on high-resolution digital histology images of the mouse hind limb immunostained for smooth muscle α-actin. Classifiers trained on texture and morphologic features by supervised machine learning provided excellent classification accuracy for differentiation of arterioles and venules, achieving an area under the receiver operating characteristic curve of 0.90 and balanced false-positive and false-negative rates. Feature selection was consistent across cross-validation iterations, and a small set of three features was required to achieve the reported performance, suggesting potential generalizability of the system. This system eliminates the need for laborious manual classification of the hundreds of microvessels occurring in a typical sample, and paves the way for high-throughput analysis the arteriolar and venular networks in the mouse.
High-concentration planar microtracking photovoltaic system exceeding 30% efficiency
NASA Astrophysics Data System (ADS)
Price, Jared S.; Grede, Alex J.; Wang, Baomin; Lipski, Michael V.; Fisher, Brent; Lee, Kyu-Tae; He, Junwen; Brulo, Gregory S.; Ma, Xiaokun; Burroughs, Scott; Rahn, Christopher D.; Nuzzo, Ralph G.; Rogers, John A.; Giebink, Noel C.
2017-08-01
Prospects for concentrating photovoltaic (CPV) power are growing as the market increasingly values high power conversion efficiency to leverage now-dominant balance of system and soft costs. This trend is particularly acute for rooftop photovoltaic power, where delivering the high efficiency of traditional CPV in the form factor of a standard rooftop photovoltaic panel could be transformative. Here, we demonstrate a fully automated planar microtracking CPV system <2 cm thick that operates at fixed tilt with a microscale triple-junction solar cell at >660× concentration ratio over a 140∘ full field of view. In outdoor testing over the course of two sunny days, the system operates automatically from sunrise to sunset, outperforming a 17%-efficient commercial silicon solar cell by generating >50% more energy per unit area per day in a direct head-to-head competition. These results support the technical feasibility of planar microtracking CPV to deliver a step change in the efficiency of rooftop solar panels at a commercially relevant concentration ratio.
Development of an Automated DNA Detection System Using an Electrochemical DNA Chip Technology
NASA Astrophysics Data System (ADS)
Hongo, Sadato; Okada, Jun; Hashimoto, Koji; Tsuji, Koichi; Nikaido, Masaru; Gemma, Nobuhiro
A new compact automated DNA detection system Genelyzer™ has been developed. After injecting a sample solution into a cassette with a built-in electrochemical DNA chip, processes from hybridization reaction to detection and analysis are all operated fully automatically. In order to detect a sample DNA, electrical currents from electrodes due to an oxidization reaction of electrochemically active intercalator molecules bound to hybridized DNAs are detected. The intercalator is supplied as a reagent solution by a fluid supply unit of the system. The feasibility test proved that the simultaneous typing of six single nucleotide polymorphisms (SNPs) associated with a rheumatoid arthritis (RA) was carried out within two hours and that all the results were consistent with those by conventional typing methods. It is expected that this system opens a new way to a DNA testing such as a test for infectious diseases, a personalized medicine, a food inspection, a forensic application and any other applications.
NASA Technical Reports Server (NTRS)
Head, James W.; Huffman, J. N.; Forsberg, A. S.; Hurwitz, D. M.; Basilevsky, A. T.; Ivanov, M. A.; Dickson, J. L.; Kumar, P. Senthil
2008-01-01
We are currently investigating new technological developments in computer visualization and analysis in order to assess their importance and utility in planetary geological analysis and mapping [1,2]. Last year we reported on the range of technologies available and on our application of these to various problems in planetary mapping [3]. In this contribution we focus on the application of these techniques and tools to Venus geological mapping at the 1:5M quadrangle scale. In our current Venus mapping projects we have utilized and tested the various platforms to understand their capabilities and assess their usefulness in defining units, establishing stratigraphic relationships, mapping structures, reaching consensus on interpretations and producing map products. We are specifically assessing how computer visualization display qualities (e.g., level of immersion, stereoscopic vs. monoscopic viewing, field of view, large vs. small display size, etc.) influence performance on scientific analysis and geological mapping. We have been exploring four different environments: 1) conventional desktops (DT), 2) semi-immersive Fishtank VR (FT) (i.e., a conventional desktop with head-tracked stereo and 6DOF input), 3) tiled wall displays (TW), and 4) fully immersive virtual reality (IVR) (e.g., "Cave Automatic Virtual Environment," or Cave system). Formal studies demonstrate that fully immersive Cave environments are superior to desktop systems for many tasks [e.g., 4].
Challenges in Personalizing and Decentralizing the Web: An Overview of GOSSPLE
NASA Astrophysics Data System (ADS)
Kermarrec, Anne-Marie
Social networks and collaborative tagging systems have taken off at an unexpected scale and speed (Facebook, YouTube, Flickr, Last.fm, Delicious, etc). Web content is now generated by you, me, our friends and millions of others. This represents a revolution in usage and a great opportunity to leverage collaborative knowledge to enhance the user's Internet experience. The GOSSPLE project aims at precisely achieving this: automatically capturing affinities between users that are potentially unknown yet share similar interests, or exhibiting similar behaviors on the Web. This fully personalizes the search process, increasing the ability of a user to find relevant content. This personalization calls for decentralization. (1) Centralized servers might dissuade users from generating new content for they expose their privacy and represent a single point of attack. (2) The amount of information to store grows exponentially with the size of the system and centralized systems cannot sustain storing a growing amount of data at a user granularity. We believe that the salvation can only come from a fully decentralized user centric approach where every participant is entrusted to harvest the Web with information relevant to her own activity. This poses a number of scientific challenges: How to discover similar users, how to define the relevant metrics for such personalization, how to preserve privacy when needed, how to deal with free-riders and misheavior and how to manage efficiently a growing amount of data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Haihua; Zhang, Hongbin; Zou, Ling
2014-10-01
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The RELAP-7 code develop-ment effort started in October of 2011 and by the end of the second development year, a number of physical components with simplified two phase flow capability have been de-veloped to support the simplified boiling water reactor (BWR) extended station blackout (SBO) analyses. The demonstration case includes the major components for the primary system of a BWR, as well as the safety system components for the safety relief valve (SRV), the reactor core isolation cooling (RCIC)more » system, and the wet well. Three scenar-ios for the SBO simulations have been considered. Since RELAP-7 is not a severe acci-dent analysis code, the simulation stops when fuel clad temperature reaches damage point. Scenario I represents an extreme station blackout accident without any external cooling and cooling water injection. The system pressure is controlled by automatically releasing steam through SRVs. Scenario II includes the RCIC system but without SRV. The RCIC system is fully coupled with the reactor primary system and all the major components are dynamically simulated. The third scenario includes both the RCIC system and the SRV to provide a more realistic simulation. This paper will describe the major models and dis-cuss the results for the three scenarios. The RELAP-7 simulations for the three simplified SBO scenarios show the importance of dynamically simulating the SRVs, the RCIC sys-tem, and the wet well system to the reactor safety during extended SBO accidents.« less
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
Code of Federal Regulations, 2011 CFR
2011-10-01
... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.502 Automatic brake application, initiation by restrictive block conditions stopping distance in advance. An automatic train-stop or train-control system shall operate to...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
30 CFR 75.1103-3 - Automatic fire sensor and warning device systems; minimum requirements; general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Automatic fire sensor and warning device...-UNDERGROUND COAL MINES Fire Protection § 75.1103-3 Automatic fire sensor and warning device systems; minimum requirements; general. Automatic fire sensor and warning device systems installed in belt haulageways of...
The design of automatic software testing module for civil aviation information system
NASA Astrophysics Data System (ADS)
Qi, Qi; Sun, Yang
2018-05-01
In this paper, the practical innovation design is carried out according to the urgent needs of the automatic testing module of civil aviation information system. Firstly, the background and significance of the automatic testing module of civil aviation information system is expounded, and the current research status of automatic testing module and the advantages and disadvantages of related software are analyzed. Then, from the three aspects of macro demand, module functional requirement and module nonfunctional demand, we further study the needs of automatic testing module of civil aviation information system. Finally, from the four aspects of module structure, module core function, database and security, we have made an innovative plan for the automatic testing module of civil aviation information system.
A semi-automatic annotation tool for cooking video
NASA Astrophysics Data System (ADS)
Bianco, Simone; Ciocca, Gianluigi; Napoletano, Paolo; Schettini, Raimondo; Margherita, Roberto; Marini, Gianluca; Gianforme, Giorgio; Pantaleo, Giuseppe
2013-03-01
In order to create a cooking assistant application to guide the users in the preparation of the dishes relevant to their profile diets and food preferences, it is necessary to accurately annotate the video recipes, identifying and tracking the foods of the cook. These videos present particular annotation challenges such as frequent occlusions, food appearance changes, etc. Manually annotate the videos is a time-consuming, tedious and error-prone task. Fully automatic tools that integrate computer vision algorithms to extract and identify the elements of interest are not error free, and false positive and false negative detections need to be corrected in a post-processing stage. We present an interactive, semi-automatic tool for the annotation of cooking videos that integrates computer vision techniques under the supervision of the user. The annotation accuracy is increased with respect to completely automatic tools and the human effort is reduced with respect to completely manual ones. The performance and usability of the proposed tool are evaluated on the basis of the time and effort required to annotate the same video sequences.
NASA Astrophysics Data System (ADS)
Adiri, Zakaria; El Harti, Abderrazak; Jellouli, Amine; Lhissou, Rachid; Maacha, Lhou; Azmi, Mohamed; Zouhair, Mohamed; Bachaoui, El Mostafa
2017-12-01
Certainly, lineament mapping occupies an important place in several studies, including geology, hydrogeology and topography etc. With the help of remote sensing techniques, lineaments can be better identified due to strong advances in used data and methods. This allowed exceeding the usual classical procedures and achieving more precise results. The aim of this work is the comparison of ASTER, Landsat-8 and Sentinel 1 data sensors in automatic lineament extraction. In addition to image data, the followed approach includes the use of the pre-existing geological map, the Digital Elevation Model (DEM) as well as the ground truth. Through a fully automatic approach consisting of a combination of edge detection algorithm and line-linking algorithm, we have found the optimal parameters for automatic lineament extraction in the study area. Thereafter, the comparison and the validation of the obtained results showed that the Sentinel 1 data are more efficient in restitution of lineaments. This indicates the performance of the radar data compared to those optical in this kind of study.
Analysis of Technique to Extract Data from the Web for Improved Performance
NASA Astrophysics Data System (ADS)
Gupta, Neena; Singh, Manish
2010-11-01
The World Wide Web rapidly guides the world into a newly amazing electronic world, where everyone can publish anything in electronic form and extract almost all the information. Extraction of information from semi structured or unstructured documents, such as web pages, is a useful yet complex task. Data extraction, which is important for many applications, extracts the records from the HTML files automatically. Ontologies can achieve a high degree of accuracy in data extraction. We analyze method for data extraction OBDE (Ontology-Based Data Extraction), which automatically extracts the query result records from the web with the help of agents. OBDE first constructs an ontology for a domain according to information matching between the query interfaces and query result pages from different web sites within the same domain. Then, the constructed domain ontology is used during data extraction to identify the query result section in a query result page and to align and label the data values in the extracted records. The ontology-assisted data extraction method is fully automatic and overcomes many of the deficiencies of current automatic data extraction methods.
Markov random field based automatic image alignment for electron tomography.
Amat, Fernando; Moussavi, Farshid; Comolli, Luis R; Elidan, Gal; Downing, Kenneth H; Horowitz, Mark
2008-03-01
We present a method for automatic full-precision alignment of the images in a tomographic tilt series. Full-precision automatic alignment of cryo electron microscopy images has remained a difficult challenge to date, due to the limited electron dose and low image contrast. These facts lead to poor signal to noise ratio (SNR) in the images, which causes automatic feature trackers to generate errors, even with high contrast gold particles as fiducial features. To enable fully automatic alignment for full-precision reconstructions, we frame the problem probabilistically as finding the most likely particle tracks given a set of noisy images, using contextual information to make the solution more robust to the noise in each image. To solve this maximum likelihood problem, we use Markov Random Fields (MRF) to establish the correspondence of features in alignment and robust optimization for projection model estimation. The resulting algorithm, called Robust Alignment and Projection Estimation for Tomographic Reconstruction, or RAPTOR, has not needed any manual intervention for the difficult datasets we have tried, and has provided sub-pixel alignment that is as good as the manual approach by an expert user. We are able to automatically map complete and partial marker trajectories and thus obtain highly accurate image alignment. Our method has been applied to challenging cryo electron tomographic datasets with low SNR from intact bacterial cells, as well as several plastic section and X-ray datasets.
Murgatroyd, Francis D; Helmling, Erhard; Lemke, Bernd; Eber, Bernd; Mewis, Christian; van der Meer-Hensgens, Judith; Chang, Yanping; Khalameizer, Vladimir; Katz, Amos
2010-06-01
The Secura ICD and Consulta CRT-D are the first defibrillators to have automatic right atrial (RA), right ventricular (RV), and left ventricular (LV) capture management (CM). Complete CM was evaluated in an implantable cardioverter defibrillator (ICD) population. Two prospective clinical studies were conducted in 28 centres in Europe and Israel. Automatic CM data were compared with manual threshold measurements, the CM applicability was determined, and adjustments to pacing outputs were analysed. In total, 160 patients [age 64.6 +/- 10.4 years, 77% male, 80 ICD and 80 cardiac resynchronization therapy defibrillator (CRT-D)] were included. The differences between automatic and manual measurements were =0.25 V in 97% (RA CM) and 96% (RV CM) and were all within the safety margin. Fully automatic CM measurements were available within 1 week prior to the 3-month visit in 90% (RA), 99% (RV), and 97% (LV) of the patients. Results indicated increased output (threshold >2.5 V) due to raised RA threshold in seven (4.4%), high RV threshold in nine (5.6%), and high LV threshold in three patients (3.8%). All high threshold detections and all automatic modulations of pacing output were adjudicated appropriate. Complete CM adjusts pacing output appropriately, permitting a reduction in office visits while it may maximize device longevity. The study was registered at ClinicalTrials.gov identifiers: NCT00526227 and NCT00526162.
Rios Velazquez, Emmanuel; Meier, Raphael; Dunn, William D; Alexander, Brian; Wiest, Roland; Bauer, Stefan; Gutman, David A; Reyes, Mauricio; Aerts, Hugo J W L
2015-11-18
Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. MRI sets of 109 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA). Spearman's correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Auto-segmented sub-volumes showed moderate to high agreement with manually delineated volumes (range (r): 0.4 - 0.86). Also, the auto and manual volumes showed similar correlation with VASARI features (auto r = 0.35, 0.43 and 0.36; manual r = 0.17, 0.67, 0.41, for contrast-enhancing, necrosis and edema, respectively). The auto-segmented contrast-enhancing volume and post-contrast abnormal volume showed the highest AUC (0.66, CI: 0.55-0.77 and 0.65, CI: 0.54-0.76), comparable to manually defined volumes (0.64, CI: 0.53-0.75 and 0.63, CI: 0.52-0.74, respectively). BraTumIA and manual tumor sub-compartments showed comparable performance in terms of prognosis and correlation with VASARI features. This method can enable more reproducible definition and quantification of imaging based biomarkers and has potential in high-throughput medical imaging research.
Ughi, Giovanni J; Adriaenssens, Tom; Desmet, Walter; D’hooge, Jan
2012-01-01
Intravascular optical coherence tomography (IV-OCT) is an imaging modality that can be used for the assessment of intracoronary stents. Recent publications pointed to the fact that 3D visualizations have potential advantages compared to conventional 2D representations. However, 3D imaging still requires a time consuming manual procedure not suitable for on-line application during coronary interventions. We propose an algorithm for a rapid and fully automatic 3D visualization of IV-OCT pullbacks. IV-OCT images are first processed for the segmentation of the different structures. This also allows for automatic pullback calibration. Then, according to the segmentation results, different structures are depicted with different colors to visualize the vessel wall, the stent and the guide-wire in details. Final 3D rendering results are obtained through the use of a commercial 3D DICOM viewer. Manual analysis was used as ground-truth for the validation of the segmentation algorithms. A correlation value of 0.99 and good limits of agreement (Bland Altman statistics) were found over 250 images randomly extracted from 25 in vivo pullbacks. Moreover, 3D rendering was compared to angiography, pictures of deployed stents made available by the manufacturers and to conventional 2D imaging corroborating visualization results. Computational time for the visualization of an entire data sets resulted to be ~74 sec. The proposed method allows for the on-line use of 3D IV-OCT during percutaneous coronary interventions, potentially allowing treatments optimization. PMID:23243578
Fully automatic detection of deep white matter T1 hypointense lesions in multiple sclerosis
NASA Astrophysics Data System (ADS)
Spies, Lothar; Tewes, Anja; Suppa, Per; Opfer, Roland; Buchert, Ralph; Winkler, Gerhard; Raji, Alaleh
2013-12-01
A novel method is presented for fully automatic detection of candidate white matter (WM) T1 hypointense lesions in three-dimensional high-resolution T1-weighted magnetic resonance (MR) images. By definition, T1 hypointense lesions have similar intensity as gray matter (GM) and thus appear darker than surrounding normal WM in T1-weighted images. The novel method uses a standard classification algorithm to partition T1-weighted images into GM, WM and cerebrospinal fluid (CSF). As a consequence, T1 hypointense lesions are assigned an increased GM probability by the standard classification algorithm. The GM component image of a patient is then tested voxel-by-voxel against GM component images of a normative database of healthy individuals. Clusters (≥0.1 ml) of significantly increased GM density within a predefined mask of deep WM are defined as lesions. The performance of the algorithm was assessed on voxel level by a simulation study. A maximum dice similarity coefficient of 60% was found for a typical T1 lesion pattern with contrasts ranging from WM to cortical GM, indicating substantial agreement between ground truth and automatic detection. Retrospective application to 10 patients with multiple sclerosis demonstrated that 93 out of 96 T1 hypointense lesions were detected. On average 3.6 false positive T1 hypointense lesions per patient were found. The novel method is promising to support the detection of hypointense lesions in T1-weighted images which warrants further evaluation in larger patient samples.
Galindo, Enrique; Larralde-Corona, C Patricia; Brito, Teresa; Córdova-Aguilar, Ma Soledad; Taboada, Blanca; Vega-Alvarado, Leticia; Corkidi, Gabriel
2005-03-30
Fermentation bioprocesses typically involve two liquid phases (i.e. water and organic compounds) and one gas phase (air), together with suspended solids (i.e. biomass), which are the components to be dispersed. Characterization of multiphase dispersions is required as it determines mass transfer efficiency and bioreactor homogeneity. It is also needed for the appropriate design of contacting equipment, helping in establishing optimum operational conditions. This work describes the development of image analysis based techniques with advantages (in terms of data acquisition and processing), for the characterization of oil drops and bubble diameters in complex simulated fermentation broths. The system consists of fully digital acquisition of in situ images obtained from the inside of a mixing tank using a CCD camera synchronized with a stroboscopic light source, which are processed with a versatile commercial software. To improve the automation of particle recognition and counting, the Hough transform (HT) was used, so bubbles and oil drops were automatically detected and the processing time was reduced by 55% without losing accuracy with respect to a fully manual analysis. The system has been used for the detailed characterization of a number of operational conditions, including oil content, biomass morphology, presence of surfactants (such as proteins) and viscosity of the aqueous phase.
Mechatronic design of a fully integrated camera for mini-invasive surgery.
Zazzarini, C C; Patete, P; Baroni, G; Cerveri, P
2013-06-01
This paper describes the design features of an innovative fully integrated camera candidate for mini-invasive abdominal surgery with single port or transluminal access. The apparatus includes a CMOS imaging sensor, a light-emitting diode (LED)-based unit for scene illumination, a photodiode for luminance detection, an optical system designed according to the mechanical compensation paradigm, an actuation unit for enabling autofocus and optical zoom, and a control logics based on microcontroller. The bulk of the apparatus is characterized by a tubular shape with a diameter of 10 mm and a length of 35 mm. The optical system, composed of four lens groups, of which two are mobile, has a total length of 13.46 mm and an effective focal length ranging from 1.61 to 4.44 mm with a zoom factor of 2.75×, with a corresponding angular field of view ranging from 16° to 40°. The mechatronics unit, devoted to move the zoom and the focus lens groups, is implemented adopting miniature piezoelectric motors. The control logics implements a closed-loop mechanism, between the LEDs and photodiode, to attain automatic control light. Bottlenecks of the design and some potential issues of the realization are discussed. A potential clinical scenario is introduced.
33 CFR 401.20 - Automatic Identification System.
Code of Federal Regulations, 2010 CFR
2010-07-01
...' maritime Differential Global Positioning System radiobeacon services; or (7) The use of a temporary unit... Identification System. (a) Each of the following vessels must use an Automatic Identification System (AIS... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Automatic Identification System...
49 CFR 235.5 - Changes requiring filing of application.
Code of Federal Regulations, 2010 CFR
2010-10-01
... system, automatic train stop, train control, or cab signal system or other similar appliance or device..., automatic train stop, train control, or cab signal system; or (3) The modification of a block signal system, interlocking, traffic control system, automatic train stop, train control, or cab signal system. (b) [Reserved...
49 CFR 235.5 - Changes requiring filing of application.
Code of Federal Regulations, 2011 CFR
2011-10-01
... system, automatic train stop, train control, or cab signal system or other similar appliance or device..., automatic train stop, train control, or cab signal system; or (3) The modification of a block signal system, interlocking, traffic control system, automatic train stop, train control, or cab signal system. (b) [Reserved...
Fault-Tolerant Local-Area Network
NASA Technical Reports Server (NTRS)
Morales, Sergio; Friedman, Gary L.
1988-01-01
Local-area network (LAN) for computers prevents single-point failure from interrupting communication between nodes of network. Includes two complete cables, LAN 1 and LAN 2. Microprocessor-based slave switches link cables to network-node devices as work stations, print servers, and file servers. Slave switches respond to commands from master switch, connecting nodes to two cable networks or disconnecting them so they are completely isolated. System monitor and control computer (SMC) acts as gateway, allowing nodes on either cable to communicate with each other and ensuring that LAN 1 and LAN 2 are fully used when functioning properly. Network monitors and controls itself, automatically routes traffic for efficient use of resources, and isolates and corrects its own faults, with potential dramatic reduction in time out of service.
Measurement-Device-Independent Quantum Key Distribution over 200 km
NASA Astrophysics Data System (ADS)
Tang, Yan-Lin; Yin, Hua-Lei; Chen, Si-Jing; Liu, Yang; Zhang, Wei-Jun; Jiang, Xiao; Zhang, Lu; Wang, Jian; You, Li-Xing; Guan, Jian-Yu; Yang, Dong-Xu; Wang, Zhen; Liang, Hao; Zhang, Zhen; Zhou, Nan; Ma, Xiongfeng; Chen, Teng-Yun; Zhang, Qiang; Pan, Jian-Wei
2014-11-01
Measurement-device-independent quantum key distribution (MDIQKD) protocol is immune to all attacks on detection and guarantees the information-theoretical security even with imperfect single-photon detectors. Recently, several proof-of-principle demonstrations of MDIQKD have been achieved. Those experiments, although novel, are implemented through limited distance with a key rate less than 0.1 bit /s . Here, by developing a 75 MHz clock rate fully automatic and highly stable system and superconducting nanowire single-photon detectors with detection efficiencies of more than 40%, we extend the secure transmission distance of MDIQKD to 200 km and achieve a secure key rate 3 orders of magnitude higher. These results pave the way towards a quantum network with measurement-device-independent security.
An Automatic Image Processing Workflow for Daily Magnetic Resonance Imaging Quality Assurance.
Peltonen, Juha I; Mäkelä, Teemu; Sofiev, Alexey; Salli, Eero
2017-04-01
The performance of magnetic resonance imaging (MRI) equipment is typically monitored with a quality assurance (QA) program. The QA program includes various tests performed at regular intervals. Users may execute specific tests, e.g., daily, weekly, or monthly. The exact interval of these measurements varies according to the department policies, machine setup and usage, manufacturer's recommendations, and available resources. In our experience, a single image acquired before the first patient of the day offers a low effort and effective system check. When this daily QA check is repeated with identical imaging parameters and phantom setup, the data can be used to derive various time series of the scanner performance. However, daily QA with manual processing can quickly become laborious in a multi-scanner environment. Fully automated image analysis and results output can positively impact the QA process by decreasing reaction time, improving repeatability, and by offering novel performance evaluation methods. In this study, we have developed a daily MRI QA workflow that can measure multiple scanner performance parameters with minimal manual labor required. The daily QA system is built around a phantom image taken by the radiographers at the beginning of day. The image is acquired with a consistent phantom setup and standardized imaging parameters. Recorded parameters are processed into graphs available to everyone involved in the MRI QA process via a web-based interface. The presented automatic MRI QA system provides an efficient tool for following the short- and long-term stability of MRI scanners.
Aural mapping of STEM concepts using literature mining
NASA Astrophysics Data System (ADS)
Bharadwaj, Venkatesh
Recent technological applications have made the life of people too much dependent on Science, Technology, Engineering, and Mathematics (STEM) and its applications. Understanding basic level science is a must in order to use and contribute to this technological revolution. Science education in middle and high school levels however depends heavily on visual representations such as models, diagrams, figures, animations and presentations etc. This leaves visually impaired students with very few options to learn science and secure a career in STEM related areas. Recent experiments have shown that small aural clues called Audemes are helpful in understanding and memorization of science concepts among visually impaired students. Audemes are non-verbal sound translations of a science concept. In order to facilitate science concepts as Audemes, for visually impaired students, this thesis presents an automatic system for audeme generation from STEM textbooks. This thesis describes the systematic application of multiple Natural Language Processing tools and techniques, such as dependency parser, POS tagger, Information Retrieval algorithm, Semantic mapping of aural words, machine learning etc., to transform the science concept into a combination of atomic-sounds, thus forming an audeme. We present a rule based classification method for all STEM related concepts. This work also presents a novel way of mapping and extracting most related sounds for the words being used in textbook. Additionally, machine learning methods are used in the system to guarantee the customization of output according to a user's perception. The system being presented is robust, scalable, fully automatic and dynamically adaptable for audeme generation.
Automated target recognition and tracking using an optical pattern recognition neural network
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin
1991-01-01
The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.
Farhoud, Aidin; Erfanian, Abbas
2014-05-01
In this paper, a fully automatic robust control strategy is proposed for control of paraplegic pedaling using functional electrical stimulation (FES). The method is based on higher-order sliding mode (HOSM) control and fuzzy logic control. In FES, the strength of muscle contraction can be altered either by varying the pulse width (PW) or by the pulse amplitude (PA) of the stimulation signal. The proposed control strategy regulates simultaneously both PA and PW (i.e., PA/PW modulation). A HOSM controller is designed for regulating the PW and a fuzzy logic controller for the PA. The proposed control scheme is free-model and does not require any offline training phase and subject-specific information. Simulation studies on a virtual patient and experiments on three paraplegic subjects demonstrate good tracking performance and robustness of the proposed control strategy against muscle fatigue and external disturbances during FES-induced pedaling. The results of simulation studies show that the power and cadence tracking errors are 5.4% and 4.8%, respectively. The experimental results indicate that the proposed controller can improve pedaling system efficacy and increase the endurance of FES pedaling. The average of power tracking error over three paraplegic subjects is 7.4±1.4% using PA/PW modulation, while the tracking error is 10.2±1.2% when PW modulation is used. The subjects could pedal for 15 min with about 4.1% power loss at the end of experiment using proposed control strategy, while the power loss is 14.3% using PW modulation. The controller could adjust the stimulation intensity to compensate the muscle fatigue during long period of FES pedaling.