Intelligent error correction method applied on an active pixel sensor based star tracker
NASA Astrophysics Data System (ADS)
Schmidt, Uwe
2005-10-01
Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like geostationary telecom platforms.
Autonomous software: Myth or magic?
NASA Astrophysics Data System (ADS)
Allan, A.; Naylor, T.; Saunders, E. S.
2008-03-01
We discuss work by the eSTAR project which demonstrates a fully closed loop autonomous system for the follow up of possible micro-lensing anomalies. Not only are the initial micro-lensing detections followed up in real time, but ongoing events are prioritised and continually monitored, with the returned data being analysed automatically. If the ``smart software'' running the observing campaign detects a planet-like anomaly, further follow-up will be scheduled autonomously and other telescopes and telescope networks alerted to the possible planetary detection. We further discuss the implications of this, and how such projects can be used to build more general autonomous observing and control systems.
Opportunity Science Using the Juno Magnetometer Investigation Star Trackers
NASA Astrophysics Data System (ADS)
Joergensen, J. L.; Connerney, J. E.; Bang, A. M.; Denver, T.; Oliversen, R. J.; Benn, M.; Lawton, P.
2013-12-01
The magnetometer experiment onboard Juno is equipped with four non-magnetic star tracker camera heads, two of which reside on each of the magnetometer sensor optical benches. These are located 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. The star tracker, collectively referred to as the Advanced Stellar Compass (ASC), provides high accuracy attitude information for the magnetometer sensors throughout science operations. The star tracker camera heads are pointed +/- 13 deg off the spin vector, in the anti-sun direction, imaging a 13 x 20 deg field of view every ¼ second as Juno rotates at 1 or 2 rpm. The ASC is a fully autonomous star tracker, producing a time series of attitude quaternions for each camera head, utilizing a suite of internal support functions. These include imaging capabilities, autonomous object tracking, automatic dark-sky monitoring, and related capabilities; these internal functions may be accessed via telecommand. During Juno's cruise phase, this capability can be tapped to provide unique science and engineering data available along the Juno trajectory. We present a few examples of the JUNO ASC opportunity science here. As the Juno spacecraft approached the Earth-Moon system for the close encounter with the Earth on October 9, 2013, one of the ASC camera heads obtained imagery of the Earth-Moon system while the other three remained in full science (attitude determination) operation. This enabled the first movie of the Earth and Moon obtained by a spacecraft flying past the Earth in gravity assist. We also use the many artificial satellites in orbit about the Earth as calibration targets for the autonomous asteroid detection system inherent to the ASC autonomous star tracker. We shall also profile the zodiacal dust disk, using the interstellar image data, and present the outlook for small asteroid body detection and distribution being performed during Juno's passage from Earth flyby to Jovian orbit insertion.
Lost in space: Onboard star identification using CCD star tracker data without an a priori attitude
NASA Technical Reports Server (NTRS)
Ketchum, Eleanor A.; Tolson, Robert H.
1993-01-01
There are many algorithms in use today which determine spacecraft attitude by identifying stars in the field of view of a star tracker. Some methods, which date from the early 1960's, compare the angular separation between observed stars with a small catalog. In the last 10 years, several methods have been developed which speed up the process and reduce the amount of memory needed, a key element to onboard attitude determination. However, each of these methods require some a priori knowledge of the spacecraft attitude. Although the Sun and magnetic field generally provide the necessary coarse attitude information, there are occasions when a spacecraft could get lost when it is not prudent to wait for sunlight. Also, the possibility of efficient attitude determination using only the highly accurate CCD star tracker could lead to fully autonomous spacecraft attitude determination. The need for redundant coarse sensors could thus be eliminated at substantial cost reduction. Some groups have extended their algorithms to implement a computation intense full sky scan. Some require large data bases. Both storage and speed are concerns for autonomous onboard systems. Neural network technology is even being explored by some as a possible solution, but because of the limited number of patterns that can be stored and large overhead, nothing concrete has resulted from these efforts. This paper presents an algorithm which, by descretizing the sky and filtering by visual magnitude of the brightness observed star, speeds up the lost in space star identification process while reducing the amount of necessary onboard computer storage compared to existing techniques.
SED16 autonomous star tracker night sky testing
NASA Astrophysics Data System (ADS)
Foisneau, Thierry; Piriou, Véronique; Perrimon, Nicolas; Jacob, Philippe; Blarre, Ludovic; Vilaire, Didier
2017-11-01
The SED16 is an autonomous multi-missions star tracker which delivers three axis satellite attitude in an inertial reference frame and the satellite angular velocity with no prior information. The qualification process of this star sensor includes five validation steps using optical star simulator, digitized image simulator and a night sky tests setup. The night sky testing was the final step of the qualification process during which all the functions of the star tracker were used in almost nominal conditions : Autonomous Acquisition of the attitude, Autonomous Tracking of ten stars. These tests were performed in Calern in the premises of the OCA (Observatoire de la Cote d'Azur). The test set-up and the test results are described after a brief review of the sensor main characteristics and qualification process.
Baohua, Li; Wenjie, Lai; Yun, Chen; Zongming, Liu
2013-01-01
An autonomous navigation algorithm using the sensor that integrated the star sensor (FOV1) and ultraviolet earth sensor (FOV2) is presented. The star images are sampled by FOV1, and the ultraviolet earth images are sampled by the FOV2. The star identification algorithm and star tracking algorithm are executed at FOV1. Then, the optical axis direction of FOV1 at J2000.0 coordinate system is calculated. The ultraviolet image of earth is sampled by FOV2. The center vector of earth at FOV2 coordinate system is calculated with the coordinates of ultraviolet earth. The autonomous navigation data of satellite are calculated by integrated sensor with the optical axis direction of FOV1 and the center vector of earth from FOV2. The position accuracy of the autonomous navigation for satellite is improved from 1000 meters to 300 meters. And the velocity accuracy of the autonomous navigation for satellite is improved from 100 m/s to 20 m/s. At the same time, the period sine errors of the autonomous navigation for satellite are eliminated. The autonomous navigation for satellite with a sensor that integrated ultraviolet earth sensor and star sensor is well robust. PMID:24250261
Baohua, Li; Wenjie, Lai; Yun, Chen; Zongming, Liu
2013-01-01
An autonomous navigation algorithm using the sensor that integrated the star sensor (FOV1) and ultraviolet earth sensor (FOV2) is presented. The star images are sampled by FOV1, and the ultraviolet earth images are sampled by the FOV2. The star identification algorithm and star tracking algorithm are executed at FOV1. Then, the optical axis direction of FOV1 at J2000.0 coordinate system is calculated. The ultraviolet image of earth is sampled by FOV2. The center vector of earth at FOV2 coordinate system is calculated with the coordinates of ultraviolet earth. The autonomous navigation data of satellite are calculated by integrated sensor with the optical axis direction of FOV1 and the center vector of earth from FOV2. The position accuracy of the autonomous navigation for satellite is improved from 1000 meters to 300 meters. And the velocity accuracy of the autonomous navigation for satellite is improved from 100 m/s to 20 m/s. At the same time, the period sine errors of the autonomous navigation for satellite are eliminated. The autonomous navigation for satellite with a sensor that integrated ultraviolet earth sensor and star sensor is well robust.
The Busot Observatory: towards a robotic autonomous telescope
NASA Astrophysics Data System (ADS)
García-Lozano, R.; Rodes, J. J.; Torrejón, J. M.; Bernabéu, G.; Berná, J. Á.
2016-12-01
We describe the Busot observatory, our project of a fully robotic autonomous telescope. This astronomical observatory, which obtained the Minor Planet Centre code MPC-J02 in 2009, includes a 14 inch MEADE LX200GPS telescope, a 2 m dome, a ST8-XME CCD camera from SBIG, with an AO-8 adaptive optics system, and a filter wheel equipped with UBVRI system. We are also implementing a spectrograph SGS ST-8 for the telescope. Currently, we are involved in long term studies of variable sources such as X-ray binaries systems, and variable stars. In this work we also present the discovery of W UMa systems and its orbital periods derived from the photometry light curve obtained at Busot Observatory.
Ye, Tao; Zhou, Fuqiang
2015-04-10
When imaged by detectors, space targets (including satellites and debris) and background stars have similar point-spread functions, and both objects appear to change as detectors track targets. Therefore, traditional tracking methods cannot separate targets from stars and cannot directly recognize targets in 2D images. Consequently, we propose an autonomous space target recognition and tracking approach using a star sensor technique and a Kalman filter (KF). A two-step method for subpixel-scale detection of star objects (including stars and targets) is developed, and the combination of the star sensor technique and a KF is used to track targets. The experimental results show that the proposed method is adequate for autonomously recognizing and tracking space targets.
Yang, Yanqiang; Zhang, Chunxi; Lu, Jiazhen
2017-01-16
Strapdown inertial navigation system/celestial navigation system (SINS/CNS) integrated navigation is a fully autonomous and high precision method, which has been widely used to improve the hitting accuracy and quick reaction capability of near-Earth flight vehicles. The installation errors between SINS and star sensors have been one of the main factors that restrict the actual accuracy of SINS/CNS. In this paper, an integration algorithm based on the star vector observations is derived considering the star sensor installation error. Then, the star sensor installation error is accurately estimated based on Kalman Filtering (KF). Meanwhile, a local observability analysis is performed on the rank of observability matrix obtained via linearization observation equation, and the observable conditions are presented and validated. The number of star vectors should be greater than or equal to 2, and the times of posture adjustment also should be greater than or equal to 2. Simulations indicate that the star sensor installation error could be readily observable based on the maneuvering condition; moreover, the attitude errors of SINS are less than 7 arc-seconds. This analysis method and conclusion are useful in the ballistic trajectory design of near-Earth flight vehicles.
Opfermann, Justin D.; Leonard, Simon; Decker, Ryan S.; Uebele, Nicholas A.; Bayne, Christopher E.; Joshi, Arjun S.; Krieger, Axel
2017-01-01
This paper specifies a surgical robot performing semi-autonomous electrosurgery for tumor resection and evaluates its accuracy using a visual servoing paradigm. We describe the design and integration of a novel, multi-degree of freedom electrosurgical tool for the smart tissue autonomous robot (STAR). Standardized line tests are executed to determine ideal cut parameters in three different types of porcine tissue. STAR is then programmed with the ideal cut setting for porcine tissue and compared against expert surgeons using open and laparoscopic techniques in a line cutting task. We conclude with a proof of concept demonstration using STAR to semi-autonomously resect pseudo-tumors in porcine tissue using visual servoing. When tasked to excise tumors with a consistent 4mm margin, STAR can semi-autonomously dissect tissue with an average margin of 3.67 mm and a standard deviation of 0.89mm. PMID:29503760
Star Identification Without Attitude Knowledge: Testing with X-Ray Timing Experiment Data
NASA Technical Reports Server (NTRS)
Ketchum, Eleanor
1997-01-01
As the budget for the scientific exploration of space shrinks, the need for more autonomous spacecraft increases. For a spacecraft with a star tracker, the ability to determinate attitude from a lost in space state autonomously requires the capability to identify the stars in the field of view of the tracker. Although there have been efforts to produce autonomous star trackers which perform this function internally, many programs cannot afford these sensors. The author previously presented a method for identifying stars without a priori attitude knowledge specifically targeted for onboard computers as it minimizes the necessary computer storage. The method has previously been tested with simulated data. This paper provides results of star identification without a priori attitude knowledge using flight data from two 8 by 8 degree charge coupled device star trackers onboard the X-Ray Timing Experiment.
Galileo spacecraft autonomous attitude determination using a V-slit star scanner
NASA Technical Reports Server (NTRS)
Mobasser, Sohrab; Lin, Shuh-Ren
1991-01-01
The autonomous attitude determination system of Galileo spacecraft, consisting of a radiation hardened star scanner and a processing algorithm is presented. The algorithm applying to this system are the sequential star identification and attitude estimation. The star scanner model is reviewed in detail and the flight software parameters that must be updated frequently during flight, due to degradation of the scanner response and the star background change are identified.
Precision analysis of autonomous orbit determination using star sensor for Beidou MEO satellite
NASA Astrophysics Data System (ADS)
Shang, Lin; Chang, Jiachao; Zhang, Jun; Li, Guotong
2018-04-01
This paper focuses on the autonomous orbit determination accuracy of Beidou MEO satellite using the onboard observations of the star sensors and infrared horizon sensor. A polynomial fitting method is proposed to calibrate the periodic error in the observation of the infrared horizon sensor, which will greatly influence the accuracy of autonomous orbit determination. Test results show that the periodic error can be eliminated using the polynomial fitting method. The User Range Error (URE) of Beidou MEO satellite is less than 2 km using the observations of the star sensors and infrared horizon sensor for autonomous orbit determination. The error of the Right Ascension of Ascending Node (RAAN) is less than 60 μrad and the observations of star sensors can be used as a spatial basis for Beidou MEO navigation constellation.
Yang, Yanqiang; Zhang, Chunxi; Lu, Jiazhen
2017-01-01
Strapdown inertial navigation system/celestial navigation system (SINS/CNS) integrated navigation is a fully autonomous and high precision method, which has been widely used to improve the hitting accuracy and quick reaction capability of near-Earth flight vehicles. The installation errors between SINS and star sensors have been one of the main factors that restrict the actual accuracy of SINS/CNS. In this paper, an integration algorithm based on the star vector observations is derived considering the star sensor installation error. Then, the star sensor installation error is accurately estimated based on Kalman Filtering (KF). Meanwhile, a local observability analysis is performed on the rank of observability matrix obtained via linearization observation equation, and the observable conditions are presented and validated. The number of star vectors should be greater than or equal to 2, and the times of posture adjustment also should be greater than or equal to 2. Simulations indicate that the star sensor installation error could be readily observable based on the maneuvering condition; moreover, the attitude errors of SINS are less than 7 arc-seconds. This analysis method and conclusion are useful in the ballistic trajectory design of near-Earth flight vehicles. PMID:28275211
Autonomous star sensor ASTRO APS: flight experience on Alphasat
NASA Astrophysics Data System (ADS)
Schmidt, U.; Fiksel, T.; Kwiatkowski, A.; Steinbach, I.; Pradarutti, B.; Michel, K.; Benzi, E.
2015-06-01
Jena-Optronik GmbH, located in Jena/Germany, has profound experience in designing and manufacturing star trackers since the early 80s. Today the company has a worldwide leading position in supplying geo-stationary and Earth observation satellites with robust and reliable star tracker systems. In the first decade of the new century Jena-Optronik received a development contract (17317/2003/F/WE) from the European Space Agency to establish the technologically challenging elements for which advanced star tracker technologies as CMOS Active Pixel Sensors were being introduced or were considered strategic. This activity was performed in the frame of the Alphabus large platform pre-development lead by ESA and the industrial Joint Project Team consisting of Astrium (now Airbus Defence and Space), Thales Alenia Space and CNES (Centre national d'études spatiales). The new autonomous star tracker, ASTRO APS (Active Pixel Sensor), extends the Jena-Optronik A stro-series CCD-based star tracker products taken the full benefit of the CMOS APS technology. ASTRO APS is a fully autonomous compact star tracker carrying either the space-qualified radiation hard STAR1000 or the HAS2 APS detectors. The star tracker is one of four Technology Demonstration Payloads (TDP6) carried by Alphasat as hosted payload in the frame of a successful Private Public Partnership between ESA and Inmarsat who owns and operates the satellite as part of its geo-stationary communication satellites fleet. TDP6 supports also directly TDP1, a Laser Communication Terminal, for fine pointing tasks. Alphasat was flawlessly brought in orbit at the end of July 2013 by a European Ariane 5 launcher. Only a few hours after launch the star tracker received its switch ON command and acquired nominally within 6 s the inertial 3-axes attitude. In the following days of the early in-orbit operations of Alphasat the TDP6 unit tracked reliably all the spacecraft maneuvers including the 0.1 and 0.2°/s spin stabilization for Sun pointing, all of the apogee engine thrusts, Moon field of view transits and recovered to stable tracking after several Earth and Sun blindings before the spacecraft entered a preliminary Earth pointing in a nominal geo-stationary attitude. The Jena-Optronik TDP6 operation center received daily the star tracker status and attitude data. The huge amount of acquired raw data has been evaluated to characterize the ASTRO APS (STAR1000) star tracker in-orbit performance. The paper will present in detail these data processing activities and will show the extraordinary good results. Due to the diverse transfer orbit satellite operations the key performance star tracker data like attitude random noise, single star noise, star brightness measurement, baffle Sun exclusion angle, temperature control, etc., could be derived and have been compared to the ground based laboratory and field measurements. The ultimate performance parameters achieved and verified as well as the lessons learned from the comparison to the ground test data are summarized in the conclusion of the paper.
Autonomous Vehicle Operation A person can operate a fully autonomous vehicle with the automated federal motor vehicle safety standards and is registered as a fully autonomous vehicle. Other conditions
Autonomous Vehicle Regulations and Committee A fully autonomous vehicle is defined as a vehicle tactical control functions of the vehicle at any time.Effective December 1, 2017, the operator of a fully autonomous vehicle is not required to be licensed to operate a motor vehicle. A person may operate a fully
Autonomous formation flying sensor for the Star Light Mission
NASA Technical Reports Server (NTRS)
Aung, M.; Purcell, G.; Tien, J.; Young, L.; Srinivasan, J.; Ciminera, M. A.; Chong, Y. J.; Amaro, L. R.; Young, L. E.
2002-01-01
The StarLight Mission, an element of NASA's Origins Program, was designed for first-time demonstration of two technologies: formation flying optical interferometry between spacecraft and autonomous precise formation flying of an array of spacecraft to support optical interferometry. The design overview and results of the technology effort are presented in this paper.
Autonomous star tracker based on active pixel sensors (APS)
NASA Astrophysics Data System (ADS)
Schmidt, U.
2017-11-01
Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.
Turning a remotely controllable observatory into a fully autonomous system
NASA Astrophysics Data System (ADS)
Swindell, Scott; Johnson, Chris; Gabor, Paul; Zareba, Grzegorz; Kubánek, Petr; Prouza, Michael
2014-08-01
We describe a complex process needed to turn an existing, old, operational observatory - The Steward Observatory's 61" Kuiper Telescope - into a fully autonomous system, which observers without an observer. For this purpose, we employed RTS2,1 an open sourced, Linux based observatory control system, together with other open sourced programs and tools (GNU compilers, Python language for scripting, JQuery UI for Web user interface). This presentation provides a guide with time estimates needed for a newcomers to the field to handle such challenging tasks, as fully autonomous observatory operations.
NASA Astrophysics Data System (ADS)
Katake, Anup; Choi, Heeyoul
2010-01-01
To enable autonomous air-to-refueling of manned and unmanned vehicles a robust high speed relative navigation sensor capable of proving high accuracy 3DOF information in diverse operating conditions is required. To help address this problem, StarVision Technologies Inc. has been developing a compact, high update rate (100Hz), wide field-of-view (90deg) direction and range estimation imaging sensor called VisNAV 100. The sensor is fully autonomous requiring no communication from the tanker aircraft and contains high reliability embedded avionics to provide range, azimuth, elevation (3 degrees of freedom solution 3DOF) and closing speed relative to the tanker aircraft. The sensor is capable of providing 3DOF with an error of 1% in range and 0.1deg in azimuth/elevation up to a range of 30m and 1 deg error in direction for ranges up to 200m at 100Hz update rates. In this paper we will discuss the algorithms that were developed in-house to enable robust beacon pattern detection, outlier rejection and 3DOF estimation in adverse conditions and present the results of several outdoor tests. Results from the long range single beacon detection tests will also be discussed.
An Autonomous Star Identification Algorithm Based on One-Dimensional Vector Pattern for Star Sensors
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-01-01
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms. PMID:26198233
Luo, Liyan; Xu, Luping; Zhang, Hua
2015-07-07
In order to enhance the robustness and accelerate the recognition speed of star identification, an autonomous star identification algorithm for star sensors is proposed based on the one-dimensional vector pattern (one_DVP). In the proposed algorithm, the space geometry information of the observed stars is used to form the one-dimensional vector pattern of the observed star. The one-dimensional vector pattern of the same observed star remains unchanged when the stellar image rotates, so the problem of star identification is simplified as the comparison of the two feature vectors. The one-dimensional vector pattern is adopted to build the feature vector of the star pattern, which makes it possible to identify the observed stars robustly. The characteristics of the feature vector and the proposed search strategy for the matching pattern make it possible to achieve the recognition result as quickly as possible. The simulation results demonstrate that the proposed algorithm can effectively accelerate the star identification. Moreover, the recognition accuracy and robustness by the proposed algorithm are better than those by the pyramid algorithm, the modified grid algorithm, and the LPT algorithm. The theoretical analysis and experimental results show that the proposed algorithm outperforms the other three star identification algorithms.
Design considerations for imaging charge-coupled device
NASA Astrophysics Data System (ADS)
1981-04-01
The image dissector tube, which was formerly used as detector in star trackers, will be replaced by solid state imaging devices. The technology advances of charge transfer devices, like the charge-coupled device (CCD) and the charge-injection device (CID) have made their application to star trackers an immediate reality. The Air Force in 1979 funded an American Aerospace company to develop an imaging CCD (ICCD) star sensor for the Multimission Attitude Determination and Autonomous Navigation (MADAN) system. The MADAN system is a technology development for a strapdown attitude and navigation system which can be used on all Air Force 3-axis stabilized satellites. The system will be autonomous and will provide real-time satellite attitude and position information. The star sensor accuracy provides an overall MADAN attitude accuracy of 2 arcsec for star rates up to 300 arcsec/sec. The ICCD is basically an integrating device. Its pixel resolution in not yet satisfactory for precision applications.
Autonomous satellite navigation using starlight refraction angle measurements
NASA Astrophysics Data System (ADS)
Ning, Xiaolin; Wang, Longhua; Bai, Xinbei; Fang, Jiancheng
2013-05-01
An on-board autonomous navigation capability is required to reduce the operation costs and enhance the navigation performance of future satellites. Autonomous navigation by stellar refraction is a type of autonomous celestial navigation method that uses high-accuracy star sensors instead of Earth sensors to provide information regarding Earth's horizon. In previous studies, the refraction apparent height has typically been used for such navigation. However, the apparent height cannot be measured directly by a star sensor and can only be calculated by the refraction angle and an atmospheric refraction model. Therefore, additional errors are introduced by the uncertainty and nonlinearity of atmospheric refraction models, which result in reduced navigation accuracy and reliability. A new navigation method based on the direct measurement of the refraction angle is proposed to solve this problem. Techniques for the determination of the refraction angle are introduced, and a measurement model for the refraction angle is established. The method is tested and validated by simulations. When the starlight refraction height ranges from 20 to 50 km, a positioning accuracy of better than 100 m can be achieved for a low-Earth-orbit (LEO) satellite using the refraction angle, while the positioning accuracy of the traditional method using the apparent height is worse than 500 m under the same conditions. Furthermore, an analysis of the factors that affect navigation accuracy, including the measurement accuracy of the refraction angle, the number of visible refracted stars per orbit and the installation azimuth of star sensor, is presented. This method is highly recommended for small satellites in particular, as no additional hardware besides two star sensors is required.
Solar-type dynamo behaviour in fully convective stars without a tachocline.
Wright, Nicholas J; Drake, Jeremy J
2016-07-28
In solar-type stars (with radiative cores and convective envelopes like our Sun), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in solar-type stars. As the X-ray activity-rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dynamo. The lack of a tachocline in fully convective stars therefore suggests that this is not a critical ingredient in the solar dynamo and supports models in which the dynamo originates throughout the convection zone.
Innovation Talk at TARDEC by Dr. Tulga Ersal
problems of teleoperation and fully autonomous operation of large Unmanned Ground Vehicles (UGVs) at high wide spectrum in their mode of operation ranging from teleoperated, in which the remote human operator implementable solution. High speeds also present a challenge to fully autonomous operation with respect to
Autonomous Learning through Task-Based Instruction in Fully Online Language Courses
ERIC Educational Resources Information Center
Lee, Lina
2016-01-01
This study investigated the affordances for autonomous learning in a fully online learning environment involving the implementation of task-based instruction in conjunction with Web 2.0 technologies. To that end, four-skill-integrated tasks and digital tools were incorporated into the coursework. Data were collected using midterm reflections,…
Analysis of autonomous vehicle policies.
DOT National Transportation Integrated Search
2017-01-01
The rapid development and adoption of connected and autonomous vehicles will transform the U.S. transportation system over the next 30 years. Although the widespread use of fully connected and autonomous vehicles is still several years away, it is no...
The Joint Tactical Aerial Resupply Vehicle Impact on Sustainment Operations
2017-06-09
Artificial Intelligence , Sustainment Operations, Rifle Company, Autonomous Aerial Resupply, Joint Tactical Autonomous Aerial Resupply System 16...Integrations and Development System AI Artificial Intelligence ARCIC Army Capabilities Integration Center ARDEC Armament Research, Development and...semi- autonomous systems, and fully autonomous systems. Autonomy of machines depends on sophisticated software, including Artificial Intelligence
Hydra multiple head star sensor and its in-flight self-calibration of optical heads alignment
NASA Astrophysics Data System (ADS)
Majewski, L.; Blarre, L.; Perrimon, N.; Kocher, Y.; Martinez, P. E.; Dussy, S.
2017-11-01
HYDRA is EADS SODERN new product line of APS-based autonomous star trackers. The baseline is a multiple head sensor made of three separated optical heads and one electronic unit. Actually the concept which was chosen offers more than three single-head star trackers working independently. Since HYDRA merges all fields of view the result is a more accurate, more robust and completely autonomous multiple-head sensor, releasing the AOCS from the need to manage the outputs of independent single-head star trackers. Specific to the multiple head architecture and the underlying data fusion, is the calibration of the relative alignments between the sensor optical heads. The performance of the sensor is related to its estimation of such alignments. HYDRA design is first reminded in this paper along with simplification it can bring at system level (AOCS). Then self-calibration of optical heads alignment is highlighted through descriptions and simulation results, thus demonstrating the performances of a key part of HYDRA multiple-head concept.
ARAGO: a robotic observatrory for the variable sky
NASA Astrophysics Data System (ADS)
Boer, Michel; Acker, Agnes; Atteia, Jean-Luc; Buchholtz, Gilles; Colas, Francois; Deleuil, Magali; Dennefeld, Michel; Desert, Jean-Michel; Dolez, Noel; Eysseric, J.; Ferlet, Roger; Ferrari, Marc; Jean, Pierre; Klotz, Alain; Kouach, Driss; Lecavelier des Etangs, Alain; Lemaitre, Gerard R.; Marcowith, Alexandre; Marquette, Jean-Babtiste; Meunier, Jean-Pierre; Mochkovitch, Robert; Pain, Reynald; Pares, Laurent; Pinna, Henri; Pinna, Roger; Provost, Lionel; Roques, Sylvie; Schneider, Jean; Sivan, Jean-Pierre; Soubiran, Caroline; Thiebaut, Carole; Vauclair, Gerard; Verchere, Richard; Vidal-Madjar, Alfred
2002-12-01
We present the Advanced Robotic Agile Observatory (ARAGO), a project for a large variability survey of the sky, in the range 10-8Hz (year) to 1Hz. Among its scientific objectives are the detection of cosmic gamma-ray bursts, both on alert and serendipitously, orphan afterglows, extrasolar planets, AGNs, quasar microlensing, variable and flare stars, trans-neptunian asteroids, Earth-grazers, orbital debris, etc. A large Education and Public Outreach program will be an important part of the project. The telescope itself will be made of Silicon Carbide, allowing, among other advantages, a very light weight and agile capabilities. ARAGO will be fully autonomous, i.e. there will be no human intervention from the request to the data processing and result dissemination, nor to assist night or day operations. ARAGO will start routine observation by mid-2005.
MAGNETIC CYCLES IN A DYNAMO SIMULATION OF FULLY CONVECTIVE M-STAR PROXIMA CENTAURI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rakesh K.; Wolk, Scott J.; Christensen, Ulrich R.
2016-12-20
The recent discovery of an Earth-like exoplanet around Proxima Centauri has shined a spot light on slowly rotating fully convective M-stars. When such stars rotate rapidly (period ≲20 days), they are known to generate very high levels of activity that is powered by a magnetic field much stronger than the solar magnetic field. Recent theoretical efforts are beginning to understand the dynamo process that generates such strong magnetic fields. However, the observational and theoretical landscape remains relatively uncharted for fully convective M-stars that rotate slowly. Here, we present an anelastic dynamo simulation designed to mimic some of the physical characteristicsmore » of Proxima Centauri, a representative case for slowly rotating fully convective M-stars. The rotating convection spontaneously generates differential rotation in the convection zone that drives coherent magnetic cycles where the axisymmetric magnetic field repeatedly changes polarity at all latitudes as time progress. The typical length of the “activity” cycle in the simulation is about nine years, in good agreement with the recently proposed activity cycle length of about seven years for Proxima Centauri. Comparing our results with earlier work, we hypothesis that the dynamo mechanism undergoes a fundamental change in nature as fully convective stars spin down with age.« less
True-sky demonstration of an autonomous star tracker
NASA Astrophysics Data System (ADS)
van Bezooijen, Roelof W.
1994-07-01
An autonomous star tracker (AST) is basically a `star field in, attitude out' device capable of determining its attitude without requiring any a priori attitude knowledge. In addition to this attitude acquisition capability, an AST can perform attitude updates autonomously and is able to provide its attitude `continuously' while tracking a star field. The Lockheed Palo Alto Research Laboratory is developing a reliable, low-cost, miniature AST that has a one arcsec overall accuracy, weighs less than 1.5 kg, consumes less than 7 watts of power, and is sufficiently sensitive to be used at all sky locations. The device performs attitude acquisition in a fraction of a second and outputs its attitude at a 10 Hz rate when operating in its tracking mode. Besides providing the functionality needed for future advanced attitude control and navigation systems, an AST also improves spacecraft reliability, mass, power, cost, and operating expenses. The AST comprises a-thermalized, refractive optics, a frame-transfer CCD with a sensitive area of 1024 by 1024 pixels, camera electronics implemented with application- specific integrated circuits, a compact single board computer with a radiation hard 32 bit RISC processor, and an all-sky guide star database. Star identification is performed by a memory- efficient and highly robust algorithm that finds the largest group of observed stars matching a group of guide stars. An important milestone has recently been achieved with the validation of the attitude acquisition capability through correct and rapid identification of all 704 true-sky star fields obtained at the Lick Observatory, using an uncalibrated prototype AST with a 512 by 1024 pixel frame-transfer CCD and a 50 mm f/1.2 lens that provided an effective 6.5 by 13.2 degree field of view. The overlapping fields cover 47% of the sky, including both rich and sparse areas. The paper contains a description of the AST, a summary of the functions enabled or improved by the device, an overview of the identification algorithm, results obtained with a realistic simulation program, a description of the true-sky star field identification method and a presentation of the results obtained. The AST tolerates the presence of bright objects as was demonstrated by a field that included Jupiter.
Small Body Exploration Technologies as Precursors for Interstellar Robotics
NASA Astrophysics Data System (ADS)
Noble, R. J.; Sykes, M. V.
The scientific activities undertaken to explore our Solar System will be very similar to those required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution, as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of the technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.
Small Body Exploration Technologies as Precursors for Interstellar Robotics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Robert; /SLAC; Sykes, Mark V.
The scientific activities undertaken to explore our Solar System will be the same as required someday at other stars. The systematic exploration of primitive small bodies throughout our Solar System requires new technologies for autonomous robotic spacecraft. These diverse celestial bodies contain clues to the early stages of the Solar System's evolution as well as information about the origin and transport of water-rich and organic material, the essential building blocks for life. They will be among the first objects studied at distant star systems. The technologies developed to address small body and outer planet exploration will form much of themore » technical basis for designing interstellar robotic explorers. The Small Bodies Assessment Group, which reports to NASA, initiated a Technology Forum in 2011 that brought together scientists and technologists to discuss the needs and opportunities for small body robotic exploration in the Solar System. Presentations and discussions occurred in the areas of mission and spacecraft design, electric power, propulsion, avionics, communications, autonomous navigation, remote sensing and surface instruments, sampling, intelligent event recognition, and command and sequencing software. In this paper, the major technology themes from the Technology Forum are reviewed, and suggestions are made for developments that will have the largest impact on realizing autonomous robotic vehicles capable of exploring other star systems.« less
STARS: a software application for the EBEX autonomous daytime star cameras
NASA Astrophysics Data System (ADS)
Chapman, Daniel; Didier, Joy; Hanany, Shaul; Hillbrand, Seth; Limon, Michele; Miller, Amber; Reichborn-Kjennerud, Britt; Tucker, Greg; Vinokurov, Yury
2014-07-01
The E and B Experiment (EBEX) is a balloon-borne telescope designed to probe polarization signals in the CMB resulting from primordial gravitational waves, gravitational lensing, and Galactic dust emission. EBEX completed an 11 day flight over Antarctica in January 2013 and data analysis is underway. EBEX employs two star cameras to achieve its real-time and post-flight pointing requirements. We wrote a software application called STARS to operate, command, and collect data from each of the star cameras, and to interface them with the main flight computer. We paid special attention to make the software robust against potential in-flight failures. We report on the implementation, testing, and successful in flight performance of STARS.
Simultaneous Planning and Control for Autonomous Ground Vehicles
2009-02-01
these applications is called A * ( A -star), and it was originally developed by Hart, Nilsson, and Raphael [HAR68]. Their research presented the formal...sequence, rather than a dynamic programming approach. A * search is a technique originally developed for Artificial Intelligence 43 applications ... developed at the Center for Intelligent Machines and Robotics, serves as a platform for the implementation and testing discussed. autonomous
NASA Technical Reports Server (NTRS)
Fuchs, A. J. (Editor)
1979-01-01
Onboard and real time image processing to enhance geometric correction of the data is discussed with application to autonomous navigation and attitude and orbit determination. Specific topics covered include: (1) LANDSAT landmark data; (2) star sensing and pattern recognition; (3) filtering algorithms for Global Positioning System; and (4) determining orbital elements for geostationary satellites.
NASA Astrophysics Data System (ADS)
Durst, Phillip J.; Gray, Wendell; Trentini, Michael
2013-05-01
A simple, quantitative measure for encapsulating the autonomous capabilities of unmanned systems (UMS) has yet to be established. Current models for measuring a UMS's autonomy level require extensive, operational level testing, and provide a means for assessing the autonomy level for a specific mission/task and operational environment. A more elegant technique for quantifying autonomy using component level testing of the robot platform alone, outside of mission and environment contexts, is desirable. Using a high level framework for UMS architectures, such a model for determining a level of autonomy has been developed. The model uses a combination of developmental and component level testing for each aspect of the UMS architecture to define a non-contextual autonomous potential (NCAP). The NCAP provides an autonomy level, ranging from fully non- autonomous to fully autonomous, in the form of a single numeric parameter describing the UMS's performance capabilities when operating at that level of autonomy.
A triangle voting algorithm based on double feature constraints for star sensors
NASA Astrophysics Data System (ADS)
Fan, Qiaoyun; Zhong, Xuyang
2018-02-01
A novel autonomous star identification algorithm is presented in this study. In the proposed algorithm, each sensor star constructs multi-triangle with its bright neighbor stars and obtains its candidates by triangle voting process, in which the triangle is considered as the basic voting element. In order to accelerate the speed of this algorithm and reduce the required memory for star database, feature extraction is carried out to reduce the dimension of triangles and each triangle is described by its base and height. During the identification period, the voting scheme based on double feature constraints is proposed to implement triangle voting. This scheme guarantees that only the catalog star satisfying two features can vote for the sensor star, which improves the robustness towards false stars. The simulation and real star image test demonstrate that compared with the other two algorithms, the proposed algorithm is more robust towards position noise, magnitude noise and false stars.
NASA Astrophysics Data System (ADS)
McCandliss, Stephan R.; Fleming, Brian; Kaiser, Mary Elizabeth; Kruk, Jeffrey; Feldman, Paul D.; Kutyrev, Alexander S.; Li, Mary J.; Goodwin, Phillip A.; Rapchun, David; Lyness, Eric; Brown, Ari D.; Moseley, Harvey; Siegmund, Oswald; Vallerga, John
2010-07-01
The Johns Hopkins University sounding rocket group is building the Far-ultraviolet Off Rowland-circle Telescope for Imaging and Spectroscopy (FORTIS), which is a Gregorian telescope with rulings on the secondary mirror. FORTIS will be launched on a sounding rocket from White Sand Missile Range to study the relationship between Lyman alpha escape and the local gas-to-dust ratio in star forming galaxies with non-zero redshifts. It is designed to acquire images of a 30' x 30' field and provide fully redundant "on-the-fly" spectral acquisition of 43 separate targets in the field with a bandpass of 900 - 1800 Angstroms. FORTIS is an enabling scientific and technical activity for future cutting edge far- and near-uv survey missions seeking to: search for Lyman continuum radiation leaking from star forming galaxies, determine the epoch of He II reionization and characterize baryon acoustic oscillations using the Lyman forest. In addition to the high efficiency "two bounce" dual-order spectro-telescope design, FORTIS incorporates a number of innovative technologies including: an image dissecting microshutter array developed by GSFC; a large area (~ 45 mm x 170 mm) microchannel plate detector with central imaging and "outrigger" spectral channels provided by Sensor Sciences; and an autonomous targeting microprocessor incorporating commercially available field programable gate arrays. We discuss progress to date in developing our pathfinder instrument.
DOT National Transportation Integrated Search
2014-08-01
Fully automated or autonomous vehicles (AVs) hold great promise for the future of transportation. By 2020 : Google, auto manufacturers and other technology providers intend to introduce self-driving cars to the public with : either limited or fully a...
Space experiments on basic technologies for a space elevator using microsatellites
NASA Astrophysics Data System (ADS)
Yamagiwa, Yoshiki; Nohmi, Masahiro; Aoki, Yoshio; Momonoi, Yu; Nanba, Hirotaka; Aiga, Masanori; Kumao, Takeru; Watahiki, Masahito
2017-09-01
We attempt to verify two basic technologies required for a space elevator using microsatellites; the tether (cable) deployment technology and the climber operation along the tether in space. Tether deployment is performed by a CubeSat called STARS-C (Space Tethered Autonomous Robotic Satellite - Cube) which will be released from the Japanese experimental module Kibo on ISS early in 2017. STARS-C consists of a mother satellite (MS) and daughter satellite (DS) connected by a 100-m tether. Its mission is focused on the tether deployment for studying the tether dynamics during the deployment with the goal of improving the smoothness of such deployment in future tether missions including space elevator. The MS and DS have common subsystems, including power, communication, and command and data handling systems. They also have a tether unit with spool and reel mechanisms as a mission system. In addition, we have been designing the next-step microsatellite called STARS-E (Space Tethered Autonomous Robotic Satellite - Elevator) under a Grant-in-Aid for Scientific Research. STARS-E is a 500-mm size satellite intended to verify the climber operation in space. It consists of a MS and DS jointed by a 2-km tether, and a climber that moves along the tether. STARS-C was launched on December 9 in 2016 and will be performed its mission early in 2017. STARS-E is in the BBM phase, and some designs are currently being fixed.
Lai, Ying-Chih; Deng, Jianan; Niu, Simiao; Peng, Wenbo; Wu, Changsheng; Liu, Ruiyuan; Wen, Zhen; Wang, Zhong Lin
2016-12-01
Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator is demonstrated for the first time by using triboelectric effect. This newly designed nanogenerator can produce electricity by touch or tapping despite under various extreme mechanical deformations or even after experiencing damage. This device can be used not only as deformable and wearable power source but also as fully autonomous and self-sufficient adaptive electronic skin system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Autonomous optical navigation using nanosatellite-class instruments: a Mars approach case study
NASA Astrophysics Data System (ADS)
Enright, John; Jovanovic, Ilija; Kazemi, Laila; Zhang, Harry; Dzamba, Tom
2018-02-01
This paper examines the effectiveness of small star trackers for orbital estimation. Autonomous optical navigation has been used for some time to provide local estimates of orbital parameters during close approach to celestial bodies. These techniques have been used extensively on spacecraft dating back to the Voyager missions, but often rely on long exposures and large instrument apertures. Using a hyperbolic Mars approach as a reference mission, we present an EKF-based navigation filter suitable for nanosatellite missions. Observations of Mars and its moons allow the estimator to correct initial errors in both position and velocity. Our results show that nanosatellite-class star trackers can produce good quality navigation solutions with low position (<300 {m}) and velocity (<0.15 {m/s}) errors as the spacecraft approaches periapse.
GOATS 2008: Autonomous, Adaptive Multistatic Acoustic Sensing
2010-09-30
carried out jointly with the NATO Undersea Research Centre in the Tuscan archipelago July 26 – August 16, 2010. MIT operated the Unicorn AUV and...4 trail behavior with the physical Unicorn AUV, and is accidentally passing close the R/V Leonardo, fully autonomously changing its depth from...vehicles. The AUV Unicorn is performing an adaptive thermocline mapping mission, with the vehicle trail shown in green. Note the autonomous collision
NASA Astrophysics Data System (ADS)
Kozłowski, S. K.; Sybilski, P. W.; Konacki, M.; Pawłaszek, R. K.; Ratajczak, M.; Hełminiak, K. G.; Litwicki, M.
2017-10-01
We present the design and commissioning of Project Solaris, a global network of autonomous observatories. Solaris is a Polish scientific undertaking aimed at the detection and characterization of circumbinary exoplanets and eclipsing binary stars. To accomplish this, a network of four fully autonomous observatories has been deployed in the Southern Hemisphere: Solaris-1 and Solaris-2 in the South African Astronomical Observatory in South Africa; Solaris-3 in Siding Spring Observatory in Australia; and Solaris-4 in Complejo Astronomico El Leoncito in Argentina. The four stations are nearly identical and are equipped with 0.5-m Ritchey-Crétien (f/15) or Cassegrain (f/9, Solaris-3) optics and high-grade 2 K × 2 K CCD cameras with Johnson and Sloan filter sets. We present the design and implementation of low-level security; data logging and notification systems; weather monitoring components; all-sky vision system, surveillance system; and distributed temperature and humidity sensors. We describe dedicated grounding and lighting protection system design and robust fiber data transfer interfaces in electrically demanding conditions. We discuss the outcomes of our design, as well as the resulting software engineering requirements. We describe our system’s engineering approach to achieve the required level of autonomy, the architecture of the custom high-level industry-grade software that has been designed and implemented specifically for the use of the network. We present the actual status of the project and first photometric results; these include data and models of already studied systems for benchmarking purposes (Wasp-4b, Wasp-64b, and Wasp-98b transits, PG 1663-018, an eclipsing binary with a pulsator) as well J024946-3825.6, an interesting low-mass binary system for which a complete model is provided for the first time.
Castro-Diehl, Cecilia; Diez Roux, Ana V.; Redline, Susan; Seeman, Teresa; McKinley, Paula; Sloan, Richard; Shea, Steven
2016-01-01
Study Objectives: Short sleep duration and poor sleep quality are associated with adverse cardiovascular outcomes. Potential pathophysiological mechanisms include sleep-associated alterations in the autonomic nervous system. The objective of this study was to examine the associations of shorter sleep duration and poorer sleep quality with markers of autonomic tone: heart rate (HR), high-frequency HR variability (HF-HRV) and salivary amylase. Methods: Cross-sectional analysis of data from actigraphy-based measures of sleep duration and efficiency and responses to a challenge protocol obtained from 527 adult participants in the Multi-Ethnic Study of Atherosclerosis. Results: Participants who slept fewer than 6 h per night (compared to those who slept 7 h or more per night) had higher baseline HR (fully adjusted model 0.05 log beats/min, 95% confidence interval [CI] 0.01, 0.09) and greater HR orthostatic reactivity (fully adjusted model 0.02 log beats/min, 95% CI 0.002, 0.023). Participants who slept 6 to less than 7 h/night (compared to those who slept 7 h or more per night) had lower baseline HF-HRV (fully adjusted model −0.31 log msec2, 95% CI −0.60, −0.14). Participants with low sleep efficiency had lower baseline HF-HRV than those with higher sleep efficiency (fully adjusted model −0.59 log msec2, 95% CI −1.03, −0.15). Participants with low sleep efficiency had higher baseline levels of amylase than those with higher sleep efficiency (fully adjusted model 0.45 log U/mL, 95% CI 0.04, 0.86). Conclusions: Short sleep duration, low sleep efficiency, and insomnia combined with short sleep duration were associated with markers of autonomic tone that indicate lower levels of cardiac parasympathetic (vagal) tone and/or higher levels of sympathetic tone. Citation: Castro-Diehl C, Roux AV, Redline S, Seeman T, McKinley P, Sloan R, Shea S. Sleep duration and quality in relation to autonomic nervous system measures: the Multi-Ethnic Study of Atherosclerosis (MESA). SLEEP 2016;39(11):1927–1940. PMID:27568797
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP13-531-000] Southern Star..., 2013, Southern Star Central Gas Pipeline, Inc. (Southern Star), 4700 Highway 56, Owensboro, Kentucky.... Southern Star's prior notice request is more fully set forth in the application, which is on file with the...
Autonomous satellite navigation by stellar refraction
NASA Technical Reports Server (NTRS)
Gounley, R.; White, R.; Gai, E.
1983-01-01
This paper describes an error analysis of an autonomous navigator using refraction measurements of starlight passing through the upper atmosphere. The analysis is based on a discrete linear Kalman filter. The filter generated steady-state values of navigator performance for a variety of test cases. Results of these simulations show that in low-earth orbit position-error standard deviations of less than 0.100 km may be obtained using only 40 star sightings per orbit.
Modelling the dynamo in fully convective M-stars
NASA Astrophysics Data System (ADS)
Yadav, Rakesh Kumar; Christensen, Ulrich; Morin, Julien; Wolk, Scott; Poppenhaeger, Katja; Reiners, Ansgar; gastine, Thomas
2017-05-01
M-stars are among the most active and numerous stars in our galaxy. Their activity plays a fundamentally important role in shaping the exoplanetary biosphere since the habitable zones are very close to these stars. Therefore, modeling M-star activity has become a focal point in habitability studies. The fully convective members of the M-star population demand more immediate attention due to the discovery of Earth-like exoplanets around our stellar neighbors Proxima Centauri and TRAPPIST-1 which are both fully convective. The activity of these stars is driven by their convective dynamo, which may be fundamentally different from the solar dynamo due the absence of radiative cores. We model this dynamo mechanism using high-resolution 3D anelastic MHD simulations. To understand the evolution of the dynamo mechanism we simulate two cases, one with a fast enough rotation period to model a star in the `saturated' regime of the rotation-activity realtionship and the other with a slower period to represent cases in the `unsaturated' regime. We find the rotation period fundamentally controls the behavior of the dynamo solution: faster rotation promotes strong magnetic fields (of order kG) on both small and large length scales and the dipolar component of the magnetic field is dominant and stable, however, slower rotation leads to weaker magnetic fields which exhibit cyclic behavior. In this talk, I will present the simulation results and discuss how we can use them to interpret several observed features of the M-star activity.
Conditions for Fully Autonomous Anticipation
NASA Astrophysics Data System (ADS)
Collier, John
2006-06-01
Anticipation allows a system to adapt to conditions that have not yet come to be, either externally to the system or internally. Autonomous systems actively control the conditions of their own existence so as to increase their overall viability. This paper will first give minimal necessary and sufficient conditions for autonomous anticipation, followed by a taxonomy of autonomous anticipation. In more complex systems, there can be semi-autonomous subsystems that can anticipate and adapt on their own. Such subsystems can be integrated into a system's overall autonomy, typically with greater efficiency due to modularity and specialization of function. However, it is also possible that semi-autonomous subsystems can act against the viability of the overall system, and have their own functions that conflict with overall system functions.
Results of NASA's First Autonomous Formation Flying Experiment: Earth Observing-1 (EO-1)
NASA Technical Reports Server (NTRS)
Folta, David C.; Hawkins, Albin; Bauer, Frank H. (Technical Monitor)
2001-01-01
NASA's first autonomous formation flying mission completed its primary goal of demonstrating an advanced technology called enhanced formation flying. To enable this technology, the Guidance, Navigation, and Control center at the Goddard Space Flight Center (GSFC) implemented a universal 3-axis formation flying algorithm in an autonomous executive flight code onboard the New Millennium Program's (NMP) Earth Observing-1 (EO-1) spacecraft. This paper describes the mathematical background of the autonomous formation flying algorithm and the onboard flight design and presents the validation results of this unique system. Results from functionality assessment through fully autonomous maneuver control are presented as comparisons between the onboard EO-1 operational autonomous control system called AutoCon(tm), its ground-based predecessor, and a standalone algorithm.
An Integrated Performance-Based Budgeting Model for Thai Higher Education
ERIC Educational Resources Information Center
Charoenkul, Nantarat; Siribanpitak, Pruet
2012-01-01
This research mainly aims to develop an administrative model of performance-based budgeting for autonomous state universities. The sample population in this study covers 4 representatives of autonomous state universities from 4 regions of Thailand, where the performance-based budgeting system has been fully practiced. The research informants…
A history of the autonomic nervous system: part I: from Galen to Bichat.
Oakes, Peter C; Fisahn, Christian; Iwanaga, Joe; DiLorenzo, Daniel; Oskouian, Rod J; Tubbs, R Shane
2016-12-01
The development of our current understanding of the autonomic nervous system has a rich history with many international contributors. Although our thoughts of an autonomic nervous system arose with the Greeks, the evolution and final understanding of this neural network would not be fully realized until centuries later. Therefore, our current knowledge of this system is based on hundreds of years of hypotheses and testing and was contributed to by many historic figures.
NASA Astrophysics Data System (ADS)
Albin, Edward
2018-01-01
We report on the American Public University System’s new robotic telescope, located in Charles Town, WV -- an innovative observatory deployed in an online institution of higher education. The instrument is operated by the Department of Space Studies and is situated atop the university’s new Information Technology building. At the heart of the observatory is a Planewave CDK24 telescope, equipped with a SBIG STX-16803 CCD camera. The telescope is a key technological component in the Department's new undergraduate / graduate astronomy concentration. Since the university is a dedicated online educational institution, the acquisition of a fully remote controlled telescope ties closely into the program's philosophy of quality online instruction. Our robotic observatory is intimately integrated into our astronomy curriculum, with the telescope being utilized for original astronomical education and research purposes. For instance, not only is imagery used in the classroom and for laboratory instruction, graduate students in our MS degree program have an opportunity to collect original telescopic data for research / thesis projects. Examples of ongoing investigations with the telescope include observations of exoplanet transits and variable star photometry. When not in use for specific observing projects, the telescope is scripted to conduct autonomous supernova searches by patrolling dozens of galaxies throughout the night. Our goal is to have the instrument scheduled for continuous observing of the heavens throughout the year on all clear evenings.
NASA Astrophysics Data System (ADS)
Sainsbury-Martinez, Felix; Browning, Matthew; Miesch, Mark; Featherstone, Nicholas A.
2018-01-01
Low-Mass stars are typically fully convective, and as such their dynamics may differ significantly from sun-like stars. Here we present a series of 3D anelastic HD and MHD simulations of fully convective stars, designed to investigate how the meridional circulation, the differential rotation, and residual entropy are affected by both varying stellar parameters, such as the luminosity or the rotation rate, and by the presence of a magnetic field. We also investigate, more specifically, a theoretical model in which isorotation contours and residual entropy (σ‧ = σ ‑ σ(r)) are intrinsically linked via the thermal wind equation (as proposed in the Solar context by Balbus in 2009). We have selected our simulation parameters in such as way as to span the transition between Solar-like differential rotation (fast equator + slow poles) and ‘anti-Solar’ differential rotation (slow equator + fast poles), as characterised by the convective Rossby number and △Ω. We illustrate the transition from single-celled to multi-celled MC profiles, and from positive to negative latitudinal entropy gradients. We show that an extrapolation involving both TWB and the σ‧/Ω link provides a reasonable estimate for the interior profile of our fully convective stars. Finally, we also present a selection of MHD simulations which exhibit an almost unsuppressed differential rotation profile, with energy balances remaining dominated by kinetic components.
Concept synthesis of an equipment manipulation and transportation system EMATS
NASA Technical Reports Server (NTRS)
Depeuter, W.; Waffenschmidt, E.
1989-01-01
The European Columbus Scenario is established. One of the Columbus Elements, the Man Tended Free Flyer will be designed for fully autonomous operation in order to provide the environment for micro gravity facilities. The Concept of an autonomous automation system which perform servicing of facilities and deals with related logistic tasks is discussed.
MODELING THE RISE OF FIBRIL MAGNETIC FIELDS IN FULLY CONVECTIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Maria A.; Browning, Matthew K., E-mail: mweber@astro.ex.ac.uk
Many fully convective stars exhibit a wide variety of surface magnetism, including starspots and chromospheric activity. The manner by which bundles of magnetic field traverse portions of the convection zone to emerge at the stellar surface is not especially well understood. In the solar context, some insight into this process has been gleaned by regarding the magnetism as consisting partly of idealized thin flux tubes (TFTs). Here we present the results of a large set of TFT simulations in a rotating spherical domain of convective flows representative of a 0.3 M {sub ⊙} main-sequence star. This is the first studymore » to investigate how individual flux tubes in such a star might rise under the combined influence of buoyancy, convection, and differential rotation. A time-dependent hydrodynamic convective flow field, taken from separate 3D simulations calculated with the anelastic equations, impacts the flux tube as it rises. Convective motions modulate the shape of the initially buoyant flux ring, promoting localized rising loops. Flux tubes in fully convective stars have a tendency to rise nearly parallel to the rotation axis. However, the presence of strong differential rotation allows some initially low-latitude flux tubes of moderate strength to develop rising loops that emerge in the near-equatorial region. Magnetic pumping suppresses the global rise of the flux tube most efficiently in the deeper interior and at lower latitudes. The results of these simulations aim to provide a link between dynamo-generated magnetic fields, fluid motions, and observations of starspots for fully convective stars.« less
Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States
2017-04-15
50 0 50 Singular Values Frequency (rad/s) S in g u la r V a lu e s ( d B ) controller . The non -output variables can be estimated by reliable linear...Contract # N00014-14-C-0004 Autonomous Control Modes and Optimized Path Guidance for Shipboard Landing in High Sea States Progress Report...recovery of a VTOL UAV. There is a clear need for additional levels of stability and control augmentation and, ultimately, fully autonomous landing
Galileo Attitude Determination: Experiences with a Rotating Star Scanner
NASA Technical Reports Server (NTRS)
Merken, L.; Singh, G.
1991-01-01
The Galileo experience with a rotating star scanner is discussed in terms of problems encountered in flight, solutions implemented, and lessons learned. An overview of the Galileo project and the attitude and articulation control subsystem is given and the star scanner hardware and relevant software algorithms are detailed. The star scanner is the sole source of inertial attitude reference for this spacecraft. Problem symptoms observed in flight are discussed in terms of effects on spacecraft performance and safety. Sources of thse problems include contributions from flight software idiosyncrasies and inadequate validation of the ground procedures used to identify target stars for use by the autonomous on-board star identification algorithm. Problem fixes (some already implemented and some only proposed) are discussed. A general conclusion is drawn regarding the inherent difficulty of performing simulation tests to validate algorithms which are highly sensitive to external inputs of statistically 'rare' events.
SAURON: The Wallace Observatory Small AUtonomous Robotic Optical Nightwatcher
NASA Astrophysics Data System (ADS)
Kosiarek, M.; Mansfield, M.; Brothers, T.; Bates, H.; Aviles, R.; Brode-Roger, O.; Person, M.; Russel, M.
2017-07-01
The Small AUtonomous Robotic Optical Nightwatcher (SAURON) is an autonomous telescope consisting of an 11-inch Celestron Nexstar telescope on a SoftwareBisque Paramount ME II in a Technical Innovations ProDome located at the MIT George R. Wallace, Jr. Astrophysical Observatory. This paper describes the construction of the telescope system and its first light data on T-And0-15785, an eclipsing binary star. The out-of-eclipse R magnitude of T-And0-15785 was found to be 13.3258 ± 0.0015 R magnitude, and the magnitude changes for the primary and secondary eclipses were found to be 0.7145 ± 0.0515 and 0.6085 ± 0.0165 R magnitudes, respectively.
A search for minor bodies in the Jovian tenuous ring system
NASA Astrophysics Data System (ADS)
Malinnikova Bang, A.; Joergensen, J. L.; Connerney, J. E.; Benn, M.; Denver, T.; Oliversen, R. J.; Lawton, P.
2013-12-01
The magnetometer experiment on the Juno spacecraft, is equipped with four fully autonomous star trackers, which apart from delivering highly accurate attitude information for the magnetometer sensors, and the inherent imaging capabilities of a low light camera system, also can detect and track luminous objects that exhibit an apparent motion rate relative to the background. The Juno magnetometer star trackers are pointed 13deg of the spacecraft anti-spin vector, each having a field of view of 13 by 18 degrees and operated at 4Hz. As the spacecraft spin, each camera will cover an annulus shaped disk with an inner radius of 7.5 degrees, and an outer radius of 20.5deg. When in science orbit, the Juno trajectory near peri-jove, will result in the anti-spin vector scanning across the tenuous rings. The combination of this scanning motion with the rotation of the camera field of view results in a near perfect opportunity to detect and track minor bodies in the inner part of the rings. The operations of this mode, is first tested in flight during the Juno Earth Flyby 9th October 2013, where the Moon is used as a known target. We present a few results of this test, and based on scale laws we will discuss the systems capability of detecting minor bodies in the Jovian ring system in terms of distance, velocity, albedo and range. Also, because the magnetometer star trackers are offset from the spin axis, the distance to a detected object can be derived by simple triangulation of the apparent direction as observed before, under and after passage under the rings. We discuss how this technique may be used to determine the orbit, size and albedo, of minor bodies thus detected and tracked.
PHM Enabled Autonomous Propellant Loading Operations
NASA Technical Reports Server (NTRS)
Walker, Mark; Figueroa, Fernando
2017-01-01
The utility of Prognostics and Health Management (PHM) software capability applied to Autonomous Operations (AO) remains an active research area within aerospace applications. The ability to gain insight into which assets and subsystems are functioning properly, along with the derivation of confident predictions concerning future ability, reliability, and availability, are important enablers for making sound mission planning decisions. When coupled with software that fully supports mission planning and execution, an integrated solution can be developed that leverages state assessment and estimation for the purposes of delivering autonomous operations. The authors have been applying this integrated, model-based approach to the autonomous loading of cryogenic spacecraft propellants at Kennedy Space Center.
NASA Technical Reports Server (NTRS)
Brockers, Roland; Susca, Sara; Zhu, David; Matthies, Larry
2012-01-01
Direct-lift micro air vehicles have important applications in reconnaissance. In order to conduct persistent surveillance in urban environments, it is essential that these systems can perform autonomous landing maneuvers on elevated surfaces that provide high vantage points without the help of any external sensor and with a fully contained on-board software solution. In this paper, we present a micro air vehicle that uses vision feedback from a single down looking camera to navigate autonomously and detect an elevated landing platform as a surrogate for a roof top. Our method requires no special preparation (labels or markers) of the landing location. Rather, leveraging the planar character of urban structure, the landing platform detection system uses a planar homography decomposition to detect landing targets and produce approach waypoints for autonomous landing. The vehicle control algorithm uses a Kalman filter based approach for pose estimation to fuse visual SLAM (PTAM) position estimates with IMU data to correct for high latency SLAM inputs and to increase the position estimate update rate in order to improve control stability. Scale recovery is achieved using inputs from a sonar altimeter. In experimental runs, we demonstrate a real-time implementation running on-board a micro aerial vehicle that is fully self-contained and independent from any external sensor information. With this method, the vehicle is able to search autonomously for a landing location and perform precision landing maneuvers on the detected targets.
Tidal Love Numbers of Neutron Stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinderer, Tanja
For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k{sub 2}. Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n {approx} 0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l = 2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second-order differential equation for the perturbation to the metric coefficient g{sub tt} and matching the exterior solution to themore » asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to {approx}24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.« less
Onboard Autonomous Corrections for Accurate IRF Pointing.
NASA Astrophysics Data System (ADS)
Jorgensen, J. L.; Betto, M.; Denver, T.
2002-05-01
Over the past decade, the Noise Equivalent Angle (NEA) of onboard attitude reference instruments, has decreased from tens-of-arcseconds to the sub-arcsecond level. This improved performance is partly due to improved sensor-technology with enhanced signal to noise ratios, partly due to improved processing electronics which allows for more sophisticated and faster signal processing. However, the main reason for the increased precision, is the application of onboard autonomy, which apart from simple outlier rejection also allows for removal of "false positive" answers, and other "unexpected" noise sources, that otherwise would degrade the quality of the measurements (e.g. discrimination between signals caused by starlight and ionizing radiation). The utilization of autonomous signal processing has also provided the means for another onboard processing step, namely the autonomous recovery from lost in space, where the attitude instrument without a priori knowledge derive the absolute attitude, i.e. in IRF coordinates, within fractions of a second. Combined with precise orbital state or position data, the absolute attitude information opens for multiple ways to improve the mission performance, either by reducing operations costs, by increasing pointing accuracy, by reducing mission expendables, or by providing backup decision information in case of anomalies. The Advanced Stellar Compass's (ASC) is a miniature, high accuracy, attitude instrument which features fully autonomous operations. The autonomy encompass all direct steps from automatic health checkout at power-on, over fully automatic SEU and SEL handling and proton induced sparkle removal, to recovery from "lost in space", and optical disturbance detection and handling. But apart from these more obvious autonomy functions, the ASC also features functions to handle and remove the aforementioned residuals. These functions encompass diverse operators such as a full orbital state vector model with automatic cloud filtered GPS updates, a world time clock, astrometric correction tables, and a attitude output transform system, that allow the ASC to deliver the spacecraft attitude relative to the Inertial Reference Frame (IRF) in realtime. This paper describes the operations of the onboard autonomy of the ASC, which in realtime removes the residuals from the attitude measurements, whereby a timely IRF attitude at arcsecond level, is delivered to the AOCS (or sent to ground). A discussion about achievable robustness and accuracy is given, and compared to inflight results from the operations of the two Advanced Stellar Compass's (ASC), which are flying in LEO onboard the German geo-potential research satellite CHAMP. The ASC's onboard CHAMP are dual head versions, i.e. each processing unit is attached to two star camera heads. The dual head configuration is primarily employed to achieve a carefree AOCS control with respect to the Sun, Moon and Earth, and to increase the attitude accuracy, but it also enables onboard estimation and removal of thermal generated biases.
Autonomous Operations System: Development and Application
NASA Technical Reports Server (NTRS)
Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.
2016-01-01
Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.
On-Orbit Solar Dynamics Observatory (SDO) Star Tracker Warm Pixel Analysis
NASA Technical Reports Server (NTRS)
Felikson, Denis; Ekinci, Matthew; Hashmall, Joseph A.; Vess, Melissa
2011-01-01
This paper describes the process of identification and analysis of warm pixels in two autonomous star trackers on the Solar Dynamics Observatory (SDO) mission. A brief description of the mission orbit and attitude regimes is discussed and pertinent star tracker hardware specifications are given. Warm pixels are defined and the Quality Index parameter is introduced, which can be explained qualitatively as a manifestation of a possible warm pixel event. A description of the algorithm used to identify warm pixel candidates is given. Finally, analysis of dumps of on-orbit star tracker charge coupled devices (CCD) images is presented and an operational plan going forward is discussed. SDO, launched on February 11, 2010, is operated from the NASA Goddard Space Flight Center (GSFC). SDO is in a geosynchronous orbit with a 28.5 inclination. The nominal mission attitude points the spacecraft X-axis at the Sun, with the spacecraft Z-axis roughly aligned with the Solar North Pole. The spacecraft Y-axis completes the triad. In attitude, SDO moves approximately 0.04 per hour, mostly about the spacecraft Z-axis. The SDO star trackers, manufactured by Galileo Avionica, project the images of stars in their 16.4deg x 16.4deg fields-of-view onto CCD detectors consisting of 512 x 512 pixels. The trackers autonomously identify the star patterns and provide an attitude estimate. Each unit is able to track up to 9 stars. Additionally, each tracker calculates a parameter called the Quality Index, which is a measure of the quality of the attitude solution. Each pixel in the CCD measures the intensity of light and a warns pixel is defined as having a measurement consistently and significantly higher than the mean background intensity level. A warns pixel should also have lower intensity than a pixel containing a star image and will not move across the field of view as the attitude changes (as would a dim star image). It should be noted that the maximum error introduced in the star tracker attitude solution during suspected warm pixel corruptions is within the specified 36 attitude error budget requirement of [35, 70, 70] arcseconds. Thus, the star trackers provided attitude accuracy within the specification for SDO. The star tracker images are intentionally defocused so each star image is detected in more than one CCD pixel. The position of each star is calculated as an intensity-weighted average of the illuminated pixels. The exact method of finding the positions is proprietary to the tracker manufacturer. When a warm pixel happens to be in the vicinity of a star, it can corrupt the calculation of the position of that particular star, thereby corrupting the estimate of the attitude.
Experiment D005: Star occultation navigation
NASA Technical Reports Server (NTRS)
Silva, R. M.; Jorris, T. R.; Vallerie, E. M., III
1971-01-01
The usefulness of star occultation measurements for space navigation and the determination of a horizon density profile which could be used to update atmospheric models for horizon-based measurement systems were studied. The time of occultation of a known star by a celestial body, as seen by an orbiting observer, determines a cylinder of position, the axis of which is the line through the star and the body center, and the radius of which is equal to the occulting-body radius. The dimming percentage, with respect to the altitude of this grazing ray from the star to the observer, is a percentage altitude for occultation. That is, the star can be assumed to be occulted when it reaches a predetermined percentage of its unattenuated value. The procedure used was to measure this attenuation with respect to time to determine the usefulness of the measurements for autonomous space navigation. In this experiment, the crewmembers had to accomplish star acquisition, identification, calibration, and tracking. Instrumentation was required only for measurement of the relative intensity of the star as it set into the atmosphere.
Miniaturized star tracker for micro spacecraft with high angular rate
NASA Astrophysics Data System (ADS)
Li, Jianhua; Li, Zhifeng; Niu, Zhenhong; Liu, Jiaqi
2017-10-01
There is a clear need for miniaturized, lightweight, accurate and inexpensive star tracker for spacecraft with large anglar rate. To face these new constraints, the Beijing Institute of Space Long March Vehicle has designed, built and flown a low cost miniaturized star tracker that provides autonomous ("Lost in Space") inertial attitude determination, 2 Hz 3-axis star tracking, and digital imaging with embedded compression. Detector with high sensitivity is adopted to meet the dynamic and miniature requirement. A Sun and Moon avoiding method based on the calculation of Sun and Moon's vector by astronomical theory is proposed. The produced prototype weight 0.84kg, and can be used for a spacecraft with 6°/s anglar rate. The average angle measure error is less than 43 arc second. The ground verification and application of the star tracker during the pick-up flight test showed that the capability of the product meet the requirement.
Fully autonomous navigation for the NASA cargo transfer vehicle
NASA Technical Reports Server (NTRS)
Wertz, James R.; Skulsky, E. David
1991-01-01
A great deal of attention has been paid to navigation during the close approach (less than or equal to 1 km) phase of spacecraft rendezvous. However, most spacecraft also require a navigation system which provides the necessary accuracy for placing both satellites within the range of the docking sensors. The Microcosm Autonomous Navigation System (MANS) is an on-board system which uses Earth-referenced attitude sensing hardware to provide precision orbit and attitude determination. The system is capable of functioning from LEO to GEO and beyond. Performance depends on the number of available sensors as well as mission geometry; however, extensive simulations have shown that MANS will provide 100 m to 400 m (3(sigma)) position accuracy and 0.03 to 0.07 deg (3(sigma)) attitude accuracy in low Earth orbit. The system is independent of any external source, including GPS. MANS is expected to have a significant impact on ground operations costs, mission definition and design, survivability, and the potential development of very low-cost, fully autonomous spacecraft.
Status of DoD Robotic Programs
1985-03-01
planning or adhere to previously planned routes. 0 Control. Controls are micro electronics based which provide means of autonomous action directly...KEY No: I 11 1181 1431 OROJECT Titloi ISMART TERRAIN ANALYSIS FOR ROBOTIC SYSTEMS (STARS) PROJECT Not I I CLASSIFICATION: IUCI TASK Titles IAUTOMATIC
The Jet Propulsion Laboratory shared control architecture and implementation
NASA Technical Reports Server (NTRS)
Backes, Paul G.; Hayati, Samad
1990-01-01
A hardware and software environment for shared control of telerobot task execution has been implemented. Modes of task execution range from fully teleoperated to fully autonomous as well as shared where hand controller inputs from the human operator are mixed with autonomous system inputs in real time. The objective of the shared control environment is to aid the telerobot operator during task execution by merging real-time operator control from hand controllers with autonomous control to simplify task execution for the operator. The operator is the principal command source and can assign as much autonomy for a task as desired. The shared control hardware environment consists of two PUMA 560 robots, two 6-axis force reflecting hand controllers, Universal Motor Controllers for each of the robots and hand controllers, a SUN4 computer, and VME chassis containing 68020 processors and input/output boards. The operator interface for shared control, the User Macro Interface (UMI), is a menu driven interface to design a task and assign the levels of teleoperated and autonomous control. The operator also sets up the system monitor which checks safety limits during task execution. Cartesian-space degrees of freedom for teleoperated and/or autonomous control inputs are selected within UMI as well as the weightings for the teleoperation and autonmous inputs. These are then used during task execution to determine the mix of teleoperation and autonomous inputs. Some of the autonomous control primitives available to the user are Joint-Guarded-Move, Cartesian-Guarded-Move, Move-To-Touch, Pin-Insertion/Removal, Door/Crank-Turn, Bolt-Turn, and Slide. The operator can execute a task using pure teleoperation or mix control execution from the autonomous primitives with teleoperated inputs. Presently the shared control environment supports single arm task execution. Work is presently underway to provide the shared control environment for dual arm control. Teleoperation during shared control is only Cartesian space control and no force-reflection is provided. Force-reflecting teleoperation and joint space operator inputs are planned extensions to the environment.
NASA Astrophysics Data System (ADS)
Pozo Nuñez, Francisco; Chelouche, Doron; Kaspi, Shai; Niv, Saar
2017-09-01
We present the first results of an ongoing variability monitoring program of active galactic nuclei (AGNs) using the 46 cm telescope of the Wise Observatory in Israel. The telescope has a field of view of 1.25^\\circ × 0.84^\\circ and is specially equipped with five narrowband filters at 4300, 5200, 5700, 6200, and 7000 Å to perform photometric reverberation mapping studies of the central engine of AGNs. The program aims to observe a sample of 27 AGNs (V < 17 mag) selected according to tentative continuum and line time delay measurements obtained in previous works. We describe the autonomous operation of the telescope together with the fully automatic pipeline used to achieve high-performance unassisted observations, data reduction, and light curves extraction using different photometric methods. The science verification data presented here demonstrates the performance of the monitoring program in particular for efficiently photometric reverberation mapping of AGNs with additional capabilities to carry out complementary studies of other transient and variable phenomena such as variable stars studies.
NASA Astrophysics Data System (ADS)
Ehrhorn, B.; Azari, D.
Low Earth Orbit (LEO) and Orbital Debris tracking have become considerably important with regard to Space Situational Awareness (SSA). This paper discusses the capabilities of autonomous LEO and Orbital Debris Tracking Systems using commercially available (mid aperture 20-24 inch) telescopes, tracking gimbals, and CCD imagers. RC Optical Systems has been developing autonomous satellite trackers that allow for unattended acquisition, imaging, and orbital determination of LEOs using low cost COTS equipment. The test setup from which we are gathering data consists of an RC Optical Systems Professional Series Elevation over Azimuth Gimbal with field de-rotation, RC Optical Systems 20 inch Ritchey-Chretien Telescope coupled to an e2v CCD42-40 CCD array, and 77mm f/4 tracking lens coupled to a KAF-0402ME CCD array. Central to success of LEO acquisition and open loop tracking is accurate modeling of Gimbal and telescope misalignments and flexures. Using pro-TPoint and a simple automated mapping routine we have modeled our primary telescope to achieve pointing and tracking accuracies within a population standard deviation of 1.3 arc-sec (which is 1.1 arc-sec RMS). Once modeled, a mobile system can easily and quickly be calibrated to the sky using a simple 6-10 star map to solve for axis tilt and collimation coefficients. Acquisition of LEO satellites is accomplished through the use of a wide field imager. Using a 77mm f/4 lens and 765 x 510 x 9mu CCD array yields a 1.28 x 0.85 degree field of view in our test setup. Accurate boresite within the acquisition array is maintained throughout the full range of motion through differential tpoint modeling of the main and acquisition imagers. Satellite identification is accomplished by detecting a stationary centroid as a point source and differentiating from the background of streaked stars in a single frame. We found 100% detection rate of LEO with radar cross sections (RCS) of > 0.5 meter*meter within the acquisition array, and approximately 90% within 0.25 degrees of center. Tests of open loop tracking revealed a vast majority of satellites remain within the main detector area of 0.19 x 0.19 degrees after initial centering. Once acquired, the satellite is centered within the main imager via automated adjustment of the epoch and inclination using non-linear least square fit. Thereafter, real time satellite position is sequentially determined and recorded using the main imaging array. Real time determination of the SGP4 Keplerian elements are solved using non-linear least squares regression. The tracking propagator is periodically updated to reflect the solved Keplerian elements in order to maintain the satellite position near image center. These processes are accomplished without the need for user intervention. Unattended fully autonomous LEO satellite tracking and orbital determination simply requires scheduling of appropriate targets and scripted command of the tracking system.
Age Spreads and the Temperature Dependence of Age Estimates in Upper Sco
NASA Astrophysics Data System (ADS)
Fang, Qiliang; Herczeg, Gregory J.; Rizzuto, Aaron
2017-06-01
Past estimates for the age of the Upper Sco Association are typically 11–13 Myr for intermediate-mass stars and 4–5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate-mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on a timescale similar to that of the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution, and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang Qiliang; Herczeg, Gregory J.; Rizzuto, Aaron
Past estimates for the age of the Upper Sco Association are typically 11–13 Myr for intermediate-mass stars and 4–5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate-mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on amore » timescale similar to that of the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution, and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.« less
NASA Astrophysics Data System (ADS)
Lederer, S. M.; Hickson, P.; Cowardin, H. M.; Buckalew, B.; Frith, J.; Alliss, R.
In June 2015, the construction of the Meter Class Autonomous Telescope was completed and MCAT saw the light of the stars for the first time. In 2017, MCAT was newly dedicated as the Eugene Stansbery-MCAT telescope by NASA’s Orbital Debris Program Office (ODPO), in honour of his inspiration and dedication to this newest optical member of the NASA ODPO. Since that time, MCAT has viewed the skies with one engineering camera and two scientific cameras, and the ODPO optical team has begun the process of vetting the entire system. The full system vetting includes verification and validation of: (1) the hardware comprising the system (e.g. the telescopes and its instruments, the dome, weather systems, all-sky camera, FLIR cloud infrared camera, etc.), (2) the custom-written Observatory Control System (OCS) master software designed to autonomously control this complex system of instruments, each with its own control software, and (3) the custom written Orbital Debris Processing software for post-processing the data. ES-MCAT is now capable of autonomous observing to include Geosyncronous survey, TLE (Two-line element) tracking of individual catalogued debris at all orbital regimes (Low-Earth Orbit all the way to Geosynchronous (GEO) orbit), tracking at specified non-sidereal rates, as well as sidereal rates for proper calibration with standard stars. Ultimately, the data will be used for validation of NASA’s Orbital Debris Engineering Model, ORDEM, which aids in engineering designs of spacecraft that require knowledge of the orbital debris environment and long-term risks for collisions with Resident Space Objects (RSOs).
NASA Technical Reports Server (NTRS)
Lederer, S. M.; Hickson, P.; Cowardin, H. M.; Buckalew, B.; Frith, J.; Alliss, R.
2017-01-01
In June 2015, the construction of the Meter Class Autonomous Telescope was completed and MCAT saw the light of the stars for the first time. In 2017, MCAT was newly dedicated as the Eugene Stansbery-MCAT telescope by NASA's Orbital Debris Program Office (ODPO), in honor of his inspiration and dedication to this newest optical member of the NASA ODPO. Since that time, MCAT has viewed the skies with one engineering camera and two scientific cameras, and the ODPO optical team has begun the process of vetting the entire system. The full system vetting includes verification and validation of: (1) the hardware comprising the system (e.g. the telescopes and its instruments, the dome, weather systems, all-sky camera, FLIR cloud infrared camera, etc.), (2) the custom-written Observatory Control System (OCS) master software designed to autonomously control this complex system of instruments, each with its own control software, and (3) the custom written Orbital Debris Processing software for post-processing the data. ES-MCAT is now capable of autonomous observing to include Geosynchronous survey, TLE (Two-line element) tracking of individual catalogued debris at all orbital regimes (Low-Earth Orbit all the way to Geosynchronous (GEO) orbit), tracking at specified non-sidereal rates, as well as sidereal rates for proper calibration with standard stars. Ultimately, the data will be used for validation of NASA's Orbital Debris Engineering Model, ORDEM, which aids in engineering designs of spacecraft that require knowledge of the orbital debris environment and long-term risks for collisions with Resident Space Objects (RSOs).
Miniature wide field-of-view star trackers for spacecraft attitude sensing and navigation
NASA Technical Reports Server (NTRS)
Mccarty, William; Curtis, Eric; Hull, Anthony; Morgan, William
1993-01-01
Introducing a family of miniature, wide field-of-view star trackers for low cost, high performance spacecraft attitude determination and navigation applications. These devices, derivative of the WFOV Star Tracker Camera developed cooperatively by OCA Applied Optics and the Lawrence Livermore National Laboratory for the Brilliant Pebbles program, offer a suite of options addressing a wide range of spacecraft attitude measurement and control requirements. These sensors employ much wider fields than are customary (ranging between 20 and 60 degrees) to assure enough bright stars for quick and accurate attitude determinations without long integration intervals. The key benefit of this approach are light weight, low power, reduced data processing loads and high information carrier rates for wide ACS bandwidths. Devices described range from the proven OCA/LLNL WFOV Star Tracker Camera (a low-cost, space-qualified star-field imager utilizing the spacecraft's own computer and centroiding and position-finding), to a new autonomous subsystem design featuring dual-redundant cameras and completely self-contained star-field data processing with output quaternion solutions accurate to 100 micro-rad, 3 sigma, for stand-alone applications.
Autonomous control systems - Architecture and fundamental issues
NASA Technical Reports Server (NTRS)
Antsaklis, P. J.; Passino, K. M.; Wang, S. J.
1988-01-01
A hierarchical functional autonomous controller architecture is introduced. In particular, the architecture for the control of future space vehicles is described in detail; it is designed to ensure the autonomous operation of the control system and it allows interaction with the pilot and crew/ground station, and the systems on board the autonomous vehicle. The fundamental issues in autonomous control system modeling and analysis are discussed. It is proposed to utilize a hybrid approach to modeling and analysis of autonomous systems. This will incorporate conventional control methods based on differential equations and techniques for the analysis of systems described with a symbolic formalism. In this way, the theory of conventional control can be fully utilized. It is stressed that autonomy is the design requirement and intelligent control methods appear at present, to offer some of the necessary tools to achieve autonomy. A conventional approach may evolve and replace some or all of the `intelligent' functions. It is shown that in addition to conventional controllers, the autonomous control system incorporates planning, learning, and FDI (fault detection and identification).
Neutron star mass-radius relation with gravitational field shielding by a scalar field
NASA Astrophysics Data System (ADS)
Zhang, Bo-Jun; Zhang, Tian-Xi; Guggilla, Padmaja; Dokhanian, Mostafa
2013-05-01
The currently well-developed models for equations of state (EoSs) have been severely impacted by recent measurements of neutron stars with a small radius and/or large mass. To explain these measurements, the theory of gravitational field shielding by a scalar field is applied. This theory was recently developed in accordance with the five-dimensional (5D) fully covariant Kaluza-Klein (KK) theory that has successfully unified Einstein's general relativity and Maxwell's electromagnetic theory. It is shown that a massive, compact neutron star can generate a strong scalar field, which can significantly shield or reduce its gravitational field, thus making it more massive and more compact. The mass-radius relation developed under this type of modified gravity can be consistent with these recent measurements of neutron stars. In addition, the effect of gravitational field shielding helps explain why the supernova explosions of some very massive stars (e.g., 40 Msolar as measured recently) actually formed neutron stars rather than black holes as expected. The EoS models, ruled out by measurements of small radius and/or large mass neutron stars according to the theory of general relativity, can still work well in terms of the 5D fully covariant KK theory with a scalar field.
NASA Technical Reports Server (NTRS)
1979-01-01
Failures and deficiencies in flight programs are reviewed and suggestions are made for avoiding them. The technology development problem areas considered are control configured vehicle design, gyros, solid state star sensors, control instrumentation, tolerant/accomodating control systems, large momentum exchange devices, and autonomous rendezvous and docking.
Semi-physical simulation test for micro CMOS star sensor
NASA Astrophysics Data System (ADS)
Yang, Jian; Zhang, Guang-jun; Jiang, Jie; Fan, Qiao-yun
2008-03-01
A designed star sensor must be extensively tested before launching. Testing star sensor requires complicated process with much time and resources input. Even observing sky on the ground is a challenging and time-consuming job, requiring complicated and expensive equipments, suitable time and location, and prone to be interfered by weather. And moreover, not all stars distributed on the sky can be observed by this testing method. Semi-physical simulation in laboratory reduces the testing cost and helps to debug, analyze and evaluate the star sensor system while developing the model. The test system is composed of optical platform, star field simulator, star field simulator computer, star sensor and the central data processing computer. The test system simulates the starlight with high accuracy and good parallelism, and creates static or dynamic image in FOV (Field of View). The conditions of the test are close to observing real sky. With this system, the test of a micro star tracker designed by Beijing University of Aeronautics and Astronautics has been performed successfully. Some indices including full-sky autonomous star identification time, attitude update frequency and attitude precision etc. meet design requirement of the star sensor. Error source of the testing system is also analyzed. It is concluded that the testing system is cost-saving, efficient, and contributes to optimizing the embed arithmetic, shortening the development cycle and improving engineering design processes.
NASA Astrophysics Data System (ADS)
Kondylis, Georgios P.; Vokas, Georgios A.; Anastasiadis, Anestis G.; Konstantinopoulos, Stavros A.
2017-02-01
The main purpose of this paper is to examine the technological feasibility of a small autonomous network, with electricity storage capability, which is completely electrified by wind energy. The excess energy produced, with respect to the load requirements, is sent to the batteries for storage. When the energy produced by the wind generator is not sufficient, load's energy requirement is covered by the battery system, ensuring, however, that voltage, frequency and other system characteristics are within the proper boundaries. For the purpose of this study, a Voltage Oriented Control system has been developed in order to monitor the autonomous operation and perform the energy management of the network. This system manages the power flows between the load and the storage system by properly controlling the Pulse Width Modulation pulses in the converter, thus ensuring power flows are adequate and frequency remains under control. The experimental results clearly indicate that a stand-alone wind energy system based on battery energy storage system is feasible and reliable. This paves the way for fully renewable and zero emission energy schemes.
Disruption of Giant Molecular Clouds by Massive Star Clusters
NASA Astrophysics Data System (ADS)
Harper-Clark, Elizabeth
The lifetime of a Giant Molecular Cloud (GMC) and the total mass of stars that form within it are crucial to the understanding of star formation rates across a whole galaxy. In particular, the stars within a GMC may dictate its disruption and the quenching of further star formation. Indeed, observations show that the Milky Way contains GMCs with extensive expanding bubbles while the most massive stars are still alive. Simulating entire GMCs is challenging, due to the large variety of physics that needs to be included, and the computational power required to accurately simulate a GMC over tens of millions of years. Using the radiative-magneto-hydrodynamic code Enzo, I have run many simulations of GMCs. I obtain robust results for the fraction of gas converted into stars and the lifetimes of the GMCs: (A) In simulations with no stellar outputs (or "feedback''), clusters form at a rate of 30% of GMC mass per free fall time; the GMCs were not disrupted but contained forming stars. (B) Including ionization gas pressure or radiation pressure into the simulations, both separately and together, the star formation was quenched at between 5% and 21% of the original GMC mass. The clouds were fully disrupted within two dynamical times after the first cluster formed. The radiation pressure contributed the most to the disruption of the GMC and fully quenched star formation even without ionization. (C) Simulations that included supernovae showed that they are not dynamically important to GMC disruption and have only minor effects on subsequent star formation. (D) The inclusion of a few micro Gauss magnetic field across the cloud slightly reduced the star formation rate but accelerated GMC disruption by reducing bubble shell disruption and leaking. These simulations show that new born stars quench further star formation and completely disrupt the parent GMC. The low star formation rate and the short lifetimes of GMCs shown here can explain the low star formation rate across the whole galaxy.
Navigation for the new millennium: Autonomous navigation for Deep Space 1
NASA Technical Reports Server (NTRS)
Reidel, J. E.; Bhaskaran, S.; Synnott, S. P.; Desai, S. D.; Bollman, W. E.; Dumont, P. J.; Halsell, C. A.; Han, D.; Kennedy, B. M.; Null, G. W.;
1997-01-01
The autonomous optical navigation system technology for the Deep Space 1 (DS1) mission is reported on. The DS1 navigation system will be the first to use autonomous navigation in deep space. The systems tasks are to: perform interplanetary cruise orbit determination using images of distant asteroids; control and maintain the orbit of the spacecraft with an ion propulsion system and conventional thrusters, and perform late knowledge updates of target position during close flybys in order to facilitate high quality data return from asteroid MaAuliffe and comet West-Kohoutek-Ikemura. To accomplish these tasks, the following functions are required: picture planning; image processing; dynamical modeling and integration; planetary ephemeris and star catalog handling; orbit determination; data filtering and estimation; maneuver estimation, and spacecraft ephemeris updating. These systems and functions are described and preliminary performance data are presented.
Massive stars and miniature robots: today's research and tomorrow's technologies
NASA Astrophysics Data System (ADS)
Taylor, William David
2013-03-01
This thesis documents the reduction of the VLT-FLAMES Tarantula Survey (VFTS) data set, whilst also describing the analysis for one of the serendipitous discoveries: the massive binary R139. This high-mass binary will provide an excellent future calibration point for stellar models, in part as it seems to defy certain expectations about its evolution. Out with the VFTS, a search for binary companions around a trio of B-type supergiants is presented. These stars are surrounded by nebulae that closely resemble the triple-ring structure associated with the poorly-understood SN1987A. Do these stars share a similar evolutionary fate? While strong evidence is found for periodic pulsations in one of the stars, there appears to be no indication of a short-period binary companion suggested in the literature. Gathering observations from a wide range of environments builds a fuller picture of massive stars, but the samples remain somewhat limited. The coming generation of extremely large telescopes will open new regions for studies like the VFTS. Fully utilising these remarkable telescopes will require many new technologies, and this thesis presents one such development project. For adaptive-optics corrected, multi-object instruments it will be necessary to position small pick-off mirrors in the telescope¿s focal plane to select the sub-fields on the sky. This could be most efficiently achieved if the mirrors were self-propelled, which has led to a miniature robot project called MAPS - the Micro Autonomous Positioning System. A number of robots have been built with a footprint of only 30 x 30mm. These wirelessly-controlled robots draw their power from the floor on which they operate and have shown the potential to be positioned to an accuracy of tens of microns. This thesis details much of the early design work and testing of the robots, and also the development of the camera imaging system used to determine the position of the robots. The MAPS project is ongoing and a number of the potential future tests, and avenues for new research, are discussed. This is a thesis that brings together an area of active astronomical research with cutting-edge technological development, highlighting how tomorrow's telescopes will be an essential tool to answer some of today's most puzzling research questions
Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots.
Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Kim, Hojin; Rao, Zhoulyu; Li, Yuhang; Chen, Weiqiu; Song, Jizhou; Verduzco, Rafael; Yu, Cunjiang
2018-03-01
Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Spacecraft angular velocity estimation algorithm for star tracker based on optical flow techniques
NASA Astrophysics Data System (ADS)
Tang, Yujie; Li, Jian; Wang, Gangyi
2018-02-01
An integrated navigation system often uses the traditional gyro and star tracker for high precision navigation with the shortcomings of large volume, heavy weight and high-cost. With the development of autonomous navigation for deep space and small spacecraft, star tracker has been gradually used for attitude calculation and angular velocity measurement directly. At the same time, with the dynamic imaging requirements of remote sensing satellites and other imaging satellites, how to measure the angular velocity in the dynamic situation to improve the accuracy of the star tracker is the hotspot of future research. We propose the approach to measure angular rate with a nongyro and improve the dynamic performance of the star tracker. First, the star extraction algorithm based on morphology is used to extract the star region, and the stars in the two images are matched according to the method of angular distance voting. The calculation of the displacement of the star image is measured by the improved optical flow method. Finally, the triaxial angular velocity of the star tracker is calculated by the star vector using the least squares method. The method has the advantages of fast matching speed, strong antinoise ability, and good dynamic performance. The triaxial angular velocity of star tracker can be obtained accurately with these methods. So, the star tracker can achieve better tracking performance and dynamic attitude positioning accuracy to lay a good foundation for the wide application of various satellites and complex space missions.
BIRDY - Interplanetary CubeSat for planetary geodesy of Small Solar System Bodies (SSSB).
NASA Astrophysics Data System (ADS)
Hestroffer, D.; Agnan, M.; Segret, B.; Quinsac, G.; Vannitsen, J.; Rosenblatt, P.; Miau, J. J.
2017-12-01
We are developing the Birdy concept of a scientific interplanetary CubeSat, for cruise, or proximity operations around a Small body of the Solar System (asteroid, comet, irregular satellite). The scientific aim is to characterise the body's shape, gravity field, and internal structure through imaging and radio-science techniques. Radio-science is now of common use in planetary science (flybys or orbiters) to derive the mass of the scientific target and possibly higher order terms of its gravity field. Its application to a nano-satellite brings the advantage of enabling low orbits that can get closer to the body's surface, hence increasing the SNR for precise orbit determination (POD), with a fully dedicated instrument. Additionally, it can be applied to two or more satellites, on a leading-trailing trajectory, to improve the gravity field determination. However, the application of this technique to CubeSats in deep space, and inter-satellite link has to be proven. Interplanetary CubeSats need to overcome a few challenges before reaching successfully their deep-space objectives: link to ground-segment, energy supply, protection against radiation, etc. Besides, the Birdy CubeSat — as our basis concept — is designed to be accompanying a mothercraft, and relies partly on the main mission for reaching the target, as well as on data-link with the Earth. However, constraints to the mothercraft needs to be reduced, by having the CubeSat as autonomous as possible. In this respect, propulsion and auto-navigation are key aspects, that we are studying in a Birdy-T engineering model. We envisage a 3U size CubeSat with radio link, object-tracker and imaging function, and autonomous ionic propulsion system. We are considering two case studies for autonomous guidance, navigation and control, with autonomous propulsion: in cruise and in proximity, necessitating ΔV up to 2m/s for a total budget of about 50m/s. In addition to the propulsion, in-flight orbit determination (IFOD) and maintenance are studied, through analysis of images by an object-tracker and astrometry of solar system objects in front of background stars. Before going to deep-space, our project will start with BIRDY-1 orbiting the Earth, to validate the concepts of adopted propulsion, IFOD and orbit maintenance, as well as the radio-science and POD.
Fully decentralized control of a soft-bodied robot inspired by true slime mold.
Umedachi, Takuya; Takeda, Koichi; Nakagaki, Toshiyuki; Kobayashi, Ryo; Ishiguro, Akio
2010-03-01
Animals exhibit astoundingly adaptive and supple locomotion under real world constraints. In order to endow robots with similar capabilities, we must implement many degrees of freedom, equivalent to animals, into the robots' bodies. For taming many degrees of freedom, the concept of autonomous decentralized control plays a pivotal role. However a systematic way of designing such autonomous decentralized control system is still missing. Aiming at understanding the principles that underlie animals' locomotion, we have focused on a true slime mold, a primitive living organism, and extracted a design scheme for autonomous decentralized control system. In order to validate this design scheme, this article presents a soft-bodied amoeboid robot inspired by the true slime mold. Significant features of this robot are twofold: (1) the robot has a truly soft and deformable body stemming from real-time tunable springs and protoplasm, the former is used for an outer skin of the body and the latter is to satisfy the law of conservation of mass; and (2) fully decentralized control using coupled oscillators with completely local sensory feedback mechanism is realized by exploiting the long-distance physical interaction between the body parts stemming from the law of conservation of protoplasmic mass. Simulation results show that this robot exhibits highly supple and adaptive locomotion without relying on any hierarchical structure. The results obtained are expected to shed new light on design methodology for autonomous decentralized control system.
Deployable reconnaissance from a VTOL UAS in urban environments
NASA Astrophysics Data System (ADS)
Barnett, Shane; Bird, John; Culhane, Andrew; Sharkasi, Adam; Reinholtz, Charles
2007-04-01
Reconnaissance collection in unknown or hostile environments can be a dangerous and life threatening task. To reduce this risk, the Unmanned Systems Group at Virginia Tech has produced a fully autonomous reconnaissance system able to provide live video reconnaissance from outside and inside unknown structures. This system consists of an autonomous helicopter which launches a small reconnaissance pod inside a building and an operator control unit (OCU) on a ground station. The helicopter is a modified Bergen Industrial Twin using a Rotomotion flight controller and can fly missions of up to one half hour. The mission planning OCU can control the helicopter remotely through teleoperation or fully autonomously by GPS waypoints. A forward facing camera and template matching aid in navigation by identifying the target building. Once the target structure is identified, vision algorithms will center the UAS adjacent to open windows or doorways. Tunable parameters in the vision algorithm account for varying launch distances and opening sizes. Launch of the reconnaissance pod may be initiated remotely through a human in the loop or autonomously. Compressed air propels the half pound stationary pod or the larger mobile pod into the open portals. Once inside the building, the reconnaissance pod will then transmit live video back to the helicopter. The helicopter acts as a repeater node for increased video range and simplification of communication back to the ground station.
Autonomous Car Parking System through a Cooperative Vehicular Positioning Network.
Correa, Alejandro; Boquet, Guillem; Morell, Antoni; Lopez Vicario, Jose
2017-04-13
The increasing development of the automotive industry towards a fully autonomous car has motivated the design of new value-added services in Vehicular Sensor Networks (VSNs). Within the context of VSNs, the autonomous car, with an increasing number of on-board sensors, is a mobile node that exchanges sensed and state information within the VSN. Among all the value added services for VSNs, the design of new intelligent parking management architectures where the autonomous car will coexist with traditional cars is mandatory in order to profit from all the opportunities associated with the increasing intelligence of the new generation of cars. In this work, we design a new smart parking system on top of a VSN that takes into account the heterogeneity of cars and provides guidance to the best parking place for the autonomous car based on a collaborative approach that searches for the common good of all of them measured by the accessibility rate, which is the ratio of the free parking places accessible for an autonomous car. Then, we simulate a real parking lot and the results show that the performance of our system is close to the optimum considering different communication ranges and penetration rates for the autonomous car.
Autonomous Car Parking System through a Cooperative Vehicular Positioning Network
Correa, Alejandro; Boquet, Guillem; Morell, Antoni; Lopez Vicario, Jose
2017-01-01
The increasing development of the automotive industry towards a fully autonomous car has motivated the design of new value-added services in Vehicular Sensor Networks (VSNs). Within the context of VSNs, the autonomous car, with an increasing number of on-board sensors, is a mobile node that exchanges sensed and state information within the VSN. Among all the value added services for VSNs, the design of new intelligent parking management architectures where the autonomous car will coexist with traditional cars is mandatory in order to profit from all the opportunities associated with the increasing intelligence of the new generation of cars. In this work, we design a new smart parking system on top of a VSN that takes into account the heterogeneity of cars and provides guidance to the best parking place for the autonomous car based on a collaborative approach that searches for the common good of all of them measured by the accessibility rate, which is the ratio of the free parking places accessible for an autonomous car. Then, we simulate a real parking lot and the results show that the performance of our system is close to the optimum considering different communication ranges and penetration rates for the autonomous car. PMID:28406426
A Low-mass Exoplanet Candidate Detected by K2 Transiting the Praesepe M Dwarf JS 183
NASA Astrophysics Data System (ADS)
Pepper, Joshua; Gillen, Ed; Parviainen, Hannu; Hillenbrand, Lynne A.; Cody, Ann Marie; Aigrain, Suzanne; Stauffer, John; Vrba, Frederick J.; David, Trevor; Lillo-Box, Jorge; Stassun, Keivan G.; Conroy, Kyle E.; Pope, Benjamin J. S.; Barrado, David
2017-04-01
We report the discovery of a repeating photometric signal from a low-mass member of the Praesepe open cluster that we interpret as a Neptune-sized transiting planet. The star is JS 183 (HSHJ 163, EPIC 211916756), with T eff = 3325 ± 100 K, M * = 0.44 ± 0.04 M ⊙, R * = 0.44 ± 0.03 R ⊙, and {log}{g}* = 4.82+/- 0.06. The planet has an orbital period of 10.134588 days and a radius of R P = 0.32 ± 0.02 R J. Since the star is faint at V = 16.5 and J = 13.3, we are unable to obtain a measured radial velocity orbit, but we can constrain the companion mass to below about 1.7 M J, and thus well below the planetary boundary. JS 183b (since designated as K2-95b) is the second transiting planet found with K2 that resides in a several-hundred-megayear open cluster; both planets orbit mid-M dwarf stars and are approximately Neptune sized. With a well-determined stellar density from the planetary transit, and with an independently known metallicity from its cluster membership, JS 183 provides a particularly valuable test of stellar models at the fully convective boundary. We find that JS 183 is the lowest-density transit host known at the fully convective boundary, and that its very low density is consistent with current models of stars just above the fully convective boundary but in tension with the models just below the fully convective boundary.
Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves
NASA Technical Reports Server (NTRS)
Airapetian, V.; Carpenter, K. G.; Ofman, L.
2010-01-01
We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.
Kagawa Satellite “STARS” in Shikoku
NASA Astrophysics Data System (ADS)
Nohmi, Masahiro; Yamamoto, Takeshi; Andatsu, Akira; Takagi, Yohei; Nishikawa, Yusuke; Kaneko, Takashi; Kunitom, Daisuke
The Space Tethered Autonomous Robotic Satellite (STARS) is being developed in Kagawa University, and it will be launched by the H-IIA rocket by Japan Aerospace Exploration Agency (JAXA) in summer 2008. STARS is the first satellite developed in Shikoku, and its specific characteristics are: (i) mother and daughter satellites, which have basic satellite system respectively, and those are launched at the same time; (ii) large space system more than 5m by extending tether; (iii) robotic system, the daughter satellite controls its arm link and the mother satellite controls tether extension. Development of STARS in Kagawa University demonstrates space technology in local community, which has been considered to be a national project. Also, it promotes popularization, enlightenment, and understanding of space technology in local area of the Kagawa prefecture and around it.
System Engineering of Autonomous Space Vehicles
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Johnson, Stephen B.; Trevino, Luis
2014-01-01
Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.
Toward faster and more accurate star sensors using recursive centroiding and star identification
NASA Astrophysics Data System (ADS)
Samaan, Malak Anees
The objective of this research is to study different novel developed techniques for spacecraft attitude determination methods using star tracker sensors. This dissertation addresses various issues on developing improved star tracker software, presents new approaches for better performance of star trackers, and considers applications to realize high precision attitude estimates. Star-sensors are often included in a spacecraft attitude-system instrument suite, where high accuracy pointing capability is required. Novel methods for image processing, camera parameters ground calibration, autonomous star pattern recognition, and recursive star identification are researched and implemented to achieve high accuracy and a high frame rate star tracker that can be used for many space missions. This dissertation presents the methods and algorithms implemented for the one Field of View 'FOV'Star NavI sensor that was tested aboard the STS-107 mission in spring 2003 and the two fields of view StarNavII sensor for the EO-3 spacecraft scheduled for launch in 2007. The results of this research enable advances in spacecraft attitude determination based upon real time star sensing and pattern recognition. Building upon recent developments in image processing, pattern recognition algorithms, focal plane detectors, electro-optics, and microprocessors, the star tracker concept utilized in this research has the following key objectives for spacecraft of the future: lower cost, lower mass and smaller volume, increased robustness to environment-induced aging and instrument response variations, increased adaptability and autonomy via recursive self-calibration and health-monitoring on-orbit. Many of these attributes are consequences of improved algorithms that are derived in this dissertation.
The stable magnetic field of the fully convective star V374 Peg
NASA Astrophysics Data System (ADS)
Morin, J.; Donati, J.-F.; Forveille, T.; Delfosse, X.; Dobler, W.; Petit, P.; Jardine, M. M.; Collier Cameron, A.; Albert, L.; Manset, N.; Dintrans, B.; Chabrier, G.; Valenti, J. A.
2008-02-01
We report in this paper phase-resolved spectropolarimetric observations of the rapidly rotating fully convective M4 dwarf V374 Peg, on which a strong, mainly axisymmetric, large-scale poloidal magnetic field was recently detected. In addition to the original data set secured in 2005 August, we present here new data collected in 2005 September and 2006 August. From the rotational modulation of unpolarized line profiles, we conclude that star-spots are present at the surface of the star, but their contrast and fractional coverage are much lower than those of non-fully convective active stars with similar rotation rate. Applying tomographic imaging on each set of circularly polarized profiles separately, we find that the large-scale magnetic topology is remarkably stable on a time-scale of 1 yr; repeating the analysis on the complete data set suggests that the magnetic configuration is sheared by very weak differential rotation (about 1/10th of the solar surface shear) and only slightly distorted by intrinsic variability. This result is at odds with various theoretical predictions, suggesting that dynamo fields of fully convective stars should be mostly non-axisymmetric unless they succeed at triggering significant differential rotation. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. E-mail: jmorin@ast.obs-mip.fr (JM); donati@ast.obs-mip.fr (J-FD); thierry.forveille@obs.ujf-grenoble.fr (TF); xavier.delfosse@obs.ujfgrenoble.fr (XD); wolfgang.dobler@ucalgary.ca (WD); petit@ast.obs-mip.fr (PP); mmj@st-andrews.ac.uk (MMJ); acc4@st-andrews.ac.uk (ACC);albert@cfht.hawaii.edu (LA); manset@cfht.hawaii.edu (NM); dintrans@ast.obs-mip.fr (BD); chabrier@ens-lyon.fr (GC); valenti@stsci.edu (JAV)
An AI Approach to Ground Station Autonomy for Deep Space Communications
NASA Technical Reports Server (NTRS)
Fisher, Forest; Estlin, Tara; Mutz, Darren; Paal, Leslie; Law, Emily; Stockett, Mike; Golshan, Nasser; Chien, Steve
1998-01-01
This paper describes an architecture for an autonomous deep space tracking station (DS-T). The architecture targets fully automated routine operations encompassing scheduling and resource allocation, antenna and receiver predict generation. track procedure generation from service requests, and closed loop control and error recovery for the station subsystems. This architecture has been validated by the construction of a prototype DS-T station, which has performed a series of demonstrations of autonomous ground station control for downlink services with NASA's Mars Global Surveyor (MGS).
NASA Astrophysics Data System (ADS)
Montel, J.; Andre, Y.; Mirc, F.; Etcheto, P.; Evrard, J.; Bray, N.; Saccoccio, M.; Tomasini, L.; Perot, E.
2015-09-01
ESTADIUS is an autonomous, accurate and daytime attitude estimation system, for stratospheric balloons that require a high level of attitude measurement and stability. The system has been developed by CNES. ESTADIUS is based on star sensor an pyrometer data fusion within an extended Kalman filter. The star sensor is composed of a 16 MPixels visible-CCD camera and a large aperture camera lens (focal length of 135mm, aperture f/1.8, 10ºx15º field of view or FOV) which provides very accurate stars measurements due to very low pixel angular size. This also allows detecting stars against a bright sky background. The pyrometer is a 0.01º/h performance class Fiber Optic Gyroscope (FOG). The system is adapted to work down to an altitude of ~25km, even under high cinematic conditions. Key elements of ESTADIUS are: daytime conditions use (as well as night time), autonomy (automatic recognition of constellations), high angular rate robustness (a few deg/s thanks to the high performance of attitude propagation), stray-light robustness (thanks to a high performance baffle), high accuracy (<1", 1σ). Four stratospheric qualification flights were very successfully performed in 2010/2011 and 2013/2014 in Kiruna (Sweden) and Timmins (Canada). ESTADIUS will allow long stratospheric flights with a unique attitude estimation system avoiding the restriction of night/day conditions at launch. The first operational flight of ESTADIUS will be in 2015 for the PILOT scientific missions (led by IRAP and CNES in France). Further balloon missions such as CIDRE will use the system ESTADIUS is probably the first autonomous, large FOV, daytime stellar attitude measurement system. This paper details the technical features and in-flight results.
Scalar Resonant Relaxation of Stars around a Massive Black Hole
NASA Astrophysics Data System (ADS)
Bar-Or, Ben; Fouvry, Jean-Baptiste
2018-06-01
In nuclear star clusters, the potential is governed by the central massive black hole (MBH), so that stars move on nearly Keplerian orbits and the total potential is almost stationary in time. Yet, the deviations of the potential from the Keplerian one, due to the enclosed stellar mass and general relativity, will cause the stellar orbits to precess. Moreover, as a result of the finite number of stars, small deviations of the potential from spherical symmetry induce residual torques that can change the stars’ angular momentum faster than the standard two-body relaxation. The combination of these two effects drives a stochastic evolution of orbital angular momentum, a process named “resonant relaxation” (RR). Owing to recent developments in the description of the relaxation of self-gravitating systems, we can now fully describe scalar resonant relaxation (relaxation of the magnitude of the angular momentum) as a diffusion process. In this framework, the potential fluctuations due to the complex orbital motion of the stars are described by a random correlated noise with statistical properties that are fully characterized by the stars’ mean field motion. On long timescales, the cluster can be regarded as a diffusive system with diffusion coefficients that depend explicitly on the mean field stellar distribution through the properties of the noise. We show here, for the first time, how the diffusion coefficients of scalar RR, for a spherically symmetric system, can be fully calculated from first principles, without any free parameters. We also provide an open source code that evaluates these diffusion coefficients numerically.
NASA Technical Reports Server (NTRS)
Sterritt, Roy (Inventor); Hinchey, Michael G. (Inventor); Penn, Joaquin (Inventor)
2011-01-01
Systems, methods and apparatus are provided through which in some embodiments, an agent-oriented specification modeled with MaCMAS, is analyzed, flaws in the agent-oriented specification modeled with MaCMAS are corrected, and an implementation is derived from the corrected agent-oriented specification. Described herein are systems, method and apparatus that produce fully (mathematically) tractable development of agent-oriented specification(s) modeled with methodology fragment for analyzing complex multiagent systems (MaCMAS) and policies for autonomic systems from requirements through to code generation. The systems, method and apparatus described herein are illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming systems, method and apparatus described herein may provide faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.
Autonomous calibration of single spin qubit operations
NASA Astrophysics Data System (ADS)
Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor
2017-12-01
Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.
Vision guided landing of an an autonomous helicopter in hazardous terrain
NASA Technical Reports Server (NTRS)
Johnson, Andrew E.; Montgomery, Jim
2005-01-01
Future robotic space missions will employ a precision soft-landing capability that will enable exploration of previously inaccessible sites that have strong scientific significance. To enable this capability, a fully autonomous onboard system that identifies and avoids hazardous features such as steep slopes and large rocks is required. Such a system will also provide greater functionality in unstructured terrain to unmanned aerial vehicles. This paper describes an algorithm for landing hazard avoidance based on images from a single moving camera. The core of the algorithm is an efficient application of structure from motion to generate a dense elevation map of the landing area. Hazards are then detected in this map and a safe landing site is selected. The algorithm has been implemented on an autonomous helicopter testbed and demonstrated four times resulting in the first autonomous landing of an unmanned helicopter in unknown and hazardous terrain.
Autonomous Navigation Using Celestial Objects
NASA Technical Reports Server (NTRS)
Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne
1999-01-01
In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler measurements from the command link carrier to autonomously estimate the spacecraft's orbit and reference oscillator's frequency. To support autonomous attitude determination and control and maneuver planning and control, the orbit determination accuracy should be on the order of kilometers in position and centimeters per second in velocity. A less accurate solution (one hundred kilometers in position) could be used for acquisition purposes for command and science downloads. This paper provides performance results for both libration point orbiting and high Earth orbiting satellites as a function of sensor measurement accuracy, measurement types, measurement frequency, initial state errors, and dynamic modeling errors.
Liu, Nijuan; He, Qun; Bu, Weifeng
2015-03-03
Intra- and intermolecular interactions of star polymers in dilute solutions are of fundamental importance for both theoretical interest and hierarchical self-assembly into functional nanostructures. Here, star micelles with a polystyrene corona and a small ionic core bearing platinum(II) complexes have been regarded as a model of star polymers to mimic their intra- and interstar interactions and self-assembled behaviors in solvents of weakening quality. In the chloroform/methanol mixture solvents, the star micelles can self-assemble to form vesicles, in which the star micelles shrink significantly and are homogeneously distributed on the vesicle surface. Unlike the morphological evolution of conventional amphiphiles from micellar to vesicular, during which the amphiphilic molecules are commonly reorganized, the star micelles still retain their core-shell nanostructures in the vesicles and the coronal chains of the star micelle between the ionic cores are fully interpenetrated.
Sub-arcminute pointing from a balloonborne platform
NASA Astrophysics Data System (ADS)
Craig, William W.; McLean, Ryan; Hailey, Charles J.
1998-07-01
We describe the design and performance of the pointing and aspect reconstruction system on the Gamma-Ray Arcminute Telescope Imaging System. The payload consists of a 4m long gamma-ray telescope, capable of producing images of the gamma-ray sky at an angular resolution of 2 arcminutes. The telescope is operated at an altitude of 40km in azimuth/elevation pointing mode. Using a variety of sensor, including attitude GPS, fiber optic gyroscopes, star and sun trackers, the system is capable of pointing the gamma-ray payload to within an arc-minute from the balloon borne platform. The system is designed for long-term autonomous operation and performed to specification throughout a recent 36 hour flight from Alice Springs, Australia. A star tracker and pattern recognition software developed for the mission permit aspect reconstruction to better than 10 arcseconds. The narrow field star tracker system is capable of acquiring and identifying a star field without external input. We present flight data form all sensors and the resultant gamma-ray source localizations.
NASA Astrophysics Data System (ADS)
Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming
2016-12-01
An integrated inertial/celestial navigation system (INS/CNS) has wide applicability in lunar rovers as it provides accurate and autonomous navigational information. Initialization is particularly vital for a INS. This paper proposes a two-position initialization method based on a standard Kalman filter. The difference between the computed star vector and the measured star vector is measured. With the aid of a star sensor and the two positions, the attitudinal and positional errors can be greatly reduced, and the biases of three gyros and accelerometers can also be estimated. The semi-physical simulation results show that the positional and attitudinal errors converge within 0.07″ and 0.1 m, respectively, when the given initial positional error is 1 km and the attitudinal error is 10°. These good results show that the proposed method can accomplish alignment, positioning and calibration functions simultaneously. Thus the proposed two-position initialization method has the potential for application in lunar rover navigation.
Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes
NASA Astrophysics Data System (ADS)
Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica
2016-04-01
In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.
Operational Experience with Autonomous Star Trackers on ESA Interplanetary Spacecraft
NASA Technical Reports Server (NTRS)
Lauer, Mathias; Jauregui, Libe; Kielbassa, Sabine
2007-01-01
Mars Express (MEX), Rosetta and Venus Express (VEX) are ESA interplanetary spacecrafts (S/C) launched in June 2003, March 2004 and November 2005, respectively. Mars Express was injected into Mars orbit end of 2003 with routine operations starting in spring 2004. Rosetta is since launch on its way to rendezvous comet Churyumov-Gerasimenko in 2014. It has completed several test and commissioning activities and is performing several planetary swingbys (Earth in spring 2005, Mars in spring 2007, Earth in autumn 2007 and again two years later). Venus Express has also started routine operations since the completion of the Venus orbit insertion maneuver sequence beginning of May 2006. All three S/C are three axes stabilized with a similar attitude and orbit control system (AOCS). The attitude is estimated on board using star and rate sensors and controlled using four reaction wheels. A bipropellant reaction control system with 10N thrusters serves for wheel off loadings and attitude control in safe mode. Mars Express and Venus Express have an additional 400N engine for the planetary orbit insertion. Nominal Earth communication is accomplished through a high gain antenna. All three S/C are equipped with a redundant set of autonomous star trackers (STR) which are based on almost the same hardware. The STR software is especially adapted for the respective mission. This paper addresses several topics related to the experience gained with the STR operations on board the three S/C so far.
Efforts toward an autonomous wheelchair - biomed 2011.
Barrett, Steven; Streeter, Robert
2011-01-01
An autonomous wheelchair is in development to provide mobility to those with significant physical challenges. The overall goal of the project is to develop a wheelchair that is fully autonomous with the ability to navigate about an environment and negotiate obstacles. As a starting point for the project, we have reversed engineered the joystick control system of an off-the-shelf commercially available wheelchair. The joystick control has been replaced with a microcontroller based system. The microcontroller has the capability to interface with a number of subsystems currently under development including wheel odometers, obstacle avoidance sensors, and ultrasonic-based wall sensors. This paper will discuss the microcontroller based system and provide a detailed system description. Results of this study may be adapted to commercial or military robot control.
Shuttlecock detection system for fully-autonomous badminton robot with two high-speed video cameras
NASA Astrophysics Data System (ADS)
Masunari, T.; Yamagami, K.; Mizuno, M.; Une, S.; Uotani, M.; Kanematsu, T.; Demachi, K.; Sano, S.; Nakamura, Y.; Suzuki, S.
2017-02-01
Two high-speed video cameras are successfully used to detect the motion of a flying shuttlecock of badminton. The shuttlecock detection system is applied to badminton robots that play badminton fully autonomously. The detection system measures the three dimensional position and velocity of a flying shuttlecock, and predicts the position where the shuttlecock falls to the ground. The badminton robot moves quickly to the position where the shuttle-cock falls to, and hits the shuttlecock back into the opponent's side of the court. In the game of badminton, there is a large audience, and some of them move behind a flying shuttlecock, which are a kind of background noise and makes it difficult to detect the motion of the shuttlecock. The present study demonstrates that such noises can be eliminated by the method of stereo imaging with two high-speed cameras.
Simulation to Flight Test for a UAV Controls Testbed
NASA Technical Reports Server (NTRS)
Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.
2006-01-01
The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.
NASA Astrophysics Data System (ADS)
Horowitz, Wayne
Sumerian and Akkadian names of stars and constellations occur in cuneiform texts for over 2,000 years, from the third millennium BC down to the death of cuneiform in the early first millennium AD, but no fully comprehensive list was ever compiled in antiquity. Lists of stars and constellations are available in both the lexical tradition and astronomical-astrological tradition of the cuneiform scribes. The longest list in the former is that in the series Urra = hubullu, in the latter, those in Mul-Apin.
An abundance analysis of Tau Herculis, B5 IV
NASA Technical Reports Server (NTRS)
Adelman, S. J.
1977-01-01
An abundance analysis of the sharp-lined star Tau Herculis (B5 IV) has been performed using a fully line-blanketed model atmosphere. The derived abundances are similar to those of the sun and the normal main-sequence B stars Iota Her (B3 V) and Nu Cap (B9 V).
Cosmic Reionization On Computers: Numerical and Physical Convergence
Gnedin, Nickolay Y.
2016-04-01
In this paper I show that simulations of reionization performed under the Cosmic Reionization On Computers (CROC) project do converge in space and mass, albeit rather slowly. A fully converged solution (for a given star formation and feedback model) can be determined at a level of precision of about 20%, but such a solution is useless in practice, since achieving it in production-grade simulations would require a large set of runs at various mass and spatial resolutions, and computational resources for such an undertaking are not yet readily available. In order to make progress in the interim, I introduce amore » weak convergence correction factor in the star formation recipe, which allows one to approximate the fully converged solution with finite resolution simulations. The accuracy of weakly converged simulations approaches a comparable, ~20% level of precision for star formation histories of individual galactic halos and other galactic properties that are directly related to star formation rates, like stellar masses and metallicities. Yet other properties of model galaxies, for example, their HI masses, are recovered in the weakly converged runs only within a factor of two.« less
Cosmic Reionization On Computers: Numerical and Physical Convergence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y.
In this paper I show that simulations of reionization performed under the Cosmic Reionization On Computers (CROC) project do converge in space and mass, albeit rather slowly. A fully converged solution (for a given star formation and feedback model) can be determined at a level of precision of about 20%, but such a solution is useless in practice, since achieving it in production-grade simulations would require a large set of runs at various mass and spatial resolutions, and computational resources for such an undertaking are not yet readily available. In order to make progress in the interim, I introduce amore » weak convergence correction factor in the star formation recipe, which allows one to approximate the fully converged solution with finite resolution simulations. The accuracy of weakly converged simulations approaches a comparable, ~20% level of precision for star formation histories of individual galactic halos and other galactic properties that are directly related to star formation rates, like stellar masses and metallicities. Yet other properties of model galaxies, for example, their HI masses, are recovered in the weakly converged runs only within a factor of two.« less
Integrating small satellite communication in an autonomous vehicle network: A case for oceanography
NASA Astrophysics Data System (ADS)
Guerra, André G. C.; Ferreira, António Sérgio; Costa, Maria; Nodar-López, Diego; Aguado Agelet, Fernando
2018-04-01
Small satellites and autonomous vehicles have greatly evolved in the last few decades. Hundreds of small satellites have been launched with increasing functionalities, in the last few years. Likewise, numerous autonomous vehicles have been built, with decreasing costs and form-factor payloads. Here we focus on combining these two multifaceted assets in an incremental way, with an ultimate goal of alleviating the logistical expenses in remote oceanographic operations. The first goal is to create a highly reliable and constantly available communication link for a network of autonomous vehicles, taking advantage of the small satellite lower cost, with respect to conventional spacecraft, and its higher flexibility. We have developed a test platform as a proving ground for this network, by integrating a satellite software defined radio on an unmanned air vehicle, creating a system of systems, and several tests have been run successfully, over land. As soon as the satellite is fully operational, we will start to move towards a cooperative network of autonomous vehicles and small satellites, with application in maritime operations, both in-situ and remote sensing.
Autonomic control of circulation in fish: a comparative view.
Sandblom, Erik; Axelsson, Michael
2011-11-16
The autonomic nervous system has a central role in the control and co-ordination of the cardiovascular system in all vertebrates. In fish, which represent the largest and most diverse vertebrate group, the autonomic control of the circulation displays a vast variation with a number of interesting deviations from the typical vertebrate pattern. This diversity ranges from virtually no known nervous control of the circulation in hagfish, to a fully developed dual control from both cholinergic and adrenergic nerves in teleost, much resembling the situation found in other vertebrate groups. This review summarizes current knowledge on the role of the autonomic nervous system in the control of the cardiovascular system in fish. We set out by providing an overview of the general trends and patterns in the major fish groups, and then a summary of how the autonomic nervous control is involved in normal daily activities such as barostatic control of blood pressure, as well as adjustments of the cardiovascular system during feeding and environmental hypoxia. Copyright © 2011 Elsevier B.V. All rights reserved.
Autonomic Closure for Turbulent Flows Using Approximate Bayesian Computation
NASA Astrophysics Data System (ADS)
Doronina, Olga; Christopher, Jason; Hamlington, Peter; Dahm, Werner
2017-11-01
Autonomic closure is a new technique for achieving fully adaptive and physically accurate closure of coarse-grained turbulent flow governing equations, such as those solved in large eddy simulations (LES). Although autonomic closure has been shown in recent a priori tests to more accurately represent unclosed terms than do dynamic versions of traditional LES models, the computational cost of the approach makes it challenging to implement for simulations of practical turbulent flows at realistically high Reynolds numbers. The optimization step used in the approach introduces large matrices that must be inverted and is highly memory intensive. In order to reduce memory requirements, here we propose to use approximate Bayesian computation (ABC) in place of the optimization step, thereby yielding a computationally-efficient implementation of autonomic closure that trades memory-intensive for processor-intensive computations. The latter challenge can be overcome as co-processors such as general purpose graphical processing units become increasingly available on current generation petascale and exascale supercomputers. In this work, we outline the formulation of ABC-enabled autonomic closure and present initial results demonstrating the accuracy and computational cost of the approach.
Doroodgar, Barzin; Liu, Yugang; Nejat, Goldie
2014-12-01
Semi-autonomous control schemes can address the limitations of both teleoperation and fully autonomous robotic control of rescue robots in disaster environments by allowing a human operator to cooperate and share such tasks with a rescue robot as navigation, exploration, and victim identification. In this paper, we present a unique hierarchical reinforcement learning-based semi-autonomous control architecture for rescue robots operating in cluttered and unknown urban search and rescue (USAR) environments. The aim of the controller is to enable a rescue robot to continuously learn from its own experiences in an environment in order to improve its overall performance in exploration of unknown disaster scenes. A direction-based exploration technique is integrated in the controller to expand the search area of the robot via the classification of regions and the rubble piles within these regions. Both simulations and physical experiments in USAR-like environments verify the robustness of the proposed HRL-based semi-autonomous controller to unknown cluttered scenes with different sizes and varying types of configurations.
NASA Technical Reports Server (NTRS)
Smith, Dennis W.; Hooper, Fred L.
1990-01-01
As part of the development of an autonomous lubrication system for spin bearings, a system was developed to deliver oil to grease-lubricated bearings upon demand. This positive oil delivery system (PLUS) consists of a pressurized reservoir with a built-in solenoid valve that delivers a predictable quantity of oil to the spin bearing through a system of stainless steel tubes. Considerable testing was performed on the PLUS to characterize its performance and verify its effectiveness, along with qualifying it for flight. Additional development is underway that will lead to the fully autonomous active lubrication system.
Lithium in halo stars from standard stellar evolution
NASA Technical Reports Server (NTRS)
Deliyannis, Constantine P.; Demarque, Pierre; Kawaler, Steven D.
1990-01-01
A grid has been constructed of theoretical evolution sequences of models for low-metallicity stars from the premain-sequence to the giant branch phases. The grid is used to study the history of surface Li abundance during standard stellar evolution. The Li-7 observations of halo stars by Spite and Spite (1982) and subsequent observations are synthesized to separate the halo stars by age. The theory of surface Li abundance is illustrated by following the evolution of a reference halo star model from the contracting fully convective premain sequence to the giant branch phase. The theoretical models are compared with observed Li abundances. The results show that the halo star lithium abundances can be explained in the context of standard stellar evolution theory using completely standard assumptions and physics.
DISCOVERY OF BRIGHT GALACTIC R CORONAE BOREALIS AND DY PERSEI VARIABLES: RARE GEMS MINED FROM ACVS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, A. A.; Richards, J. W.; Bloom, J. S.
2012-08-20
We present the results of a machine-learning (ML)-based search for new R Coronae Borealis (RCB) stars and DY Persei-like stars (DYPers) in the Galaxy using cataloged light curves from the All-Sky Automated Survey (ASAS) Catalog of Variable Stars (ACVS). RCB stars-a rare class of hydrogen-deficient carbon-rich supergiants-are of great interest owing to the insights they can provide on the late stages of stellar evolution. DYPers are possibly the low-temperature, low-luminosity analogs to the RCB phenomenon, though additional examples are needed to fully establish this connection. While RCB stars and DYPers are traditionally identified by epochs of extreme dimming that occurmore » without regularity, the ML search framework more fully captures the richness and diversity of their photometric behavior. We demonstrate that our ML method can use newly discovered RCB stars to identify additional candidates within the same data set. Our search yields 15 candidates that we consider likely RCB stars/DYPers: new spectroscopic observations confirm that four of these candidates are RCB stars and four are DYPers. Our discovery of four new DYPers increases the number of known Galactic DYPers from two to six; noteworthy is that one of the new DYPers has a measured parallax and is m Almost-Equal-To 7 mag, making it the brightest known DYPer to date. Future observations of these new DYPers should prove instrumental in establishing the RCB connection. We consider these results, derived from a machine-learned probabilistic classification catalog, as an important proof-of-concept for the efficient discovery of rare sources with time-domain surveys.« less
A 10.6mm3 Fully-Integrated, Wireless Sensor Node with 8GHz UWB Transmitter.
Kim, Hyeongseok; Kim, Gyouho; Lee, Yoonmyung; Foo, Zhiyoong; Sylvester, Dennis; Blaauw, David; Wentzloff, David
2015-06-01
This paper presents a complete, autonomous, wireless temperature sensor, fully encapsulated in a 10.6mm 3 volume. The sensor includes solar energy harvesting with an integrated 2 μAh battery, optical receiver for programming, microcontroller and memory, 8GHz UWB transmitter, and miniaturized custom antennas with a wireless range of 7 meters. Full, stand-alone operation was demonstrated for the first time for a system of this size and functionality.
Initial attitude determination for the hipparcos satellite
NASA Astrophysics Data System (ADS)
Van der Ha, Jozef C.
The present paper described the strategy and algorithms used during the initial on-ground three-axes attitude determination of ESA's astrometry satellite HIPPARCOS. The estimation is performed using calculated crossing times of identified stars over the Star Mapper's vertical and inclined slit systems as well as outputs from a set of rate-integrating gyros. Valid star transits in either of the two fields of view are expected to occur in average about every 30 s whereas the gyros are sampled at about 1 Hz. The state vector to be estimated consists of the three angles, three rates and three gyro drift rate components. Simulations have shown that convergence of the estimator is established within about 10 min and that the accuracies achieved are in the order of a few arcsec for the angles and a few milliarcsec per s for the rates. These stringent accuracies are in fact required for initialisation of subsequent autonomous on-board real-time attitude determination.
Guidance and control for unmanned ground vehicles
NASA Astrophysics Data System (ADS)
Bateman, Peter J.
1994-06-01
Techniques for the guidance, control, and navigation of unmanned ground vehicles are described in terms of the communication bandwidth requirements for driving and control of a vehicle remote from the human operator. Modes of operation are conveniently classified as conventional teleoperation, supervisory control, and fully autonomous control. The fundamental problem of maintaining a robust non-line-of-sight communications link between the human controller and the remote vehicle is discussed, as this provides the impetus for greater autonomy in the control system and the greatest scope for innovation. While supervisory control still requires the man to be providing the primary navigational intelligence, fully autonomous operation requires that mission navigation is provided solely by on-board machine intelligence. Methods directed at achieving this performance are described using various active and passive sensing of the terrain for route navigation and obstacle detection. Emphasis is given to TV imagery and signal processing techniques for image understanding. Reference is made to the limitations of current microprocessor technology and suitable computer architectures. Some of the more recent control techniques involve the use of neural networks, fuzzy logic, and data fusion and these are discussed in the context of road following and cross country navigation. Examples of autonomous vehicle testbeds operated at various laboratories around the world are given.
An Autonomous Autopilot Control System Design for Small-Scale UAVs
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Pai, Ganeshmadhav J.; Denney, Ewen W.
2012-01-01
This paper describes the design and implementation of a fully autonomous and programmable autopilot system for small scale autonomous unmanned aerial vehicle (UAV) aircraft. This system was implemented in Reflection and has flown on the Exploration Aerial Vehicle (EAV) platform at NASA Ames Research Center, currently only as a safety backup for an experimental autopilot. The EAV and ground station are built on a component-based architecture called the Reflection Architecture. The Reflection Architecture is a prototype for a real-time embedded plug-and-play avionics system architecture which provides a transport layer for real-time communications between hardware and software components, allowing each component to focus solely on its implementation. The autopilot module described here, although developed in Reflection, contains no design elements dependent on this architecture.
Wang, Hao; Jiang, Jie; Zhang, Guangjun
2017-04-21
The simultaneous extraction of optical navigation measurements from a target celestial body and star images is essential for autonomous optical navigation. Generally, a single optical navigation sensor cannot simultaneously image the target celestial body and stars well-exposed because their irradiance difference is generally large. Multi-sensor integration or complex image processing algorithms are commonly utilized to solve the said problem. This study analyzes and demonstrates the feasibility of simultaneously imaging the target celestial body and stars well-exposed within a single exposure through a single field of view (FOV) optical navigation sensor using the well capacity adjusting (WCA) scheme. First, the irradiance characteristics of the celestial body are analyzed. Then, the celestial body edge model and star spot imaging model are established when the WCA scheme is applied. Furthermore, the effect of exposure parameters on the accuracy of star centroiding and edge extraction is analyzed using the proposed model. Optimal exposure parameters are also derived by conducting Monte Carlo simulation to obtain the best performance of the navigation sensor. Finally, laboratorial and night sky experiments are performed to validate the correctness of the proposed model and optimal exposure parameters.
Wang, Hao; Jiang, Jie; Zhang, Guangjun
2017-01-01
The simultaneous extraction of optical navigation measurements from a target celestial body and star images is essential for autonomous optical navigation. Generally, a single optical navigation sensor cannot simultaneously image the target celestial body and stars well-exposed because their irradiance difference is generally large. Multi-sensor integration or complex image processing algorithms are commonly utilized to solve the said problem. This study analyzes and demonstrates the feasibility of simultaneously imaging the target celestial body and stars well-exposed within a single exposure through a single field of view (FOV) optical navigation sensor using the well capacity adjusting (WCA) scheme. First, the irradiance characteristics of the celestial body are analyzed. Then, the celestial body edge model and star spot imaging model are established when the WCA scheme is applied. Furthermore, the effect of exposure parameters on the accuracy of star centroiding and edge extraction is analyzed using the proposed model. Optimal exposure parameters are also derived by conducting Monte Carlo simulation to obtain the best performance of the navigation sensor. Finally, laboratorial and night sky experiments are performed to validate the correctness of the proposed model and optimal exposure parameters. PMID:28430132
An autonomous observation and control system based on EPICS and RTS2 for Antarctic telescopes
NASA Astrophysics Data System (ADS)
Zhang, Guang-yu; Wang, Jian; Tang, Peng-yi; Jia, Ming-hao; Chen, Jie; Dong, Shu-cheng; Jiang, Fengxin; Wu, Wen-qing; Liu, Jia-jing; Zhang, Hong-fei
2016-01-01
For unattended telescopes in Antarctic, the remote operation, autonomous observation and control are essential. An EPICS-(Experimental Physics and Industrial Control System) and RTS2-(Remote Telescope System, 2nd Version) based autonomous observation and control system with remoted operation is introduced in this paper. EPICS is a set of open source software tools, libraries and applications developed collaboratively and used worldwide to create distributed soft real-time control systems for scientific instruments while RTS2 is an open source environment for control of a fully autonomous observatory. Using the advantage of EPICS and RTS2, respectively, a combined integrated software framework for autonomous observation and control is established that use RTS2 to fulfil the function of astronomical observation and use EPICS to fulfil the device control of telescope. A command and status interface for EPICS and RTS2 is designed to make the EPICS IOC (Input/Output Controller) components integrate to RTS2 directly. For the specification and requirement of control system of telescope in Antarctic, core components named Executor and Auto-focus for autonomous observation is designed and implemented with remote operation user interface based on browser-server mode. The whole system including the telescope is tested in Lijiang Observatory in Yunnan Province for practical observation to complete the autonomous observation and control, including telescope control, camera control, dome control, weather information acquisition with the local and remote operation.
Could Ultracool Dwarfs Have Sun-Like Activity?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-11-01
Solar-like stars exhibit magnetic cycles; our Sun, for instance, displays an 11-year period in its activity, manifesting as cyclic changes in radiation levels, the number of sunspots and flares, and ejection of solar material. Over the span of two activity cycles, the Suns magnetic field flips polarity and then returns to its original state.An artists illustration comparing the Sun to TRAPPIST-1, an ultracool dwarf star known to host several planets. [ESO]But what about the magnetic behavior of objects near the cooler end of the stellar main sequence do they exhibit similar activity cycles?Effects of a Convecting InteriorDwarf stars have made headlines in recent years due to their potential to harbor exoplanets. Because these cooler stars have lower flux levels compared to the Sun, their habitable zones lie much closer to the stars. The magnetic behavior of these stars is therefore important to understand: could ultracool dwarfs exhibit solar-like activity cycles that would affect planets with close orbits?The differences in internal structure between different mass stars. Ultracool dwarfs have fully convective interiors. [www.sun.org]Theres a major difference between ultracool dwarfs (stars of spectral type higher than M7 and brown dwarfs) and Sun-like stars: their internal structures. Sun-like stars have a convective envelope that surrounds a radiative core. The interiors of cool, low-mass objects, on the other hand, are fully convective.Based on theoretical studies of how magnetism is generated in stars, its thought that the fully convective interiors of ultracool dwarfs cant support large-scale magnetic field formation. This should prevent these stars from exhibiting activity cycles like the Sun. But recent radio observations of dwarf stars have led scientist Matthew Route (ITaP Research Computing, Purdue University) to question these models.A Reversing Field?During observations of the brown dwarf star J1047+21 in 20102011, radio flares were detected with emission primarily polarized in a single direction. The dwarfs flares in late 2013, however, all showed polarization in the opposite direction. Could this be an indication that J1047+21 has a stable, global dipolar field that flipped polarity in between the two sets of observations? If so, this could mean that the star has a magnetic cycle similar to the Suns.Artists impression showing the relative sizes and colors of the Sun, a red dwarf (M-dwarf), a hotter brown dwarf (L-dwarf), a cool brown dwarf (T-dwarf) similar to J1047+21, and the planet Jupiter [Credit: NASA/IPAC/R. Hurt (SSC)]Inspired by this possibility, Route conducted an investigation of the long-term magnetic behavior of all known radio-flaring ultracool dwarfs, a list of 14 stars. Using polarized radio emission measurements, he found that many of his targets exhibited similar polarity flips, which he argues is evidence that these dwarfs are undergoing magnetic field reversals on roughly decade-long timescales, analogous to those reversals that occur in the Sun.If this is indeed true, then we need to examine our models of how magnetic fields are generated in stars: the interface between the radiative and convective layers may not be necessary to produce large-scale magnetic fields. Understanding this process is certainly an important step in interpreting the potential habitability of planets around ultracool dwarfs.CitationMatthew Route 2016 ApJL 830 L27. doi:10.3847/2041-8205/830/2/L27
NASA Astrophysics Data System (ADS)
Kesseli, Aurora Y.; Muirhead, Philip S.; Mann, Andrew W.; Mace, Greg
2018-06-01
Main-sequence, fully convective M dwarfs in eclipsing binaries are observed to be larger than stellar evolutionary models predict by as much as 10%–15%. A proposed explanation for this discrepancy involves effects from strong magnetic fields, induced by rapid rotation via the dynamo process. Although, a handful of single, slowly rotating M dwarfs with radius measurements from interferometry also appear to be larger than models predict, suggesting that rotation or binarity specifically may not be the sole cause of the discrepancy. We test whether single, rapidly rotating, fully convective stars are also larger than expected by measuring their R\\sin i distribution. We combine photometric rotation periods from the literature with rotational broadening (v\\sin i) measurements reported in this work for a sample of 88 rapidly rotating M dwarf stars. Using a Bayesian framework, we find that stellar evolutionary models underestimate the radii by 10 % {--}15{ % }-2.5+3, but that at higher masses (0.18 < M < 0.4 M Sun), the discrepancy is only about 6% and comparable to results from interferometry and eclipsing binaries. At the lowest masses (0.08 < M < 0.18 M Sun), we find that the discrepancy between observations and theory is 13%–18%, and we argue that the discrepancy is unlikely to be due to effects from age. Furthermore, we find no statistically significant radius discrepancy between our sample and the handful of M dwarfs with interferometric radii. We conclude that neither rotation nor binarity are responsible for the inflated radii of fully convective M dwarfs, and that all fully convective M dwarfs are larger than models predict.
Ling, Shichun; Raine, Adrian; Gao, Yu; Schug, Robert
2018-06-04
Reduced autonomic activity is a risk factor for psychopathy, but the mechanisms underlying this association are under-researched. We hypothesize that emotional intelligence mediates this relationship. Emotional intelligence, cognitive intelligence, scores on the Psychopathy Checklist- Revised (PCL-R), skin conductance, and heart rate were assessed in 156 men from communities in Los Angeles. Emotional intelligence fully mediated the relationship between autonomic functioning and total psychopathy after controlling for cognitive intelligence for both autonomic measures. Full mediation was also found when using PCL-R factors and facets as outcome variables, with the exception of a partial mediation of the heart rate -Antisocial facet relationship. These findings are the first to document emotional intelligence as a mediator of the blunted physiological stress activity - psychopathy relationship, and are interpreted within the framework of the somatic marker and somatic aphasia theories of psychopathy. Possible implications for treatment interventions are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.
Road Lane Detection Robust to Shadows Based on a Fuzzy System Using a Visible Light Camera Sensor.
Hoang, Toan Minh; Baek, Na Rae; Cho, Se Woon; Kim, Ki Wan; Park, Kang Ryoung
2017-10-28
Recently, autonomous vehicles, particularly self-driving cars, have received significant attention owing to rapid advancements in sensor and computation technologies. In addition to traffic sign recognition, road lane detection is one of the most important factors used in lane departure warning systems and autonomous vehicles for maintaining the safety of semi-autonomous and fully autonomous systems. Unlike traffic signs, road lanes are easily damaged by both internal and external factors such as road quality, occlusion (traffic on the road), weather conditions, and illumination (shadows from objects such as cars, trees, and buildings). Obtaining clear road lane markings for recognition processing is a difficult challenge. Therefore, we propose a method to overcome various illumination problems, particularly severe shadows, by using fuzzy system and line segment detector algorithms to obtain better results for detecting road lanes by a visible light camera sensor. Experimental results from three open databases, Caltech dataset, Santiago Lanes dataset (SLD), and Road Marking dataset, showed that our method outperformed conventional lane detection methods.
NASA Astrophysics Data System (ADS)
Bhattacharyya, Sudip; Bhattacharya, Dipankar; Thampan, Arun V.
2001-08-01
We present computed spectra, as seen by a distant observer, from the accretion disc around a rapidly rotating neutron star. Our calculations are carried out in a fully general relativistic framework, with an exact treatment of rotation. We take into account the Doppler shift, gravitational redshift and light-bending effects in order to compute the observed spectrum. We find that light bending significantly modifies the high-energy part of the spectrum. Computed spectra for slowly rotating neutron stars are also presented. These results would be important for modelling the observed X-ray spectra of low-mass X-ray binaries containing fast-spinning neutron stars.
A New Baseline for Chronic Fatigue: Why Measuring Flight Time Is the Wrong Approach
2013-04-01
crew is shown to report fully or nearly fully effective for the following sortie despite their harrowing schedule. (Table 3) Flyawake Results...Journal of Psychology, July 1948: 13. Svan, Jennifer H. "Air Force Changes Deployments Lengths for Some 42,000 Airmen." Stars and Stripes, September 16
Li, Tianlong; Chang, Xiaocong; Wu, Zhiguang; Li, Jinxing; Shao, Guangbin; Deng, Xinghong; Qiu, Jianbin; Guo, Bin; Zhang, Guangyu; He, Qiang; Li, Longqiu; Wang, Joseph
2017-09-26
Self-propelled micro- and nanoscale robots represent a rapidly emerging and fascinating robotics research area. However, designing autonomous and adaptive control systems for operating micro/nanorobotics in complex and dynamically changing environments, which is a highly demanding feature, is still an unmet challenge. Here we describe a smart microvehicle for precise autonomous navigation in complicated environments and traffic scenarios. The fully autonomous navigation system of the smart microvehicle is composed of a microscope-coupled CCD camera, an artificial intelligence planner, and a magnetic field generator. The microscope-coupled CCD camera provides real-time localization of the chemically powered Janus microsphere vehicle and environmental detection for path planning to generate optimal collision-free routes, while the moving direction of the microrobot toward a reference position is determined by the external electromagnetic torque. Real-time object detection offers adaptive path planning in response to dynamically changing environments. We demonstrate that the autonomous navigation system can guide the vehicle movement in complex patterns, in the presence of dynamically changing obstacles, and in complex biological environments. Such a navigation system for micro/nanoscale vehicles, relying on vision-based close-loop control and path planning, is highly promising for their autonomous operation in complex dynamic settings and unpredictable scenarios expected in a variety of realistic nanoscale scenarios.
Prototyping and testing of a fully autonomous road construction beacon, the iCone.
DOT National Transportation Integrated Search
2010-04-01
A revolutionary portable traffic monitoring device is developed, extensively prototyped and thoroughly tested throughout the State of New York as well as several other states. The resulting device, trademarked as the iCone, simplifies the process o...
Kodiak Star: A Success in Partnership
NASA Technical Reports Server (NTRS)
Skrobot, Garrett L.
2008-01-01
The Kodiak Star Mission was very challenging and offers significant lesson for future missions. A multinational fully integrated team had the opportunity to perform a truly first of a kind mission from a new launch complex with a unique manifest of experimental spacecraft. The integration goal of 10-months was met utilizing quick identification of the issues, and determining innovative ways to solve the problems
Portent of Heine's Reciprocal Square Root Identity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohl, H W
Precise efforts in theoretical astrophysics are needed to fully understand the mechanisms that govern the structure, stability, dynamics, formation, and evolution of differentially rotating stars. Direct computation of the physical attributes of a star can be facilitated by the use of highly compact azimuthal and separation angle Fourier formulations of the Green's functions for the linear partial differential equations of mathematical physics.
NASA Astrophysics Data System (ADS)
Rainer, M.; Poretti, E.; Mistò, A.; Panzera, M. R.; Molinaro, M.; Cepparo, F.; Roth, M.; Michel, E.; Monteiro, M. J. P. F. G.
2016-12-01
We created a large database of physical parameters and variability indicators by fully reducing and analyzing the large number of spectra taken to complement the asteroseismic observations of the COnvection, ROtation and planetary Transits (CoRoT) satellite. 7103 spectra of 261 stars obtained with the ESO echelle spectrograph HARPS have been stored in the VO-compliant database Spectroscopic Indicators in a SeisMic Archive (SISMA), along with the CoRoT photometric data of the 72 CoRoT asteroseismic targets. The remaining stars belong to the same variable classes of the CoRoT targets and were observed to better characterize the properties of such classes. Several useful variability indicators (mean line profiles, indices of differential rotation, activity and emission lines) together with v\\sin I and radial-velocity measurements have been extracted from the spectra. The atmospheric parameters {T}{eff},{log}g, and [Fe/H] have been computed following a homogeneous procedure. As a result, we fully characterize a sample of new and known variable stars by computing several spectroscopic indicators, also providing some cases of simultaneous photometry and spectroscopy.
COSMIC REIONIZATION ON COMPUTERS: NUMERICAL AND PHYSICAL CONVERGENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnedin, Nickolay Y., E-mail: gnedin@fnal.gov; Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637; Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637
In this paper I show that simulations of reionization performed under the Cosmic Reionization On Computers project do converge in space and mass, albeit rather slowly. A fully converged solution (for a given star formation and feedback model) can be determined at a level of precision of about 20%, but such a solution is useless in practice, since achieving it in production-grade simulations would require a large set of runs at various mass and spatial resolutions, and computational resources for such an undertaking are not yet readily available. In order to make progress in the interim, I introduce a weakmore » convergence correction factor in the star formation recipe, which allows one to approximate the fully converged solution with finite-resolution simulations. The accuracy of weakly converged simulations approaches a comparable, ∼20% level of precision for star formation histories of individual galactic halos and other galactic properties that are directly related to star formation rates, such as stellar masses and metallicities. Yet other properties of model galaxies, for example, their H i masses, are recovered in the weakly converged runs only within a factor of 2.« less
Autonomic dysfunction in women with fibromyalgia
2012-01-01
Fibromyalgia (FM) is an idiopathic disease characterized by widespread pain and a myriad of symptoms. Symptoms are diverse and include not only pain but also anxiety, depression, orthostatic intolerance, and cold intolerance. While the etiology of FM is not fully understood, data have suggested that FM may stem from dysfunction of the autonomic nervous system. This dysfunction has been reported at rest, and after a physiological stressor such as exercise. However, few studies have examined the responses during exercise. This novel approach may shed some new light on the effect of exercise in women with FM. PMID:22353700
Artificial Intelligence in Autonomous Telescopes
NASA Astrophysics Data System (ADS)
Mahoney, William; Thanjavur, Karun
2011-03-01
Artificial Intelligence (AI) is key to the natural evolution of today's automated telescopes to fully autonomous systems. Based on its rapid development over the past five decades, AI offers numerous, well-tested techniques for knowledge based decision making essential for real-time telescope monitoring and control, with minimal - and eventually no - human intervention. We present three applications of AI developed at CFHT for monitoring instantaneous sky conditions, assessing quality of imaging data, and a prototype for scheduling observations in real-time. Closely complementing the current remote operations at CFHT, we foresee further development of these methods and full integration in the near future.
Failure of continuum methods for determining the effective temperature of hot stars
NASA Technical Reports Server (NTRS)
Hummer, D. G.; Abbott, David C.; Voels, Stephen A.; Bohannan, Bruce
1988-01-01
It is demonstrated here that, for hot stars, methods based on the integrated continuum flux are completely unreliable discriminators of the effective temperature. Absorption line profiles provide much more accurate values of these parameters. It is not necessary to invoke nonradiative energy and momentum effects to explain the spectroscopic appearance of O-type stars of very different spectral type; rather, the observed spectra can be well modeled and fully interpreted by normal interaction of gas and radiation in stellar atmospheres of differing effective temperature and gravity.
An analytically soluble problem in fully nonlinear statistical gravitational lensing
NASA Technical Reports Server (NTRS)
Schneider, P.
1987-01-01
The amplification probability distribution p(I)dI for a point source behind a random star field which acts as the deflector exhibits a I exp-3 behavior for large amplification, as can be shown from the universality of the lens equation near critical lines. In this paper it is shown that the amplitude of the I exp-3 tail can be derived exactly for arbitrary mass distribution of the stars, surface mass density of stars and smoothly distributed matter, and large-scale shear. This is then compared with the corresponding linear result.
A Neptune-sized transiting planet closely orbiting a 5–10-million-year-old star.
David, Trevor J; Hillenbrand, Lynne A; Petigura, Erik A; Carpenter, John M; Crossfield, Ian J M; Hinkley, Sasha; Ciardi, David R; Howard, Andrew W; Isaacson, Howard T; Cody, Ann Marie; Schlieder, Joshua E; Beichman, Charles A; Barenfeld, Scott A
2016-06-30
Theories of the formation and early evolution of planetary systems postulate that planets are born in circumstellar disks, and undergo radial migration during and after dissipation of the dust and gas disk from which they formed. The precise ages of meteorites indicate that planetesimals—the building blocks of planets—are produced within the first million years of a star’s life. Fully formed planets are frequently detected on short orbital periods around mature stars. Some theories suggest that the in situ formation of planets close to their host stars is unlikely and that the existence of such planets is therefore evidence of large-scale migration. Other theories posit that planet assembly at small orbital separations may be common. Here we report a newly born, transiting planet orbiting its star with a period of 5.4 days. The planet is 50 per cent larger than Neptune, and its mass is less than 3.6 times that of Jupiter (at 99.7 per cent confidence), with a true mass likely to be similar to that of Neptune. The star is 5–10 million years old and has a tenuous dust disk extending outward from about twice the Earth–Sun separation, in addition to the fully formed planet located at less than one-twentieth of the Earth–Sun separation.
AltiVec performance increases for autonomous robotics for the MARSSCAPE architecture program
NASA Astrophysics Data System (ADS)
Gothard, Benny M.
2002-02-01
One of the main tall poles that must be overcome to develop a fully autonomous vehicle is the inability of the computer to understand its surrounding environment to a level that is required for the intended task. The military mission scenario requires a robot to interact in a complex, unstructured, dynamic environment. Reference A High Fidelity Multi-Sensor Scene Understanding System for Autonomous Navigation The Mobile Autonomous Robot Software Self Composing Adaptive Programming Environment (MarsScape) perception research addresses three aspects of the problem; sensor system design, processing architectures, and algorithm enhancements. A prototype perception system has been demonstrated on robotic High Mobility Multi-purpose Wheeled Vehicle and All Terrain Vehicle testbeds. This paper addresses the tall pole of processing requirements and the performance improvements based on the selected MarsScape Processing Architecture. The processor chosen is the Motorola Altivec-G4 Power PC(PPC) (1998 Motorola, Inc.), a highly parallized commercial Single Instruction Multiple Data processor. Both derived perception benchmarks and actual perception subsystems code will be benchmarked and compared against previous Demo II-Semi-autonomous Surrogate Vehicle processing architectures along with desktop Personal Computers(PC). Performance gains are highlighted with progress to date, and lessons learned and future directions are described.
NASA Astrophysics Data System (ADS)
Sanchez, M.; Probst, L.; Blazevic, E.; Nakao, B.; Northrup, M. A.
2011-11-01
We describe a fully automated and autonomous air-borne biothreat detection system for biosurveillance applications. The system, including the nucleic-acid-based detection assay, was designed, built and shipped by Microfluidic Systems Inc (MFSI), a new subsidiary of PositiveID Corporation (PSID). Our findings demonstrate that the system and assay unequivocally identify pathogenic strains of Bacillus anthracis, Yersinia pestis, Francisella tularensis, Burkholderia mallei, and Burkholderia pseudomallei. In order to assess the assay's ability to detect unknown samples, our team also challenged it against a series of blind samples provided by the Department of Homeland Security (DHS). These samples included natural occurring isolated strains, near-neighbor isolates, and environmental samples. Our results indicate that the multiplex assay was specific and produced no false positives when challenged with in house gDNA collections and DHS provided panels. Here we present another analytical tool for the rapid identification of nine Centers for Disease Control and Prevention category A and B biothreat organisms.
Kim, Jungkyu; Jensen, Erik C; Stockton, Amanda M; Mathies, Richard A
2013-08-20
A fully integrated multilayer microfluidic chemical analyzer for automated sample processing and labeling, as well as analysis using capillary zone electrophoresis is developed and characterized. Using lifting gate microfluidic control valve technology, a microfluidic automaton consisting of a two-dimensional microvalve cellular array is fabricated with soft lithography in a format that enables facile integration with a microfluidic capillary electrophoresis device. The programmable sample processor performs precise mixing, metering, and routing operations that can be combined to achieve automation of complex and diverse assay protocols. Sample labeling protocols for amino acid, aldehyde/ketone and carboxylic acid analysis are performed automatically followed by automated transfer and analysis by the integrated microfluidic capillary electrophoresis chip. Equivalent performance to off-chip sample processing is demonstrated for each compound class; the automated analysis resulted in a limit of detection of ~16 nM for amino acids. Our microfluidic automaton provides a fully automated, portable microfluidic analysis system capable of autonomous analysis of diverse compound classes in challenging environments.
Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm
Kyristsis, Sarantis; Antonopoulos, Angelos; Chanialakis, Theofilos; Stefanakis, Emmanouel; Linardos, Christos; Tripolitsiotis, Achilles; Partsinevelos, Panagiotis
2016-01-01
Nowadays, various unmanned aerial vehicle (UAV) applications become increasingly demanding since they require real-time, autonomous and intelligent functions. Towards this end, in the present study, a fully autonomous UAV scenario is implemented, including the tasks of area scanning, target recognition, geo-location, monitoring, following and finally landing on a high speed moving platform. The underlying methodology includes AprilTag target identification through Graphics Processing Unit (GPU) parallelized processing, image processing and several optimized locations and approach algorithms employing gimbal movement, Global Navigation Satellite System (GNSS) readings and UAV navigation. For the experimentation, a commercial and a custom made quad-copter prototype were used, portraying a high and a low-computational embedded platform alternative. Among the successful targeting and follow procedures, it is shown that the landing approach can be successfully performed even under high platform speeds. PMID:27827883
Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm.
Kyristsis, Sarantis; Antonopoulos, Angelos; Chanialakis, Theofilos; Stefanakis, Emmanouel; Linardos, Christos; Tripolitsiotis, Achilles; Partsinevelos, Panagiotis
2016-11-03
Nowadays, various unmanned aerial vehicle (UAV) applications become increasingly demanding since they require real-time, autonomous and intelligent functions. Towards this end, in the present study, a fully autonomous UAV scenario is implemented, including the tasks of area scanning, target recognition, geo-location, monitoring, following and finally landing on a high speed moving platform. The underlying methodology includes AprilTag target identification through Graphics Processing Unit (GPU) parallelized processing, image processing and several optimized locations and approach algorithms employing gimbal movement, Global Navigation Satellite System (GNSS) readings and UAV navigation. For the experimentation, a commercial and a custom made quad-copter prototype were used, portraying a high and a low-computational embedded platform alternative. Among the successful targeting and follow procedures, it is shown that the landing approach can be successfully performed even under high platform speeds.
Feasibility of Turing-Style Tests for Autonomous Aerial Vehicle "Intelligence"
NASA Technical Reports Server (NTRS)
Young, Larry A.
2007-01-01
A new approach is suggested to define and evaluate key metrics as to autonomous aerial vehicle performance. This approach entails the conceptual definition of a "Turing Test" for UAVs. Such a "UAV Turing test" would be conducted by means of mission simulations and/or tailored flight demonstrations of vehicles under the guidance of their autonomous system software. These autonomous vehicle mission simulations and flight demonstrations would also have to be benchmarked against missions "flown" with pilots/human-operators in the loop. In turn, scoring criteria for such testing could be based upon both quantitative mission success metrics (unique to each mission) and by turning to analog "handling quality" metrics similar to the well-known Cooper-Harper pilot ratings used for manned aircraft. Autonomous aerial vehicles would be considered to have successfully passed this "UAV Turing Test" if the aggregate mission success metrics and handling qualities for the autonomous aerial vehicle matched or exceeded the equivalent metrics for missions conducted with pilots/human-operators in the loop. Alternatively, an independent, knowledgeable observer could provide the "UAV Turing Test" ratings of whether a vehicle is autonomous or "piloted." This observer ideally would, in the more sophisticated mission simulations, also have the enhanced capability of being able to override the scripted mission scenario and instigate failure modes and change of flight profile/plans. If a majority of mission tasks are rated as "piloted" by the observer, when in reality the vehicle/simulation is fully- or semi- autonomously controlled, then the vehicle/simulation "passes" the "UAV Turing Test." In this regards, this second "UAV Turing Test" approach is more consistent with Turing s original "imitation game" proposal. The overall feasibility, and important considerations and limitations, of such an approach for judging/evaluating autonomous aerial vehicle "intelligence" will be discussed from a theoretical perspective.
A voting-based star identification algorithm utilizing local and global distribution
NASA Astrophysics Data System (ADS)
Fan, Qiaoyun; Zhong, Xuyang; Sun, Junhua
2018-03-01
A novel star identification algorithm based on voting scheme is presented in this paper. In the proposed algorithm, the global distribution and local distribution of sensor stars are fully utilized, and the stratified voting scheme is adopted to obtain the candidates for sensor stars. The database optimization is employed to reduce its memory requirement and improve the robustness of the proposed algorithm. The simulation shows that the proposed algorithm exhibits 99.81% identification rate with 2-pixel standard deviations of positional noises and 0.322-Mv magnitude noises. Compared with two similar algorithms, the proposed algorithm is more robust towards noise, and the average identification time and required memory is less. Furthermore, the real sky test shows that the proposed algorithm performs well on the real star images.
Infrared Spectroscopy of Star Formation in Galactic and Extragalactic Regions
NASA Technical Reports Server (NTRS)
Smith, Howard A.; Hasan, Hashima (Technical Monitor)
2002-01-01
This report details work done in a project involving spectroscopic studies, including data analysis and modeling, of star-formation regions using an ensemble of archival space-based data including some from the Infrared Space Observatory's Long Wavelength Spectrometer and Short Wavelength Spectrometer, and other spectroscopic databases. We will include four kinds of regions: (1) disks around more evolved objects; (2) young, low or high mass pre-main sequence stars in star-formation regions; (3) star formation in external, bright IR (infrared) galaxies; and (4) the galactic center. During this period, work proceeded fully on track and on time. Details on workshops and conferences attended and research results are presented. A preprint article entitled 'The Far Infrared Lines of OH as Molecular Cloud Diagnostics' is included as an appendix.
Compact autonomous navigation system (CANS)
NASA Astrophysics Data System (ADS)
Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.
2017-11-01
Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].
Simultaneous Transmit and Receive Performance of an 8-channel Digital Phased Array
2017-01-16
Lincoln Laboratory Lexington, Massachusetts, USA Abstract—The Aperture- Level Simultaneous Transmit and Re- ceive (ALSTAR) architecture enables extremely...In [1], the Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture was proposed for achieving STAR using a fully digital phased array...Aperture- Level Simultaneous Transmit and Receive (ALSTAR) architecture enables STAR functionality in a digital phased array without the use of specialized
Classifying Structures in the ISM with Machine Learning Techniques
NASA Astrophysics Data System (ADS)
Beaumont, Christopher; Goodman, A. A.; Williams, J. P.
2011-01-01
The processes which govern molecular cloud evolution and star formation often sculpt structures in the ISM: filaments, pillars, shells, outflows, etc. Because of their morphological complexity, these objects are often identified manually. Manual classification has several disadvantages; the process is subjective, not easily reproducible, and does not scale well to handle increasingly large datasets. We have explored to what extent machine learning algorithms can be trained to autonomously identify specific morphological features in molecular cloud datasets. We show that the Support Vector Machine algorithm can successfully locate filaments and outflows blended with other emission structures. When the objects of interest are morphologically distinct from the surrounding emission, this autonomous classification achieves >90% accuracy. We have developed a set of IDL-based tools to apply this technique to other datasets.
NASA Astrophysics Data System (ADS)
Katsuda, Satoru; Morii, Mikio; Janka, Hans-Thomas; Wongwathanarat, Annop; Nakamura, Ko; Kotake, Kei; Mori, Koji; Müller, Ewald; Takiwaki, Tomoya; Tanaka, Masaomi; Tominaga, Nozomu; Tsunemi, Hiroshi
2018-03-01
The birth properties of neutron stars (NSs) yield important information about the still-debated physical processes that trigger the explosion as well as on intrinsic neutron-star physics. These properties include the high space velocities of young neutron stars with average values of several 100 km s‑1, with an underlying “kick” mechanism that is not fully clarified. There are two competing possibilities that could accelerate NSs during their birth: anisotropic ejection of either stellar debris or neutrinos. Here we present new evidence from X-ray measurements that chemical elements between silicon and calcium in six young gaseous supernova remnants are preferentially expelled opposite to the direction of neutron star motion. There is no correlation between the kick velocities and magnetic field strengths of these neutron stars. Our results support a hydrodynamic origin of neutron-star kicks connected to asymmetric explosive mass ejection, and they conflict with neutron-star acceleration scenarios that invoke anisotropic neutrino emission caused by particle and nuclear physics in combination with very strong neutron-star magnetic fields.
Analysing neutron star in HESS J1731-347 from thermal emission and cooling theory
NASA Astrophysics Data System (ADS)
Ofengeim, D. D.; Kaminker, A. D.; Klochkov, D.; Suleimanov, V.; Yakovlev, D. G.
2015-12-01
The central compact object in the supernova remnant HESS J1731-347 appears to be the hottest observed isolated cooling neutron star. The cooling theory of neutron stars enables one to explain observations of this star by assuming the presence of strong proton superfluidity in the stellar core and the existence of the surface heat blanketing envelope which almost fully consists of carbon. The cooling model of this star is elaborated to take proper account of the neutrino emission due to neutron-neutron collisions which is not suppressed by proton superfluidity. Using the results of spectral fits of observed thermal spectra for the distance of 3.2 kpc and the cooling theory for the neutron star of age 27 kyr, new constraints on the stellar mass and radius are obtained which are more stringent than those derived from the spectral fits alone.
Quantitative Study of Blue Stars in NGC 55
NASA Astrophysics Data System (ADS)
Castro, N.; Herrero, A.; Urbaneja, M. A.; García, M.; Simón-Díaz, S.; Bresolin, F.; Pietrzynski, G.; Kudritzki, R.-P.; Gieren, W.
2012-12-01
Massive blue stars are the rarest in number compared with other stars; however, they are the main engines in the chemical and dynamical evolution of galaxies in the Universe. They are also among the brightest stars, making it possible to be observed (and hence studied) beyond the edges of the Milky Way. In the case of the galaxy NGC 55 (1.9 Mpc), presented in this work, it has been not only possible to provide the first census of massive blue stars, but also perform a fully characterization of these stars, including the stellar parameters, the chemical abundances, and information about their evolutionary stages. Even so, that permitted to derive important properties of the host galaxy. This challenging study is based on an objective and fast automatic technique built upon a new state-of-the-art FASTWIND atmosphere model grid. Both the tool and the grid were specially developed for this project.
NASA Astrophysics Data System (ADS)
Strippoli, L. S.; Gonzalez-Arjona, D. G.
2018-04-01
GMV extensively worked in many activities aimed at developing, validating, and verifying up to TRL-6 advanced GNC and IP algorithms for Mars Sample Return rendezvous working under different ESA contracts on the development of advanced algorithms for VBN sensor.
Crew-Aided Autonomous Navigation Project
NASA Technical Reports Server (NTRS)
Holt, Greg
2015-01-01
Manual capability to perform star/planet-limb sightings provides a cheap, simple, and robust backup navigation source for exploration missions independent from the ground. Sextant sightings from spacecraft were first exercised in Gemini and flew as the loss-of-communications backup for all Apollo missions. This study seeks to procure and characterize error sources of navigation-grade sextants for feasibility of taking star and planetary limb sightings from inside a spacecraft. A series of similar studies was performed in the early/mid-1960s in preparation for Apollo missions, and one goal of this study is to modernize and update those findings. This technique has the potential to deliver significant risk mitigation, validation, and backup to more complex low-TRL automated systems under development involving cameras.
Development and Control of the Naval Postgraduate School Planar Autonomous Docking Simulator (NPADS)
NASA Astrophysics Data System (ADS)
Porter, Robert D.
2002-09-01
The objective of this thesis was to design, construct and develop the initial autonomous control algorithm for the NPS Planar Autonomous Docking Simulator (NPADS) The effort included hardware design, fabrication, installation and integration; mass property determination; and the development and testing of control laws utilizing MATLAB and Simulink for modeling and LabView for NPADS control, The NPADS vehicle uses air pads and a granite table to simulate a 2-D, drag-free, zero-g space environment, It is a completely self-contained vehicle equipped with eight cold-gas, bang-bang type thrusters and a reaction wheel for motion control, A 'star sensor' CCD camera locates the vehicle on the table while a color CCD docking camera and two robotic arms will locate and dock with a target vehicle, The on-board computer system leverages PXI technology and a single source, simplifying systems integration, The vehicle is powered by two lead-acid batteries for completely autonomous operation, A graphical user interface and wireless Ethernet enable the user to command and monitor the vehicle from a remote command and data acquisition computer. Two control algorithms were developed and allow the user to either control the thrusters and reaction wheel manually or simply specify a desired location and rotation angle,
Spin-up of a rapidly rotating star by angular momentum loss - Effects of general relativity
NASA Technical Reports Server (NTRS)
Cook, Gregory B.; Shapiro, Stuart L.; Teukolsky, Saul A.
1992-01-01
It has recently been shown that a rapidly rotating Newtonian star can spin up by radiating angular momentum. Extremely fast pulsars losing energy and angular momentum by magnetic dipole radiation or gravitational radiation may exhibit this behavior. Here, we show that this phenomenon is more widespread for rapidly rotating stars in general relativity. We construct and tabulate polytropic sequences of fully relativistic rotating stars of constant rest mass and entropy. We find that the range of adiabatic indices allowing spin-up extends somewhat above 4/3 because of the nonlinear effects of relativistic gravity. In addition, there is a new class of 'supramassive' stars which will inevitably spin up by losing angular momentum regardless of their equation of state. A supramassive star, spinning up via angular momentum loss, will ultimately evolve until it becomes unstable to catastrophic collapse to a black hole. Spin-up in a rapidly rotating star may thus be an observational precursor to such collapse.
Tacchella, S; Carollo, C M; Renzini, A; Förster Schreiber, N M; Lang, P; Wuyts, S; Cresci, G; Dekel, A; Genzel, R; Lilly, S J; Mancini, C; Newman, S; Onodera, M; Shapley, A; Tacconi, L; Woo, J; Zamorani, G
2015-04-17
Most present-day galaxies with stellar masses ≥10(11) solar masses show no ongoing star formation and are dense spheroids. Ten billion years ago, similarly massive galaxies were typically forming stars at rates of hundreds solar masses per year. It is debated how star formation ceased, on which time scales, and how this "quenching" relates to the emergence of dense spheroids. We measured stellar mass and star-formation rate surface density distributions in star-forming galaxies at redshift 2.2 with ~1-kiloparsec resolution. We find that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion years in the outer disks. These galaxies sustain high star-formation activity at large radii, while hosting fully grown and already quenched bulges in their cores. Copyright © 2015, American Association for the Advancement of Science.
Coming out of the Darkness of the Past
ERIC Educational Resources Information Center
Breen, Paum
2006-01-01
Technology is helping to reduce the education gap between developed countries and those that are still developing. The following article gives one example of an innovative teacher training project where a western university, in Rome, Italy, is selflessly showing their African counterparts, in rural Rwanda, how to become fully autonomous in…
Comparing Approaches to Converting Large High Schools into Smaller Units
ERIC Educational Resources Information Center
Levine, Thomas H
2011-01-01
Scholars and reformers in the United States have called for converting large high schools into smaller units to provide a more effective, personal, and culturally responsive education for all students. Current literature argues that such "conversion high schools" should break into fully autonomous small schools rather than more…
Thermonuclear runaways in thick hydrogen rich envelopes of neutron stars
NASA Technical Reports Server (NTRS)
Starrfield, S. G.; Kenyon, S.; Truran, J. W.; Sparks, W. M.
1981-01-01
A Lagrangian, fully implicit, one dimensional hydrodynamic computer code was used to evolve thermonuclear runaways in the accreted hydrogen rich envelopes of 1.0 Msub solar neutron stars with radii of 10 km and 20 km. Simulations produce outbursts which last from about 750 seconds to about one week. Peak effective temeratures and luninosities were 26 million K and 80 thousand Lsub solar for the 10 km study and 5.3 millison and 600 Lsub solar for the 20 km study. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about one ten thousandth seconds.
Tables of model atmospheres of bursting neutron stars
NASA Technical Reports Server (NTRS)
Madej, Jerzy
1991-01-01
This paper presents tables of plane-parallel neutron star model atmospheres in radiative and hydrostatic equilibrium, with effective temperatures of 8 x 10 exp 6, 1.257 x 10 exp 7, 2 x 10 exp 7, and 3 x 10 exp 7 K, and surface gravities of 15.0 and less (cgs units). The equations of model atmospheres on which the tables are based fully account for nonisotropies of the radiation field and effects of noncoherent Compton scattering of thermal X-rays by free electrons. Both the effective temperatures and gravities listed above are measured on the neutron star surface.
NASA Technical Reports Server (NTRS)
Sagan, C.
1972-01-01
Review of some of the highlights and more recent developments in the search for extraterrestrial intelligence. The first major problem is one of the generality of the formation of planetary systems. Observations of the nearest stars which are not members of binary or multiple stars indicates that fully half have companions of planetary mass. The presence of organic compounds in meteorites, probably in Jovian planets, in comets, in the interstellar medium, and in cool stars implies that the production of organic compounds essential for the origin of life should be pervasive throughout the universe. Possibilities of interstellar communication are discussed.
Analysis of the acceptance of autonomous planetary science data collection by field of inquiry
NASA Astrophysics Data System (ADS)
Straub, Jeremy
2015-06-01
The acceptance of autonomous control technologies in planetary science has met significant resistance. Many within this scientific community question the efficacy of autonomous technologies for making decisions regarding what data to collect, how to process it and its processing. These technologies, however, can be used to significantly increase the scientific return on mission investment by removing limitations imposed by communications bandwidth constraints and communications and human decision making delays. A fully autonomous mission, in an ideal case, could be deployed, perform most of the substantive work itself (possibly relying on human assistance for dealing with any unexpected or unexplained occurrences) and return an answer to a scientific question along with data selected to allow scientists to validate software performance. This paper presents the results of a survey of planetary scientists which attempts to identify the root causes of the impediments to the use of this type of technology and identify pathways to its acceptance. Previous work considered planetary science as a single large community. This paper contrasts the differences in acceptance between component fields of planetary science.
Heinen, Laura; Heuser, Thomas; Steinschulte, Alexander; Walther, Andreas
2017-08-09
Enzymes regulate complex functions and active behavior in natural systems and have shown increasing prospect for developing self-regulating soft matter systems. Striving for advanced autonomous hydrogel materials with fully programmable, self-regulated life cycles, we combine two enzymes with an antagonistic pH-modulating effect in a feedback-controlled biocatalytic reaction network (BRN) and couple it to pH-responsive DNA hydrogels to realize hydrogel systems with distinct preprogrammable lag times and lifetimes in closed systems. The BRN enables precise and orthogonal internal temporal control of the "ON" and "OFF" switching times of the temporary gel state by modulation of programmable, nonlinear pH changes. The time scales are tunable by variation of the enzyme concentrations and additional buffer substances. The resulting material system operates in full autonomy after injection of the chemical fuels driving the BRN. The concept may open new applications inherent to DNA hydrogels, for instance, autonomous shape memory behavior for soft robotics. We further foresee general applicability to achieve autonomous life cycles in other pH switchable systems.
Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles
NASA Astrophysics Data System (ADS)
Greenblatt, Jeffery B.; Saxena, Samveg
2015-09-01
Autonomous vehicles (AVs) are conveyances to move passengers or freight without human intervention. AVs are potentially disruptive both technologically and socially, with claimed benefits including increased safety, road utilization, driver productivity and energy savings. Here we estimate 2014 and 2030 greenhouse-gas (GHG) emissions and costs of autonomous taxis (ATs), a class of fully autonomous shared AVs likely to gain rapid early market share, through three synergistic effects: (1) future decreases in electricity GHG emissions intensity, (2) smaller vehicle sizes resulting from trip-specific AT deployment, and (3) higher annual vehicle-miles travelled (VMT), increasing high-efficiency (especially battery-electric) vehicle cost-effectiveness. Combined, these factors could result in decreased US per-mile GHG emissions in 2030 per AT deployed of 87-94% below current conventionally driven vehicles (CDVs), and 63-82% below projected 2030 hybrid vehicles, without including other energy-saving benefits of AVs. With these substantial GHG savings, ATs could enable GHG reductions even if total VMT, average speed and vehicle size increased substantially. Oil consumption would also be reduced by nearly 100%.
Road Lane Detection Robust to Shadows Based on a Fuzzy System Using a Visible Light Camera Sensor
Hoang, Toan Minh; Baek, Na Rae; Cho, Se Woon; Kim, Ki Wan; Park, Kang Ryoung
2017-01-01
Recently, autonomous vehicles, particularly self-driving cars, have received significant attention owing to rapid advancements in sensor and computation technologies. In addition to traffic sign recognition, road lane detection is one of the most important factors used in lane departure warning systems and autonomous vehicles for maintaining the safety of semi-autonomous and fully autonomous systems. Unlike traffic signs, road lanes are easily damaged by both internal and external factors such as road quality, occlusion (traffic on the road), weather conditions, and illumination (shadows from objects such as cars, trees, and buildings). Obtaining clear road lane markings for recognition processing is a difficult challenge. Therefore, we propose a method to overcome various illumination problems, particularly severe shadows, by using fuzzy system and line segment detector algorithms to obtain better results for detecting road lanes by a visible light camera sensor. Experimental results from three open databases, Caltech dataset, Santiago Lanes dataset (SLD), and Road Marking dataset, showed that our method outperformed conventional lane detection methods. PMID:29143764
NASA Technical Reports Server (NTRS)
Bishop, Robert H.; DeMars, Kyle; Trawny, Nikolas; Crain, Tim; Hanak, Chad; Carson, John M.; Christian, John
2016-01-01
The navigation filter architecture successfully deployed on the Morpheus flight vehicle is presented. The filter was developed as a key element of the NASA Autonomous Landing and Hazard Avoidance Technology (ALHAT) project and over the course of 15 free fights was integrated into the Morpheus vehicle, operations, and flight control loop. Flight testing completed by demonstrating autonomous hazard detection and avoidance, integration of an altimeter, surface relative velocity (velocimeter) and hazard relative navigation (HRN) measurements into the onboard dual-state inertial estimator Kalman flter software, and landing within 2 meters of the vertical testbed GPS-based navigation solution at the safe landing site target. Morpheus followed a trajectory that included an ascent phase followed by a partial descent-to-landing, although the proposed filter architecture is applicable to more general planetary precision entry, descent, and landings. The main new contribution is the incorporation of a sophisticated hazard relative navigation sensor-originally intended to locate safe landing sites-into the navigation system and employed as a navigation sensor. The formulation of a dual-state inertial extended Kalman filter was designed to address the precision planetary landing problem when viewed as a rendezvous problem with an intended landing site. For the required precision navigation system that is capable of navigating along a descent-to-landing trajectory to a precise landing, the impact of attitude errors on the translational state estimation are included in a fully integrated navigation structure in which translation state estimation is combined with attitude state estimation. The map tie errors are estimated as part of the process, thereby creating a dual-state filter implementation. Also, the filter is implemented using inertial states rather than states relative to the target. External measurements include altimeter, velocimeter, star camera, terrain relative navigation sensor, and a hazard relative navigation sensor providing information regarding hazards on a map generated on-the-fly.
ERIC Educational Resources Information Center
McLaughlin, Brenda; Smink, Jeffrey
2009-01-01
For a long time, the issue of summer learning has waited in the wings, like a fully prepared understudy, ready to jump in and take the stage should the star need a back-up. Recently, though, summer learning has moved into the spotlight--and at the same time, the script is changing. Instead of memorizing and mimicking the star's lines, summer…
Alzheimer's Disease: The Role of Microglia in Brain Homeostasis and Proteopathy
Clayton, Kevin A.; Van Enoo, Alicia A.; Ikezu, Tsuneya
2017-01-01
Brain aging is central to late-onset Alzheimer's disease (LOAD), although the mechanisms by which it occurs at protein or cellular levels are not fully understood. Alzheimer's disease is the most common proteopathy and is characterized by two unique pathologies: senile plaques and neurofibrillary tangles, the former accumulating earlier than the latter. Aging alters the proteostasis of amyloid-β peptides and microtubule-associated protein tau, which are regulated in both autonomous and non-autonomous manners. Microglia, the resident phagocytes of the central nervous system, play a major role in the non-autonomous clearance of protein aggregates. Their function is significantly altered by aging and neurodegeneration. This is genetically supported by the association of microglia-specific genes, TREM2 and CD33, and late onset Alzheimer's disease. Here, we propose that the functional characterization of microglia, and their contribution to proteopathy, will lead to a new therapeutic direction in Alzheimer's disease research. PMID:29311768
The Pixhawk Open-Source Computer Vision Framework for Mavs
NASA Astrophysics Data System (ADS)
Meier, L.; Tanskanen, P.; Fraundorfer, F.; Pollefeys, M.
2011-09-01
Unmanned aerial vehicles (UAV) and micro air vehicles (MAV) are already intensively used in geodetic applications. State of the art autonomous systems are however geared towards the application area in safe and obstacle-free altitudes greater than 30 meters. Applications at lower altitudes still require a human pilot. A new application field will be the reconstruction of structures and buildings, including the facades and roofs, with semi-autonomous MAVs. Ongoing research in the MAV robotics field is focusing on enabling this system class to operate at lower altitudes in proximity to nearby obstacles and humans. PIXHAWK is an open source and open hardware toolkit for this purpose. The quadrotor design is optimized for onboard computer vision and can connect up to four cameras to its onboard computer. The validity of the system design is shown with a fully autonomous capture flight along a building.
IDEA: Planning at the Core of Autonomous Reactive Agents
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Dorais, Gregory A.; Fry, Chuck; Levinson, Richard; Plaunt, Christian; Clancy, Daniel (Technical Monitor)
2002-01-01
Several successful autonomous systems are separated into technologically diverse functional layers operating at different levels of abstraction. This diversity makes them difficult to implement and validate. In this paper, we present IDEA (Intelligent Distributed Execution Architecture), a unified planning and execution framework. In IDEA a layered system can be implemented as separate agents, one per layer, each representing its interactions with the world in a model. At all levels, the model representation primitives and their semantics is the same. Moreover, each agent relies on a single model, plan database, plan runner and on a variety of planners, both reactive and deliberative. The framework allows the specification of agents that operate, within a guaranteed reaction time and supports flexible specification of reactive vs. deliberative agent behavior. Within the IDEA framework we are working to fully duplicate the functionalities of the DS1 Remote Agent and extend it to domains of higher complexity than autonomous spacecraft control.
Simultaneous observations of Ca II K and Mg II k in T Tauri stars
NASA Technical Reports Server (NTRS)
Calvet, N.; Basri, G.; Imhoff, C. L.; Giampapa, M. S.
1985-01-01
The first simultaneous, calibrated observations of the Ca II K and Mg II k resonance lines in T Tauri stars are presented. It is found that for T Tauri stars with mass greater than 1.5 solar mass, which have radiative cores and tend to be fast rotators, the k line seems to arise in an extended region (probably also responsible for the H-alpha emission), whereas the K line apparently originates closer to the highly inhomogeneous stellar surface. The lower mass stars, which are fully convective and tend to be slow rotators, are more easily described by a largely chromospheric model, consistent with main-sequence activity structures but at greater values of the nonradiative flux. The strongest emission-line stars in the low-mass group, however, are also likely to have extended k line regions.
Automation study for space station subsystems and mission ground support
NASA Technical Reports Server (NTRS)
1985-01-01
An automation concept for the autonomous operation of space station subsystems, i.e., electric power, thermal control, and communications and tracking are discussed. To assure that functions essential for autonomous operations are not neglected, an operations function (systems monitoring and control) is included in the discussion. It is recommended that automated speech recognition and synthesis be considered a basic mode of man/machine interaction for space station command and control, and that the data management system (DMS) and other systems on the space station be designed to accommodate fully automated fault detection, isolation, and recovery within the system monitoring function of the DMS.
Chen, Chin-Yi; Chen, Chun-Hsi Vivian; Li, Chun-I
2013-06-01
This research examined the role of leader's spiritual values in terms of the "servant leadership" in the process of promoting employee's autonomous motivation and eudaemonic well-being. Sample consists of 265 Chinese supervisor-subordinate dyads recruited from a variety of industries in Taiwan. Spiritual values perceived by the subordinates, as well as the discrepancy between leader-subordinate perceptions, but not the leader's self-perceptions of spiritual values, were found to contribute significantly beyond transactional leadership in predicting subordinate motivational autonomy and eudaemonic well-being, and subordinate autonomous motivations fully mediates the relationship between spiritual values and eudaemonic well-being.
Adaptive Tunable Laser Spectrometer for Space Applications
NASA Technical Reports Server (NTRS)
Flesch, Gregory; Keymeulen, Didier
2010-01-01
An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.
Manifold traversing as a model for learning control of autonomous robots
NASA Technical Reports Server (NTRS)
Szakaly, Zoltan F.; Schenker, Paul S.
1992-01-01
This paper describes a recipe for the construction of control systems that support complex machines such as multi-limbed/multi-fingered robots. The robot has to execute a task under varying environmental conditions and it has to react reasonably when previously unknown conditions are encountered. Its behavior should be learned and/or trained as opposed to being programmed. The paper describes one possible method for organizing the data that the robot has learned by various means. This framework can accept useful operator input even if it does not fully specify what to do, and can combine knowledge from autonomous, operator assisted and programmed experiences.
Autonomous Flying Controls Testbed
NASA Technical Reports Server (NTRS)
Motter, Mark A.
2005-01-01
The Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis,Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights.
On the night shift: advanced nurse practice in emergency medicine.
Jenkins, Jennifer
2016-05-01
Advanced nurse practitioners in the author's emergency department (ED) work autonomously and as part of a team to assess, diagnose and treat patients with unexplained and undiagnosed illnesses and injuries over a 24-hour cycle of care. The complexity of the role in EDs is often not fully understood, and expectations can vary between trusts and between different clinical areas within trusts. This article describes one night shift in the author's ED to explain the complexity of advanced nurse practitioners' roles in this environment. The article focuses on autonomous decision-making skills and the use of advanced clinical skills in the context of evidence-based practice.
The Robo-AO KOI survey: laser adaptive optics imaging of every Kepler exoplanet candidate
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed; Atkinson, Dani; Nofi, Larissa
2016-07-01
The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that dilute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present 3313 high resolution observations of Kepler planetary hosts from 2012-2015, discovering 479 nearby stars. We measure an overall nearby star probability rate of 14.5+/-0.8%. With this large data set, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host, providing insight into the formation and evolution of planetary systems in our galaxy. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting with in their star's habitable zone.
Celestial Pattern Recognition Allowing Autonomous Earth-Surface or Deep-Space Positioning.
1983-12-01
viii :% -7 .2 I. INTRODUCTION AND BACKGROUND Background of the Project This research project is conceptual and opportunistic. It is conceptual in that...alternative approaches and the usefulness of a device in different navigation regimes. Both the research and this report have tried to follow these...Packard, Potter, and Viglione (Ref 2; 7; 15; 17; 23) have published papers (most of these 20 years ago) suggesting that some form of star
NASA Astrophysics Data System (ADS)
Mortensen, Kell; Borger, Anine L.; Kirkensgaard, Jacob J. K.; Garvey, Christopher J.; Almdal, Kristoffer; Dorokhin, Andriy; Huang, Qian; Hassager, Ole
2018-05-01
We present structural small-angle neutron scattering studies of a three-armed polystyrene star polymer with short deuterated segments at the end of each arm. We show that the form factor of the three-armed star molecules in the relaxed state agrees with that of the random phase approximation of Gaussian chains. Upon exposure to large extensional flow conditions, the star polymers change conformation resulting in a highly stretched structure that mimics a fully extended three-armed tube model. All three arms are parallel to the flow, one arm being either in positive or negative stretching direction, while the two other arms are oriented parallel, right next to each other in the direction opposite to the first arm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyama, Tomoyuki; Kajino, Toshitaka; Yasutake, Nobutoshi
2012-11-12
We calculate neutrino scattering and absorption on the hot and dense neutron-star matter with hyperons under the strong magnetic field using a perturbative approach. We find that the absorption cross-sections show a remarkable angular dependence. Its strength is reduced in the direction parallel to the magnetic field and enhanced in the opposite direction. This asymmetric variation becomes maximally 2.2 % of entire neutrino momentum when the magnetic field is assumed as about 2 Multiplication-Sign 10{sup 17} G. Since the pulsar kick after the supernova explosion may have relationships to this asymmetry, detailed discussions about the pulsar kick and the asymmetrymore » are presented with the comparison to the observed kick velocities in a fully relativistic approach.« less
An Algorithm for Autonomous Formation Obstacle Avoidance
NASA Astrophysics Data System (ADS)
Cruz, Yunior I.
The level of human interaction with Unmanned Aerial Systems varies greatly from remotely piloted aircraft to fully autonomous systems. In the latter end of the spectrum, the challenge lies in designing effective algorithms to dictate the behavior of the autonomous agents. A swarm of autonomous Unmanned Aerial Vehicles requires collision avoidance and formation flight algorithms to negotiate environmental challenges it may encounter during the execution of its mission, which may include obstacles and chokepoints. In this work, a simple algorithm is developed to allow a formation of autonomous vehicles to perform point to point navigation while avoiding obstacles and navigating through chokepoints. Emphasis is placed on maintaining formation structures. Rather than breaking formation and individually navigating around the obstacle or through the chokepoint, vehicles are required to assemble into appropriately sized/shaped sub-formations, bifurcate around the obstacle or negotiate the chokepoint, and reassemble into the original formation at the far side of the obstruction. The algorithm receives vehicle and environmental properties as inputs and outputs trajectories for each vehicle from start to the desired ending location. Simulation results show that the algorithm safely routes all vehicles past the obstruction while adhering to the aforementioned requirements. The formation adapts and successfully negotiates the obstacles and chokepoints in its path while maintaining proper vehicle separation.
Design Considerations For Imaging Charge-Coupled Device (ICCD) Star Sensors
NASA Astrophysics Data System (ADS)
McAloon, K. J.
1981-04-01
A development program is currently underway to produce a precision star sensor using imaging charge coupled device (ICCD) technology. The effort is the critical component development phase for the Air Force Multi-Mission Attitude Determination and Autonomous Navigation System (MADAN). A number of unique considerations have evolved in designing an arcsecond accuracy sensor around an ICCD detector. Three tiers of performance criteria are involved: at the spacecraft attitude determination system level, at the star sensor level, and at the detector level. Optimum attitude determination system performance involves a tradeoff between Kalman filter iteration time and sensor ICCD integration time. The ICCD star sensor lends itself to the use of a new approach in the functional interface between the attitude determination system and the sensor. At the sensor level image data processing tradeoffs are important for optimum sensor performance. These tradeoffs involve the sensor optic configuration, the optical point spread function (PSF) size and shape, the PSF position locator, and the microprocessor locator algorithm. Performance modelling of the sensor mandates the use of computer simulation programs. Five key performance parameters at the ICCD detector level are defined. ICCD error characteristics have also been isolated to five key parameters.
A large array of high-performance artificial stars using airship-supported small mirrors
NASA Astrophysics Data System (ADS)
Content, Robert; Foxwell, Mark; Murray, Graham J.
2004-10-01
We propose a practical system that can provide a large number of high performance artificial stars, of the order of a few hundred, using an array of small mirrors on an airship supported platform illuminated from the ground by a laser. Our concept offers several advantages over other guide star schemes: Airborne mirror arrays can furnish tip-tilt information; they also permit a considerable reduction in the total ground-laser power required; high intensity guide stars with very small angular image size are possible; and finally they offer very low scattered parasite laser light. More basic & simpler launch-laser & AO technologies can therefore be employed, with potentially huge cost savings, with potentially significant improvement in the quality of the AO correction. The general platform scheme and suitable lift technologies are also discussed. A novel concept for achieving precise positioning is presented whereby the platform & the lifting vehicle are linked by a tether, the platform having a degree of independent control. Our proposal would employ as the lift vehicle an autonomous high altitude airship of the type currently under widespread development in the commercial sector, for use as hubs for telecommunication networks, mobile telephone relay stations, etc.
Champeroux, P; Thireau, J; Judé, S; Laigot-Barbé, C; Maurin, A; Sola, M L; Fowler, J S L; Richard, S; Le Guennec, J Y
2015-01-01
Background and Purpose The present study was undertaken to investigate an effect of dofetilide, a potent arrhythmic blocker of the voltage-gated K+ channel, hERG, on cardiac autonomic control. Combined with effects on ardiomyocytes, these properties could influence its arrhythmic potency. Experimental Approach The short-term variability of beat-to-beat QT interval (STVQT), induced by dofetilide is a strong surrogate of Torsades de pointes liability. Involvement of autonomic modulation in STVQT was investigated in healthy cynomolgus monkeys and beagle dogs by power spectral analysis under conditions of autonomic blockade with hexamethonium. Key Results Increase in STVQT induced by dofetilide in monkeys and dogs was closely associated with an enhancement of endogenous heart rate and QT interval high-frequency (HF) oscillations. These effects were fully suppressed under conditions of autonomic blockade with hexamethonium. Ventricular arrhythmias, including Torsades de pointes in monkeys, were prevented in both species when HF oscillations were suppressed by autonomic blockade. Similar enhancements of heart rate HF oscillations were found in dogs with other hERG blockers described as causing Torsades de pointes in humans. Conclusions and Implications These results demonstrate for the first time that beat-to-beat ventricular repolarization variability and ventricular arrhythmias induced by dofetilide are dependent on endogenous HF autonomic oscillations in heart rate. When combined with evidence of hERG-blocking properties, enhancement of endogenous HF oscillations in heart rate could constitute an earlier and more sensitive biomarker than STVQT for Torsades de pointes liability, applicable to preclinical regulatory studies conducted in healthy animals. PMID:25625756
Champeroux, P; Thireau, J; Judé, S; Laigot-Barbé, C; Maurin, A; Sola, M L; Fowler, J S L; Richard, S; Le Guennec, J Y
2015-06-01
The present study was undertaken to investigate an effect of dofetilide, a potent arrhythmic blocker of the voltage-gated K(+) channel, hERG, on cardiac autonomic control. Combined with effects on ardiomyocytes, these properties could influence its arrhythmic potency. The short-term variability of beat-to-beat QT interval (STVQT ), induced by dofetilide is a strong surrogate of Torsades de pointes liability. Involvement of autonomic modulation in STVQT was investigated in healthy cynomolgus monkeys and beagle dogs by power spectral analysis under conditions of autonomic blockade with hexamethonium. Increase in STVQT induced by dofetilide in monkeys and dogs was closely associated with an enhancement of endogenous heart rate and QT interval high-frequency (HF) oscillations. These effects were fully suppressed under conditions of autonomic blockade with hexamethonium. Ventricular arrhythmias, including Torsades de pointes in monkeys, were prevented in both species when HF oscillations were suppressed by autonomic blockade. Similar enhancements of heart rate HF oscillations were found in dogs with other hERG blockers described as causing Torsades de pointes in humans. These results demonstrate for the first time that beat-to-beat ventricular repolarization variability and ventricular arrhythmias induced by dofetilide are dependent on endogenous HF autonomic oscillations in heart rate. When combined with evidence of hERG-blocking properties, enhancement of endogenous HF oscillations in heart rate could constitute an earlier and more sensitive biomarker than STVQT for Torsades de pointes liability, applicable to preclinical regulatory studies conducted in healthy animals. © 2015 The British Pharmacological Society.
Flück, Christa E; Pandey, Amit V; Dick, Bernhard; Camats, Núria; Fernández-Cancio, Mónica; Clemente, María; Gussinyé, Miquel; Carrascosa, Antonio; Mullis, Primus E; Audi, Laura
2011-01-01
Steroidogenic acute regulatory protein (StAR) is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH). StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (∼30%) and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S) seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed.
No One at the Controls: The Legal Implications of Fully Autonomous Targeting
2012-05-04
Technology and the Law of Armed Conflict: Technological Meteorites and Legal Dinosaurs ?,” in U.S. Naval War College International Law Studies, vol...Penguin Press, 2009. Stewart, Darren M. “New Technology and the Law of Armed Conflict: Technological Meteorites and Legal Dinosaurs ?.” In U.S. Naval
GIANT CORONAL LOOPS DOMINATE THE QUIESCENT X-RAY EMISSION IN RAPIDLY ROTATING M STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, O.; Yadav, R.; Garraffo, C.
2017-01-01
Observations indicate that magnetic fields in rapidly rotating stars are very strong, on both small and large scales. What is the nature of the resulting corona? Here we seek to shed some light on this question. We use the results of an anelastic dynamo simulation of a rapidly rotating fully convective M star to drive a physics-based model for the stellar corona. We find that due to the several kilo Gauss large-scale magnetic fields at high latitudes, the corona, and its X-ray emission are dominated by star-size large hot loops, while the smaller, underlying colder loops are not visible muchmore » in the X-ray. Based on this result, we propose that, in rapidly rotating stars, emission from such coronal structures dominates the quiescent, cooler but saturated X-ray emission.« less
Abundance Analysis of the Helium Weak Star 20-TAURI
NASA Astrophysics Data System (ADS)
Mon, M.; Hirata, R.; Sadakane, K.
An abundance analysis of the helium-weak star 20 Tauri is performed with a fully line-blanketed model atmosphere. The adopted atmospheric parameters are Teff =12600 K and log g=3.2. These values are lower by about 1000 K in Teff and 0.3 in log g than those used in previous investigations, and 20 Tau is the coolest star among the group of helium-weak star. A value of log N(He)/N(H)=-1.7 is found from the average of six He I lines. Mg, Si, Ca, and Ni are underabundant, while P and Mn are overabundant. The abundances of C, Ti, Cr, and Fe coincide with the solar values within ±0.3 dex. Upper limits of the abundances of S, Sc, and Sr are estimated and these elements are not overabundant. The observed abundance pattern in 20 Tau is quite different from those in other helium-weak stars, while it shows a mild characteristic of Mn-Hg stars.
Vestibular influences on autonomic cardiovascular control in humans
NASA Technical Reports Server (NTRS)
Biaggioni, I.; Costa, F.; Kaufmann, H.; Robertson, D. (Principal Investigator)
1998-01-01
There is substantial evidence that anatomical connections exist between vestibular and autonomic nuclei. Animal studies have shown functional interactions between the vestibular and autonomic systems. The nature of these interactions, however, is complex and has not been fully defined. Vestibular stimulation has been consistently found to reduce blood pressure in animals. Given the potential interaction between vestibular and autonomic pathways this finding could be explained by a reduction in sympathetic activity. However, rather than sympathetic inhibition, vestibular stimulation has consistently been shown to increase sympathetic outflow in cardiac and splanchnic vascular beds in most experimental models. Several clinical observations suggest that a link between vestibular and autonomic systems may also exist in humans. However, direct evidence for vestibular/autonomic interactions in humans is sparse. Motion sickness has been found to induce forearm vasodilation and reduce baroreflex gain, and head down neck flexion induces transient forearm and calf vasoconstriction. On the other hand, studies using optokinetic stimulation have found either very small, variable, or inconsistent changes in heart rate and blood pressure, despite substantial symptoms of motion sickness. Furthermore, caloric stimulation severe enough to produce nystagmus, dizziness, and nausea had no effect on sympathetic nerve activity measured directly with microneurography. No effect was observed on heart rate, blood pressure, or plasma norepinephrine. Several factors may explain the apparent discordance of these results, but more research is needed before we can define the potential importance of vestibular input to cardiovascular regulation and orthostatic tolerance in humans.
Implementation of an Autonomous Multi-Maneuver Targeting Sequence for Lunar Trans-Earth Injection
NASA Technical Reports Server (NTRS)
Whitley, Ryan J.; Williams, Jacob
2010-01-01
Using a fully analytic initial guess estimate as a first iterate, a targeting procedure that constructs a flyable burn maneuver sequence to transfer a spacecraft from any closed Moon orbit to a desired Earth entry state is developed and implemented. The algorithm is built to support the need for an anytime abort capability for Orion. Based on project requirements, the Orion spacecraft must be able to autonomously calculate the translational maneuver targets for an entire Lunar mission. Translational maneuver target sequences for the Orion spacecraft include Lunar Orbit Insertion (LOI), Trans-Earth Injection (TEI), and Trajectory Correction Maneuvers (TCMs). This onboard capability is generally assumed to be supplemental to redundant ground computation in nominal mission operations and considered as a viable alternative primarily in loss of communications contingencies. Of these maneuvers, the ability to accurately and consistently establish a flyable 3-burn TEI target sequence is especially critical. The TEI is the sole means by which the crew can successfully return from the Moon to a narrowly banded Earth Entry Interface (EI) state. This is made even more critical by the desire for global access on the lunar surface. Currently, the designed propellant load is based on fully optimized TEI solutions for the worst case geometries associated with the accepted range of epochs and landing sites. This presents two challenges for an autonomous algorithm: in addition to being feasible, the targets must include burn sequences that do not exceed the anticipated propellant load.
NASA Technical Reports Server (NTRS)
Quillen, A. C.; Holman, M.
2000-01-01
During the orbital migration of a giant extrasolar planet via ejection of planetesimals (as studied by Murray et al. in 1998), inner mean-motion resonances can be strong enough to cause planetesimals to graze or impact the star. We integrate numerically the motions of particles which pass through the 3:1 or 4:1 mean-motion resonances of a migrating Jupiter-mass planet. We find that many particles can be trapped in the 3:1 or 4:1 resonances and pumped to high enough eccentricities that they impact the star. This implies that for a planet migrating a substantial fraction of its semimajor axis, a fraction of its mass in planetesimals could impact the star. This process may be capable of enriching the metallicity of the star at a time when the star is no longer fully convective. Upon close approaches to the star, the surfaces of these planetesimals will be sublimated. Orbital migration should cause continuing production of evaporating bodies, suggesting that this process should be detectable with searches for transient absorption lines in young stars. The remainder of the particles will not impact the star but can be ejected subsequently by the planet as it migrates further inward. This allows the planet to migrate a substantial fraction of its initial semimajor axis by ejecting planetesimals.
NASA Technical Reports Server (NTRS)
Winternitz, Luke
2017-01-01
This talk will describe two first-of-their-kind technology demonstrations attached to ongoing NASA science missions, both of which aim to extend the range of autonomous spacecraft navigation far from the Earth. First, we will describe the onboard GPS navigation system for the Magnetospheric Multiscale (MMS) mission which is currently operating in elliptic orbits reaching nearly halfway to the Moon. The MMS navigation system is a key outgrowth of a larger effort at NASA Goddard Space Flight Center to advance high-altitude Global Navigation Satellite System (GNSS) navigation on multiple fronts, including developing Global Positioning System receivers and onboard navigation software, running simulation studies, and leading efforts to characterize and protect signals at high-altitude in the so-called GNSS Space-Service Volume (SSV). In the second part of the talk, we will describe the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) mission that aims to make the first in-space demonstration of X-ray pulsar navigation (XNAV). SEXTANT is attached to the NASA astrophysics mission Neutron-star Interior Composition ExploreR (NICER) whose International Space Station mounted X-ray telescope is investigating the fundamental physics of extremes in gravity, material density, and electromagnetic fields found in neutron stars, and whose instrument provides a nearly ideal navigation sensor for XNAV.
2MASS J06562998+3002455: Not a Cool White Dwarf Candidate, but a Population II Halo Star
NASA Astrophysics Data System (ADS)
de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos
2018-06-01
2MASS J06562998+3002455 or PSS 309-6 is a high proper-motion star that was discovered during a survey with the 2.1 m telescope at Kitt Peak National Observatory. Here, we reevaluate the status of this interesting star using Gaia DR2. Our results strongly suggest that PSS 309-6 could be a Population II star as the value of its V component is close to -220 km/s, which is typical for halo stars in the immediate solar neighborhood. Kapteyn's star is the nearest known halo star and PSS 309-6 exhibits similar kinematic and photometric signatures. Its properties also resemble those of 2MASS J15484023-3544254, which was once thought to be the nearest cool white dwarf but was later reclassified as K-type subdwarf. Although it is virtually certain that PSS 309-6 is not a nearby white dwarf but a more distant Population II subdwarf, further spectroscopic information, including radial velocity measurements, is necessary to fully characterize this probable member of the Galactic halo.
The Robo-AO KOI Survey: Laser Adaptive Optics Imaging of Every Kepler Exoplanet Candidate
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Morton, Tim; Riddle, Reed L.
2016-01-01
The Robo-AO Kepler Planetary Candidate Survey is observing every Kepler planet candidate host star (KOI) with laser adaptive optics imaging to hunt for blended nearby stars which may be physically associated companions. With the unparalleled efficiency provided by the first fully robotic adaptive optics system, we perform the critical search for nearby stars (0.15" to 4.0" separation with contrasts up to 6 magnitudes) that pollute the observed planetary transit signal, contributing to inaccurate planetary characteristics or astrophysical false positives. We present approximately 3300 high resolution observations of Kepler planetary hosts from 2012-2015, with ~500 observed nearby stars. We measure an overall nearby star probability rate of 16.2±0.8%. With this large dataset, we are uniquely able to explore broad correlations between multiple star systems and the properties of the planets which they host. We then use these clues for insight into the formation and evolution of these exotic systems. Several KOIs of particular interest will be discussed, including possible quadruple star systems hosting planets and updated properties for possible rocky planets orbiting in the habitable zone.
The cool-star spectral catalog: A uniform collection of IUE SWP-LOs
NASA Technical Reports Server (NTRS)
Ayres, T.; Lenz, D.; Burton, R.; Bennett, J.
1992-01-01
Over the past decade and a half of its operations, the International Ultraviolet Explorer has recorded low-dispersion spectrograms in the 1150-2000 A interval of more than 800 stars of late spectral type (F-M). The sub-2000 A region contains a number of emission lines that are key diagnostics of physical conditions in the high-excitation chromospheres and subcoronal 'transition zones' of such stars. Many of the sources have been observed a number of times, and the available collection of SWP-LO exposures in the IUE Archives exceeds 4,000. With support from the Astrophysics Data Program, we have assembled the archival material into a catalog of IUE far-UV fluxes of late-type stars. In order to ensure uniform processing of the spectra, we: (1) photometrically corrected the raw vidicon images with a custom version of the 1985 SWP ITF; (2) identified and eliminated, sharp cosmic-ray 'hits' by means of a spatial filter; (3) extracted the spectral traces with the 'optimal' (weighted-slit) strategy; and (4) calibrated them against a well-characterized reference source, the DA white dwarf G191-B2B. Our approach is similar to that adopted by the IUE Project for its 'Final Archive', but our implementation is specialized to the case of chromospheric emission-line sources. We measured the resulting SWP-LO spectra using a semi-autonomous algorithm that establishes a smooth continuum by numerical filtering, and then fits the significant emissions (or absorptions) by means of a constrained Bevington-type multiple-Gaussian procedure. The algorithm assigns errors to the fitted fluxes - or upper limits in the absence of a significant detection - according to a model based on careful measurements of the noise properties of the IUE's intensified SEC cameras. Here, we describe the 'visualization' strategies we adopted to ensure human-review of the semi-autonomous processing and measuring algorithms; the derivation of the noise model and the assignment of errors; and the structure of the final catalog as delivered to the Astrophysics Data System.
SMART Power Systems for ANTS Missions
NASA Astrophysics Data System (ADS)
Clark, P. E.; Floyd, S. R.; Curtis, S. A.; Rilee, M. L.
2005-02-01
Autonomous NanoTechnology Swarm (ANTS) Architecture is based on Addressable Reconfigurable Technology (ART) adaptable for the full spectrum of activities in space. ART systems based on currently available electromechanical (EMS) technology could support human crews on the lunar surface within the next 10 to 15 years. Two or more decades from now, NEMS (Super Miniaturized ART or SMART) technology could perform fully autonomous surveys and operations beyond the reach of human crews. Power system requirements would range from 1 kg to generate tens of Watts for near term ART applications, such as a lunar or Mars Lander Amorphous Rover Antenna (LARA), to <0.1 kg to generate hundreds of mWatts for more advanced SMART applications.
A Common Calibration Source Framework for Fully-Polarimetric and Interferometric Radiometers
NASA Technical Reports Server (NTRS)
Kim, Edward J.; Davis, Brynmor; Piepmeier, Jeff; Zukor, Dorothy J. (Technical Monitor)
2000-01-01
Two types of microwave radiometry--synthetic thinned array radiometry (STAR) and fully-polarimetric (FP) radiometry--have received increasing attention during the last several years. STAR radiometers offer a technological solution to achieving high spatial resolution imaging from orbit without requiring a filled aperture or a moving antenna, and FP radiometers measure extra polarization state information upon which entirely new or more robust geophysical retrieval algorithms can be based. Radiometer configurations used for both STAR and FP instruments share one fundamental feature that distinguishes them from more 'standard' radiometers, namely, they measure correlations between pairs of microwave signals. The calibration requirements for correlation radiometers are broader than those for standard radiometers. Quantities of interest include total powers, complex correlation coefficients, various offsets, and possible nonlinearities. A candidate for an ideal calibration source would be one that injects test signals with precisely controllable correlation coefficients and absolute powers simultaneously into a pair of receivers, permitting all of these calibration quantities to be measured. The complex nature of correlation radiometer calibration, coupled with certain inherent similarities between STAR and FP instruments, suggests significant leverage in addressing both problems together. Recognizing this, a project was recently begun at NASA Goddard Space Flight Center to develop a compact low-power subsystem for spaceflight STAR or FP receiver calibration. We present a common theoretical framework for the design of signals for a controlled correlation calibration source. A statistical model is described, along with temporal and spectral constraints on such signals. Finally, a method for realizing these signals is demonstrated using a Matlab-based implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geier, S.; Edelmann, H.; Heber, U.
Substellar objects, like planets and brown dwarfs orbiting stars, are by-products of the star formation process. The evolution of their host stars may have an enormous impact on these small companions. Vice versa a planet might also influence stellar evolution as has recently been argued. Here, we report the discovery of an 8-23 Jupiter-mass substellar object orbiting the hot subdwarf HD 149382 in 2.391 d at a distance of only about five solar radii. Obviously, the companion must have survived engulfment in the red giant envelope. Moreover, the substellar companion has triggered envelope ejection and enabled the sdB star tomore » form. Hot subdwarf stars have been identified as the sources of the unexpected ultraviolet (UV) emission in elliptical galaxies, but the formation of these stars is not fully understood. Being the brightest star of its class, HD 149382 offers the best conditions to detect the substellar companion. Hence, undisclosed substellar companions offer a natural solution for the long-standing formation problem of apparently single hot subdwarf stars. Planets and brown dwarfs may therefore alter the evolution of old stellar populations and may also significantly affect the UV emission of elliptical galaxies.« less
Autonomic nervous system involvement in pulmonary arterial hypertension.
Vaillancourt, Mylène; Chia, Pamela; Sarji, Shervin; Nguyen, Jason; Hoftman, Nir; Ruffenach, Gregoire; Eghbali, Mansoureh; Mahajan, Aman; Umar, Soban
2017-12-04
Pulmonary arterial hypertension (PAH) is a chronic pulmonary vascular disease characterized by increased pulmonary vascular resistance (PVR) leading to right ventricular (RV) failure. Autonomic nervous system involvement in the pathogenesis of PAH has been demonstrated several years ago, however the extent of this involvement is not fully understood. PAH is associated with increased sympathetic nervous system (SNS) activation, decreased heart rate variability, and presence of cardiac arrhythmias. There is also evidence for increased renin-angiotensin-aldosterone system (RAAS) activation in PAH patients associated with clinical worsening. Reduction of neurohormonal activation could be an effective therapeutic strategy for PAH. Although therapies targeting adrenergic receptors or RAAS signaling pathways have been shown to reverse cardiac remodeling and improve outcomes in experimental pulmonary hypertension (PH)-models, the effectiveness and safety of such treatments in clinical settings have been uncertain. Recently, novel direct methods such as cervical ganglion block, pulmonary artery denervation (PADN), and renal denervation have been employed to attenuate SNS activation in PAH. In this review, we intend to summarize the multiple aspects of autonomic nervous system involvement in PAH and overview the different pharmacological and invasive strategies used to target autonomic nervous system for the treatment of PAH.
NASA Technical Reports Server (NTRS)
Rouff, Christopher A. (Inventor); Sterritt, Roy (Inventor); Truszkowski, Walter F. (Inventor); Hinchey, Michael G. (Inventor); Gracanin, Denis (Inventor); Rash, James L. (Inventor)
2011-01-01
Described herein is a method that produces fully (mathematically) tractable development of policies for autonomic systems from requirements through to code generation. This method is illustrated through an example showing how user formulated policies can be translated into a formal mode which can then be converted to code. The requirements-based programming method described provides faster, higher quality development and maintenance of autonomic systems based on user formulation of policies.Further, the systems, methods and apparatus described herein provide a way of analyzing policies for autonomic systems and facilities the generation of provably correct implementations automatically, which in turn provides reduced development time, reduced testing requirements, guarantees of correctness of the implementation with respect to the policies specified at the outset, and provides a higher degree of confidence that the policies are both complete and reasonable. The ability to specify the policy for the management of a system and then automatically generate an equivalent implementation greatly improves the quality of software, the survivability of future missions, in particular when the system will operate untended in very remote environments, and greatly reduces development lead times and costs.
Autonomous path-planning navigation system for site characterization
NASA Astrophysics Data System (ADS)
Rankin, Arturo L.; Crane, Carl D., III; Armstrong, David G., II; Nease, Allen D.; Brown, H. Edward
1996-05-01
The location and removal of buried munitions is an important yet hazardous task. Current development is aimed at performing both the ordnance location and removal tasks autonomously. An autonomous survey vehicle (ASV) named the Gator has been developed at the Center for Intelligent Machines and Robotics, under the direction of Wright Laboratory, Tyndall Air Force Base, Florida, and the Navy Explosive Ordnance Disposal Technology Division, Indian Head, Maryland. The primary task of the survey vehicle is to autonomously traverse an off-road site, towing behind it a trailer containing a sensor package capable of characterizing the sub-surface contents. Achieving 00 percent coverage of the site is critical to fully characterizing the site. This paper presents a strategy for planning efficient paths for the survey vehicle that guarantees near-complete coverage of a site. A small library of three in-house developed path planners are reviewed. A strategy is also presented to keep the trailer on-path and to calculate the percent of coverage of a site with a resolution of 0.01 m2. All of the algorithms discussed in this paper were initially developed in simulation on a Silicon Graphics computer and subsequently implemented on the survey vehicle.
Nickel, Moritz M; May, Elisabeth S; Tiemann, Laura; Postorino, Martina; Ta Dinh, Son; Ploner, Markus
2017-11-01
Pain serves the protection of the body by translating noxious stimulus information into a subjective percept and protective responses. Such protective responses rely on autonomic responses that allocate energy resources to protective functions. However, the precise relationship between objective stimulus intensity, subjective pain intensity, autonomic responses, and brain activity is not fully clear yet. Here, we addressed this question by continuously recording pain ratings, skin conductance, heart rate, and electroencephalography during tonic noxious heat stimulation of the hand in 39 healthy human subjects. The results confirmed that pain intensity dissociates from stimulus intensity during 10 minutes of noxious stimulation. Furthermore, skin conductance measures were significantly related to stimulus intensity but not to pain intensity. Correspondingly, skin conductance measures were significantly related to alpha and beta oscillations in contralateral sensorimotor cortex, which have been shown to encode stimulus intensity rather than pain intensity. No significant relationships were found between heart rate and stimulus intensity or pain intensity. The findings were consistent for stimulation of the left and the right hands. These results suggest that sympathetic autonomic responses to noxious stimuli in part directly result from nociceptive rather than from perceptual processes. Beyond, these observations support concepts of pain and emotions in which sensory, motor, and autonomic components are partially independent processes that together shape emotional and painful experiences.
SyRoTek--Distance Teaching of Mobile Robotics
ERIC Educational Resources Information Center
Kulich, M.; Chudoba, J.; Kosnar, K.; Krajnik, T.; Faigl, J.; Preucil, L.
2013-01-01
E-learning is a modern and effective approach for training in various areas and at different levels of education. This paper gives an overview of SyRoTek, an e-learning platform for mobile robotics, artificial intelligence, control engineering, and related domains. SyRoTek provides remote access to a set of fully autonomous mobile robots placed in…
ERIC Educational Resources Information Center
Guri-Rosenblit, Sarah
This book compares the emergence and development of autonomous, fully fledged distance teaching universities in the higher education systems of the United Kingdom, Germany, Spain, Canada, and Israel. It examines the evolution and functional roles of these universities and outlines their commonalties and divergences. Main lessons are synthesized…
Remote Control and Children's Understanding of Robots
ERIC Educational Resources Information Center
Somanader, Mark C.; Saylor, Megan M.; Levin, Daniel T.
2011-01-01
Children use goal-directed motion to classify agents as living things from early in infancy. In the current study, we asked whether preschoolers are flexible in their application of this criterion by introducing them to robots that engaged in goal-directed motion. In one case the robot appeared to move fully autonomously, and in the other case it…
Project Longshot: A mission to Alpha Centauri
NASA Technical Reports Server (NTRS)
West, Curtis; Chamberlain, Sally; Pagan, Neftali; Stevens, Robert
1989-01-01
Project Longshot, an exercise in the Advanced Design Program for Space, had as its destination Alpha Centauri, the closest star system to our own solar system. Alpha Centauri, a trinary star system, is 4.34 light years from earth. Although Project Longshot is impossible based on existing technologies, areas that require further investigation in order to make this feat possible are identified. Three areas where advances in technology are needed are propulsion, data processing for autonomous command and control functions, and reliability. Propulsion, possibly by antimatter annihilation; navigation and navigation aids; reliable hardware and instruments; artificial intelligence to eliminate the need for command telemetry; laser communication; and a reliable, compact, and lightweight power system that converts energy efficiently and reliably present major challenges. Project Longshot promises exciting advances in science and technology and new information concerning the universe.
Agent-based approach for generation of a money-centered star network
NASA Astrophysics Data System (ADS)
Yang, Jae-Suk; Kwon, Okyu; Jung, Woo-Sung; Kim, In-mook
2008-09-01
The history of trade is a progression from a pure barter system. A medium of exchange emerges autonomously in the market, a position currently occupied by money. We investigate an agent-based computational economics model consisting of interacting agents considering distinguishable properties of commodities which represent salability. We also analyze the properties of the commodity network using a spanning tree. We find that the “storage fee” is more crucial than “demand” in determining which commodity is used as a medium of exchange.
Intelligent unmanned vehicle systems suitable for individual or cooperative missions
NASA Astrophysics Data System (ADS)
Anderson, Matthew O.; McKay, Mark D.; Wadsworth, Derek C.
2007-04-01
The Department of Energy's Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for over fifteen years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high-resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicles during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.
A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems
Lajara, Rafael; Alberola, Jorge; Pelegrí-Sebastiá, José
2011-01-01
The design of a fully autonomous and wireless actuator node (“wEcoValve mote”) based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered, thus eliminating the need of wires and facilitating its deployment. By using supercapacitors recharged from a specifically designed solar power module, the need to replace batteries is also eliminated and the system is completely autonomous and maintenance free. The “wEcoValve mote” firmware is based on a synchronous protocol that allows a bidirectional communication with a latency optimized for real-time work, with a synchronization time between nodes of 4 s, thus achieving a power consumption average of 2.9 mW. PMID:22346580
A solar energy powered autonomous wireless actuator node for irrigation systems.
Lajara, Rafael; Alberola, Jorge; Pelegrí-Sebastiá, José
2011-01-01
The design of a fully autonomous and wireless actuator node ("wEcoValve mote") based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered, thus eliminating the need of wires and facilitating its deployment. By using supercapacitors recharged from a specifically designed solar power module, the need to replace batteries is also eliminated and the system is completely autonomous and maintenance free. The "wEcoValve mote" firmware is based on a synchronous protocol that allows a bidirectional communication with a latency optimized for real-time work, with a synchronization time between nodes of 4 s, thus achieving a power consumption average of 2.9 mW.
SeeStar: an open-source, low-cost imaging system for subsea observations
NASA Astrophysics Data System (ADS)
Cazenave, F.; Kecy, C. D.; Haddock, S.
2016-02-01
Scientists and engineers at the Monterey Bay Aquarium Research Institute (MBARI) have collaborated to develop SeeStar, a modular, light weight, self-contained, low-cost subsea imaging system for short- to long-term monitoring of marine ecosystems. SeeStar is composed of separate camera, battery, and LED lighting modules. Two versions of the system exist: one rated to 300 meters depth, the other rated to 1500 meters. Users can download plans and instructions from an online repository and build the system using low-cost off-the-shelf components. The system utilizes an easily programmable Arduino based controller, and the widely distributed GoPro camera. The system can be deployed in a variety of scenarios taking still images and video and can be operated either autonomously or tethered on a range of platforms, including ROVs, AUVs, landers, piers, and moorings. Several Seestar systems have been built and used for scientific studies and engineering tests. The long-term goal of this project is to have a widely distributed marine imaging network across thousands of locations, to develop baselines of biological information.
NASA Astrophysics Data System (ADS)
Jensen-Clem, Rebecca; Duev, Dmitry A.; Riddle, Reed; Salama, Maïssa; Baranec, Christoph; Law, Nicholas M.; Kulkarni, S. R.; Ramprakash, A. N.
2018-01-01
Robo-AO is an autonomous laser guide star adaptive optics (AO) system recently commissioned at the Kitt Peak 2.1 m telescope. With the ability to observe every clear night, Robo-AO at the 2.1 m telescope is the first dedicated AO observatory. This paper presents the imaging performance of the AO system in its first 18 months of operations. For a median seeing value of 1.″44, the average Strehl ratio is 4% in the i\\prime band. After post processing, the contrast ratio under sub-arcsecond seeing for a 2≤slant i\\prime ≤slant 16 primary star is five and seven magnitudes at radial offsets of 0.″5 and 1.″0, respectively. The data processing and archiving pipelines run automatically at the end of each night. The first stage of the processing pipeline shifts and adds the rapid frame rate data using techniques optimized for different signal-to-noise ratios. The second “high-contrast” stage of the pipeline is eponymously well suited to finding faint stellar companions. Currently, a range of scientific programs, including the synthetic tracking of near-Earth asteroids, the binarity of stars in young clusters, and weather on solar system planets are being undertaken with Robo-AO.
VO-compliant libraries of high resolution spectra of cool stars
NASA Astrophysics Data System (ADS)
Montes, D.
2008-10-01
In this contribution we describe a Virtual Observatory (VO) compliant version of the libraries of high resolution spectra of cool stars described by Montes et al. (1997; 1998; and 1999). Since their publication the fully reduced spectra in FITS format have been available via ftp and in the World Wide Web. However, in the VO all the spectra will be accessible using a common web interface following the standards of the International Virtual Observatory Alliance (IVOA). These libraries include F, G, K and M field stars, from dwarfs to giants. The spectral coverage is from 3800 to 10000 Å, with spectral resolution ranging from 0.09 to 3.0 Å.
Nuclear ``pasta'' structures in low-density nuclear matter and properties of the neutron-star crust
NASA Astrophysics Data System (ADS)
Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka
2013-08-01
In the neutron-star crust, nonuniform structure of nuclear matter—called the “pasta” structure—is expected. From recent studies of giant flares in magnetars, these structures might be related to some observables and physical quantities of the neutron-star crust. To investigate the above quantities, we numerically explore the pasta structure with a fully three-dimensional geometry and study the properties of low-density nuclear matter, based on the relativistic mean-field model and the Thomas-Fermi approximation. We observe typical pasta structures for fixed proton number fraction and two of them for cold catalyzed matter. We also discuss the crystalline configuration of “pasta.”
The faint-end of galaxy luminosity functions at the Epoch of Reionization
NASA Astrophysics Data System (ADS)
Yue, B.; Castellano, M.; Ferrara, A.; Fontana, A.; Merlin, E.; Amorín, R.; Grazian, A.; Mármol-Queralto, E.; Michałowski, M. J.; Mortlock, A.; Paris, D.; Parsa, S.; Pilo, S.; Santini, P.; Di Criscienzo, M.
2018-05-01
During the Epoch of Reionization (EoR), feedback effects reduce the efficiency of star formation process in small halos or even fully quench it. The galaxy luminosity function (LF) may then turn over at the faint-end. We analyze the number counts of z > 5 galaxies observed in the fields of four Frontier Fields (FFs) clusters and obtain constraints on the LF faint-end: for the turn-over magnitude at z ~ 6, MUVT >~-13.3 for the circular velocity threshold of quenching star formation process, vc* <~ 47 km s-1. We have not yet found significant evidence of the presence of feedback effects suppressing the star formation in small galaxies.
Spectral Analysis of the sdO Standard Star Feige 34
NASA Astrophysics Data System (ADS)
Latour, M.; Chayer, P.; Green, E. M.; Fontaine, G.
2017-03-01
We present our current work on the spectral analysis of the hot sdO star Feige 34. We combine high S/N optical spectra and fully-blanketed non-LTE model atmospheres to derive its fundamental parameters (Teff, log g) and helium abundance. Our best fits indicate Teff = 63 000 K, log g = 6.0 and log N(He)/N(H) = -1.8. We also use available ultraviolet spectra (IUE and FUSE) to measure metal abundances. We find the star to be enriched in iron and nickel by a factor of ten with respect to the solar values, while lighter elements have subsolar abundances. The FUSE spectrum suggests that the spectral lines could be broadened by rotation.
Responsibility for crashes of autonomous vehicles: an ethical analysis.
Hevelke, Alexander; Nida-Rümelin, Julian
2015-06-01
A number of companies including Google and BMW are currently working on the development of autonomous cars. But if fully autonomous cars are going to drive on our roads, it must be decided who is to be held responsible in case of accidents. This involves not only legal questions, but also moral ones. The first question discussed is whether we should try to design the tort liability for car manufacturers in a way that will help along the development and improvement of autonomous vehicles. In particular, Patrick Lin's concern that any security gain derived from the introduction of autonomous cars would constitute a trade-off in human lives will be addressed. The second question is whether it would be morally permissible to impose liability on the user based on a duty to pay attention to the road and traffic and to intervene when necessary to avoid accidents. Doubts about the moral legitimacy of such a scheme are based on the notion that it is a form of defamation if a person is held to blame for causing the death of another by his inattention if he never had a real chance to intervene. Therefore, the legitimacy of such an approach would depend on the user having an actual chance to do so. The last option discussed in this paper is a system in which a person using an autonomous vehicle has no duty (and possibly no way) of interfering, but is still held (financially, not criminally) responsible for possible accidents. Two ways of doing so are discussed, but only one is judged morally feasible.
Constraining Substellar Magnetic Dynamos using Brown Dwarf Radio Aurorae
NASA Astrophysics Data System (ADS)
Kao, Melodie Minyu
Brown dwarfs share characteristics with both low-mass stars and gas giant planets, making them useful laboratories for studying physics occurring in objects throughout this low mass and temperature range. Of particular interest in this dissertation is the nature of the engine driving their magnetic fields. Fully convective magnetic dynamos can operate in low mass stars, brown dwarfs, gas giant planets, and even fluid metal cores in small rocky planets. Objects in this wide mass range are capable of hosting strong magnetic fields, which shape much of the evolution of planets and stars: strong fields can protect planetary atmospheres from evaporating, generate optical and infrared emission that masquerade as clouds in the atmospheres of other worlds, and affect planet formation mechanisms. Thus, implications from understanding convective dynamo mechanisms also extend to exoplanet habitability. How the convective dynamos driving these fields operate remains an important open problem. While we have extensive data to inform models of magnetic dynamo mechanisms in higher mass stars like our Sun, the coolest and lowest-mass objects that probe the substellar-planetary boundary do not possess the internal structures necessary to drive solar-type dynamos. A number of models examining fully convective dynamo mechanisms have been proposed but they remain unconstrained by magnetic field measurements in the lowest end of the substellar mass and temperature space. Detections of highly circularly polarized pulsed radio emission provide our only window into magnetic field measurements for objects in the ultracool brown dwarf regime, but these detections are very rare; until this dissertation, only one attempt out of 60 had been successful. The work presented in this dissertation seeks to address this problem and examines radio emission from late L, T, and Y spectral type brown dwarfs spanning 1-6 times the surface temperature of Earth and explores implications for fully convective magnetic dynamo models.
Procesos cuasi-moleculares en enanas blancas frías
NASA Astrophysics Data System (ADS)
Rohrmann, R. D.; Althaus, L. G.; Kepler, S. O.
We show that the radiation emitted by very cool white dwarf stars (Teff ~< 3000 K) with pure hydrogen atmospheres, is fully formed by radiative processes induced by atomic and molecular collisions. FULL TEXT IN SPANISH
Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization
NASA Astrophysics Data System (ADS)
Hénault, François
2015-09-01
Space-borne nulling interferometers have long been considered as the best option for searching and characterizing extrasolar planets located in the habitable zone of their parent stars. Solutions for achieving deep starlight extinction are now numerous and well demonstrated. However they essentially aim at realizing an achromatic central null in order to extinguish the star. In this communication is described a major improvement of the technique, where the achromatization process is extended to the entire fringe pattern. Therefore higher Signal-to-noise ratios (SNR) and appreciable simplification of the detection system should result. The basic principle of this Fully achromatic nulling interferometer (FANI) consists in inserting dispersive elements along the arms of the interferometer. Herein this principle is explained and illustrated by a preliminary optical system design. The typical achievable performance and limitations are discussed and some initial tolerance requirements are also provided.
Probing massive stars around gamma-ray burst progenitors
NASA Astrophysics Data System (ADS)
Lu, Wenbin; Kumar, Pawan; Smoot, George F.
2015-10-01
Long gamma-ray bursts (GRBs) are produced by ultra-relativistic jets launched from core collapse of massive stars. Most massive stars form in binaries and/or in star clusters, which means that there may be a significant external photon field (EPF) around the GRB progenitor. We calculate the inverse-Compton scattering of EPF by the hot electrons in the GRB jet. Three possible cases of EPF are considered: the progenitor is (I) in a massive binary system, (II) surrounded by a Wolf-Rayet-star wind and (III) in a dense star cluster. Typical luminosities of 1046-1050 erg s-1 in the 1-100 GeV band are expected, depending on the stellar luminosity, binary separation (I), wind mass-loss rate (II), stellar number density (III), etc. We calculate the light curve and spectrum in each case, taking fully into account the equal-arrival time surfaces and possible pair-production absorption with the prompt γ-rays. Observations can put constraints on the existence of such EPFs (and hence on the nature of GRB progenitors) and on the radius where the jet internal dissipation process accelerates electrons.
NASA Astrophysics Data System (ADS)
Bettinelli, M.; Hidalgo, S. L.; Cassisi, S.; Aparicio, A.; Piotto, G.
2018-05-01
We present the star formation history (SFH) of the Sextans dwarf spheroidal galaxy based on deep archive B, I photometry taken with Suprime-Cam at Subaru telescope focusing our analysis on the inner region of the galaxy, fully located within the core radius. Within the errors of our SFH, we have not detected any metallicity gradient along the considered radial distance interval. As a main result of this work, we can state that the Sextans dwarf spheroidal stopped forming stars less than ˜1.3 Gyr after big bang in correspondence to the end of the reionization epoch. We have been able to constrain the duration of the main burst of star formation to ˜0.6 Gyr. From the calculation of the mechanical luminosity released from supernovae (SNe) during the brief episode of star formation, there are strong indications that SNe could have played an important role in the fate of Sextans, by removing almost completely the gas component, so preventing a prolonged star formation.
Identification Of (Bright) Carbon-Enhanced Metal-Poor Stars With J-Plus Photometry
NASA Astrophysics Data System (ADS)
Placco, Vinicius
2017-10-01
The chemical composition of our bodies, the Earth, the Sun, and the Universe is complex, and the end result of the formation and evolution of numerous stellar generations that contributed all of the elements heavier than helium. One way to understand the possible pathways that led to such complexity is to determine the chemical abundance patterns of ancient low-metallicity stars in the Halo of our Galaxy. However, it is impossible to observe each of the 100 billion stars in the Milky Way in sufficient detail to assess its chemical composition. Hence, astronomers have developed efficient ways to pre-select the most interesting stars for further high-resolution follow-up, based on the understanding that the colors of stars in specific regions of the optical spectrum are affected in predictable ways by changes in their chemical composition. I will discuss the importance of the J-PLUS photometry in selecting low-metallicity and carbon-enhanced stars, using its 12 magnitudes, which will fully exploit this approach, in a manner superior to all previous such efforts.
Nano-Star-Shaped Polymers for Drug Delivery Applications.
Yang, Da-Peng; Oo, Ma Nwe Nwe Linn; Deen, Gulam Roshan; Li, Zibiao; Loh, Xian Jun
2017-11-01
With the advancement of polymer engineering, complex star-shaped polymer architectures can be synthesized with ease, bringing about a host of unique properties and applications. The polymer arms can be functionalized with different chemical groups to fine-tune the response behavior or be endowed with targeting ligands or stimuli responsive moieties to control its physicochemical behavior and self-organization in solution. Rheological properties of these solutions can be modulated, which also facilitates the control of the diffusion of the drug from these star-based nanocarriers. However, these star-shaped polymers designed for drug delivery are still in a very early stage of development. Due to the sheer diversity of macromolecules that can take on the star architectures and the various combinations of functional groups that can be cross-linked together, there remain many structure-property relationships which have yet to be fully established. This review aims to provide an introductory perspective on the basic synthetic methods of star-shaped polymers, the properties which can be controlled by the unique architecture, and also recent advances in drug delivery applications related to these star candidates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system.
Maxted, Pierre F L; Serenelli, Aldo M; Miglio, Andrea; Marsh, Thomas R; Heber, Ulrich; Dhillon, Vikram S; Littlefair, Stuart; Copperwheat, Chris; Smalley, Barry; Breedt, Elmé; Schaffenroth, Veronika
2013-06-27
Low-mass white-dwarf stars are the remnants of disrupted red-giant stars in binary millisecond pulsars and other exotic binary star systems. Some low-mass white dwarfs cool rapidly, whereas others stay bright for millions of years because of stable fusion in thick surface hydrogen layers. This dichotomy is not well understood, so the potential use of low-mass white dwarfs as independent clocks with which to test the spin-down ages of pulsars or as probes of the extreme environments in which low-mass white dwarfs form cannot fully be exploited. Here we report precise mass and radius measurements for the precursor to a low-mass white dwarf. We find that only models in which this disrupted red-giant star has a thick hydrogen envelope can match the strong constraints provided by our data. Very cool low-mass white dwarfs must therefore have lost their thick hydrogen envelopes by irradiation from pulsar companions or by episodes of unstable hydrogen fusion (shell flashes). We also find that this low-mass white-dwarf precursor is a type of pulsating star not hitherto seen. The observed pulsation frequencies are sensitive to internal processes that determine whether this star will undergo shell flashes.
Quenching histories of galaxies and the role of AGN feedback
NASA Astrophysics Data System (ADS)
Smethurst, Rebecca Jane; Lintott, Chris; Simmons, Brooke; Galaxy Zoo Team
2016-01-01
Two open issues in modern astrophysics are: (i) how do galaxies fully quench their star formation and (ii) how is this affected - or not - by AGN feedback? I present the results of a new Bayesian-MCMC analysis of the star formation histories of over 126,000 galaxies across the colour magnitude diagram showing that diverse quenching mechanisms are instrumental in the formation of the present day red sequence. Using classifications from Galaxy Zoo we show that the rate at which quenching can occur is morphologically dependent in each of the blue cloud, green valley and red sequence. We discuss the nature of these possible quenching mechanisms, considering the influence of secular evolution, galaxy interactions and mergers, both with and without black hole activity. We focus particularly on the relationship between these quenched star formation histories and the presence of an AGN by using this new Bayesian method to show a population of type 2 AGN host galaxies have recently (within 2 Gyr) undergone a rapid (τ < 1 Gyr) drop in their star formation rate. With this result we therefore present the first statistically supported observational evidence that AGN feedback is an important mechanism for the cessation of star formation in this population of galaxies. The diversity of this new method also highlights that such rapid quenching histories cannot account fully for all the quenching across the current AGN host population. We demonstrate that slower (τ > 2 Gyr) quenching rates dominate for high stellar mass (log10[M*/M⊙] > 10.75) hosts of AGN with both early- and late-type morphology. We discuss how these results show that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes across the entirety of the colour magnitude diagram.
Surface tension and negative pressure interior of a non-singular ‘black hole’
NASA Astrophysics Data System (ADS)
Mazur, Pawel O.; Mottola, Emil
2015-11-01
The constant density interior Schwarzschild solution for a static, spherically symmetric collapsed star has a divergent pressure when its radius R≤slant \\frac{9}{8}{R}s=\\frac{9}{4}{GM}. We show that this divergence is integrable, and induces a non-isotropic transverse stress with a finite redshifted surface tension on a spherical surface of radius {R}0=3R\\sqrt{1-\\frac{8}{9}\\frac{R }{{R}s}}. For r\\lt {R}0 the interior Schwarzschild solution exhibits negative pressure. When R={R}s, the surface is localized at the Schwarzschild radius itself, {R}0={R}s, and the solution has constant negative pressure p=-\\bar{ρ } everywhere in the interior r\\lt {R}s, thereby describing a gravitational condensate star, a fully collapsed non-singular state already inherent in and predicted by classical general relativity. The redshifted surface tension of the condensate star surface is given by {τ }s={{Δ }}κ /8π G, where {{Δ }}κ ={κ }+-{κ }-=2{κ }+=1/{R}s is the difference of equal and opposite surface gravities between the exterior and interior Schwarzschild solutions. The First Law, {{d}}M={{d}}{E}V+{τ }s {{d}}A is recognized as a purely mechanical classical relation at zero temperature and zero entropy, describing the volume energy and surface energy change respectively. The Schwarzschild time t of such a non-singular gravitational condensate star is a global time, fully consistent with unitary time evolution in quantum theory. A clear observational test of gravitational condensate stars with a physical surface versus black holes is the discrete surface modes of oscillation which should be detectable by their gravitational wave signatures.
AN ACTIVITY–ROTATION RELATIONSHIP AND KINEMATIC ANALYSIS OF NEARBY MID-TO-LATE-TYPE M DWARFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Andrew A.; Weisenburger, Kolby L.; Irwin, Jonathan
Using spectroscopic observations and photometric light curves of 238 nearby M dwarfs from the MEarth exoplanet transit survey, we examine the relationships between magnetic activity (quantified by Hα emission), rotation period, and stellar age. Previous attempts to investigate the relationship between magnetic activity and rotation in these stars were hampered by the limited number of M dwarfs with measured rotation periods (and the fact that v sin i measurements probe only rapid rotation). However, the photometric data from MEarth allows us to probe a wide range of rotation periods for hundreds of M dwarf stars (from shorter than one tomore » longer than 100 days). Over all M spectral types that we probe, we find that the presence of magnetic activity is tied to rotation, including for late-type, fully convective M dwarfs. We also find evidence that the fraction of late-type M dwarfs that are active may be higher at longer rotation periods compared to their early-type counterparts, with several active, late-type, slowly rotating stars present in our sample. Additionally, we find that all M dwarfs with rotation periods shorter than 26 days (early-type; M1–M4) and 86 days (late-type; M5–M8) are magnetically active. This potential mismatch suggests that the physical mechanisms that connect stellar rotation to chromospheric heating may be different in fully convective stars. A kinematic analysis suggests that the magnetically active, rapidly rotating stars are consistent with a kinematically young population, while slow-rotators are less active or inactive and appear to belong to an older, dynamically heated stellar population.« less
K2 ROTATION PERIODS FOR LOW-MASS HYADS AND THE IMPLICATIONS FOR GYROCHRONOLOGY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas, S. T.; Agüeros, M. A.; Covey, K. R.
2016-05-01
As the closest open cluster to the Sun, the Hyades is an important benchmark for many stellar properties, but its members are also scattered widely over the sky. Previous studies of stellar rotation in the Hyades relied on targeted observations of single stars or data from shallower all-sky variability surveys. The re-purposed Kepler mission, K2 , is the first opportunity to measure rotation periods ( P {sub rot}) for many Hyads simultaneously while also being sensitive to fully convective M dwarf members. We analyze K2 data for 65 Hyads and present P {sub rot} values for 48. Thirty-seven of thesemore » are new measurements, including the first P {sub rot} measurements for fully convective Hyads. For 9 of the 11 stars with P {sub rot} in the literature and this work, the measurements are consistent; we attribute the two discrepant cases to spot evolution. Nearly all stars with masses ≲0.3 M {sub ⊙} are rapidly rotating, indicating a change in rotation properties at the boundary to full convection. When confirmed and candidate binaries are removed from the mass–period plane, only three rapid rotators with masses ≳0.3 M {sub ⊙} remain. This is in contrast to previous results showing that the single-valued mass–period sequence for ≈600 Myr old stars ends at ≈0.65 M {sub ⊙} when binaries are included. We also find that models of rotational evolution predict faster rotation than is actually observed at ≈600 Myr for stars ≲0.9 M {sub ⊙}. The dearth of single rapid rotators more massive than ≈0.3 M {sub ⊙} indicates that magnetic braking is more efficient than previously thought, and that age–rotation studies must account for multiplicity.« less
Smart Fluid Systems: The Advent of Autonomous Liquid Robotics.
Chiolerio, A; Quadrelli, Marco B
2017-07-01
Organic, inorganic or hybrid devices in the liquid state, kept in a fixed volume by surface tension or by a confining membrane that protects them from a harsh environment, could be used as biologically inspired autonomous robotic systems with unique capabilities. They could change shape according to a specific exogenous command or by means of a fully integrated adaptive system, and provide an innovative solution for many future applications, such as space exploration in extreme or otherwise challenging environments, post-disaster search and rescue in ground applications, compliant wearable devices, and even in the medical field for in vivo applications. This perspective provides an initial assessment of existing capabilities that could be leveraged to pursue the topic of "Smart Fluid Systems" or "Liquid Engineered Systems".
The Impact Of Galactic Environment On Star Formation
NASA Astrophysics Data System (ADS)
Kreckel, Kathryn
2016-09-01
While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well@corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=35pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic@scale dynamical processes dominate GMC disruption.
The impact of galactic environment on star formation
NASA Astrophysics Data System (ADS)
Kreckel, Kathryn; Blanc, Guillermo A.; Schinnerer, Eva; Groves, Brent; Adamo, Angela; Hughes, Annie; Meidt, Sharon; SFNG Collaboration
2017-01-01
While spiral arms are the most prominent sites for star formation in disk galaxies, interarm star formation contributes significantly to the overall star formation budget. However, it is still an open question if the star formation proceeds differently in the arm and inter-arm environment. We use deep VLT/MUSE optical IFU spectroscopy to resolve and fully characterize the physical properties of 428 interarm and arm HII regions in the nearby grand design spiral galaxy NGC 628. Unlike molecular clouds (the fuel for star formation) which exhibit a clear dependence on galactic environment, we find that most HII region properties (luminosity, size, metallicity, ionization parameter) are independent of environment. One clear exception is the diffuse ionized gas (DIG) contribution to the arm and interarm flux (traced via the temperature sensitive [SII]/Halpha line ratio inside and outside of the HII region boundaries). We find a systematically higher DIG background within HII regions, particularly on the spiral arms. Correcting for this DIG contamination can result in significant (70%) changes to the star formation rate measured. We also show preliminary results comparing well-corrected star formation rates from our MUSE HII regions to ALMA CO(2-1) molecular gas observations at matched 1"=50pc resolution, tracing the Kennicutt-Schmidt star formation law at the scales relevant to the physics of star formation. We estimate the timescales relevant for GMC evolution using distance from the spiral arm as a proxy for age, and test whether star formation feedback or galactic-scale dynamical processes dominate GMC disruption.
A Comparative Analysis of Chemical Abundances in Andromeda's Stellar Halo and Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Gilbert, Karoline; Kirby, Evan N.; Escala, Ivanna; Wojno, Jennifer
2018-06-01
Stellar halos provide a record of the earliest stages of a galaxy’s formation as well as the mass growth of later epochs. All stages of accretion are represented in the halo: (1) fully phase-mixed stars accreted at early times, (2) stars in distinct tidal streams, and (3) stars in satellite galaxies that will eventually be tidally incorporated into the halo. Chemical abundances encode information about the environment in which a star formed: specifically, the relative abundances of [Fe/H] and [α/Fe] provide an indication of the amount and duration of star formation. While these abundances have been measured for statistically significant samples of halo and dwarf galaxy stars in the Milky Way, they remain largely unknown in Andromeda. We have undertaken a systematic survey to measure [Fe/H] and [α/Fe] in fields throughout the M31 system, including the halo, tidal streams, satellite galaxies, and the disk. I will provide an overview of the survey and its goals and present first results, including the abundance distributions for five M31 dSphs, measurements of [Fe/H] and [α/Fe] of stars in M31's halo, and comparisons to existing measurements of Milky Way dSph and halo stars.
ERIC Educational Resources Information Center
Hoogeveen, Jeffrey L.
Founded in 1854 as the Ashmun Institute, Lincoln University in southern Pennsylvania is the nation's oldest historically black university. Classical rhetoric and canonical literature were taught at Lincoln since its founding. Lincoln's writing program emerged fully and autonomously in 1978 and grew roughly at the same time that the discipline of…
Large-scale magnetic topologies of mid M dwarfs
NASA Astrophysics Data System (ADS)
Morin, J.; Donati, J.-F.; Petit, P.; Delfosse, X.; Forveille, T.; Albert, L.; Aurière, M.; Cabanac, R.; Dintrans, B.; Fares, R.; Gastine, T.; Jardine, M. M.; Lignières, F.; Paletou, F.; Ramirez Velez, J. C.; Théado, S.
2008-10-01
We present in this paper, the first results of a spectropolarimetric analysis of a small sample (~20) of active stars ranging from spectral type M0 to M8, which are either fully convective or possess a very small radiative core. This study aims at providing new constraints on dynamo processes in fully convective stars. This paper focuses on five stars of spectral type ~M4, i.e. with masses close to the full convection threshold (~=0.35Msolar), and with short rotational periods. Tomographic imaging techniques allow us to reconstruct the surface magnetic topologies from the rotationally modulated time-series of circularly polarized profiles. We find that all stars host mainly axisymmetric large-scale poloidal fields. Three stars were observed at two different epochs separated by ~1 yr; we find the magnetic topologies to be globally stable on this time-scale. We also provide an accurate estimation of the rotational period of all stars, thus allowing us to start studying how rotation impacts the large-scale magnetic field. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) and the Télescope Bernard Lyot (TBL). CFHT is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France (INSU/CNRS) and the University of Hawaii, while the TBL is operated by CNRS/INSU. E-mail: jmorin@ast.obs-mip.fr (JM); donati@ast.obs-mip.fr (J-FD); petit@ast.obs-mip.fr (PP); xavier.delfosse@obs.ujf-grenoble.fr (XD); thierry.forveille@obs.ujf-grenoble.fr (TF); albert@cfht.hawaii.edu (LA); auriere@ast.obs-mip.fr (MA); remi.cabanac@ast.obs-mip.fr (RC); dintrans@ast.obs-mip.fr (BD); rfares@ast.obs-mip.fr (RF); tgastine@ast.obs-mip.fr (TG); mmj@st-andrews.ac.uk (MMJ); ligniere@ast.obs-mip.fr (FL); fpaletou@ast.obs-mip.fr (FP); jramirez@mesiog.obspm.fr (JR); sylvie.theado@ast.obs-mip.fr (ST)
Flück, Christa E.; Pandey, Amit V.; Dick, Bernhard; Camats, Núria; Fernández-Cancio, Mónica; Clemente, María; Gussinyé, Miquel; Carrascosa, Antonio; Mullis, Primus E.; Audi, Laura
2011-01-01
Context Steroidogenic acute regulatory protein (StAR) is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH). Objective StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. Design To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. Setting Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. Patients Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. Results StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (∼30%) and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. Conclusions StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S) seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed. PMID:21647419
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ji; Fischer, Debra A.; Xie, Ji-Wei
2014-08-20
Almost half of the stellar systems in the solar neighborhood are made up of multiple stars. In multiple-star systems, planet formation is under the dynamical influence of stellar companions, and the planet occurrence rate is expected to be different from that of single stars. There have been numerous studies on the planet occurrence rate of single star systems. However, to fully understand planet formation, the planet occurrence rate in multiple-star systems needs to be addressed. In this work, we infer the planet occurrence rate in multiple-star systems by measuring the stellar multiplicity rate for planet host stars. For a subsamplemore » of 56 Kepler planet host stars, we use adaptive optics (AO) imaging and the radial velocity (RV) technique to search for stellar companions. The combination of these two techniques results in high search completeness for stellar companions. We detect 59 visual stellar companions to 25 planet host stars with AO data. Three stellar companions are within 2'' and 27 within 6''. We also detect two possible stellar companions (KOI 5 and KOI 69) showing long-term RV acceleration. After correcting for a bias against planet detection in multiple-star systems due to flux contamination, we find that planet formation is suppressed in multiple-star systems with separations smaller than 1500 AU. Specifically, we find that compared to single star systems, planets in multiple-star systems occur 4.5 ± 3.2, 2.6 ± 1.0, and 1.7 ± 0.5 times less frequently when a stellar companion is present at a distance of 10, 100, and 1000 AU, respectively. This conclusion applies only to circumstellar planets; the planet occurrence rate for circumbinary planets requires further investigation.« less
Towards A Complete Census of the Compton-thick AGN Population in our Cosmic Backyard
NASA Astrophysics Data System (ADS)
Annuar, Ady
2016-09-01
We propose for Chandra and NuSTAR observations of two local AGNs to characterise their obscuring properties. We are using Chandra and NuSTAR to form the first complete measurement of the column density (N_H) distribution of AGN at D<15 Mpc. Even at this distance the distribution was only 50% complete. We have recently improved this, and found a Compton-thick (CT) AGN fraction of >35%. We also found that Chandra resolution is key in resolving the AGN from off-nuclear X-ray sources. When combined with NuSTAR, this allow us to accurately characterise the broadband spectrum of the AGN, and identify it as CT. These new observations will provide Chandra data for all D<15Mpc AGNs and boost up the N_H distribution up to 85% complete. This will be fully completed with future NuSTAR observations.
Sometimes two arms are enough--an unusual life-stage in brittle stars (Echinodermata: Ophiuroidea).
Stöhr, Sabine; Alme, Øydis
2015-08-03
Off West Africa (Angola-Morocco), benthos samples were collected in the years 2005-2012. These contained 124 specimens of brittle stars with two long arms and three extremely short or absent arms and an elongated, narrow disc. These unusual brittle stars, as well as 33 specimens with five fully developed arms, were identified as Amphiura ungulata. The specimens with unequal arms were juvenile stages, whereas adults had five equal arms. The large number of specimens with unequal arms suggests that this condition is not the result of damage and regeneration, but a normal growth pattern in this species. This study documents the morphology by SEM, amends the species description, and discusses possible explanations for the evolution of this condition. Although brittle star species with unequal arm growth have been reported, this is an extreme case that was unknown before this study.
Libraries of High and Mid-Resolution Spectra of F, G, K, and M Field Stars
NASA Astrophysics Data System (ADS)
Montes, D.
1998-06-01
I have compiled here the three libraries of high and mid-resolution optical spectra of late-type stars I have recently published. The libraries include F, G, K and M field stars, from dwarfs to giants. The spectral coverage is from 3800 to 1000 Å, with spectral resolution ranging from 0.09 to 3.0 Å. These spectra include many of the spectral lines most widely used as optical and near-infrared indicators of chromospheric activity. The spectra have been obtained with the aim of providing a library of high and mid-resolution spectra to be used in the study of active chromosphere stars by applying a spectral subtraction technique. However, the data set presented here can also be utilized in a wide variety of ways. A digital version of all the fully reduced spectra is available via FTP and the World Wide Web (WWW) in FITS format.
ACCURATE LOW-MASS STELLAR MODELS OF KOI-126
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feiden, Gregory A.; Chaboyer, Brian; Dotter, Aaron, E-mail: gregory.a.feiden@dartmouth.edu
2011-10-10
The recent discovery of an eclipsing hierarchical triple system with two low-mass stars in a close orbit (KOI-126) by Carter et al. appeared to reinforce the evidence that theoretical stellar evolution models are not able to reproduce the observational mass-radius relation for low-mass stars. We present a set of stellar models for the three stars in the KOI-126 system that show excellent agreement with the observed radii. This agreement appears to be due to the equation of state implemented by our code. A significant dispersion in the observed mass-radius relation for fully convective stars is demonstrated; indicative of the influencemore » of physics currently not incorporated in standard stellar evolution models. We also predict apsidal motion constants for the two M dwarf companions. These values should be observationally determined to within 1% by the end of the Kepler mission.« less
The effects of views of nature on autonomic control.
Gladwell, V F; Brown, D K; Barton, J L; Tarvainen, M P; Kuoppa, P; Pretty, J; Suddaby, J M; Sandercock, G R H
2012-09-01
Previously studies have shown that nature improves mood and self-esteem and reduces blood pressure. Walking within a natural environment has been suggested to alter autonomic nervous system control, but the mechanisms are not fully understood. Heart rate variability (HRV) is a non-invasive method of assessing autonomic control and can give an insight into vagal modulation. Our hypothesis was that viewing nature alone within a controlled laboratory environment would induce higher levels of HRV as compared to built scenes. Heart rate (HR) and blood pressure (BP) were measured during viewing different scenes in a controlled environment. HRV was used to investigate alterations in autonomic activity, specifically parasympathetic activity. Each participant lay in the semi-supine position in a laboratory while we recorded 5 min (n = 29) of ECG, BP and respiration as they viewed two collections of slides (one containing nature views and the other built scenes). During viewing of nature, markers of parasympathetic activity were increased in both studies. Root mean squared of successive differences increased 4.2 ± 7.7 ms (t = 2.9, p = 0.008) and natural logarithm of high frequency increased 0.19 ± 0.36 ms(2) Hz(-1) (t = 2.9, p = 0.007) as compared to built scenes. Mean HR and BP were not significantly altered. This study provides evidence that autonomic control of the heart is altered by the simple act of just viewing natural scenes with an increase in vagal activity.
de Castro, Fernando
2016-01-01
The fine structure of the autonomic nervous system was largely unknown at the beginning of the second decade of the 20th century. Although relatively anatomists and histologists had studied the subject, even the assays by the great Russian histologist Alexander Dogiel and the Spanish Nobel Prize laureate, Santiago Ramón y Cajal, were incomplete. In a time which witnessed fundamental discoveries by Langley, Loewi and Dale on the physiology of the autonomic nervous system, both reputed researchers entrusted one of their outstanding disciples to the challenge to further investigate autonomic structures: the Russian B.I. Lawrentjew and the Spanish Fernando de Castro developed new technical approaches with spectacular results. In the mid of the 1920’s, both young neuroscientists were worldwide recognized as the top experts in the field. In the present work we describe the main discoveries by Fernando de Castro in those years regarding the structure of sympathetic and sensory ganglia, the organization of the synaptic contacts in these ganglia, and the nature of their innervation, later materialized in their respective chapters, personally invited by the editor, in Wilder Penfield’s famous textbook on Neurology and the Nervous System. Most of these discoveries remain fully alive today. PMID:27147984
E-I balance emerges naturally from continuous Hebbian learning in autonomous neural networks.
Trapp, Philip; Echeveste, Rodrigo; Gros, Claudius
2018-06-12
Spontaneous brain activity is characterized in part by a balanced asynchronous chaotic state. Cortical recordings show that excitatory (E) and inhibitory (I) drivings in the E-I balanced state are substantially larger than the overall input. We show that such a state arises naturally in fully adapting networks which are deterministic, autonomously active and not subject to stochastic external or internal drivings. Temporary imbalances between excitatory and inhibitory inputs lead to large but short-lived activity bursts that stabilize irregular dynamics. We simulate autonomous networks of rate-encoding neurons for which all synaptic weights are plastic and subject to a Hebbian plasticity rule, the flux rule, that can be derived from the stationarity principle of statistical learning. Moreover, the average firing rate is regulated individually via a standard homeostatic adaption of the bias of each neuron's input-output non-linear function. Additionally, networks with and without short-term plasticity are considered. E-I balance may arise only when the mean excitatory and inhibitory weights are themselves balanced, modulo the overall activity level. We show that synaptic weight balance, which has been considered hitherto as given, naturally arises in autonomous neural networks when the here considered self-limiting Hebbian synaptic plasticity rule is continuously active.
An autonomous rendezvous and docking system using cruise missile technologies
NASA Technical Reports Server (NTRS)
Jones, Ruel Edwin
1991-01-01
In November 1990 the Autonomous Rendezvous & Docking (AR&D) system was first demonstrated for members of NASA's Strategic Avionics Technology Working Group. This simulation utilized prototype hardware from the Cruise Missile and Advanced Centaur Avionics systems. The object was to show that all the accuracy, reliability and operational requirements established for a space craft to dock with Space Station Freedom could be met by the proposed system. The rapid prototyping capabilities of the Advanced Avionics Systems Development Laboratory were used to evaluate the proposed system in a real time, hardware in the loop simulation of the rendezvous and docking reference mission. The simulation permits manual, supervised automatic and fully autonomous operations to be evaluated. It is also being upgraded to be able to test an Autonomous Approach and Landing (AA&L) system. The AA&L and AR&D systems are very similar. Both use inertial guidance and control systems supplemented by GPS. Both use an Image Processing System (IPS), for target recognition and tracking. The IPS includes a general purpose multiprocessor computer and a selected suite of sensors that will provide the required relative position and orientation data. Graphic displays can also be generated by the computer, providing the astronaut / operator with real-time guidance and navigation data with enhanced video or sensor imagery.
Experimental Verification of Fully Decentralized Control Inspired by Plasmodium of True Slime Mold
NASA Astrophysics Data System (ADS)
Umedachi, Takuya; Takeda, Koichi; Nakagaki, Toshiyuki; Kobayashi, Ryo; Ishiguro, Akio
This paper presents a fully decentralized control inspired by plasmodium of true slime mold and its validity using a soft-bodied amoeboid robot. The notable features of this paper are twofold: (1) the robot has truly soft and deformable body stemming from real-time tunable springs and a balloon, the former is utilized as an outer skin of the body and the latter serves as protoplasm; and (2) a fully decentralized control using coupled oscillators with completely local sensory feedback mechanism is realized by exploiting the long-distance physical interaction between the body parts induced by the law of conservation of protoplasmic mass. Experimental results show that this robot exhibits truly supple locomotion without relying on any hierarchical structure. The results obtained are expected to shed new light on design scheme for autonomous decentralized control system.
Lee, Sungseok; Ives, Angela M.
2015-01-01
ABSTRACT Herpes simplex virus 1 (HSV-1) and HSV-2 establish latency in sensory and autonomic neurons after ocular or genital infection, but their recurrence patterns differ. HSV-1 reactivates from latency to cause recurrent orofacial disease, and while HSV-1 also causes genital lesions, HSV-2 recurs more efficiently in the genital region and rarely causes ocular disease. The mechanisms regulating these anatomical preferences are unclear. To determine whether differences in latent infection and reactivation in autonomic ganglia contribute to differences in HSV-1 and HSV-2 anatomical preferences for recurrent disease, we compared HSV-1 and HSV-2 clinical disease, acute and latent viral loads, and viral gene expression in sensory trigeminal and autonomic superior cervical and ciliary ganglia in a guinea pig ocular infection model. HSV-2 produced more severe acute disease, correlating with higher viral DNA loads in sensory and autonomic ganglia, as well as higher levels of thymidine kinase expression, a marker of productive infection, in autonomic ganglia. HSV-1 reactivated in ciliary ganglia, independently from trigeminal ganglia, to cause more frequent recurrent symptoms, while HSV-2 replicated simultaneously in autonomic and sensory ganglia to cause more persistent disease. While both HSV-1 and HSV-2 expressed the latency-associated transcript (LAT) in the trigeminal and superior cervical ganglia, only HSV-1 expressed LAT in ciliary ganglia, suggesting that HSV-2 is not reactivation competent or does not fully establish latency in ciliary ganglia. Thus, differences in replication and viral gene expression in autonomic ganglia may contribute to differences in HSV-1 and HSV-2 acute and recurrent clinical disease. IMPORTANCE Herpes simplex virus 1 (HSV-1) and HSV-2 establish latent infections, from which the viruses reactivate to cause recurrent disease throughout the life of the host. However, the viruses exhibit different manifestations and frequencies of recurrent disease. HSV-1 and HSV-2 establish latency in both sensory and autonomic ganglia. Autonomic ganglia are more responsive than sensory ganglia to stimuli associated with recurrent disease in humans, such as stress and hormone fluctuations, suggesting that autonomic ganglia may play an important role in recurrent disease. We show that HSV-1 can reactivate from autonomic ganglia, independently from sensory ganglia, to cause recurrent ocular disease. We found no evidence that HSV-2 could reactivate from autonomic ganglia independently from sensory ganglia after ocular infection, but HSV-2 did replicate in both ganglia simultaneously to cause persistent disease. Thus, viral replication and reactivation in autonomic ganglia contribute to different clinical disease manifestations of HSV-1 and HSV-2 after ocular infection. PMID:26041294
Star-shaped PHB-PLA block copolymers: immortal polymerization with dinuclear indium catalysts.
Yu, I; Ebrahimi, T; Hatzikiriakos, S G; Mehrkhodavandi, P
2015-08-28
The first example of a one-component precursor to star-shaped polyesters, and its utilization in the synthesis of previously unknown star-shaped poly(hydroxybutyrate)-poly(lactic acid) block copolymers, is reported. A series of such mono- and bis-benzyl alkoxy-bridged complexes were synthesized, fully characterized, and their solvent dependent solution structures and reactivity were examined. These complexes were highly active catalysts for the controlled polymerization of β-butyrolactone to form poly(hydroxybutyrate) at room temperature. Solution studies indicate that a mononuclear propagating species formed in THF and that the dimer-monomer equilibrium affects the rates of BBL polymerization. In the presence of linear and branched alcohols, these complexes catalyze well-controlled immortal polymerization and copolymerization of β-butyrolactone and lactide.
NASA Technical Reports Server (NTRS)
Stauffer, John R.; Liebert, James; Giampapa, Mark; Macintosh, Bruce; Reid, Neill; Hamilton, Donald
1994-01-01
We have determined H alpha equivalent widths and radial velocities with 1 sigma accuracies of approximately 5 km s(exp -1) for approximately 20 candidate very low mass members of the Hyades and Pleiades clusters. The radial velocities for the Hyades sample suggest that nearly all of these stars are indeed highly probable members of the Hyades. The faintest stars in the Hyades sample have masses of order 0.1 solar mass. We also obtained radial velocities for four candidate very low mass members of the Pleiades and two objects that are candidate BD Pleiads. All of these stars have apparent V magnitudes fainter than the Hyades stars we observed, and the resultant radial velocity accuracy is worse. We believe that the three brighter stars are indeed likely very low mass stellar members of the Pleiades, whereas the status of the two brown dwarf candidates is uncertain. The Hyades stars we have observed and the three Pleiades very low mass stars are the lowest mass members of any open cluster whose membership has been confirmed by radial velocities and whose chromospheric activity has been measured. We see no change in chromospheric activity at the boundary where stars are expected to become fully convective (M approximately equals 0.3 solar mass) in either cluster. In the Pleiades, however, there may be a decrease in chromospheric activity for stars with (V-I)(sub K) greater than 3.5 (M less than or equal to 0.1 solar mass).
Differential rotation in magnetic chemically peculiar stars
NASA Astrophysics Data System (ADS)
Mikulášek, Z.; Krtička, J.; Paunzen, E.; Švanda, M.; Hummerich, S.; Bernhard, K.; Jagelka, M.; Janík, J.; Henry, G. W.; Shultz, M. E.
2018-01-01
Magnetic chemically peculiar (mCP) stars constitute about 10% of upper-main-sequence stars and are characterized by strong magnetic fields and abnormal photospheric abundances of some chemical elements. Most of them exhibit strictly periodic light, magnetic, radio, and spectral variations that can be fully explained by a rigidly rotating main-sequence star with persistent surface structures and a stable global magnetic field. Long-term observations of the phase curves of these variations enable us to investigate possible surface differential rotation with unprecedented accuracy and reliability. The analysis of the phase curves in the best-observed mCP stars indicates that the location and the contrast of photometric and spectroscopic spots as well as the geometry of the magnetic field remain constant for at least many decades. The strict periodicity of mCP variables supports the concept that the outer layers of upper-main-sequence stars do not rotate differentially. However, there is a small, inhomogeneous group consisting of a few mCP stars whose rotation periods vary on timescales of decades. The period oscillations may reflect real changes in the angular velocity of outer layers of the stars which are anchored by their global magnetic fields. In CU Vir, V901 Ori, and perhaps BS Cir, the rotational period variation indicates the presence of vertical differential rotation; however, its exact nature has remained elusive until now. The incidence of mCP stars with variable rotational periods is currently investigated using a sample of fifty newly identified Kepler mCP stars.
I can't help falling in Love with Q
NASA Astrophysics Data System (ADS)
Francis, Matthew R.
2015-08-01
Neutron star insides are describable only using very complicated theories. But as Matthew R Francis reports, it now looks like the outsides of these objects may be fully defined by only three simple quantities, known as I, Q and Love.
Laird, A S; Carrive, P; Waite, P M E
2006-01-01
In patients with high spinal cord injuries autonomic dysfunction can be dangerous, leading to medical complications such as postural hypotension, autonomic dysreflexia and temperature disturbance. While animal models have been developed to study autonomic dysreflexia, associated temperature changes have not been documented. Our aim here was to use radiotelemetry and infrared thermography in rodents to record the development of cardiovascular and skin temperature changes following complete T4 transection. In adult male Wistar rats (n = 5), responses were assessed prior to spinal cord injury (intact) and for 6 weeks following injury. Statistical analysis by a repeated-measure ANOVA revealed that following spinal cord injury (SCI), rats exhibited decreased mean arterial pressure (MAP, average decrease of 26 mmHg; P < 0.035) and elevated heart rate (HR, average increase of 65 bpm, P < 0.035) at rest. The basal core body temperature following SCI was also significantly lower than intact levels (−0.9°C; P < 0.0035). Associated with this decreased basal core temperature following SCI was an increased skin temperature of the mid-tail and hindpaw (+5.6 and +4.0°C, respectively; P < 0.0003) consistent with decreased cutaneous vasoconstrictor tone. Autonomic dysreflexia, in response to a 1 min colorectal distension (25 mmHg), was fully developed by 4 weeks after spinal cord transection, producing increases in MAP greater than 25 mmHg (P < 0.0003). In contrast to the tachycardia seen in intact animals in response to colorectal distension, SCI animals exhibited bradycardia (P < 0.0023). During episodes of autonomic dysreflexia mid-tail surface temperature decreased (approx. −1.7°C, P < 0.012), consistent with cutaneous vasoconstriction. This is the first study to compare cardiovascular dysfunction with temperature changes following spinal cord transection in rats. PMID:16973703
An Ethical Basis for Autonomous System Deployment
2009-09-24
Discussion on Robo -Ethics, Amsterdam, NL, March 2008.GSU Neurophilosophy 20. Brown Bag Lunch Series, "Governing Lethal Behavior: Embedding Ethics in an...5. Implementation of responsibility advisor : An ethical permission responsibility advisor was prototyped and demonstrated in a manner fully...PTF_Interface_Final_Largev3.mpg • Demonstration of the Ethical Responsibility Advisor : http://www.cc.gatech.edu/ai/robot-lab/ethics/res-advisor.mpg
Space science experimentation automation and support
NASA Technical Reports Server (NTRS)
Frainier, Richard J.; Groleau, Nicolas; Shapiro, Jeff C.
1994-01-01
This paper outlines recent work done at the NASA Ames Artificial Intelligence Research Laboratory on automation and support of science experiments on the US Space Shuttle in low earth orbit. Three approaches to increasing the science return of these experiments using emerging automation technologies are described: remote control (telescience), science advisors for astronaut operators, and fully autonomous experiments. The capabilities and limitations of these approaches are reviewed.
Star Formation in Nearby Galaxies
NASA Astrophysics Data System (ADS)
O'Connell, Robert
2009-07-01
Star formation is a fundamental astrophysical process; it controls phenomena ranging from the evolution of galaxies and nucleosynthesis to the origins of planetary systems and abodes for life. The WFC3, optimized at both UV and IR wavelengths and equipped with an extensive array of narrow-band filters, brings unique capabilities to this area of study. The WFC3 Scientific Oversight Committee {SOC} proposes an integrated program on star formation in the nearby universe which will fully exploit these new abilities. Our targets range from the well-resolved R136 in 30 Dor in the LMC {the nearest super star cluster} and M82 {the nearest starbursting galaxy} to about half a dozen other nearby galaxies that sample a wide range of star-formation rates and environments. Our program consists of broad-band multiwavelength imaging over the entire range from the UV to the near-IR, aimed at studying the ages and metallicities of stellar populations, revealing young stars that are still hidden by dust at optical wavelengths, and showing the integrated properties of star clusters. Narrow-band imaging of the same environments will allow us to measure star-formation rates, gas pressure, chemical abundances, extinction, and shock morphologies. The primary scientific issues to be addressed are: {1} What triggers star formation? {2} How do the properties of star-forming regions vary among different types of galaxies and environments of different gas densities and compositions? {3} How do these different environments affect the history of star formation? {4} Is the stellar initial mass function universal or determined by local conditions?
NASA Technical Reports Server (NTRS)
Mulrooney, M.; Hickson, P.; Stansbery, Eugene G.
2010-01-01
MCAT (Meter-Class Autonomous Telescope) is a 1.3m f/4 Ritchey-Chr tien on a double horseshoe equatorial mount that will be deployed in early 2011 to the western pacific island of Legan in the Kwajalein Atoll to perform orbital debris observations. MCAT will be capable of tracking earth orbital objects at all inclinations and at altitudes from 200 km to geosynchronous. MCAT s primary objective is the detection of new orbital debris in both low-inclination low-earth orbits (LEO) and at geosynchronous earth orbit (GEO). MCAT was thus designed with a fast focal ratio and a large unvignetted image circle able to accommodate a detector sized to yield a large field of view. The selected primary detector is a close-cycle cooled 4Kx4K 15um pixel CCD camera that yields a 0.9 degree diagonal field. For orbital debris detection in widely spaced angular rate regimes, the camera must offer low read-noise performance over a wide range of framing rates. MCAT s 4-port camera operates from 100 kHz to 1.5 MHz per port at 2 e- and 10 e- read noise respectively. This enables low-noise multi-second exposures for GEO observations as well as rapid (several frames per second) exposures for LEO. GEO observations will be performed using a counter-sidereal time delay integration (TDI) technique which NASA has used successfully in the past. For MCAT the GEO survey, detection, and follow-up prediction algorithms will be automated. These algorithms will be detailed herein. For LEO observations two methods will be employed. The first, Orbit Survey Mode (OSM), will scan specific orbital inclination and altitude regimes, detect new orbital debris objects against trailed background stars, and adjust the telescope track to follow the detected object. The second, Stare and Chase Mode (SCM), will perform a stare, then detect and track objects that enter the field of view which satisfy specific rate and brightness criteria. As with GEO, the LEO operational modes will be fully automated and will be described herein. The automation of photometric and astrometric processing (thus streamlining data collection for environmental modeling) will also be discussed.
Simultaneous, multi-wavelength flare observations of nearby low-mass stars
NASA Astrophysics Data System (ADS)
Thackeray, Beverly; Barclay, Thomas; Quintana, Elisa; Villadsen, Jacqueline; Wofford, Alia; Schlieder, Joshua; Boyd, Patricia
2018-01-01
Low-mass stars are the most common stars in the Galaxy and have been targeted in the tens-of-thousands by K2, the re-purposed Kepler mission, as they are prime targets to search for and characterize small, Earth-like planets. Understanding how these fully convective stars drive magnetic activity that manifests as stochastic, short-term brightenings, or flares, provides insight into the prospects of planetary habitability. High energy radiation and energetic particle emission associated with these stars can erode atmospheres, and impact habitability. An innovative campaign to study low mass stars through simultaneous multi-wavelength observations is currently underway with observations ongoing in the X-ray, UV, optical, and radio. I will present early results of our pilot study of the nearby M-Dwarf star Wolf 359 (CN Leo) using K2, SWIFT, and ground based radio observatories, forming a comprehensive picture of flare activity from an M-Dwarf, and discuss the potential impact of these results on exoplanets. "This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1322106. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."
The rotation of discs around neutron stars: dependence on the Hall diffusion
NASA Astrophysics Data System (ADS)
Faghei, Kazem; Salehi, Fatemeh
2018-01-01
In this paper, we study the dynamics of a geometrically thin, steady and axisymmetric accretion disc surrounding a rotating and magnetized star. The magnetic field lines of star penetrate inside the accretion disc and are twisted due to the differential rotation between the magnetized star and the disc. We apply the Hall diffusion effect in the accreting plasma, because of the Hall diffusion plays an important role in both fully ionized plasma and weakly ionized medium. In the current research, we show that the Hall diffusion is also an important mechanism in accreting plasma around neutron stars. For the typical system parameter values associated with the accreting X-ray binary pulsar, the angular velocity of the inner regions of disc departs outstandingly from Keplerian angular velocity, due to coupling between the magnetic field of neutron star and the rotating plasma of disc. We found that the Hall diffusion is very important in inner disc and increases the coupling between the magnetic field of neutron star and accreting plasma. On the other word, the rotational velocity of inner disc significantly decreases in the presence of the Hall diffusion. Moreover, the solutions imply that the fastness parameter decreases and the angular velocity transition zone becomes broad for the accreting plasma including the Hall diffusion.
Constraining neutron-star tidal Love numbers with gravitational-wave detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flanagan, Eanna E.; Hinderer, Tanja
Ground-based gravitational wave detectors may be able to constrain the nuclear equation of state using the early, low frequency portion of the signal of detected neutron star-neutron star inspirals. In this early adiabatic regime, the influence of a neutron star's internal structure on the phase of the waveform depends only on a single parameter {lambda} of the star related to its tidal Love number, namely, the ratio of the induced quadrupole moment to the perturbing tidal gravitational field. We analyze the information obtainable from gravitational wave frequencies smaller than a cutoff frequency of 400 Hz, where corrections to the internal-structuremore » signal are less than 10%. For an inspiral of two nonspinning 1.4M{sub {center_dot}} neutron stars at a distance of 50 Megaparsecs, LIGO II detectors will be able to constrain {lambda} to {lambda}{<=}2.0x10{sup 37} g cm{sup 2} s{sup 2} with 90% confidence. Fully relativistic stellar models show that the corresponding constraint on radius R for 1.4M{sub {center_dot}} neutron stars would be R{<=}13.6 km (15.3 km) for a n=0.5 (n=1.0) polytrope with equation of state p{proportional_to}{rho}{sup 1+1/n}.« less
Distributed Cognition on the road: Using EAST to explore future road transportation systems.
Banks, Victoria A; Stanton, Neville A; Burnett, Gary; Hermawati, Setia
2018-04-01
Connected and Autonomous Vehicles (CAV) are set to revolutionise the way in which we use our transportation system. However, we do not fully understand how the integration of wireless and autonomous technology into the road transportation network affects overall network dynamism. This paper uses the theoretical principles underlying Distributed Cognition to explore the dependencies and interdependencies that exist between system agents located within the road environment, traffic management centres and other external agencies in both non-connected and connected transportation systems. This represents a significant step forward in modelling complex sociotechnical systems as it shows that the principles underlying Distributed Cognition can be applied to macro-level systems using the visual representations afforded by the Event Analysis of Systemic Teamwork (EAST) method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Smart Fluid Systems: The Advent of Autonomous Liquid Robotics
2017-01-01
Organic, inorganic or hybrid devices in the liquid state, kept in a fixed volume by surface tension or by a confining membrane that protects them from a harsh environment, could be used as biologically inspired autonomous robotic systems with unique capabilities. They could change shape according to a specific exogenous command or by means of a fully integrated adaptive system, and provide an innovative solution for many future applications, such as space exploration in extreme or otherwise challenging environments, post‐disaster search and rescue in ground applications, compliant wearable devices, and even in the medical field for in vivo applications. This perspective provides an initial assessment of existing capabilities that could be leveraged to pursue the topic of “Smart Fluid Systems” or “Liquid Engineered Systems”. PMID:28725530
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stello, Dennis; Huber, Daniel; Bedding, Timothy R.
Studying star clusters offers significant advances in stellar astrophysics due to the combined power of having many stars with essentially the same distance, age, and initial composition. This makes clusters excellent test benches for verification of stellar evolution theory. To fully exploit this potential, it is vital that the star sample is uncontaminated by stars that are not members of the cluster. Techniques for determining cluster membership therefore play a key role in the investigation of clusters. We present results on three clusters in the Kepler field of view based on a newly established technique that uses asteroseismology to identifymore » fore- or background stars in the field, which demonstrates advantages over classical methods such as kinematic and photometry measurements. Four previously identified seismic non-members in NGC 6819 are confirmed in this study, and three additional non-members are found-two in NGC 6819 and one in NGC 6791. We further highlight which stars are, or might be, affected by blending, which needs to be taken into account when analyzing these Kepler data.« less
A Bacterial Pathogen Targets a Host Rab-Family GTPase Defense Pathway with a GAP.
Spanò, Stefania; Gao, Xiang; Hannemann, Sebastian; Lara-Tejero, María; Galán, Jorge E
2016-02-10
Cell-autonomous defense mechanisms are potent strategies that protect individual cells against intracellular pathogens. The Rab-family GTPase Rab32 was previously shown to restrict the intracellular human pathogen Salmonella Typhi, but its potential broader role in antimicrobial defense remains unknown. We show that Rab32 represents a general cell-autonomous, antimicrobial defense that is counteracted by two Salmonella effectors. Mice lacking Rab-32 or its nucleotide exchange factor BLOC-3 are permissive to S. Typhi infection and exhibit increased susceptibility to S. Typhimurium. S. Typhimurium counters this defense pathway by delivering two type III secretion effectors, SopD2, a Rab32 GAP, and GtgE, a specific Rab32 protease. An S. Typhimurium mutant strain lacking these two effectors exhibits markedly reduced virulence, which is fully restored in BLOC-3-deficient mice. These results demonstrate that a cell-autonomous, Rab32-dependent host defense pathway plays a central role in the defense against vacuolar pathogens and describe a mechanism evolved by a bacterial pathogen to counter it. Copyright © 2016 Elsevier Inc. All rights reserved.
An integrated autonomous rendezvous and docking system architecture using Centaur modern avionics
NASA Technical Reports Server (NTRS)
Nelson, Kurt
1991-01-01
The avionics system for the Centaur upper stage is in the process of being modernized with the current state-of-the-art in strapdown inertial guidance equipment. This equipment includes an integrated flight control processor with a ring laser gyro based inertial guidance system. This inertial navigation unit (INU) uses two MIL-STD-1750A processors and communicates over the MIL-STD-1553B data bus. Commands are translated into load activation through a Remote Control Unit (RCU) which incorporates the use of solid state relays. Also, a programmable data acquisition system replaces separate multiplexer and signal conditioning units. This modern avionics suite is currently being enhanced through independent research and development programs to provide autonomous rendezvous and docking capability using advanced cruise missile image processing technology and integrated GPS navigational aids. A system concept was developed to combine these technologies in order to achieve a fully autonomous rendezvous, docking, and autoland capability. The current system architecture and the evolution of this architecture using advanced modular avionics concepts being pursued for the National Launch System are discussed.
Crane, Melissa M.; Tate, Deborah F.; Finkelstein, Eric A.; Linnan, Laura A.
2012-01-01
This analysis investigated if changes in autonomous or controlled motivation for participation in a weight loss program differed between individuals offered a financial incentive for weight loss compared to individuals not offered an incentive. Additionally, the same relationships were tested among those who lost weight and either received or did not receive an incentive. This analysis used data from a year-long randomized worksite weight loss program that randomly assigned employees in each worksite to either a low-intensity weight loss program or the same program plus small financial incentives for weight loss ($5.00 per percentage of initial weight lost). There were no differences in changes between groups on motivation during the study, however, increases in autonomous motivation were consistently associated with greater weight losses. This suggests that the small incentives used in this program did not lead to increases in controlled motivation nor did they undermine autonomous motivation. Future studies are needed to evaluate the magnitude and timing of incentives to more fully understand the relationship between incentives and motivation. PMID:22577524
NIST Stars: Absolute Spectrophotometric Calibration of Vega and Sirius
NASA Astrophysics Data System (ADS)
Deustua, Susana; Woodward, John T.; Rice, Joseph P.; Brown, Steven W.; Maxwell, Stephen E.; Alberding, Brian G.; Lykke, Keith R.
2018-01-01
Absolute flux calibration of standard stars, traceable to SI (International System of Units) standards, is essential for 21st century astrophysics. Dark energy investigations that rely on observations of Type Ia supernovae and precise photometric redshifts of weakly lensed galaxies require a minimum accuracy of 0.5 % in the absolute color calibration. Studies that aim to address fundamental stellar astrophysics also benefit. In the era of large telescopes and all sky surveys well-calibrated standard stars that do not saturate and that are available over the whole sky are needed. Significant effort has been expended to obtain absolute measurements of the fundamental standards Vega and Sirius (and other stars) in the visible and near infrared, achieving total uncertainties between1% and 3%, depending on wavelength, that do not meet the needed accuracy. The NIST Stars program aims to determine the top-of-the-atmosphere absolute spectral irradiance of bright stars to an uncertainty less than 1% from a ground-based observatory. NIST Stars has developed a novel, fully SI-traceable laboratory calibration strategy that will enable achieving the desired accuracy. This strategy has two key components. The first is the SI-traceable calibration of the entire instrument system, and the second is the repeated spectroscopic measurement of the target star throughout the night. We will describe our experimental strategy, present preliminary results for Vega and Sirius and an end-to-end uncertainty budget
NASA Astrophysics Data System (ADS)
Jones, Jeremy; White, R. J.; Boyajian, T.; Schaefer, G.; Baines, E.; Ireland, M.; Patience, J.; ten Brummelaar, T.; McAlister, H.; Ridgway, S. T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.
2015-11-01
We have observed and spatially resolved a set of seven A-type stars in the nearby Ursa Major moving group with the Classic, CLIMB, and PAVO beam combiners on the Center for High Angular Resolution Astronomy Array. At least four of these stars have large rotational velocities (v{sin}i ≳ 170 {km} {{{s}}}-1) and are expected to be oblate. These interferometric measurements, the stars’ observed photometric energy distributions, and v{sin}i values are used to computationally construct model oblate stars from which stellar properties (inclination, rotational velocity, and the radius and effective temperature as a function of latitude, etc.) are determined. The results are compared with MESA stellar evolution models to determine masses and ages. The value of this new technique is that it enables the estimation of the fundamental properties of rapidly rotating stars without the need to fully image the star. It can thus be applied to stars with sizes comparable to the interferometric resolution limit as opposed to those that are several times larger than the limit. Under the assumption of coevality, the spread in ages can be used as a test of both the prescription presented here and the MESA evolutionary code for rapidly rotating stars. With our validated technique, we combine these age estimates and determine the age of the moving group to be 414 ± 23 Myr, which is consistent with, but much more precise than previous estimates.
THE DUAL ORIGIN OF STELLAR HALOS. II. CHEMICAL ABUNDANCES AS TRACERS OF FORMATION HISTORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zolotov, Adi; Hogg, David W.; Willman, Beth
2010-09-20
Fully cosmological, high-resolution N-body+smooth particle hydrodynamic simulations are used to investigate the chemical abundance trends of stars in simulated stellar halos as a function of their origin. These simulations employ a physically motivated supernova feedback recipe, as well as metal enrichment, metal cooling, and metal diffusion. As presented in an earlier paper, the simulated galaxies in this study are surrounded by stellar halos whose inner regions contain both stars accreted from satellite galaxies and stars formed in situ in the central regions of the main galaxies and later displaced by mergers into their inner halos. The abundance patterns ([Fe/H] andmore » [O/Fe]) of halo stars located within 10 kpc of a solar-like observer are analyzed. We find that for galaxies which have not experienced a recent major merger, in situ stars at the high [Fe/H] end of the metallicity distribution function are more [{alpha}/Fe]-rich than accreted stars at similar [Fe/H]. This dichotomy in the [O/Fe] of halo stars at a given [Fe/H] results from the different potential wells within which in situ and accreted halo stars form. These results qualitatively match recent observations of local Milky Way halo stars. It may thus be possible for observers to uncover the relative contribution of different physical processes to the formation of stellar halos by observing such trends in the halo populations of the Milky Way and other local L{sup *} galaxies.« less
Runaway Massive Stars from R136: VFTS 682 is Very Likely a "Slow Runaway"
NASA Astrophysics Data System (ADS)
Banerjee, Sambaran; Kroupa, Pavel; Oh, Seungkyung
2012-02-01
We conduct a theoretical study on the ejection of runaway massive stars from R136—the central massive, starburst cluster in the 30 Doradus complex of the Large Magellanic Cloud. Specifically, we investigate the possibility of the very massive star (VMS) VFTS 682 being a runaway member of R136. Recent observations of the above VMS, by virtue of its isolated location and its moderate peculiar motion, have raised the fundamental question of whether isolated massive star formation is indeed possible. We perform the first realistic N-body computations of fully mass-segregated R136-type star clusters in which all the massive stars are in primordial binary systems. These calculations confirm that the dynamical ejection of a VMS from an R136-like cluster, with kinematic properties similar to those of VFTS 682, is common. Hence, the conjecture of isolated massive star formation is unnecessary to account for this VMS. Our results are also quite consistent with the ejection of 30 Dor 016, another suspected runaway VMS from R136. We further note that during the clusters' evolution, mergers of massive binaries produce a few single stars per cluster with masses significantly exceeding the canonical upper limit of 150 M ⊙. The observations of such single super-canonical stars in R136, therefore, do not imply an initial mass function with an upper limit greatly exceeding the accepted canonical 150 M ⊙ limit, as has been suggested recently, and they are consistent with the canonical upper limit.
The Emerging Infrastructure of Autonomous Astronomy
NASA Astrophysics Data System (ADS)
Seaman, R.; Allan, A.; Axelrod, T.; Cook, K.; White, R.; Williams, R.
2007-10-01
Advances in the understanding of cosmic processes demand that sky transient events be confronted with statistical techniques honed on static phenomena. Time domain data sets require vast surveys such as LSST {http://www.lsst.org/lsst_home.shtml} and Pan-STARRS {http://www.pan-starrs.ifa.hawaii.edu}. A new autonomous infrastructure must close the loop from the scheduling of survey observations, through data archiving and pipeline processing, to the publication of transient event alerts and automated follow-up, and to the easy analysis of resulting data. The IVOA VOEvent {http://voevent.org} working group leads efforts to characterize sky transient alerts published through VOEventNet {http://voeventnet.org}. The Heterogeneous Telescope Networks (HTN {http://www.telescope-networks.org}) consortium are observatories and robotic telescope projects seeking interoperability with a long-term goal of creating an e-market for telescope time. Two projects relying on VOEvent and HTN are eSTAR {http://www.estar.org.uk} and the Thinking Telescope {http://www.thinkingtelescopes.lanl.gov} Project.
NGC 6362: THE LEAST MASSIVE GLOBULAR CLUSTER WITH CHEMICALLY DISTINCT MULTIPLE POPULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mucciarelli, Alessio; Dalessandro, Emanuele; Ferraro, Francesco R.
2016-06-20
We present the first measure of Fe and Na abundances in NGC 6362, a low-mass globular cluster (GC) where first- and second-generation stars are fully spatially mixed. A total of 160 member stars (along the red giant branch (RGB) and the red horizontal branch (RHB)) were observed with the multi-object spectrograph FLAMES at the Very Large Telescope. We find that the cluster has an iron abundance of [Fe/H] = −1.09 ± 0.01 dex, without evidence of intrinsic dispersion. On the other hand, the [Na/Fe] distribution turns out to be intrinsically broad and bimodal. The Na-poor and Na-rich stars populate, respectively,more » the bluest and the reddest RGBs detected in the color–magnitude diagrams including the U filter. The RGB is composed of a mixture of first- and second-generation stars in a similar proportion, while almost all the RHB stars belong to the first cluster generation. To date, NGC 6362 is the least massive GC where both the photometric and spectroscopic signatures of multiple populations have been detected.« less
New Insights into the Puzzling P-Cygni Profiles of Magnetic Massive Stars
NASA Astrophysics Data System (ADS)
Erba, Christiana; David-Uraz, Alexandre; Petit, Véronique; Owocki, Stanley P.
2017-11-01
Magnetic massive stars comprise approximately 10% of the total OB star population. Modern spectropolarimetry shows these stars host strong, stable, large-scale, often nearly dipolar surface magnetic fields of 1 kG or more. These global magnetic fields trap and deflect outflowing stellar wind material, forming an anisotropic magnetosphere that can be probed with wind-sensitive UV resonance lines. Recent HST UV spectra of NGC 1624-2, the most magnetic O star observed to date, show atypically unsaturated P-Cygni profiles in the Civ resonant doublet, as well as a distinct variation with rotational phase. We examine the effect of non-radial, magnetically-channeled wind outflow on P-Cygni line formation, using a Sobolev Exact Integration (SEI) approach for direct comparison with HST UV spectra of NGC 1624-2. We demonstrate that the addition of a magnetic field desaturates the absorption trough of the P-Cygni profiles, but further efforts are needed to fully account for the observed line profile variation. Our study thus provides a first step toward a broader understanding of how strong magnetic fields affect mass loss diagnostics from UV lines.
Coulomb crystals in neutron star crust
NASA Astrophysics Data System (ADS)
Baiko, D. A.
2014-03-01
It is well known that neutron star crust in a wide range of mass densities and temperatures is in a crystal state. At a given density, the crystal is made of fully ionized atomic nuclei of a single species immersed in a nearly incompressible (i.e., constant and uniform) charge compensating background of electrons. This model is known as the Coulomb crystal model. In this talk we analyze thermodynamic and elastic properties of the Coulomb crystals and discuss various deviations from the ideal model. In particular, we study the Coulomb crystal behavior in the presence of a strong magnetic field, consider the effect of the electron gas polarizability, outline the main properties of binary Coulomb crystals, and touch the subject of quasi-free neutrons permeating the Coulomb crystal of ions in deeper layers of neutron star crust.
NASA Astrophysics Data System (ADS)
Reisswig, C.; Ott, C. D.; Abdikamalov, E.; Haas, R.; Mösta, P.; Schnetter, E.
2013-10-01
We study the collapse of rapidly rotating supermassive stars that may have formed in the early Universe. By self-consistently simulating the dynamics from the onset of collapse using three-dimensional general-relativistic hydrodynamics with fully dynamical spacetime evolution, we show that seed perturbations in the progenitor can lead to the formation of a system of two high-spin supermassive black holes, which inspiral and merge under the emission of powerful gravitational radiation that could be observed at redshifts z≳10 with the DECIGO or Big Bang Observer gravitational-wave observatories, assuming supermassive stars in the mass range 104-106M⊙. The remnant is rapidly spinning with dimensionless spin a*=0.9. The surrounding accretion disk contains ˜10% of the initial mass.
History of the Nuclei Important for Cosmochemistry
NASA Technical Reports Server (NTRS)
Meyer, Bradley S.
2004-01-01
An essential aspect of studying the nuclei important for cosmochemistry is their production in stars. Over the grant period, we have further developed the Clemson/American University of Beirut stellar evolution code. Through use of a biconjugate-gradient matrix solver, we now routinely solve l0(exp 6) x l0(exp 6) sparse matrices on our desktop computers. This has allowed us to couple nucleosynthesis and convection fully in the 1-D star, which, in turn, provides better estimates of nuclear yields when the mixing and nuclear burning timescales are comparable. We also have incorporated radiation transport into our 1-D supernova explosion code. We used the stellar evolution and explosion codes to compute iron abundances in a 25 Solar mass star and compared the results to data from RIMS.
A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness
NASA Astrophysics Data System (ADS)
Maya-Vetencourt, José Fernando; Ghezzi, Diego; Antognazza, Maria Rosa; Colombo, Elisabetta; Mete, Maurizio; Feyen, Paul; Desii, Andrea; Buschiazzo, Ambra; di Paolo, Mattia; di Marco, Stefano; Ticconi, Flavia; Emionite, Laura; Shmal, Dmytro; Marini, Cecilia; Donelli, Ilaria; Freddi, Giuliano; Maccarone, Rita; Bisti, Silvia; Sambuceti, Gianmario; Pertile, Grazia; Lanzani, Guglielmo; Benfenati, Fabio
2017-06-01
The degeneration of photoreceptors in the retina is one of the major causes of adult blindness in humans. Unfortunately, no effective clinical treatments exist for the majority of retinal degenerative disorders. Here we report on the fabrication and functional validation of a fully organic prosthesis for long-term in vivo subretinal implantation in the eye of Royal College of Surgeons rats, a widely recognized model of retinitis pigmentosa. Electrophysiological and behavioural analyses reveal a prosthesis-dependent recovery of light sensitivity and visual acuity that persists up to 6-10 months after surgery. The rescue of the visual function is accompanied by an increase in the basal metabolic activity of the primary visual cortex, as demonstrated by positron emission tomography imaging. Our results highlight the possibility of developing a new generation of fully organic, highly biocompatible and functionally autonomous photovoltaic prostheses for subretinal implants to treat degenerative blindness.
A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness
Antognazza, Maria Rosa; Colombo, Elisabetta; Mete, Maurizio; Feyen, Paul; Desii, Andrea; Buschiazzo, Ambra; Di Paolo, Mattia; Di Marco, Stefano; Ticconi, Flavia; Emionite, Laura; Shmal, Dmytro; Marini, Cecilia; Donelli, Ilaria; Freddi, Giuliano; Maccarone, Rita; Bisti, Silvia; Sambuceti, Gianmario; Pertile, Grazia; Lanzani, Guglielmo; Benfenati, Fabio
2017-01-01
The degeneration of photoreceptors in the retina is one of the major causes of adult blindness in humans. Unfortunately, no effective clinical treatments exist for the majority of retinal degenerative disorders. Here we report on the fabrication and functional validation of a fully organic prosthesis for long-term in vivo subretinal implantation in the eye of Royal College of Surgeons rats, a widely recognized model of Retinitis pigmentosa. Electrophysiological and behavioral analyses reveal a prosthesis-dependent recovery of light-sensitivity and visual acuity that persists up to 6-10 months after surgery. The rescue of the visual function is accompanied by an increase in the basal metabolic activity of the primary visual cortex, as demonstrated by positron emission tomography imaging. Our results highlight the possibility of developing a new generation of fully organic, highly biocompatible and functionally autonomous photovoltaic prostheses for subretinal implants to treat degenerative blindness. PMID:28250420
Climbing the Ladder of Star Formation Feedback
NASA Astrophysics Data System (ADS)
Frank, Adam
2012-10-01
While much is understood about isolated star formation, the opposite is true for star formation in clusters of both low and high mass. In particular the mechanisms by which many coevally formed stars affect their parent cloud environment remains poorly characterized. Fundamental questions such as interplay between multiple outflows, ionization fronts and turbulence are just beginning to be fully articulated. Distinguishing between the nature of feedback in clusters of different mass is also critical. In high mass clusters O stars are expected to dominate energetics while in low mass clusters multiple collimated outflows may represent the dominant feedback mechanism. Thus the issue of feedback modalities in clusters of different masses represents one of the major challenges to the next generation of star formation studies. In this proposal we seek to carry forward a focused theoretical study of feedback in both low and high-mass cluster environments with direct connections to observations. Using a state-of-the-art Adaptive Mesh Refinement MHD multi-physics code {developed by our group} we propose two computational studies: {1} multiple, interacting outflows and their role in altering the properties of a parent low mass cluster {2} Poorly collimated outburst/outflows from massive star{s} and their effect on high mass cluster star forming environments. In both cases we will use initial conditions derived from high-resolution AMR MHD simulations of cloud/cluster formation. Synthetic observations derived from the simulations {in a variety of emission lines from ions to atoms to molecules} will allow for direct contact with HST and other star formation databases.
NASA Astrophysics Data System (ADS)
Godin, M. A.; Ryan, J. P.; Zhang, Y.; Bellingham, J. G.
2012-12-01
Observing plankton in their drifting frame of reference permits effective studies of marine ecology from the perspective of microscopic life itself. By minimizing variation caused simply by advection, observations in a plankton-tracking frame of reference focus measurement capabilities on the processes that influence the life history of populations. Further, the patchy nature of plankton populations motivates use of sensor data in real-time to resolve patch boundaries and adapt observing resources accordingly. We have developed capabilities for population-centric plankton observation and sampling by autonomous underwater vehicles (AUVs). Our focus has been on phytoplankton populations, both because of their ecological significance - as the core of the oceanic food web and yet potentially harmful under certain bloom conditions, as well as the accessibility of their signal to simple optical sensing. During the first field deployment of these capabilities in 2010, we tracked a phytoplankton patch containing toxigenic diatoms and found that their toxicity correlated with exposure to resuspended sediments. However, this first deployment was labor intensive as the AUV drove in a pre-programmed pattern centered around a patch-marking drifter; it required a boat deployment of the patch-marking drifter and required full-time operators to periodically estimate of the position of the patch with respect to the drifter and adjust the AUV path accordingly. In subsequent field experiments during 2011 and 2012, the Tethys-class long-range AUVs ran fully autonomous patch tracking algorithms which detected phytoplankton patches and continually updated estimates of each patch center by driving adaptive patterns through the patch. Iterations of the algorithm were generated to overcome the challenges of tracking advecting and evolving patches while minimizing human involvement in vehicle control. Such fully autonomous monitoring will be necessary to perform long-term in-situ observation of the full growth and decay cycle of bloom patches. Doing so will enhance our understanding of the temporal and spatial dynamics of bloom patches and the observable conditions that lead to bloom formation, ultimately improving our ability to predict the evolution of harmful algal blooms (HABs) and provide warnings for the fishing and tourism industries.
Autonomous landing and ingress of micro-air-vehicles in urban environments based on monocular vision
NASA Astrophysics Data System (ADS)
Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire
2011-06-01
Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.
Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision
NASA Technical Reports Server (NTRS)
Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire
2011-01-01
Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.
Lethal Autonomous Weapons: Take the Human Out of the Loop
2017-06-16
such as unrestricted submarine warfare and strategic bombing , both in WWII, without having had the chance to fully examine the potential ramifications...the trauma of battle. Kurt Vonnegut describes his experience as a POW during the bombing of Dresden: “I saw the destruction of Dresden...uncontrollable reaction to the stress he endured during the Dresden bombing . While laughter may not detrimentally affect decision making, he still loses
The influence of radiative core growth on coronal X-ray emission from pre-main-sequence stars
NASA Astrophysics Data System (ADS)
Gregory, Scott G.; Adams, Fred C.; Davies, Claire L.
2016-04-01
Pre-main-sequence (PMS) stars of mass ≳0.35 M⊙ transition from hosting fully convective interiors to configurations with a radiative core and outer convective envelope during their gravitational contraction. This stellar structure change influences the external magnetic field topology and, as we demonstrate herein, affects the coronal X-ray emission as a stellar analogue of the solar tachocline develops. We have combined archival X-ray, spectroscopic, and photometric data for ˜1000 PMS stars from five of the best studied star-forming regions: the Orion Nebula Cluster, NGC 2264, IC 348, NGC 2362, and NGC 6530. Using a modern, PMS calibrated, spectral type-to-effective temperature and intrinsic colour scale, we de-redden the photometry using colours appropriate for each spectral type, and determine the stellar mass, age, and internal structure consistently for the entire sample. We find that PMS stars on Henyey tracks have, on average, lower fractional X-ray luminosities (LX/L*) than those on Hayashi tracks, where this effect is driven by changes in LX. X-ray emission decays faster with age for higher mass PMS stars. There is a strong correlation between L* and LX for Hayashi track stars but no correlation for Henyey track stars. There is no correlation between LX and radiative core mass or radius. However, the longer stars have spent with radiative cores, the less X-ray luminous they become. The decay of coronal X-ray emission from young early K to late G-type PMS stars, the progenitors of main-sequence A-type stars, is consistent with the dearth of X-ray detections of the latter.
Monitoring of rotational period variations in magnetic chemically peculiar stars
NASA Astrophysics Data System (ADS)
Mikulášek, Z.
2016-12-01
A majority part of magnetic chemically peculiar (mCP) stars of the upper main sequence exhibits strictly periodic light, magnetic, radio, and spectral variations that can be fully explained by the model of a rigidly rotating main-sequence star with persistent surface structures and stable global magnetic field frozen into the body of the star. Nevertheless, there is an inhomogeneous group consisting of a few mCP stars whose rotation periods vary on timescales of decades, while the shapes of their phase curves remain nearly unchanged. Alternations in the rotational period variations, proven in the case of some of them, offer new insight on this theoretically unpredicted phenomenon. We present a novel and generally applicable method of period analysis based on the simultaneous exploitation of all available observational data containing phase information. This phenomenological method can monitor gradual changes in the observed instantaneous period very efficiently and reliably. We present up to date results of the period monitoring of V901 Ori, CU Vir, σ Ori E, and BS Cir, known to be mCP stars changing their observed periods and discuss the physics of this unusual behaviour. To compare the period behavior of those stars, we treated their data with an orthogonal polynomial model, which was specifically developed for this purpose. We confirmed period variations in all stars and showed that they reflect real changes in the angular velocity of outer layers of the stars, fastened by their global magnetic fields. However, the nature of the observed rotational instabilities has remained elusive up to now. The discussed group of mCP stars is inhomogeneous to such extent that each of the stars may experience a different cause for its period variations.
SDSS IV MaNGA - sSFR profiles and the slow quenching of discs in green valley galaxies
NASA Astrophysics Data System (ADS)
Belfiore, Francesco; Maiolino, Roberto; Bundy, Kevin; Masters, Karen; Bershady, Matthew; Oyarzún, Grecco; Lin, Lihwai; Cano-Diaz, Mariana; Wake, David; Spindler, Ashley; Thomas, Daniel; Brownstein, Joel R.; Drory, Niv; Yan, Renbin
2018-03-01
We study radial profiles in Hα equivalent width and specific star formation rate (sSFR) derived from spatially-resolved SDSS-IV MaNGA spectroscopy to gain insight on the physical mechanisms that suppress star formation and determine a galaxy's location in the SFR-M_\\star diagram. Even within the star-forming `main sequence', the measured sSFR decreases with stellar mass, both in an integrated and spatially-resolved sense. Flat sSFR radial profiles are observed for log(M_\\star / M_⊙ ) < 10.5, while star-forming galaxies of higher mass show a significant decrease in sSFR in the central regions, a likely consequence of both larger bulges and an inside-out growth history. Our primary focus is the green valley, constituted by galaxies lying below the star formation main sequence, but not fully passive. In the green valley we find sSFR profiles that are suppressed with respect to star-forming galaxies of the same mass at all galactocentric distances out to 2 effective radii. The responsible quenching mechanism therefore appears to affect the entire galaxy, not simply an expanding central region. The majority of green valley galaxies of log(M_\\star / M_⊙ ) > 10.0 are classified spectroscopically as central low-ionisation emission-line regions (cLIERs). Despite displaying a higher central stellar mass concentration, the sSFR suppression observed in cLIER galaxies is not simply due to the larger mass of the bulge. Drawing a comparison sample of star forming galaxies with the same M_\\star and Σ _{1 kpc} (the mass surface density within 1 kpc), we show that a high Σ _{1 kpc} is not a sufficient condition for determining central quiescence.
NASA Astrophysics Data System (ADS)
Walth, Gregory; Egami, Eiichi; Clément, Benjamin; Rujopakarn, Wiphu; Rawle, Tim; Richard, Johan; Dessauges, Miroslava; Perez-Gonzalez, Pablo; Ebeling, Harald; Vayner, Andrey; Wright, Shelley; Cosens, Maren; Herschel Lensing Survey
2018-01-01
We present our recent ALMA observations of Herschel-detected gravitationally lensed dusty, star-forming galaxies (DSFGs) and how they compliment our near-infrared spectroscopic observations of their rest-frame optical nebular emission. This provides the complete picture of star formation; from the molecular gas that fuels star formation, to the dust emission which are the sites of star formation, and the nebular emission which is the gas excited by the young stars. DSFGs undergo the largest starbursts in the Universe, contributing to the bulk of the cosmic star formation rate density between redshifts z = 1 - 4. Internal processes within high-redshift DSFGs remains largely unexplored; such as feedback from star formation, the role of turbulence, gas surface density of molecular gas, AGN activity, and the rates of metal production. Much that is known about DSFGs star formation properties comes from their CO and dust emission. In order to fully understand the star formation history of DSFGs, it is necessary to observe their optical nebular emission. Unfortunately, UV/optical emission is severely attenuated by dust, making it challenging to detect. With the Herschel Lensing Survey, a survey of the cores of almost 600 massive galaxy clusters, we are able to probe faint dust-attenuated nebular emission. We are currently conducting a new survey using Keck/OSIRIS to resolve a sample of gravitationally lensed DSFGs from the Herschel Lensing Survey (>100 mJy, with SFRs >100 Msun/yr) at redshifts z=1-4 with magnifications >10x all with previously detected nebular emission lines. We present the physical and resolved properties of gravitationally lensed DSFGs at unprecedented spatial scales; such as ionization, metallicity, AGN activity, and dust attenuation.
Fischell, Erin M; Schmidt, Henrik
2015-12-01
One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)].
Autonomic composite hydrogels by reactive printing: materials and oscillatory response.
Kramb, R C; Buskohl, P R; Slone, C; Smith, M L; Vaia, R A
2014-03-07
Autonomic materials are those that automatically respond to a change in environmental conditions, such as temperature or chemical composition. While such materials hold incredible potential for a wide range of uses, their implementation is limited by the small number of fully-developed material systems. To broaden the number of available systems, we have developed a post-functionalization technique where a reactive Ru catalyst ink is printed onto a non-responsive polymer substrate. Using a succinimide-amine coupling reaction, patterns are printed onto co-polymer or biomacromolecular films containing primary amine functionality, such as polyacrylamide (PAAm) or poly-N-isopropyl acrylamide (PNIPAAm) copolymerized with poly-N-(3-Aminopropyl)methacrylamide (PAPMAAm). When the films are placed in the Belousov-Zhabotinsky (BZ) solution medium, the reaction takes place only inside the printed nodes. In comparison to alternative BZ systems, where Ru-containing monomers are copolymerized with base monomers, reactive printing provides facile tuning of a range of hydrogel compositions, as well as enabling the formation of mechanically robust composite monoliths. The autonomic response of the printed nodes is similar for all matrices in the BZ solution concentrations examined, where the period of oscillation decreases in response to increasing sodium bromate or nitric acid concentration. A temperature increase reduces the period of oscillations and temperature gradients are shown to function as pace-makers, dictating the direction of the autonomic response (chemical waves).
Generative Models in Deep Learning: Constraints for Galaxy Evolution
NASA Astrophysics Data System (ADS)
Turp, Maximilian Dennis; Schawinski, Kevin; Zhang, Ce; Weigel, Anna K.
2018-01-01
New techniques are essential to make advances in the field of galaxy evolution. Recent developments in the field of artificial intelligence and machine learning have proven that these tools can be applied to problems far more complex than simple image recognition. We use these purely data driven approaches to investigate the process of star formation quenching. We show that Variational Autoencoders provide a powerful method to forward model the process of galaxy quenching. Our results imply that simple changes in specific star formation rate and bulge to disk ratio cannot fully describe the properties of the quenched population.
Investigations into the behaviour of Plasma surrounding Pulsars: DYMPHNA3D
NASA Astrophysics Data System (ADS)
Rochford, Ronan; Mc Donald, John; Shearer, Andy
2011-08-01
We report on a new 3D fully relativistic, modular, parallel and scalable Particle-In-Cell (PIC) code currently being developed at the Computational Astrophysics Laboratory in the National University of Ireland, Galway and its initial test applications to the plasma distribution in the vicinity of a rapidly rotating neutron star. We find that Plasma remains confined by trapping surfaces close to the star as opposed to propagating to a significant portion of the light-cylinder distance as predicted in this early work. We discuss planned future modifications and applications of the developed code.
The hot subdwarf in the eclipsing binary HD 185510
NASA Technical Reports Server (NTRS)
Jeffery, C. S.; Simon, Theodore; Evans, T. L.
1992-01-01
High-resolution spectroscopic measurements of radial velocity are employed to characterize the eclipsing binary HD 185510 in terms of masses and evolutionary status. The IUE is used to obtain the radial velocities which indicate a large mass ratio Mp/Ms of 7.45 +/- 0.15, and Teff is given at 25,000 +/- 1000 K based on Ly alpha and UV spectrophotometry. Photometric observations are used to give an orbital inclination of between 90 and 70 deg inclusive, leading to masses of 0.31-0.37 and 2.3-2.8 solar mass for the hot star and the K star, respectively. The surface gravity of HD 185510B is shown to be higher than those values for sdB stars suggesting that the object is a low-mass white dwarf that has not reached its fully degenerate configuration. The object is theorized to be a low-mass helium main-sequence star or a nascent helium degenerate in a post-Algol system.
Calibrating White Dwarf Asteroseismic Fitting Techniques
NASA Astrophysics Data System (ADS)
Castanheira, B. G.; Romero, A. D.; Bischoff-Kim, A.
2017-03-01
The main goal of looking for intrinsic variability in stars is the unique opportunity to study their internal structure. Once we have extracted independent modes from the data, it appears to be a simple matter of comparing the period spectrum with those from theoretical model grids to learn the inner structure of that star. However, asteroseismology is much more complicated than this simple description. We must account not only for observational uncertainties in period determination, but most importantly for the limitations of the model grids, coming from the uncertainties in the constitutive physics, and of the fitting techniques. In this work, we will discuss results of numerical experiments where we used different independently calculated model grids (white dwarf cooling models WDEC and fully evolutionary LPCODE-PUL) and fitting techniques to fit synthetic stars. The advantage of using synthetic stars is that we know the details of their interior structure so we can assess how well our models and fitting techniques are able to the recover the interior structure, as well as the stellar parameters.
Ultraviolet observations of four symbiotic stars
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Feibelman, W. A.; Hobbs, R. W.; Kafatos, M.
1982-01-01
Observations were obtained with the International Ultraviolet Explorer (IUE) of four symbiotic stars. The UV spectra of YY Her, SY Mus, CL Sco, and BX Mon are characterized by varying degrees of thermal excitation. These low resolution spectra have been analyzed in terms of line-blanketed model atmospheres of early A, B, and F type stars in order to identify the nature of the hot companion in these systems. The expected emission from early main sequence stars does not fully explain the observed distribution of UV continuum energy over the entire IUE spectral range (1200-3200 A). More likely the observed continuum may be originating from an accretion disk and/or hot subdwarf that photoionizes circumstellar material, and gives rise to the high excitation lines that have been detected. The Bowen fluorescent excited lines of O III in SY Mus exhibit slightly broadened profiles that suggest possible turbulent motions in an extended circumstellar cloud with characteristic velocities of approximately 300 km/s.
Replacing colour blindness with Depth Perception
NASA Astrophysics Data System (ADS)
Matthews, Jaymie M.
Until recently, most work on rapidly oscillating Ap (roAp) stars has concentrated on rapid single-bandpass photometry, which efficiently samples their short periods even with telescopes of modest aperture. Global campaigns of this nature have yielded eigenfrequency spectra essential to asteroseismology. However, we have reached a threshold where such data must be supplemented with rapid spectroscopy and photometry at many bandpasses if we are to (a) identify the modes in roAp stars, and (b) fully exploit those modes to probe the stars' atmospheres and interiors. Studies by Medupe & Kurtz and Matthews raise the prospect of using the wavelength dependence of oscillation amplitude to map pulsational dynamics and/or atmospheric structure in roAp stars. Also, precise measurements of velocity oscillations through rapid high-resolution spectroscopy suggest that spectral lines from different ions behave differently. Given the chemical stratification and inhomogeneities of peculiar atmospheres, this may be a way to map spherical harmonic modes in 3-D (i.e., depths of upper radial nodes and positions of the surface nodes).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, Catrina M.; Johns-Krull, Christopher M.; Mundt, Reinhard
2012-06-01
We have obtained 48 high-resolution echelle spectra of the pre-main-sequence eclipsing binary system KH 15D (V582 Mon, P = 48.37 days, e {approx} 0.6, M{sub A} = 0.6 M{sub Sun }, M{sub B} = 0.7 M{sub Sun }). The eclipses are caused by a circumbinary disk (CBD) seen nearly edge on, which at the epoch of these observations completely obscured the orbit of star B and a large portion of the orbit of star A. The spectra were obtained over five contiguous observing seasons from 2001/2002 to 2005/2006 while star A was fully visible, fully occulted, and during several ingressmore » and egress events. The H{alpha} line profile shows dramatic changes in these time series data over timescales ranging from days to years. A fraction of the variations are due to 'edge effects' and depend only on the height of star A above or below the razor sharp edge of the occulting disk. Other observed variations depend on the orbital phase: the H{alpha} emission line profile changes from an inverse P-Cygni-type profile during ingress to an enhanced double-peaked profile, with both a blue and a red emission component, during egress. Each of these interpreted variations are complicated by the fact that there is also a chaotic, irregular component present in these profiles. We find that the complex data set can be largely understood in the context of accretion onto the stars from a CBD with gas flows as predicted by the models of eccentric T Tauri binaries put forward by Artymowicz and Lubow, Guenther and Kley, and de Val-Borro et al. In particular, our data provide strong support for the pulsed accretion phenomenon, in which enhanced accretion occurs during and after perihelion passage.« less
STELLAR LOCI. I. METALLICITY DEPENDENCE AND INTRINSIC WIDTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Haibo; Liu, Xiaowei; Xiang, Maosheng
2015-02-01
Stellar loci are widely used for selection of interesting outliers, reddening determinations, and calibrations. However, until now, the dependence of stellar loci on metallicity has not been fully explored, and their intrinsic widths are unclear. In this paper, by combining the spectroscopic and recalibrated imaging data of the Sloan Digital Sky Survey (SDSS) Stripe 82, we have built a large, clean sample of dwarf stars with accurate colors and well-determined metallicities to investigate the metallicity dependence and intrinsic widths of the SDSS stellar loci. Typically, 1 dex decrease in metallicity causes 0.20 and 0.02 mag decrease in colors u – g and g – rmore » and 0.02 and 0.02 mag increase in colors r – i and i – z, respectively. The variations are larger for metal-rich stars than for metal-poor ones, and larger for F/G/K stars than for A/M ones. Using the sample, we have performed two-dimensional polynomial fitting to the u – g, g – r, r – i, and i – z colors as a function of color g – i and metallicity [Fe/H]. The residuals, at the level of 0.029, 0.008, 0.008, and 0.011 mag for the u – g, g – r, r – i, and i – z colors, respectively, can be fully accounted for by the photometric errors and metallicity uncertainties, suggesting that the intrinsic widths of the loci are at maximum a few millimagnitudes. The residual distributions are asymmetric, revealing that a significant fraction of stars are binaries. In a companion paper, we will present an unbiased estimate of the binary fraction for field stars. Other potential applications of the metallicity-dependent stellar loci are briefly discussed.« less
Autonomous Mission Operations for Sensor Webs
NASA Astrophysics Data System (ADS)
Underbrink, A.; Witt, K.; Stanley, J.; Mandl, D.
2008-12-01
We present interim results of a 2005 ROSES AIST project entitled, "Using Intelligent Agents to Form a Sensor Web for Autonomous Mission Operations", or SWAMO. The goal of the SWAMO project is to shift the control of spacecraft missions from a ground-based, centrally controlled architecture to a collaborative, distributed set of intelligent agents. The network of intelligent agents intends to reduce management requirements by utilizing model-based system prediction and autonomic model/agent collaboration. SWAMO agents are distributed throughout the Sensor Web environment, which may include multiple spacecraft, aircraft, ground systems, and ocean systems, as well as manned operations centers. The agents monitor and manage sensor platforms, Earth sensing systems, and Earth sensing models and processes. The SWAMO agents form a Sensor Web of agents via peer-to-peer coordination. Some of the intelligent agents are mobile and able to traverse between on-orbit and ground-based systems. Other agents in the network are responsible for encapsulating system models to perform prediction of future behavior of the modeled subsystems and components to which they are assigned. The software agents use semantic web technologies to enable improved information sharing among the operational entities of the Sensor Web. The semantics include ontological conceptualizations of the Sensor Web environment, plus conceptualizations of the SWAMO agents themselves. By conceptualizations of the agents, we mean knowledge of their state, operational capabilities, current operational capacities, Web Service search and discovery results, agent collaboration rules, etc. The need for ontological conceptualizations over the agents is to enable autonomous and autonomic operations of the Sensor Web. The SWAMO ontology enables automated decision making and responses to the dynamic Sensor Web environment and to end user science requests. The current ontology is compatible with Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) Sensor Model Language (SensorML) concepts and structures. The agents are currently deployed on the U.S. Naval Academy MidSTAR-1 satellite and are actively managing the power subsystem on-orbit without the need for human intervention.
Nonreciprocal quantum interactions and devices via autonomous feedforward
NASA Astrophysics Data System (ADS)
Metelmann, A.; Clerk, A. A.
2017-01-01
In a recent work [A. Metelmann and A. A. Clerk, Phys. Rev. X 5, 021025 (2015), 10.1103/PhysRevX.5.021025], a general reservoir engineering approach for generating nonreciprocal quantum interactions and devices was described. We show here how in many cases this general recipe can be viewed as an example of autonomous feedforward: the full dissipative evolution is identical to the unconditional evolution in a setup where an observer performs an ideal quantum measurement of one system, and then uses the results to drive a second system. We also extend the application of this approach to nonreciprocal quantum amplifiers, showing the added functionality possible when using two engineered reservoirs. In particular, we demonstrate how to construct an ideal phase-preserving cavity-based amplifier which is fully nonreciprocal, quantum limited, and free of any fundamental gain-bandwidth constraint.
Autonomous Quantum Error Correction with Application to Quantum Metrology
NASA Astrophysics Data System (ADS)
Reiter, Florentin; Sorensen, Anders S.; Zoller, Peter; Muschik, Christine A.
2017-04-01
We present a quantum error correction scheme that stabilizes a qubit by coupling it to an engineered environment which protects it against spin- or phase flips. Our scheme uses always-on couplings that run continuously in time and operates in a fully autonomous fashion without the need to perform measurements or feedback operations on the system. The correction of errors takes place entirely at the microscopic level through a build-in feedback mechanism. Our dissipative error correction scheme can be implemented in a system of trapped ions and can be used for improving high precision sensing. We show that the enhanced coherence time that results from the coupling to the engineered environment translates into a significantly enhanced precision for measuring weak fields. In a broader context, this work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.
Physics Based Model for Cryogenic Chilldown and Loading. Part I: Algorithm
NASA Technical Reports Server (NTRS)
Luchinsky, Dmitry G.; Smelyanskiy, Vadim N.; Brown, Barbara
2014-01-01
We report the progress in the development of the physics based model for cryogenic chilldown and loading. The chilldown and loading is model as fully separated non-equilibrium two-phase flow of cryogenic fluid thermally coupled to the pipe walls. The solution follow closely nearly-implicit and semi-implicit algorithms developed for autonomous control of thermal-hydraulic systems developed by Idaho National Laboratory. A special attention is paid to the treatment of instabilities. The model is applied to the analysis of chilldown in rapid loading system developed at NASA-Kennedy Space Center. The nontrivial characteristic feature of the analyzed chilldown regime is its active control by dump valves. The numerical predictions are in reasonable agreement with the experimental time traces. The obtained results pave the way to the development of autonomous loading operation on the ground and space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ventura, P.; Dell’Agli, F.; D’Antona, F.
We study the formation of multiple populations in globular clusters (GCs), under the hypothesis that stars in the second generation formed from the winds of intermediate-mass stars, ejected during the asymptotic giant branch (AGB) phase, possibly diluted with pristine gas, sharing the same chemical composition of first-generation stars. To this aim, we use the recent Apache Point Observatory Galactic Evolution Experiment (APOGEE) data, which provide the surface chemistry of a large sample of giant stars, belonging to clusters that span a wide metallicity range. The APOGEE data set is particularly suitable to discriminate among the various pollution scenarios proposed somore » far, as it provides the surface abundances of Mg and Al, the two elements involved in a nuclear channel extremely sensitive to the temperature, hence to the metallicity of the polluters. The present analysis shows a remarkable agreement between the observations and the theoretical yields from massive AGB stars. In particular, the observed extension of the depletion of Mg and O and the increase in Al is well reproduced by the models and the trend with the metallicity is also fully accounted for. This study further supports the idea that AGB stars were the key players in the pollution of the intra-cluster medium, from which additional generations of stars formed in GCs.« less
Precise stellar surface gravities from the time scales of convectively driven brightness variations.
Kallinger, Thomas; Hekker, Saskia; García, Rafael A; Huber, Daniel; Matthews, Jaymie M
2016-01-01
A significant part of the intrinsic brightness variations in cool stars of low and intermediate mass arises from surface convection (seen as granulation) and acoustic oscillations (p-mode pulsations). The characteristics of these phenomena are largely determined by the stars' surface gravity (g). Detailed photometric measurements of either signal can yield an accurate value of g. However, even with ultraprecise photometry from NASA's Kepler mission, many stars are too faint for current methods or only moderate accuracy can be achieved in a limited range of stellar evolutionary stages. This means that many of the stars in the Kepler sample, including exoplanet hosts, are not sufficiently characterized to fully describe the sample and exoplanet properties. We present a novel way to measure surface gravities with accuracies of about 4%. Our technique exploits the tight relation between g and the characteristic time scale of the combined granulation and p-mode oscillation signal. It is applicable to all stars with a convective envelope, including active stars. It can measure g in stars for which no other analysis is now possible. Because it depends on the time scale (and no other properties) of the signal, our technique is largely independent of the type of measurement (for example, photometry or radial velocity measurements) and the calibration of the instrumentation used. However, the oscillation signal must be temporally resolved; thus, it cannot be applied to dwarf stars observed by Kepler in its long-cadence mode.
Robotic telescopes for education and public outreach the TAROT Experience
NASA Astrophysics Data System (ADS)
Boer, M.; Melchior, A. L.; Mottez, F.; Pennypaker, C.
The Rapid Action Telescope for Transient Objects (TAROT - Télescope à Action Rapide pour les Objets Transitoires) has been used over the past years as a support tool for the teaching of astronomy and physics within the framework of the Hand-On Universe program. TAROT is a fully autonomous 25cm telescope located at the Calern station of the Observatoire de la Côte d'Azur in France. Since its primary objective is the detection of the optical counterpart of cosmic gamma-ray bursts (GRBs), it features a very rapid (up to 80 deg./sec.) mount, and a wide field of view (2 deg.). Because the occurrence of GRBs is rather low, TAROT is used for other studies, including variable stars and orbital debris. For Education and Public Outreach, TAROT may be used in two ways. 1) full control of the telescope can be taken through a web interface, including the remote monitoring of housekeeping, weather conditions, control of auxiliary equipment (lamps, temperature setting...) and direct viewing of the telescope and of its surroundings; 2) a powerful web interface allows to send requests for observations; this enable efficient scheduling of the telescope and observation of sources in optimal conditions, including for repeated observations of the same location, e.g. for variable stars. As soon as the 2k x 2k images are taken, they are processed, background searches for variability are made, and the data is available through a web interface. All these products may be used or viewed even with a 56kbps modem connection. Getting the FITS files (instead of jpeg) requires however a rapid connection, e.g. an ADSL. TAROT allows both for direct demonstrations of the possibilities of remote controlled instruments, for the simultaneous monitoring of sources from the ground and space, and for the long term studies in the framework of a scientific project. As an example, the study of orbital debris may be an introduction to an actual problem for space policy and an explanation of the gravitation law. Whenever possible (depending on the availability of INTERNET connection), a live presentation of what is achievable with TAROT will be performed.
RUNAWAY MASSIVE STARS FROM R136: VFTS 682 IS VERY LIKELY A 'SLOW RUNAWAY'
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Sambaran; Kroupa, Pavel; Oh, Seungkyung, E-mail: sambaran@astro.uni-bonn.de, E-mail: pavel@astro.uni-bonn.de, E-mail: skoh@astro.uni-bonn.de
2012-02-10
We conduct a theoretical study on the ejection of runaway massive stars from R136-the central massive, starburst cluster in the 30 Doradus complex of the Large Magellanic Cloud. Specifically, we investigate the possibility of the very massive star (VMS) VFTS 682 being a runaway member of R136. Recent observations of the above VMS, by virtue of its isolated location and its moderate peculiar motion, have raised the fundamental question of whether isolated massive star formation is indeed possible. We perform the first realistic N-body computations of fully mass-segregated R136-type star clusters in which all the massive stars are in primordialmore » binary systems. These calculations confirm that the dynamical ejection of a VMS from an R136-like cluster, with kinematic properties similar to those of VFTS 682, is common. Hence, the conjecture of isolated massive star formation is unnecessary to account for this VMS. Our results are also quite consistent with the ejection of 30 Dor 016, another suspected runaway VMS from R136. We further note that during the clusters' evolution, mergers of massive binaries produce a few single stars per cluster with masses significantly exceeding the canonical upper limit of 150 M{sub Sun }. The observations of such single super-canonical stars in R136, therefore, do not imply an initial mass function with an upper limit greatly exceeding the accepted canonical 150 M{sub Sun} limit, as has been suggested recently, and they are consistent with the canonical upper limit.« less
On Iron Enrichment, Star Formation, and Type Ia Supernovae in Galaxy Clusters
NASA Technical Reports Server (NTRS)
Loewenstein, Michael
2006-01-01
The nature of star formation and Type Ia supernovae (SNIa) in galaxies in the field and in rich galaxy clusters are contrasted by juxtaposing the buildup of heavy metals in the universe inferred from observed star formation and supernovae rate histories with data on the evolution of Fe abundances in the intracluster medium (ICM). Models for the chemical evolution of Fe in these environments are constructed, subject to observational constraints, for this purpose. While models with a mean delay for SNIa of 3 Gyr and standard initial mass function (IMF) are fully consistent with observations in the field, cluster Fe enrichment immediately tracked a rapid, top-heavy phase of star formation - although transport of Fe into the ICM may have been more prolonged and star formation likely continued beyond redshift 1. The means of this prompt enrichment consisted of SNII yielding greater than or equal to 0.1 solar mass per explosion (if the SNIa rate normalization is scaled down from its value in the field according to the relative number of candidate progenitor stars in the 3 - 8 solar mass range) and/or SNIa with short delay times originating during the rapid star formation epoch. Star formation is greater than 3 times more efficient in rich clusters than in the field, mitigating the overcooling problem in numerical cluster simulations. Both the fraction of baryons cycled through stars, and the fraction of the total present-day stellar mass in the form of stellar remnants, are substantially greater in clusters than in the field.
NASA Astrophysics Data System (ADS)
Young, Steven K.
As a planet orbits its parent star, the amount of light that reaches Earth from that system is dependent on the dynamics of that star system. Known as photometric variations, these slight changes in light flux are detectable by the Kepler Space Telescope and must be fully understood in order to properly model the system. There are four main factors that contribute to the photometric flux: reflected light from the planet, thermal emissions from the planet, doppler boosting in the light being emitted by the star, and ellipsoidal variations in the star. The total observed flux from each contribution then determines how much light will be seen from the star system to be used for analysis. Previous studies have normalized the photometric variation fluxes by the observed flux emitted from the star. However, normalizing data inherently and unphysically skews the result which must then be taken into account. Additionally, when the stellar flux is an unknown it is impossible to normalize the photometric variation fluxes with respect to it. This paper will preliminarily attempt to improve upon the existing studies by removing the source of the deviation for the flux results, i.e. the stellar flux. The fluxes found from each photometric variation factor will then be incorporated into EXONEST, an algorithm using Bayesian inference, that will be implemented for characterizing extrasolar systems.
NASA Astrophysics Data System (ADS)
Goldbaum, Nathan J.; Krumholz, Mark R.; Forbes, John C.
2015-12-01
The role of gravitational instability-driven turbulence in determining the structure and evolution of disk galaxies, and the extent to which gravity rather than feedback can explain galaxy properties, remains an open question. To address it, we present high-resolution adaptive mesh refinement simulations of Milky Way-like isolated disk galaxies, including realistic heating and cooling rates and a physically motivated prescription for star formation, but no form of star formation feedback. After an initial transient, our galaxies reach a state of fully nonlinear gravitational instability. In this state, gravity drives turbulence and radial inflow. Despite the lack of feedback, the gas in our galaxy models shows substantial turbulent velocity dispersions, indicating that gravitational instability alone may be able to power the velocity dispersions observed in nearby disk galaxies on 100 pc scales. Moreover, the rate of mass transport produced by this turbulence approaches ˜ 1 {M}⊙ yr-1 for Milky Way-like conditions, sufficient to fully fuel star formation in the inner disks of galaxies. In a companion paper, we add feedback to our models, and use the comparison between the two cases to understand which galaxy properties depend sensitively on feedback and which can be understood as the product of gravity alone. All of the code, initial conditions, and simulation data for our model are publicly available.
Rotating and Binary Stars in General Relativit
NASA Astrophysics Data System (ADS)
Shapiro, Stuart
The inspiral and coalescence of compact binary stars is one of the most challenging problems in theoretical astrophysics. Only recently have advances in numerical relativity made it possible to explore this topic in full general relativity (GR). The mergers of compact binaries have important consequences for the detection of gravitational waves. In addition, the coalescence of binary neutron stars (NSNSs) and binary black-hole neutron stars (BHNSs) may hold the key for resolving other astrophysical puzzles, such as the origin of short-hard gamma-ray bursts (GRBs). While simulations of these systems in full GR are now possible, only the most idealized treatments have been performed to date. More detailed physics, including magnetic fields, black hole spin, a realistic hot, nuclear equation of state and neutrino transport must be incorporated. Only then will we be able to identify reliably future sources that may be detected simultaneously in gravitational waves and as GRBs. Likewise, the coalescence of binary black holes (BHBHs) is now a solved problem in GR, but only in vacuum. Simulating the coalescence of BHBHs in the gaseous environments likely to be found in nearby galaxy cores or in merging galaxies is crucial to identifying an electromagnetic signal that might accompany the gravitational waves produced during the merger. The coalescence of a binary white dwarf-neutron star (WDNS) has only recently been treated in GR, but GR is necessary to explore tidal disruption scenarios in which the capture of WD debris by the NS may lead to catastrophic collapse. Alternatively, the NS may survive and the merger might result in the formation of pulsar planets. The stability of rotating neutron stars in these and other systems has not been fully explored in GR, and the final fate of unstable stars has not been determined in many cases, especially in the presence of magnetic fields and differential rotation. These systems will be probed observationally by current NASA instruments, such as HST, CHANDRA, SWIFT and FERMI, and by future NASA detectors, such as NuStar, ASTRO-H, GEMS, JWST, and, possibly, GEN-X and SGO (a Space-Based Gravitational-Wave Observatory). Treating all of these phenomena theoretically requires the same computational machinery: a fully relativistic code that simultaneously solves Einstein s equations for the gravitational field, Maxwell s equations for the electromagnetic field and the equations of relativistic magnetohydrodynamics for the plasma, all in three spatial dimensions plus time. Recent advances we have made in constructing such a code now make it possible for us to solve these fundamental, closely related computational problems, some for the first time.
The Anglo-Australian Planet Search XXIV: The Frequency of Jupiter Analogs
NASA Astrophysics Data System (ADS)
Wittenmyer, Robert A.; Butler, R. P.; Tinney, C. G.; Horner, Jonathan; Carter, B. D.; Wright, D. J.; Jones, H. R. A.; Bailey, J.; O'Toole, Simon J.
2016-03-01
We present updated simulations of the detectability of Jupiter analogs by the 17-year Anglo-Australian Planet Search. The occurrence rate of Jupiter-like planets that have remained near their formation locations beyond the ice line is a critical datum necessary to constrain the details of planet formation. It is also vital in our quest to fully understand how common (or rare) planetary systems like our own are in the Galaxy. From a sample of 202 solar-type stars, and correcting for imperfect detectability on a star-by-star basis, we derive a frequency of {6.2}-1.6+2.8% for giant planets in orbits from 3 to 7 au. When a consistent definition of “Jupiter analog” is used, our results are in agreement with those from other legacy radial-velocity surveys.
New radio detections of early-type pre-main-sequence stars
NASA Technical Reports Server (NTRS)
Skinner, Stephen L.; Brown, Alexander; Linsky, Jeffrey L.
1990-01-01
Results of VLA radio continuum observations of 13 early-type pre-main-sequence stars selected from the 1984 catalog of Finkenzeller and Mundt are presented. The stars HD 259431 and MWC 1080 were detected at 3.6 cm, while HD 200775 and TY CrA were detected at both 3.6 and 6 cm. The flux density of HD 200775 has a frequency dependence consistent with the behavior expected for free-free emission originating in a fully ionized wind. However, an observation in A configuration suggests that the source geometry may not be spherically symmetric. In contrast, the spectral index of TY CrA is negative with a flux behavior implying nonthermal emission. The physical mechanism responsible for the nonthermal emission has not yet been identified, although gyrosynchrotron and synchrotron processes cannot be ruled out.
Model atmospheres and radiation of magnetic neutron stars. I - The fully ionized case
NASA Technical Reports Server (NTRS)
Shibanov, Iu. A.; Zavlin, V. E.; Pavlov, G. G.; Ventura, J.
1992-01-01
Model neutron star atmospheres are calculated for typical cooling stars with a strong magnetic field and effective temperatures of 10 exp 5 to 10 exp 6 K. The effect of anisotropic photon diffusion in two normal modes are examined under the assumption that the opacity is due solely to the bremsstrahlung and Thomson scattering processes under conditions of LTE that are expected to prevail at the temperatures and densities obtained. The main aspects of anisotropic photon diffusion, and an original procedure for calculating model atmospheres and emitted spectra are discussed. Representative calculated spectra are given, and it is found that the hard spectral excess characterizing the nonmagnetic case, while still present, becomes less prominent in the presence of magnetic fields in the range of 10 exp 11 to 10 exp 13 G.
Completion of the universal I-Love-Q relations in compact stars including the mass
NASA Astrophysics Data System (ADS)
Reina, Borja; Sanchis-Gual, Nicolas; Vera, Raül; Font, José A.
2017-09-01
In a recent paper, we applied a rigorous perturbed matching framework to show the amendment of the mass of rotating stars in Hartle's model. Here, we apply this framework to the tidal problem in binary systems. Our approach fully accounts for the correction to the Love numbers needed to obtain the universal I-Love-Q relations. We compute the corrected mass versus radius configurations of rotating quark stars, revisiting a classical paper on the subject. These corrections allow us to find a universal relation involving the second-order contribution to the mass δM. We thus complete the set of universal relations for the tidal problem in binary systems, involving four perturbation parameters, namely I, Love, Q and δM. These relations can be used to obtain the perturbation parameters directly from observational data.
A butterfly-shaped 'Papillon Nebula' yields secrets of massive star birth
NASA Astrophysics Data System (ADS)
1999-06-01
The newly found massive newborn stars are in one of our satellite galaxies, the Large Magellanic Cloud (LMC), 170,000 light-years away - right in our cosmic backyard. The Hubble image shows a view of a turbulent cauldron of starbirth, unromantically called N159. Fierce stellar winds from the hot newborn massive stars sculpt ridges, arcs and filaments in the vast cloud, which is over 150 light-years across. This is the clearest image ever obtained of this region. Seen for the first time is the butterfly-shaped or 'Papillon' (French for butterfly) nebula, buried in the centre of the maelstrom of glowing gases and dark dust. The unprecedented details of the structure of the Papillon, itself less than 2 light-years in size (about 1/2000th of a degree in the sky), are seen in the inset. This bipolar shape might be explained by the outflow of gas from the massive star (over 10 times the mass of our Sun) hidden in the central absorption zone. Such stars are so hot and bright that the pressure created by their light halts the infall of gas and directs it away from the star in two opposite directions. This mechanism is not fully understood, but presumably the outflow is constrained around the star's equator and directed to escape along the star's rotation axis. This observation is part of a search for young massive stars in the LMC. This butterfly-shaped nebula is considered to be a rare class of compact 'blob' around newborn, massive stars. The red in this true-colour image comes from the emission of hydrogen and the yellow from hotter oxygen gas. The picture was taken on 5 September 1998 with Wide Field Planetary Camera 2.
NASA Astrophysics Data System (ADS)
Buysschaert, B.; Aerts, C.; Bloemen, S.; Debosscher, J.; Neiner, C.; Briquet, M.; Vos, J.; Pápics, P. I.; Manick, R.; Schmid, V. S.; Van Winckel, H.; Tkachenko, A.
2015-10-01
We present high-precision photometric light curves of five O-type stars observed with the refurbished Kepler satellite during its Campaign 0. For one of the stars, we also assembled high-resolution ground-based spectroscopy with the HERMES spectrograph attached to the 1.2 m Mercator telescope. The stars EPIC 202060097 (O9.5V) and EPIC 202060098 (O7V) exhibit monoperiodic variability due to rotational modulation with an amplitude of 5.6 and 9.3 mmag and a rotation period of 2.63 and 5.03 d, respectively. EPIC 202060091 (O9V) and EPIC 202060093 (O9V:pe) reveal variability at low frequency but the cause is unclear. EPIC 202060092 (O9V:p) is discovered to be a spectroscopic binary with at least one multiperiodic β Cep-type pulsator whose detected mode frequencies occur in the range [0.11, 6.99] d-1 and have amplitudes between 0.8 and 2.0 mmag. Its pulsation spectrum is shown to be fully compatible with the ones predicted by core-hydrogen burning O-star models. Despite the short duration of some 33 d and the limited data quality with a precision near 100 μmag of these first K2 data, the diversity of possible causes for O-star variability already revealed from campaigns of similar duration by the MOST and CoRoT satellites is confirmed with Kepler. We provide an overview of O-star space photometry and give arguments why future K2 monitoring during Campaigns 11 and 13 at short cadence, accompanied by time-resolved high-precision high-resolution spectroscopy, opens up the possibility of in-depth O-star seismology.
The Microwave Anisotropy Probe (MAP) Attitude Control System
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)
2002-01-01
The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.
An Overview of the StarLight Mission
NASA Technical Reports Server (NTRS)
Lay, Oliver; Blackwood, Gary; Dubovitsky, Serge; Duren, Riley
2004-01-01
An overview of the Starlight Mission is presented. Mission summary: June 2006 launch to heliocentric orbit; Nominal 6 month mission with option of additional 6 month extension; Validate autonomous formation flying system: range control to 10 cm bearing, control to 4 arcmin; Demonstrate formation flying optical interferometry.The original 3 spacecraft design did not fit the budget. 2 spacecraft concept demonstrates all key areas of formation flying interferometry. Collector flown on the surface of a virtual paraboloid, with combiner at the focus. It Gives a baseline of 125 m with a fixed delay of only 14 m.
An onboard navigation system which fulfills Mars aerocapture guidance requirements
NASA Technical Reports Server (NTRS)
Brand, Timothy J.; Fuhry, Douglas P.; Shepperd, Stanley W.
1989-01-01
The development of a candidate autonomous onboard Mars approach navigation scheme capable of supporting aerocapture into Mars orbit is discussed. An aerocapture guidance and navigation system which can run independently of the preaerocapture navigation was used to define a preliminary set of accuracy requirements at entry interface. These requirements are used to evaluate the proposed preaerocapture navigation scheme. This scheme uses optical sightings on Deimos with a star tracker and an inertial measurement unit for instrumentation as a source for navigation nformation. Preliminary results suggest that the approach will adequately support aerocaputre into Mars orbit.
The Microwave Anisotropy Probe (MAP) Mission
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Andrews, Stephen F.; ODonnell, James R., Jr.; Ward, David K.; Ericsson, Aprille J.; Bauer, Frank H. (Technical Monitor)
2002-01-01
The Microwave Anisotropy Probe mission is designed to produce a map of the cosmic microwave background radiation over the entire celestial sphere by executing a fast spin and a slow precession of its spin axis about the Sun line to obtain a highly interconnected set of measurements. The spacecraft attitude is sensed and controlled using an Inertial Reference Unit, two Autonomous Star Trackers, a Digital Sun Sensor, twelve Coarse Sun Sensors, three Reaction Wheel Assemblies, and a propulsion system. This paper describes the design of the attitude control system that carries out this mission and presents some early flight experience.
1994-10-08
Designed by the crew members, the STS-63 crew patch depicts the orbiter maneuvering to rendezvous with Russia's Space Station Mir. The name is printed in Cyrillic on the side of the station. Visible in the Orbiter's payload bay are the commercial space laboratory Spacehab and the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) satellite which are major payloads on the flight. The six points on the rising sun and the three stars are symbolic of the mission's Space Transportation System (STS) numerical designation. Flags of the United States and Russia at the bottom of the patch symbolize the cooperative operations of this mission.
Boston Community Energy Study - Zonal Analysis for Urban Microgrids
2016-04-05
macrogrid. Fully autonomous micro- grids are ordinarily rural systems that have generation assets such as wind turbines (WTs) [14] or photovoltaic (PV...or wind turbines ; they also could include direct current devices such as fuel cells or photovoltaic arrays [6,17]. Traditional storage systems include...economic and human impact that severe weather can have on urban areas such as New York City. While flooding and wind damaged or destroyed some of the
The use and abuse of standard stars
NASA Astrophysics Data System (ADS)
Garrison, R. F.
The 'mandate' of classification systems is examined with reference to spectral classification. In using a classification system, it is of the greatest importance to be aware of why it was created, how it was constructed, what its useful limits are, how it has evolved, and what credibility it has achieved in practice . . . all of which constitute the mandate of the system. In the particular case of the MK system of spectral classification, types are defined by the standard stars. They can be calibrated, and the calibration may evolve with time, but the types are relatively stable because they are defined by the standards. The autonomy of this powerful system is crucial to its success, but some astronomers do not understand the importance of this distinction. Recent suggestions to change the spectral type of the sun show an ignorance of the way the system works. The confrontation and complementary use of autonomous systems yield information which is not contained in any individual system.
A Software Product Line Process to Develop Agents for the IoT.
Ayala, Inmaculada; Amor, Mercedes; Fuentes, Lidia; Troya, José M
2015-07-01
One of the most important challenges of this decade is the Internet of Things (IoT), which aims to enable things to be connected anytime, anyplace, with anything and anyone, ideally using any path/network and any service. IoT systems are usually composed of heterogeneous and interconnected lightweight devices that support applications that are subject to change in their external environment and in the functioning of these devices. The management of the variability of these changes, autonomously, is a challenge in the development of these systems. Agents are a good option for developing self-managed IoT systems due to their distributed nature, context-awareness and self-adaptation. Our goal is to enhance the development of IoT applications using agents and software product lines (SPL). Specifically, we propose to use Self-StarMASMAS, multi-agent system) agents and to define an SPL process using the Common Variability Language. In this contribution, we propose an SPL process for Self-StarMAS, paying particular attention to agents embedded in sensor motes.
ALE OF TWO CLUSTERS YIELDS SECRETS OF STAR BIRTH IN THE EARLY UNIVERSE
NASA Technical Reports Server (NTRS)
2002-01-01
This NASA Hubble Space Telescope (HST) image shows rich detail, previously only seen in neighboring star birth regions, in a pair of star clusters 166,000 light-years away in the Large Magellanic Cloud (LMC), in the southern constellation Doradus. The field of view is 130 light-years across and was taken with the Wide Field Planetary Camera 2. HST's unique capabilities -- ultraviolet sensitivity, ability to see faint stars, and high resolution -- have been utilized fully to identify three separate populations in this concentration of nearly 10,000 stars down to the 25th magnitude (more that twice as many as can be seen over the entire sky with the naked eye on a clear night on Earth). The field of view is only 130 light-years across. Previous observations with ground-based telescopes resolve less than 1,000 stars in the same region. About 60 percent of the stars belong to the dominant yellow cluster called NGC 1850, which is estimated to be 50 million years old. A scattering of white stars in the image are massive stars that are only about 4 million years old and represent about 20 percent of the stars in the image. (The remainder are field stars in the LMC.) Besides being much younger, the white stars are much more loosely distributed than the yellow cluster. The significant difference between the two cluster ages suggests these are two separate star groups that lie along the same line of sight. The younger, more open cluster probably lies 200 light-years beyond the older cluster. If it were in the foreground, then dust contained in the white cluster would obscure stars in the older yellow cluster. To observe two well-defined star populations separated by such a small gap of space is unusual. This juxtaposition suggests that supernova explosions in the older cluster might have triggered the birth of the younger cluster. This color composite image is assembled from exposures taken in ultraviolet, visible, and near-infrared light. Yellow stars correspond to Main Sequence stars (like our Sun) with average surface temperatures of 6000 Kelvin; red stars are cool giants and supergiants (3500 K); white stars are hot young stars (25,000 K or more) that are bright in ultraviolet. Credit: R. Gilmozzi, Space Telescope Science Institute/European Space Agency; Shawn Ewald, JPL; and NASA
TYCHO: Simulating Exoplanets Within Stellar Clusters
NASA Astrophysics Data System (ADS)
Glaser, Joseph Paul; Thornton, Jonathan; Geller, Aaron M.; McMillan, Stephen
2018-01-01
Recent surveys exploring nearby open clusters have yielded noticeable differences in the planetary population from that seen in the Field. This is surprising, as the two should be indistinguishable given currently accepted theories on how a majority of stars form within the Galaxy. Currently, the existence of this apparent deficit is not fully understood. While detection bias in previous observational surveys certainly contributes to this issue, the dynamical effects of star-star scattering must also be taken into account. However, this effect can only be investigated via computational simulations and current solutions of the multi-scale N-body problem are limited and drastically simplified.To remedy this, we aim to create a physically complete computational solution to explore the role of stellar close encounters and interplanetary interactions in producing the observed exoplanet populations for both open cluster stars and Field stars. To achieve this, TYCHO employs a variety of different computational techniques, including: multiple n-body integration methods; close-encounter handling; Monte Carlo scattering experiments; and a variety of observationally-backed initial condition generators. Herein, we discuss the current state of the code's implantation within the AMUSE framework and its applications towards present exoplanet surveys.
Stellar Echo Imaging of Exoplanets
NASA Technical Reports Server (NTRS)
Mann, Chris; Lerch, Kieran; Lucente, Mark; Meza-Galvan, Jesus; Mitchell, Dan; Ruedin, Josh; Williams, Spencer; Zollars, Byron
2016-01-01
All stars exhibit intensity fluctuations over several timescales, from nanoseconds to years. These intensity fluctuations echo off bodies and structures in the star system. We posit that it is possible to take advantage of these echoes to detect, and possibly image, Earth-scale exoplanets. Unlike direct imaging techniques, temporal measurements do not require fringe tracking, maintaining an optically-perfect baseline, or utilizing ultra-contrast coronagraphs. Unlike transit or radial velocity techniques, stellar echo detection is not constrained to any specific orbital inclination. Current results suggest that existing and emerging technology can already enable stellar echo techniques at flare stars, such as Proxima Centauri, including detection, spectroscopic interrogation, and possibly even continent-level imaging of exoplanets in a variety of orbits. Detection of Earth-like planets around Sun-like stars appears to be extremely challenging, but cannot be fully quantified without additional data on micro- and millisecond-scale intensity fluctuations of the Sun. We consider survey missions in the mold of Kepler and place preliminary constraints on the feasibility of producing 3D tomographic maps of other structures in star systems, such as accretion disks. In this report we discuss the theory, limitations, models, and future opportunities for stellar echo imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller Bertolami, M. M.; Corsico, A. H.; Althaus, L. G., E-mail: mmiller@fcaglp.unlp.edu.ar
2011-11-01
We investigate the pulsation driving mechanism responsible for the long-period photometric variations observed in LS IV-14{sup 0}116, a subdwarf B star showing a He-enriched atmospheric composition. To this end, we perform detailed nonadiabatic pulsation computations over fully evolutionary post-He-core-flash stellar structure models, appropriate for hot subdwarf stars at evolutionary phases previous to the He-core burning stage. We found that the variability of LS IV-14{sup 0}116 can be attributed to non-radial g-mode pulsations excited by the {epsilon}-mechanism acting in the He-burning shells that appear before the star settles in the He-core burning stage. Even more interestingly, our results show that LSmore » IV-14{sup 0}116 could be the first known pulsating star in which the {epsilon}-mechanism of mode excitation is operating. Last but not the least, we find that the period range of destabilized modes is sensitive to the exact location of the burning shell, something that might help in distinguishing between the different evolutionary scenarios proposed for the formation of this star.« less
Star Formation in M 33 (HerM33es)
NASA Astrophysics Data System (ADS)
Kramer, C.; Boquien, M.; Braine, J.; Buchbender, C.; Calzetti, D.; Gratier, P.; Mookerjea, B.; Relaño, M.; Verley, S.
2011-11-01
Within the key project "Herschel M 33 extended survey" (HerM33es), we are studying the physical and chemical processes driving star formation and galactic evolution in the nearby galaxy M 33, combining the study of local conditions affecting individual star formation with properties only becoming apparent on global scales. Here, we present recent results obtained by the HerM33es team. Combining Spitzer and Herschel data ranging from 3.6 μm to 500μm, along with H i, Hα, and GALEX UV data, we have studied the dust at high spatial resolutions of 150 pc, providing estimators of the total infrared (TIR) brightness and of the star formation rate. While the temperature of the warm dust at high brightness is driven by young massive stars, evolved stellar populations appear to drive the temperature of the cold dust. Plane-parallel models of photon dominated regions (PDRs) fail to reproduce fully the [C ii], [O i], and CO maps obtained in a first spectroscopic study of one 2' × 2' subregion of M 33, located on the inner, northern spiral arm and encompassing the H ii region BCLMP 302.
NASA Astrophysics Data System (ADS)
Cross, J. N.; Meinig, C.; Mordy, C. W.; Lawrence-Slavas, N.; Cokelet, E. D.; Jenkins, R.; Tabisola, H. M.; Stabeno, P. J.
2016-12-01
New autonomous sensors have dramatically increased the resolution and accuracy of oceanographic data collection, enabling rapid sampling over extremely fine scales. Innovative new autonomous platofrms like floats, gliders, drones, and crawling moorings leverage the full potential of these new sensors by extending spatiotemporal reach across varied environments. During 2015 and 2016, The Innovative Technology for Arctic Exploration Program at the Pacific Marine Environmental Laboratory tested several new types of fully autonomous platforms with increased speed, durability, and power and payload capacity designed to deliver cutting-edge ecosystem assessment sensors to remote or inaccessible environments. The Expendable Ice-Tracking (EXIT) gloat developed by the NOAA Pacific Marine Environmental Laboratory (PMEL) is moored near bottom during the ice-free season and released on an autonomous timer beneath the ice during the following winter. The float collects a rapid profile during ascent, and continues to collect critical, poorly-accessible under-ice data until melt, when data is transmitted via satellite. The autonomous Oculus sub-surface glider developed by the University of Washington and PMEL has a large power and payload capacity and an enhanced buoyancy engine. This 'coastal truck' is designed for the rapid water column ascent required by optical imaging systems. The Saildrone is a solar and wind powered ocean unmanned surface vessel (USV) developed by Saildrone, Inc. in partnership with PMEL. This large-payload (200 lbs), fast (1-7 kts), durable (46 kts winds) platform was equipped with 15 sensors designed for ecosystem assessment during 2016, including passive and active acoustic systems specially redesigned for autonomous vehicle deployments. The senors deployed on these platforms achieved rigorous accuracy and precision standards. These innovative platforms provide new sampling capabilities and cost efficiencies in high-resolution sensor deployment, including reconnaissance for annual fisheries and marine mammal surveys; better linkages between sustained observing platforms; and adaptive deployments that can easily target anomalies as they arise.
Autonomous Flight Safety System
NASA Technical Reports Server (NTRS)
Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim
2004-01-01
Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.
NASA Astrophysics Data System (ADS)
Kobayashi, Hayato; Osaki, Tsugutoyo; Okuyama, Tetsuro; Gramm, Joshua; Ishino, Akira; Shinohara, Ayumi
This paper describes an interactive experimental environment for autonomous soccer robots, which is a soccer field augmented by utilizing camera input and projector output. This environment, in a sense, plays an intermediate role between simulated environments and real environments. We can simulate some parts of real environments, e.g., real objects such as robots or a ball, and reflect simulated data into the real environments, e.g., to visualize the positions on the field, so as to create a situation that allows easy debugging of robot programs. The significant point compared with analogous work is that virtual objects are touchable in this system owing to projectors. We also show the portable version of our system that does not require ceiling cameras. As an application in the augmented environment, we address the learning of goalie strategies on real quadruped robots in penalty kicks. We make our robots utilize virtual balls in order to perform only quadruped locomotion in real environments, which is quite difficult to simulate accurately. Our robots autonomously learn and acquire more beneficial strategies without human intervention in our augmented environment than those in a fully simulated environment.
Lange-Maia, Brittney S; Newman, Anne B; Jakicic, John M; Cauley, Jane A; Boudreau, Robert M; Schwartz, Ann V; Simonsick, Eleanor M; Satterfield, Suzanne; Vinik, Aaron I; Zivkovic, Sasa; Harris, Tamara B; Strotmeyer, Elsa S
2017-10-01
Age-related peripheral nervous system (PNS) impairments are highly prevalent in older adults. Although sensorimotor and cardiovascular autonomic function have been shown to be related in persons with diabetes, the nature of the relationship in general community-dwelling older adult populations is unknown. Health, Aging and Body Composition participants (n=2399, age=76.5±2.9years, 52% women, 38% black) underwent peripheral nerve testing at the 2000/01 clinic visit. Nerve conduction amplitude and velocity were measured at the peroneal motor nerve. Sensory nerve function was assessed with vibration detection threshold and monofilament (1.4-g/10-g) testing at the big toe. Symptoms of lower-extremity peripheral neuropathy were collected by self-report. Cardiovascular autonomic function indicators included postural hypotension, resting heart rate (HR), as well as HR response to and recovery from submaximal exercise testing (400m walk). Multivariable modeling adjusted for demographic/lifestyle factors, medication use and comorbid conditions. In fully adjusted models, poor motor nerve conduction velocity (<40m/s) was associated with greater odds of postural hypotension, (OR=1.6, 95% CI: 1.0-2.5), while poor motor amplitude (<1mV) was associated with 2.3beats/min (p=0.003) higher resting HR. No associations were observed between sensory nerve function or symptoms of peripheral neuropathy and indicators of cardiovascular autonomic function. Motor nerve function and indicators of cardiovascular autonomic function remained significantly related even after considering many potentially shared risk factors. Future studies should investigate common underlying processes for developing multiple PNS impairments in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.
Intelligent systems for the autonomous exploration of Titan and Enceladus
NASA Astrophysics Data System (ADS)
Furfaro, Roberto; Lunine, Jonathan I.; Kargel, Jeffrey S.; Fink, Wolfgang
2008-04-01
Future planetary exploration of the outer satellites of the Solar System will require higher levels of onboard automation, including autonomous determination of sites where the probability of significant scientific findings is highest. Generally, the level of needed automation is heavily influenced by the distance between Earth and the robotic explorer(s) (e.g. spacecraft(s), rover(s), and balloon(s)). Therefore, planning missions to the outer satellites mandates the analysis, design and integration within the mission architecture of semi- and/or completely autonomous intelligence systems. Such systems should (1) include software packages that enable fully automated and comprehensive identification, characterization, and quantification of feature information within an operational region with subsequent target prioritization and selection for close-up reexamination; and (2) integrate existing information with acquired, "in transit" spatial and temporal sensor data to automatically perform intelligent planetary reconnaissance, which includes identification of sites with the highest potential to yield significant geological and astrobiological information. In this paper we review and compare some of the available Artificial Intelligence (AI) schemes and their adaptation to the problem of designing expert systems for onboard-based, autonomous science to be performed in the course of outer satellites exploration. More specifically, the fuzzy-logic framework proposed is analyzed in some details to show the effectiveness of such a scheme when applied to the problem of designing expert systems capable of identifying and further exploring regions on Titan and/or Enceladus that have the highest potential to yield evidence for past or present life. Based on available information (e.g., Cassini data), the current knowledge and understanding of Titan and Enceladus environments is evaluated to define a path for the design of a fuzzy-based system capable of reasoning over collected data and capable of providing the inference required to autonomously optimize future outer satellites explorations.
Spots and activity of Pleiades stars from observations with the Kepler Space Telescope (K2)
NASA Astrophysics Data System (ADS)
Savanov, I. S.; Dmitrienko, E. S.
2017-11-01
Observations of the K2 continuation of Kepler Space Telescope program are used to estimate the spot coverage S (the fractional spotted area on the surface of an active star) for stars of the Pleiades cluster. The analysis is based on data on photometric variations of 759 confirmed clustermembers, together with their atmospheric parameters, masses, and rotation periods. The relationship between the activity ( S) of these Pleiades stars and their effective temperatures shows considerable change in S for stars with temperatures T eff less than 6100 K (this can be considered the limiting value for which spot formation activity begins) and a monotonic increase in S for cooler objects (a change in the slope for stars with Teff 3700 K). The scatter in this parameter ΔS about its mean dependence on the (V -Ks)0 color index remains approximately the same over the entire ( V- K s )0 range, including cool, fully convective dwarfs. The computated S values do not indicate differences between slowly rotating and rapidly rotating stars with color indices 1.1 < ( V- K s )0 < 3.7. The main results of this study include measurements of the activity of a large number of stars having the same age (759 members of the Pleiades cluster), resulting in the first determination of the relationship between the spot-forming activity and masses of stars. For 27 stars with masses differing from the solarmass by nomore than 0.1 M⊙, themean spot coverage is S = 0.031±0.003, suggesting that the activity of candidate young Suns is more pronounced than that of the present-day Sun. These stars rotate considerably faster than the Sun, with an average rotation period of 4.3d. The results of this study of cool, low-mass dwarfs of the Pleiades cluster are compared to results from an earlier study of 1570 M stars.
Numerical simulation of the magnetospheric gate model for X-ray bursters
NASA Technical Reports Server (NTRS)
Starrfield, S. G.; Kenyon, S.; Truran, J. W.; Sparks, W. M.
1981-01-01
A Lagrangian, fully implicit, one dimensional hydrodynamic computer code was used to investigate the evolution of a gas cloud impacting the surface of a 20 km, 1 Msub solar neutron star. This gas is initially at rest with respect to the surface of the neutron star, extends to 185 km above the surface, and is optically thick. The infall results in a burst which lasts about 0.1 seconds and reached a peak luminosity and effective temperature of 240,000 Lsub solar and 9 million; respectively. The burst was followed by a phase of oscillations with a period 0.2 seconds.
A Rare Cause of Hypothalamic Obesity, Rohhad Syndrome: 2 Cases.
Şiraz, Ülkü Gül; Okdemir, Deniz; Direk, Gül; Akın, Leyla; Hatipoğlu, Nihal; Kendırcı, Mustafa; Kurtoğlu, Selim
2018-03-19
Rapid-onset obesity with hypoventilation, hypothalamic dysfunction and autonomic dysregulation (ROHHAD) syndrome is a rare disease that is difficult to diagnosis and distinguish from genetic obesity syndromes. The underlying causes of the disease has not been fully explained. Hypothalamic dysfunction causes endocrine problems, respiratory dysfunction and autonomic alterations. There are around 80 reported patients due to lack of recognition. We present two female patient suspected of ROHHAD due to weight gain since early childhood. The presented symptoms, respiratory and circulatory dysfunction, hypothalamic hypernatremia, hypothalamo-pituitary hormonal disorders such as santral hypothyrodism, hyperprolactinemia and santral early puberty are completely matched the criteria of ROHHAD syndrome. ROHHAD syndrome should be considered in differential diagnosis since it is difficult to distinguish from causes of monogenic obesity. Early identification of the disease reduces morbidity of the syndrome and patients require regular follow-up by a multidisciplinary approach.
HIGH-EFFICIENCY AUTONOMOUS LASER ADAPTIVE OPTICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baranec, Christoph; Riddle, Reed; Tendulkar, Shriharsh
2014-07-20
As new large-scale astronomical surveys greatly increase the number of objects targeted and discoveries made, the requirement for efficient follow-up observations is crucial. Adaptive optics imaging, which compensates for the image-blurring effects of Earth's turbulent atmosphere, is essential for these surveys, but the scarcity, complexity and high demand of current systems limit their availability for following up large numbers of targets. To address this need, we have engineered and implemented Robo-AO, a fully autonomous laser adaptive optics and imaging system that routinely images over 200 objects per night with an acuity 10 times sharper at visible wavelengths than typically possible frommore » the ground. By greatly improving the angular resolution, sensitivity, and efficiency of 1-3 m class telescopes, we have eliminated a major obstacle in the follow-up of the discoveries from current and future large astronomical surveys.« less
[Service robots in elderly care. Possible application areas and current state of developments].
Graf, B; Heyer, T; Klein, B; Wallhoff, F
2013-08-01
The term "Service robotics" describes semi- or fully autonomous technical systems able to perform services useful to the well-being of humans. Service robots have the potential to support and disburden both persons in need of care as well as nursing care staff. In addition, they can be used in prevention and rehabilitation in order to reduce or avoid the need for help. Products currently available to support people in domestic environments are mainly cleaning or remote-controlled communication robots. Examples of current research activities are the (further) development of mobile robots as advanced communication assistants or the development of (semi) autonomous manipulation aids and multifunctional household assistants. Transport robots are commonly used in many hospitals. In nursing care facilities, the first evaluations have already been made. So-called emotional robots are now sold as products and can be used for therapeutic, occupational, or entertainment activities.
Modeling Jet and Outflow Feedback during Star Cluster Formation
NASA Astrophysics Data System (ADS)
Federrath, Christoph; Schrön, Martin; Banerjee, Robi; Klessen, Ralf S.
2014-08-01
Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ~1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ~1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ~ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.
A dynamical model for gas flows, star formation and nuclear winds in galactic centres
NASA Astrophysics Data System (ADS)
Krumholz, Mark R.; Kruijssen, J. M. Diederik; Crocker, Roland M.
2017-04-01
We present a dynamical model for gas transport, star formation and winds in the nuclear regions of galaxies, focusing on the Milky Way's Central Molecular Zone (CMZ). In our model angular momentum and mass are transported by a combination of gravitational and bar-driven acoustic instabilities. In gravitationally unstable regions the gas can form stars, and the resulting feedback drives both turbulence and a wind that ejects mass from the CMZ. We show that the CMZ is in a quasi-steady state where mass deposited at large radii by the bar is transported inwards to a star-forming, ring-shaped region at ˜100 pc from the Galactic Centre, where the shear reaches a minimum. This ring undergoes episodic starbursts, with bursts lasting ˜5-10 Myr occurring at ˜20-40 Myr intervals. During quiescence the gas in the ring is not fully cleared, but is driven out of a self-gravitating state by the momentum injected by expanding supernova remnants. Starbursts also drive a wind off the star-forming ring, with a time-averaged mass flux comparable to the star formation rate. We show that our model agrees well with the observed properties of the CMZ, and places it near a star formation minimum within the evolutionary cycle. We argue that such cycles of bursty star formation and winds should be ubiquitous in the nuclei of barred spiral galaxies, and show that the resulting distribution of galactic nuclei on the Kennicutt-Schmidt relation is in good agreement with that observed in nearby galaxies.
Performing Labour in Look Left Look Right's "Above and Beyond"
ERIC Educational Resources Information Center
Alston, Adam
2015-01-01
This article looks at the theme of "performing labour" in Look Left Look Right's "Above and Beyond" (2013). In this performance, individual audience members participate as a generic staff member in a fully functioning five star hotel in London. I consider three modes of performing labour in "Above and Beyond":…
NASA Astrophysics Data System (ADS)
Lanzano, Alexander
2016-10-01
Given recent discoveries there is a very real potential for tidally-locked Earth-like planets to exist orbiting M stars. To determine whether these planets may be habitable it is necessary to understand the nature of their atmospheres. In our investigation we simulate the evolution of present-day Earth while placed in tidally-locked orbit (meaning the same side of the planet always faces the star) around an M dwarf star. We are particularly interested in the evolution of the planet's ozone layer and whether it will shield the planet, and therefore life, from harmful radiation.To accomplish the above objectives we use a state-of-the-art 3-D terrestrial model, the Whole Atmosphere Community Climate Model (WACCM), which fully couples chemistry and climate, and therefore allows self-consistent simulations of atmospheric constituents and their effects on a planet's climate, surface radiation and thus habitability. Preliminary results show that this model is stable and that a tidally-locked Earth is protected from harmful UV radiation produced by G stars. The next step shall be to adapt this model for an M star by including its UV and visible spectrum.This investigation will both provide an insight into the potential for habitable exoplanets and further define the nature of the habitable zones for M class stars. We will also be able to narrow the definition of the habitable zones around distant stars, which will help us identify these planets in the future. Furthermore, this project will allow for a more thorough analysis of data from past and future exoplanet observing missions by defining the atmospheric composition of Earth-like planets around a variety of types of stars.
Determining the Nature of [CII] 158 Micron Emission: an Improved Star Formation Rate Indicator
NASA Astrophysics Data System (ADS)
Sutter, Jessica; Dale, Daniel A.; KINGFISH Team
2018-06-01
The brightest observed emission line from most normal star-forming galaxies is the 158 micron line arising from singly-ionized carbon (also known as C+ or CII). In fact, astronomers have recently begun using the bright emission line to detect and characterize galaxies in the furthermost reaches of the universe. It is thus imperative that we have the tools to fully understand how this emission line could be utilized as an indicator of star formation rate, a primary parameter by which galaxies and their constituent star-forming regions are characterized. There are two main challenges to utilizing the [CII] 158 micron line as a star formation rate indicator. First, advances in long-wavelength astronomical instrumentation have only recently enabled its detection in statistically-significant samples of galaxies. Second, it is both a blessing and a curse that singly-ionized carbon can be created in both star-forming regions (ionized HII regions) and in non-star forming regions (neutral photo-dissociation regions). In order to better understand and quantify the [CII] emission as an indicator of star-formation rate, the relationship between the [NII] 205 micron emission, which can only arise from the ionized interstellar medium (ISM), and the [CII] 158 micron emission has been employed to determine the fraction of [CII] emission that originates from each phase of the ISM. Sub-kiloparsec measurements of the [NII] 205 micron line in nearby galaxies have recently become available as part of the KINGFISH program. We use these two far-infrared lines along with the full suite of KINGFISH panchromatic data to present an improved calibration of the [CII] emission line as a star formation rate indicator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guinan, Edward F.; Engle, Scott G.; Durbin, Allyn, E-mail: scott.engle@villanova.edu
As part of Villanova’s Living with a Red Dwarf program, we have obtained UV, X-ray, and optical data of the Population II red dwarf—Kapteyn’s Star. Kapteyn’s Star is noteworthy for its large proper motions and high radial velocity of ∼+245 km s{sup −1}. As the nearest Pop II red dwarf, it serves as an old age anchor for calibrating activity/irradiance–rotation–age relations, and an important test bed for stellar dynamos and the resulting X-ray–UV emissions of slowly rotating, near-fully convective red dwarf stars. Adding to the notoriety, Kapteyn’s Star has recently been reported to host two super-Earth candidates, one of whichmore » (Kapteyn b) is orbiting within the habitable zone. However, Robertson et al. questioned the planet’s existence since its orbital period may be an artifact of activity, related to the star’s rotation period. Because of its large Doppler-shift, measures of the important, chromospheric H i Lyα 1215.67 Å emission line can be reliably made, because it is mostly displaced from ISM and geo-coronal sources. Lyα emission dominates the FUV region of cool stars. Our measures can help determine the X-ray–UV effects on planets hosted by Kapteyn’s Star, and planets hosted by other old red dwarfs. Stellar X-ray and Lyα emissions have strong influences on the heating and ionization of upper planetary atmospheres and can (with stellar winds and flares) erode or even eliminate planetary atmospheres. Using our program stars, we have reconstructed the past exposures of Kapteyn’s Star's planets to coronal—chromospheric XUV emissions over time.« less
The Gaia-ESO Survey: A globular cluster escapee in the Galactic halo
NASA Astrophysics Data System (ADS)
Lind, K.; Koposov, S. E.; Battistini, C.; Marino, A. F.; Ruchti, G.; Serenelli, A.; Worley, C. C.; Alves-Brito, A.; Asplund, M.; Barklem, P. S.; Bensby, T.; Bergemann, M.; Blanco-Cuaresma, S.; Bragaglia, A.; Edvardsson, B.; Feltzing, S.; Gruyters, P.; Heiter, U.; Jofre, P.; Korn, A. J.; Nordlander, T.; Ryde, N.; Soubiran, C.; Gilmore, G.; Randich, S.; Ferguson, A. M. N.; Jeffries, R. D.; Vallenari, A.; Allende Prieto, C.; Pancino, E.; Recio-Blanco, A.; Romano, D.; Smiljanic, R.; Bellazzini, M.; Damiani, F.; Hill, V.; de Laverny, P.; Jackson, R. J.; Lardo, C.; Zaggia, S.
2015-03-01
A small fraction of the halo field is made up of stars that share the light element (Z ≤ 13) anomalies characteristic of second generation globular cluster (GC) stars. The ejected stars shed light on the formation of the Galactic halo by tracing the dynamical history of the clusters, which are believed to have once been more massive. Some of these ejected stars are expected to show strong Al enhancement at the expense of shortage of Mg, but until now no such star has been found. We search for outliers in the Mg and Al abundances of the few hundreds of halo field stars observed in the first eighteen months of the Gaia-ESO public spectroscopic survey. One halo star at the base of the red giant branch, here referred to as 22593757-4648029 is found to have [ Mg/Fe ] = -0.36 ± 0.04 and [ Al/Fe ] = 0.99 ± 0.08, which is compatible with the most extreme ratios detected in GCs so far. We compare the orbit of 22593757-4648029 to GCs of similar metallicity andfind it unlikely that this star has been tidally stripped with low ejection velocity from any of the clusters. However, both chemical and kinematic arguments render it plausible that the star has been ejected at high velocity from the anomalous GC ω Centauri within the last few billion years. We cannot rule out other progenitor GCs, because some may have disrupted fully, and the abundance and orbital data are inadequate for many of those that are still intact. Based on data acquired by the Gaia-ESO Survey, programme ID 188.B-3002. Observations were made with ESO Telescopes at the La Silla Paranal Observatory.Appendix A is available in electronic form at http://www.aanda.org
Silva, Marlene N; Vieira, Paulo N; Coutinho, Sílvia R; Minderico, Cláudia S; Matos, Margarida G; Sardinha, Luís B; Teixeira, Pedro J
2010-04-01
Behavior change interventions are effective to the extent that they affect appropriately-measured outcomes, especially in experimental controlled trials. The primary goal of this study was to analyze the impact of a 1-year weight management intervention based on self-determination theory (SDT) on theory-based psychosocial mediators, physical activity/exercise, and body weight and composition. Participants were 239 women (37.6 +/- 7.1 years; 31.5 +/- 4.1 kg/m(2)) who received either an intervention focused on promoting autonomous forms of exercise regulation and intrinsic motivation, or a general health education program (controls). At 12 months, the intervention group showed increased weight loss (-7.29%,) and higher levels of physical activity/exercise (+138 +/- 26 min/day of moderate plus vigorous exercise; +2,049 +/- 571 steps/day), compared to controls (P < 0.001). Main intervention targets such as more autonomous self-regulation (for treatment and for exercise) and a more autonomous perceived treatment climate revealed large effect sizes (between 0.80 and .96), favoring intervention (P < 0.001). Results suggest that interventions grounded in SDT can be successfully implemented in the context of weight management, enhancing the internalization of more autonomous forms of behavioral regulation, and facilitating exercise adherence, while producing clinically-significant weight reduction, when compared to a control condition. Findings are fully consistent with previous studies conducted within this theoretical framework in other areas of health behavior change.
Precise stellar surface gravities from the time scales of convectively driven brightness variations
Kallinger, Thomas; Hekker, Saskia; García, Rafael A.; Huber, Daniel; Matthews, Jaymie M.
2016-01-01
A significant part of the intrinsic brightness variations in cool stars of low and intermediate mass arises from surface convection (seen as granulation) and acoustic oscillations (p-mode pulsations). The characteristics of these phenomena are largely determined by the stars’ surface gravity (g). Detailed photometric measurements of either signal can yield an accurate value of g. However, even with ultraprecise photometry from NASA’s Kepler mission, many stars are too faint for current methods or only moderate accuracy can be achieved in a limited range of stellar evolutionary stages. This means that many of the stars in the Kepler sample, including exoplanet hosts, are not sufficiently characterized to fully describe the sample and exoplanet properties. We present a novel way to measure surface gravities with accuracies of about 4%. Our technique exploits the tight relation between g and the characteristic time scale of the combined granulation and p-mode oscillation signal. It is applicable to all stars with a convective envelope, including active stars. It can measure g in stars for which no other analysis is now possible. Because it depends on the time scale (and no other properties) of the signal, our technique is largely independent of the type of measurement (for example, photometry or radial velocity measurements) and the calibration of the instrumentation used. However, the oscillation signal must be temporally resolved; thus, it cannot be applied to dwarf stars observed by Kepler in its long-cadence mode. PMID:26767193
Atomic diffusion in metal-poor stars. II. Predictions for the Spite plateau
NASA Astrophysics Data System (ADS)
Salaris, M.; Weiss, A.
2001-09-01
We have computed a grid of up-to-date stellar evolutionary models including atomic diffusion, in order to study the evolution with time of the surface Li abundance in low-mass metal-poor stars. We discuss in detail the dependence of the surface Li evolution on the initial metallicity and stellar mass, and compare the abundances obtained from our models with the available Li measurements in Pop II stars. While it is widely accepted that the existence of the Spite Li-plateau for these stars is a strong evidence that diffusion is inhibited, we show that, when taking into account observational errors, uncertainties in the Li abundance determinations, in the T_eff scale, and in particular the size of the observed samples of stars, the Spite plateau and the Li abundances in subgiant branch stars can be reproduced also by models including fully efficient diffusion, provided that the most metal-poor field halo objects are between 13.5 and 14 Gyr old. We provide the value of the minimum number of plateau stars to observe, for discriminating between efficient or inhibited diffusion. {From} our models with diffusion we derive that the average Li abundance along the Spite plateau is about a factor of 2 lower than the primordial one. As a consequence, the derived primordial Li abundance would be consistent with a high helium and low deuterium Big Bang Nucleosynthesis; this implies a high cosmological baryon density as inferred from the analyses of the cosmic microwave background.
Checkpoints couple transcription network oscillator dynamics to cell-cycle progression.
Bristow, Sara L; Leman, Adam R; Simmons Kovacs, Laura A; Deckard, Anastasia; Harer, John; Haase, Steven B
2014-09-05
The coupling of cyclin dependent kinases (CDKs) to an intrinsically oscillating network of transcription factors has been proposed to control progression through the cell cycle in budding yeast, Saccharomyces cerevisiae. The transcription network regulates the temporal expression of many genes, including cyclins, and drives cell-cycle progression, in part, by generating successive waves of distinct CDK activities that trigger the ordered program of cell-cycle events. Network oscillations continue autonomously in mutant cells arrested by depletion of CDK activities, suggesting the oscillator can be uncoupled from cell-cycle progression. It is not clear what mechanisms, if any, ensure that the network oscillator is restrained when progression in normal cells is delayed or arrested. A recent proposal suggests CDK acts as a master regulator of cell-cycle processes that have the potential for autonomous oscillatory behavior. Here we find that mitotic CDK is not sufficient for fully inhibiting transcript oscillations in arrested cells. We do find that activation of the DNA replication and spindle assembly checkpoints can fully arrest the network oscillator via overlapping but distinct mechanisms. Further, we demonstrate that the DNA replication checkpoint effector protein, Rad53, acts to arrest a portion of transcript oscillations in addition to its role in halting cell-cycle progression. Our findings indicate that checkpoint mechanisms, likely via phosphorylation of network transcription factors, maintain coupling of the network oscillator to progression during cell-cycle arrest.
Networks for Autonomous Formation Flying Satellite Systems
NASA Technical Reports Server (NTRS)
Knoblock, Eric J.; Konangi, Vijay K.; Wallett, Thomas M.; Bhasin, Kul B.
2001-01-01
The performance of three communications networks to support autonomous multi-spacecraft formation flying systems is presented. All systems are comprised of a ten-satellite formation arranged in a star topology, with one of the satellites designated as the central or "mother ship." All data is routed through the mother ship to the terrestrial network. The first system uses a TCP/lP over ATM protocol architecture within the formation the second system uses the IEEE 802.11 protocol architecture within the formation and the last system uses both of the previous architectures with a constellation of geosynchronous satellites serving as an intermediate point-of-contact between the formation and the terrestrial network. The simulations consist of file transfers using either the File Transfer Protocol (FTP) or the Simple Automatic File Exchange (SAFE) Protocol. The results compare the IF queuing delay, and IP processing delay at the mother ship as well as application-level round-trip time for both systems, In all cases, using IEEE 802.11 within the formation yields less delay. Also, the throughput exhibited by SAFE is better than FTP.
Affordable Digital Planetariums with WorldWide Telescope
NASA Astrophysics Data System (ADS)
Rosenfield, P.; Connolly, A.; Fay, J.; Sayres, C.; Tofflemire, B.
2011-09-01
Digital planetariums can provide a broader range of educational experiences than the more classical planetariums that use star-balls. This is because of their ability to project images, content from current research, and the 3-D distribution of the stars and galaxies. While there are hundreds of planetariums in the country, the reason that few of these are fully digital is the cost. In collaboration with Microsoft Research (MSR), we have developed a way to digitize existing planetariums for approximately $40,000 using freely available software. We describe here how off the shelf equipment, together with a WorldWide Telescope client, can provide a rich and truly interactive experience. This will enable students and the public to pan though multi-wavelength full-sky scientific data sets, explore 3-D visualizations of our Solar System (including trajectories of millions of minor planets), near-by stars, and the SDSS galaxy catalog.
ClassLess: A Comprehensive Database of Young Stellar Objects
NASA Astrophysics Data System (ADS)
Hillenbrand, Lynne; Baliber, Nairn
2015-01-01
We have designed and constructed a database housing published measurements of Young Stellar Objects (YSOs) within ~1 kpc of the Sun. ClassLess, so called because it includes YSOs in all stages of evolution, is a relational database in which user interaction is conducted via HTML web browsers, queries are performed in scientific language, and all data are linked to the sources of publication. Each star is associated with a cluster (or clusters), and both spatially resolved and unresolved measurements are stored, allowing proper use of data from multiple star systems. With this fully searchable tool, myriad ground- and space-based instruments and surveys across wavelength regimes can be exploited. In addition to primary measurements, the database self consistently calculates and serves higher level data products such as extinction, luminosity, and mass. As a result, searches for young stars with specific physical characteristics can be completed with just a few mouse clicks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Leo C.; Yagi, Kent; Yunes, Nicolás, E-mail: leostein@astro.cornell.edu
The gravitational field outside of astrophysical black holes is completely described by their mass and spin frequency, as expressed by the no-hair theorems. These theorems assume vacuum spacetimes, and thus they apply only to black holes and not to stars. Despite this, we analytically find that the gravitational potential of arbitrarily rapid, rigidly rotating stars can still be described completely by only their mass, spin angular momentum, and quadrupole moment. Although these results are obtained in the nonrelativistic limit (to leading order in a weak-field expansion of general relativity, GR), they are also consistent with fully relativistic numerical calculations ofmore » rotating neutron stars. This description of the gravitational potential outside the source in terms of just three quantities is approximately universal (independent of equation of state). Such universality may be used to break degeneracies in pulsar and future gravitational wave observations to extract more physics and test GR in the strong-field regime.« less
Blue straggler stars: lessons from open clusters.
NASA Astrophysics Data System (ADS)
Geller, Aaron M.
Open clusters enable a deep dive into blue straggler characteristics. Recent work shows that the binary properties (frequency, orbital elements and companion masses and evolutionary states) of the blue stragglers are the most important diagnostic for determining their origins. To date the multi-epoch radial-velocity observations necessary for characterizing these blue straggler binaries have only been carried out in open clusters. In this paper, I highlight recent results in the open clusters NGC 188, NGC 2682 (M67) and NGC 6819. The characteristics of many of the blue stragglers in these open clusters point directly to origins through mass transfer from an evolved donor star. Additionally, a handful of blue stragglers show clear signatures of past dynamical encounters. These comprehensive, diverse and detailed observations also reveal important challenges for blue straggler formation models (and particularly the mass-transfer channel), which we must overcome to fully understand the origins of blue straggler stars and other mass-transfer products.
IUE data reduction: Wavelength determinations and line identifications using a VAX/750 computer
NASA Technical Reports Server (NTRS)
Davidson, J. P.; Bord, D. J.
1982-01-01
A fully automated, interactive system for determining the wavelengths of features in extracted IUE spectra is described. Wavelengths are recorded from video displays of expanded plots of individual orders using a movable cursor, and then corrected for IUE wavelength scale errors. The estimated accuracy of an individual wavelength in the final tabulation is 0.050 A. Such lists are ideally suited for line identification work using the method of wavelength coincidence statistics (WCS). The results of WCS studies of the ultraviolet spectra of the chemically peculiar (CP) stars iota Coronae Borealis and kappa Camcri. Aside from confirming a number of previously reported aspects of the abundance patterns in these stars, the searches produced some interesting, new discoveries, notably the presence of Hf in the spectrum of kappa Camcri. The implications of this work for theories designed to account for anomalous abundances in chemically peculiar stars are discussed.
IUE data reduction: Wavelength determinations and line identifications using a VAX/750 computer
NASA Astrophysics Data System (ADS)
Davidson, J. P.; Bord, D. J.
A fully automated, interactive system for determining the wavelengths of features in extracted IUE spectra is described. Wavelengths are recorded from video displays of expanded plots of individual orders using a movable cursor, and then corrected for IUE wavelength scale errors. The estimated accuracy of an individual wavelength in the final tabulation is 0.050 A. Such lists are ideally suited for line identification work using the method of wavelength coincidence statistics (WCS). The results of WCS studies of the ultraviolet spectra of the chemically peculiar (CP) stars iota Coronae Borealis and kappa Camcri. Aside from confirming a number of previously reported aspects of the abundance patterns in these stars, the searches produced some interesting, new discoveries, notably the presence of Hf in the spectrum of kappa Camcri. The implications of this work for theories designed to account for anomalous abundances in chemically peculiar stars are discussed.
Simulations of inspiraling and merging double neutron stars using the Spectral Einstein Code
NASA Astrophysics Data System (ADS)
Haas, Roland; Ott, Christian D.; Szilagyi, Bela; Kaplan, Jeffrey D.; Lippuner, Jonas; Scheel, Mark A.; Barkett, Kevin; Muhlberger, Curran D.; Dietrich, Tim; Duez, Matthew D.; Foucart, Francois; Pfeiffer, Harald P.; Kidder, Lawrence E.; Teukolsky, Saul A.
2016-06-01
We present results on the inspiral, merger, and postmerger evolution of a neutron star-neutron star (NSNS) system. Our results are obtained using the hybrid pseudospectral-finite volume Spectral Einstein Code (SpEC). To test our numerical methods, we evolve an equal-mass system for ≈22 orbits before merger. This waveform is the longest waveform obtained from fully general-relativistic simulations for NSNSs to date. Such long (and accurate) numerical waveforms are required to further improve semianalytical models used in gravitational wave data analysis, for example, the effective one body models. We discuss in detail the improvements to SpEC's ability to simulate NSNS mergers, in particular mesh refined grids to better resolve the merger and postmerger phases. We provide a set of consistency checks and compare our results to NSNS merger simulations with the independent bam code. We find agreement between them, which increases confidence in results obtained with either code. This work paves the way for future studies using long waveforms and more complex microphysical descriptions of neutron star matter in SpEC.
Community Exoplanet Follow-up Program
NASA Technical Reports Server (NTRS)
Howell, Steve
2017-01-01
During the Kepler mission, our team provided the community with the highest resolution images available anywhere of exoplanet host stars. Using speckle interferometry on the 3.5-m WIYN, and 8-m Gemini telescopes, thousands of observations have been obtained reaching the diffraction limit of the telescope. From these public data available at the NASA Exoplanet Archive, numerous publications have resulted and many scientific results have been obtained for exoplanets including the fact that high-resolution imaging is critical to fully characterize the planet host stars and the planets themselves (e.g., planet radius and incident flux). Exoplanet host star observations have also occurred (and continue) for K2 mission candidates with archival data available as well. Observational programs for TESS candidates, WFIRST program stars, and Zodiacal light candidates are currently on-going. Availability to propose or obtain such observations are possible through 1) collaboration with our team, 2) successfully proposing to WIYN or GEMINI for telescope time, or 3) using publically available archival data. This poster will highlight the observational program, how time is allocated and how our queue observational program works, and new features and observational modes that are available now.
NASA Astrophysics Data System (ADS)
Lehmann, I.; Scholz, R.-D.
1997-04-01
We present new tidal radii for seven Galactic globular clusters using the method of automated star counts on Schmidt plates of the Tautenburg, Palomar and UK telescopes. The plates were fully scanned with the APM system in Cambridge (UK). Special account was given to a reliable background subtraction and the correction of crowding effects in the central cluster region. For the latter we used a new kind of crowding correction based on a statistical approach to the distribution of stellar images and the luminosity function of the cluster stars in the uncrowded area. The star counts were correlated with surface brightness profiles of different authors to obtain complete projected density profiles of the globular clusters. Fitting an empirical density law (King 1962) we derived the following structural parameters: tidal radius r_t_, core radius r_c_ and concentration parameter c. In the cases of NGC 5466, M 5, M 12, M 13 and M 15 we found an indication for a tidal tail around these objects (cf. Grillmair et al. 1995).
ClassLess: A Comprehensive Database of Young Stellar Objects
NASA Astrophysics Data System (ADS)
Hillenbrand, Lynne A.; baliber, nairn
2015-08-01
We have designed and constructed a database intended to house catalog and literature-published measurements of Young Stellar Objects (YSOs) within ~1 kpc of the Sun. ClassLess, so called because it includes YSOs in all stages of evolution, is a relational database in which user interaction is conducted via HTML web browsers, queries are performed in scientific language, and all data are linked to the sources of publication. Each star is associated with a cluster (or clusters), and both spatially resolved and unresolved measurements are stored, allowing proper use of data from multiple star systems. With this fully searchable tool, myriad ground- and space-based instruments and surveys across wavelength regimes can be exploited. In addition to primary measurements, the database self consistently calculates and serves higher level data products such as extinction, luminosity, and mass. As a result, searches for young stars with specific physical characteristics can be completed with just a few mouse clicks. We are in the database population phase now, and are eager to engage with interested experts worldwide on local galactic star formation and young stellar populations.
THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Jeremy J.; Harris, William E.; Sills, Alison
2013-02-20
We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at perigalacticon. The traditional assumption for globular clusters is that since the internal relaxation time is larger than its orbital period, the cluster is tidally stripped at perigalacticon. Instead, our simulations show that a cluster with an eccentric orbit does not need to fully relax in order to expand. After a perigalactic pass, a clustermore » recaptures previously unbound stars, and the tidal shock at perigalacticon has the effect of energizing inner region stars to larger orbits. Therefore, instead of the limiting radius being imposed at perigalacticon, it more nearly traces the instantaneous tidal radius of the cluster at any point in the orbit. We present a numerical correction factor to theoretical tidal radii calculated at perigalacticon which takes into consideration both the orbital eccentricity and current orbital phase of the cluster.« less
Numerical Modelling of Tertiary Tides
NASA Astrophysics Data System (ADS)
Gao, Yan; Correia, Alexandre C. M.; Eggleton, Peter P.; Han, Zhanwen
2018-06-01
Stellar systems consisting of multiple stars tend to undergo tidal interactions when the separations between the stars are short. While tidal phenomena have been extensively studied, a certain tidal effect exclusive to hierarchical triples (triples in which one component star has a much wider orbit than the others) has hardly received any attention, mainly due to its complexity and consequent resistance to being modelled. This tidal effect is the tidal perturbation of the tertiary by the inner binary, which in turn depletes orbital energy from the inner binary, causing the inner binary separation to shrink. In this paper, we develop a fully numerical simulation of these "tertiary tides" by modifying established tidal models. We also provide general insight as to how close a hierarchical triple needs to be in order for such an effect to take place, and demonstrate that our simulations can effectively retrieve the orbital evolution for such systems. We conclude that tertiary tides are a significant factor in the evolution of close hierarchical triples, and strongly influence at least ˜1% of all multiple star systems.
Mass Accretion Processes in Young Stellar Objects: Role of Intense Flaring Activity
NASA Astrophysics Data System (ADS)
Orlando, Salvatore; Reale, Fabio; Peres, Giovanni; Mignone, Andrea
2014-11-01
According to the magnetospheric accretion scenario, young low-mass stars are surrounded by circumstellar disks which they interact with through accretion of mass. The accretion builds up the star to its final mass and is also believed to power the mass outflows, which may in turn have a signicant role in removing the excess angular momentum from the star-disk system. Although the process of mass accretion is a critical aspect of star formation, some of its mechanisms are still to be fully understood. On the other hand, strong flaring activity is a common feature of young stellar objects (YSOs). In the Sun, such events give rise to perturbations of the interplanetary medium. Similar but more energetic phenomena occur in YSOs and may influence the circumstellar environment. In fact, a recent study has shown that an intense flaring activity close to the disk may strongly perturb the stability of circumstellar disks, thus inducing mass accretion episodes (Orlando et al. 2011). Here we review the main results obtained in the field and the future perspectives.
Dynamical Tidal Response of a Rotating Neutron Star
NASA Astrophysics Data System (ADS)
Landry, Philippe; Poisson, Eric
2017-01-01
The gravitational wave phase of a neutron star (NS) binary is sensitive to the deformation of the NS that results from its companion's tidal influence. In a perturbative treatment, the tidal deformation can be characterized by a set of dimensionless constants, called Love numbers, which depend on the NS equation of state. For static NSs, one type of Love number encodes the response to gravitoelectric tidal fields (associated with mass multipole moments), while another does likewise for gravitomagnetic fields (associated with mass currents). A NS subject to a gravitomagnetic tidal field develops internal fluid motions through gravitomagnetic induction; the fluid motions are irrotational, provided the star is non-rotating. When the NS is allowed to rotate, the situation is complicated by couplings between the tidal field and the star's spin. The problem becomes tractable in the slow-rotation limit. In this case, the fluid motions induced by an external gravitomagnetic field are fully dynamical, even if the tidal field is stationary: interior metric and fluid variables are time-dependent, and vary on the timescale of the rotation period. Remarkably, the exterior geometry of the NS remains time-independent.
Galactic scale gas flows in colliding galaxies: 3-dimensional, N-body/hydrodynamics experiments
NASA Technical Reports Server (NTRS)
Lamb, Susan A.; Gerber, Richard A.; Balsara, Dinshaw S.
1994-01-01
We present some results from three dimensional computer simulations of collisions between models of equal mass galaxies, one of which is a rotating, disk galaxy containing both gas and stars and the other is an elliptical containing stars only. We use fully self consistent models in which the halo mass is 2.5 times that of the disk. In the experiments we have varied the impact parameter between zero (head on) and 0.9R (where R is the radius of the disk), for impacts perpendicular to the disk plane. The calculations were performed on a Cray 2 computer using a combined N-body/smooth particle hydrodynamics (SPH) program. The results show the development of complicated flows and shock structures in the direction perpendicular to the plane of the disk and the propagation outwards of a density wave in both the stars and the gas. The collisional nature of the gas results in a sharper ring than obtained for the star particles, and the development of high volume densities and shocks.
SEEING THROUGH THE RING: NEAR-INFRARED PHOTOMETRY OF V582 MON (KH 15D)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arulanantham, Nicole A.; Herbst, William; Cody, Ann Marie
2016-04-15
We examine the light and color evolution of the T Tauri binary KH 15D through photometry obtained at wavelengths between 0.55 and 8.0 μm. The data were collected with A Novel Dual Imaging CAMera (ANDICAM) on the 1.3 m SMARTS telescope at Cerro-Tololo Inter-American Observatory and with InfraRed Array Camera on the Spitzer Space Telescope. We show that the system’s circumbinary ring, which acts as a screen that covers and uncovers different portions of the binary orbit as the ring precesses, has reached an orientation where the brighter component (star B) fully or nearly fully emerges during each orbital cycle.more » The fainter component (star A) remains fully occulted by the screen at all phases. The leading and trailing edges of the screen move across the sky at the same rate of ∼15 m s{sup −1}, consistent with expectation for a ring with a radius and width of ∼4 au and a precession period of ∼6500 years. Light and color variations continue to indicate that the screen is sharp edged and opaque at VRIJH wavelengths. However, we find an increasing transparency of the ring edge at 2.2, 3.6, and 4.5 μm. Reddening seen at the beginning of the eclipse that occurred during the CSI 2264 campaign particularly suggests selective extinction by a population of large dust grains. Meanwhile, the gradual bluing observed while star B is setting is indicative of forward scattering effects at the edge of the ring. The spectral energy distribution of the system at its bright phase shows no evidence of infrared excess emission that can be attributed to radiation from the ring or other dust component out to 8 μm.« less
The evolution of the lithium abundances of solar-type stars. II - The Ursa Major Group
NASA Technical Reports Server (NTRS)
Soderblom, David R.; Pilachowski, Catherine A.; Fedele, Stephen B.; Jones, Burton F.
1993-01-01
We draw upon a recent study of the membership of the Ursa Major Group (UMaG) to examine lithium among 0.3 Gyr old solar-type stars. For most G and K dwarfs, Li confirms the conclusions about membership in UMaG reached on the basis of kinematics and chromospheric activity. G and K dwarfs in UMaG have less Li than comparable stars in the Pleiades. This indicates that G and K dwarfs undergo Li depletion while they are on the main sequence, in addition to any pre-main-sequence depletion they may have experienced. Moreover, the Li abundances of the Pleiades K dwarfs cannot be attributed to main-sequence depletion alone, demonstrating that pre-main-sequence depletion of Li also takes place. The sun's Li abundance implies that the main-sequence mechanism becomes less effective with age. The hottest stars in UMaG have Li abundances like those of hot stars in the Pleiades and Hyades and in T Tauris, and the two genuine UMaG members with temperatures near Boesgaard's Li chasm have Li abundances consistent with that chasm developing fully by 0.3 Gyr for stars with UMaG's metallicity. We see differences in the abundance of Li between UMaG members of the same spectral types, indicating that a real spread in the lithium abundance exists within this group.
NASA Astrophysics Data System (ADS)
Williams, Michael D.; Milone, E. F.
2013-12-01
We describe a variable star search program and present the fully reduced results of a search in a 19 square degree (4.4 × 4.4) field centered on J2000 RA = 22:03:24, DEC= +18:54:32. The search was carried out with the Baker-Nunn Patrol Camera located at the Rothney Astrophysical Observatory in the foothills of the Canadian Rockies. A total of 26,271 stars were detected in the field, over a range of about 11-15 (instrumental) magnitudes. Our image processing made use of the IRAF version of the DAOPHOT aperture photometry routine and we used the ANOVA method to search for periodic variations in the light curves. We formally detected periodic variability in 35 stars, that we tentatively classify according to light curve characteristics: 6 EA (Algol), 5 EB (?? Lyrae), 19 EW (W UMa), and 5 RR (RR Lyrae) stars. Eleven of the detected variable stars have been reported previously in the literature. The eclipsing binary light curves have been analyzed with a package of light curve modeling programs and 25 have yielded converged solutions. Ten of these are of systems that are detached, 3 semi-detached, 10 overcontact, and 2 are of systems that appear to be in marginal contact. We discuss these results as well as the advantages and disadvantages of the instrument and of the program.
NASA Astrophysics Data System (ADS)
Borges, B. W.; Baptista, R.
2005-09-01
Cataclymic variables (CVs) are semi-detached binary systems in which a main sequence late-type star (the secondary) fills its Roche lobe and transfers matter to a white dwarf (the primary) through the inner Lagragian point L1. Evolutive models of CVs predicts that the orbital periods Porb of these systems would decrease on time scales of 108 - 109 years due to angular momentum losses either by magnetic braking via the secondary star's wind (Porb > 3 hr) or by emission of gravitational radiation (Porb > 3 hr). These models try to explain the observed gap of systems with Porb in the range of ~ 2 to 3 hr as the consequence of a sharp reduction of magnetic field open lines when the secondary star become fully convective (at Porb ~ 3 hr). However, up to now no well-studied CVs show evidence of period decrease. Instead, most well-observed eclipsing CVs show cyclical period changes probably associated to solar-type (quasi-periodic and/or multiperiodic) magnetic activity cycles in the secondary star. The fast spinning secondaries of CVs, covering a range of masses and rotation periods, are an important laboratory to understand magnetic activities cycles in late type stars. In the present work, we report the investigation of cyclical period changes in IP Peg: CV with orbital periods of 3.8 hr.
The distribution of star formation and metals in the low surface brightness galaxy UGC 628
NASA Astrophysics Data System (ADS)
Young, J. E.; Kuzio de Naray, Rachel; Wang, Sharon X.
2015-09-01
We introduce the MUSCEL Programme (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with more metal-rich regions near the edges of the galactic disc. Based on the emission-line diagnostics alone, the current mode of star formation, slow and concentrated in the outer disc, appears to have dominated for quite some time, although there are clear signs of a much older stellar population formed in a more standard inside-out fashion.
Resistive tearing instability in electron MHD: application to neutron star crusts
NASA Astrophysics Data System (ADS)
Gourgouliatos, Konstantinos N.; Hollerbach, Rainer
2016-12-01
We study a resistive tearing instability developing in a system evolving through the combined effect of Hall drift in the electron magnetohydrodynamic limit and Ohmic dissipation. We explore first the exponential growth of the instability in the linear case and we find the fastest growing mode, the corresponding eigenvalues and dispersion relation. The instability growth rate scales as γ ∝ B2/3σ-1/3, where B is the magnetic field and σ the electrical conductivity. We confirm the development of the tearing resistive instability in the fully non-linear case, in a plane-parallel configuration where the magnetic field polarity reverses, through simulations of systems initiating in Hall equilibrium with some superimposed perturbation. Following a transient phase, during which there is some minor rearrangement of the magnetic field, the perturbation grows exponentially. Once the instability is fully developed, the magnetic field forms the characteristic islands and X-type reconnection points, where Ohmic decay is enhanced. We discuss the implications of this instability for the local magnetic field evolution in neutron stars' crusts, proposing that it can contribute to heating near the surface of the star, as suggested by models of magnetar post-burst cooling. In particular, we find that a current sheet a few metres thick, covering as little as 1 per cent of the total surface, can provide 1042 erg in thermal energy within a few days. We briefly discuss applications of this instability in other systems where the Hall effect operates such as protoplanetary discs and space plasmas.
NASA Technical Reports Server (NTRS)
Marius, Julio L.; Busch, Jim
2008-01-01
The Tropical Rainfall Measuring Mission (TRMM) spacecraft was launched in November of 1996 in order to obtain unique three dimensional radar cross sectional observations of cloud structures with particular interest in hurricanes. The TRMM mission life was recently extended with current estimates that operations will continue through the 2012-2013 timeframe. Faced with this extended mission profile, the project has embarked on a technology refresh and re-engineering effort. TRMM has recently implemented a re-engineering effort to expand a middleware based messaging architecture to enable fully redundant lights-out of flight operations activities. The middleware approach is based on the Goddard Mission Services Evolution Center (GMSEC) architecture, tools and associated open-source Applications Programming Interface (API). Middleware based messaging systems are useful in spacecraft operations and automation systems because private node based knowledge (such as that within a telemetry and command system) can be broadcast on the middleware messaging bus and hence enable collaborative decisions to be made by multiple subsystems. In this fashion, private data is made public and distributed within the local area network and multiple nodes can remain synchronized with other nodes. This concept is useful in a fully redundant architecture whereby one node is monitoring the processing of the 'prime' node so that in the event of a failure the backup node can assume operations of the prime, without loss of state knowledge. This paper will review and present the experiences, architecture, approach and lessons learned of the TRMM re-engineering effort centered on the GMSEC middleware architecture and tool suite. Relevant information will be presented that relates to the dual redundant parallel nature of the Telemetry and Command (T and C) and Front-End systems and how these systems can interact over a middleware bus to achieve autonomous operations including autonomous commanding to recover missing science data during the same spacecraft contact.
Orion Optical Navigation Progress Toward Exploration: Mission 1
NASA Technical Reports Server (NTRS)
Holt, Greg N.; D'Souza, Christopher N.; Saley, David
2018-01-01
Optical navigation of human spacecraft was proposed on Gemini and implemented successfully on Apollo as a means of autonomously operating the vehicle in the event of lost communication with controllers on Earth. It shares a history with the "method of lunar distances" that was used in the 18th century and gained some notoriety after its use by Captain James Cook during his 1768 Pacific voyage of the HMS Endeavor. The Orion emergency return system utilizing optical navigation has matured in design over the last several years, and is currently undergoing the final implementation and test phase in preparation for Exploration Mission 1 (EM-1) in 2019. The software development is being worked as a Government Furnished Equipment (GFE) project delivered as an application within the Core Flight Software of the Orion camera controller module. The mathematical formulation behind the initial ellipse fit in the image processing is detailed in Christian. The non-linear least squares refinement then follows the technique of Mortari as an estimation process of the planetary limb using the sigmoid function. The Orion optical navigation system uses a body fixed camera, a decision that was driven by mass and mechanism constraints. The general concept of operations involves a 2-hour pass once every 24 hours, with passes specifically placed before all maneuvers to supply accurate navigation information to guidance and targeting. The pass lengths are limited by thermal constraints on the vehicle since the OpNav attitude generally deviates from the thermally stable tail-to-sun attitude maintained during the rest of the orbit coast phase. Calibration is scheduled prior to every pass due to the unknown nature of thermal effects on the lens distortion and the mounting platform deformations between the camera and star trackers. The calibration technique is described in detail by Christian, et al. and simultaneously estimates the Brown-Conrady coefficients and the Star Tracker/Camera interlock angles. Accurate attitude information is provided by the star trackers during each pass. Figure 1 shows the various phases of lunar return navigation when the vehicle is in autonomous operation with lost ground communication. The midcourse maneuvers are placed to control the entry interface conditions to the desired corridor for safe landing. The general form of optical navigation on Orion is where still images of the Moon or Earth are processed to find the apparent angular diameter and centroid in the camera focal plane. This raw data is transformed into range and bearing angle measurements using planetary data and precise star tracker inertial attitude. The measurements are then sent to the main flight computer's Kalman filter to update the onboard state vector. The images are, of course, collected over an arc to converge the state and estimate velocity. The same basic technique was used by Apollo to satisfy loss-of-comm, but Apollo used manual crew sightings with a vehicle-integral sextant instead of autonomously processing optical imagery. The software development is past its Critical Design Review, and is progressing through test and certification for human rating. In support of this, a hardware-in-the-loop test rig was developed in the Johnson Space Center Electro-Optics Lab to exercise the OpNav system prior to integrated testing on the Orion vehicle. Figure 2 shows the rig, which the test team has dubbed OCILOT (Orion Camera In the Loop Optical Testbed). Analysis performed to date shows a delivery that satisfies an allowable entry corridor as shown in Figure 3.
Large-scale magnetic topologies of early M dwarfs
NASA Astrophysics Data System (ADS)
Donati, J.-F.; Morin, J.; Petit, P.; Delfosse, X.; Forveille, T.; Aurière, M.; Cabanac, R.; Dintrans, B.; Fares, R.; Gastine, T.; Jardine, M. M.; Lignières, F.; Paletou, F.; Ramirez Velez, J. C.; Théado, S.
2008-10-01
We present here additional results of a spectropolarimetric survey of a small sample of stars ranging from spectral type M0 to M8 aimed at investigating observationally how dynamo processes operate in stars on both sides of the full convection threshold (spectral type M4). The present paper focuses on early M stars (M0-M3), that is above the full convection threshold. Applying tomographic imaging techniques to time series of rotationally modulated circularly polarized profiles collected with the NARVAL spectropolarimeter, we determine the rotation period and reconstruct the large-scale magnetic topologies of six early M dwarfs. We find that early-M stars preferentially host large-scale fields with dominantly toroidal and non-axisymmetric poloidal configurations, along with significant differential rotation (and long-term variability); only the lowest-mass star of our subsample is found to host an almost fully poloidal, mainly axisymmetric large-scale field resembling those found in mid-M dwarfs. This abrupt change in the large-scale magnetic topologies of M dwarfs (occurring at spectral type M3) has no related signature on X-ray luminosities (measuring the total amount of magnetic flux); it thus suggests that underlying dynamo processes become more efficient at producing large-scale fields (despite producing the same flux) at spectral types later than M3. We suspect that this change relates to the rapid decrease in the radiative cores of low-mass stars and to the simultaneous sharp increase of the convective turnover times (with decreasing stellar mass) that models predict to occur at M3; it may also be (at least partly) responsible for the reduced magnetic braking reported for fully convective stars. Based on observations obtained at the Télescope Bernard Lyot (TBL), operated by the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France. E-mail: donati@ast.obs-mip.fr (J-FD); jmorin@ast.obs-mip.fr (JM); petit@ast.obs-mip.fr (PP); xavier.delfosse@obs.ujf-grenoble.fr (XD); thierry.forveille@obs.ujf-grenoble.fr (TF); auriere@ast.obs-mip.fr (MA); remi.cabanac@ast.obs-mip.fr (RC); dintrans@ast.obs-mip.fr (BD); rfares@ast.obs-mip.fr (RF); tgastine@ast.obs-mip.fr (TG); mmj@st-and.ac.uk (MMJ); lignieres@ast.obs-mip.fr (FL); fpaletou@ast.obs-mip.fr (FP); julio.ramirez@obspm.fr (JCRV); sylvie.theado@ast.obs-mip.fr (ST)
Liu, Hao; Li, Changhua; Liu, Hewen; Liu, Shiyong
2009-04-21
We report the first example of the synthesis and pH-responsive supramolecular self-assembly of double hydrophilic ABC miktoarm star terpolymers. Well-defined ABC miktoarm star terpolymers consisting of poly(ethylene glycol), poly(tert-butyl methacrylate), and poly(2-(diethylamino)ethyl methacrylate) arms [PEG(-b-PtBMA)-b-PDEA] were synthesized via the combination of consecutive click reactions and atom transfer radical polymerization (ATRP), starting from a trifunctional core molecule, 1-azido-3-chloro-2-propanol (ACP). The click reaction of monoalkynyl-terminated PEG with an excess of ACP afforded difunctional PEG bearing a chlorine and a secondary hydroxyl moiety at the chain end, PEG113(-Cl)-OH (1). After azidation with NaN3, PEG-based macroinitiator PEG113(-N3)-Br (3) was prepared by the esterification of PEG113(-N3)-OH (2) with 2-bromoisobutyryl bromide and then employed in the ATRP of tert-butyl methacrylate (tBMA). The obtained PEG(-N3)-b-PtBMA copolymers (4) possessed an azido moiety at the diblock junction point. The preparation of PEG(-b-PtBMA)-b-PDEA miktoarm star terpolymers was then achieved via the click reaction of 4 with an excess of monoalkynyl-terminated PDEA. The obtained miktoarm star terpolymers were successfully converted into PEG(-b-PMAA)-b-PDEA, where PMAA is poly(methacrylic acid). In aqueous solution, PEG(-b-PMAA)-b-PDEA zwitterionic ABC miktoarm star terpolymers can self-assemble into three types of micellar aggregates by simply adjusting solution pH at room temperature. Above pH 8, PDEA-core micelles stabilized by PEG/ionized PMAA hybrid coronas were formed due to the insolubility of PDEA block. In the range of pH 5-7, micelles possessing polyion complex cores formed as a result of charge compensation between partially ionized PMAA and partially protonated PDEA sequences. At pH<4, hydrogen bonding interactions between fully protonated PMAA and PEG led to the formation of another type of micellar aggregates possessing hydrogen-bonded complex cores stabilized by protonated PDEA coronas. The fully reversible pH-responsive formation of three types of aggregates were characterized by 1H NMR, dynamic and static laser light scattering (LLS), and transmission electron microscopy (TEM).
NASA Technical Reports Server (NTRS)
1994-01-01
Designed by the crew members, the crew patch depicts the Orbiter maneuving to rendezvous with Russia's Space Station Mir. The name is printed in Cyrillic on the side of the station. Visible in the Orbiter's payload bay are the commercial space laboratory Spacehab and the Shuttle Pointed Autonomous Research Tool for Astronomy (SPARTAN) satellite which are major payloads on the flight. The six points on the rising sun and the three stars are symbolic of the mission's Space Transportation System (STS) numerical designation. Flags of the United States and Russia at the bottom of the patch symbolize the cooperative operations of this mission. The crew will be flying aboard the space shuttle Discovery.
A complex baleen whale call recorded in the Mariana Trench Marine National Monument.
Nieukirk, Sharon L; Fregosi, Selene; Mellinger, David K; Klinck, Holger
2016-09-01
In fall 2014 and spring 2015, passive acoustic data were collected via autonomous gliders east of Guam in an area that included the Mariana Trench Marine National Monument. A short (2-4 s), complex sound was recorded that features a ∼38 Hz moan with both harmonics and amplitude modulation, followed by broad-frequency metallic-sounding sweeps up to 7.5 kHz. This sound was recorded regularly during both fall and spring surveys. Aurally, the sound is quite unusual and most resembles the minke whale "Star Wars" call. It is likely this sound is biological and produced by a baleen whale.
Galaxy Zoo: the dependence of the star formation-stellar mass relation on spiral disc morphology
NASA Astrophysics Data System (ADS)
Willett, Kyle W.; Schawinski, Kevin; Simmons, Brooke D.; Masters, Karen L.; Skibba, Ramin A.; Kaviraj, Sugata; Melvin, Thomas; Wong, O. Ivy; Nichol, Robert C.; Cheung, Edmond; Lintott, Chris J.; Fortson, Lucy
2015-05-01
We measure the stellar mass-star formation rate (SFR) relation in star-forming disc galaxies at z ≤ 0.085, using Galaxy Zoo morphologies to examine different populations of spirals as classified by their kiloparsec-scale structure. We examine the number of spiral arms, their relative pitch angle, and the presence of a galactic bar in the disc, and show that both the slope and dispersion of the M⋆-SFR relation is constant when varying all the above parameters. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by ˜0.3 dex; this is significantly smaller than the increase seen in merging systems at z > 1. Of the galaxies lying significantly above the M⋆-SFR relation in the local Universe, more than 50 per cent are mergers. We interpret this as evidence that the spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms or are completely overwhelmed by the combination of outflows and feedback. The arrangement of the star formation can be changed, but the system as a whole regulates itself even in the presence of strong dynamical forcing.
Aristotle University Astronomical Station at Mt. Holomon
NASA Astrophysics Data System (ADS)
Avdellidou, C.; Ioannidis, P.; Kouroubatzakis, K.; Nitsos, A.; Vakoulis, J.; Seiradakis, J. H.
2012-01-01
The Aristotle University Astronomical Station was established seven years ago in order to fulfill the educational needs of its students. Astronomical observations are undertaken using three fully equipped small telescopes. Some interesting results are presented below, including the study of asteroids and flare stars, the detection of optical emission from supernovae remnants and follow up observations in extra solar planets.
Iowa Distance Education Alliance. Preliminary Evaluation Report, October 1995-May 1996.
ERIC Educational Resources Information Center
Sorensen, Chris; And Others
In 1992 and 1995, Iowa received statewide Star Schools grants to demonstrate the use of fiber-optic technology to provide live, two-way, full-motion interactive instruction which allows greater levels of interactivity than previous forms of distance instruction. The grant allowed the state to equip over 100 fully interactive video classrooms in…
NASA Technical Reports Server (NTRS)
Mather, John C.
2012-01-01
John C. Mather is senior project director of NASA's James Webb Space Telescope (JWST), successor to the Hubble Telescope. Nearly cancelled in summer 2011 during a flurry of federal budget cuts, the project was fully funded by Congress in November 201l. Fellowship spoke with Dr. Mather about his thoughts on the importance of funding space science and the JWST.
BD-22deg3467, a DAO-type Star Exciting the Nebula Abell 35
NASA Technical Reports Server (NTRS)
Ziegler, M.; Rauch, T.; Werner, K.; Koppen, J.; Kruk, J. W.
2013-01-01
Spectral analyses of hot, compact stars with non-local thermodynamical equilibrium (NLTE) model-atmosphere techniques allow the precise determination of photospheric parameters such as the effective temperature (T(sub eff)), the surface gravity (log g), and the chemical composition. The derived photospheric metal abundances are crucial constraints for stellar evolutionary theory. Aims. Previous spectral analyses of the exciting star of the nebula A35, BD-22deg3467, were based on He+C+N+O+Si+Fe models only. For our analysis, we use state-of-the-art fully metal-line blanketed NLTE model atmospheres that consider opacities of 23 elements from hydrogen to nickel. We aim to identify all observed lines in the ultraviolet (UV) spectrum of BD-22deg3467 and to determine the abundances of the respective species precisely. Methods. For the analysis of high-resolution and high signal-to-noise ratio (S/N) far-ultraviolet (FUSE) and UV (HST/STIS) observations, we combined stellar-atmosphere models and interstellar line-absorption models to fully reproduce the entire observed UV spectrum. Results. The best agreement with the UV observation of BD-22deg3467 is achieved at T(sub eff) = 80 +/- 10 kK and log g = 7.2 +/- 0.3. While T(sub eff) of previous analyses is verified, log g is significantly lower. We re-analyzed lines of silicon and iron (1/100 and about solar abundances, respectively) and for the first time in this star identified argon, chromium, manganese, cobalt, and nickel and determined abundances of 12, 70, 35, 150, and 5 times solar, respectively. Our results partially agree with predictions of diffusion models for DA-type white dwarfs. A combination of photospheric and interstellar line-absorption models reproduces more than 90% of the observed absorption features. The stellar mass is M approx. 0.48 Solar Mass. Conclusions. BD.22.3467 may not have been massive enough to ascend the asymptotic giant branch and may have evolved directly from the extended horizontal branch to the white dwarf state. This would explain why it is not surrounded by a planetary nebula. However, the star, ionizes the ambient interstellar matter, mimicking a planetary nebula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This article describes how Broward County, Florida and Browning-Ferris Industries (Houston, Texas) implemented a highly accelerated recycling project that had a county-wide recycling system fully operational in 180 days. The program is a strong step toward speeding compliance with Florida's mandated 30 percent recycling goal. The 1.2 million citizens in Broward County began recycling materials in dual curbside bins October 1, 1993. Previously, the participating communities all acted autonomously. Minimal volumes of newspaper, aluminum, clear glass, and some plastic were collected by curbsort vehicles and processed at small local recycling centers.
Hazard detection and avoidance sensor for NASA's planetary landers
NASA Technical Reports Server (NTRS)
Lau, Brian; Chao, Tien-Hsin
1992-01-01
An optical terrain analysis based sensor system specifically designed for landing hazard detection as required for NASA's autonomous planetary landers is introduced. This optical hazard detection and avoidance (HDA) sensor utilizes an optoelectronic wedge-and-ting (WRD) filter for Fourier transformed feature extraction and an electronic neural network processor for pattern classification. A fully implemented optical HDA sensor would assure safe landing of the planetary landers. Computer simulation results of a successful feasibility study is reported. Future research for hardware system implementation is also provided.
Effect of the stellar spin history on the tidal evolution of close-in planets
NASA Astrophysics Data System (ADS)
Bolmont, E.; Raymond, S. N.; Leconte, J.; Matt, S. P.
2012-08-01
Context. The spin rate of stars evolves substantially during their lifetime, owing to the evolution of their internal structure and to external torques arising from the interaction of stars with their environments and stellar winds. Aims: We investigate how the evolution of the stellar spin rate affects, and is affected by, planets in close orbits via star-planet tidal interactions. Methods: We used a standard equilibrium tidal model to compute the orbital evolution of single planets orbiting both Sun-like stars and very low-mass stars (0.1 M⊙). We tested two stellar spin evolution profiles, one with fast initial rotation (1.2 day rotation period) and one with slow initial rotation (8 day period). We tested the effect of varying the stellar and planetary dissipations, and the planet's mass and initial orbital radius. Results: For Sun-like stars, the different tidal evolution between initially rapidly and slowly rotating stars is only evident for extremely close-in gas giants orbiting highly dissipative stars. However, for very low-mass stars the effect of the initial rotation of the star on the planet's evolution is apparent for less massive (1 M⊕) planets and typical dissipation values. We also find that planetary evolution can have significant effects on the stellar spin history. In particular, when a planet falls onto the star, it can cause the star to spin up. Conclusions: Tidal evolution allows us to differentiate between the early behaviors of extremely close-in planets orbiting either a rapidly rotating star or a slowly rotating star. The early spin-up of the star allows the close-in planets around fast rotators to survive the early evolution. For planets around M-dwarfs, surviving the early evolution means surviving on Gyr timescales, whereas for Sun-like stars the spin-down brings about late mergers of Jupiter planets. In the light of this study, we can say that differentiating one type of spin evolution from another given the present position of planets can be very tricky. Unless we can observe some markers of former evolution, it is nearly impossible to distinguish the two very different spin profiles, let alone intermediate spin-profiles. Nevertheless, some conclusions can still be drawn about statistical distributions of planets around fully convective M-dwarfs. If tidal evolution brings about a merger late in the stellar history, it can also entail a noticeable acceleration of the star at late ages, so that it is possible to have old stars that spin rapidly. This raises the question of how the age of stars can be more tightly constrained.
Sluchanko, Nikolai N; Tugaeva, Kristina V; Faletrov, Yaroslav V; Levitsky, Dmitrii I
2016-03-01
Steroidogenic acute regulatory protein (StAR) is responsible for the rapid delivery of cholesterol to mitochondria where the lipid serves as a source for steroid hormones biosynthesis in adrenals and gonads. Despite many successful investigations, current understanding of the mechanism of StAR action is far from being completely clear. StAR was mostly obtained using denaturation/renaturation or in minor quantities in a soluble form at decreased temperatures that, presumably, limited the possibilities for its consequent detailed exploration. In our hands, existing StAR expression constructs could be bacterially expressed almost exclusively as insoluble forms, even upon decreased expression temperatures and in specific strains of Escherichia coli, and isolated protein tended to aggregate and was difficult to handle. To maximize the yield of soluble protein, optimized StAR sequence encompassing functional domain STARD1 (residues 66-285) was fused to the C-terminus of His-tagged Maltose-Binding Protein (MBP) with the possibility to cleave off the whole tag by 3C protease. The developed protocol of expression and purification comprising of a combination of subtractive immobilized metal affinity chromatography (IMAC) and size-exclusion chromatography allowed us to obtain up to 25 mg/1 L culture of completely soluble StAR protein, which was (i) homogenous according to SDS-PAGE, (ii) gave a single symmetrical peak on a gel-filtration, (iii) showed the characteristic CD spectrum and (iv) pH-dependent ability to bind a fluorescently-labeled cholesterol analogue. We conclude that our strategy provides fully soluble and native StAR protein which in future could be efficiently used for biotechnology and drug discovery aimed at modulation of steroids production. Copyright © 2015 Elsevier Inc. All rights reserved.
Atmospheric turbulence compensation with laser phase shifting interferometry
NASA Astrophysics Data System (ADS)
Rabien, S.; Eisenhauer, F.; Genzel, R.; Davies, R. I.; Ott, T.
2006-04-01
Laser guide stars with adaptive optics allow astronomical image correction in the absence of a natural guide star. Single guide star systems with a star created in the earth's sodium layer can be used to correct the wavefront in the near infrared spectral regime for 8-m class telescopes. For possible future telescopes of larger sizes, or for correction at shorter wavelengths, the use of a single guide star is ultimately limited by focal anisoplanatism that arises from the finite height of the guide star. To overcome this limitation we propose to overlap coherently pulsed laser beams that are expanded over the full aperture of the telescope, traveling upwards along the same path which light from the astronomical object travels downwards. Imaging the scattered light from the resultant interference pattern with a camera gated to a certain height above the telescope, and using phase shifting interferometry we have found a method to retrieve the local wavefront gradients. By sensing the backscattered light from two different heights, one can fully remove the cone effect, which can otherwise be a serious handicap to the use of laser guide stars at shorter wavelengths or on larger telescopes. Using two laser beams multiconjugate correction is possible, resulting in larger corrected fields. With a proper choice of laser, wavefront correction could be expanded to the visible regime and, due to the lack of a cone effect, the method is applicable to any size of telescope. Finally the position of the laser spot could be imaged from the side of the main telescope against a bright background star to retrieve tip-tilt information, which would greatly improve the sky coverage of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Eunkyu; Muirhead, Philip S.; Swift, Jonathan J.
Several low-mass eclipsing binary stars show larger than expected radii for their measured mass, metallicity, and age. One proposed mechanism for this radius inflation involves inhibited internal convection and starspots caused by strong magnetic fields. One particular eclipsing binary, T-Cyg1-12664, has proven confounding to this scenario. Çakırlı et al. measured a radius for the secondary component that is twice as large as model predictions for stars with the same mass and age, but a primary mass that is consistent with predictions. Iglesias-Marzoa et al. independently measured the radii and masses of the component stars and found that the radius ofmore » the secondary is not in fact inflated with respect to models, but that the primary is, which is consistent with the inhibited convection scenario. However, in their mass determinations, Iglesias-Marzoa et al. lacked independent radial velocity measurements for the secondary component due to the star’s faintness at optical wavelengths. The secondary component is especially interesting, as its purported mass is near the transition from partially convective to a fully convective interior. In this article, we independently determined the masses and radii of the component stars of T-Cyg1-12664 using archival Kepler data and radial velocity measurements of both component stars obtained with IGRINS on the Discovery Channel Telescope and NIRSPEC and HIRES on the Keck Telescopes. We show that neither of the component stars is inflated with respect to models. Our results are broadly consistent with modern stellar evolutionary models for main-sequence M dwarf stars and do not require inhibited convection by magnetic fields to account for the stellar radii.« less
NASA Astrophysics Data System (ADS)
Paxton, Bill; Cantiello, Matteo; Arras, Phil; Bildsten, Lars; Brown, Edward F.; Dotter, Aaron; Mankovich, Christopher; Montgomery, M. H.; Stello, Dennis; Timmes, F. X.; Townsend, Richard
2013-09-01
We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ⊙ stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.
VizieR Online Data Catalog: Rapidly pulsating sdB stars search with GALEX (Boudreaux+, 2017)
NASA Astrophysics Data System (ADS)
Boudreaux, T. M.; Barlow, B. N.; Fleming, S. W.; Soto, A. V.; Million, C.; Reichart, D. E.; Haislip, J. B.; Linder, T. R.; Moore, J. P.
2018-04-01
Here we present a search for short-period hot subdwarf B (sdB) pulsations in the archived GALEX data set using gPhoton (Million+ 2016ApJ...833..292M). An initial sample of 5613 hot subdwarfs (Geier+ 2017, J/A+A/600/A50), which represents a good approximation of all cataloged hot subdwarf stars, was down-selected based on magnitudes, coordinates, and total exposure time available in the gPhoton database, described fully in Section 2. These selection criteria yielded 1881 targets upon which we focused our investigation. Calibrated light curves with time bins of 30s were generated for each target using gPhoton. (4 data files).
Mildly Recycled Pulsars at High-Energies
NASA Astrophysics Data System (ADS)
Pellizzoni, A.
2011-08-01
Mildly recyled pulsars (MRP), conventionally defined as neutron star having spin period in the 20-100 ms range and surface magnetic field <1011 Gauss, probably rise from binary systems (disrupted or not) with an intermediate or an high mass companion. Despite their relatively low spin-down energies compared to the ``fully'' recycled millisecond pulsars (arising from common low mass X-ray binaries), nearby MRPs can be detected by deep X-ray observations and by timing analysis of the very long data span provided by gamma-ray space detectors. The discovery of peculiar timing and spectral properties, possibly transitional, of the MRPs can be of the utmost importance to link different classes of neutron stars and study their evolution.
Examining the Role of Environment in a Comprehensive Sample of Compact Groups
NASA Astrophysics Data System (ADS)
Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Charlton, Jane C.; Hornschemeier, Ann E.; Hibbard, John E.
2012-03-01
Compact groups, with their high number densities, small velocity dispersions, and an interstellar medium that has not been fully processed, provide a local analog to conditions of galaxy interactions in the earlier universe. The frequent and prolonged gravitational encounters that occur in compact groups affect the evolution of the constituent galaxies in a myriad of ways, for example, gas processing and star formation. Recently, a statistically significant "gap" has been discovered in the mid-infrared (MIR: 3.6-8 μm) IRAC color space of compact group galaxies. This gap is not seen in field samples and is a new example of how the compact group environment may affect the evolution of member galaxies. In order to investigate the origin and nature of this gap, we have compiled a larger sample of 37 compact groups in addition to the original 12 groups studied by Johnson et al. (yielding 174 individual galaxies with reliable MIR photometry). We find that a statistically significant deficit of galaxies in this gap region of IRAC color space is persistent in the full sample, lending support to the hypothesis that the compact group environment inhibits moderate specific star formation rates. Using this expanded sample, we have more fully characterized the distribution of galaxies in this color space and quantified the low-density region more fully with respect to MIR bluer and MIR redder colors. We note a curvature in the color-space distribution, which is fully consistent with increasing dust temperature as the activity in a galaxy increases. This full sample of 49 compact groups allows us to subdivide the data according to physical properties of the groups. An analysis of these subsamples indicates that neither projected physical diameter nor density shows a trend in color space within the values represented by this sample. We hypothesize that the apparent lack of a trend is due to the relatively small range of properties in this sample, whose groups have already been pre-selected to be compact and dense. Thus, the relative influence of stochastic effects (such as the particular distribution and amount of star formation in individual galaxies) becomes dominant. We analyze spectral energy distributions of member galaxies as a function of their location in color space and find that galaxies in different regions of MIR color space contain dust with varying temperatures and/or polycyclic aromatic hydrocarbon emission.
Examining the Role of Environment in a Comprehensive Sample of Compact Groups
NASA Technical Reports Server (NTRS)
Walker, Lisa May; Johnson, Kelsey E.; Gallagher, Sarah C.; Charlton, Jane C.; Hornschemeier, Ann E.; Hibbard, John E.
2012-01-01
Compact groups, with their high number densities, small velocity dispersions, and an interstellar medium that has not been fully processed, provide a local analog to conditions of galaxy interactions in the earlier universe. The frequent and prolonged gravitational encounters that occur in compact groups affect the evolution of the constituent galaxies in a myriad of ways, for example, gas processing and star formation. Recently, a statistically significant "gap" has been discovered in the mid-infrared (MIR: 3.6-8 µm) IRAC color space of compact group galaxies. This gap is not seen in field samples and is a new example of how the compact group environment may affect the evolution of member galaxies. In order to investigate the origin and nature of this gap, we have compiled a larger sample of 37 compact groups in addition to the original 12 groups studied by Johnson et al. (yielding 174 individual galaxies with reliable MIR photometry). We find that a statistically significant deficit of galaxies in this gap region of IRAC color space is persistent in the full sample, lending support to the hypothesis that the compact group environment inhibits moderate specific star formation rates. Using this expanded sample, we have more fully characterized the distribution of galaxies in this color space and quantified the low-density region more fully with respect to MIR bluer and MIR redder colors. We note a curvature in the color-space distribution, which is fully consistent with increasing dust temperature as the activity in a galaxy increases. This full sample of 49 compact groups allows us to subdivide the data according to physical properties of the groups. An analysis of these subsamples indicates that neither projected physical diameter nor density shows a trend in color space within the values represented by this sample. We hypothesize that the apparent lack of a trend is due to the relatively small range of properties in this sample, whose groups have already been pre-selected to be compact and dense. Thus, the relative influence of stochastic effects (such as the particular distribution and amount of star formation in individual galaxies) becomes dominant. We analyze spectral energy distributions of member galaxies as a function of their location in color space and find that galaxies in different regions of MIR color space contain dust with varying temperatures and/or polycyclic aromatic hydrocarbon emission.
Lapienis, Grzegorz; Penczek, Stanislaw
2005-01-01
Synthesis of fully hydrophilic star-shaped macromolecules with different kinds of arms (A(x)B(y)C(z)) based on polyglycidol (PGL, A(x)) and poly(ethylene oxide) (PEO, C(z)) arms and diepoxy compounds (diglycidyl ethers of ethylene glycol (DGEG) or neopentyl glycol (DGNG) in the core, B(y)) forming the core is described. Precursors of arms were prepared by polymerization of glycidol with protected -OH groups. The first-generation stars were formed in the series of consecutive-parallel reactions of arms A(x) with diepoxy compounds (B). These first-generation stars (A(x)B(y)), having approximately O-, Mt+ groups on the cores, were used as multianionic initiators for the second generation of arms (C(z)) built by polymerization of ethylene oxide. The products with M(n) up to 10(5) and having up to approximately 40 arms were obtained. The number of arms (f) was determined by direct measurements of M(n) of the first-generation stars (M(n) of arms A(x) is known), compared with f calculated from the branching index g, determined from R(g) measured with size-exclusion chromatography (SEC) triple detection with TriSEC software. The progress of the star formation was monitored by 1H NMR and SEC. These novel water-soluble stars, having a large number of hydroxyl groups, both at the ends of PEO arms as well as within the PGL arms, can be functionalized and further used for attaching compounds of interest. This approach opens, therefore, a new way of "multiPEGylation".
NASA Astrophysics Data System (ADS)
Linsky, Jeffrey
2017-08-01
We propose to compute state-of-the-art model atmospheres (photospheres, chromospheres, transition regions and coronae) of the 4 K and 7 M exoplanet host stars observed by HST in the MUSCLES Treasury Survey, the nearest host star Proxima Centauri, and TRAPPIST-1. Our semi-empirical models will fit theunique high-resolution panchromatic (X-ray to infrared) spectra of these stars in the MAST High-Level Science Products archive consisting of COS and STIS UV spectra and near-simultaneous Chandra, XMM-Newton, and ground-based observations. We will compute models with the fully tested SSRPM computer software incorporating 52 atoms and ions in full non-LTE (435,986 spectral lines) and the 20 most-abundant diatomic molecules (about 2 million lines). This code has successfully fit the panchromatic spectrum of the M1.5 V exoplanet host star GJ 832 (Fontenla et al. 2016), the first M star with such a detailed model, and solar spectra. Our models will (1) predict the unobservable extreme-UV spectra, (2) determine radiative energy losses and balancing heating rates throughout these atmospheres, (3) compute a stellar irradiance library needed to describe the radiation environment of potentially habitable exoplanets to be studied by TESS and JWST, and (4) in the long post-HST era when UV observations will not be possible, the stellar irradiance library will be a powerful tool for predicting the panchromatic spectra of host stars that have only limited spectral coverage, in particular no UV spectra. The stellar models and spectral irradiance library will be placed quickly in MAST.
Radiation hydrodynamics simulations of the formation of direct-collapse supermassive stellar systems
NASA Astrophysics Data System (ADS)
Chon, Sunmyon; Hosokawa, Takashi; Yoshida, Naoki
2018-04-01
Formation of supermassive stars (SMSs) with mass ≳104 M⊙ is a promising pathway to seed the formation of supermassive black holes in the early universe. The so-called direct-collapse (DC) model postulates that such an SMS forms in a hot gas cloud irradiated by a nearby star-forming galaxy. We study the DC SMS formation in a fully cosmological context using three-dimensional radiation hydrodynamics simulations. We initialize our simulations using the outputs of the cosmological simulation of Chon et al., where two DC gas clouds are identified. The long-term evolution over a hundred thousand years is followed from the formation of embryo protostars through their growth to SMSs. We show that the strength of the tidal force by a nearby galaxy determines the multiplicity of the formed stars and affects the protostellar growth. In one case, where a collapsing cloud is significantly stretched by strong tidal force, multiple star-disc systems are formed via filament fragmentation. Small-scale fragmentation occurs in each circumstellar disc, and more than 10 stars with masses of a few ×103 M⊙ are finally formed. Interestingly, about a half of them are found as massive binary stars. In the other case, the gas cloud collapses nearly spherically under a relatively weak tidal field, and a single star-disc system is formed. Only a few SMSs with masses ˜104 M⊙ are found already after evolution of a hundred thousand years, and the SMSs are expected to grow further by gas accretion and to leave massive black holes at the end of their lives.
Giant Planet Occurrence Rate as a Function of Stellar Mass
NASA Astrophysics Data System (ADS)
Reffert, Sabine; Bergmann, Christoph; Quirrenbach, Andreas; Trifonov, Trifon; Künstler, Andreas
2013-07-01
For over 12 years we have carried out a Doppler survey at Lick Observatory, identifying 15 planets and 20 candidate planets in a sample of 373 G and K giant stars. We investigate giant planet occurrence rate as a function of stellar mass and metallicity in this sample, which covers the mass range from about 1 to 3.5-5.0 solar masses. We confirm the presence of a strong planet-metallicity correlation in our giant star sample, which is fully consistent with the well-known planet-metallicity correlation for main-sequence stars. Furthermore, we find a very strong dependence of the giant planet occurrence rate on stellar mass, which we fit with a gaussian distribution. Stars with masses of about 1.9 solar masses have the highest probability of hosting a giant planet, whereas the planet occurrence rate drops rapidly for masses larger than 2.5 to 3.0 solar masses. We do not find any planets around stars more massive than 2.7 solar masses, although we have 113 stars with masses between 2.7 and 5.0 solar masses in our sample (planet occurrence rate in that mass range: 0% +1.6% at 68.3% confidence). This result is not due to a bias related to planet detectability as a function of stellar mass. We conclude that larger mass stars do not form giant planets which are observable at orbital distances of a few AU today. Possible reasons include slower growth rate due to the snow-line being located further out, longer migration timescale and faster disk depletion.
Agent-based human-robot interaction of a combat bulldozer
NASA Astrophysics Data System (ADS)
Granot, Reuven; Feldman, Maxim
2004-09-01
A small-scale supervised autonomous bulldozer in a remote site was developed to experience agent based human intervention. The model is based on Lego Mindstorms kit and represents combat equipment, whose job performance does not require high accuracy. The model enables evaluation of system response for different operator interventions, as well as for a small colony of semiautonomous dozers. The supervising human may better react than a fully autonomous system to unexpected contingent events, which are a major barrier to implement full autonomy. The automation is introduced as improved Man Machine Interface (MMI) by developing control agents as intelligent tools to negotiate between human requests and task level controllers as well as negotiate with other elements of the software environment. Current UGVs demand significant communication resources and constant human operation. Therefore they will be replaced by semi-autonomous human supervisory controlled systems (telerobotic). For human intervention at the low layers of the control hierarchy we suggest a task oriented control agent to take care of the fluent transition between the state in which the robot operates and the one imposed by the human. This transition should take care about the imperfections, which are responsible for the improper operation of the robot, by disconnecting or adapting them to the new situation. Preliminary conclusions from the small-scale experiments are presented.
Stachowiak, Jeanne C; Shugard, Erin E; Mosier, Bruce P; Renzi, Ronald F; Caton, Pamela F; Ferko, Scott M; Van de Vreugde, James L; Yee, Daniel D; Haroldsen, Brent L; VanderNoot, Victoria A
2007-08-01
For domestic and military security, an autonomous system capable of continuously monitoring for airborne biothreat agents is necessary. At present, no system meets the requirements for size, speed, sensitivity, and selectivity to warn against and lead to the prevention of infection in field settings. We present a fully automated system for the detection of aerosolized bacterial biothreat agents such as Bacillus subtilis (surrogate for Bacillus anthracis) based on protein profiling by chip gel electrophoresis coupled with a microfluidic sample preparation system. Protein profiling has previously been demonstrated to differentiate between bacterial organisms. With the goal of reducing response time, multiple microfluidic component modules, including aerosol collection via a commercially available collector, concentration, thermochemical lysis, size exclusion chromatography, fluorescent labeling, and chip gel electrophoresis were integrated together to create an autonomous collection/sample preparation/analysis system. The cycle time for sample preparation was approximately 5 min, while total cycle time, including chip gel electrophoresis, was approximately 10 min. Sensitivity of the coupled system for the detection of B. subtilis spores was 16 agent-containing particles per liter of air, based on samples that were prepared to simulate those collected by wetted cyclone aerosol collector of approximately 80% efficiency operating for 7 min.
Constrained navigation for unmanned systems
NASA Astrophysics Data System (ADS)
Vasseur, Laurent; Gosset, Philippe; Carpentier, Luc; Marion, Vincent; Morillon, Joel G.; Ropars, Patrice
2005-05-01
The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "constrained navigation" study (named TEL2), which main goal is to identify and test a well-balanced task sharing between man and machine to accomplish a robotic task that cannot be performed autonomously at the moment because of technological limitations. The chosen function is "obstacle avoidance" on rough ground and quite high speed (40 km/h). State of the art algorithms have been implemented to perform autonomous obstacle avoidance and following of forest borders, using scanner laser sensor and standard localization functions. Such an "obstacle avoidance" function works well most of the time, BUT fails sometimes. The study analyzed how the remote operator can manage such failures so that the system remains fully operationally reliable; he can act according to two ways: a) finely adjust the vehicle current heading; b) take the control of the vehicle "on the fly" (without stopping) and bring it back to autonomous behavior when motion is secured again. The paper also presents the results got from the military acceptance tests performed on French 4x4 DARDS ATD.
Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J O
2016-05-21
The extreme luminosities of massive, hot OB stars drive strong stellar winds through line-scattering of the star's UV continuum radiation. For OB stars with an orbiting circumstellar disc, we explore here the effect of such line-scattering in driving an ablation of material from the disc's surface layers, with initial focus on the marginally optically thin decretion discs of classical Oe and Be stars. For this we apply a multidimensional radiation-hydrodynamics code that assumes simple optically thin ray tracing for the stellar continuum, but uses a multiray Sobolev treatment of the line transfer; this fully accounts for the efficient driving by non-radial rays, due to desaturation of line-absorption by velocity gradients associated with the Keplerian shear in the disc. Results show a dense, intermediate-speed surface ablation, consistent with the strong, blueshifted absorption of UV wind lines seen in Be shell stars that are observed from near the disc plane. A key overall result is that, after an initial adjustment to the introduction of the disc, the asymptotic disc destruction rate is typically just an order-unity factor times the stellar wind mass-loss rate. For optically thin Be discs, this leads to a disc destruction time of order months to years, consistent with observationally inferred disc decay times. The much stronger radiative forces of O stars reduce this time to order days, making it more difficult for decretion processes to sustain a disc in earlier spectral types, and so providing a natural explanation for the relative rarity of Oe stars in the Galaxy. Moreover, the decrease in line-driving at lower metallicity implies both a reduction in the winds that help spin-down stars from near-critical rotation, and a reduction in the ablation of any decretion disc; together these provide a natural explanation for the higher fraction of classical Be stars, as well as the presence of Oe stars, in the lower metallicity Magellanic Clouds. We conclude with a discussion of future extensions to study line-driven ablation of denser, optically thick, accretion discs of pre-main-sequence massive stars.
Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J. O.
2016-01-01
The extreme luminosities of massive, hot OB stars drive strong stellar winds through line-scattering of the star's UV continuum radiation. For OB stars with an orbiting circumstellar disc, we explore here the effect of such line-scattering in driving an ablation of material from the disc's surface layers, with initial focus on the marginally optically thin decretion discs of classical Oe and Be stars. For this we apply a multidimensional radiation-hydrodynamics code that assumes simple optically thin ray tracing for the stellar continuum, but uses a multiray Sobolev treatment of the line transfer; this fully accounts for the efficient driving by non-radial rays, due to desaturation of line-absorption by velocity gradients associated with the Keplerian shear in the disc. Results show a dense, intermediate-speed surface ablation, consistent with the strong, blueshifted absorption of UV wind lines seen in Be shell stars that are observed from near the disc plane. A key overall result is that, after an initial adjustment to the introduction of the disc, the asymptotic disc destruction rate is typically just an order-unity factor times the stellar wind mass-loss rate. For optically thin Be discs, this leads to a disc destruction time of order months to years, consistent with observationally inferred disc decay times. The much stronger radiative forces of O stars reduce this time to order days, making it more difficult for decretion processes to sustain a disc in earlier spectral types, and so providing a natural explanation for the relative rarity of Oe stars in the Galaxy. Moreover, the decrease in line-driving at lower metallicity implies both a reduction in the winds that help spin-down stars from near-critical rotation, and a reduction in the ablation of any decretion disc; together these provide a natural explanation for the higher fraction of classical Be stars, as well as the presence of Oe stars, in the lower metallicity Magellanic Clouds. We conclude with a discussion of future extensions to study line-driven ablation of denser, optically thick, accretion discs of pre-main-sequence massive stars. PMID:27346978
Kano, M; Coen, S J; Farmer, A D; Aziz, Q; Williams, S C R; Alsop, D C; Fukudo, S; O'Gorman, R L
2014-09-01
Effects of physiological and/or psychological inter-individual differences on the resting brain state have not been fully established. The present study investigated the effects of individual differences in basal autonomic tone and positive and negative personality dimensions on resting brain activity. Whole-brain resting cerebral perfusion images were acquired from 32 healthy subjects (16 males) using arterial spin labeling perfusion MRI. Neuroticism and extraversion were assessed with the Eysenck Personality Questionnaire-Revised. Resting autonomic activity was assessed using a validated measure of baseline cardiac vagal tone (CVT) in each individual. Potential associations between the perfusion data and individual CVT (27 subjects) and personality score (28 subjects) were tested at the level of voxel clusters by fitting a multiple regression model at each intracerebral voxel. Greater baseline perfusion in the dorsal anterior cingulate cortex (ACC) and cerebellum was associated with lower CVT. At a corrected significance threshold of p < 0.01, strong positive correlations were observed between extraversion and resting brain perfusion in the right caudate, brain stem, and cingulate gyrus. Significant negative correlations between neuroticism and regional cerebral perfusion were identified in the left amygdala, bilateral insula, ACC, and orbitofrontal cortex. These results suggest that individual autonomic tone and psychological variability influence resting brain activity in brain regions, previously shown to be associated with autonomic arousal (dorsal ACC) and personality traits (amygdala, caudate, etc.) during active task processing. The resting brain state may therefore need to be taken into account when interpreting the neurobiology of individual differences in structural and functional brain activity.
Michaelis, Svea; Kriston, Levente; Härter, Martin; Watzke, Birgit; Schulz, Holger; Melchior, Hanne
2017-01-01
Background The involvement of patients in medical decision making has been investigated widely in somatic diseases. However, little is known about the preferences for involvement and variables that could predict these preferences in patients with mental disorders. Objective This study aims to determine what roles mentally ill patients actually want to assume when making medical decisions and to identify the variables that could predict this role, including patients’ self-efficacy. Method Demographic and clinical data of 798 patients with mental disorders from three psychotherapeutic units in Germany were elicited using self-report questionnaires. Control preference was measured using the Control Preferences Scale, and patients’ perceived self-efficacy was assessed using the Self-Efficacy Scale. Bivariate and multivariate regression analyses were conducted to investigate the associations between patient variables and control preference. Results Most patients preferred a collaborative role (57.5%), followed by a semi passive (21.2%), a partly autonomous (16.2%), an autonomous (2.8%) and a fully passive (2.3%) role when making medical decisions. Age, sex, diagnosis, employment status, medical pretreatment and perceived self-efficacy were associated with the preference for involvement in the multivariate logistic model. Conclusion Our results confirm the preferences for involvement in medical decisions of mentally ill patients. We reconfirmed previous findings that older patients prefer a shared role over an autonomous role and that subjects with a high qualification prefer a more autonomous role over a shared role. The knowledge about predictors may help strengthen treatment effectiveness because matching the preferred and actual role preferences has been shown to improve clinical outcome. PMID:28837621
Michaelis, Svea; Kriston, Levente; Härter, Martin; Watzke, Birgit; Schulz, Holger; Melchior, Hanne
2017-01-01
The involvement of patients in medical decision making has been investigated widely in somatic diseases. However, little is known about the preferences for involvement and variables that could predict these preferences in patients with mental disorders. This study aims to determine what roles mentally ill patients actually want to assume when making medical decisions and to identify the variables that could predict this role, including patients' self-efficacy. Demographic and clinical data of 798 patients with mental disorders from three psychotherapeutic units in Germany were elicited using self-report questionnaires. Control preference was measured using the Control Preferences Scale, and patients' perceived self-efficacy was assessed using the Self-Efficacy Scale. Bivariate and multivariate regression analyses were conducted to investigate the associations between patient variables and control preference. Most patients preferred a collaborative role (57.5%), followed by a semi passive (21.2%), a partly autonomous (16.2%), an autonomous (2.8%) and a fully passive (2.3%) role when making medical decisions. Age, sex, diagnosis, employment status, medical pretreatment and perceived self-efficacy were associated with the preference for involvement in the multivariate logistic model. Our results confirm the preferences for involvement in medical decisions of mentally ill patients. We reconfirmed previous findings that older patients prefer a shared role over an autonomous role and that subjects with a high qualification prefer a more autonomous role over a shared role. The knowledge about predictors may help strengthen treatment effectiveness because matching the preferred and actual role preferences has been shown to improve clinical outcome.
Jones, E L; Perring, S; Khattab, A; Allenby-Smith, O
2016-05-01
Reduction in autonomic tone as measured by heart rate variability (HRV) has been associated with various inflammatory conditions including reflux disease. The nature of and permanence of this damage have not been fully assessed. Fourteen individuals with non-erosive reflux disease (NERD) and 10 individuals with erosive reflux disease (ERD) as identified on endoscopy were assessed for HRV prior to starting a course of proton pump inhibitor (PPI) therapy and 8 weeks from the start of PPI therapy. Reflux symptoms were significantly improved by PPI therapy (p = 0.001), with no significant difference in reflux symptoms between the NERD and ERD groups either before (p = 0.45) or following therapy (p = 0.17). The ERD group displayed reduced HRV prior to PPI therapy as compared with a non-symptomatic group. There was significant improvement of HRV resulting from PPI therapy in the ERD group as measured by inspiration/expiration ratio on forced breathing (p = 0.02), Valsalva ratio (p = 0.03), and extended metronome-guided breathing at 6 breaths per minute (p = 0.03). While a similar pattern was seen in the NERD group, the effects were not as strong and did not reach statistical significance. The results are consistent with a growing body of evidence that cardiac autonomic neuropathy as measured by HRV is associated with gastro-esophageal reflux disease and also suggest that successful treatment of the inflammation can lead to reversal of the deterioration of autonomic tone associated with that inflammation. © 2016 John Wiley & Sons Ltd.
Estimation Filter for Alignment of the Spitzer Space Telescope
NASA Technical Reports Server (NTRS)
Bayard, David
2007-01-01
A document presents a summary of an onboard estimation algorithm now being used to calibrate the alignment of the Spitzer Space Telescope (formerly known as the Space Infrared Telescope Facility). The algorithm, denoted the S2P calibration filter, recursively generates estimates of the alignment angles between a telescope reference frame and a star-tracker reference frame. At several discrete times during the day, the filter accepts, as input, attitude estimates from the star tracker and observations taken by the Pointing Control Reference Sensor (a sensor in the field of view of the telescope). The output of the filter is a calibrated quaternion that represents the best current mean-square estimate of the alignment angles between the telescope and the star tracker. The S2P calibration filter incorporates a Kalman filter that tracks six states - two for each of three orthogonal coordinate axes. Although, in principle, one state per axis is sufficient, the use of two states per axis makes it possible to model both short- and long-term behaviors. Specifically, the filter properly models transient learning, characteristic times and bounds of thermomechanical drift, and long-term steady-state statistics, whether calibration measurements are taken frequently or infrequently. These properties ensure that the S2P filter performance is optimal over a broad range of flight conditions, and can be confidently run autonomously over several years of in-flight operation without human intervention.
Accurate Ray-tracing of Realistic Neutron Star Atmospheres for Constraining Their Parameters
NASA Astrophysics Data System (ADS)
Vincent, Frederic H.; Bejger, Michał; Różańska, Agata; Straub, Odele; Paumard, Thibaut; Fortin, Morgane; Madej, Jerzy; Majczyna, Agnieszka; Gourgoulhon, Eric; Haensel, Paweł; Zdunik, Leszek; Beldycki, Bartosz
2018-03-01
Thermal-dominated X-ray spectra of neutron stars in quiescent, transient X-ray binaries and neutron stars that undergo thermonuclear bursts are sensitive to mass and radius. The mass–radius relation of neutron stars depends on the equation of state (EoS) that governs their interior. Constraining this relation accurately is therefore of fundamental importance to understand the nature of dense matter. In this context, we introduce a pipeline to calculate realistic model spectra of rotating neutron stars with hydrogen and helium atmospheres. An arbitrarily fast-rotating neutron star with a given EoS generates the spacetime in which the atmosphere emits radiation. We use the LORENE/NROTSTAR code to compute the spacetime numerically and the ATM24 code to solve the radiative transfer equations self-consistently. Emerging specific intensity spectra are then ray-traced through the neutron star’s spacetime from the atmosphere to a distant observer with the GYOTO code. Here, we present and test our fully relativistic numerical pipeline. To discuss and illustrate the importance of realistic atmosphere models, we compare our model spectra to simpler models like the commonly used isotropic color-corrected blackbody emission. We highlight the importance of considering realistic model-atmosphere spectra together with relativistic ray-tracing to obtain accurate predictions. We also insist upon the crucial impact of the star’s rotation on the observables. Finally, we close a controversy that has been ongoing in the literature in the recent years, regarding the validity of the ATM24 code.
NASA Technical Reports Server (NTRS)
Glownia, James H.; Sorokin, Peter P.
1994-01-01
In this paper, a new model is proposed to account for the DIB's (Diffuse Interstellar Bands). In this model, the DIB's result from a non-linear effect: resonantly-enhanced two-photon absorption of H(2+) ions located near the surface of the Stromgren sphere that surrounds an O- or B- type star. The strong light that is required to 'drive' the two-photon transition is provided by L(alpha) light emerging from the Stromgren sphere that bounds the H II region surrounding the star. A value of approximately 100 micro W/sq cm is estimated for the L(alpha) flux at the Stromgren radius, R(s), of a strong (O5) star. It is shown that a c.w. L(alpha) flux of this intensity should be sufficient to induce a few percent absorption for visible light radiated by the same star at a frequency (omega2) that completes an allowed two-photon transition, provided (1) the L(alpha) radiation happens to be nearly resonant with the frequency of a fully-allowed absorber transition that effectively represents the first step in the two-photon transition, and (2) an effective column density approximately 10(sup18)/sq cm of the absorber is present near the Stromgren sphere radius, R(sub s).
CORE-COLLAPSE SUPERNOVA EQUATIONS OF STATE BASED ON NEUTRON STAR OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiner, A. W.; Hempel, M.; Fischer, T.
2013-09-01
Many of the currently available equations of state for core-collapse supernova simulations give large neutron star radii and do not provide large enough neutron star masses, both of which are inconsistent with some recent neutron star observations. In addition, one of the critical uncertainties in the nucleon-nucleon interaction, the nuclear symmetry energy, is not fully explored by the currently available equations of state. In this article, we construct two new equations of state which match recent neutron star observations and provide more flexibility in studying the dependence on nuclear matter properties. The equations of state are also provided in tabularmore » form, covering a wide range in density, temperature, and asymmetry, suitable for astrophysical simulations. These new equations of state are implemented into our spherically symmetric core-collapse supernova model, which is based on general relativistic radiation hydrodynamics with three-flavor Boltzmann neutrino transport. The results are compared with commonly used equations of state in supernova simulations of 11.2 and 40 M{sub Sun} progenitors. We consider only equations of state which are fitted to nuclear binding energies and other experimental and observational constraints. We find that central densities at bounce are weakly correlated with L and that there is a moderate influence of the symmetry energy on the evolution of the electron fraction. The new models also obey the previously observed correlation between the time to black hole formation and the maximum mass of an s = 4 neutron star.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huber, D.; Bedding, T. R.; Stello, D.
2011-12-20
We have analyzed solar-like oscillations in {approx}1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power ({nu}{sub max}), the large frequency separation ({Delta}{nu}), and oscillation amplitudes. We show that the difference of the {Delta}{nu}-{nu}{sub max} relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M){sup s} scaling nor the revised scaling relation by Kjeldsen andmore » Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of {approx}25%. The residuals show an offset particularly for unevolved stars, suggesting that an additional physical dependency is necessary to fully reproduce the observed amplitudes. We investigate correlations between amplitudes and stellar activity, and find evidence that the effect of amplitude suppression is most pronounced for subgiant stars. Finally, we test the location of the cool edge of the instability strip in the Hertzsprung-Russell diagram using solar-like oscillations and find the detections in the hottest stars compatible with a domain of hybrid stochastically excited and opacity driven pulsation.« less
NASA Astrophysics Data System (ADS)
Page, D.; Geppert, U.; Zannias, T.
2000-08-01
We investigate the thermal, magnetic and rotational evolution of isolated neutron stars assuming that the dipolar magnetic field is confined to the crust. Our treatment, for the first time, uses a fully general relativistic formalism not only for the thermal but also for the magnetic part, and includes partial general relativistic effects in the rotational part. Due to the fact that the combined evolution depends crucially upon the compactness of the star, three different equations of state have been employed in the calculations. In the absence of general relativistic effects, while upon increasing compactness a decrease of the crust thickness takes place leading into an accelerating field decay, the inclusion of general relativistic effects intend to "decelerate this acceleration". As a consequence we find that, within the crustal field hypothesis, a given equation of state is compatible with the observed distribution of pulsar periods P and period derivative &mathaccent "705Frelax dot; provided the initial field strength and current location as well as the magnitude of the impurity content are appropriately constrained. Finally, we access the flexibility of the soft, medium and stiff classes of equations of state as candidates in describing the state of the matter in the neutron star interiors. The comparison of our model calculations with observations, together with the consideration of independent information about neutron star evolution, suggests that a not too soft equation of state describes neutron star interiors and its cooling proceeds along the `standard' scenario.
A Software Product Line Process to Develop Agents for the IoT
Ayala, Inmaculada; Amor, Mercedes; Fuentes, Lidia; Troya, José M.
2015-01-01
One of the most important challenges of this decade is the Internet of Things (IoT), which aims to enable things to be connected anytime, anyplace, with anything and anyone, ideally using any path/network and any service. IoT systems are usually composed of heterogeneous and interconnected lightweight devices that support applications that are subject to change in their external environment and in the functioning of these devices. The management of the variability of these changes, autonomously, is a challenge in the development of these systems. Agents are a good option for developing self-managed IoT systems due to their distributed nature, context-awareness and self-adaptation. Our goal is to enhance the development of IoT applications using agents and software product lines (SPL). Specifically, we propose to use Self-StarMASMAS, multi-agent system) agents and to define an SPL process using the Common Variability Language. In this contribution, we propose an SPL process for Self-StarMAS, paying particular attention to agents embedded in sensor motes. PMID:26140350
Improved Photometry for the DASCH Pipeline
NASA Astrophysics Data System (ADS)
Tang, Sumin; Grindlay, Jonathan; Los, Edward; Servillat, Mathieu
2013-07-01
The Digital Access to a Sky Century@Harvard (DASCH) project is digitizing the ˜500,000 glass plate images obtained (full sky) by the Harvard College Observatory from 1885 to 1992. Astrometry and photometry for each resolved object are derived with photometric rms values of ˜0.15 mag for the initial photometry analysis pipeline. Here we describe new developments for DASCH photometry, applied to the Kepler field, that have yielded further improvements, including better identification of image blends and plate defects by measuring image profiles and astrometric deviations. A local calibration procedure using nearby stars in a similar magnitude range as the program star (similar to what has been done for visual photometry from the plates) yields additional improvement for a net photometric rms of ˜0.1 mag. We also describe statistical measures of light curves that are now used in the DASCH pipeline processing to identify new variables autonomously. The DASCH photometry methods described here are used in the pipeline processing for the data releases of DASCH data,5 as well as for a forthcoming paper on the long-term variables discovered by DASCH in the Kepler field.
NASA Astrophysics Data System (ADS)
Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang; Liu, Ming
2017-06-01
Many countries have been paying great attention to space exploration, especially about the Moon and the Mars. Autonomous and high-accuracy navigation systems are needed for probers and rovers to accomplish missions. Inertial navigation system (INS)/celestial navigation system (CNS) based navigation system has been used widely on the lunar rovers. Initialization is a particularly important step for navigation. This paper presents an in-motion alignment and positioning method for lunar rovers by INS/CNS/odometer integrated navigation. The method can estimate not only the position and attitude errors, but also the biases of the accelerometers and gyros using the standard Kalman filter. The differences between the platform star azimuth, elevation angles and the computed star azimuth, elevation angles, and the difference between the velocity measured by odometer and the velocity measured by inertial sensors are taken as measurements. The semi-physical experiments are implemented to demonstrate that the position error can reduce to 10 m and attitude error is within 2″ during 5 min. The experiment results prove that it is an effective and attractive initialization approach for lunar rovers.
Reinforcement learning agents providing advice in complex video games
NASA Astrophysics Data System (ADS)
Taylor, Matthew E.; Carboni, Nicholas; Fachantidis, Anestis; Vlahavas, Ioannis; Torrey, Lisa
2014-01-01
This article introduces a teacher-student framework for reinforcement learning, synthesising and extending material that appeared in conference proceedings [Torrey, L., & Taylor, M. E. (2013)]. Teaching on a budget: Agents advising agents in reinforcement learning. {Proceedings of the international conference on autonomous agents and multiagent systems}] and in a non-archival workshop paper [Carboni, N., &Taylor, M. E. (2013, May)]. Preliminary results for 1 vs. 1 tactics in StarCraft. {Proceedings of the adaptive and learning agents workshop (at AAMAS-13)}]. In this framework, a teacher agent instructs a student agent by suggesting actions the student should take as it learns. However, the teacher may only give such advice a limited number of times. We present several novel algorithms that teachers can use to budget their advice effectively, and we evaluate them in two complex video games: StarCraft and Pac-Man. Our results show that the same amount of advice, given at different moments, can have different effects on student learning, and that teachers can significantly affect student learning even when students use different learning methods and state representations.
Fully Implanted Brain-Computer Interface in a Locked-In Patient with ALS.
Vansteensel, Mariska J; Pels, Elmar G M; Bleichner, Martin G; Branco, Mariana P; Denison, Timothy; Freudenburg, Zachary V; Gosselaar, Peter; Leinders, Sacha; Ottens, Thomas H; Van Den Boom, Max A; Van Rijen, Peter C; Aarnoutse, Erik J; Ramsey, Nick F
2016-11-24
Options for people with severe paralysis who have lost the ability to communicate orally are limited. We describe a method for communication in a patient with late-stage amyotrophic lateral sclerosis (ALS), involving a fully implanted brain-computer interface that consists of subdural electrodes placed over the motor cortex and a transmitter placed subcutaneously in the left side of the thorax. By attempting to move the hand on the side opposite the implanted electrodes, the patient accurately and independently controlled a computer typing program 28 weeks after electrode placement, at the equivalent of two letters per minute. The brain-computer interface offered autonomous communication that supplemented and at times supplanted the patient's eye-tracking device. (Funded by the Government of the Netherlands and the European Union; ClinicalTrials.gov number, NCT02224469 .).
A Wireless Biomedical Signal Interface System-on-Chip for Body Sensor Networks.
Lei Wang; Guang-Zhong Yang; Jin Huang; Jinyong Zhang; Li Yu; Zedong Nie; Cumming, D R S
2010-04-01
Recent years have seen the rapid development of biosensor technology, system-on-chip design, wireless technology. and ubiquitous computing. When assembled into an autonomous body sensor network (BSN), the technologies become powerful tools in well-being monitoring, medical diagnostics, and personal connectivity. In this paper, we describe the first demonstration of a fully customized mixed-signal silicon chip that has most of the attributes required for use in a wearable or implantable BSN. Our intellectual-property blocks include low-power analog sensor interface for temperature and pH, a data multiplexing and conversion module, a digital platform based around an 8-b microcontroller, data encoding for spread-spectrum wireless transmission, and a RF section requiring very few off-chip components. The chip has been fully evaluated and tested by connection to external sensors, and it satisfied typical system requirements.
A Search for Thorne-Zytkow Objects
NASA Astrophysics Data System (ADS)
Levesque, Emily M.; Massey, P.; Morrell, N.; Zytkow, A.
2014-01-01
Thorne-Zytkow objects (TZOs) are a theoretical class of star in which a compact neutron star is surrounded by a large, diffuse envelope. Supergiant TZOs are predicted to be almost identical in appearance to red supergiants (RSGs), with their very red colors and cool temperatures placing them at the Hayashi limit on the H-R diagram. The best features that can be used at present to distinguish TZOs from the general RSG population are the unusually strong heavy-element lines present in their spectra. These elements are the unique products of the star's fully convective envelope linking the photosphere with the extraordinarily hot burning region in the vicinity of the neutron star core. The positive detection of a TZO would provide the first direct evidence for a completely new model of stellar interiors, a theoretically predicted fate for massive binary systems, and never-before-seen nucleosynthesis processes that would offer a new channel for heavy-element production in our universe. We recently conducted a high-resolution spectroscopic search for TZOs within our previously-studied samples of RSGs in the Milky Way and Magellanic Clouds. Did we find any? We'll know soon! Come to this talk and find out!
General relativistic considerations of the field shedding model of fast radio bursts
NASA Astrophysics Data System (ADS)
Punsly, Brian; Bini, Donato
2016-06-01
Popular models of fast radio bursts (FRBs) involve the gravitational collapse of neutron star progenitors to black holes. It has been proposed that the shedding of the strong neutron star magnetic field (B) during the collapse is the power source for the radio emission. Previously, these models have utilized the simplicity of the Schwarzschild metric which has the restriction that the magnetic flux is magnetic `hair' that must be shed before final collapse. But neutron stars have angular momentum and charge and a fully relativistic Kerr-Newman solution exists in which B has its source inside of the event horizon. In this Letter, we consider the magnetic flux to be shed as a consequence of the electric discharge of a metastable collapsed state of a Kerr-Newman black hole. It has also been argued that the shedding model will not operate due to pair creation. By considering the pulsar death line, we find that for a neutron star with B = 1011-1013 G and a long rotation period, >1s this is not a concern. We also discuss the observational evidence supporting the plausibility of magnetic flux shedding models of FRBs that are spawned from rapidly rotating progenitors.
NASA Astrophysics Data System (ADS)
Turner, Rebecca; Price, A.; Henden, A.
2009-05-01
The IYA 2009 working group on Research Experiences for Students, Teachers, and Citizen-Scientists is planning a multi-year project involving the bright star Eps Aur. The project will go beyond simple observing and also include a major data analysis component. The goal is to introduce the participant to the full scientific process from background research to paper writing for a peer-reviewed journal. It begins with a 10 Star Training Program of several types of binary and transient variable stars that are easy to observe from suburban locations with the naked eye. Participants will be trained both in observing and also in basic data analysis of photometric datasets (light curve and period analysis). Eventually it will lead to a capstone project: monitoring the rare and mysterious 2009-2011 eclipse of Epsilon Aurigae. In the summer of IYA 2009, third-magnitude Eps Aur will experience its next eclipse, which occurs every 27.1 years and lasts 714 days, nearly two years. The star is bright enough to be seen with the naked eye from most urban areas. If fully funded, the project will also involve two public workshops on observing and data analysis in the summers of 2009 and 2010, respectively.
Detectability of the first cosmic explosions
NASA Astrophysics Data System (ADS)
de Souza, R. S.; Ishida, E. E. O.; Johnson, J. L.; Whalen, D. J.; Mesinger, A.
2013-12-01
We present a fully self-consistent simulation of a synthetic survey of the furthermost cosmic explosions. The appearance of the first generation of stars (Population III) in the Universe represents a critical point during cosmic evolution, signalling the end of the dark ages, a period of absence of light sources. Despite their importance, there is no confirmed detection of Population III stars so far. A fraction of these primordial stars are expected to die as pair-instability supernovae (PISNe), and should be bright enough to be observed up to a few hundred million years after the big bang. While the quest for Population III stars continues, detailed theoretical models and computer simulations serve as a testbed for their observability. With the upcoming near-infrared missions, estimates of the feasibility of detecting PISNe are not only timely but imperative. To address this problem, we combine state-of-the-art cosmological and radiative simulations into a complete and self-consistent framework, which includes detailed features of the observational process. We show that a dedicated observational strategy using ≲ 8 per cent of the total allocation time of the James Webb Space Telescope mission can provide us with up to ˜9-15 detectable PISNe per year.
Analysis of the multiple system with chemically peculiar component φ Draconis
NASA Astrophysics Data System (ADS)
Liška, J.
2016-09-01
The star ϕ Dra comprises a spectroscopic binary and a third star that together form a visual triple system. It is one of the brightest chemically peculiar stars of the upper main sequence. Despite these facts, no comprehensive study of its multiplicity has been performed yet. In this work, we present a detailed analysis of the triple system based on available measurements. We use radial velocities taken from four sources in the literature in a re-analysis of the inner spectroscopic binary (Aab). An incorrect value of the orbital period of the inner system Aab about 27 d was accepted in literature more than 40 yr. A new solution of orbit with the 128-d period was determined. Relative position measurements of the outer visual binary system (AB) from Washington Double Star Catalog were compared with known orbital models. Furthermore, it was shown that astrometric motion in system AB is well described by the model of Andrade with a 308-yr orbital period. Parameters of A and B components were utilized to estimate individual brightness for all components and their masses from evolutionary tracks. Although we found several facts which support the gravitational bond between them, unbound solution cannot be fully excluded yet.
Accretion dynamics and polarized X-ray emission of magnetized neutron stars
NASA Technical Reports Server (NTRS)
Arons, Jonathan
1991-01-01
The basic ideas of accretion onto magnetized neutron stars are outlined. These are applied to a simple model of the structure of the plasma mound sitting at the magnetic poles of such a star, in which upward diffusion of photons is balanced by their downward advection. This steady flow model of the plasma's dynamical state is used to compute the emission of polarized X-raysfrom the optically thick, birefringent medium. The linear polarization of the continuum radiation emerging from the quasi-static mound is found to be as much as 40 percent at some rotation phases, but is insensitive to the geometry of the accretion flow. The role of the accretion shock, whose detailed polarimetric and spectral characteristics have yet to be calculated, is emphasized as the final determinant of the properties of the emerging X-rays. Some results describing the fully time dependent dynamics of the flow are also presented. In particular, steady flow onto a neutron star is shown to exhibit formation of 'photon bubbles', regions of greatly reduced plasma density filled with radiation which form and rise on millisecond time scale. The possible role of these complex structures in the flow for the formation of the emergent spectrum is briefly outlined.
A spectroscopic and photometric investigation of the mercury-manganese star KIC 6128830
NASA Astrophysics Data System (ADS)
Hümmerich, Stefan; Niemczura, Ewa; Walczak, Przemysław; Paunzen, Ernst; Bernhard, Klaus; Murphy, Simon J.; Drobek, Dominik
2018-02-01
The advent of space-based photometry provides the opportunity for the first precise characterizations of variability in mercury-manganese (HgMn/CP3) stars, which might advance our understanding of their internal structure. We have carried out a spectroscopic and photometric investigation of the candidate CP3 star KIC 6128830. A detailed abundance analysis based on newly acquired high-resolution spectra was performed, which confirms that the star's abundance pattern is fully consistent with its proposed classification. Photometric variability was investigated using 4 yr of archival Kepler data. In agreement with results from the literature, we have identified a single significant and independent frequency f1 = 0.2065424 d-1 with a peak-to-peak amplitude of ˜3.4 mmag and harmonic frequencies up to 5f1. Drawing on the predictions of state-of-the-art pulsation models and information on evolutionary status, we discuss the origin of the observed light changes. Our calculations predict the occurrence of g-mode pulsations at the observed variability frequency. On the other hand, the strictly mono-periodic nature of the variability strongly suggests a rotational origin. While we prefer the rotational explanation, the present data leave some uncertainty.
NASA Astrophysics Data System (ADS)
Bluhm, P.; Jones, M. I.; Vanzi, L.; Soto, M. G.; Vos, J.; Wittenmyer, R. A.; Drass, H.; Jenkins, J. S.; Olivares, F.; Mennickent, R. E.; Vučković, M.; Rojo, P.; Melo, C. H. F.
2016-10-01
We report the discovery of 24 spectroscopic binary companions to giant stars. We fully constrain the orbital solution for 6 of these systems. We cannot unambiguously derive the orbital elements for the remaining stars because the phase coverage is incomplete. Of these stars, 6 present radial velocity trends that are compatible with long-period brown dwarf companions. The orbital solutions of the 24 binary systems indicate that these giant binary systems have a wide range in orbital periods, eccentricities, and companion masses. For the binaries with restricted orbital solutions, we find a range of orbital periods of between ~97-1600 days and eccentricities of between ~0.1-0.4. In addition, we studied the metallicity distribution of single and binary giant stars. We computed the metallicity of a total of 395 evolved stars, 59 of wich are in binary systems. We find a flat distribution for these binary stars and therefore conclude that stellar binary systems, and potentially brown dwarfs, have a different formation mechanism than planets. This result is confirmed by recent works showing that extrasolar planets orbiting giants are more frequent around metal-rich stars. Finally, we investigate the eccentricity as a function of the orbital period. We analyzed a total of 130 spectroscopic binaries, including those presented here and systems from the literature. We find that most of the binary stars with periods ≲30 days have circular orbits, while at longer orbital periods we observe a wide spread in their eccentricities. Based on observations collected at La Silla - Paranal Observatory under programs IDs IDs 085.C-0557, 087.C.0476, 089.C-0524, 090.C-0345, 096.A-9020 and through the Chilean Telescope Time under programs IDs CN2012A-73, CN2012B-47, CN2013A-111, CN2013B-51, CN2014A-52 and CN2015A-48.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimm, Taysun; Cen, Renyue
2014-06-20
The fraction of hydrogen ionizing photons escaping from galaxies into the intergalactic medium is a critical ingredient in the theory of reionization. We use two zoomed-in, high-resolution (4 pc), cosmological radiation hydrodynamic simulations with adaptive mesh refinement to investigate the impact of two physical mechanisms (supernova, SN, feedback, and runaway OB stars) on the escape fraction (f {sub esc}) at the epoch of reionization (z ≥ 7). We implement a new, physically motivated SN feedback model that can approximate the Sedov solutions at all (from the free expansion to snowplow) stages. We find that there is a significant time delaymore » of about ten million years between the peak of star formation and that of escape fraction, due to the time required for the build-up and subsequent destruction of the star-forming cloud by SN feedback. Consequently, the photon number-weighted mean escape fraction for dwarf galaxies in halos of mass 10{sup 8}-10{sup 10.5} M {sub ☉} is found to be 〈f{sub esc}〉∼11%, although instantaneous values of f {sub esc} > 20% are common when star formation is strongly modulated by the SN explosions. We find that the inclusion of runaway OB stars increases the mean escape fraction by 22% to 〈f{sub esc}〉∼14%. As SNe resulting from runaway OB stars tend to occur in less dense environments, the feedback effect is enhanced and star formation is further suppressed in halos with M{sub vir}≳10{sup 9} M{sub ⊙} in the simulation with runaway OB stars compared with the model without them. While both our models produce enough ionizing photons to maintain a fully ionized universe at z ≤ 7 as observed, a still higher amount of ionizing photons at z ≥ 9 appears necessary to accommodate the high observed electron optical depth inferred from cosmic microwave background observations.« less
NASA Astrophysics Data System (ADS)
Eufrasio, R. T.; Lehmer, B. D.; Zezas, A.; Dwek, E.; Arendt, R. G.; Basu-Zych, A.; Wiklind, T.; Yukita, M.; Fragos, T.; Hornschemeier, A. E.; Markwardt, L.; Ptak, A.; Tzanavaris, P.
2017-12-01
We present LIGHTNING, a new spectral energy distribution fitting procedure, capable of quickly and reliably recovering star formation history (SFH) and extinction parameters. The SFH is modeled as discrete steps in time. In this work, we assumed lookback times of 0-10 Myr, 10-100 Myr, 0.1-1 Gyr, 1-5 Gyr, and 5-13.6 Gyr. LIGHTNING consists of a fully vectorized inversion algorithm to determine SFH step intensities and combines this with a grid-based approach to determine three extinction parameters. We apply our procedure to the extensive far-UV-to-far-IR photometric data of M51, convolved to a common spatial resolution and pixel scale, and make the resulting maps publicly available. We recover, for M51a, a peak star formation rate (SFR) between 0.1 and 5 Gyr ago, with much lower star formation activity over the past 100 Myr. For M51b, we find a declining SFR toward the present day. In the outskirt regions of M51a, which includes regions between M51a and M51b, we recover an SFR peak between 0.1 and 1 Gyr ago, which corresponds to the effects of the interaction between M51a and M51b. We utilize our results to (1) illustrate how UV+IR hybrid SFR laws vary across M51 and (2) provide first-order estimates for how the IR luminosity per unit stellar mass varies as a function of the stellar age. From the latter result, we find that IR emission from dust heated by stars is not always associated with young stars and that the IR emission from M51b is primarily powered by stars older than 5 Gyr.
GHRS Spectra of the Very Low Mass Star VB 10 (M8 Ve)
NASA Astrophysics Data System (ADS)
Linsky, J. L.; Wood, B.; Brown, A.
1994-12-01
We report on ultraviolet spectra of the M8 Ve star VB10 = Gl 752B, probably the coolest and lowest mass star observed so far in the ultraviolet. This star is of great interest because it lies almost at the end of the main sequence where stars are thought to be fully convective and solar-type dynamo processes should not be present. On 1994 October 12 we observed the brighter companion Gl 752A (M3 Ve) and then offset to VB10. Both stars were observed with the G140L grating on the HST Goddard High Resolution Spectrograph. The spectrum of Gl 752A shows the expected transition region lines of solar-type stars consisting of C III 1175 Angstroms, H I Lyman-alpha , N V 1240 Angstroms, O I 1304 Angstroms, C II 1335 Angstroms, Si IV 1400 Angstroms, C IV 1550 Angstroms, He II 1640 Angstroms, and others. The spectrum of VB10, on the other hand, provided a surprise. Our spectra of this star consists of 11 integrations, each of about 5 minutes duration. The first 10 integrations show no emission features with very small upper limits to the surface fluxes in the transition region lines. The last integration, however, shows strong emission in the C II, Si IV, and C IV lines, which we interpret as a flare. The VB10 spectra imply that there is little if any continuous heating of the transition regions of the very coolest M dwarf stars. Instead, there is only transient emission during major realignments of the magnetic field. By contrast, hotter stars show continuous emission in the transition region lines, indicating a continuous heating process or a large number of small flares (microflaring). This change in behavior may be due to the absence of radiative cores in the coolest M dwarfs and the inability of the solar-type alpha -omega dynamo to operate in stars without an interface between a radiative core and a convective envelope. Our data indicate that the coolest M dwarfs nevertheless do have magnetic fields. This work is supported by NASA Interagency Transfer S-56460-D to the National Institute of Standards and Technology.
NASA Astrophysics Data System (ADS)
Calcaferro, Leila M.; Córsico, Alejandro H.; Althaus, Leandro G.
2017-11-01
Context. Many pulsating low-mass white dwarf stars have been detected in the past years in the field of our Galaxy. Some of them exhibit multiperiodic brightness variation, therefore it is possible to probe their interiors through asteroseismology. Aims: We present a detailed asteroseismological study of all the known low-mass variable white dwarf stars based on a complete set of fully evolutionary models that are representative of low-mass He-core white dwarf stars. Methods: We employed adiabatic radial and nonradial pulsation periods for low-mass white dwarf models with stellar masses ranging from 0.1554 to 0.4352 M⊙ that were derived by simulating the nonconservative evolution of a binary system consisting of an initially 1 M⊙ zero-age main-sequence (ZAMS) star and a 1.4 M⊙ neutron star companion. We estimated the mean period spacing for the stars under study (where this was possible), and then we constrained the stellar mass by comparing the observed period spacing with the average of the computed period spacings for our grid of models. We also employed the individual observed periods of every known pulsating low-mass white dwarf star to search for a representative seismological model. Results: We found that even though the stars under analysis exhibit few periods and the period fits show multiplicity of solutions, it is possible to find seismological models whose mass and effective temperature are in agreement with the values given by spectroscopy for most of the cases. Unfortunately, we were not able to constrain the stellar masses by employing the observed period spacing because, in general, only few periods are exhibited by these stars. In the two cases where we were able to extract the period spacing from the set of observed periods, this method led to stellar mass values that were substantially higher than expected for this type of stars. Conclusions: The results presented in this work show the need for further photometric searches, on the one hand, and that some improvements of the theoretical models are required on the other hand in order to place the asteroseismological results on a firmer ground.
NASA Technical Reports Server (NTRS)
Stringfellow, Guy
2004-01-01
This program intended to test whether the lowest mass stars at the bottom end of the main sequence and the lower mass brown dwarfs have coronae. If they have coronae, what are the coronal characteristics and what drives them? In the classical dynamo picture, the closed magnetic loop structure is generated near the boundary of the convective envelope and the radiative core. Stars with mass below 0.30 Msun however are fully convective, and the nature of the dynamo responsible for the generation of the coronae in this regime is poorly understood. Previous results from the ROSAT mission (e.g., Fleming et al. 1993, 1995; Schmitt et al. 1995) had confirmed three very important characteristics of M-star coronae: (1) a very high percentage of all M dwarfs have coronae (of order 85% in the local 7 pc sample), (2) those M dwarfs showing high chromospheric activity, such as having the Balmer series in emission or large/numerous optical flaring, indeed exhibit the highest coronal activity, and (3) that the maximum saturation boundary in X-ray luminosity, which amounts to 0.0001-0.001 for Lx/Lbol for the dMe stars, extends down to the current detection limit, through spectral types M7. It was likely that the incompleteness noted for result (1) above was simply a detection limit problem; for more distant sources, the X-ray fainter dM stars will drop below detection thresholds before the more X-ray luminous dMe stars. The latest stars for which direct detection of the corona had been successful were of spectral type dM7 (e.g., VB8, LHS 3003). This program proposed to obtain ROSAT HRI observations for a large number of the coolest known (at that time) stars at the bottom of the main-sequence, which had spectral types of M9 or later. Three stars were approved for observations with ROSAT-HRI totaling 180 ksec. The goal was to obtain X-ray detections or low upper limits for the three approved stars.
Kingsley, J Derek; Mayo, Xián; Tai, Yu Lun; Fennell, Curtis
2016-12-01
Kingsley, JD, Mayo, X, Tai, YL, and Fennell, C. Arterial stiffness and autonomic modulation after free-weight resistance exercises in resistance trained individuals. J Strength Cond Res 30(12): 3373-3380, 2016-We investigated the effects of an acute bout of free-weight, whole-body resistance exercise consisting of the squat, bench press, and deadlift on arterial stiffness and cardiac autonomic modulation in 16 (aged 23 ± 3 years; mean ± SD) resistance-trained individuals. Arterial stiffness, autonomic modulation, and baroreflex sensitivity (BRS) were assessed at rest and after 3 sets of 10 repetitions at 75% 1-repetition maximum on each exercise with 2 minutes of rest between sets and exercises. Arterial stiffness was analyzed using carotid-femoral pulse wave velocity (cf-PWV). Linear heart rate variability (log transformed [ln] absolute and normalized units [nu] of low-frequency [LF] and high-frequency [HF] power) and nonlinear heart rate complexity (Sample Entropy [SampEn], Lempel-Ziv Entropy [LZEn]) were measured to determine autonomic modulation. BRS was measured by the sequence method. A 2 × 2 repeated measures analysis of variance (ANOVA) was used to analyze time (rest, recovery) across condition (acute resistance exercise, control). There were significant increases in cf-PWV (p = 0.05), heart rate (p = 0.0001), normalized LF (LFnu; p = 0.001), and the LF/HF ratio (p = 0.0001). Interactions were also noted for ln HF (p = 0.006), HFnu (p = 0.0001), SampEn (p = 0.001), LZEn (p = 0.005), and BRS (p = 0.0001) such that they significantly decreased during recovery from the resistance exercise compared with rest and the control. There was no effect on ln total power, or ln LF. These data suggest that a bout of resistance exercise using free-weights increases arterial stiffness and reduces vagal activity and BRS in comparison with a control session. Vagal tone may not be fully recovered up to 30 minutes after a resistance exercise bout.
Semi-autonomous unmanned ground vehicle control system
NASA Astrophysics Data System (ADS)
Anderson, Jonathan; Lee, Dah-Jye; Schoenberger, Robert; Wei, Zhaoyi; Archibald, James
2006-05-01
Unmanned Ground Vehicles (UGVs) have advantages over people in a number of different applications, ranging from sentry duty, scouting hazardous areas, convoying goods and supplies over long distances, and exploring caves and tunnels. Despite recent advances in electronics, vision, artificial intelligence, and control technologies, fully autonomous UGVs are still far from being a reality. Currently, most UGVs are fielded using tele-operation with a human in the control loop. Using tele-operations, a user controls the UGV from the relative safety and comfort of a control station and sends commands to the UGV remotely. It is difficult for the user to issue higher level commands such as patrol this corridor or move to this position while avoiding obstacles. As computer vision algorithms are implemented in hardware, the UGV can easily become partially autonomous. As Field Programmable Gate Arrays (FPGAs) become larger and more powerful, vision algorithms can run at frame rate. With the rapid development of CMOS imagers for consumer electronics, frame rate can reach as high as 200 frames per second with a small size of the region of interest. This increase in the speed of vision algorithm processing allows the UGVs to become more autonomous, as they are able to recognize and avoid obstacles in their path, track targets, or move to a recognized area. The user is able to focus on giving broad supervisory commands and goals to the UGVs, allowing the user to control multiple UGVs at once while still maintaining the convenience of working from a central base station. In this paper, we will describe a novel control system for the control of semi-autonomous UGVs. This control system combines a user interface similar to a simple tele-operation station along with a control package, including the FPGA and multiple cameras. The control package interfaces with the UGV and provides the necessary control to guide the UGV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rakesh K.; Poppenhaeger, Katja; Wolk, Scott J.
Despite the lack of a shear-rich tachocline region, low-mass fully convective (FC) stars are capable of generating strong magnetic fields, indicating that a dynamo mechanism fundamentally different from the solar dynamo is at work in these objects. We present a self-consistent three-dimensional model of magnetic field generation in low-mass FC stars. The model utilizes the anelastic magnetohydrodynamic equations to simulate compressible convection in a rotating sphere. A distributed dynamo working in the model spontaneously produces a dipole-dominated surface magnetic field of the observed strength. The interaction of this field with the turbulent convection in outer layers shreds it, producing small-scalemore » fields that carry most of the magnetic flux. The Zeeman–Doppler-Imaging technique applied to synthetic spectropolarimetric data based on our model recovers most of the large-scale field. Our model simultaneously reproduces the morphology and magnitude of the large-scale field as well as the magnitude of the small-scale field observed on low-mass FC stars.« less
WFIRST: Science with the coronagraphic instrument
NASA Astrophysics Data System (ADS)
Macintosh, Bruce; Turnbull, Margaret; Lewis, Nikole K.; Roberge, Aki; Kasdin, Jeremy; WFIRST Coronagraph Science Investigation Teams, JPL Coronagraph Instrument Team
2018-01-01
The Wide-Field Infrared Survey Telescope (WFIRST) is baselined to incorporate a coronagraphic instrument (CGI) for high-contast imaging and spectroscopy of extrasolar planets and circumstellar dust. CGI incorporates a pair of deformable mirrors to control the wavefront of light, occulting masks that control diffraction from the obscured WFIRST aperture, and two science modes: an integral field spectrograph and a direct imager. We give an overview of CGI’s architecture and science capabilities. CGI provides the first opportunity to fly a fully integrated active-optics coronagraph in space, paving the way for future missions such as HABEX or LUVOIR. The baseline science case includes spectroscopic characterization of known giant planets from 1-5 AU, photometric characterization of a broader sample, and searches for new lower-mass planets orbiting nearby stars. CGI will also be sensitive to extrsolar zodiacal dust associated with nearby stars, as well as debris disks and protoplanetary dust disks hosted by younger stars. These measurements will inform our understanding of planet formation and advance towards spectral characterization of earthilke planets.
NASA Astrophysics Data System (ADS)
Bordwell, Baylee; Ho, N.; Geha, M. C.; West, M.
2014-01-01
Dwarf galaxies transition from active star formation to relative quiescence after entering a dense environment such as a galaxy cluster. However, the mechanism behind this change is not fully understood. The problem is complicated by its heavy dependence on the initial conditions of the galaxy in question. To investigate the conditions of a galaxy prior to transition, we chose one of the best and nearest examples of a dwarf with active star formation, the Local Group member IC 10. We have obtained DEIMOS spectra of blue supergiants in this galaxy and determined the range of metallicities and ages for these stars using the equivalent width of the calcium triplet feature and isochrone fitting to photometry. By looking at the distribution of these metallicities in space and time we are able to gain insight into IC 10's recent evolutionary history and to get a clearer picture of the physical state of a dwarf galaxy prior to transition.
Acne at The Bottom Of The Main Sequence
NASA Astrophysics Data System (ADS)
Barnes, John; Haswell, C.; Jenkins, J.; Jeffers, S.; Jones, H. R. A.; Lohr, M.; Pavlenko, Y.
2016-08-01
Starspots are an important manifestation of stellar activity and yet their distribution patterns on the lowest mass stars is not well known. Time series spectra of fully convective M dwarfs taken in the red-optical with UVES reveal numerous line profile distortions which are interpreted as starspots. We derive Doppler images for four M4.5V - M9V stars and find that contrast ratios corresponding to photosphere-spot temperature differences of only 200-300 K are sufficient to model the timeseries spectra. Although more starspot structure is found at high latitudes, spots are reconstructed at a range of phases and latitudes with mean spot filling factors of only a few per cent. The occurrence of low-contrast spots at predominantly high latitudes is in general likely to be responsible for the low amplitude photometric variability seen in late-M dwarfs. The recovered starspot patterns are used to assess their effect on precision radial velocity surveys aimed at detecting planets around this population of stars.
The fueling of active galaxies
NASA Technical Reports Server (NTRS)
Hernquist, Lars
1991-01-01
Collisions of galaxies are often invoked to explain violent phenomena in the universe. The dynamics of interacting galaxies is intrinsically three-dimensional and involves both gas and stellar dynamics. In general, a computational approach is needed to model galactic collisions. Galaxy encounters are studied using a hybrid N-body/hydrodynamics code, capable of integrating systems of stars, gas, and dark matter in a fully self-consistent manner. These experiments demonstrate that gravitational coupling between gas and stars in galactic interactions can drive most of the gas throughout a galaxy into the nucleus of a merger remnant. The high densities in these gas concentrations are likely to result in strong bursts of star formation. Hence, this process may explain the nuclear starbursts in some systems of interacting galaxies. Further collapse of these gas concentrations can trigger even more intense activity if some gas is eventually accreted by a supermassive black hole. Such an evolutionary sequence may account for some quasars and active galactic nuclei.
The evolution of red supergiants to supernovae
NASA Astrophysics Data System (ADS)
Beasor, Emma R.; Davies, Ben
2017-11-01
With red supergiants (RSGs) predicted to end their lives as Type IIP core collapse supernova (CCSN), their behaviour before explosion needs to be fully understood. Mass loss rates govern RSG evolution towards SN and have strong implications on the appearance of the resulting explosion. To study how the mass-loss rates change with the evolution of the star, we have measured the amount of circumstellar material around 19 RSGs in a coeval cluster. Our study has shown that mass loss rates ramp up throughout the lifetime of an RSG, with more evolved stars having mass loss rates a factor of 40 higher than early stage RSGs. Interestingly, we have also found evidence for an increase in circumstellar extinction throughout the RSG lifetime, meaning the most evolved stars are most severely affected. We find that, were the most evolved RSGs in NGC2100 to go SN, this extra extinction would cause the progenitor's initial mass to be underestimated by up to 9M⊙.
Design and realization of an automatic weather station at island
NASA Astrophysics Data System (ADS)
Chen, Yong-hua; Li, Si-ren
2011-10-01
In this paper, the design and development of an automatic weather station monitoring is described. The proposed system consists of a set of sensors for measuring meteorological parameters (temperature, wind speed & direction, rain fall, visibility, etc.). To increase the reliability of the system, wind speed & direction are measured redundantly with duplicate sensors. The sensor signals are collected by the data logger CR1000 at several analog and digital inputs. The CR1000 and the sensors form a completely autonomous system which works with the other systems installed in the container. Communication with the master PC is accomplished over the method of Code Division Multiple Access (CDMA) with the Compact Caimore6550P CDMA DTU. The data are finally stored in tables on the CPU as well as on the CF-Card. The weather station was built as an efficient autonomous system which operates with the other systems to provide the required data for a fully automatic measurement system.
Automated monitoring of medical protocols: a secure and distributed architecture.
Alsinet, T; Ansótegui, C; Béjar, R; Fernández, C; Manyà, F
2003-03-01
The control of the right application of medical protocols is a key issue in hospital environments. For the automated monitoring of medical protocols, we need a domain-independent language for their representation and a fully, or semi, autonomous system that understands the protocols and supervises their application. In this paper we describe a specification language and a multi-agent system architecture for monitoring medical protocols. We model medical services in hospital environments as specialized domain agents and interpret a medical protocol as a negotiation process between agents. A medical service can be involved in multiple medical protocols, and so specialized domain agents are independent of negotiation processes and autonomous system agents perform monitoring tasks. We present the detailed architecture of the system agents and of an important domain agent, the database broker agent, that is responsible of obtaining relevant information about the clinical history of patients. We also describe how we tackle the problems of privacy, integrity and authentication during the process of exchanging information between agents.
Spacecube: A Family of Reconfigurable Hybrid On-Board Science Data Processors
NASA Technical Reports Server (NTRS)
Flatley, Thomas P.
2015-01-01
SpaceCube is a family of Field Programmable Gate Array (FPGA) based on-board science data processing systems developed at the NASA Goddard Space Flight Center (GSFC). The goal of the SpaceCube program is to provide 10x to 100x improvements in on-board computing power while lowering relative power consumption and cost. SpaceCube is based on the Xilinx Virtex family of FPGAs, which include processor, FPGA logic and digital signal processing (DSP) resources. These processing elements are leveraged to produce a hybrid science data processing platform that accelerates the execution of algorithms by distributing computational functions to the most suitable elements. This approach enables the implementation of complex on-board functions that were previously limited to ground based systems, such as on-board product generation, data reduction, calibration, classification, eventfeature detection, data mining and real-time autonomous operations. The system is fully reconfigurable in flight, including data parameters, software and FPGA logic, through either ground commanding or autonomously in response to detected eventsfeatures in the instrument data stream.
Autonomous Flight Rules - A Concept for Self-Separation in U.S. Domestic Airspace
NASA Technical Reports Server (NTRS)
Wing, David J.; Cotton, William B.
2011-01-01
Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global navigation, airborne surveillance, and onboard computing enable the functions of traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer restrictions than are required when using ground-based separation. The AFR concept is described in detail and provides practical means by which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control.
Yuan, Chengzhi; Licht, Stephen; He, Haibo
2017-09-26
In this paper, a new concept of formation learning control is introduced to the field of formation control of multiple autonomous underwater vehicles (AUVs), which specifies a joint objective of distributed formation tracking control and learning/identification of nonlinear uncertain AUV dynamics. A novel two-layer distributed formation learning control scheme is proposed, which consists of an upper-layer distributed adaptive observer and a lower-layer decentralized deterministic learning controller. This new formation learning control scheme advances existing techniques in three important ways: 1) the multi-AUV system under consideration has heterogeneous nonlinear uncertain dynamics; 2) the formation learning control protocol can be designed and implemented by each local AUV agent in a fully distributed fashion without using any global information; and 3) in addition to the formation control performance, the distributed control protocol is also capable of accurately identifying the AUVs' heterogeneous nonlinear uncertain dynamics and utilizing experiences to improve formation control performance. Extensive simulations have been conducted to demonstrate the effectiveness of the proposed results.
Rendezvous and Docking for Space Exploration
NASA Technical Reports Server (NTRS)
Machula, M. F.; Crain, T.; Sandhoo, G. S.
2005-01-01
To achieve the exploration goals, new approaches to exploration are being envisioned that include robotic networks, modular systems, pre-positioned propellants and in-space assembly in Earth orbit, Lunar orbit and other locations around the cosmos. A fundamental requirement for rendezvous and docking to accomplish in-space assembly exists in each of these locations. While existing systems and technologies can accomplish rendezvous and docking in low earth orbit, and rendezvous and docking with crewed systems has been successfully accomplished in low lunar orbit, our capability must extend toward autonomous rendezvous and docking. To meet the needs of the exploration vision in-space assembly requiring both crewed and uncrewed vehicles will be an integral part of the exploration architecture. This paper focuses on the intelligent application of autonomous rendezvous and docking technologies to meet the needs of that architecture. It also describes key technology investments that will increase the exploration program's ability to ensure mission success, regardless of whether the rendezvous are fully automated or have humans in the loop.
Autonomous space processor for orbital debris
NASA Technical Reports Server (NTRS)
Ramohalli, Kumar; Marine, Micky; Colvin, James; Crockett, Richard; Sword, Lee; Putz, Jennifer; Woelfle, Sheri
1991-01-01
The development of an Autonomous Space Processor for Orbital Debris (ASPOD) was the goal. The nature of this craft, which will process, in situ, orbital debris using resources available in low Earth orbit (LEO) is explained. The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. The focus was on the development of a versatile robotic manipulator to augment an existing robotic arm, the incorporation of remote operation of the robotic arms, and the formulation of optimal (time and energy) trajectory planning algorithms for coordinated robotic arms. The mechanical design of the new arm is described in detail. The work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time optimal and energy optimal problems. The time optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamic programming.
NASA Technical Reports Server (NTRS)
Gramling, C. J.; Long, A. C.; Lee, T.; Ottenstein, N. A.; Samii, M. V.
1991-01-01
A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is currently being developed by NASA to provide a high accuracy autonomous navigation capability for users of TDRSS and its successor, the Advanced TDRSS (ATDRSS). The fully autonomous user onboard navigation system will support orbit determination, time determination, and frequency determination, based on observation of a continuously available, unscheduled navigation beacon signal. A TONS experiment will be performed in conjunction with the Explorer Platform (EP) Extreme Ultraviolet Explorer (EUVE) mission to flight quality TONS Block 1. An overview is presented of TONS and a preliminary analysis of the navigation accuracy anticipated for the TONS experiment. Descriptions of the TONS experiment and the associated navigation objectives, as well as a description of the onboard navigation algorithms, are provided. The accuracy of the selected algorithms is evaluated based on the processing of realistic simulated TDRSS one way forward link Doppler measurements. The analysis process is discussed and the associated navigation accuracy results are presented.
A Long Distance Laser Altimeter for Terrain Relative Navigation and Spacecraft Landing
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F.; Amzajerdian, Farzin; Barnes, Bruce W.
2014-01-01
A high precision laser altimeter was developed under the Autonomous Landing and Hazard Avoidance (ALHAT) project at NASA Langley Research Center. The laser altimeter provides slant-path range measurements from operational ranges exceeding 30 km that will be used to support surface-relative state estimation and navigation during planetary descent and precision landing. The altimeter uses an advanced time-of-arrival receiver, which produces multiple signal-return range measurements from tens of kilometers with 5 cm precision. The transmitter is eye-safe, simplifying operations and testing on earth. The prototype is fully autonomous, and able to withstand the thermal and mechanical stresses experienced during test flights conducted aboard helicopters, fixed-wing aircraft, and Morpheus, a terrestrial rocket-powered vehicle developed by NASA Johnson Space Center. This paper provides an overview of the sensor and presents results obtained during recent field experiments including a helicopter flight test conducted in December 2012 and Morpheus flight tests conducted during March of 2014.
A COMPARISON OF STELLAR ELEMENTAL ABUNDANCE TECHNIQUES AND MEASUREMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hinkel, Natalie R.; Young, Patrick A.; Pagano, Michael D.
2016-09-01
Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond the quoted error for the same elements within the same stars. The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We invited amore » number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and the United States) to calculate 10 element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD 361, HD 10700, HD 121504, and HD 202206). Each group produced measurements for each star using (1) their own autonomous techniques, (2) standardized stellar parameters, (3) a standardized line list, and (4) both standardized parameters and a line list. We present the resulting stellar parameters, absolute abundances, and a metric of data similarity that quantifies the homogeneity of the data. We conclude that standardization of some kind, particularly stellar parameters, improves the consistency between methods. However, because results did not converge as more free parameters were standardized, it is clear there are inherent issues within the techniques that need to be reconciled. Therefore, we encourage more conversation and transparency within the community such that stellar abundance determinations can be reproducible as well as accurate and precise.« less
Ka-Band Autonomous Formation Flying Sensor
NASA Technical Reports Server (NTRS)
Tien, Jeffrey; Purcell, George, Jr.; Srinivasan, Jeffrey; Ciminera, Michael; Srinivasan, Meera; Meehan, Thomas; Young, Lawrence; Aung, MiMi; Amaro, Luis; Chong, Yong;
2004-01-01
Ka-band integrated range and bearing-angle formation sensor called the Autonomous Formation Flying (AFF) Sensor has been developed to enable deep-space formation flying of multiple spacecraft. The AFF Sensor concept is similar to that of the Global Positioning System (GPS), but the AFF Sensor would not use the GPS. The AFF Sensor would reside in radio transceivers and signal-processing subsystems aboard the formation-flying spacecraft. A version of the AFF Sensor has been developed for initial application to the two-spacecraft StarLight optical-interferometry mission, and several design investigations have been performed. From the prototype development, it has been concluded that the AFF Sensor can be expected to measure distances and directions with standard deviations of 2 cm and 1 arc minute, respectively, for spacecraft separations ranging up to about 1 km. It has also been concluded that it is necessary to optimize performance of the overall mission through design trade-offs among the performance of the AFF Sensor, the field of view of the AFF Sensor, the designs of the spacecraft and the scientific instruments that they will carry, the spacecraft maneuvers required for formation flying, and the design of a formation-control system.
Discovery of a Thorne-Żytkow object candidate in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Levesque, Emily M.; Massey, Philip; Żytkow, Anna N.; Morrell, Nidia
2015-01-01
Thorne-Żytkow objects (TŻOs) are a theoretical class of star in which a compact neutron star is surrounded by a large, diffuse envelope. Supergiant TŻOs are predicted to be almost identical in appearance to red supergiants (RSGs), with their very red colors and cool temperatures placing them at the Hayashi limit on the H-R diagram. The only features that can be used at present to distinguish TŻOs from the general RSG population are the unusually strong heavy-element and lithium lines present in their spectra. These elements are the unique products of the stars fully convective envelope linking the photosphere with the extraordinarily hot burning region in the vicinity of the neutron star core. We have recently discovered a TŻO candidate in the Small Magellanic Cloud. It is the first star to display the distinctive chemical profile of anomalous element enhancements thought to be characteristic of TŻOs however, up-to-date models and additional observable predictions (including potential asteroseismological signatures) are required to solidify this discovery. The definitive detection of a TŻO would provide the first direct evidence for a completely new model of stellar interiors, a theoretically predicted fate for massive binary systems, and never-before-seen nucleosynthesis processes that would offer a new channel for heavy-element and lithium production in our universe.
Significance of Environmental Density in Shocked Poststarburst Galaxy Evolution
NASA Astrophysics Data System (ADS)
Jaliff, Laura
2018-01-01
The Shocked POstarbusrt Galaxy Survey (SPOGS) comprises 1,066 galaxies undergoing the transformation from blue cloud late-type spirals to red sequence non-star-forming early-type ellipticals and lenticulars. They are selected via spectral analysis of ionized gas line ratios, which indicate shocked objects, and Balmer H-δ equivalent width, which select recently formed stars, but not active star formation. E+A galaxies (Zabludoff et al. 1996), like SPOGs, contain young stars but, unlike SPOGs, no emission lines consistent with star formation. They differ in that the quality used to discern SPOGs, their shocks, produces H-α lines that prevent them from being found via the same criteria as E+As. Thus, SPOGs can be found before being entirely stripped of their gas, and, while E+As are largely red and dead, found leaving the green valley, SPOGS are mostly entering it. The environmental density data for SPOGs was retrieved via the NASA Extragalactic Database (NED) radial velocity constrained cone tool, which provides counts and densities within spheres of radii 1, 5, and 10 Mpc from the center of search as well as relative positions and redshifts of objects. The kinematic morphology-density relation (Cappellari et al. 2011) is employed as a point of comparison for how SPOGs’ environmental densities might relate to morphological and spectroscopic factors, including tidal features, asymmetry, and color, in order to fully understand the role of environmental factors in SPOGS object evolution.
Galaxy Zoo: evidence for rapid, recent quenching within a population of AGN host galaxies
NASA Astrophysics Data System (ADS)
Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.
2016-12-01
We present a population study of the star formation history of 1244 Type 2 active galactic nuclei (AGN) host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualize the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing that both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.
Hyper Suprime-Camera Survey of the Akari NEP Wide Field
NASA Astrophysics Data System (ADS)
Goto, Tomotsugu; Toba, Yoshiki; Utsumi, Yousuke; Oi, Nagisa; Takagi, Toshinobu; Malkan, Matt; Ohayma, Youichi; Murata, Kazumi; Price, Paul; Karouzos, Marios; Matsuhara, Hideo; Nakagawa, Takao; Wada, Takehiko; Serjeant, Steve; Burgarella, Denis; Buat, Veronique; Takada, Masahiro; Miyazaki, Satoshi; Oguri, Masamune; Miyaji, Takamitsu; Oyabu, Shinki; White, Glenn; Takeuchi, Tsutomu; Inami, Hanae; Perason, Chris; Malek, Katarzyna; Marchetti, Lucia; Lee, Hyung Mok; Im, Myung; Kim, Seong Jin; Koptelova, Ekaterina; Chao, Dani; Wu, Yi-Han; AKARI NEP Survey Team; AKARI All Sky Survey Team
2017-03-01
The extragalactic background suggests half the energy generated by stars was reprocessed into the infrared (IR) by dust. At z ∼1.3, 90% of star formation is obscured by dust. To fully understand the cosmic star formation history, it is critical to investigate infrared emission. AKARI has made deep mid-IR observation using its continuous 9-band filters in the NEP field (5.4 deg^2), using ∼10% of the entire pointed observations available throughout its lifetime. However, there remain 11,000 AKARI infrared sources undetected with the previous CFHT/Megacam imaging (r ∼25.9ABmag). Redshift and IR luminosity of these sources are unknown. These sources may contribute significantly to the cosmic star-formation rate density (CSFRD). For example, if they all lie at 1 < z < 2, the CSFRD will be twice as high at the epoch. We are carrying out deep imaging of the NEP field in 5 broad bands (g,r,i,z, and y) using Hyper Suprime-Camera (HSC), which has 1.5 deg field of view in diameter on Subaru 8m telescope. This will provide photometric redshift information, and thereby IR luminosity for the previously-undetected 11,000 faint AKARI IR sources. Combined with AKARI's mid-IR AGN/SF diagnosis, and accurate mid-IR luminosity measurement, this will allow a complete census of cosmic star-formation/AGN accretion history obscured by dust.
Starspots and active regions on IN Com: UBVRI photometry and linear polarization
NASA Astrophysics Data System (ADS)
Alekseev, I. Yu.; Kozlova, O. V.
2014-06-01
The activity of the variable star IN Com is considered using the latest multicolor UBVRI photometry and linear polarimetric observations carried out during a decade. The photometric variability of the star is fully described using the zonal spottedness model developed at the Crimean Astrophysical Observatory (CrAO). Spotted regions cover up to 22% of the total stellar surface, with the difference in temperatures between the quiet photosphere and the spot umbra being 600 K. The spots are located at middle and low latitudes (40°-55°). The intrinsic broad-band linear polarization of IN Com and its rotational modulation in the U band due to local magnetic fields at the most spotted (active) stellar longitudes were detected for the first time.
NASA Technical Reports Server (NTRS)
Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, Todd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa;
2015-01-01
This paper describes the design of a unique suite of mechanisms which make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses 4 stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.
NASA Technical Reports Server (NTRS)
Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, TOdd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa;
2016-01-01
This paper describes the design of a unique suite of mechanisms that make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses four stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.
Wilkinson Microwave Anisotropy Probe (WMAP) Attitude Estimation Filter Comparison
NASA Technical Reports Server (NTRS)
Harman, Richard R.
2005-01-01
The Wilkinson Microwave Anisotropy Probe (WMAP) spacecraft was launched in June of 2001. The sensor complement of WMAP consists of two Autonomous Star Trackers (ASTs), two Fine Sun Sensors (FSSs), and a gyro package which contains redundancy about one of the WMAP body axes. The onboard attitude estimation filter consists of an extended Kalman filter (EKF) solving for attitude and gyro bias errors which are then resolved into a spacecraft attitude quaternion and gyro bias. A pseudo-linear Kalman filter has been developed which directly estimates the spacecraft attitude quaternion, rate, and gyro bias. In this paper, the performance of the two filters is compared for the two major control modes of WMAP: inertial mode and observation mode.
NASA Astrophysics Data System (ADS)
Martocchia, S.; Niederhofer, F.; Dalessandro, E.; Bastian, N.; Kacharov, N.; Usher, C.; Cabrera-Ziri, I.; Lardo, C.; Cassisi, S.; Geisler, D.; Hilker, M.; Hollyhead, K.; Kozhurina-Platais, V.; Larsen, S.; Mackey, D.; Mucciarelli, A.; Platais, I.; Salaris, M.
2018-04-01
We have recently shown that the ˜2 Gyr old Large Magellanic Cloud star cluster NGC 1978 hosts multiple populations in terms of star-to-star abundance variations in [N/Fe]. These can be seen as a splitting or spread in the sub-giant and red giant branches (SGB and RGB) when certain photometric filter combinations are used. Due to its relative youth, NGC 1978 can be used to place stringent limits on whether multiple bursts of star-formation have taken place within the cluster, as predicted by some models for the origin of multiple populations. We carry out two distinct analyses to test whether multiple star-formation epochs have occurred within NGC 1978. First, we use UV CMDs to select stars from the first and second population along the SGB, and then compare their positions in optical CMDs, where the morphology is dominantly controlled by age as opposed to multiple population effects. We find that the two populations are indistinguishable, with age differences of 1 ± 20 Myr between them. This is in tension with predictions from the AGB scenario for the origin of multiple populations. Second, we estimate the broadness of the main sequence turnoff (MSTO) of NGC 1978 and we report that it is consistent with the observational errors. We find an upper limit of ˜65 Myr on the age spread in the MSTO of NGC 1978. This finding is in conflict with the age spread scenario as origin of the extendend MSTO in intermediate age clusters, while it fully supports predictions from the stellar rotation model.
NASA Astrophysics Data System (ADS)
Martocchia, S.; Niederhofer, F.; Dalessandro, E.; Bastian, N.; Kacharov, N.; Usher, C.; Cabrera-Ziri, I.; Lardo, C.; Cassisi, S.; Geisler, D.; Hilker, M.; Hollyhead, K.; Kozhurina-Platais, V.; Larsen, S.; Mackey, D.; Mucciarelli, A.; Platais, I.; Salaris, M.
2018-07-01
We have recently shown that the ˜2 Gyr old Large Magellanic Cloud star cluster NGC 1978 hosts multiple populations in terms of star-to-star abundance variations in [N/Fe]. These can be seen as a splitting or spread in the subgiant and red giant branches (SGB and RGB) when certain photometric filter combinations are used. Because of its relative youth, NGC 1978 can be used to place stringent limits on whether multiple bursts of star formation have taken place within the cluster, as predicted by some models for the origin of multiple populations. We carry out two distinct analyses to test whether multiple star formation epochs have occurred within NGC 1978. First, we use ultraviolet colour-magnitude diagrams (CMDs) to select stars from the first and second population along the SGB, and then compare their positions in optical CMDs, where the morphology is dominantly controlled by age as opposed to multiple population effects. We find that the two populations are indistinguishable, with age differences of 1 ± 20 Myr between them. This is in tension with predictions from the asymptotic giant branch scenario for the origin of multiple populations. Second, we estimate the broadness of the main-sequence turn-off (MSTO) of NGC 1978 and we report that it is consistent with the observational errors. We find an upper limit of ˜65 Myr on the age spread in the MSTO of NGC 1978. This finding is in conflict with the age spread scenario as origin of the extended MSTO in intermediate-age clusters, while it fully supports predictions from the stellar rotation model.
Physical properties and H-ionizing-photon production rates of extreme nearby star-forming regions
NASA Astrophysics Data System (ADS)
Chevallard, Jacopo; Charlot, Stéphane; Senchyna, Peter; Stark, Daniel P.; Vidal-García, Alba; Feltre, Anna; Gutkin, Julia; Jones, Tucker; Mainali, Ramesh; Wofford, Aida
2018-06-01
Measurements of the galaxy UV luminosity function at z ≳ 6 suggest that young stars hosted in low-mass star-forming galaxies produced the bulk of hydrogen-ionizing photons necessary to reionize the intergalactic medium (IGM) by redshift z ˜ 6. Whether star-forming galaxies dominated cosmic reionization, however, also depends on their stellar populations and interstellar medium properties, which set, among other things, the production rate of H-ionizing photons, ξ _{ion}^\\star, and the fraction of these escaping into the IGM. Given the difficulty of constraining with existing observatories the physical properties of z ≳ 6 galaxies, in this work we focus on a sample of ten nearby objects showing UV spectral features comparable to those observed at z ≳ 6. We use the new-generation BEAGLE tool to model the UV-to-optical photometry and UV/optical emission lines of these Local `analogues' of high-redshift galaxies, finding that our relatively simple, yet fully self-consistent, physical model can successfully reproduce the different observables considered. Our galaxies span a broad range of metallicities and are characterised by high ionization parameters, low dust attenuation, and very young stellar populations. Through our analysis, we derive a novel diagnostic of the production rate of H-ionizing photons per unit UV luminosity, ξ _{ion}^\\star, based on the equivalent width of the bright [O III]49595007 line doublet, which does not require measurements of H-recombination lines. This new diagnostic can be used to estimate ξ _{ion}^\\star from future direct measurements of the [O III]49595007 line using JWST/NIRSpec (out to z ˜ 9.5), and by exploiting the contamination by Hβ +[O III]{4959}{5007}} of photometric observations of distant galaxies, for instance from existing Spitzer/IRAC data and from future ones with JWST/NIRCam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yun; Kouwenhoven, M. B. N.; Stamatellos, D.
The origin of very low-mass hydrogen-burning stars, brown dwarfs (BDs), and planetary-mass objects (PMOs) at the low-mass end of the initial mass function is not yet fully understood. Gravitational fragmentation of circumstellar disks provides a possible mechanism for the formation of such low-mass objects. The kinematic and binary properties of very low-mass objects formed through disk fragmentation at early times (<10 Myr) were discussed in our previous paper. In this paper we extend the analysis by following the long-term evolution of disk-fragmented systems up to an age of 10 Gyr, covering the ages of the stellar and substellar populations inmore » the Galactic field. We find that the systems continue to decay, although the rates at which companions escape or collide with each other are substantially lower than during the first 10 Myr, and that dynamical evolution is limited beyond 1 Gyr. By t = 10 Gyr, about one third of the host stars are single, and more than half have only one companion left. Most of the other systems have two companions left that orbit their host star in widely separated orbits. A small fraction of companions have formed binaries that orbit the host star in a hierarchical triple configuration. The majority of such double-companion systems have internal orbits that are retrograde with respect to their orbits around their host stars. Our simulations allow a comparison between the predicted outcomes of disk fragmentation with the observed low-mass hydrogen-burning stars, BDs, and PMOs in the solar neighborhood. Imaging and radial velocity surveys for faint binary companions among nearby stars are necessary for verification or rejection of the formation mechanism proposed in this paper.« less
SDSS IV MaNGA - sSFR profiles and the slow quenching of discs in green valley galaxies
NASA Astrophysics Data System (ADS)
Belfiore, Francesco; Maiolino, Roberto; Bundy, Kevin; Masters, Karen; Bershady, Matthew; Oyarzún, Grecco A.; Lin, Lihwai; Cano-Diaz, Mariana; Wake, David; Spindler, Ashley; Thomas, Daniel; Brownstein, Joel R.; Drory, Niv; Yan, Renbin
2018-07-01
We study radial profiles in H α equivalent width and specific star formation rate (sSFR) derived from spatially resolved SDSS-IV MaNGA spectroscopy to gain insight on the physical mechanisms that suppress star formation and determine a galaxy's location in the SFR-M⋆ diagram. Even within the star-forming `main sequence', the measured sSFR decreases with stellar mass, in both an integrated and spatially resolved sense. Flat sSFR radial profiles are observed for log(M⋆/M⊙) < 10.5, while star-forming galaxies of higher mass show a significant decrease in sSFR in the central regions, a likely consequence of both larger bulges and an inside-out growth history. Our primary focus is the green valley, constituted by galaxies lying below the star formation main sequence, but not fully passive. In the green valley we find sSFR profiles that are suppressed with respect to star-forming galaxies of the same mass at all galactocentric distances out to 2 effective radii. The responsible quenching mechanism therefore appears to affect the entire galaxy, not simply an expanding central region. The majority of green valley galaxies of log(M⋆/M⊙) > 10.0 are classified spectroscopically as central low-ionization emission-line regions (cLIERs). Despite displaying a higher central stellar mass concentration, the sSFR suppression observed in cLIER galaxies is not simply due to the larger mass of the bulge. Drawing a comparison sample of star-forming galaxies with the same M⋆ and Σ _{1 kpc} (the mass surface density within 1 kpc), we show that a high Σ _{1 kpc} is not a sufficient condition for determining central quiescence.
Stellar Activity at the End of the Main Sequence: GHRS Observations of the M8 Ve Star VB 10
NASA Technical Reports Server (NTRS)
Linsky, Jeffrey L.; Wood, Brian E.; Brown, Alexander; Giampapa, Mark S.; Ambruster, Carol
1995-01-01
We present Goddard High Resolution Spectrograph observations of the M8 Ve star VB 10 (equal to G1 752B), located very near the end of the stellar main sequence, and its dM3.5 binary companion G1 752A. These coeval stars provide a test bed for studying whether the outer atmospheres of stars respond to changes in internal structure as stars become fully convective near mass 0.3 solar mass (about spectral type M5), where the nature of the stellar magnetic dynamo presumably changes, and near the transition from red to brown dwarfs near mass 0.08 solar mass (about spectral type M9), when hydrogen burning ceases at the end of the main sequence. We obtain upper limits for the quiescent emission of VB 10 but observe a transition region spectrum during a large flare, which indicates that some type of magnetic dynamo must be present. Two indirect lines of evidence-scaling from the observed X-ray emission and scaling from a time-resolved flare on AD Leo suggest that the fraction of the stellar bolometric luminosity that heats the transition region of VB 10 outside of obvious flares is comparable to, or larger than, that for G1 752A. This suggests an increase in the magnetic heating rates, as measured by L(sub line)/L(sub bol) ratios, across the radiative/convective core boundary and as stars approach the red/brown dwarf boundary. These results provide new constraints for dynamo models and models of coronal and transition-region heating in late-type stars.
Existential autonomy: why patients should make their own choices.
Madder, H
1997-08-01
Savulescu has recently introduced the "rational non-interventional paternalist" model of the patient-doctor relationship. This paper addresses objections to such a model from the perspective of an anaesthetist. Patients need to make their own decisions if they are to be fully autonomous. Rational non-interventional paternalism undermines the importance of patient choice and so threatens autonomy. Doctors should provide an evaluative judgment of the best medical course of action, but ought to restrict themselves to helping patients to make their own choices rather than making such choices for them.
Existential autonomy: why patients should make their own choices.
Madder, H
1997-01-01
Savulescu has recently introduced the "rational non-interventional paternalist" model of the patient-doctor relationship. This paper addresses objections to such a model from the perspective of an anaesthetist. Patients need to make their own decisions if they are to be fully autonomous. Rational non-interventional paternalism undermines the importance of patient choice and so threatens autonomy. Doctors should provide an evaluative judgment of the best medical course of action, but ought to restrict themselves to helping patients to make their own choices rather than making such choices for them. PMID:9279743
[Ways of creating a nutrition system for a Martian expedition crew].
Agureev, A N; Kalandarov, S
2003-01-01
Approaches to a more perfect system of food supply to a Martian crew have been outlined in view of the experience of providing food stuffs for orbiting crews. Considering the extended period of the autonomous interplanetary voyage during which the humans should stay healthy and effective, development of especially lavish menu and methods to maintain food quality throughout the mission become critical. These are the two conditions to be met in order to provide the crew with balanced diets and fully satisfy needs of their organism.
NASA Technical Reports Server (NTRS)
Ifju, Peter
2002-01-01
Micro Air Vehicles (MAVs) will be developed for tracking individuals, locating terrorist threats, and delivering remote sensors, for surveillance and chemical/biological agent detection. The tasks are: (1) Develop robust MAV platform capable of carrying sensor payload. (2) Develop fully autonomous capabilities for delivery of sensors to remote and distant locations. The current capabilities and accomplishments are: (1) Operational electric (inaudible) 6-inch MAVs with novel flexible wing, providing superior aerodynamic efficiency and control. (2) Vision-based flight stability and control (from on-board cameras).
Automated Re-Entry System using FNPEG
NASA Technical Reports Server (NTRS)
Johnson, Wyatt R.; Lu, Ping; Stachowiak, Susan J.
2017-01-01
This paper discusses the implementation and simulated performance of the FNPEG (Fully Numerical Predictor-corrector Entry Guidance) algorithm into GNC FSW (Guidance, Navigation, and Control Flight Software) for use in an autonomous re-entry vehicle. A few modifications to FNPEG are discussed that result in computational savings -- a change to the state propagator, and a modification to cross-range lateral logic. Finally, some Monte Carlo results are presented using a representative vehicle in both a high-fidelity 6-DOF (degree-of-freedom) sim as well as in a 3-DOF sim for independent validation.
The DFKI Competence Center for Ambient Assisted Living
NASA Astrophysics Data System (ADS)
Frey, Jochen; Stahl, Christoph; Röfer, Thomas; Krieg-Brückner, Bernd; Alexandersson, Jan
The DFKI Competence Center for Ambient Assisted Living (CCAAL) is a cross-project and cross-department virtual organization within the German Research Center for Artificial Intelligence coordinating and conducting research and development in the area of Ambient Assisted Living (AAL). Our demonstrators range from multimodal speech dialog systems to fully instrumented environments allowing the development of intelligent assistant systems, for instance an autonomous wheelchair, or the recognition and processing of everyday activities in a smart home. These innovative technologies are then tested, evaluated and demonstrated in DFKI's living labs.
Suzaku Finds "Fossil" Fireballs from Supernovae
2017-12-08
Suzaku Finds "Fossil" Fireballs from Supernovae In a supernova remnant known as the Jellyfish Nebula, Suzaku detected X-rays from fully ionized silicon and sulfur -- an imprint of higher-temperature conditions immediately following the star's explosion. The nebula is about 65 light-years across. (12/30/2009) Credit: JAXA/NASA/Suzaku To learn more go to: www.nasa.gov/mission_pages/astro-e2/news/fossil-fireballs...
Microscopic approach to string gas cosmology
NASA Astrophysics Data System (ADS)
Evnin, Oleg
2014-03-01
In this contribution to the proceedings of the Conference on Modern Physics of Compact Stars and Relativistic Gravity in Yerevan, Armenia (September 18-21, 2013), I review recent work attempting to give a fundamental definition to string evolution in a dynamical, fully compact universe, and present a sketch of how the resulting formalism can be used for addressing questions of phenomenological significance in the field of string gas cosmology.
VLA Reveals a Close Pair of Potential Planetary Systems
NASA Astrophysics Data System (ADS)
1998-09-01
Planets apparently can form in many more binary-star systems than previously thought, according to astronomers who used the National Science Foundation's Very Large Array (VLA) radio telescope to image protoplanetary disks around a close pair of stars. "Most stars in the universe are not alone, like our Sun, but are part of double or triple systems, so this means that the number of potential planets is greater than we realized," said Luis Rodriguez, of the National Autonomous University in Mexico City, who led an international observing team that made the discovery. The astronomers announced their results in the Sept. 24 issue of the scientific journal Nature. The researchers used the VLA to study a stellar nursery - a giant cloud of gas and dust - some 450 light-years distant in the constellation Taurus, where stars the size of the Sun or smaller are being formed. They aimed at one particular object, that, based on previous infrared and radio observations, was believed to be a very young star. The VLA observations showed that the object was not a single young star but a pair of young stars, separated only slightly more than the Sun and Pluto. The VLA images show that each star in the pair is surrounded by an orbiting disk of dust, extending out about as far as the orbit of Saturn. Such dusty disks are believed to be the material from which planets form. Similar disks are seen around single stars, but the newly-discovered disks around the stars in the binary system are about ten times smaller, their size limited by the gravitational effect of the other, nearby star. Their existence indicates, however, that such protoplanetary disks, though truncated in size, still can survive in such a close double-star system. "It was surprising to see these disks in a binary system with the stars so close together," said Rodriguez. "Each of these disks contains enough mass to form a solar system like our own," said David Wilner, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. "However, we don't think these solar systems would be able to form outer, icy planets like Uranus and Neptune, because of the small size of the dust disks." The new observations "imply that young protoplanetary disks can contain considerably more mass within (a distance equal to Saturn's orbital radius) than astronomers have been willing to contemplate," wrote Alan P. Boss of the Carnegie Institution of Washington in an accompanying Nature article analyzing the results. If the stars were a few times closer together, the researchers point out, the gravitational effects of both would disrupt the disks and prevent any planets from forming. "If these disks form planetary systems, they would be among the closest possible adjacent sets of planets in the universe," said Rodriguez. Boss suggested that a giant planet formed near the edge of one of the disks might be ejected from the system by the gravitational effect of the companion star. This, he says, might explain the possible "runaway planet" shown in a Hubble Space Telescope image released in May. In that result, a planet appears to have been ejected by a binary-star system similar in size to that seen by the VLA. Further observations are required to confirm that result. In addition to Rodriguez and Wilner, the researchers are Paola D'Alessio, Salvador Curiel, Yolanda Gomez, Susana Lizano, Jorge Canto, and Alejandro C. Raga of the National Autonomous University in Mexico City; Paul Ho of the Harvard-Smithsonian Center for Astrophysics; Jose M. Torrelles of the Astrophysical Institute of Andalucia in Spain; and Alan Pedlar of the Jodrell Bank observatory in Britain. The observations of the double-star system were made at a radio wavelength of 7 millimeters, a wavelength at which emission from cosmic dust is readily detected. Astronomers long realized that the VLA had sufficient resolving power - the ability to see fine detail - to make images of the dust disks around young stars that form the building blocks of planets. Until 1993, however, the VLA could not do so because it had no receivers that worked at the required wavelength, 7 mm. Rodriguez, an experienced VLA observer interested in how planetary systems form, obtained a $1 million grant in 1992 from Mexico's National Science and Technology Foundation (Spanish acronym CONACyT) to allow the National Radio Astronomy Observatory (NRAO) to build such receivers for 13 of the VLA's 27 230-ton dish antennas. Those receivers were built and installed in 1993 and 1994, and now are used by numerous observers, including Rodriguez. With these receivers, the VLA images show 10 times more detail than any previous observations at these wavelengths. "This research proves how valuable these receivers are in increasing the scientific capability of the VLA," said Miller Goss, NRAO's director of VLA operations. "In fact, this type of work is one reason the U.S. National Science Foundation is providing the money to equip the rest of the VLA's antennas with the same kind of receivers." The additional receivers will greatly improve the quality of images for complex objects, including planetary systems in formation, said NRAO astronomer Rick Perley. "We plan a major upgrade to all aspects of the VLA in the next few years," Perley said. "The VLA upgrade will mean that astronomers using this wavelength can find about 60 times more objects of any particular type and make better images of them. That improves the chances of finding rare objects, which often are the signposts pointing to new insights into physics." The VLA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Highly automated on-orbit operations of the NuSTAR telescope
NASA Astrophysics Data System (ADS)
Roberts, Bryce; Bester, Manfred; Dumlao, Renee; Eckert, Marty; Johnson, Sam; Lewis, Mark; McDonald, John; Pease, Deron; Picard, Greg; Thorsness, Jeremy
2014-08-01
UC Berkeley's Space Sciences Laboratory (SSL) currently operates a fleet of seven NASA satellites, which conduct research in the fields of space physics and astronomy. The newest addition to this fleet is a high-energy X-ray telescope called the Nuclear Spectroscopic Telescope Array (NuSTAR). Since 2012, SSL has conducted on-orbit operations for NuSTAR on behalf of the lead institution, principle investigator, and Science Operations Center at the California Institute of Technology. NuSTAR operations benefit from a truly multi-mission ground system architecture design focused on automation and autonomy that has been honed by over a decade of continual improvement and ground network expansion. This architecture has made flight operations possible with nominal 40 hours per week staffing, while not compromising mission safety. The remote NuSTAR Science Operation Center (SOC) and Mission Operations Center (MOC) are joined by a two-way electronic interface that allows the SOC to submit automatically validated telescope pointing requests, and also to receive raw data products that are automatically produced after downlink. Command loads are built and uploaded weekly, and a web-based timeline allows both the SOC and MOC to monitor the state of currently scheduled spacecraft activities. Network routing and the command and control system are fully automated by MOC's central scheduling system. A closed-loop data accounting system automatically detects and retransmits data gaps. All passes are monitored by two independent paging systems, which alert staff of pass support problems or anomalous telemetry. NuSTAR mission operations now require less than one attended pass support per workday.
NASA Astrophysics Data System (ADS)
Dawoodbhoy, Taha; Shapiro, Paul R.; Choi, Jun-Hwan; Ocvirk, Pierre; Gillet, Nicolas; Aubert, Dominique; Iliev, Ilian T.; Teyssier, Romain; Yepes, Gustavo; Sullivan, David; Knebe, Alexander; Gottloeber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda; Stranex, Timothy
2017-01-01
The first stars and galaxies released enough ionizing radiation into the intergalactic medium (IGM) to ionize almost all the hydrogen atoms there by redshift z ~ 6. This process was "patchy" --- ionized zones grew in size over time until they overlapped to finish reionization.The photoheating associated with reionization caused a negative feedback on the galactic sources of reionization that suppressed star formation in low-mass galactic halos, especially those below 109 M⊙. To establish the causal connection between reionization and this suppression, we analyze the results of CoDa ("Cosmic Dawn"), the first fully-coupled radiation-hydrodynamical simulation of reionization and galaxy formation in the Local Universe, in a volume large enough to model reionization globally but with enough resolving power to follow all the atomic-cooling galactic halos in that volume. A 90 Mpc box was simulated from a constrained realization of primordial fluctuations, chosen to reproduce present-day features of the Local Group, including the Milky Way and M31, and the local universe beyond, including the Virgo cluster, with 40963 N-body particles for the dark matter and 40963 cells for the atomic gas and ionizing radiation. We use these results to show that the star formation rate in haloes below 109 M⊙ in different patches of the universe declined when each patch was reionized. Star formation in much more massive haloes continued, however. As a result, the earliest patches to develop structure and reionize ultimately produced more stars than they needed to reionize themselves, exporting their starlight to help reionize the regions that developed structure late.
NASA Astrophysics Data System (ADS)
Dawoodbhoy, Taha; Shapiro, Paul R.; Choi, Jun-Hwan; Ocvirk, Pierre; Gillet, Nicolas; Aubert, Dominique; Iliev, Ilian T.; Teyssier, Romain; Yepes, Gustavo; Sullivan, David; Knebe, Alexander; Gottloeber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda; Stranex, Timothy
2017-06-01
The first stars and galaxies released enough ionizing radiation into the intergalactic medium (IGM) to ionize almost all the hydrogen atoms there by redshift z ~ 6. This process was "patchy" --- ionized zones grew in size over time until they overlapped to finish reionization. The photoheating associated with reionization caused a negative feedback on the galactic sources of reionization that suppressed star formation in low-mass galactic halos, especially those below 109 M⊙. To establish the causal connection between reionization and this suppression, we analyze the results of CoDa ("Cosmic Dawn"), the first fully-coupled radiation-hydrodynamical simulation of reionization and galaxy formation in the Local Universe, in a volume large enough to model reionization globally but with enough resolving power to follow all the atomic-cooling galactic halos in that volume. A 90 Mpc box was simulated from a constrained realization of primordial fluctuations, chosen to reproduce present-day features of the Local Group, including the Milky Way and M31, and the local universe beyond, including the Virgo cluster, with 40963 N-body particles for the dark matter and 40963 cells for the atomic gas and ionizing radiation. We use these results to show that the star formation rate in haloes below 109 M⊙ in different patches of the universe declined when each patch was reionized. Star formation in much more massive haloes continued, however. As a result, the earliest patches to develop structure and reionize ultimately produced more stars than they needed to reionize themselves, exporting their starlight to help reionize the regions that developed structure late.
Global Infrared–Radio Spectral Energy Distributions of Galactic Massive Star-Forming Regions
NASA Astrophysics Data System (ADS)
Povich, Matthew Samuel; Binder, Breanna Arlene
2018-01-01
We present a multiwavelength study of 30 Galactic massive star-forming regions. We fit multicomponent dust, blackbody, and power-law continuum models to 3.6 µm through 10 mm spectral energy distributions obtained from Spitzer, MSX, IRAS, Herschel, and Planck archival survey data. Averaged across our sample, ~20% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ~50% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates NC ≥ 1050 s–1 and total infrared luminosity LTIR ≥ 106.8 L⊙) have higher percentages of absorbed Lyman continuum photons (~40%) and dust-reprocessed starlight (~80%). The monochromatic 70-µm luminosity L70 is linearly correlated with LTIR, and on average L70/LTIR = 50%, in good agreement with extragalactic studies. Calibrated against the known massive stellar content in our sampled H II regions, we find that star formation rates based on L70 are in reasonably good agreement with extragalactic calibrations, when corrected for the smaller physical sizes of the Galactic regions. We caution that absorption of Lyman continuum photons prior to contributing to the observed ionizing photon rate may reduce the attenuation-corrected Hα emission, systematically biasing extragalactic calibrations toward lower star formation rates when applied to spatially-resolved studies of obscured star formation.This work was supported by the National Science Foundation under award CAREER-1454333.
The Hα Emission of Nearby M Dwarfs and its Relation to Stellar Rotation
NASA Astrophysics Data System (ADS)
Newton, Elisabeth R.; Irwin, Jonathan; Charbonneau, David; Berlind, Perry; Calkins, Michael L.; Mink, Jessica
2017-01-01
The high-energy emission from low-mass stars is mediated by the magnetic dynamo. Although the mechanisms by which fully convective stars generate large-scale magnetic fields are not well understood, it is clear that, as for solar-type stars, stellar rotation plays a pivotal role. We present 270 new optical spectra of low-mass stars in the Solar Neighborhood. Combining our observations with those from the literature, our sample comprises 2202 measurements or non-detections of Hα emission in nearby M dwarfs. This includes 466 with photometric rotation periods. Stars with masses between 0.1 and 0.6 M⊙ are well-represented in our sample, with fast and slow rotators of all masses. We observe a threshold in the mass-period plane that separates active and inactive M dwarfs. The threshold coincides with the fast-period edge of the slowly rotating population, at approximately the rotation period at which an era of rapid rotational evolution appears to cease. The well-defined active/inactive boundary indicates that Hα activity is a useful diagnostic for stellar rotation period, e.g., for target selection for exoplanet surveys, and we present a mass-period relation for inactive M dwarfs. We also find a significant, moderate correlation between LHα/Lbol and variability amplitude: more active stars display higher levels of photometric variability. Consistent with previous work, our data show that rapid rotators maintain a saturated value of LHα/Lbol. Our data also show a clear power-law decay in LHα/Lbol with Rossby number for slow rotators, with an index of -1.7 ± 0.1.
A GLIMPSE of Star Formation in the Outer Galaxy
NASA Astrophysics Data System (ADS)
Winston, Elaine; Hora, Joseph L.; Tolls, Volker
2018-01-01
The wealth of infrared data provided by recent infrared missions such as Spitzer, Herschel, and WISE has yet to be fully mined in the study of star formation in the outer galaxy. The nearby galaxy and massive star forming regions towards the galactic center have been extensively studied. However the outer regions of the Milky Way, where the metallicity is intermediate in value between the inner galactic disk and the Magellanic Clouds, has not been systematically studied. We are using Spitzer/IRAC’s GLIMPSE (Galactic Legacy Infrared Mid-plane Survey Extraordinaire) observations of the galactic plane at 3.6, 4.5, 5.8, and 8.0 microns to identify young stellar objects (YSOs) via their disk emission in the mid-infrared. A tiered clustering analysis is then performed: preliminary large scale clustering is identified across the field using a Density-Based Spatial Clustering of Applications with Noise (DBSCAN) technique. Smaller scale sub clustering within these regions is performed using an implementation of the Minimum Spanning Tree (MST) technique. The YSOs are then compared to known objects in the SIMBAD catalogue and their photometry and cluster membership is augmented using available Herschel and WISE photometry. We compare our results to those in the inner galaxy to determine how dynamical processes and environmental factors affect the star formation efficiency. These results will have applications to the study of star formation in other galaxies, where only global properties can be determined. We will present here the results of our initial investigation into star formation in the outer galaxy using the Spitzer/GLIMPSE observations of the SMOG field.
Evolution of brains and behavior for optimal foraging: A tale of two predators
Catania, Kenneth C.
2012-01-01
Star-nosed moles and tentacled snakes have exceptional mechanosensory systems that illustrate a number of general features of nervous system organization and evolution. Star-nosed moles use the star for active touch—rapidly scanning the environment with the nasal rays. The star has the densest concentration of mechanoreceptors described for any mammal, with a central tactile fovea magnified in anatomically visible neocortical modules. The somatosensory system parallels visual system organization, illustrating general features of high-resolution sensory representations. Star-nosed moles are the fastest mammalian foragers, able to identify and eat small prey in 120 ms. Optimal foraging theory suggests that the star evolved for profitably exploiting small invertebrates in a competitive wetland environment. The tentacled snake’s facial appendages are superficially similar to the mole’s nasal rays, but they have a very different function. These snakes are fully aquatic and use tentacles for passive detection of nearby fish. Trigeminal afferents respond to water movements and project tentacle information to the tectum in alignment with vision, illustrating a general theme for the integration of different sensory modalities. Tentacled snakes act as rare enemies, taking advantage of fish C-start escape responses by startling fish toward their strike—often aiming for the future location of escaping fish. By turning fish escapes to their advantage, snakes increase strike success and reduce handling time with head-first captures. The latter may, in turn, prevent snakes from becoming prey when feeding. Findings in these two unusual predators emphasize the importance of a multidisciplinary approach for understanding the evolution of brains and behavior. PMID:22723352
Licht, Carmilla M M; Naarding, Paul; Penninx, Brenda W J H; van der Mast, Roos C; de Geus, Eco J C; Comijs, Hannie
2015-04-01
Altered cardiac autonomic control has often been reported in depressed persons and might play an important role in the increased risk for cardiovascular disease (CVD). A negative association between cardiac autonomic control and depression might become specifically clinically relevant in persons 60 years or older as CVD risk increases with age. This study included data of 321 persons with a depressive disorder and 115 controls participating in the Netherlands Study of Depression in Older Persons (mean age = 70.3 years, 65.7% female). Respiratory sinus arrhythmia (RSA), heart rate (HR), and preejection period (PEP) were measured and compared between depressed persons and controls. In addition, the role of antidepressants and clinical characteristics (e.g., age of depression onset and comorbid anxiety) was examined. Compared with controls, depressed persons had lower RSA (mean [standard error of the mean] = 23.5 [1.2] milliseconds versus 18.6 [0.7] milliseconds, p = .001, d = 0.373) and marginally higher HR (73.1 [1.1] beats/min versus 75.6 [0.6] beats/min, p = .065, d = 0.212), but comparable PEP (113.9 [2.1] milliseconds versus 112.0 [1.2] milliseconds, p = .45, d = 0.087), fully adjusted. Antidepressants strongly attenuated the associations between depression and HR and RSA. Antidepressant-naïve depressed persons had similar HR and RSA to controls, whereas users of antidepressants showed significantly lower RSA. In addition, tricyclic antidepressant users had higher HR (p < .001, d = 0.768) and shorter PEP (p = .014, d = 0.395) than did controls. Depression was not associated with cardiac autonomic control, but antidepressants were in this sample. All antidepressants were associated with low cardiac parasympathetic control and specifically tricyclic antidepressants with high cardiac sympathetic control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, S. G.; Hillenbrand, L. A.; Donati, J.-F.
2012-08-20
Zeeman-Doppler imaging studies have shown that the magnetic fields of T Tauri stars can be significantly more complex than a simple dipole and can vary markedly between sources. We collect and summarize the magnetic field topology information obtained to date and present Hertzsprung-Russell (H-R) diagrams for the stars in the sample. Intriguingly, the large-scale field topology of a given pre-main-sequence (PMS) star is strongly dependent upon the stellar internal structure, with the strength of the dipole component of its multipolar magnetic field decaying rapidly with the development of a radiative core. Using the observational data as a basis, we arguemore » that the general characteristics of the global magnetic field of a PMS star can be determined from its position in the H-R diagram. Moving from hotter and more luminous to cooler and less luminous stars across the PMS of the H-R diagram, we present evidence for four distinct magnetic topology regimes. Stars with large radiative cores, empirically estimated to be those with a core mass in excess of {approx}40% of the stellar mass, host highly complex and dominantly non-axisymmetric magnetic fields, while those with smaller radiative cores host axisymmetric fields with field modes of higher order than the dipole dominant (typically, but not always, the octupole). Fully convective stars above {approx}> 0.5 M{sub Sun} appear to host dominantly axisymmetric fields with strong (kilo-Gauss) dipole components. Based on similarities between the magnetic properties of PMS stars and main-sequence M-dwarfs with similar internal structures, we speculate that a bistable dynamo process operates for lower mass stars ({approx}< 0.5 M{sub Sun} at an age of a few Myr) and that they will be found to host a variety of magnetic field topologies. If the magnetic topology trends across the H-R diagram are confirmed, they may provide a new method of constraining PMS stellar evolution models.« less