Sample records for fully charged battery

  1. Rechargeable Battery Auto-Cycler Requiring Lower Power and Dissipating Reduced Waste Heat

    NASA Technical Reports Server (NTRS)

    Hanson, Thomas David (Inventor)

    2018-01-01

    A battery charger system includes a power supply and a switch connected to the power supply wherein the switch has a first switch half and a second switch half. First and second batteries are selectively connected to the power supply via the switch. The first and second switch halves are moved between a plurality of operational positions to fully charge the first battery, discharge the first battery into the second battery, discharge the second battery into the first battery, and fully charge the second battery.

  2. Charging performance of automotive batteries-An underestimated factor influencing lifetime and reliable battery operation

    NASA Astrophysics Data System (ADS)

    Sauer, Dirk Uwe; Karden, Eckhard; Fricke, Birger; Blanke, Holger; Thele, Marc; Bohlen, Oliver; Schiffer, Julia; Gerschler, Jochen Bernhard; Kaiser, Rudi

    Dynamic charge acceptance and charge acceptance under constant voltage charging conditions are for two reasons essential for lead-acid battery operation: energy efficiency in applications with limited charging time (e.g. PV systems or regenerative braking in vehicles) and avoidance of accelerated ageing due to sulphation. Laboratory tests often use charge regimes which are beneficial for the battery life, but which differ significantly from the operating conditions in the field. Lead-acid batteries in applications with limited charging time and partial-state-of-charge operation are rarely fully charged due to their limited charge acceptance. Therefore, they suffer from sulphation and early capacity loss. However, when appropriate charging strategies are applied most of the lost capacity and thus performance for the user may be recovered. The paper presents several aspects of charging regimes and charge acceptance. Theoretical and experimental investigations show that temperature is the most critical parameter. Full charging within short times can be achieved only at elevated temperatures. A strong dependency of the charge acceptance during charging pulses on the pre-treatment of the battery can be observed, which is not yet fully understood. But these effects have a significant impact on the fuel efficiency of micro-hybrid electric vehicles.

  3. Charging system and method for multicell storage batteries

    DOEpatents

    Cox, Jay A.

    1978-01-01

    A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.

  4. Battery Charge Affects the Stability of Light Intensity from Light-emitting Diode Light-curing Units.

    PubMed

    Tongtaksin, A; Leevailoj, C

    This study investigated the influence of battery charge levels on the stability of light-emitting diode (LED) curing-light intensity by measuring the intensity from fully charged through fully discharged batteries. The microhardness of resin composites polymerized by the light-curing units at various battery charge levels was measured. The light intensities of seven fully charged battery LED light-curing units-1) LY-A180, 2) Bluephase, 3) Woodpecker, 4) Demi Plus, 5) Saab II, 6) Elipar S10, and 7) MiniLED-were measured with a radiometer (Kerr) after every 10 uses (20 seconds per use) until the battery was discharged. Ten 2-mm-thick cylindrical specimens of A3 shade nanofilled resin composite (PREMISE, Kerr) were prepared per LED light-curing unit group. Each specimen was irradiated by the fully charged light-curing unit for 20 seconds. The LED light-curing units were then used until the battery charge fell to 50%. Specimens were prepared again as described above. This was repeated again when the light-curing units' battery charge fell to 25% and when the light intensity had decreased to 400 mW/cm 2 . The top/bottom surface Knoop hardness ratios of the specimens were determined. The microhardness data were analyzed by one-way analysis of variance with Tukey test at a significance level of 0.05. The Pearson correlation coefficient was used to determine significant correlations between surface hardness and light intensity. We found that the light intensities of the Bluephase, Demi Plus, and Elipar S10 units were stable. The intensity of the MiniLED unit decreased slightly; however, it remained above 400 mW/cm 2 . In contrast, the intensities of the LY-A180, Woodpecker, and Saab II units decreased below 400 mW/cm 2 . There was also a significant decrease in the surface microhardnesses of the resin composite specimens treated with MiniLED, LY-A180, Woodpecker, and Saab II. In conclusion, the light intensity of several LED light-curing units decreased as the battery was discharged, with a coincident reduction in the units' ability to polymerize resin composite. Therefore, the intensity of an LED light-curing unit should be evaluated during the life of its battery charge to ensure that sufficient light intensity is being generated.

  5. Structural and thermal stabilities of layered Li(Ni 1/3Co 1/3Mn 1/3)O 2 materials in 18650 high power batteries

    NASA Astrophysics Data System (ADS)

    He, Yan-Bing; Ning, Feng; Yang, Quan-Hong; Song, Quan-Sheng; Li, Baohua; Su, Fangyuan; Du, Hongda; Tang, Zhi-Yuan; Kang, Feiyu

    The structural and thermal stabilities of the layered Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathode materials under high rate cycling and abusive conditions are investigated using the commercial 18650 Li(Ni 1/3Co 1/3Mn 1/3)O 2/graphite high power batteries. The Li(Ni 1/3Co 1/3Mn 1/3)O 2 materials maintain their layered structure even when the power batteries are subjected to 200 cycles with 10 C discharge rate at temperatures of 25 and 50 °C, whereas their microstructure undergoes obvious distortion, which leads to the relatively poor cycling performance of power batteries at high charge/discharge rates and working temperature. Under abusive conditions, the increase in the battery temperature during overcharge is attributed to both the reactions of electrolyte solvents with overcharged graphite anode and Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathode and the Joule heat that results from the great increase in the total resistance (R cell) of batteries. The reactions of fully charged Li(Ni 1/3Co 1/3Mn 1/3)O 2 cathodes and graphite anodes with electrolyte cannot be activated during short current test in the fully charged batteries. However, these reactions occur at around 140 °C in the fully charged batteries during oven test, which is much lower than the temperature of about 240 °C required for the reactions outside batteries.

  6. 46 CFR 112.39-1 - General.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...

  7. 46 CFR 112.39-1 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...

  8. 46 CFR 112.39-1 - General.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...

  9. 46 CFR 112.39-1 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...

  10. 46 CFR 112.39-1 - General.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Battery Operated Lanterns § 112.39-1 General. (a) Each battery-operated, relay-controlled lantern used in accordance with Table 112.05-5(a) must: (1) Have rechargeable batteries; (2) Have an automatic battery charger that maintains the battery in a fully charged condition; and (3) Not be readily portable. [CGD 74...

  11. Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity

    DOEpatents

    Rouhani, S. Zia

    1996-01-01

    In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery.

  12. Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity

    DOEpatents

    Rouhani, S.Z.

    1996-12-03

    In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery. 35 figs.

  13. Ni-MH battery charger with a compensator for electric vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H.W.; Han, C.S.; Kim, C.S.

    1996-09-01

    The development of a high-performance battery and safe and reliable charging methods are two important factors for commercialization of the Electric Vehicles (EV). Hyundai and Ovonic together spent many years in the research on optimum charging method for Ni-MH battery. This paper presents in detail the results of intensive experimental analysis, performed by Hyundai in collaboration with Ovonic. An on-board Ni-MH battery charger and its controller which are designed to use as a standard home electricity supply are described. In addition, a 3 step constant current recharger with the temperature and the battery aging compensator is proposed. This has amore » multi-loop algorithm function to detect its 80% and fully charged state, and carry out equalization charging control. The algorithm is focused on safety, reliability, efficiency, charging speed and thermal management (maintaining uniform temperatures within a battery pack). It is also designed to minimize the necessity for user input.« less

  14. Adiabatic charging of nickel-hydrogen batteries

    NASA Technical Reports Server (NTRS)

    Lurie, Chuck; Foroozan, S.; Brewer, Jeff; Jackson, Lorna

    1995-01-01

    Battery management during prelaunch activities has always required special attention and careful planning. The transition from nickel-cadium to nickel-hydrogen batteries, with their high self discharge rate and lower charge efficiency, as well as longer prelaunch scenarios, has made this aspect of spacecraft battery management even more challenging. The AXAF-I Program requires high battery state of charge at launch. The use of active cooling, to ensure efficient charging, was considered and proved to be difficult and expensive. Alternative approaches were evaluated. Optimized charging, in the absence of cooling, appeared promising and was investigated. Initial testing was conducted to demonstrate the feasibility of the 'Adiabatic Charging' approach. Feasibility was demonstrated and additional testing performed to provide a quantitative, parametric data base. The assumption that the battery is in an adiabatic environment during prelaunch charging is a conservative approximation because the battery will transfer some heat to its surroundings by convective air cooling. The amount is small compared to the heat dissipated during battery overcharge. Because the battery has a large thermal mass, substantial overcharge can occur before the cells get too hot to charge efficiently. The testing presented here simulates a true adiabatic environment. Accordingly the data base may be slightly conservative. The adiabatic charge methodology used in this investigation begins with stabilizing the cell at a given starting temperature. The cell is then fully insulated on all sides. Battery temperature is carefully monitored and the charge terminated when the cell temperature reaches 85 F. Charging has been evaluated with starting temperatures from 55 to 75 F.

  15. Lead-acid battery research and development—a vital key to winning new business

    NASA Astrophysics Data System (ADS)

    Bullock, Kathryn R.

    Battery strings are operated in a partial-state-of-charge mode (PSoC) in several new and changing applications for lead-acid batteries, in which the battery is seldom, if ever, fully charged or discharged. The lead battery industry faces new challenges as additional failure modes become evident in these PSoC applications. Without overcharge, cell imbalances caused by variations in cell temperature will cause premature failures. Valve-regulated lead-acid batteries are especially susceptible because of the heat generated by oxygen recombination at the negative plate. Improved thermal properties are shown by a proprietary battery design that combines absorptive glass mat and gelled acid technologies. Well-designed power systems are also required to reduce cell-to-cell temperature variations and, thereby, increase battery life.

  16. Piezoelectric-based hybrid reserve power sources for munitions

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Kwok, P.

    2017-04-01

    Reserve power sources are used extensively in munitions and other devices, such as emergency devices or remote sensors that need to be powered only once and for a relatively short duration. Current chemical reserve power sources, including thermal batteries and liquid reserve batteries sometimes require more than 100 msec to become fully activated. In many applications, however, electrical energy is required in a few msec following the launch event. In such applications, other power sources are needed to provide power until the reserve battery is fully activated. The amount of electrical energy that is required by most munitions before chemical reserve batteries are fully activated is generally small and can be provided by properly designed piezoelectric-based energy harvesting devices. In this paper, the development of a hybrid reserve power source that is constructed by integration of a piezoelectric-based energy harvesting device with a reserve battery to provide power almost instantaneously upon munitions firing or other similar events is being reported. A review of the state of the art in piezoelectric-based electrical energy harvesting methods and devices and their charge collection electronics for use in the developed hybrid power sources is provided together with the results of testing of the piezoelectric component of the power source and its electronic safety and charge collection electronics.

  17. Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tracy, Jennifer; Jacobson, Arne; Mills, Evan

    Low cost rechargeable flashlights that use LED technology are increasingly available in African markets. While LED technology holds promise to provide affordable, high quality lighting services, the widespread dissemination of low quality products may make it difficult to realize this potential. This study includes performance results for three brands of commonly available LED flashlights that were purchased in Kenya in 2009. The performance of the flashlights was evaluated by testing five units for each of the three brands. The tests included measurements of battery capacity, time required to charge the battery, maximum illuminance at one meter, operation time and lux-hoursmore » from a fully charged battery, light distribution, and color rendering. All flashlights tested performed well below the manufacturers? rated specifications; the measured battery capacity was 30-50percent lower than the rated capacity and the time required to fully charge the battery was 6-25percent greater than the rated time requirement. Our analysis further shows that within each brand there is considerable variability in each performance indicator. The five samples within a single brand varied from each other by as much as 22percent for battery capacity measurements, 3.6percent for the number of hours required for a full charge, 23percent for maximum initial lux, 38percent for run time, 11percent for light distribution and by as much as 200percent for color rendering. Results obtained are useful for creating a framework for quality assurance of off-grid LED products and will be valuable for informing consumers, distributors and product manufacturers about product performance.« less

  18. A Fully Implantable, NFC Enabled, Continuous Interstitial Glucose Monitor

    PubMed Central

    Anabtawi, Nijad; Freeman, Sabrina; Ferzli, Rony

    2017-01-01

    This work presents an integrated system-on-chip (SoC) that forms the core of a long-term, fully implantable, battery assisted, passive continuous glucose monitor. It integrates an amperometric glucose sensor interface, a near field communication (NFC) wireless front-end and a fully digital switched mode power management unit for supply regulation and on board battery charging. It uses 13.56 MHz (ISM) band to harvest energy and backscatter data to an NFC reader. System was implemented in 14nm CMOS technology and validated with post layout simulations. PMID:28702512

  19. A Fully Implantable, NFC Enabled, Continuous Interstitial Glucose Monitor.

    PubMed

    Anabtawi, Nijad; Freeman, Sabrina; Ferzli, Rony

    2016-02-01

    This work presents an integrated system-on-chip (SoC) that forms the core of a long-term, fully implantable, battery assisted, passive continuous glucose monitor. It integrates an amperometric glucose sensor interface, a near field communication (NFC) wireless front-end and a fully digital switched mode power management unit for supply regulation and on board battery charging. It uses 13.56 MHz (ISM) band to harvest energy and backscatter data to an NFC reader. System was implemented in 14nm CMOS technology and validated with post layout simulations.

  20. Verification of a Remaining Flying Time Prediction System for Small Electric Aircraft

    NASA Technical Reports Server (NTRS)

    Hogge, Edward F.; Bole, Brian M.; Vazquez, Sixto L.; Celaya, Jose R.; Strom, Thomas H.; Hill, Boyd L.; Smalling, Kyle M.; Quach, Cuong C.

    2015-01-01

    This paper addresses the problem of building trust in online predictions of a battery powered aircraft's remaining available flying time. A set of ground tests is described that make use of a small unmanned aerial vehicle to verify the performance of remaining flying time predictions. The algorithm verification procedure described here uses a fully functional vehicle that is restrained to a platform for repeated run-to-functional-failure experiments. The vehicle under test is commanded to follow a predefined propeller RPM profile in order to create battery demand profiles similar to those expected in flight. The fully integrated aircraft is repeatedly operated until the charge stored in powertrain batteries falls below a specified lower-limit. The time at which the lower-limit on battery charge is crossed is then used to measure the accuracy of remaining flying time predictions. Accuracy requirements are considered in this paper for an alarm that warns operators when remaining flying time is estimated to fall below a specified threshold.

  1. Improved Control of Charging Voltage for Li-Ion Battery

    NASA Technical Reports Server (NTRS)

    Timmerman, Paul; Bugga, Ratnakumar

    2006-01-01

    The protocol for charging a lithium-ion battery would be modified, according to a proposal, to compensate for the internal voltage drop (charging current internal resistance of the battery). The essence of the modification is to provide for measurement of the internal voltage drop and to increase the terminal-voltage setting by the amount of the internal voltage drop. Ordinarily, a lithium-ion battery is charged at constant current until its terminal voltage attains a set value equal to the nominal full-charge potential. The set value is chosen carefully so as not to exceed the lithium-plating potential, because plated lithium in metallic form constitutes a hazard. When the battery is charged at low temperature, the internal voltage drop is considerable because the electrical conductivity of the battery electrolyte is low at low temperature. Charging the battery at high current at any temperature also gives rise to a high internal voltage drop. In some cases, the internal voltage drop can be as high as 1 volt per cell. Because the voltage available for charging is less than the terminal voltage by the amount of the internal voltage drop, the battery is not fully charged (see figure), even when the terminal voltage reaches the set value. In the modified protocol, the charging current would be periodically interrupted so that the zero-current battery-terminal voltage indicative of the state of charge could be measured. The terminal voltage would also be measured at full charging current. The difference between the full-current and zero-current voltages would equal the internal voltage drop. The set value of terminal voltage would then be increased beyond the nominal full-charge potential by the amount of the internal voltage drop. This adjustment would be performed repeatedly, in real time, so that the voltage setting would track variations in the internal voltage drop to afford full charge without risk of lithium plating. If the charging current and voltage settings were controlled by a computer, then this method of charge control could readily be implemented in software.

  2. Lead-acid batteries in micro-hybrid applications. Part I. Selected key parameters

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Stoermer, A. O.; Kaiser, F.; Koehler, L.; Albers, J.; Kabza, H.

    Micro-hybrid electric vehicles were launched by BMW in March 2007. These are equipped with brake energy regeneration (BER) and the automatic start and stop function (ASSF) of the internal combustion engine. These functions are based on common 14 V series components and lead-acid (LA) batteries. The novelty is given by the intelligent onboard energy management, which upgrades the conventional electric system to the micro-hybrid power system (MHPS). In part I of this publication the key factors for the operation of LA batteries in the MHPS are discussed. Especially for BER one is high dynamic charge acceptance (DCA) for effective boost charging. Vehicle rest time is identified as a particular negative parameter for DCA. It can be refreshed by regular fully charging at elevated charge voltage. Thus, the batteries have to be outstandingly robust against overcharge and water loss. This can be accomplished for valve-regulated lead-acid (VRLA) batteries at least if they are mounted in the trunk. ASSF goes along with frequent high-rate loads for warm cranking. The internal resistance determines the drop of the power net voltage during cranking and is preferably low for reasons of power net stability even after years of operation. Investigations have to be done with aged 90 Ah VRLA-absorbent glass mat (AGM) batteries. Battery operation at partial state-of-charge gives a higher risk of deep discharging (overdischarging). Subsequent re-charging then is likely to lead to the formation of micro-short circuits in the absorbent glass mat separator.

  3. Visualizing the chemistry and structure dynamics in lithium-ion batteries by in-situ neutron diffraction

    PubMed Central

    Wang, Xun-Li; An, Ke; Cai, Lu; Feng, Zhili; Nagler, Stephen E.; Daniel, Claus; Rhodes, Kevin J.; Stoica, Alexandru D.; Skorpenske, Harley D.; Liang, Chengdu; Zhang, Wei; Kim, Joon; Qi, Yue; Harris, Stephen J.

    2012-01-01

    We report an in-situ neutron diffraction study of a large format pouch battery cell. The succession of Li-Graphite intercalation phases was fully captured under an 1C charge-discharge condition (i.e., charge to full capacity in 1 hour). However, the lithiation and dilithiation pathways are distinctively different and, unlike in slowing charging experiments with which the Li-Graphite phase diagram was established, no LiC24 phase was found during charge at 1C rate. Approximately 75 mol. % of the graphite converts to LiC6 at full charge, and a lattice dilation as large as 4% was observed during a charge-discharge cycle. Our work demonstrates the potential of in-situ, time and spatially resolved neutron diffraction study of the dynamic chemical and structural changes in “real-world” batteries under realistic cycling conditions, which should provide microscopic insights on degradation and the important role of diffusion kinetics in energy storage materials. PMID:23087812

  4. An advanced lithium-air battery exploiting an ionic liquid-based electrolyte.

    PubMed

    Elia, G A; Hassoun, J; Kwak, W-J; Sun, Y-K; Scrosati, B; Mueller, F; Bresser, D; Passerini, S; Oberhumer, P; Tsiouvaras, N; Reiter, J

    2014-11-12

    A novel lithium-oxygen battery exploiting PYR14TFSI-LiTFSI as ionic liquid-based electrolyte medium is reported. The Li/PYR14TFSI-LiTFSI/O2 battery was fully characterized by electrochemical impedance spectroscopy, capacity-limited cycling, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy. The results of this extensive study demonstrate that this new Li/O2 cell is characterized by a stable electrode-electrolyte interface and a highly reversible charge-discharge cycling behavior. Most remarkably, the charge process (oxygen oxidation reaction) is characterized by a very low overvoltage, enhancing the energy efficiency to 82%, thus, addressing one of the most critical issues preventing the practical application of lithium-oxygen batteries.

  5. Implementation of a transcutaneous charger for fully implantable middle ear hearing device.

    PubMed

    Lim, H; Yoon, Y; Lee, C; Park, I; Song, B; Cho, J

    2005-01-01

    A transcutaneous charger for the fully implantable middle ear hearing device (F-IMEHD), which can monitor the charging level of battery, has been designed and implemented. In order to recharge the battery of F-IMEHD, the electromagnetic coupling between primary coil at outer body and secondary coil at inner body has been used. Considering the implant condition of the F-IMEHD, the primary coil and the secondary coil have been designed. Using the resonance of LC tank circuit at each coil, transmission efficiency was increased. Since the primary and the secondary coil are magnetically coupled, the current variation of the primary coil is related with the impedance of internal resonant circuit. Using the principle mentioned above, the implanted module could transmit outward the information about charging state of battery or coupling between two coils by the changing internal impedance. As in the demonstrated results of experiment, the implemented charger has supplied the sufficient operating voltage for the implanted battery within about 10 mm distance. And also, it has been confirmed that the implanted module can transmit information outward by control of internal impedance.

  6. Synthetic battery cycling

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1981-01-01

    The use of interactive computer graphics is suggested as an aid in battery system development. Mathematical representations of simplistic but fully representative functions of many electrochemical concepts of current practical interest will permit battery level charge and discharge phenomena to be analyzed in a qualitative manner prior to the assembly and testing of actual hardware. This technique is a useful addition to the variety of tools available to the battery system designer as he bridges the gap between interesting single cell life test data and reliable energy storage subsystems.

  7. Dual-bridge LLC-SRC with extended voltage range for deeply depleted PEV battery charging

    NASA Astrophysics Data System (ADS)

    Shahzad, M. Imran; Iqbal, Shahid; Taib, Soib

    2017-11-01

    This paper proposes a dual-bridge LLC series resonant converter with hybrid-rectifier for achieving extended charging voltage range of 50-420 V for on-board battery charger of plug-in electric vehicle for normal and deeply depleted battery charging. Depending upon the configuration of primary switching network and secondary rectifier, the proposed topology has three operating modes as half-bridge with bridge rectifier (HBBR), full-bridge with bridge rectifier (FBBR) and full-bridge with voltage doubler (FBVD). HBBR, FBBR and FBVD operating modes of converter achieve 50-125, 125-250 and 250-420 V voltage ranges, respectively. For voltage above 62 V, the converter operates below resonance frequency zero voltage switching region with narrow switching frequency range for soft commutation of secondary diodes and low turn-off current of MOSFETs to reduce switching losses. The proposed converter is simulated using MATLAB Simulink and a 1.5 kW laboratory prototype is also built to validate the operation of proposed topology. Simulation and experimental results show that the converter meets all the charging requirements for deeply depleted to fully charged battery using constant current-constant voltage charging method with fixed 400 V DC input and achieves 96.22% peak efficiency.

  8. A Battery Charger and State of Charge Indicator

    NASA Technical Reports Server (NTRS)

    Latos, T. S.

    1984-01-01

    A battery charger which has a full wave rectifier in series with a transformer isolated 20 kHz dc-dc converter with high frequency switches, which are programmed to actively shape the input dc line current to be a mirror image of the ac line voltage is discussed. The power circuit operates at 2 kW peak and 1 kW average power. The BC/SCI has two major subsystems: (1) the battery charger power electronics with its controls; and (2) a microcomputer subsystem which is used to acquire battery terminal data and exercise the state of charge software programs. The state of charge definition employed is the energy remaining in the battery when extracted at a 10 kW rate divided by the energy capacity of a fully charged new battery. The battery charger circuit is an isolated boost converter operating at an internal frequency of 20 kHz. The switches selected for the battery charger are the single most important item in determining its efficiency. The combination of voltage and current requirements dictate the use of high power NPN Darlington switching transistors. The power circuit topology is a three switch design which utilizes a power FET on the center tap of the isolation transformer and the power Darlingtons on each of the two ends. An analog control system is employed to accomplish active input current waveshaping as well as the necessary regulation.

  9. Optimum selection of an implantable secondary battery for an artificial heart by examination of the cycle life test.

    PubMed

    Okamoto, Eiji; Watanabe, Kazuya; Hashiba, Kunihiro; Inoue, Taku; Iwazawa, Eichi; Momoi, Masato; Hashimoto, Takuya; Mitamura, Yoshinori

    2002-01-01

    An implantable secondary battery is one of the key components in a total artificial heart system. Because a 2 year cycle life is required, the cycle life of the secondary battery as well as its charge and discharge properties are important parameters for selection of an appropriate battery. We carried out cycle life tests on four kinds of rechargeable batteries (a Ni-MH secondary battery, a Ni-Cd secondary battery, a Li-ion battery with a graphite anode, and a Li-ion battery with a nongraphitizable carbon electrode) to determine their suitability as implanted back-up batteries. Each of the batteries was charge/discharge cycled at 37 degrees C to 39 degrees C using a charge current of 1 C ampere, and they were each fully discharged under either pulsatile discharge loads, which mimicked pulsatile operation, or a nonpulsatile load equivalent to the average of the pulsatile loads. The two Li-ion batteries made by different manufacturers both met the minimum requirement of cycle life of more than 1,500 cycles, considering safety coefficient regardless of the discharge pattern. In addition, the temperature increase of these Li-ion batteries (3 degrees C) was lower than that of Ni-Cd and Ni-MH batteries (15-25 degrees C). Out of these four batteries, the two Li-ion batteries are the most suitable for use in a totally implantable artificial heart system.

  10. Galileo IOV Electrical Power Subsystem Relies On Li-Ion Batter Charge Management Controlled By Hardware

    NASA Astrophysics Data System (ADS)

    Douay, N.

    2011-10-01

    In the frame of GALILEO In-Orbit Validation program which is composed of 4 satellites, Thales Alenia Space France has designed, developed and tested the Electrical Power Subsystem. Besides some classical design choices like: -50V regulated main power bus provided by the PCDU manufactured by Terma (DK), -Solar array, manufactured by Dutch-Space (NL), using Ga-As triple junction technology from Azur Space Power Solar GmbH, -SAFT (FR) Lithium-ion Battery for which cell package balancing function is required, -Solar Array Drive Mechanism, provided by RUAG Space Switzerland, to transfer the power. This subsystem features a fully autonomous, failure tolerant, battery charge management able to operate even after a complete unavailability of the on-board software. The battery charge management is implemented such that priority is always given to satisfy the satellite main bus needs in order to maintain the main bus regulation under MEA control. This battery charge management principle provides very high reliability and operational robustness. So, the paper describes : -the battery charge management concept using a combination of PCDU hardware and relevant battery lines monitoring, -the functional aspect of the single point failure free S4R (Sequential Switching Shunt Switch Regulator) and associated performances, -the failure modes isolated and passivated by this architecture. The paper will address as well the autonomous balancing function characteristics and performances.

  11. Preparation of ionic membranes for zinc/bromine storage batteries

    NASA Astrophysics Data System (ADS)

    Assink, R. A.; Arnold, C., Jr.

    Zinc/bromine flow batteries are being developed for vehicular and utility load leveling applications. During charge, an aqueous zinc bromide salt is electrolyzed to zinc metal and molecular bromine. During discharge, the zinc and bromine react to again form the zinc bromide salt. One serious disadvantage of the microporous separators presently used in the zinc/bromine battery is that modest amounts of bromine and negatively charged bromine moieties permeate through these materials and react with the zinc anode. This results in partial self-discharge of the battery and low coulombic efficiencies. Our approach to this problem is to impregnate the microporous separators with a soluble cationic polyelectrolyte. In laboratory screening tests a sulfonated polysulfone resin and fully fluorinated sulfonic acid polymer substantially reduced bromine permeation with only modest increases in the area resistance.

  12. Data pieces-based parameter identification for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Zou, Yuan; Sun, Fengchun; Hu, Xiaosong; Yu, Yang; Feng, Sen

    2016-10-01

    Battery characteristics vary with temperature and aging, it is necessary to identify battery parameters periodically for electric vehicles to ensure reliable State-of-Charge (SoC) estimation, battery equalization and safe operation. Aiming for on-board applications, this paper proposes a data pieces-based parameter identification (DPPI) method to identify comprehensive battery parameters including capacity, OCV (open circuit voltage)-Ah relationship and impedance-Ah relationship simultaneously only based on battery operation data. First a vehicle field test was conducted and battery operation data was recorded, then the DPPI method is elaborated based on vehicle test data, parameters of all 97 cells of the battery package are identified and compared. To evaluate the adaptability of the proposed DPPI method, it is used to identify battery parameters of different aging levels and different temperatures based on battery aging experiment data. Then a concept of ;OCV-Ah aging database; is proposed, based on which battery capacity can be identified even though the battery was never fully charged or discharged. Finally, to further examine the effectiveness of the identified battery parameters, they are used to perform SoC estimation for the test vehicle with adaptive extended Kalman filter (AEKF). The result shows good accuracy and reliability.

  13. A compact human-powered energy harvesting system

    NASA Astrophysics Data System (ADS)

    Rao, Yuan; McEachern, Kelly M.; Arnold, David P.

    2013-12-01

    This paper presents a fully functional, self-sufficient body-worn energy harvesting system for passively capturing energy from human motion, with the long-term vision of supplying power to portable, wearable, or even implanted electronic devices. The system requires no external power supplies and can bootstrap from zero-state-of-charge to generate electrical energy from walking, jogging and cycling; convert the induced ac voltage to a dc voltage; and then boost and regulate the dc voltage to charge a Li-ion-polymer battery. Tested under normal human activities (walking, jogging, cycling) when worn on different parts of the body, the 70 cm3 system is shown to charge a 3.7 V rechargeable battery at charge rates ranging from 33 μW to 234 μW.

  14. Battery charger and state of charge indicator. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latos, T.S.

    1984-04-15

    The battery charger has a full-wave rectifier in series with a transformer isolated 20 kHz dc-dc converter with high frequency switches which are programmed to actively shape the input ac line current to be a mirror image of the ac line voltage. The power circuit is capable of operating at 2 kW peak and 1 kW average power. The BC/SCI has two major subsystems: (1) the battery charger power electronics with its controls; and (2) a microcomputer subsystem which is used to acquire battery terminal data and exercise the state-of-charge software programs. The state-of-charge definition employed is the energy remainingmore » in the battery when extracted at a 10 kW rate divided by the energy capacity of a fully charged new battery. The battery charger circuit is an isolated boost converter operating at an internal frequency of 20 kHz. The switches selected for the battery charger are the single most important item in determining its efficiency. The combination of voltage and current requirements dictated the use of high power NPN Darlington switching transistors. The power circuit topology developed is a three switch design utilizing a power FET on the center tap of the isolation transformer and the power Darlingtons on each of the two ends. An analog control system is employed to accomplish active input current waveshaping as well as the necessary regulation.« less

  15. Development of a solar-powered electric bicycle in bike sharing transportation system

    NASA Astrophysics Data System (ADS)

    Adhisuwignjo, S.; Siradjuddin, I.; Rifa'i, M.; Putri, R. I.

    2017-06-01

    The increasing mobility has directly led to deteriorating traffic conditions, extra fuel consumption, increasing automobile exhaust emissions, air pollution and lowering quality of life. Apart from being clean, cheap and equitable mode of transport for short-distance journeys, cycling can potentially offer solutions to the problem of urban mobility. Many cities have tried promoting cycling particularly through the implementation of bike-sharing. Apparently the fourth generation bikesharing system has been promoted utilizing electric bicycles which considered as a clean technology implementation. Utilization of solar power is probably the development keys in the fourth generation bikesharing system and will become the standard in bikesharing system in the future. Electric bikes use batteries as a source of energy, thus they require a battery charger system which powered from the solar cells energy. This research aims to design and implement electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. It is necessary to develop an electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. The study was conducted by means of experimental method which includes the design, manufacture and testing controller systems. The designed fuzzy algorithm have been planted in EEPROM microcontroller ATmega8535. The charging current was set at 1.2 Amperes and the full charged battery voltage was observed to be 40 Volts. The results showed a fuzzy logic controller was able to maintain the charging current of 1.2 Ampere with an error rate of less than 5% around the set point. The process of charging electric bike lead acid batteries from empty to fully charged was 5 hours. In conclusion, the development of solar-powered electric bicycle controlled using fuzzy logic controller can keep the battery charging current in solar-powered electric bicycle to remain stable. This shows that the fuzzy algorithm can be used as a controller in the process of charging for a solar electric bicycle.

  16. Electric motorcycle charging station powered by solar energy

    NASA Astrophysics Data System (ADS)

    Siriwattanapong, Akarawat; Chantharasenawong, Chawin

    2018-01-01

    This research proposes a design and verification of an off-grid photovoltaic system (PVS) for electric motorcycle charging station to be located in King’s Mongkut’s University of Technology Thonburi, Bangkok, Thailand. The system is designed to work independently (off-grid) and it must be able to fully charge the batteries of a typical passenger electric motorcycle every evening. A 1,000W Toyotron electric motorcycle is chosen for this study. It carries five units of 12.8V 20Ah batteries in series; hence its maximum energy requirement per day is 1,200Wh. An assessment of solar irradiation data and the Generation Factor in Bangkok, Thailand suggests that the charging system consists of one 500W PV panel, an MPPT charge controller, 48V 150Ah battery, a 1,000W DC to AC inverter and other safety devices such as fuses and breakers. An experiment is conducted to verify the viability of the off-grid PVS charging station by collecting the total daily energy generation data in the raining season and winter. The data suggests that the designed off-grid solar power charging station for electric motorcycle is able to supply sufficient energy for daily charging requirements.

  17. Noise-Robust Monitoring of Lombard Speech Using a Wireless Neck-surface Accelerometer and Microphone

    DTIC Science & Technology

    2017-08-20

    rechargeable, lithium - ion polymer battery that can be charged through a micro-USB input on the circuit. The micro-USB input also allows for communication to...protection, an on/off switch for the battery , status LEDs, and a logic switch that enables the `Bluetooth module to be fully functional when...simultaneously powered via USB and battery . The system contains a small receiver that is equipped with the same Bluetooth module as the transmitter (BC127

  18. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium-oxygen batteries

    NASA Astrophysics Data System (ADS)

    Mahne, Nika; Schafzahl, Bettina; Leypold, Christian; Leypold, Mario; Grumm, Sandra; Leitgeb, Anita; Strohmeier, Gernot A.; Wilkening, Martin; Fontaine, Olivier; Kramer, Denis; Slugovc, Christian; Borisov, Sergey M.; Freunberger, Stefan A.

    2017-03-01

    Non-aqueous metal-oxygen batteries depend critically on the reversible formation/decomposition of metal oxides on cycling. Irreversible parasitic reactions cause poor rechargeability, efficiency, and cycle life, and have predominantly been ascribed to the reactivity of reduced oxygen species with cell components. These species, however, cannot fully explain the side reactions. Here we show that singlet oxygen forms at the cathode of a lithium-oxygen cell during discharge and from the onset of charge, and accounts for the majority of parasitic reaction products. The amount increases during discharge, early stages of charge, and charging at higher voltages, and is enhanced by the presence of trace water. Superoxide and peroxide appear to be involved in singlet oxygen generation. Singlet oxygen traps and quenchers can reduce parasitic reactions effectively. Awareness of the highly reactive singlet oxygen in non-aqueous metal-oxygen batteries gives a rationale for future research towards achieving highly reversible cell operation.

  19. Modeling Solvation Structure and Charge Transfer at the Solid Electrolyte Interphase for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Raguette, Lauren Elizabeth

    Rechargeable lithium-ion battery technology is providing a revolution in energy storage. However, in order to fully realize this revolution, a better understanding is required of both the bulk properties of battery materials and their interfaces. This work endeavors to use classical molecular dynamics (MD) to investigate the electrochemical interfaces present in lithium-ion batteries to understand the impact of chemical reactions on ion transport. When batteries containing cyclic carbonates and lithium salts are charge cycled, both species can react with the electrodes to form complex solid mixtures at the electrode/electrolyte interface, known as a solid electrolyte interphase (SEI). While decades of experiments have yielded significant insights into the structure of these films and their chemical composition, there remains a lack of connection between the properties of the films and observed ion transport when interfaced with the electrolyte. A combination of MD and enhanced sampling methods will be presented to elucidate the link between the SEI, containing mixtures of dilithium ethylene dicarbonate (Li2EDC), lithium fluoride, and lithium carbonate, and battery performance. By performing extensive free energy calculations, clarity is provided to the impact of ion desolvation on the measured resistance to ion transport within lithium ion batteries.

  20. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.

    PubMed

    Luo, Jia-Yan; Cui, Wang-Jun; He, Ping; Xia, Yong-Yao

    2010-09-01

    Aqueous lithium-ion batteries may solve the safety problem associated with lithium-ion batteries that use highly toxic and flammable organic solvents, and the poor cycling life associated with commercialized aqueous rechargeable batteries such as lead-acid and nickel-metal hydride systems. But all reported aqueous lithium-ion battery systems have shown poor stability: the capacity retention is typically less than 50% after 100 cycles. Here, the stability of electrode materials in an aqueous electrolyte was extensively analysed. The negative electrodes of aqueous lithium-ion batteries in a discharged state can react with water and oxygen, resulting in capacity fading upon cycling. By eliminating oxygen, adjusting the pH values of the electrolyte and using carbon-coated electrode materials, LiTi(2)(PO(4))(3)/Li(2)SO(4)/LiFePO(4) aqueous lithium-ion batteries exhibited excellent stability with capacity retention over 90% after 1,000 cycles when being fully charged/discharged in 10 minutes and 85% after 50 cycles even at a very low current rate of 8 hours for a full charge/discharge offering an energy storage system with high safety, low cost, long cycling life and appropriate energy density.

  1. On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models part 2. Parameter and state estimation

    NASA Astrophysics Data System (ADS)

    Fleischer, Christian; Waag, Wladislaw; Heyn, Hans-Martin; Sauer, Dirk Uwe

    2014-09-01

    Lithium-ion battery systems employed in high power demanding systems such as electric vehicles require a sophisticated monitoring system to ensure safe and reliable operation. Three major states of the battery are of special interest and need to be constantly monitored. These include: battery state of charge (SoC), battery state of health (capacity fade determination, SoH), and state of function (power fade determination, SoF). The second paper concludes the series by presenting a multi-stage online parameter identification technique based on a weighted recursive least quadratic squares parameter estimator to determine the parameters of the proposed battery model from the first paper during operation. A novel mutation based algorithm is developed to determine the nonlinear current dependency of the charge-transfer resistance. The influence of diffusion is determined by an on-line identification technique and verified on several batteries at different operation conditions. This method guarantees a short response time and, together with its fully recursive structure, assures a long-term stable monitoring of the battery parameters. The relative dynamic voltage prediction error of the algorithm is reduced to 2%. The changes of parameters are used to determine the states of the battery. The algorithm is real-time capable and can be implemented on embedded systems.

  2. Countermeasure for Surplus Electricity of PV using Replacement Battery of EVs

    NASA Astrophysics Data System (ADS)

    Takagi, Masaaki; Iwafune, Yumiko; Yamamoto, Hiromi; Yamaji, Kenji; Okano, Kunihiko; Hiwatari, Ryouji; Ikeya, Tomohiko

    In the power sector, the national government has set the goal that the introduction of PV reaches 53 million kW by 2030. However, large-scale introduction of PV will cause several problems in power systems such as surplus electricity. We need large capacity of pumped storages or batteries for the surplus electricity, but the construction costs of these plants are very high. On the other hand, in the transport sector, Electric Vehicle (EV) is being developed as an environmentally friendly vehicle. To promote the diffusion of EV, it is necessary to build infrastructures that can charge EV in a short time; a battery switch station is one of the solutions to this problem. At a station, the automated switch platform will replace the depleted battery with a fully-charged battery. The depleted battery is placed in a storage room and recharged to be available to other drivers. In this study, we propose the use of station's battery as a countermeasure for surplus electricity of PV and evaluate the economic value of the proposed system. We assumed that 53 million kW of PV is introduced in the nationwide power system and considered two countermeasures for surplus electricity: (1) Pumped storage; (2) Battery of station. The difference in total annual cost between Pumped case and Battery case results in 792.6 billion yen. Hence, if a utility leases the batteries from stations fewer than 792.6 billion yen, the utility will have the cost advantage in Battery case.

  3. Graphene-Like-Graphite as Fast-Chargeable and High-Capacity Anode Materials for Lithium Ion Batteries.

    PubMed

    Cheng, Qian; Okamoto, Yasuharu; Tamura, Noriyuki; Tsuji, Masayoshi; Maruyama, Shunya; Matsuo, Yoshiaki

    2017-11-01

    Here we propose the use of a carbon material called graphene-like-graphite (GLG) as anode material of lithium ion batteries that delivers a high capacity of 608 mAh/g and provides superior rate capability. The morphology and crystal structure of GLG are quite similar to those of graphite, which is currently used as the anode material of lithium ion batteries. Therefore, it is expected to be used in the same manner of conventional graphite materials to fabricate the cells. Based on the data obtained from various spectroscopic techniques, we propose a structural GLG model in which nanopores and pairs of C-O-C units are introduced within the carbon layers stacked with three-dimensional regularity. Three types of highly ionic lithium ions are found in fully charged GLG and stored between its layers. The oxygen atoms introduced within the carbon layers seem to play an important role in accommodating a large amount of lithium ions in GLG. Moreover, the large increase in the interlayer spacing observed for fully charged GLG is ascribed to the migration of oxygen atoms within the carbon layer introduced in the state of C-O-C to the interlayer space maintaining one of the C-O bonds.

  4. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOEpatents

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  5. Determination of the lead-acid battery's dynamic response using Butler-Volmer equation for advanced battery management systems in automotive applications

    NASA Astrophysics Data System (ADS)

    Piłatowicz, Grzegorz; Budde-Meiwes, Heide; Kowal, Julia; Sarfert, Christel; Schoch, Eberhard; Königsmann, Martin; Sauer, Dirk Uwe

    2016-11-01

    Micro-hybrid vehicles (μH) are currently starting to dominate the European market and seize constantly growing share of other leading markets in the world. On the one hand, the additional functionality of μH reduces the CO2 emissions and improves the fuel economy, but, on the other hand, the additional stress imposed on the lead-acid battery reduces significantly its expected service life in comparison to conventional vehicles. Because of that μH require highly accurate battery state detection solutions. They are necessary to ensure the vehicle reliability requirements, prolong service life and reduce warranty costs. This paper presents an electrical model based on Butler-Volmer equation. The main novelty of the presented approach is its ability to predict accurately dynamic response of a battery considering a wide range of discharge current rates, state-of-charges and temperatures. Presented approach is fully implementable and adaptable in state-of-the-art low-cost platforms. Additionally, shown results indicate that it is applicable as a supporting tool for state-of-charge and state-of-health estimation and scalable for the different battery technologies and sizes. Validation using both static pulses and dynamic driving profile resulted in average absolute error of 124 mV regarding cranking current rate of 800 A respectively.

  6. 30 CFR 56.4502 - Battery-charging stations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Battery-charging stations. 56.4502 Section 56... Control Installation/construction/maintenance § 56.4502 Battery-charging stations. (a) Battery-charging... prohibited at the battery charging station during battery charging. (c) Readily visible signs prohibiting...

  7. 30 CFR 56.4502 - Battery-charging stations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Battery-charging stations. 56.4502 Section 56... Control Installation/construction/maintenance § 56.4502 Battery-charging stations. (a) Battery-charging... prohibited at the battery charging station during battery charging. (c) Readily visible signs prohibiting...

  8. 30 CFR 56.4502 - Battery-charging stations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Battery-charging stations. 56.4502 Section 56... Control Installation/construction/maintenance § 56.4502 Battery-charging stations. (a) Battery-charging... prohibited at the battery charging station during battery charging. (c) Readily visible signs prohibiting...

  9. 30 CFR 56.4502 - Battery-charging stations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Battery-charging stations. 56.4502 Section 56... Control Installation/construction/maintenance § 56.4502 Battery-charging stations. (a) Battery-charging... prohibited at the battery charging station during battery charging. (c) Readily visible signs prohibiting...

  10. 30 CFR 56.4502 - Battery-charging stations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Battery-charging stations. 56.4502 Section 56... Control Installation/construction/maintenance § 56.4502 Battery-charging stations. (a) Battery-charging... prohibited at the battery charging station during battery charging. (c) Readily visible signs prohibiting...

  11. Application of electrochemically formed polyazulene to rechargeable lithium battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osaka, T.; Naoi, K.; Hirabayashi, T.

    1987-11-01

    An electrochemically formed polyazulene(PAz), one of the electroconductive polycyclic hydrocarbons, was studied for its electrochemical properties in order to examine the possibility of utilizing it as a cathode active material of rechargeable lithium battery. The electrode kinetics of PAz film electrode, especially the anion doping-undoping process, were investigated mainly with cyclic voltammetry and FFT impedance method. The cyclic voltammetric results of PAz film showed a highly reversible redox process. Cole-Cole plots for PAz electrode obtained by impedance measurements as a function of doping potential were also found to offer an indication that PAz can be an excellent battery material. Themore » charging-discharging property, and the cyclability of a Li/LiClO/sub 4/-PC(propylene carbonate)/PAz battery were then studied as a function of the film thickness of PAz cathode. The charging-discharging behavior of Li/LiClO/sub 4/-PC/PAz was also compared with those of Li/LiClO/sub 4/--PC/polypyrrole and Li/LiClO/sub 4/-PC/polyaniline batteries, which had been examined earlier. When compared with Li/LiClO/sub 4/-PC/polypyrrole or Li/LiClO/sub 4/-PC/polyaniline batteries, a Li/LiClO/sub 4//PAz battery showed fully-high and constant discharge voltage (ca. 3.2V), while keeping 100% of coulombic yield. Inspection by SEM showed that the surface condition of PAz film greatly resembled that of polypyrrole, however, a 10 C cm/sup -2/ PAz film was prepared with thicker than polypyrrole formed with the same amount of charge of 10 C cm/sup -2/.« less

  12. Heat radiation approach for harnessing heat of the cook stove to generate electricity for lighting system and charging of mobile phone

    NASA Astrophysics Data System (ADS)

    Muñoz, Rodrigo C., Jr.; Manansala, Chad Deo G.

    2018-01-01

    This study is based on the potential of thermoelectric coupling such as the thermoelectric cooler module. A thermoelectric cooler converts the heat coming from the cook stove into electricity and store in a battery. A dc-dc boost converter will be used to produce enough voltage to light a minimum house dwelling or charge phone battery. This device will be helpful to those that faces a problem on electricity especially in the isolated areas. The study aims (1) to harness heat from the cook stove up to 110 °C (2) To automatically cool-off the system to protect the thermoelectric cooler from damage due to excessive heat using an electronic solenoid; (3) To store energy harnessed in the battery; (4) To amplify the output voltages of the battery using DC to DC boost converter for lighting system and charging of mobile phone battery. From various tests conducted, it can fully charge a mobile phone in 3 hours observing the unit’s battery voltage drop from 4.06V to 3.98V. In the testing it used different orientation of steel rod by conduction to transfer heat and by radiation through tubular steel with its different dimensions. Most recent testing proved that the 2x2x9 tubular steel by radiation had the best result. The temperature reached more than a hundred degree Celsius that met the objective. The test resulted of boosting the voltage of the battery output from 3.7V to 4.96V on the average. The boosted voltage decrease as the system’s cool-off mechanism operated when the temperature reached above 110 degree Celsius decreasing output voltage to 0.8V resulting the boosted voltage to drop to zero. Therefore, the proponents concluded that heat waste can be converted to electrical energy by harnessing heat through radiation, with the help of TEC that generates voltage for lighting and can be boosted to be used for mobile charging. Furthermore, the study proved that the excess heat can damaged the TEC which was prevented by using of cooling-off mechanism, making it more useful for longer time.

  13. 30 CFR 57.4502 - Battery-charging stations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Battery-charging stations. 57.4502 Section 57... and Control Installation/construction/maintenance § 57.4502 Battery-charging stations. (a) Battery... shall be prohibited at the battery charging station during battery charging. (c) Readily visible signs...

  14. 30 CFR 57.4502 - Battery-charging stations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Battery-charging stations. 57.4502 Section 57... and Control Installation/construction/maintenance § 57.4502 Battery-charging stations. (a) Battery... shall be prohibited at the battery charging station during battery charging. (c) Readily visible signs...

  15. 30 CFR 57.4502 - Battery-charging stations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Battery-charging stations. 57.4502 Section 57... and Control Installation/construction/maintenance § 57.4502 Battery-charging stations. (a) Battery... shall be prohibited at the battery charging station during battery charging. (c) Readily visible signs...

  16. 30 CFR 57.4502 - Battery-charging stations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Battery-charging stations. 57.4502 Section 57... and Control Installation/construction/maintenance § 57.4502 Battery-charging stations. (a) Battery... shall be prohibited at the battery charging station during battery charging. (c) Readily visible signs...

  17. 30 CFR 57.4502 - Battery-charging stations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Battery-charging stations. 57.4502 Section 57... and Control Installation/construction/maintenance § 57.4502 Battery-charging stations. (a) Battery... shall be prohibited at the battery charging station during battery charging. (c) Readily visible signs...

  18. Operation and maintenance, fire rescue air-pack. Volume 2: Communications

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The operation and maintenance procedures are described for the development model of the fire rescue air pack (FRAP) voice amplifier assembly, including the battery charger. Operational instructions include a general description of the assembly, specifications, and installation and operation. Maintenance instructions include theory of operation, preventive maintenance, repair, adjustment, and a parts list. The FRAP is intended to permit fire rescue personnel to enter a smoke-filled, toxic or oxygen depleted environment carrying their own source of breathing air. The voice amplifier assembly permits the wearer to communicate by voice with other persons in the vicinity. The battery charger assembly provides a means of keeping the amplifier batteries fully charged.

  19. Development and Implementation of a Hardware In-the-Loop Test Bed for Unmanned Aerial Vehicle Control Algorithms

    NASA Technical Reports Server (NTRS)

    Nyangweso, Emmanuel; Bole, Brian

    2014-01-01

    Successful prediction and management of battery life using prognostic algorithms through ground and flight tests is important for performance evaluation of electrical systems. This paper details the design of test beds suitable for replicating loading profiles that would be encountered in deployed electrical systems. The test bed data will be used to develop and validate prognostic algorithms for predicting battery discharge time and battery failure time. Online battery prognostic algorithms will enable health management strategies. The platform used for algorithm demonstration is the EDGE 540T electric unmanned aerial vehicle (UAV). The fully designed test beds developed and detailed in this paper can be used to conduct battery life tests by controlling current and recording voltage and temperature to develop a model that makes a prediction of end-of-charge and end-of-life of the system based on rapid state of health (SOH) assessment.

  20. Solar photovoltaic charging of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gibson, Thomas L.; Kelly, Nelson A.

    Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.

  1. Membrane-less hybrid flow battery based on low-cost elements

    NASA Astrophysics Data System (ADS)

    Leung, P. K.; Martin, T.; Shah, A. A.; Mohamed, M. R.; Anderson, M. A.; Palma, J.

    2017-02-01

    The capital cost of conventional redox flow batteries is relatively high (>USD 200/kWh) due to the use of expensive active materials and ion-exchange membranes. This paper presents a membrane-less hybrid organic-inorganic flow battery based on the low-cost elements zinc (92.7% with the use of carbon felt electrodes. In the presence of a fully oxidized active species close to its solubility limit, dissolution of the deposited anode is relatively slow (<2.37 g h-1 cm-2) with an equivalent corrosion current density of <1.9 mA cm-2. In a parallel plate flow configuration, the resulting battery was charge-discharge cycled at 30 mA cm-2 with average coulombic and energy efficiencies of c.a. 71.8 and c.a. 42.0% over 20 cycles, respectively.

  2. Intermetallic negative electrodes for non-aqueous lithium cells and batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Johnson, Christopher S.; Fransson, Linda M.; Edstrom, Ester Kristina; Henriksen, Gary

    2004-05-04

    A method of operating an electrochemical cell is disclosed. The cell has an intermetallic negative electrode of Cu.sub.6-x M.sub.x Sn.sub.5, wherein x is .ltoreq.3 and M is one or more metals including Si and a positive electrode containing Li in which Li is shuttled between the positive electrode and the negative electrode during charge and discharge to form a lithiated intermetallic negative electrode during charge. The voltage of the electrochemical cell is controlled during the charge portion of the charge-discharge cycles so that the potential of the lithiated intermetallic negative electrode in the fully charged electrochemical cell is less than 0.2 V but greater than 0 V versus metallic lithium.

  3. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with reverse...

  4. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with reverse...

  5. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with reverse...

  6. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with reverse...

  7. 30 CFR 77.1106 - Battery-charging stations; ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Battery-charging stations; ventilation. 77.1106... COAL MINES Fire Protection § 77.1106 Battery-charging stations; ventilation. Battery-charging stations shall be located in well-ventilated areas. Battery-charging stations shall be equipped with reverse...

  8. 29 CFR 1917.157 - Battery charging and changing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Battery charging and changing. 1917.157 Section 1917.157..., DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.157 Battery charging and changing. (a) Only designated persons shall change or charge batteries. (b) Battery charging...

  9. 29 CFR 1917.157 - Battery charging and changing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Battery charging and changing. 1917.157 Section 1917.157..., DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.157 Battery charging and changing. (a) Only designated persons shall change or charge batteries. (b) Battery charging...

  10. 29 CFR 1917.157 - Battery charging and changing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Battery charging and changing. 1917.157 Section 1917.157..., DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.157 Battery charging and changing. (a) Only designated persons shall change or charge batteries. (b) Battery charging...

  11. 29 CFR 1917.157 - Battery charging and changing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Battery charging and changing. 1917.157 Section 1917.157..., DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.157 Battery charging and changing. (a) Only designated persons shall change or charge batteries. (b) Battery charging...

  12. 29 CFR 1917.157 - Battery charging and changing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Battery charging and changing. 1917.157 Section 1917.157..., DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.157 Battery charging and changing. (a) Only designated persons shall change or charge batteries. (b) Battery charging...

  13. Development of a multiplexed bypass control system for aerospace batteries

    NASA Technical Reports Server (NTRS)

    Frank, H. A.

    1977-01-01

    A breadboard bypass control system was developed to control a battery comprised of 26 JPL-developed negative limited Ni-Cd cells. The system was designed to automatically remove cells from the circuit when their voltages exceeded a fixed limit on charge and fell below a fixed limit on discharge. Major components of the system consisted of a cell voltage monitor, a multiplexing circuit, and individual electromechanical relays for each cell. The system was found to function well in controlling the battery during a simulated 10-month MM-71 mission and a 2-month simulated low earth orbit cycling mission. A flight version of the bypass system was estimated to have a total parts count of 150 and total weight of 1.63 kg. When fully developed, the system shows promise for improving life and reliability of spacecraft batteries.

  14. Battery Charge Equalizer with Transformer Array

    NASA Technical Reports Server (NTRS)

    Davies, Francis

    2013-01-01

    High-power batteries generally consist of a series connection of many cells or cell banks. In order to maintain high performance over battery life, it is desirable to keep the state of charge of all the cell banks equal. A method provides individual charging for battery cells in a large, high-voltage battery array with a minimum number of transformers while maintaining reasonable efficiency. This is designed to augment a simple highcurrent charger that supplies the main charge energy. The innovation will form part of a larger battery charge system. It consists of a transformer array connected to the battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit that allow individual battery cells or cell banks to be charged. The timing circuit and control circuit connect to a charge controller that uses battery instrumentation to determine which battery bank to charge. It is important to note that the innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery. The fact that the battery cell banks are at a non-zero voltage, and that they are all at similar voltages, can be used to allow charging of individual cell banks. A set of transformers can be connected with secondary windings in series to make weighted sums of the voltages on the primaries.

  15. Feasibility of a nickel-metal hydride battery for totally implantable artificial hearts.

    PubMed

    Okamoto, E; Yoshida, T; Fujiyoshi, M; Shimanaka, M; Takeuchi, A; Mitamura, Y; Mikami, T

    1996-01-01

    An implantable rechargeable battery is one of the key technologies for totally implantable artificial hearts. The nickel-metal hydride (Ni-MH) battery is promising for its high energy density of 1.5-2.0 times that of a nickel-cadmium battery. In this study, the effects of pulsatile discharge loads on the operating time and cycle life of Ni-MH batteries at 39 degrees C were studied. Two battery cells (TH-3M, 1,200 mAh, phi 14.5 x 49 mm; Toshiba, Tokyo, Japan) in series were charge/discharge cycled at 39 degrees C using a charge current of 1CA (1,200 mA) and then were fully discharged to 1.0 V/cell under either pulsatile discharge loads, which mimicked a systole (1 A for 0.3 sec) and a diastole (0.4 A for 0.3 sec), or a non pulsatile discharge load equivalent to the average of the pulsatile loads (0.7 A). Each cycle life test was interrupted on the 482nd cycle under pulsatile load, and on the 423rd cycle under non pulsatile load, because of malfunction of each battery charger. The tests showed that the pulsatile discharge cells had significantly (p < 0.001) less operating time (74.0 +/- 7.15 min) throughout the test period (up to 482 days) compared to the cells under equivalent non pulsatile discharge loads (93.7 +/- 7.74 min). The pulsatile-discharged Ni-MH cells provide significantly less operating time than the constantly discharged cells; the Ni-MH battery has an operating time of over 78 min and a cycle life of almost 500 cycles at 39 degrees C. In conclusion, the Ni-MH battery is feasible as an implantable back-up battery for a totally implantable artificial heart system.

  16. The Importance of Nanometric Passivating Films on Cathodes forLi - Air Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Brian D.; Black, Robert; Radtke, Claudio

    2014-12-23

    Recently, there has been a transition from fully carbonaceous positive electrodes for the aprotic lithium oxygen battery to alternative materials and the use of redox mediator additives, in an attempt to lower the large electrochemical overpotentials associated with the charge reaction. However, the stabilizing or catalytic effect of these materials can become complicated due to the presence of major side-reactions observed during dis(charge). Here, we isolate the charge reaction from the discharge by utilizing electrodes prefilled with commercial lithium peroxide with a crystallite size of about 200-800 nm. Using a combination of S/TEM, online mass spectrometry, XPS, and electrochemical methodsmore » to probe the nature of surface films on carbon and conductive Ti-based nanoparticles, we show that oxygen evolution from lithium peroxide is strongly dependent on their surface properties. Insulating TiO2 surface layers on TiC and TiN - even as thin as 3 nm*can completely inhibit the charge reaction under these conditions. On the other hand, TiC, which lacks this oxide film, readily facilitates oxidation of the bulk Li2O2 crystallites, at a much lower overpotential relative to carbon. Since oxidation of lithium oxygen battery cathodes is inevitable in these systems, precise control of the surface chemistry at the nanoscale becomes of upmost importance.« less

  17. An Balancing Strategy Based on SOC for Lithium-Ion Battery Pack

    NASA Astrophysics Data System (ADS)

    Li, Peng

    2017-09-01

    According to the two kinds of working state of a battery pack, we designed a balancing strategy based on SOC, and expounds the working principle of balanced control strategy: the battery is charging, the battery charged state of the highest monomer battery is balanced discharge, strong single battery charging current decreases, while the other single cell in the same group is not affected; the battery is in a discharge or static state, single cell battery is the weakest balanced charge, while the other single cell in the same group are not affected. In this paper, we design a kind of lithium ion battery charging and discharging equalizer based on Buck chopper circuit and Boost-Buck chopper circuit. The equalizer is balanced charging and discharging experiments of series four lithium iron phosphate battery, the experimental results show that this equalizer has not only improved the degree not equilibrium between single cells, and improve the battery charge and discharge capacity.

  18. Fundamental modeling the performance and degradation of HEV Lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Fang, Weifang

    Li-ion battery is now replacing nickel-metal hydride (NiMH) for hybrid electric vehicles (HEV). The advantages of Li-ion battery over NiMH are that it can provide longer life, higher cell voltage and higher energy density, etc. However, there are still some issues unsolved for Li-ion battery to fully satisfy the HEV requirement. At high temperature, thermal runaway may cause safety issues. At low temperature, however, its performance is dramatically reduced and also Li deposition may occur. Furthermore, degradation due to side reactions in the electrodes during cycling and storage results in capacity loss and impedance rise. An electrochemical-thermal coupled model is first used to predict performance of individual electrodes of Li-ion cells under HEV conditions that encompass a wide range of ambient temperatures. The model is validated against experimental data of not only the full cell but also individual electrodes and then used to study lithium deposition on the negative electrode during charging Li-ion battery at subzero temperature. The simulated property evolution, e.g. Li concentrations in electrode and electrolyte, shows that either low temperature or high charge rate may force Li insertion (into the negative carbon electrode) to occur in a narrow region near the separator. Therefore, Li deposition is mostly like to happen in this location. Modeling simulation shows that reduction of the negative electrode particle size can reduce Li deposition, which has same effect as improvement of the Li diffusion coefficient in the negative electrode. The model is also used to study charge protocols at subzero temperature. Model simulation shows that employing pulse current can improve cell temperature by the heat generated inside the cell, thus this designed charge protocol is able to reduce Li deposition and improve the charge efficiency as well. Individual aging mechanism is then implemented into each electrode to study Li-ion battery degradation during accelerated aging tests. The experimentally observed aging phenomena are interpreted using the degradation model. The simulated results show that the positive electrode active material loss is the main cause of capacity loss and impedance growth. And this is the key step for a model to well catch the experimentally observed aging phenomena in the two electrodes. In the future work, the degradation model will further help to prolong battery life through engineering and optimization in HEV applications.

  19. 29 CFR 1926.441 - Batteries and battery charging.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1) Batteries of the unsealed type shall be located in enclosures with outside vents or in well ventilated rooms...

  20. 29 CFR 1926.441 - Batteries and battery charging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1) Batteries of the unsealed type shall be located in enclosures with outside vents or in well ventilated rooms...

  1. 29 CFR 1926.441 - Batteries and battery charging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1) Batteries of the unsealed type shall be located in enclosures with outside vents or in well ventilated rooms...

  2. 29 CFR 1926.441 - Batteries and battery charging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1) Batteries of the unsealed type shall be located in enclosures with outside vents or in well ventilated rooms...

  3. 29 CFR 1926.441 - Batteries and battery charging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Batteries and battery charging. 1926.441 Section 1926.441... for Special Equipment § 1926.441 Batteries and battery charging. (a) General requirements—(1) Batteries of the unsealed type shall be located in enclosures with outside vents or in well ventilated rooms...

  4. High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.

    PubMed

    Angell, Michael; Pan, Chun-Jern; Rong, Youmin; Yuan, Chunze; Lin, Meng-Chang; Hwang, Bing-Joe; Dai, Hongjie

    2017-01-31

    In recent years, impressive advances in harvesting renewable energy have led to a pressing demand for the complimentary energy storage technology. Here, a high Coulombic efficiency (∼99.7%) Al battery is developed using earth-abundant aluminum as the anode, graphite as the cathode, and a cheap ionic liquid analog electrolyte made from a mixture of AlCl 3 and urea in a 1.3:1 molar ratio. The battery displays discharge voltage plateaus around 1.9 and 1.5 V (average discharge = 1.73 V) and yielded a specific cathode capacity of ∼73 mAh g -1 at a current density of 100 mA g -1 (∼1.4 C). High Coulombic efficiency over a range of charge-discharge rates and stability over ∼150-200 cycles was easily demonstrated. In situ Raman spectroscopy clearly showed chloroaluminate anion intercalation/deintercalation of graphite (positive electrode) during charge-discharge and suggested the formation of a stage 2 graphite intercalation compound when fully charged. Raman spectroscopy and NMR suggested the existence of AlCl 4 - , Al 2 Cl 7 - anions and [AlCl 2 ·(urea) n ] + cations in the AlCl 3 /urea electrolyte when an excess of AlCl 3 was present. Aluminum deposition therefore proceeded through two pathways, one involving Al 2 Cl 7 - anions and the other involving [AlCl 2 ·(urea) n ] + cations. This battery is a promising prospect for a future high-performance, low-cost energy storage device.

  5. On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions.

    PubMed

    Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch; Ziegelbauer, Joseph M; Luski, Shalom; Aurbach, Doron; Halalay, Ion C

    2017-02-08

    We demonstrate herein that Mn 3+ and not Mn 2+ , as commonly accepted, is the dominant dissolved manganese cation in LiPF 6 -based electrolyte solutions of Li-ion batteries with lithium manganate spinel positive and graphite negative electrodes chemistry. The Mn 3+ fractions in solution, derived from a combined analysis of electron paramagnetic resonance and inductively coupled plasma spectroscopy data, are ∼80% for either fully discharged (3.0 V hold) or fully charged (4.2 V hold) cells, and ∼60% for galvanostatically cycled cells. These findings agree with the average oxidation state of dissolved Mn ions determined from X-ray absorption near-edge spectroscopy data, as verified through a speciation diagram analysis. We also show that the fractions of Mn 3+ in the aprotic nonaqueous electrolyte solution are constant over the duration of our experiments and that disproportionation of Mn 3+ occurs at a very slow rate.

  6. Electrochemically controlled charging circuit for storage batteries

    DOEpatents

    Onstott, E.I.

    1980-06-24

    An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

  7. 46 CFR 112.55-10 - Storage battery charging.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storage battery charging. 112.55-10 Section 112.55-10... AND POWER SYSTEMS Storage Battery Installation § 112.55-10 Storage battery charging. (a) Each storage battery installation for emergency lighting and power, and starting batteries for an emergency diesel or...

  8. 46 CFR 112.55-10 - Storage battery charging.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Storage battery charging. 112.55-10 Section 112.55-10... AND POWER SYSTEMS Storage Battery Installation § 112.55-10 Storage battery charging. (a) Each storage battery installation for emergency lighting and power, and starting batteries for an emergency diesel or...

  9. 46 CFR 112.55-10 - Storage battery charging.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Storage battery charging. 112.55-10 Section 112.55-10... AND POWER SYSTEMS Storage Battery Installation § 112.55-10 Storage battery charging. (a) Each storage battery installation for emergency lighting and power, and starting batteries for an emergency diesel or...

  10. 46 CFR 112.55-10 - Storage battery charging.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Storage battery charging. 112.55-10 Section 112.55-10... AND POWER SYSTEMS Storage Battery Installation § 112.55-10 Storage battery charging. (a) Each storage battery installation for emergency lighting and power, and starting batteries for an emergency diesel or...

  11. 46 CFR 112.55-10 - Storage battery charging.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Storage battery charging. 112.55-10 Section 112.55-10... AND POWER SYSTEMS Storage Battery Installation § 112.55-10 Storage battery charging. (a) Each storage battery installation for emergency lighting and power, and starting batteries for an emergency diesel or...

  12. Development of a Microcontroller-based Battery Charge Controller for an Off-grid Photovoltaic System

    NASA Astrophysics Data System (ADS)

    Rina, Z. S.; Amin, N. A. M.; Hashim, M. S. M.; Majid, M. S. A.; Rojan, M. A.; Zaman, I.

    2017-08-01

    A development of a microcontroller-based charge controller for a 12V battery has been explained in this paper. The system is designed based on a novel algorithm to couple existing solar photovoltaic (PV) charging and main grid supply charging power source. One of the main purposes of the hybrid charge controller is to supply a continuous charging power source to the battery. Furthermore, the hybrid charge controller was developed to shorten the battery charging time taken. The algorithm is programmed in an Arduino Uno R3 microcontroller that monitors the battery voltage and generates appropriate commands for the charging power source selection. The solar energy is utilized whenever the solar irradiation is high. The main grid supply will be only consumed whenever the solar irradiation is low. This system ensures continuous charging power supply and faster charging of the battery.

  13. Advanced electric propulsion system concept for electric vehicles

    NASA Technical Reports Server (NTRS)

    Raynard, A. E.; Forbes, F. E.

    1979-01-01

    Seventeen propulsion system concepts for electric vehicles were compared to determine the differences in components and battery pack to achieve the basic performance level. Design tradeoffs were made for selected configurations to find the optimum component characteristics required to meet all performance goals. The anticipated performance when using nickel-zinc batteries rather than the standard lead-acid batteries was also evaluated. The two systems selected for the final conceptual design studies included a system with a flywheel energy storage unit and a basic system that did not have a flywheel. The flywheel system meets the range requirement with either lead-acid or nickel-zinc batteries and also the acceleration of zero to 89 km/hr in 15 s. The basic system can also meet the required performance with a fully charged battery, but, when the battery approaches 20 to 30 percent depth of discharge, maximum acceleration capability gradually degrades. The flywheel system has an estimated life-cycle cost of $0.041/km using lead-acid batteries. The basic system has a life-cycle cost of $0.06/km. The basic system, using batteries meeting ISOA goals, would have a life-cycle cost of $0.043/km.

  14. Mass and charge transport relevant to the formation of toroidal lithium peroxide nanoparticles in an aprotic lithium-oxygen battery: An experimental and theoretical modeling study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Xiangyi; Amine, Rachid; Lau, Kah Chun

    2017-05-26

    The discharge and charge mechanisms of rechargeable Li-O-2 batteries have been the subject of extensive investigation recently. However, they are not fully understood yet. Here we report a systematic study of the morphological transition of Li2O2 from a single crystalline structure to a toroid like particle during the discharge-charge cycle, with the help of a theoretical model to explain the evolution of the Li2O2 at different stages of this process. The model suggests that the transition starts in the first monolayer of Li2O2, and is subsequently followed by a transition from particle growth to film growth if the applied currentmore » exceeds the exchange current for the oxygen reduction reaction in a Li-O-2 cell. Furthermore, a sustainable mass transport of the diffusive active species (e.g., O-2 and Li+) and evolution of the underlying interfaces are critical to dictate desirable oxygen reduction (discharge) and evolution (charge) reactions in the porous carbon electrode of a Li-O-2 cell.« less

  15. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOEpatents

    Bockelmann, Thomas R [Battle Creek, MI; Hope, Mark E [Marshall, MI; Zou, Zhanjiang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  16. Operando Spectromicroscopy of Sulfur Species in Lithium-Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Elizabeth C.; Kasse, Robert M.; Heath, Khloe N.

    Here, a novel cross-sectional battery cell was developed to characterize lithium-sulfur batteries using X-ray spectromicroscopy. Chemically sensitive X-ray maps were collected operando at energies relevant to the expected sulfur species and were used to correlate changes in sulfur species with electrochemistry. Significant changes in the sulfur/carbon composite electrode were observed from cycle to cycle including rearrangement of the elemental sulfur matrix and PEO10LiTFSI binder. Polysulfide concentration and area of spatial diffusion increased with cycling, indicating that some polysulfide dissolution is irreversible, leading to polysulfide shuttle. Fitting of the maps using standard sulfur and polysulfide XANES spectra indicated that upon subsequentmore » discharge/charge cycles, the initial sulfur concentration was not fully recovered; polysulfides and lithium sulfide remained at the cathodes with higher order polysulfides as the primary species in the region of interest. Quantification of the polysulfide concentration across the electrolyte and electrode interfaces shows that the polysulfide concentration before the first discharge and after the third charge is constant within the electrolyte, but while cycling, a significant increase in polysulfides and a gradient toward the lithium metal anode forms. Finally, this chemically and spatially sensitive characterization and analysis provides a foundation for further operando spectromicroscopy of lithium-sulfur batteries.« less

  17. Operando Spectromicroscopy of Sulfur Species in Lithium-Sulfur Batteries

    DOE PAGES

    Miller, Elizabeth C.; Kasse, Robert M.; Heath, Khloe N.; ...

    2017-11-03

    Here, a novel cross-sectional battery cell was developed to characterize lithium-sulfur batteries using X-ray spectromicroscopy. Chemically sensitive X-ray maps were collected operando at energies relevant to the expected sulfur species and were used to correlate changes in sulfur species with electrochemistry. Significant changes in the sulfur/carbon composite electrode were observed from cycle to cycle including rearrangement of the elemental sulfur matrix and PEO10LiTFSI binder. Polysulfide concentration and area of spatial diffusion increased with cycling, indicating that some polysulfide dissolution is irreversible, leading to polysulfide shuttle. Fitting of the maps using standard sulfur and polysulfide XANES spectra indicated that upon subsequentmore » discharge/charge cycles, the initial sulfur concentration was not fully recovered; polysulfides and lithium sulfide remained at the cathodes with higher order polysulfides as the primary species in the region of interest. Quantification of the polysulfide concentration across the electrolyte and electrode interfaces shows that the polysulfide concentration before the first discharge and after the third charge is constant within the electrolyte, but while cycling, a significant increase in polysulfides and a gradient toward the lithium metal anode forms. Finally, this chemically and spatially sensitive characterization and analysis provides a foundation for further operando spectromicroscopy of lithium-sulfur batteries.« less

  18. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    NASA Astrophysics Data System (ADS)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  19. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction

    NASA Astrophysics Data System (ADS)

    Zhou, Yapeng; Huang, Miaohua; Chen, Yupu; Tao, Ye

    2016-07-01

    Prediction of lithium-ion batteries remaining useful life (RUL) plays an important role in an intelligent battery management system. The capacity and internal resistance are often used as the batteries health indicator (HI) for quantifying degradation and predicting RUL. However, on-line measurement of capacity and internal resistance are hardly realizable due to the not fully charged and discharged condition and the extremely expensive cost, respectively. Therefore, there is a great need to find an optional way to deal with this plight. In this work, a novel HI is extracted from the operating parameters of lithium-ion batteries for degradation modeling and RUL prediction. Moreover, Box-Cox transformation is employed to improve HI performance. Then Pearson and Spearman correlation analyses are utilized to evaluate the similarity between real capacity and the estimated capacity derived from the HI. Next, both simple statistical regression technique and optimized relevance vector machine are employed to predict the RUL based on the presented HI. The correlation analyses and prediction results show the efficiency and effectiveness of the proposed HI for battery degradation modeling and RUL prediction.

  20. Adaptive on-line prediction of the available power of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Waag, Wladislaw; Fleischer, Christian; Sauer, Dirk Uwe

    2013-11-01

    In this paper a new approach for prediction of the available power of a lithium-ion battery pack is presented. It is based on a nonlinear battery model that includes current dependency of the battery resistance. It results in an accurate power prediction not only at room temperature, but also at lower temperatures at which the current dependency is substantial. The used model parameters are fully adaptable on-line to the given state of the battery (state of charge, state of health, temperature). This on-line adaption in combination with an explicit consideration of differences between characteristics of individual cells in a battery pack ensures an accurate power prediction under all possible conditions. The proposed trade-off between the number of used cell parameters and the total accuracy as well as the optimized algorithm results in a real-time capability of the method, which is demonstrated on a low-cost 16 bit microcontroller. The verification tests performed on a software-in-the-loop test bench system with four 40 Ah lithium-ion cells show promising results.

  1. Characterization of 109 Ah Ni-MH batteries charging with hydrogen sensing termination

    NASA Astrophysics Data System (ADS)

    Viera, J. C.; González, M.; Liaw, B. Y.; Ferrero, F. J.; Álvarez, J. C.; Campo, J. C.; Blanco, C.

    The use of Ni-MH batteries for traction applications in electric and hybrid vehicles is increasingly attractive and reliable. Besides the energy and power handling, and the cost issues, high tolerance to abuse is an important aspect of the Ni-MH technology. Thus, the ability to reduce charging time and to absorb regenerative breaking is highly desirable in these traction applications. This requires an accurate control of the charge termination. To facilitate an easy and reliable charging control and to avoid battery premature failure or ageing it is very important to know the behavior of the battery under a range of charging conditions. In this paper, we described the performance of high capacity commercial Ni-MH traction batteries (12 V, 109 Ah modules) when subjected to different charging rates (0.1, 0.2, 0.5, and 1.0 C) from 100% depth of discharge (DOD). Changes in battery voltage and temperature during charging were monitored, with a particular emphasis on the detection of the presence of hydrogen near the battery. This unique hydrogen detection outside the battery was used as the method for the end-of-charge termination to prevent overcharging of the battery. Relevant parameters, such as charge acceptance, energy efficiency, and charging time, were analyzed for comparison.

  2. Command Surface of Self-Organizing Structures by Radical Polymers with Cooperative Redox Reactivity.

    PubMed

    Sato, Kan; Mizuma, Takahiro; Nishide, Hiroyuki; Oyaizu, Kenichi

    2017-10-04

    Robust radical-substituted polymers with ideal redox capability were used as "command surfaces" for liquid crystal orientation. The alignment of the smectic liquid crystal electrolytes with low-dimensional ion conduction pathways was reversible and readily switched in response to the redox states of the polymers. In one example, a charge storage device with a cooperative redox effect was fabricated. The bulk ionic conductivity of the cell was significantly decreased only after the electrode was fully charged, due to the anisotropic ionic conductivity of the electrolytes (ratio >10 3 ). The switching enabled both a rapid cell response and long charge retention. Such a cooperative command surface of self-assembled structures will give rise to new highly energy efficient supramolecular-based devices including batteries, charge carriers, and actuators.

  3. A high-performance transcutaneous battery charger for medical implants.

    PubMed

    Artan, N; Vanjani, Hitesh; Vashist, Gurudath; Fu, Zhen; Bhakthavatsala, Santosh; Ludvig, Nandor; Medveczky, Geza; Chao, H

    2010-01-01

    As new functionality is added to the implantable devices, their power requirements also increase. Such power requirements make it hard for keeping such implants operational for long periods by non-rechargeable batteries. This result in a need for frequent surgeries to replace these batteries. Rechargeable batteries can satisfy the long-term power requirements of these new functions. To minimize the discomfort to the patients, the recharging of the batteries should be as infrequent as possible. Traditional battery charging methods have low battery charging efficiency. This means they may limit the amount of charge that can be delivered to the device, speeding up the depletion of the battery and forcing frequent recharging. In this paper, we evaluate the suitability of a state-of-the-art general purpose charging method called current-pumped battery charger (CPBC) for implant applications. Using off-the-shelf components and with minimum optimization, we prototyped a proof-of-concept transcutaenous battery charger based on CPBC and show that the CPBC can charge a 100 mAh battery transcutaneously within 137 minutes with at most 2.1°C increase in tissue temperature even with a misalignment of 1.3 cm in between the coils, while keeping the battery charging efficiency at 85%.

  4. Method and apparatus for smart battery charging including a plurality of controllers each monitoring input variables

    DOEpatents

    Hammerstrom, Donald J.

    2013-10-15

    A method for managing the charging and discharging of batteries wherein at least one battery is connected to a battery charger, the battery charger is connected to a power supply. A plurality of controllers in communication with one and another are provided, each of the controllers monitoring a subset of input variables. A set of charging constraints may then generated for each controller as a function of the subset of input variables. A set of objectives for each controller may also be generated. A preferred charge rate for each controller is generated as a function of either the set of objectives, the charging constraints, or both, using an algorithm that accounts for each of the preferred charge rates for each of the controllers and/or that does not violate any of the charging constraints. A current flow between the battery and the battery charger is then provided at the actual charge rate.

  5. Fluorinated Electrolytes for Li-S Battery: Suppressing the Self-Discharge with an Electrolyte Containing Fluoroether Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azimi, N.; Xue, Z.; Rago, N. D.

    The fluorinated electrolyte containing a fluoroether 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) was investigated as a new electrolyte for lithium-sulfur (Li-S) batteries. The low solubility of lithium polysulfides (LiPS) in the fluorinated electrolyte reduced the parasitic reactions with Li anode and mitigated the self-discharge by limiting their diffusion from the cathode to the anode. The use of fluorinated ether as a co-solvent and LiNO3 as an additive in the electrolyte shows synergetic effect in suppressing the self-discharge of Li-S battery due to the formation of the solid electrolyte interphase (SEI) on both sulfur cathode and the lithium anode. The Li-S cell with themore » fluorinated electrolyte showed prolonged shelf life at fully charged state.« less

  6. Unraveling the Complex Delithiation and Lithiation Mechanisms of the High Capacity Cathode Material V 6O 13

    DOE PAGES

    Meng, Wei; Pigliapochi, Roberta; Bayley, Paul M.; ...

    2017-06-05

    V 6O 13 is a promising Li-ion battery cathode material for use in the high temperature oil field environment. The material exhibits a high capacity, and the voltage profile contains several plateaus associated with a series of complex structural transformations, which are not fully understood. The underlying mechanisms are central to understanding and improving the performance of V 6O 13-based rechargeable batteries. In this study, we present in situ X-ray diffraction data that highlight an asymmetric six-step discharge and five step charge process, due to a phase that is only formed on discharge. The LixV 6O 13 unit cell expandsmore » sequentially in c, b, and a directions during discharge and reversibly contracts back during charge. The process is associated with change of Li ion positions as well as charge ordering in LixV 6O 13. Density functional theory calculations give further insight into the electronic structures and preferred Li positions in the different structures formed upon cycling, particularly at high lithium contents, where no prior structural data are available. Lastly, the results shed light into the high specific capacity of V 6O 13 and are likely to aid in the development of this material for use as a cathode for secondary lithium batteries.« less

  7. Metal-organic frameworks for lithium ion batteries and supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Fu-Sheng; Wu, Yu-Shan; Deng, Hexiang, E-mail: hdeng@whu.edu.cn

    2015-03-15

    Porous materials have been widely used in batteries and supercapacitors attribute to their large internal surface area (usually 100–1000 m{sup 2} g{sup −1}) and porosity that can favor the electrochemical reaction, interfacial charge transport, and provide short diffusion paths for ions. As a new type of porous crystalline materials, metal-organic frameworks (MOFs) have received huge attention in the past decade due to their unique properties, i.e. huge surface area (up to 7000 m{sup 2} g{sup −1}), high porosity, low density, controllable structure and tunable pore size. A wide range of applications including gas separation, storage, catalysis, and drug delivery benefitmore » from the recent fast development of MOFs. However, their potential in electrochemical energy storage has not been fully revealed. Herein, the present mini review appraises recent and significant development of MOFs and MOF-derived materials for rechargeable lithium ion batteries and supercapacitors, to give a glimpse into these potential applications of MOFs. - Graphical abstract: MOFs with large surface area and high porosity can offer more reaction sites and charge carriers diffusion path. Thus MOFs are used as cathode, anode, electrolyte, matrix and precursor materials for lithium ion battery, and also as electrode and precursor materials for supercapacitors. - Highlights: • MOFs have potential in electrochemical area due to their high porosity and diversity. • We summarized and compared works on MOFs for lithium ion battery and supercapacitor. • We pointed out critical challenges and provided possible solutions for future study.« less

  8. CNT Sheet Air Electrode for the Development of Ultra-High Cell Capacity in Lithium-Air Batteries

    PubMed Central

    Nomura, Akihiro; Ito, Kimihiko; Kubo, Yoshimi

    2017-01-01

    Lithium-air batteries (LABs) are expected to provide a cell with a much higher capacity than ever attained before, but their prototype cells present a limited areal cell capacity of no more than 10 mAh cm−2, mainly due to the limitation of their air electrodes. Here, we demonstrate the use of flexible carbon nanotube (CNT) sheets as a promising air electrode for developing ultra-high capacity in LAB cells, achieving areal cell capacities of up to 30 mAh cm−2, which is approximately 15 times higher than the capacity of cells with lithium-ion battery (LiB) technology (~2 mAh cm−2). During discharge, the CNT sheet electrode experienced enormous swelling to a thickness of a few millimeters because of the discharge product deposition of lithium peroxide (Li2O2), but the sheet was fully recovered after being fully charged. This behavior results from the CNT sheet characteristics of the flexible and fibrous conductive network and suggests that the CNT sheet is an effective air electrode material for developing a commercially available LAB cell with an ultra-high cell capacity. PMID:28378746

  9. Nondissipative optimum charge regulator

    NASA Technical Reports Server (NTRS)

    Rosen, R.; Vitebsky, J. N.

    1970-01-01

    Optimum charge regulator provides constant level charge/discharge control of storage batteries. Basic power transfer and control is performed by solar panel coupled to battery through power switching circuit. Optimum controller senses battery current and modifies duty cycle of switching circuit to maximize current available to battery.

  10. Probing anode degradation in automotive Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kwon, Ou Jung

    The lithium-ion battery is drawing attention as a power source for future clean and fuel-efficient vehicles. Although the Li-ion battery presently shows best performance for energy density and power density compared to other rechargeable batteries, some degradation problems still remain as key challenges for long-term durability in automotive applications. Among those problems, Li deposition is well known for causing permanent capacity loss. Fundamental mechanisms of Li deposition in the carbon anode are, however, not fully understood, especially at subzero temperature and/or under high rate charge. This dissertation introduces comprehensive study of Li deposition using automotive 18650 Li-ion cells. The mechanism and relevant diagnostic methods as well as preventive charging protocol are discussed. In part one, a new diagnostic tool is introduced utilizing 3-electrode cell system, which measures thermodynamic and kinetic parameters of cathode and anode, respectively, as a function of temperature and SOC (state of charge): open circuit potential (OCP); Li diffusion coefficient in active particles; and internal resistance. These data are employed to understand electrochemical reaction and its thermal interaction under charging conditions that result in Li deposition. Part two provides a threshold parameter for the onset of Li deposition, which is not commonly used anode potential but charge capacity, or more specifically the amount of Li+ ions participating in intercalation reaction without Li deposition at given charging circumstances. This is called the critical charge capacity in this thesis, beyond which capacity loss at normal operating condition is observed, which becomes more serious as temperature is lowered and/or charge C-rate increases. Based on these experimental results, the mechanism of Li deposition is proposed as the concept of anode particle surface saturation, meaning that once the anode particle surface is saturated with Li in any charging circumstances, no more Li+ ions can be intercalated but should be reduced to metallic form on the anode particle surface. This is validated by calculating the distribution of Li concentration inside the anode particle with electrochemical modeling. In part three, a novel pulse charge protocol is developed, which consists of two steps. First high current charge/discharge pulses increase the cell temperature from a subzero temperature up to above room temperature in a short time, and next, high current charge provides the net charge capacity. Sluggish Li diffusion at low temperature becomes fast thanks to cell temperature elevation by high current pulses (1st step), which plays a role of preventing surface saturation during high current charge (2nd step). Thus, this charge protocol is not only Li deposition-free but also leads to rapid charge at subzero temperatures.

  11. Fuzzy control of battery chargers

    NASA Astrophysics Data System (ADS)

    Aldridge, Jack

    1996-03-01

    The increasing reliance on battery power for portable terrestrial purposes, such as portable tools, portable computers, and telecommunications, provides motivation to optimize the battery charging process with respect to speed of charging and charging cycle lifetime of the battery. Fuzzy control, implemented on a small microcomputer, optimizes charging in the presence of nonlinear effects and large uncertainty in the voltage vs. charge state characteristics for the battery. Use of a small microcontroller makes possible a small, capable, and affordable package for the charger. Microcontroller-based chargers provide improved performance by adjusting both charging voltage and charging current during the entire charging process depending on a current estimate of the state of charge of the battery. The estimate is derived from the zero-current voltage of the battery and the temperature and their rates of change. All of these quantities are uncertain due to the variation in condition between the individual cells in a battery, the rapid and nonlinear dependence of the fundamental electrochemistry on the internal temperature, and the placement of a single temperature sensor within the battery package. While monitoring the individual cell voltages and temperatures would be desirable, cost and complexity considerations preclude the practice. NASA has developed considerable technology in batteries for supplying significant amounts of power for spacecraft and in fuzzy control techniques for the space applications. In this paper, we describe how we are using both technologies to build an optimal charger prototype as a precursor to a commercial version.

  12. Real time charge efficiency monitoring for nickel electrodes in NICD and NIH2 cells

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. H.

    1987-09-01

    The charge efficiency of nickel-cadmium and nickel-hydrogen battery cells is critical in spacecraft applications for determining the amount of time required for a battery to reach a full state of charge. As the nickel-cadmium or nickel-hydrogen batteries approach about 90 percent state of charge, the charge efficiency begins to drop towards zero, making estimation of the total amount of stored charge uncertain. Charge efficiency estimates are typically based on prior history of available capacity following standardized conditions for charge and discharge. These methods work well as long as performance does not change significantly. A relatively simple method for determining charge efficiencies during real time operation for these battery cells would be a tremendous advantage. Such a method was explored and appears to be quite well suited for application to nickel-cadmium and nickel-hydrogen battery cells. The charge efficiency is monitored in real time, using only voltage measurements as inputs. With further evaluation such a method may provide a means to better manage charge control of batteries, particularly in systems where a high degree of autonomy or system intelligence is required.

  13. Real time charge efficiency monitoring for nickel electrodes in NICD and NIH2 cells

    NASA Technical Reports Server (NTRS)

    Zimmerman, A. H.

    1987-01-01

    The charge efficiency of nickel-cadmium and nickel-hydrogen battery cells is critical in spacecraft applications for determining the amount of time required for a battery to reach a full state of charge. As the nickel-cadmium or nickel-hydrogen batteries approach about 90 percent state of charge, the charge efficiency begins to drop towards zero, making estimation of the total amount of stored charge uncertain. Charge efficiency estimates are typically based on prior history of available capacity following standardized conditions for charge and discharge. These methods work well as long as performance does not change significantly. A relatively simple method for determining charge efficiencies during real time operation for these battery cells would be a tremendous advantage. Such a method was explored and appears to be quite well suited for application to nickel-cadmium and nickel-hydrogen battery cells. The charge efficiency is monitored in real time, using only voltage measurements as inputs. With further evaluation such a method may provide a means to better manage charge control of batteries, particularly in systems where a high degree of autonomy or system intelligence is required.

  14. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    NASA Astrophysics Data System (ADS)

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-08-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium-air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications.

  15. Efficiently photo-charging lithium-ion battery by perovskite solar cell

    PubMed Central

    Xu, Jiantie; Chen, Yonghua; Dai, Liming

    2015-01-01

    Electric vehicles using lithium-ion battery pack(s) for propulsion have recently attracted a great deal of interest. The large-scale practical application of battery electric vehicles may not be realized unless lithium-ion batteries with self-charging suppliers will be developed. Solar cells offer an attractive option for directly photo-charging lithium-ion batteries. Here we demonstrate the use of perovskite solar cell packs with four single CH3NH3PbI3 based solar cells connected in series for directly photo-charging lithium-ion batteries assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. Our device shows a high overall photo-electric conversion and storage efficiency of 7.80% and excellent cycling stability, which outperforms other reported lithium-ion batteries, lithium–air batteries, flow batteries and super-capacitors integrated with a photo-charging component. The newly developed self-chargeable units based on integrated perovskite solar cells and lithium-ion batteries hold promise for various potential applications. PMID:26311589

  16. Battery model for electrical power system energy balance

    NASA Technical Reports Server (NTRS)

    Hafen, D. P.

    1983-01-01

    A model to simulate nickel-cadmium battery performance and response in a spacecraft electrical power system energy balance calculation was developed. The voltage of the battery is given as a function of temperature, operating depth-of-charge (DOD), and battery state-of-charge. Also accounted for is charge inefficiency. A battery is modeled by analysis of the results of a multiparameter battery cycling test at various temperatures and DOD's.

  17. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery

    PubMed Central

    Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng

    2017-01-01

    Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion···carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level. PMID:28272396

  18. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery

    NASA Astrophysics Data System (ADS)

    Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng

    2017-03-01

    Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion...carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level.

  19. Thermal modelling of Li-ion polymer battery for electric vehicle drive cycles

    NASA Astrophysics Data System (ADS)

    Chacko, Salvio; Chung, Yongmann M.

    2012-09-01

    Time-dependent, thermal behaviour of a lithium-ion (Li-ion) polymer cell has been modelled for electric vehicle (EV) drive cycles with a view to developing an effective battery thermal management system. The fully coupled, three-dimensional transient electro-thermal model has been implemented based on a finite volume method. To support the numerical study, a high energy density Li-ion polymer pouch cell was tested in a climatic chamber for electric load cycles consisting of various charge and discharge rates, and a good agreement was found between the model predictions and the experimental data. The cell-level thermal behaviour under stressful conditions such as high power draw and high ambient temperature was predicted with the model. A significant temperature increase was observed in the stressful condition, corresponding to a repeated acceleration and deceleration, indicating that an effective battery thermal management system would be required to maintain the optimal cell performance and also to achieve a full battery lifesapn.

  20. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery.

    PubMed

    Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng

    2017-03-08

    Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion···carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level.

  1. Optimal management of batteries in electric systems

    DOEpatents

    Atcitty, Stanley; Butler, Paul C.; Corey, Garth P.; Symons, Philip C.

    2002-01-01

    An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

  2. Battery-Charge-State Model

    NASA Technical Reports Server (NTRS)

    Vivian, H. C.

    1985-01-01

    Charge-state model for lead/acid batteries proposed as part of effort to make equivalent of fuel gage for battery-powered vehicles. Models based on equations that approximate observable characteristics of battery electrochemistry. Uses linear equations, easier to simulate on computer, and gives smooth transitions between charge, discharge, and recuperation.

  3. Lithium-ion battery diagnostic and prognostic techniques

    DOEpatents

    Singh, Harmohan N.

    2009-11-03

    Embodiments provide a method and a system for determining cell imbalance condition of a multi-cell battery including a plurality of cell strings. To determine a cell imbalance condition, a charge current is applied to the battery and is monitored during charging. The charging time for each cell string is determined based on the monitor of the charge current. A charge time difference of any two cell strings in the battery is used to determine the cell imbalance condition by comparing with a predetermined acceptable charge time difference for the cell strings.

  4. Battery Power Management in Heavy-duty HEVs based on the Estimated Critical Surface Charge

    DTIC Science & Technology

    2011-03-01

    health prospects without any penalty on fuel efficiency. Keywords: Lithium - ion battery ; power management; critical surface charge; Lithium-ion...fuel efficiency. 15. SUBJECT TERMS Lithium - ion battery ; power management; critical surface charge; Lithium-ion concentration; estimation; extended...Di Domenico, D., Fiengo, G., and Stefanopoulou, A. (2008) ’ Lithium - ion battery state of charge estimation with a kalman filter based on a

  5. Nickel-hydrogen battery state of charge during low rate trickle charging

    NASA Technical Reports Server (NTRS)

    Lurie, C.; Foroozan, S.; Brewer, J.; Jackson, L.

    1995-01-01

    Battery temperature increase, due to low rate trickle charging, has been determined experimentally, using a six cell battery module in a test setup simulating the anticipated AXAF-1 prelaunch environment. Test results indicate trickle charge rates less than or equal to the self discharge rate do not increase dissipation beyond that due to the self discharge. Significant trickle charge rates (approximately C/500) result in battery temperatures only a few degrees (F) higher than those observed during periods of open circuit stand.

  6. Thermal behaviors of Ni-MH batteries using a novel impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiao, Pu; Gao, Wenying; Qiu, Xinping; Zhu, Wentao; Sun, Jie; Chen, Liquan

    In this paper, a novel impedance spectroscopy was used to describe the thermal behaviors of Ni-MH batteries. The impedance functions were derived similarly to electric impedance functions. The square of current was treated as a current equivalent and heat-flow as a voltage equivalent. The impedance spectra of batteries during charge showed that the combination of hydrogen and oxygen increased rapidly when charge rate was higher than 0.5 C. Thermal runaway might happen when battery was charged at temperature above 348 K even at a low charge rate. The cycling test showed that the charge efficiency of battery was the highest after cycling at high-rate for 10-100 cycles and decreased after more cycles. Different batteries showed different thermal behaviors which may be caused by the different structures of batteries.

  7. A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery.

    PubMed

    Hasa, Ivana; Buchholz, Daniel; Passerini, Stefano; Hassoun, Jusef

    2015-03-11

    Herein, we report a study on P-type layered sodium transition metal-based oxides with a general formula of NaxMO2 (M = Ni, Fe, Mn). We synthesize the materials via coprecipitation followed by annealing in air and rinsing with water, and we examine the electrodes as cathodes for sodium-ion batteries using a propylene carbonate-based electrolyte. We fully investigate the effect of the Ni-to-Fe ratio, annealing temperature, and sodium content on the electrochemical performances of the electrodes. The impact of these parameters on the structural and electrochemical properties of the materials is revealed by X-ray diffraction, scanning electron microscopy, and cyclic voltammetry, respectively. The suitability of this class of P-type materials for sodium battery application is finally demonstrated by cycling tests revealing an excellent electrochemical performance in terms of delivered capacity (i.e., about 200 mAh g(-1)) and charge-discharge efficiency (approaching 100%).

  8. Implementation of a Battery Health Monitor and Vertical Lift Aircraft Testbed for the Application of an Electrochemisty-Based State of Charge Estimator

    NASA Technical Reports Server (NTRS)

    Potteiger, Timothy R.; Eure, Kenneth W.; Levenstein, David

    2017-01-01

    Prediction methods concerning remaining charge in lithium-ion batteries that power unmanned aerial vehicles are of critical concern for the safe fulfillment of mission objectives. In recent years, lithium-ion batteries have been the power source for both fixed wing and vertical lift electric vehicles. The purpose of this document is to describe in detail the implementation of a battery health monitor for estimating the state of charge of a lithium-ion battery and a lithium-ion polymer battery that is used to power a vertical lift aircraft test-bed. It will be demonstrated that an electro-chemistry based state of charge estimator effectively tracks battery discharge characteristics and may be employed as a useful tool in monitoring battery health.

  9. Battery Research & Development Need for Military Vehicle Application

    DTIC Science & Technology

    2012-06-19

    The charge control for lithium ion battery chemistries is different from those of flooded and sealed lead acid batteries. • The discharge control...for lithium ion battery chemistries is different from those of flooded and sealed lead acid batteries. • Battery charging voltage changes with the

  10. Battery charge regulator is coulometer controlled

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.

    1967-01-01

    Coulometer controlled battery charge regulator controls nickel/cadmium type primary cells used in space applications. The use of the coulometer as an ampere hour measuring device permits all available current to go to the battery until full charge state is reached, at which time the charge rate is automatically reduced.

  11. Will Your Battery Survive a World With Fast Chargers?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, J. S.; Wood, E.

    Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that result could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported the National Renewable Energy Laboratory's development ofmore » BLAST-V-the Battery Lifetime Analysis and Simulation Tool for Vehicles-to create a tool capable of accounting for all of these factors. We present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. We find that the impact of realistic fast charging on battery degradation is minimal for most drivers, due to the low frequency of use. However, in the absence of active battery cooling systems, a driver's desired utilization of a BEV and fast charging infrastructure can result in unsafe peak battery temperatures. We find that active battery cooling systems can control peak battery temperatures to safe limits while allowing the desired use of the vehicle.« less

  12. Direct Evidence of Solution-Mediated Superoxide Transport and Organic Radical Formation in Sodium-Oxygen Batteries.

    PubMed

    Xia, Chun; Fernandes, Russel; Cho, Franklin H; Sudhakar, Niranjan; Buonacorsi, Brandon; Walker, Sean; Xu, Meng; Baugh, Jonathan; Nazar, Linda F

    2016-09-07

    Advanced large-scale electrochemical energy storage requires cost-effective battery systems with high energy densities. Aprotic sodium-oxygen (Na-O2) batteries offer advantages, being comprised of low-cost elements and possessing much lower charge overpotential and higher reversibility compared to their lithium-oxygen battery cousins. Although such differences have been explained by solution-mediated superoxide transport, the underlying nature of this mechanism is not fully understood. Water has been suggested to solubilize superoxide via formation of hydroperoxyl (HO2), but direct evidence of these HO2 radical species in cells has proven elusive. Here, we use ESR spectroscopy at 210 K to identify and quantify soluble HO2 radicals in the electrolyte-cold-trapped in situ to prolong their lifetime-in a Na-O2 cell. These investigations are coupled to parallel SEM studies that image crystalline sodium superoxide (NaO2) on the carbon cathode. The superoxide radicals were spin-trapped via reaction with 5,5-dimethyl-pyrroline N-oxide at different electrochemical stages, allowing monitoring of their production and consumption during cycling. Our results conclusively demonstrate that transport of superoxide from cathode to electrolyte leads to the nucleation and growth of NaO2, which follows classical mechanisms based on the variation of superoxide content in the electrolyte and its correlation with the crystallization of cubic NaO2. The changes in superoxide content upon charge show that charge proceeds through the reverse solution process. Furthermore, we identify the carbon-centered/oxygen-centered alkyl radicals arising from attack of these solubilized HO2 species on the diglyme solvent. This is the first direct evidence of such species, which are likely responsible for electrolyte degradation.

  13. Cyclic steady states in diffusion-induced plasticity with applications to lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Peigney, Michaël

    2018-02-01

    Electrode materials in lithium-ion batteries offer an example of medium in which stress and plastic flow are generated by the diffusion of guest atoms. In such a medium, deformation and diffusion are strongly coupled processes. For designing electrodes with improved lifetime and electro-mechanical efficiency, it is crucial to understand how plasticity and diffusion evolve over consecutive charging-recharging cycles. With such questions in mind, this paper provides general results for the large-time behavior of media coupling plasticity with diffusion when submitted to cyclic chemo-mechanical loadings. Under suitable assumptions, we show that the stress, the plastic strain rate, the chemical potential and the flux of guest atoms converge to a cyclic steady state which is largely independent of the initial state. A special emphasis is laid on the special case of elastic shakedown, which corresponds to the situation where the plastic strain stops evolving after a sufficiently large number of cycles. Elastic shakedown is expected to be beneficial for the fatigue behavior and - in the case of lithium-ion batteries - for the electro-chemical efficiency. We provide a characterization of the chemo-mechanical loadings for which elastic shakedown occurs. Building on that characterization, we suggest a general method for designing structures in such fashion that they operate in the elastic shakedown regime, whatever the initial state is. An attractive feature of the proposed method is that incremental analysis of the fully coupled plasticity-diffusion problem is avoided. The results obtained are applied to the model problem of a battery electrode cylinder particle under cyclic charging. Closed-form expressions are obtained for the set of charging rates and charging amplitudes for which elastic shakedown occurs, as well as for the corresponding cyclic steady states of stress, lithium concentration and chemical potential. Some results for a spherical particle are also presented.

  14. Comparison of Battery Life Across Real-World Automotive Drive-Cycles (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, K.; Earleywine, M.; Wood, E.

    2011-11-01

    Laboratories run around-the-clock aging tests to try to understand as quickly as possible how long new Li-ion battery designs will last under certain duty cycles. These tests may include factors such as duty cycles, climate, battery power profiles, and battery stress statistics. Such tests are generally accelerated and do not consider possible dwell time at high temperatures and states-of-charge. Battery life-predictive models provide guidance as to how long Li-ion batteries may last under real-world electric-drive vehicle applications. Worst-case aging scenarios are extracted from hundreds of real-world duty cycles developed from vehicle travel surveys. Vehicles examined included PHEV10 and PHEV40 EDVsmore » under fixed (28 degrees C), limited cooling (forced ambient temperature), and aggressive cooling (20 degrees C chilled liquid) scenarios using either nightly charging or opportunity charging. The results show that battery life expectancy is 7.8 - 13.2 years for the PHEV10 using a nightly charge in Phoenix, AZ (hot climate), and that the 'aggressive' cooling scenario can extend battery life by 1-3 years, while the 'limited' cooling scenario shortens battery life by 1-2 years. Frequent (opportunity) charging can reduce battery life by 1 year for the PHEV10, while frequent charging can extend battery life by one-half year.« less

  15. Charge Efficiency Tests of Lead/Acid Batteries

    NASA Technical Reports Server (NTRS)

    Rowlette, J. J.

    1984-01-01

    Current, voltage, and gas evolution measured during charge/discharge cycles. Series of standarized tests for evaluating charging efficiency of lead/acid storage batteries described in report. Purpose of tests to provide information for design of battery charger that allows maximum recharge efficiency for electric-vehicle batteries consistent with other operating parameters, such as range, water loss, and cycle life.

  16. Li-Ion Battery and Supercapacitor Hybrid Design for Long Extravehicular Activities

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2013-01-01

    With the need for long periods of extravehicular activities (EVAs) on the Moon or Mars or a near-asteroid, the need for long-performance batteries has increased significantly. The energy requirements for the EVA suit, as well as surface systems such as rovers, have increased significantly due to the number of applications they need to power at the same time. However, even with the best state-of-the-art Li-ion batteries, it is not possible to power the suit or the rovers for the extended period of performance. Carrying a charging system along with the batteries makes it cumbersome and requires a self-contained power source for the charging system that is usually not possible. An innovative method to charge and use the Li-ion batteries for long periods seems to be necessary and hence, with the advent of the Li-ion supercapacitors, a method has been developed to extend the performance period of the Li-ion power system for future exploration applications. The Li-ion supercapacitors have a working voltage range of 3.8 to 2.5 V, and are different from a traditional supercapacitor that typically has a working voltage of 1 V. The innovation is to use this Li-ion supercapacitor to charge Liion battery systems on an as-needed basis. The supercapacitors are charged using solar arrays and have battery systems of low capacity in parallel to be able to charge any one battery system while they provide power to the application. Supercapacitors can safely take up fast charge since the electrochemical process involved is still based on charge separation rather than the intercalation process seen in Li-ion batteries, thus preventing lithium metal deposition on the anodes. The lack of intercalation and eliminating wear of the supercapacitors allows for them to be charged and discharged safely for a few tens of thousands of cycles. The Li-ion supercapacitors can be charged from the solar cells during the day during an extended EVA. The Liion battery used can be half the capacity required for a nominal EVA. The small Li-ion battery can be divided into two parallel modules with independent charging ports that would allow the supercapacitors to charge one battery while the other is providing power to the rover or suit.

  17. Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration

    DTIC Science & Technology

    2016-08-22

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6180--16-9689 Lithium - Ion Battery Failure: Effects of State of Charge and Packing...PAGES 17. LIMITATION OF ABSTRACT Lithium - Ion Battery Failure: Effects of State of Charge and Packing Configuration Neil S. Spinner,* Katherine M. Hinnant...Steven G. Tuttle (202) 404-3419 Lithium - ion battery safety remains a significant concern, as battery failure leads to ejection of hazardous materials

  18. Nickel-hydrogen battery state of charge during low rate trickle charging

    NASA Technical Reports Server (NTRS)

    Lurie, C.; Foroozan, S.; Brewer, J.; Jackson, L.

    1996-01-01

    The NASA AXAF-I program requires high battery state of charge at launch. Traditional approaches to providing high state of charge, during prelaunch operations, require significant battery cooling. The use of active cooling, in the AXAF-I prelaunch environment, was considered and proved to be difficult to implement and very expensive. Accordingly alternate approaches were considered. An approach utilizing adiabatic charging and low rate trickle charge, was investigated and proved successful.

  19. Functional Evaluation of the DOZA DKG-05D Electronic Dosimeter System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piper, Roman K.; Scherpelz, Robert I.

    2009-11-04

    The DOZA DKG-05D electronic personal dosimeter (EPD) was the subject of a limited type-test evaluation in support of Plutonium Production Reactor Agreement (PPRA) Implementation. The primary goal of this evaluation was to provide confidence in the functionality of the dosimeter and identify potential weaknesses in PPRA applications. The tests were based on IEC-61526, recommendations of the International Electrotechnical Commission pertaining to EPDs. All tests were performed in Pacific Northwest National Laboratory’s (PNNL) Radiological Calibrations and Standards Facility in the 318 building. The first testing category was functional considerations. The tests found that the mechanical characteristics of the DKG-05D support usability.more » However, user controls are not intuitive and straightforward, and the user instructions were unclear and difficult to follow. The unit functioned in a variety of humidity conditions. In high temperature conditions it performed well. However, in cold conditions the display began to fade, which limits its usefulness below about 5 °C. The vendor claims that the unit functions to -20 °C, and it may be correctly recording doses at that low temperature, but the doses cannot be read in real time. Testing found that battery life is generally good, operating for 200 hours on a full charge. This is far more than needed for the intended application. Charging the battery, however, had some pitfalls resulting from two charging modes. The high-current mode would be automatically selected if the battery charge fell below a threshold value when inserted in the charger. Otherwise, a low-current mode would be selected. In some cases a battery needing recharging would not get sufficient current to fully charge in a reasonable time period. There were also problems found in the low-battery indication and there was a possibility for data loss in the low-battery condition. The EPD generally performed well in measuring dose and dose rate. There were some small problems with non-linearity over a range of doses, but these non-linearities were at extremely low and very high doses and would not adversely affect the performance in our intended application. The testing resulted in the general conclusion that the DOZA DKG-05D is suitable for use in PPRA applications for real-time indication of dose received by a user and for estimation of stay times in radiation zones. It can be used as a supplement to a passive dosimeter, but it should not be used for measuring the user’s dose of record.« less

  20. Laser processing of thick Li(NiMnCo)O2 electrodes for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Rakebrandt, J.-H.; Smyrek, P.; Zheng, Y.; Seifert, H. J.; Pfleging, W.

    2017-02-01

    Lithium-ion batteries became the most promising types of mobile energy storage devices due to their high gravimetric and volumetric capacity, high cycle life-time, and low self-discharge. Nowadays, the cathode material lithium nickel manganese cobalt oxide (NMC) is one of the most widely used cathode material in commercial lithium-ion batteries due to many advantages such as high energy density (>150 Wh kg-1) on cell level, high power density (650 W kg-1 @ 25 °C and 50 % Depth of Discharge) [1], high specific capacity (163 mAh g-1) [2], high rate capability and good thermal stability in the fully charged state. However, in order to meet the requirements for the increasing demand for rechargeable high energy batteries, nickel-rich NMC electrodes with specific capacities up to 210 mAh g-1 seem to be the next generation cathodes which can reach on cell level desired energy densities higher than 250 Wh kg-1 [3]. Laser-structuring now enables to combine both concepts, high power and high energy lithium-ion batteries. For this purpose, lithium nickel manganese cobalt oxide cathodes were produced via tape casting containing 85-90 wt% of active material with a film thickness of 50-260 μm. The specific capacities were measured using galvanostatic measurements for different types of NMC with varying nickel, manganese and cobalt content at different charging/discharging currents ("C-rates"). An improved lithium-ion diffusion kinetics due to an increased active surface area could be achieved by laser-assisted generating of three dimensional architectures. Cells with unstructured and structured cathodes were compared. Ultrafast laser ablation was used in order to avoid a thermal impact to the material. It was shown that laser structuring of electrode materials leads to a significant improvement in electrochemical performance, especially at high charging and discharging C-rates.

  1. Behavior data of battery and battery pack SOC estimation under different working conditions.

    PubMed

    Zhang, Xu; Wang, Yujie; Yang, Duo; Chen, Zonghai

    2016-12-01

    This article provides the dataset of operating conditions of battery behavior. The constant current condition and the dynamic stress test (DST) condition were carried out to analyze the battery discharging and charging features. The datasets were achieved at room temperature, in April, 2016. The shared data contributes to clarify the battery pack state-of-charge (SOC) and the battery inconsistency, which is also shown in the article of "An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model" (X. Zhang, Y. Wang, D. Yang, et al., 2016) [1].

  2. Electrochemical model based charge optimization for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pramanik, Sourav; Anwar, Sohel

    2016-05-01

    In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.

  3. Solar bus regulator and battery charger for IMP's H, I, and J

    NASA Technical Reports Server (NTRS)

    Paulkovich, J.

    1972-01-01

    Interplanetary Monitoring Probe (IMP) spacecrafts H, I, and J utilize a direct energy transfer (DET) type of power system operating from a solar array source. A shunt type of regulator prevents the bus voltage from exceeding a preset voltage level. The power system utilizes a single differential amplifier with dual outputs to control the battery charge/shunt regulator and the discharge regulator. A two-voltage level, current limited, series charger and a current sensor control battery state of charge of the silver-cadmium battery pack. Premature termination of the battery charge is prevented by a power available gate that also initiates charge current to the battery upon availability of excess power.

  4. An electric vehicle propulsion system's impact on battery performance: An overview

    NASA Technical Reports Server (NTRS)

    Bozek, J. M.; Smithrick, J. J.; Cataldo, R. C.; Ewashinka, J. G.

    1980-01-01

    The performance of two types of batteries, lead-acid and nickel-zinc, was measured as a function of the charging and discharging demands anticipated from electric vehicle propulsion systems. The benefits of rapid high current charging were mixed: although it allowed quick charges, the energy efficiency was reduced. For low power (overnight) charging the current wave shapes delivered by the charger to the battery tended to have no effect on the battery cycle life. The use of chopper speed controllers with series traction motors resulted in a significant reduction in the energy available from a battery whenever the motor operates at part load. The demand placed on a battery by an electric vehicle propulsion system containing electrical regenerative braking confirmed significant improvment in short term performance of the battery.

  5. Optimal Battery Charging for Damage Mitigation

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Lorenzo, Carl F.

    2003-01-01

    Our control philosophy is to charge the NiH2 cell in such a way that the damage incurred during the charging period is minimized, thus extending its cycle life. This requires nonlinear dynamic model of NiH2 cell and a damage rate model. We must do this first. This control philosophy is generally considered damage mitigating control or life-extending control. This presentation covers how NiH2 cells function, electrode behavior, an essentialized model, damage mechanisms for NiH2 batteries, battery continuum damage modeling, and battery life models. The presentation includes graphs and a chart illustrating how charging a NiH2 battery with different voltages and currents affects damages the battery and affects its life. The presentation concludes with diagrams of control system architectures for tracking battery recharging.

  6. Systems and methods for initializing a charging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perisic, Milun; Ransonm, Ray M.; Kojouke, Lateef A.

    2017-09-26

    Systems and methods are provided for charging a battery. The system, for example, includes, but is not limited to a first interface configured to receive a voltage from an AC voltage source, a matrix conversion module comprising a plurality of switches electrically connected to the first interface and configured to provide a charging voltage to the battery, and a controller communicatively connected to the matrix conversion module, wherein the controller is configured to: determine a voltage of the battery, determine an angle of the AC voltage source to initiate charging of the battery based upon the voltage of the battery,more » and control the plurality of switches to provide the charging voltage to the battery between the determined angle of the AC voltage source and a subsequent zero-crossing of the AC voltage source.« less

  7. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.

    PubMed

    Liu, Hanshuo; Bugnet, Matthieu; Tessaro, Matteo Z; Harris, Kristopher J; Dunham, Mark J R; Jiang, Meng; Goward, Gillian R; Botton, Gianluigi A

    2016-10-26

    Layered lithium transition metal oxides are one of the most important types of cathode materials in lithium-ion batteries (LIBs) that possess high capacity and relatively low cost. Nevertheless, these layered cathode materials suffer structural changes during electrochemical cycling that could adversely affect the battery performance. Clear explanations of the cathode degradation process and its initiation, however, are still under debate and not yet fully understood. We herein systematically investigate the chemical evolution and structural transformation of the LiNi x Mn y Co 1-x-y O 2 (NMC) cathode material in order to understand the battery performance deterioration driven by the cathode degradation upon cycling. Using high-resolution electron energy loss spectroscopy (HR-EELS) we clarify the role of transition metals in the charge compensation mechanism, particularly the controversial Ni 2+ (active) and Co 3+ (stable) ions, at different states-of-charge (SOC) under 4.6 V operation voltage. The cathode evolution is studied in detail from the first-charge to long-term cycling using complementary diagnostic tools. With the bulk sensitive 7 Li nuclear magnetic resonance (NMR) measurements, we show that the local ordering of transition metal and Li layers (R3[combining macron]m structure) is well retained in the bulk material upon cycling. In complement to the bulk measurements, we locally probe the valence state distribution of cations and the surface structure of NMC particles using EELS and scanning transmission electron microscopy (STEM). The results reveal that the surface evolution of NMC is initiated in the first-charging step with a surface reduction layer formed at the particle surface. The NMC surface undergoes phase transformation from the layered structure to a poor electronic and ionic conducting transition-metal oxide rock-salt phase (R3[combining macron]m → Fm3[combining macron]m), accompanied by irreversible lithium and oxygen loss. In addition to the electrochemical cycling effect, electrolyte exposure also shows non-negligible influence on cathode surface degradation. These chemical and structural changes of the NMC cathode could contribute to the first-cycle coulombic inefficiency, restrict the charge transfer characteristics and ultimately impact the cell capacity.

  8. Rechargeable Li/Li(x)CoO(2) 100 Ah/600 Ah Battery With Integral Smart Charge Control

    DTIC Science & Technology

    1999-03-01

    Rechargeable Li/LixCo02100 Ah/600 Ah Battery with Integral Smart Charge Control By Charles J. Kelly ^ (Alliant Techsystems, Inc., Alliant Power...Rechargeable Li/LixCo02100 Ah/600 Ah Battery with Integral Smart Charge Control By Charles J. Kelly (Alliant Techsystems, Inc., Alliant Power Sources...AND SUBTITLE Rechargeable Li/LixCo02100 Ah/600 Ah Battery with Integral Smart Charge Control 6 AUTHOR(S) C. J. Kelly (Alliant Power Sources Co

  9. Phase control of Mn-based spinel films via pulsed laser deposition

    DOE PAGES

    Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.; ...

    2016-07-06

    Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn 2O 4 and fully charged cathode Mn 2O 4. The tetragonal MgMn 2O 4 (MMO) phase is obtained on MgAl 2O 4 substrates, whilemore » the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn 2O 4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn 2O 4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.« less

  10. Phase control of Mn-based spinel films via pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.

    Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn 2O 4 and fully charged cathode Mn 2O 4. The tetragonal MgMn 2O 4 (MMO) phase is obtained on MgAl 2O 4 substrates, whilemore » the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn 2O 4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn 2O 4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.« less

  11. A brief review on key technologies in the battery management system of electric vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Kailong; Li, Kang; Peng, Qiao; Zhang, Cheng

    2018-04-01

    Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.

  12. An omnipotent Li-ion battery charger with multimode control and polarity reversible techniques

    NASA Astrophysics Data System (ADS)

    Chen, Jiann-Jong; Ku, Yi-Tsen; Yang, Hong-Yi; Hwang, Yuh-Shyan; Yu, Cheng-Chieh

    2016-07-01

    The omnipotent Li-ion battery charger with multimode control and polarity reversible techniques is presented in this article. The proposed chip is fabricated with TSMC 0.35μm 2P4M complementary metal-oxide- semiconductor processes, and the chip area including pads is 1.5 × 1.5 mm2. The structure of the omnipotent charger combines three charging modes and polarity reversible techniques, which adapt to any Li-ion batteries. The three reversible Li-ion battery charging modes, including trickle-current charging, large-current charging and constant-voltage charging, can charge in matching polarities or opposite polarities. The proposed circuit has a maximum charging current of 300 mA and the input voltage of the proposed circuit is set to 4.5 V. The maximum efficiency of the proposed charger is about 91% and its average efficiency is 74.8%. The omnipotent charger can precisely provide the charging current to the battery.

  13. Determination of the state-of-charge in leadacid batteries by means of a reference cell

    NASA Astrophysics Data System (ADS)

    Armenta, C.

    A knowledge of the state-of-charge of any battery is an essential requirement for system energy management and for battery life extension. In photovoltaic power plants and stand-alone photovoltaic installations, a knowledge of the state-of-charge helps one to predict remaining energy, to determine time remaining before battery turndown, and to avoid failures during operation. A reliable method of predicting the state-of-charge will allow reduced installation costs because less reserve capacity is needed to guarantee a reliable energy supply. We propose an on-line method based on simple electrical measurements combined with a new electrolyte agitation technique which avoids systematic control of the battery state-of-charge. The method is very accurate and reduces the standard error in the state-of-charge prediction.

  14. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOEpatents

    Bockelmann, Thomas R [Battle Creek, MI; Beaty, Kevin D [Kalamazoo, MI; Zou, Zhanijang [Battle Creek, MI; Kang, Xiaosong [Battle Creek, MI

    2009-07-21

    A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

  15. Impact of Fast Charging on Life of EV Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan

    2015-05-03

    Utilization of public charging infrastructure is heavily dependent on user-specific travel behavior. The availability of fast chargers can positively affect the utility of battery electric vehicles, even given infrequent use. Estimated utilization rates do not appear frequent enough to significantly impact battery life. Battery thermal management systems are critical in mitigating dangerous thermal conditions on long distance tours with multiple fast charge events.

  16. Supercapacitor performance evaluation in replacing battery based on charging and discharging current characteristics

    NASA Astrophysics Data System (ADS)

    Sani, A.; Siahaan, S.; Mubarakah, N.; Suherman

    2018-02-01

    Supercapacitor is a new device of energy storage, which has much difference between ordinary capacitors and batteries. Supercapacitor have higher capacitance and energy density than regular capacitors. The supercapacitor also has a fast charging time, as well as a long life. To be used as a battery replacement please note the internal parameters of the battery to be replaced. In this paper conducted a simulation study to utilize supercapacitor as a replacement battery. The internal parameters of the battery and the supercapacitor are obtained based on the characteristics of charging and discharging current using a predefined equivalent circuit model. The battery to be replaced is a 12-volt lead-acid type, 6.5 Ah which is used on motorcycles with 6A charging and discharging currents. Super capacitor replacement capacitor is a capacity of 1600F, 2.7V which is connected in series as many as 6 pieces with 16.2 volt terminal voltage and charging current 12A. To obtain the same supercapacitor characteristic as the battery characteristic to be replaced, modification of its internal parameters is made. The results show that the super-capacitor can replace the battery function for 1000 seconds.

  17. Porous Mn-doped cobalt oxide@C nanocomposite: a stable anode material for Li-ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Kalubarme, Ramchandra S.; Jadhav, Sarika M.; Kale, Bharat B.; Gosavi, Suresh W.; Terashima, Chiaki; Fujishima, Akira

    2018-07-01

    Cobalt oxide is a transition metal oxide, well studied as an electrode material for energy storage applications, especially in supercapacitors and rechargeable batteries, due to its high charge storage ability. However, it suffers from low conductivity, which effectively hampers its long-term stability. In the present work, a simple strategy to enhance the conductivity of cobalt oxide is adopted to achieve stable electrochemical performance by means of carbon coating and Mn doping, via a simple and controlled, urea-assisted glycine-nitrate combustion process. Structural analysis of carbon coated Mn-doped Co3O4 (Mn-Co3O4@C) confirms the formation of nanoparticles (∼50 nm) with connected morphology, exhibiting spinel structure. The Mn-Co3O4@C electrode displays superior electrochemical performance as a Li-ion battery anode, delivering a specific capacity of 1250 mAh g‑1. Mn-Co3O4@C demonstrates excellent performance in terms of long-term stability, keeping charge storage ability intact even at high current rates due to the synergistic effects of fast kinetics—provided by enriched electronic conductivity, which allows ions to move freely to active sites and electrons from reaction sites to substrate during redox reactions—and high surface area combined with mesoporous architecture. The fully assembled battery device using Mn-Co3O4@C and standard LiCoO2 electrode shows 90% capacity retention over 100 cycles.

  18. Performance of Li-Ion Cells Under Battery Voltage Charge Control

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari; Day, John H. (Technical Monitor)

    2001-01-01

    A study consisting of electrochemical characterization and Low-Earth-Orbit (LEO) cycling of Li-Ion cells from three vendors was initiated in 1999 to determine the cycling performance and to infuse the new technology in the future NASA missions. The 8-cell batteries included in this evaluation are prismatic cells manufactured by Mine Safety Appliances Company (MSA), cylindrical cells manufactured by SAFT and prismatic cells manufactured by Yardney Technical Products, Inc. (YTP). The three batteries were cycle tested in the LEO regime at 40% depth of discharge, and under a charge control technique that consists of battery voltage clamp with a current taper. The initial testing was conducted at 20 C; however, the batteries were cycled also intermittently at low temperatures. YTP 20 Ah cells consisted of mixed-oxide (Co and Ni) positive, graphitic carbon negative, LIPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 32 V. The low temperature cycling tests started after 4575 cycles at 20 C. The cells were not capable of cycling. at low temperature since the charge acceptance at battery level was poor. There was a cell in the battery that showed too high an end-of-charge (EOC) voltage thereby limiting the ability to charge the rest of the cells in the battery. The battery has completed 6714 cycles. SAFT 12 Ah cells consisted of mixed-oxide (Co and NO positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was for 30.8 V. The low temperature cycling tests started after 4594 cycles at 20 C. A cell that showed low end of discharge (EOD) and EOC voltages and three other cells that showed higher EOC voltages limited the charge acceptance at the selected voltage limit during charge. The cells were capable of cycling at 10 C and 0 C but the charge voltage limit had to be increased to 34.3 V (4.3 V per cell). The low temperature cycling may have induced poor chargeability since the voltage had to be increased to achieve the required charge input. The battery has completed 6226 cycles. MSA 10 Ah cells consisted of Co oxide positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 30.8 V. The low temperature cycling tests were started after 2182 cycles at 20 C. The cells were capable of cycling at 10 C and 0 C. Like SAFT, the voltage limit on charge had to be increased to 36 V (4.5 V per cell). There was a cell (cell S/N 13) in the battery that showed poor performance features such as low EOD voltage and high EOC voltage. The battery has completed 3441 cycles. A reconditioning procedure that consisted of C15 charge to a taper current of C/100 and C/20 discharge improved the voltage behavior of SAFT and MSA cells with no significant effect on YTP cells. We have demonstrated that the charge operation with VT clamp at battery rather than at cell level is feasible for onboard Li-Ion battery operation.

  19. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XII, LEARNING ABOUT BATTERY SERVICING AND TESTING (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THID MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE CONSTRUCTION AND MAINTENANCE OF LEAD-ACID STORAGE BATTERIES USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) BATTERY COMPONENTS AND CONSTRUCTION, (2) CHEMICAL ACTION IN BATTERIES, (3) THE BATTERY AND THE CHARGING CIRCUIT, (4) BATTERY CHARGING VOLTAGE, (5) EFFECTS OF…

  20. Alternate charging profiles for the onboard nickel cadmium batteries of the Explorer Platform/Extreme Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Prettyman-Lukoschek, Jill S.

    1995-01-01

    The Explorer Platform/Extreme Ultraviolet Explorer (EP/EUVE) spacecraft power is provided by the Modular Power Subsystems (MPS) which contains three 50 ampere-hour Nickel Cadmium (NiCd) batteries. The batteries were fabricated by McDonnell Douglas Electronics Systems Company, with the cells fabricated by Gates Aerospace Batteries (GAB), Gainesville, Florida. Shortly following launch, the battery performance characteristics showed similar signatures as the anomalous performance observed on both the Upper Atmosphere Research Satellite (UARS) and the Compton Gamma Ray Observatory (CGRO). This prompted the development and implementation of alternate charging profiles to optimize the spacecraft battery performance. The Flight Operations Team (FOT), under the direction of Goddard Space Flight Center's (GSFC) EP/EUVE Project and Space Power Applications Branch have monitored and managed battery performance through control of the battery Charge to Discharge (C/D) ratio and implementation of a Solar Array (SA) offset. This paper provides a brief overview of the EP/EUVE mission, the MPS, the FOT's battery management for achieving the alternate charging profile, and the observed spacecraft battery performance.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, AG; Bhadra, S; Hertzberg, BJ

    We demonstrate that a simple acoustic time-of-flight experiment can measure the state of charge and state of health of almost any closed battery. An acoustic conservation law model describing the state of charge of a standard battery is proposed, and experimental acoustic results verify the simulated trends; furthermore, a framework relating changes in sound speed, via density and modulus changes, to state of charge and state of health within a battery is discussed. Regardless of the chemistry, the distribution of density within a battery must change as a function of state of charge and, along with density, the bulk modulimore » of the anode and cathode changes as well. The shifts in density and modulus also change the acoustic attenuation in a battery. Experimental results indicating both state-of-charge determination and irreversible physical changes are presented for two of the most ubiquitous batteries in the world, the lithium-ion 18650 and the alkaline LR6 (AA). Overall, a one-or two-point acoustic measurement can be related to the interaction of a pressure wave at multiple discrete interfaces within a battery, which in turn provides insights into state of charge, state of health, and mechanical evolution/degradation.« less

  2. Evaluation of several state-of-charge algorithms

    NASA Astrophysics Data System (ADS)

    Espinosa, J. M.; Martin, M. E.; Burke, A. F.

    1988-09-01

    One of the important needs in marketing an electric vehicle is a device which reliably indicates battery state-of-charge for all types of driving. The purpose of the state-of-charge indicator is analogous to a gas gauge in an internal combustion engine powered vehicle. Many different approaches have been tried to accurately predict battery state-of-charge. This report evaluates several of these approaches. Four different algorithms were implemented into software on an IBM PC and tested using a battery test database for ALCO 2200 lead-acid batteries generated at the INEL. The database was obtained under controlled conditions which compare with the battery response in real EV use. Each algorithm is described in detail as to theory and operational functionality. Also discussed is the hardware and data requirements particular to implementing the individual algorithms. The algorithms were evaluated for accuracy using constant power, stepped power, and simulated vehicle (SFUDS79) discharge profiles. Attempts were made to explain the cause of differences between the predicted and actual state-of-charge and to provide possible remedies to correct them. Recommendations for future work on battery state-of-charge indicators are presented that utilize the hardware and software now in place in the INEL Battery Laboratory.

  3. Enabling fast charging - Battery thermal considerations

    NASA Astrophysics Data System (ADS)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; Santhanagopalan, Shriram; Smith, Kandler; Wood, Eric; Ahmed, Shabbir; Bloom, Ira; Dufek, Eric; Shirk, Matthew; Meintz, Andrew; Kreuzer, Cory; Michelbacher, Christopher; Burnham, Andrew; Stephens, Thomas; Francfort, James; Carlson, Barney; Zhang, Jiucai; Vijayagopal, Ram; Hardy, Keith; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Jansen, Andrew N.; Tanim, Tanvir; Markel, Anthony

    2017-11-01

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell, the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today's market. Thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.

  4. Sliding mode control based on Kalman filter dynamic estimation of battery SOC

    NASA Astrophysics Data System (ADS)

    He, Dongmeia; Hou, Enguang; Qiao, Xin; Liu, Guangmin

    2018-06-01

    Lithium-ion battery charge state of the accurate and rapid estimation of battery management system is the key technology. In this paper, an exponentially reaching law sliding-mode variable structure control algorithm based on Kalman filter is proposed to estimate the state of charge of Li-ion battery for the dynamic nonlinear system. The RC equivalent circuit model is established, and the model equation with specific structure is given. The proposed Kalman filter sliding mode structure is used to estimate the state of charge of the battery in the battery model, and the jitter effect can be avoided and the estimation performance can be improved. The simulation results show that the proposed Kalman filter sliding mode control has good accuracy in estimating the state of charge of the battery compared with the ordinary Kalman filter, and the error range is within 3%.

  5. State-of-charge coulometer

    NASA Technical Reports Server (NTRS)

    Rowlette, J. J. (Inventor)

    1985-01-01

    A coulometer for accurately measuring the state-of-charge of an open-cell battery utilizing an aqueous electrolyte, includes a current meter for measuring the battery/discharge current and a flow meter for measuring the rate at which the battery produces gas during charge and discharge. Coupled to the flow meter is gas analyzer which measures the oxygen fraction of the battery gas. The outputs of the current meter, flow meter, and gas analyzer are coupled to a programmed microcomputer which includes a CPU and program and data memories. The microcomputer calculates that fraction of charge and discharge current consumed in the generation of gas so that the actual state-of-charge can be determined. The state-of-charge is then shown on a visual display.

  6. Method and apparatus for controlling battery charging in a hybrid electric vehicle

    DOEpatents

    Phillips, Anthony Mark; Blankenship, John Richard; Bailey, Kathleen Ellen; Jankovic, Miroslava

    2003-06-24

    A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

  7. Battery charge control with temperature compensated voltage limit

    NASA Technical Reports Server (NTRS)

    Thierfelder, H. E.

    1983-01-01

    Battery charge control for orbiting spacecraft with mission durations from three to ten years, is a critical design feature that is discussed. Starting in 1974, the General Electric Space Systems Division designed, manufactured and tested battery systems for six different space programs. Three of these are geosynchronous missions, two are medium altitude missions and one is a near-earth mission. All six power subsystems contain nickel cadmium batteries which are charged using a temperature compensated voltage limit. This charging method was found to be successful in extending the life of nickel cadmium batteries in all three types of earth orbits. Test data and flight data are presented for each type of orbit.

  8. Charge Characteristics of Rechargeable Batteries

    NASA Astrophysics Data System (ADS)

    Maheswaranathan, Ponn; Kelly, Cormac

    2014-03-01

    Rechargeable batteries play important role in technologies today and they are critical for the future. They are used in many electronic devices and their capabilities need to keep up with the accelerated pace of technology. Efficient energy capture and storage is necessary for the future rechargeable batteries. Charging and discharging characteristics of three popular commercially available re-chargeable batteries (NiCd, NiMH, and Li Ion) are investigated and compared with regular alkaline batteries. Pasco's 850 interface and their voltage & current sensors are used to monitor the current through and the potential difference across the battery. The discharge current and voltage stayed fairly constant until the end, with a slightly larger drop in voltage than current, which is more pronounced in the alkaline batteries. After 25 charge/discharge cycling there is no appreciable loss of charge capacities in the Li Ion battery. Energy densities, cycle characteristics, and memory effects will also be presented. Sponsored by the South Carolina Governor's school for Science and Mathematics under the Summer Program for Research Interns program.

  9. NREL's Battery Life Predictive Model Helps Companies Take Charge | News |

    Science.gov Websites

    lithium-ion (Li-ion) batteries, are complex electrochemical systems. There are typically several different NREL NREL's Battery Life Predictive Model Helps Companies Take Charge NREL's Battery Life monitor. An example of a stationary, grid-connected battery is the NREL project from Erigo/EaglePicher

  10. Optimization analysis of thermal management system for electric vehicle battery pack

    NASA Astrophysics Data System (ADS)

    Gong, Huiqi; Zheng, Minxin; Jin, Peng; Feng, Dong

    2018-04-01

    Electric vehicle battery pack can increase the temperature to affect the power battery system cycle life, charge-ability, power, energy, security and reliability. The Computational Fluid Dynamics simulation and experiment of the charging and discharging process of the battery pack were carried out for the thermal management system of the battery pack under the continuous charging of the battery. The simulation result and the experimental data were used to verify the rationality of the Computational Fluid Dynamics calculation model. In view of the large temperature difference of the battery module in high temperature environment, three optimization methods of the existing thermal management system of the battery pack were put forward: adjusting the installation position of the fan, optimizing the arrangement of the battery pack and reducing the fan opening temperature threshold. The feasibility of the optimization method is proved by simulation and experiment of the thermal management system of the optimized battery pack.

  11. Battery Cell Balancing Optimisation for Battery Management System

    NASA Astrophysics Data System (ADS)

    Yusof, M. S.; Toha, S. F.; Kamisan, N. A.; Hashim, N. N. W. N.; Abdullah, M. A.

    2017-03-01

    Battery cell balancing in every electrical component such as home electronic equipment and electric vehicle is very important to extend battery run time which is simplified known as battery life. The underlying solution to equalize the balance of cell voltage and SOC between the cells when they are in complete charge. In order to control and extend the battery life, the battery cell balancing is design and manipulated in such way as well as shorten the charging process. Active and passive cell balancing strategies as a unique hallmark enables the balancing of the battery with the excellent performances configuration so that the charging process will be faster. The experimental and simulation covers an analysis of how fast the battery can balance for certain time. The simulation based analysis is conducted to certify the use of optimisation in active or passive cell balancing to extend battery life for long periods of time.

  12. Chemically rechargeable battery

    NASA Technical Reports Server (NTRS)

    Graf, James E. (Inventor); Rowlette, John J. (Inventor)

    1984-01-01

    Batteries (50) containing oxidized, discharged metal electrodes such as an iron-air battery are charged by removing and storing electrolyte in a reservoir (98), pumping fluid reductant such as formalin (aqueous formaldehyde) from a storage tank (106) into the battery in contact with the surfaces of the electrodes. After sufficient iron hydroxide has been reduced to iron, the spent reductant is drained, the electrodes rinsed with water from rinse tank (102) and then the electrolyte in the reservoir (106) is returned to the battery. The battery can be slowly electrically charged when in overnight storage but can be quickly charged in about 10 minutes by the chemical procedure of the invention.

  13. Probing lithium-ion batteries' state-of-charge using ultrasonic transmission - Concept and laboratory testing

    NASA Astrophysics Data System (ADS)

    Gold, Lukas; Bach, Tobias; Virsik, Wolfgang; Schmitt, Angelika; Müller, Jana; Staab, Torsten E. M.; Sextl, Gerhard

    2017-03-01

    For electrically powered applications such as consumer electronics and especially for electric vehicles a precise state-of-charge estimation for their lithium-ion batteries is desired to reduce aging, e.g. avoiding detrimental states-of-charge. Today, this estimation is performed by battery management systems that solely rely on charge bookkeeping and cell voltage measurements. In the present work we introduce a new, physical probe for the state-of-charge based on ultrasonic transmission. Within the simple experimental setup raised cosine pulses are applied to lithium-ion battery pouch cells, whose signals are sensitive to changes in porosity of the graphite anode during charging/dis-charging and, therefore, to the state-of-charge. The underlying physical principle can be related to Biot's theory about propagation of waves in fluid saturated porous media and by including scattering by boundary layers inside the cell.

  14. Study of imbalanced internal resistance on drop voltage of LiFePO4 battery system connected in parallel

    NASA Astrophysics Data System (ADS)

    Adie Perdana, Fengky; Supriyanto, Agus; Purwanto, Agus; Jamaluddin, Anif

    2017-01-01

    The purpose of this research focuses on the effect of imbalanced internal resistance for the drop voltage of LiFePO4 18650 battery system connected in parallel. The battery pack has been assembled consist of two cell battery LiFePO4 18650 that has difference combination of internal resistance. Battery pack was tested with 1/C constant current charging, 3,65V per group sel, 3,65V constant voltage charging, 5 minutes of rest time between charge and discharge process, 1/2C Constant current discharge until 2,2V, 26 cycle of measurement test, and 4320 minutes rest time after the last charge cycle. We can conclude that the difference combination of internal resistance on the battery pack seriously influence the drop voltage of a battery. Theoretical and experimental result show that the imbalance of internal resistance during cycling are mainly responsible for the drop voltage of LiFePO4 parallel batteries. It is thus a good way to avoid drop voltage fade of parallel battery system by suppressing variations of internal resistance.

  15. Battery Cell Balancing System and Method

    NASA Technical Reports Server (NTRS)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  16. Systems and methods for initializing a charging system

    DOEpatents

    Ransom, Ray M.; Perisic, Milun; Kajouke, Lateef A.

    2014-09-09

    Systems and methods are provided for initiating a charging system. The method, for example, may include, but is not limited to, providing, by the charging system, an incrementally increasing voltage to a battery up to a first predetermined threshold while the energy conversion module has a zero-percent duty cycle, providing, by the charging system, an incrementally increasing voltage to the battery from an initial voltage level of the battery up to a peak voltage of a voltage source while the energy conversion module has a zero-percent duty cycle, and providing, by the charging system, an incrementally increasing voltage to the battery by incrementally increasing the duty cycle of the energy conversion module.

  17. On the optimal sizing of batteries for electric vehicles and the influence of fast charge

    NASA Astrophysics Data System (ADS)

    Verbrugge, Mark W.; Wampler, Charles W.

    2018-04-01

    We provide a brief summary of advanced battery technologies and a framework (i.e., a simple model) for assessing electric-vehicle (EV) architectures and associated costs to the customer. The end result is a qualitative model that can be used to calculate the optimal EV range (which maps back to the battery size and performance), including the influence of fast charge. We are seeing two technological pathways emerging: fast-charge-capable batteries versus batteries with much higher energy densities (and specific energies) but without the capability to fast charge. How do we compare and contrast the two alternatives? This work seeks to shed light on the question. We consider costs associated with the cells, added mass due to the use of larger batteries, and charging, three factors common in such analyses. In addition, we consider a new cost input, namely, the cost of adaption, corresponding to the days a customer would need an alternative form of transportation, as the EV would not have sufficient range on those days.

  18. Impact of Fast Charging on Life of EV Batteries; NREL (National Renewable Energy Laboratory)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neubauer, Jeremy; Wood, Eric; Burton, Evan

    Installation of fast charging infrastructure is considered by many as one of potential solutions to increase the utility and range of electric vehicles (EVs). This is expected to reduce the range anxiety of drivers of EVs and thus increase their market penetration. Level 1 and 2 charging in homes and workplaces is expected to contribute to the majority of miles driven by EVs. However, a small percentage of urban driving and most of inter-city driving could be only achieved by a fast-charging network. DC fast charging at 50 kW, 100 kW, 120 kW compared to level 1 (3.3 kW) andmore » level 2 (6.6 kW) results in high-current charging that can adversely impact the life of the battery. In the last couple of years, we have investigated the impact of higher current rates in batteries and potential of higher temperatures and thus lower service life. Using mathematical models, we investigated the temperature increase of batteries due to higher heat generation during fast charge and have found that this could lead to higher temperatures. We compared our models with data from other national laboratories both for fine-tuning and calibration. We found that the incremental temperature rise of batteries during 1C to 3C fast charging may reduce the practical life of the batteries by less than 10% over 10 to 15 years of vehicle ownership. We also found that thermal management of batteries is needed for fast charging to prevent high temperature excursions leading to unsafe conditions.« less

  19. The On-orbit Performance and Simulation Tests of the Lithium-Ion Secondary Battery for the Interplanetary Satellite 'HAYABUSA'

    NASA Astrophysics Data System (ADS)

    Sone, Yoshitsugu; Uno, Masatoshi; Hirose, Kazuyuki; Tajima, Michio; Ooto, Hiroki; Yamamoto, Masahiro; Eguro, Takashi; Sakai, Shigeru; Yoshida, Teiji

    2005-05-01

    The Japanese satellite 'HAYABUSA' is currently en route to an asteroid named ITOKAWA. The satellite is powered by a 13.2 Ah lithium-ion secondary battery. To realize maximum performance of the battery for long flight operation, the state-of-charge (SOC) of the battery is maintained at ca. 65% during storage in case it is required for contingency operations. To maintain this SOC condition, the battery is charged once a week. We further charge the battery up to 4.1 V/cell using bypass circuits to balance the cells every four months. The capacity of the battery was measured during the flight operation, which revealed the appropriate capacity for the HAYABUSA mission.

  20. 30 CFR 7.69 - Approval marking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that the unit's components must not be disassembled or removed. (d) The replacement battery types if the unit has replaceable batteries. (e) A warning placed next to the charging connector that the battery only be charged in a fresh air location if rechargeable batteries are used. (f) A warning that the...

  1. 30 CFR 7.69 - Approval marking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that the unit's components must not be disassembled or removed. (d) The replacement battery types if the unit has replaceable batteries. (e) A warning placed next to the charging connector that the battery only be charged in a fresh air location if rechargeable batteries are used. (f) A warning that the...

  2. 30 CFR 7.69 - Approval marking.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that the unit's components must not be disassembled or removed. (d) The replacement battery types if the unit has replaceable batteries. (e) A warning placed next to the charging connector that the battery only be charged in a fresh air location if rechargeable batteries are used. (f) A warning that the...

  3. 30 CFR 7.69 - Approval marking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that the unit's components must not be disassembled or removed. (d) The replacement battery types if the unit has replaceable batteries. (e) A warning placed next to the charging connector that the battery only be charged in a fresh air location if rechargeable batteries are used. (f) A warning that the...

  4. 30 CFR 7.69 - Approval marking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that the unit's components must not be disassembled or removed. (d) The replacement battery types if the unit has replaceable batteries. (e) A warning placed next to the charging connector that the battery only be charged in a fresh air location if rechargeable batteries are used. (f) A warning that the...

  5. Thermal characteristics of Lithium-ion batteries

    NASA Technical Reports Server (NTRS)

    Hauser, Dan

    2004-01-01

    Lithium-ion batteries have a very promising future for space applications. Currently they are being used on a few GEO satellites, and were used on the two recent Mars rovers Spirit and Opportunity. There are still problem that exist that need to be addressed before these batteries can fully take flight. One of the problems is that the cycle life of these batteries needs to be increased. battery. Research is being focused on the chemistry of the materials inside the battery. This includes the anode, cathode, and the cell electrolyte solution. These components can undergo unwanted chemical reactions inside the cell that deteriorate the materials of the battery. During discharge/ charge cycles there is heat dissipated in the cell, and the battery heats up and its temperature increases. An increase in temperature can speed up any unwanted reactions in the cell. Exothermic reactions cause the temperature to increase; therefore increasing the reaction rate will cause the increase of the temperature inside the cell to occur at a faster rate. If the temperature gets too high thermal runaway will occur, and the cell can explode. The material that separates the electrode from the electrolyte is a non-conducting polymer. At high temperatures the separator will melt and the battery will be destroyed. The separator also contains small pores that allow lithium ions to diffuse through during charge and discharge. High temperatures can cause these pores to close up, permanently damaging the cell. My job at NASA Glenn research center this summer will be to perform thermal characterization tests on an 18650 type lithium-ion battery. High temperatures cause the chemicals inside lithium ion batteries to spontaneously react with each other. My task is to conduct experiments to determine the temperature that the reaction takes place at, what components in the cell are reacting and the mechanism of the reaction. The experiments will be conducted using an accelerating rate calorimeter (ARC), which uses a heat-wait-search mode until an exothermic reaction is detected. After an exotherm is found the calorimeter maintains an adiabatic environment around a bomb which holds the test sample. The ARC will help identify important reactions and what temperature these exothermic reactions take place at. In order fully understand the battery, we are first going to take apart the battery and test the individual components of the battery using the ARC. I will first conduct a test on the electrolyte solution by itself. We will then test the electrolyte solution with the anode. We would like to see how the electrolyte solution reacts with the anode and its binder material. The next would be the same test using the cathode instead of the anode. By comparing the results of the electrolyte, electrolyte with anode, and the electrolyte with the cathode we can determine the reactions that are taking place due to each component. Using the heat capacity of the each individual sample and the temperature by which the sample increases, kinetic and thermo-dynamical information can then be found. A Gas chromatograph could be used to help with the task of identifying the by-products at the end of each test. One way of increasing the cycle life is to increase the stability of the materials inside the

  6. Incidence and management of prolonged charge times in the Medtronic model 7219 implantable cardioverter defibrillator.

    PubMed

    Mann, D E; Gleason, S A; Kelly, P A; Easley, A R; Reiter, M J

    2001-06-01

    The Medtronic Jewel PCD model 7219, introduced in 1994, was the first downsized, pectoral implantable cardioverter defibrillator (ICD), and many of these units are approaching or have reached the elective replacement indicator (ERI). Unlike later Medtronic ICDs and most other ICDs, in which ERI is defined by battery voltage, the ERI in the model 7219 series is defined when either the capacitor charge time to full output is repeatedly> or =14.5 s or when battery voltage is< or =4.91 V. In this study we examined which of the two ERI criteria was met first in patients with this device model. We also assessed the effects of manual dumping and recharging and of increasing the automatic capacitor reformation frequency on prolonged charge times. In 16 patients with follow-up <2 years, 15 reached the charge time ERI before battery voltage ERI. Manual dumping and recharging led to spuriously low charge times due to residual charge at the start of recharging, and increasing the automatic capacitor reformation frequency to once a month did not decrease prolonged charge times. Because of persistently prolonged charge times, 15 patients had generator changes. None of these patients had reached battery voltage ERI (battery voltage at time of explantation 5.06+/-0.06 V). Thus in this early pectoral device, prolonged charge times occur commonly before battery voltage ERI is reached. Whether prolonged charge times will have an impact on device longevity in later model ICDs is unknown.

  7. Testing activities at the National Battery Test Laboratory

    NASA Astrophysics Data System (ADS)

    Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.

    The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.

  8. Circuit with a Switch for Charging a Battery in a Battery Capacitor Circuit

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A. (Inventor); Ashtiani, Cyrus N. (Inventor)

    2008-01-01

    A circuit for charging a battery combined with a capacitor includes a power supply adapted to be connected to the capacitor, and the battery. The circuit includes an electronic switch connected to the power supply. The electronic switch is responsive to switch between a conducting state to allow current and a non-conducting state to prevent current flow. The circuit includes a control device connected to the switch and is operable to generate a control signal to continuously switch the electronic switch between the conducting and non-conducting states to charge the battery.

  9. Evaluation of a new charge algorithm for a lead-acid battery with gelled electrolyte using a 96V gel cell IV as a test battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, D.K.

    1989-10-01

    This document has reported a summary of test results obtained utilizing the new UAH charge algorithm for Lead-Acid batteries with gelled electrolyte. The battery performance data for a 96V Phase IV Gel/Cell battery pack was tested in a Jet Industries Electrica vehicle. It was shown that the new charge concept is sound although there can be problems with batteries that are highly imbalanced and where excessive electronic noise is experienced on the electronic signal feed-back line that carries the voltage sensor signals from the battery. Additional work is needed to add intelligence to the charge algorithm in terms of amore » better ability to extract the beginning of gas development from the voltage spread function. This can probably be accomplished by scanning the voltages more often and including that data into the function analysis by adding software filters. The Phase IV Gel/Cell battery performance was found to be about 20% lower than that of the Phase III Gel/Cell battery. Problems with cell valve leakage were encountered in the Phase IV Gel/Cell that pose a threat to battery life although so far no battery module has been lost. 2 refs., 13 figs., 4 tabs.« less

  10. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery – Part 1

    PubMed Central

    Purushothaman, B. K.; Wainright, J. S.

    2012-01-01

    A low pressure nickel-hydrogen battery using either a metal hydride or gaseous hydrogen for H2 storage has been developed for use in implantable neuroprosthetic devices. In this paper, pressure variations inside the cell for the gaseous hydrogen version are analyzed and correlated with oxygen evolution side reaction at the end of charging, the recombination of oxygen with hydrogen during charging and a subsequent rest period, and the self-discharge of the nickel electrode. About 70% of the recombination occurred simultaneously with oxygen evolution during charging and the remaining oxygen recombined with hydrogen during the 1st hour after charging. Self-discharge of the cell varies linearly with hydrogen pressure at a given state of charge and increased with increasing battery charge levels. The coulometric efficiency calculated based on analysis of the pressure-time data agreed well with the efficiency calculated based on the current-time data. Pressure variations in the battery are simulated accurately to predict coulometric efficiency and the state of charge of the cell, factors of extreme importance for a battery intended for implantation within the human body. PMID:22423175

  11. Analysis of Pressure Variations in a Low-Pressure Nickel-Hydrogen Battery - Part 1.

    PubMed

    Purushothaman, B K; Wainright, J S

    2012-05-15

    A low pressure nickel-hydrogen battery using either a metal hydride or gaseous hydrogen for H(2) storage has been developed for use in implantable neuroprosthetic devices. In this paper, pressure variations inside the cell for the gaseous hydrogen version are analyzed and correlated with oxygen evolution side reaction at the end of charging, the recombination of oxygen with hydrogen during charging and a subsequent rest period, and the self-discharge of the nickel electrode. About 70% of the recombination occurred simultaneously with oxygen evolution during charging and the remaining oxygen recombined with hydrogen during the 1(st) hour after charging. Self-discharge of the cell varies linearly with hydrogen pressure at a given state of charge and increased with increasing battery charge levels. The coulometric efficiency calculated based on analysis of the pressure-time data agreed well with the efficiency calculated based on the current-time data. Pressure variations in the battery are simulated accurately to predict coulometric efficiency and the state of charge of the cell, factors of extreme importance for a battery intended for implantation within the human body.

  12. State of charge indicators for a battery

    DOEpatents

    Rouhani, S. Zia

    1999-01-01

    The present invention relates to state of charge indicators for a battery. One aspect of the present invention utilizes expansion and contraction displacements of an electrode plate of a battery to gauge the state of charge in the battery. One embodiment of a battery of the present invention includes an anodic plate; a cathodic plate; an electrolyte in contact with the anodic and cathodic plates; plural terminals individually coupled with one of the anodic and cathodic plates; a separator intermediate the anodic and cathodic plates; an indicator configured to indicate an energy level of the battery responsive to movement of the separator; and a casing configured to house the anodic and cathodic plates, electrolyte, and separator.

  13. Robust Battery Fuel Gauge Algorithm Development, Part 3: State of Charge Tracking

    DTIC Science & Technology

    2014-10-19

    X. Zhang, F. Sun, and J. Fan, “State-of-charge estimation of the lithium - ion battery using an adaptive extended kalman filter based on an improved...framework with ex- tended kalman filter for lithium - ion battery soc and capacity estimation,” Applied Energy, vol. 92, pp. 694–704, 2012. [16] X. Hu, F...Sun, and Y. Zou, “Estimation of state of charge of a lithium - ion battery pack for electric vehicles using an adaptive luenberger observer,” Energies

  14. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes

    PubMed Central

    Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen

    2017-01-01

    Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ∼3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries. PMID:28585527

  15. Enabling fast charging – Battery thermal considerations

    DOE PAGES

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo; ...

    2017-10-23

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less

  16. Organic hydrogen peroxide-driven low charge potentials for high-performance lithium-oxygen batteries with carbon cathodes

    NASA Astrophysics Data System (ADS)

    Wu, Shichao; Qiao, Yu; Yang, Sixie; Ishida, Masayoshi; He, Ping; Zhou, Haoshen

    2017-06-01

    Reducing the high charge potential is a crucial concern in advancing the performance of lithium-oxygen batteries. Here, for water-containing lithium-oxygen batteries with lithium hydroxide products, we find that a hydrogen peroxide aqueous solution added in the electrolyte can effectively promote the decomposition of lithium hydroxide compounds at the ultralow charge potential on a catalyst-free Ketjen Black-based cathode. Furthermore, for non-aqueous lithium-oxygen batteries with lithium peroxide products, we introduce a urea hydrogen peroxide, chelating hydrogen peroxide without any water in the organic, as an electrolyte additive in lithium-oxygen batteries with a lithium metal anode and succeed in the realization of the low charge potential of ~3.26 V, which is among the best levels reported. In addition, the undesired water generally accompanying hydrogen peroxide solutions is circumvented to protect the lithium metal anode and ensure good battery cycling stability. Our results should provide illuminating insights into approaches to enhancing lithium-oxygen batteries.

  17. Fabrication of solid-state secondary battery using semiconductors and evaluation of its charge/discharge characteristics

    NASA Astrophysics Data System (ADS)

    Sasaki, Atsuya; Sasaki, Akito; Hirabayashi, Hideaki; Saito, Shuichi; Aoki, Katsuaki; Kataoka, Yoshinori; Suzuki, Koji; Yabuhara, Hidehiko; Ito, Takahiro; Takagi, Shigeyuki

    2018-04-01

    Li-ion batteries have attracted interest for use as storage batteries. However, the risk of fire has not yet been resolved. Although solid Li-ion batteries are possible alternatives, their performance characteristics are unsatisfactory. Recently, research on utilizing the accumulation of carriers at the trap levels of semiconductors has been performed. However, the detailed charge/discharge characteristics and principles have not been reported. In this report, we attempted to form new n-type oxide semiconductor/insulator/p-type oxide semiconductor structures. The battery characteristics of these structures were evaluated by charge/discharge measurements. The obtained results clearly indicated the characteristics of rechargeable batteries. Furthermore, the fabricated structure accumulated an approximately 5000 times larger number of carriers than a parallel plate capacitor. Additionally, by constructing circuit models based on the experimental results, the charge/discharge mechanisms were considered. This is the first detailed experimental report on a rechargeable battery that operates without the double injection of ions and electrons.

  18. Enabling fast charging – Battery thermal considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyser, Matthew; Pesaran, Ahmad; Li, Qibo

    Battery thermal barriers are reviewed with regards to extreme fast charging. Present-day thermal management systems for battery electric vehicles are inadequate in limiting the maximum temperature rise of the battery during extreme fast charging. If the battery thermal management system is not designed correctly, the temperature of the cells could reach abuse temperatures and potentially send the cells into thermal runaway. Furthermore, the cell and battery interconnect design needs to be improved to meet the lifetime expectations of the consumer. Each of these aspects is explored and addressed as well as outlining where the heat is generated in a cell,more » the efficiencies of power and energy cells, and what type of battery thermal management solutions are available in today’s market. Here, thermal management is not a limiting condition with regard to extreme fast charging, but many factors need to be addressed especially for future high specific energy density cells to meet U.S. Department of Energy cost and volume goals.« less

  19. Battery capacity and recharging needs for electric buses in city transit service

    DOE PAGES

    Gao, Zhiming; Lin, Zhenhong; LaClair, Tim J.; ...

    2017-01-27

    Our paper evaluates the energy consumption and battery performance of city transit electric buses operating on real day-to-day routes and standardized bus drive cycles, based on a developed framework tool that links bus electrification feasibility with real-world vehicle performance, city transit bus service reliability, battery sizing and charging infrastructure. The impacts of battery capacity combined with regular and ultrafast charging over different routes have been analyzed in terms of the ability to maintain city transit bus service reliability like conventional buses. These results show that ultrafast charging via frequent short-time boost charging events, for example at a designated bus stopmore » after completing each circuit of an assigned route, can play a significant role in reducing the battery size and can eliminate the need for longer duration charging events that would cause schedule delays. Furthermore, the analysis presented shows that significant benefits can be realized by employing multiple battery configurations and flexible battery swapping practices in electric buses. These flexible design and use options will allow electric buses to service routes of varying city driving patterns and can therefore enable meaningful reductions to the cost of the vehicle and battery while ensuring service that is as reliable as conventional buses.« less

  20. Battery capacity and recharging needs for electric buses in city transit service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Lin, Zhenhong; LaClair, Tim J.

    Our paper evaluates the energy consumption and battery performance of city transit electric buses operating on real day-to-day routes and standardized bus drive cycles, based on a developed framework tool that links bus electrification feasibility with real-world vehicle performance, city transit bus service reliability, battery sizing and charging infrastructure. The impacts of battery capacity combined with regular and ultrafast charging over different routes have been analyzed in terms of the ability to maintain city transit bus service reliability like conventional buses. These results show that ultrafast charging via frequent short-time boost charging events, for example at a designated bus stopmore » after completing each circuit of an assigned route, can play a significant role in reducing the battery size and can eliminate the need for longer duration charging events that would cause schedule delays. Furthermore, the analysis presented shows that significant benefits can be realized by employing multiple battery configurations and flexible battery swapping practices in electric buses. These flexible design and use options will allow electric buses to service routes of varying city driving patterns and can therefore enable meaningful reductions to the cost of the vehicle and battery while ensuring service that is as reliable as conventional buses.« less

  1. Redox reactions with empirical potentials: atomistic battery discharge simulations.

    PubMed

    Dapp, Wolf B; Müser, Martin H

    2013-08-14

    Batteries are pivotal components in overcoming some of today's greatest technological challenges. Yet to date there is no self-consistent atomistic description of a complete battery. We take first steps toward modeling of a battery as a whole microscopically. Our focus lies on phenomena occurring at the electrode-electrolyte interface which are not easily studied with other methods. We use the redox split-charge equilibration (redoxSQE) method that assigns a discrete ionization state to each atom. Along with exchanging partial charges across bonds, atoms can swap integer charges. With redoxSQE we study the discharge behavior of a nano-battery, and demonstrate that this reproduces the generic properties of a macroscopic battery qualitatively. Examples are the dependence of the battery's capacity on temperature and discharge rate, as well as performance degradation upon recharge.

  2. On the use of an Arduino-based controller to control the charging process of a wind turbine

    NASA Astrophysics Data System (ADS)

    Mahmuddin, Faisal; Yusran, Ahmad Muhtam; Klara, Syerly

    2017-02-01

    In order to avoid an excessive charging voltage which can damage power storage when converting wind energy using a turbine, it is necessary to control the charging voltage of the turbine generator. In the present study, a charging controller which uses an Arduino microcontroller, is designed. 3 (three) indicator lights are installed to indicate the battery charging process, power diversion to dummy load and battery power level. The performance of the designed controller is evaluated by simulating 3 cases. In this simulation, a battery with maximum voltage of 12.4 V is used. Case 1 is performed with input voltage equals the one set in Arduino which is 10 V. In this case, the battery is charged up to 10.8 V. In case 2, the input voltage is 13 V while the maximum voltage set in Arduino is also 13 V. In this case, the battery is charged up to maximum voltage of the battery. Moreover, the dummy load indicator is ON and charging indicator is OFF after the maximum charging voltage is reached because the electricity is flowed to the dummy load. In the final case, the input voltage is set to be 16 V while the maximum voltage set in Arduino is 13 V. In this case, the charging indicator is OFF and dummy load indicator is ON which means that the Arduino has successfully switched the power to be flowed to dummy load. From the 3 (three) cases, it can be concluded that the designed controller works perfectly to control the charging process of the wind turbine. Moreover, the charging time needed in each case can also be determined.

  3. Effects of Electric Vehicle Fast Charging on Battery Life and Vehicle Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew Shirk; Jeffrey Wishart

    2015-04-01

    As part of the U.S. Department of Energy’s Advanced Vehicle Testing Activity, four new 2012 Nissan Leaf battery electric vehicles were instrumented with data loggers and operated over a fixed on-road test cycle. Each vehicle was operated over the test route, and charged twice daily. Two vehicles were charged exclusively by AC level 2 EVSE, while two were exclusively DC fast charged with a 50 kW charger. The vehicles were performance tested on a closed test track when new, and after accumulation of 50,000 miles. The traction battery packs were removed and laboratory tested when the vehicles were new, andmore » at 10,000-mile intervals. Battery tests include constant-current discharge capacity, electric vehicle pulse power characterization test, and low peak power tests. The on-road testing was carried out through 70,000 miles, at which point the final battery tests were performed. The data collected over 70,000 miles of driving, charging, and rest are analyzed, including the resulting thermal conditions and power and cycle demands placed upon the battery. Battery performance metrics including capacity, internal resistance, and power capability obtained from laboratory testing throughout the test program are analyzed. Results are compared within and between the two groups of vehicles. Specifically, the impacts on battery performance, as measured by laboratory testing, are explored as they relate to battery usage and variations in conditions encountered, with a primary focus on effects due to the differences between AC level 2 and DC fast charging. The contrast between battery performance degradation and the effect on vehicle performance is also explored.« less

  4. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    NASA Astrophysics Data System (ADS)

    Schaeck, S.; Stoermer, A. O.; Hockgeiger, E.

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 °C and at 3 °C battery temperature.

  5. Improved charging performance of Li-O2 batteries by forming Ba-incorporated Li2O2 as the discharge product

    NASA Astrophysics Data System (ADS)

    Matsuda, Shoichi; Uosaki, Kohei; Nakanishi, Shuji

    2017-06-01

    Although Li-O2 batteries can potentially achieve greater than two-fold higher energy densities than Li-ion batteries, the basic performance of Li-O2 batteries remains poor. In particular, the large over-potential of positive electrode reactions during the charging process results in low round-trip energy efficiency and limited cycle life, and is therefore the main barrier to the practical use of rechargeable Li-O2 batteries. In the present study, we demonstrate that the charging performance of Li-O2 batteries can be significantly improved by simply adding barium (Ba) ions into the electrolyte. Elemental analysis revealed that Ba-incorporated Li2O2 was obtained as the main discharge product of a Li-O2 cell operated in the presence of Ba2+. Notably, the improvement of charging performance was confirmed to originate from the Ba-incorporated Li2O2 deposits, rather than the Ba2+ present in the electrolyte. The present results suggest that the incorporation of heteroatoms into the discharge product is an effective approach for improving the charging performance of Li-O2 batteries.

  6. Electricity and colloidal stability: how charge distribution in the tissue can affects wound healing.

    PubMed

    Farber, Paulo Luiz; Hochman, Bernardo; Furtado, Fabianne; Ferreira, Lydia Masako

    2014-02-01

    The role of endogenous electric fields in wound healing is still not fully understood. Electric fields are of fundamental importance in various biological processes, ranging from embryonic development to disease progression, as described by many investigators in the last century. This hypothesis brings together some relevant literature on the importance of electric fields in physiology and pathology, the theory of biologically closed electric circuits, skin battery (a phenomenon that occurs after skin injury and seems to be involved in tissue repair), the relationship between electric charge and interstitial exclusion, and how skin tissues can be regarded as colloidal systems. The importance of electric charges, as established in the early works on the subject and the relevance of zeta potential and colloid stability are also analyzed, and together bring a new light for the physics involved in the wound repair of all the body tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Optimization of power and energy densities in supercapacitors

    NASA Astrophysics Data System (ADS)

    Robinson, David B.

    Supercapacitors use nanoporous electrodes to store large amounts of charge on their high surface areas, and use the ions in electrolytes to carry charge into the pores. Their high power density makes them a potentially useful complement to batteries. However, ion transport through long, narrow channels still limits power and efficiency in these devices. Proper design can mitigate this. Current collector geometry must also be considered once this is done. Here, De Levie's model for porous electrodes is applied to quantitatively predict device performance and to propose optimal device designs for given specifications. Effects unique to nanoscale pores are considered, including that pores may not have enough salt to fully charge. Supercapacitors are of value for electric vehicles, portable electronics, and power conditioning in electrical grids with distributed renewable sources, and that value will increase as new device fabrication methods are developed and proper design accommodates those improvements. Example design outlines for vehicle applications are proposed and compared.

  8. Death by a thousand charges

    NASA Astrophysics Data System (ADS)

    Beuse, Martin

    2018-05-01

    Battery charging and discharging regimes mostly attempt to maximize potential profit by following price signals. Combining a technical understanding of batteries with financial theory, researchers now present a framework that allows optimization of economic benefits considering both potential revenues and battery degradation.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, Peter; Jacobson, Arne; Mills, Evan

    Creation of light for work, socializing, and general illumination is a fundamental application of technology around the world. For those who lack access to electricity, an emerging and diverse range of LED based lighting products hold promise for replacing and/or augmenting their current fuel-based lighting sources that are costly and dirty. Along with analysis of environmental factors, economic models for total cost-ofownership of LED lighting products are an important tool for studying the impacts of these products as they emerge in markets of developing countries. One important metric in those models is the minimum illuminance demanded by end-users for amore » given task before recharging the lamp or replacing batteries. It impacts the lighting service cost per unit time if charging is done with purchased electricity, batteries, or charging services. The concept is illustrated in figure 1: LED lighting products are generally brightest immediately after the battery is charged or replaced and the illuminance degrades as the battery is discharged. When a minimum threshold level of illuminance is reached, the operational time for the battery charge cycle is over. The cost to recharge depends on the method utilized; these include charging at a shop at a fixed price per charge, charging on personal grid connections, using solar chargers, and purchasing dry cell batteries. This Research Note reports on the observed"charge-triggering" illuminance level threshold for night market vendors who use LED lighting products to provide general and task oriented illumination. All the study participants charged with AC power, either at a fixed-price charge shop or with electricity at their home.« less

  10. Start-up capabilities of photovoltaic module for the International Space Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajela, G.; Hague, L.

    1997-12-31

    The International Space Station (ISS) uses four photovoltaic modules (PVMs) to supply electric power for the US On-Orbit Segment (USOS). The ISS is assembled on orbit over a period of about 5 years and over 40 stages. PVMs are launched and integrated with the ISS at different times during the ISS assembly. During early stages, the electric power is provided by the integrated truss segment (ITS) P6; subsequently, ITS P4, S4, and S6 are launched. PVMs are launched into space in the National Space Transportation System (NSTS) cargo bay. Each PVM consists of two independent power channels. The NSTS docksmore » with the ISS, the PVM is removed from the cargo bay and installed on the ISS. At this stage the PVM is in stowed configuration and its batteries are in fully discharged state. The start-up consists of initialization and checkout of all hardware, deployment of SAW and photovoltaic radiator (PVR), thermal conditioning batteries, and charging batteries; not necessarily in the same order for all PVMs. PVMs are designed to be capable of on-orbit start-up, within a specified time period, when external power is applied to a specified electrical interface. This paper describes the essential steps required for PVM start-up and how these operations are performed for various PVMs. The integrated operations scenarios (IOS) prepared by the NASA, Johnson Space Center, details specific procedures and timelines for start-up of each PVM. The paper describes how dormant batteries are brought to their normal operating temperature range and then charged to 100% state of charge (SOC). Total time required to complete start-up is computed and compared to the IOS timelines. External power required during start-up is computed and compared to the requirements and/or available power on ISS. Also described is how these start-up procedures can be adopted for restart of PVMs when required.« less

  11. A pre-lithiation method for sulfur cathode used for future lithium metal free full battery

    NASA Astrophysics Data System (ADS)

    Wu, Yunwen; Yokoshima, Tokihiko; Nara, Hiroki; Momma, Toshiyuki; Osaka, Tetsuya

    2017-02-01

    Lithium metal free sulfur battery paired by lithium sulfide (Li2S) is a hot point in recent years because of its potential for relatively high capacity and its safety advantage. Due to the insulating nature and high sensitivity to moisture of Li2S, it calls for new way to introduce Li ion into S cathode besides the method of directly using the Li2S powder for the battery pre-lithiation. Herein, we proposed a pre-lithiation method to lithiate the polypyrrole (PPy)/S/Ketjenblack (KB) electrode into PPy/Li2S/KB cathode at room temperature. By this process, the fully lithiated PPy/Li2S/KB cathode showed facilitated charge transfer than the original PPy/S/KB cathode, leading to better cycling performance at high C-rates and disappearance of over potential phenomenon. In this work, the ion-selective PPy layer has been introduced on the cathode surface by an electrodeposition method, which can suppress the polysulfide dissolution from the cathode source. The lithium metal free full battery coupled by the prepared Li2S/KB cathode and graphite anode exhibited excellent cycling performance. Hence, we believe this comprehensive fabrication approach of Li2S cathode will pave a way for the application of new type lithium metal free secondary battery.

  12. Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can lastmore » up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.« less

  13. Geosynchronous Performance of a Lithium-titanium Disulfide Battery

    NASA Technical Reports Server (NTRS)

    Otzinger, B.

    1985-01-01

    An ambient temperature rechargeable Lithium-Titanium disulfide (Li-TiS2) five cell battery has completed the first orbital year of accelerated synchronous orbit testing. A novel charge/discharge, state of charge (SOC) control scheme is utilized, together with taper current charge backup to overcome deleterious effects associated with high end of charge and low end of discharge voltages. It is indicated that 10 orbital years of simulated synchronous operation may be achieved. Preliminary findings associated with cell matching and battery performance are identified.

  14. Hybrid vehicle control

    DOEpatents

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  15. Pressure Switch Is a Low Cost Battery Indicator

    NASA Technical Reports Server (NTRS)

    Abita, J. L.

    1982-01-01

    Conventional pressure switch, fabricated by printed-circuit manufacturing techniques, can indicate when charge on battery departs from preset level. Membrane on switch is exposed to internal pressure of battery, which varies according to stored charge. When pressure varies from preset level, switch can turn on a light-emitting diode or similar indicator to warn user that battery is low.

  16. Study on the State of Health Detection of Li-ion Power Batteries Based on Adaptive Unscented Kalman Filters

    NASA Astrophysics Data System (ADS)

    Yan, Xiangwu; Deng, Haoran; Wang, Ling; Guo, Qi

    2017-12-01

    It is essential to estimate the state of charge (SOC) and state of health (SOH) of the monomer battery in the electric vehicle li-ion power battery accurately for extending the li-ion power battery life. Based on the battery Thevenin equivalent circuit model, the paper uses adaptive unscented Kalman filter (AUKF) to estimate the inner ohmic resistance and the state of charge in real time, according to the function between the inner ohmic resistance and the state of health, the state of health can be estimated in real time. The battery charged and discharged experiments were done under two different conditions to verify the feasibility and accuracy of this method.

  17. Crimson Viper 2015

    DTIC Science & Technology

    2015-08-01

    lithium charged battery in order to charge batteries Lessons Learned Technology Focused • Don’t wait until execution time to start unit. Even if...communications • Optional passport MRZ and smartcard readers • Dual hot-swappable batteries , 2.4 Ahr, Li Ion , with Smart Battery technology...6.2” x 1.8” (24.13 cm x 15.75 cm x 4.57 cm) Weight 3.2 lbs (1.45 kg) Battery Dual hot-swappable, 2.9 Ahr, Li Ion Battery Life Up to 8 hours

  18. Fe{sub 2}O{sub 3} nanowires on HOPG as precursor of new carbon-based anode for high-capacity lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelucci, Marco; Frau, Eleonora; Betti, Maria Grazia

    Iron Oxides nanostructures are very promising systems for new generation of anode material for Lithium-Ion batteries because of their high capacity associated to their surface area. A core-level photoemission study of Fe{sub 2}O{sub 3} nanowires deposited on highly-oriented pyrolitic graphite (HOPG) under Li exposure is presented. The Fe-2p, Fe-3p, and Li-1s core-level lineshape evolution upon Li exposure in ultra-high-vacuum conditions clearly brings to light the Fe ion reduction from fully trivalent to prevalently divalent at saturation. Furthermore, the graphite substrate allows allocation of a large amount of Li ions surrounding the iron-oxide nanowires, opening a new scenario towards the usemore » of graphene for improving the ionic charge exchange.« less

  19. Designing and Thermal Analysis of Safe Lithium Ion Cathode Materials for High Energy Applications

    NASA Astrophysics Data System (ADS)

    Hu, Enyuan

    Safety is one of the most critical issues facing lithium-ion battery application in vehicles. Addressing this issue requires the integration of several aspects, especially the material chemistry and the battery thermal management. First, thermal stability investigation was carried out on an attractive high energy density material LiNi0.5Mn1.5O4. New findings on the thermal-stability and thermal-decomposition-pathways related to the oxygen-release are discovered for the high-voltage spinel Li xNi0.5Mn1.5O4 (LNMO) with ordered (o-) and disordered (d-) structures at fully delithiated (charged) state using a combination of in situ time-resolved x-ray diffraction (TR-XRD) coupled with mass spectroscopy (MS) and x-ray absorption spectroscopy (XAS). Both fully charged o--LixNi0.5Mn1.5O 4 and d-LixNi0.5Mn1.5O 4 start oxygen-releasing structural changes at temperatures below 300 °C, which is in sharp contrast to the good thermal stability of the 4V-spinel LixMn2O4 with no oxygen being released up to 375 °C. This is mainly caused by the presence of Ni4+ in LNMO, which undergoes dramatic reduction during the thermal decomposition. In addition, charged o-LNMO shows better thermal stability than the d-LNMO counterpart, due to the Ni/Mn ordering and smaller amount of the rock-salt impurity phase in o-LNMO. Newly identified two thermal-decomposition-pathways from the initial LixNi0.5Mn1.5O 4 spinel to the final NiMn2O4-type spinel structure with and without the intermediate phases (NiMnO3 and alpha-Mn 2O3) are found to play key roles in thermal stability and oxygen release of LNMO during thermal decomposition. In addressing the safety issue associated with LNMO, Fe is selected to partially substitute Ni and Mn simultaneously utilizing the electrochemical activity and structure-stabilizing high spin Fe3+. The synthesized LiNi1/3Mn4/3Fe1/3O4 showed superior thermal stability and satisfactory electrochemical performance. At charged state, it is able to withstand the temperature as high as 500°C without observable oxygen release. It shows comparable cyclability performance to the LNMO material with better rate capability. The undiminished high voltage capacity is due to the electrochemical activity of Fe in the system. Fe also plays the key role of stabilizing the system at Fe3O4 type spinel phase against further phase transformation to the rock salt phase, accounting for the superior thermal stability of LiNi1/3Mn 4/3Fe1/3O4. Thermal analysis of the lithium-ion battery indicates the key role of electric current in contributing to a thermal runaway. FLUENT simulation on a 10-cell battery shows that under fast discharging conditions, the temperature level can easily reach the threshold of malfunction and the battery temperature features a large distribution of 18°C. Simple air cooling is not effective enough in addressing the problem. Designed air cooling or liquid cooling is required for the normal operation of lithium-ion batteries in vehicles.

  20. Efficiency of Pm-147 direct charge radioisotope battery.

    PubMed

    Kavetskiy, A; Yakubova, G; Yousaf, S M; Bower, K; Robertson, J D; Garnov, A

    2011-05-01

    A theoretical analysis is presented here of the efficiency of direct charge radioisotope batteries based on the efficiency of the radioactive source, the system geometry, electrostatic repulsion of beta particles from the collector, the secondary electron emission, and backscattered beta particles from the collector. Efficiency of various design batteries using Pm-147 sources was experimentally measured and found to be in good agreement with calculations. The present approach can be used for predicting the efficiency for different designs of direct charge radioisotope batteries. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Three dimensional Graphene aerogels as binder-less, freestanding, elastic and high-performance electrodes for lithium-ion batteries.

    PubMed

    Chen, Zhihang; Li, Hua; Tian, Ran; Duan, Huanan; Guo, Yiping; Chen, Yujie; Zhou, Jie; Zhang, Chunmei; Dugnani, Roberto; Liu, Hezhou

    2016-06-06

    In this work it is shown how porous graphene aerogels fabricated by an eco-friendly and simple technological process, could be used as electrodes in lithium- ion batteries. The proposed graphene framework exhibited excellent performance including high reversible capacities, superior cycling stability and rate capability. A significantly lower temperature (75 °C) than the one currently utilized in battery manufacturing was utilized for self-assembly hence providing potential significant savings to the industrial production. After annealing at 600 °C, the formation of Sn-C-O bonds between the SnO2 nanoparticles and the reduced graphene sheets will initiate synergistic effect and improve the electrochemical performance. The XPS patterns revealed the formation of Sn-C-O bonds. Both SEM and TEM imaging of the electrode material showed that the three dimensional network of graphene aerogels and the SnO2 particles were distributed homogeneously on graphene sheets. Finally, the electrochemical properties of the samples as active anode materials for lithium-ion batteries were tested and examined by constant current charge-discharge cycling and the finding fully described in this manuscript.

  2. Strain measurement based battery testing

    DOEpatents

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  3. Interaction of FeS 2 and Sulfur in Li-S Battery System

    DOE PAGES

    Sun, Ke; Cama, Christina A.; DeMayo, Rachel A.; ...

    2016-09-09

    Many transition metal sulfides are electronically conductive, electrochemically active and reversible in reactions with lithium. However, the application of transition metal sulfides as sulfur cathode additives in lithium-sulfur (Li-S) batteries has not been fully explored. In this study, Pyrite (FeS 2) is studied as a capacity contributing conductive additive in sulfur cathode for Li-S batteries. Electrochemically discharging the S-FeS 2 composite electrodes to 1.0 V activates the FeS 2 component, contributing to the improved Li-S cell discharge energy density. However, direct activation of the FeS 2 component in a fresh S-FeS 2 cell results in a significant shuttling effect inmore » the subsequent charging process, preventing further cell cycling. The slight FeS 2 solubility in electrolyte and its activation alone in S-FeS 2 cells are not the root causes of the severe shuttling effect. The observed severe shuttling effect is strongly correlated to the 1st charging of the activated S-FeS 2 electrode that promotes iron dissolution in electrolyte and the deposition of electronically conductive FeS on the anode SEI. Pre-cycling of the S-FeS 2 cell prior to the FeS 2 activation or the use of LiNO 3 electrolyte additive help to prevent the severe shuttling effect and allow the cell to cycle between 2.6 V to 1.0 V with an extra capacity contribution from the FeS2 components. However, a more effective method of anode pre-passivation is still needed to fully protect the lithium surface from FeS deposition and allow the S-FeS 2 electrode to maintain high energy density over extended cycles. A mechanism explaining the observed phenomena based on the experimental data is proposed and discussed« less

  4. Elimination of active species crossover in a room temperature, neutral pH, aqueous flow battery using a ceramic NaSICON membrane

    NASA Astrophysics Data System (ADS)

    Allcorn, Eric; Nagasubramanian, Ganesan; Pratt, Harry D.; Spoerke, Erik; Ingersoll, David

    2018-02-01

    Flow batteries are an attractive technology for energy storage of grid-scale renewables. However, performance issues related to ion-exchange membrane (IEM) fouling and crossover of species have limited the success of flow batteries. In this work we propose the use of the solid-state sodium-ion conductor NaSICON as an IEM to fully eliminate active species crossover in room temperature, aqueous, neutral pH flow batteries. We measure the room temperature conductivity of NaSICON at 2.83-4.67 mS cm-1 and demonstrate stability of NaSICON in an aqueous electrolyte with conductivity values remaining near 2.5 mS cm-1 after 66 days of exposure. Charge and discharge of a full H-cell battery as well as symmetric cycling in a flow battery configuration using NaSICON as an IEM in both cases demonstrates the capability of the solid-state IEM. Extensive analysis of aged cells through electrochemical impedance spectroscopy (EIS) and UV-vis spectroscopy show no contaminant species having crossed over the NaSICON membrane after 83 days of exposure, yielding an upper limit to the permeability of NaSICON of 4 × 10-10 cm2 min-1. The demonstration of NaSICON as an IEM enables a wide new range of chemistries for application to flow batteries that would previously be impeded by species crossover and associated degradation.

  5. Elimination of active species crossover in a room temperature, neutral pH, aqueous flow battery using a ceramic NaSICON membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allcorn, Eric; Nagasubramanian, Ganesan; Pratt, III, Harry D.

    Flow batteries are an attractive technology for energy storage of grid-scale renewables. However, performance issues related to ion-exchange membrane (IEM) fouling and crossover of species have limited the success of flow batteries. In this work we propose the use of the solid-state sodium-ion conductor NaSICON as an IEM to fully eliminate active species crossover in room temperature, aqueous, neutral pH flow batteries. We measure the room temperature conductivity of NaSICON at 2.83–4.67 mS cm –1 and demonstrate stability of NaSICON in an aqueous electrolyte with conductivity values remaining near 2.5 mS cm –1 after 66 days of exposure. Charge andmore » discharge of a full H-cell battery as well as symmetric cycling in a flow battery configuration using NaSICON as an IEM in both cases demonstrates the capability of the solid-state IEM. Extensive analysis of aged cells through electrochemical impedance spectroscopy (EIS) and UV–vis spectroscopy show no contaminant species having crossed over the NaSICON membrane after 83 days of exposure, yielding an upper limit to the permeability of NaSICON of 4 × 10 –10 cm 2 min –1. As a result, the demonstration of NaSICON as an IEM enables a wide new range of chemistries for application to flow batteries that would previously be impeded by species crossover and associated degradation.« less

  6. Elimination of active species crossover in a room temperature, neutral pH, aqueous flow battery using a ceramic NaSICON membrane

    DOE PAGES

    Allcorn, Eric; Nagasubramanian, Ganesan; Pratt, III, Harry D.; ...

    2018-01-04

    Flow batteries are an attractive technology for energy storage of grid-scale renewables. However, performance issues related to ion-exchange membrane (IEM) fouling and crossover of species have limited the success of flow batteries. In this work we propose the use of the solid-state sodium-ion conductor NaSICON as an IEM to fully eliminate active species crossover in room temperature, aqueous, neutral pH flow batteries. We measure the room temperature conductivity of NaSICON at 2.83–4.67 mS cm –1 and demonstrate stability of NaSICON in an aqueous electrolyte with conductivity values remaining near 2.5 mS cm –1 after 66 days of exposure. Charge andmore » discharge of a full H-cell battery as well as symmetric cycling in a flow battery configuration using NaSICON as an IEM in both cases demonstrates the capability of the solid-state IEM. Extensive analysis of aged cells through electrochemical impedance spectroscopy (EIS) and UV–vis spectroscopy show no contaminant species having crossed over the NaSICON membrane after 83 days of exposure, yielding an upper limit to the permeability of NaSICON of 4 × 10 –10 cm 2 min –1. As a result, the demonstration of NaSICON as an IEM enables a wide new range of chemistries for application to flow batteries that would previously be impeded by species crossover and associated degradation.« less

  7. Performance of the Lester battery charger in electric vehicles

    NASA Technical Reports Server (NTRS)

    Vivian, H. C.; Bryant, J. A.

    1984-01-01

    Tests are performed on an improved battery charger. The primary purpose of the testing is to develop test methodologies for battery charger evaluation. Tests are developed to characterize the charger in terms of its charge algorithm and to assess the effects of battery initial state of charge and temperature on charger and battery efficiency. Tests show this charger to be a considerable improvement in the state of the art for electric vehicle chargers.

  8. Study on LOC for modern facility agriculture automatic walking equipment LiFePO4 battery

    NASA Astrophysics Data System (ADS)

    Liu, Xuepeng; Zhao, Dongmei

    2017-08-01

    LiFePO4 battery LOC (life Of Charge) is the assessment of the ability to work within a cycle of battery charge and discharge period, which likes the miles for vehicle. LOC is related with battery capacity, working condition and stress. LOC consists of the model of the battery's SOC online prediction model, the analysis of RBSOC and the LOC model of multi-condition and multi-stress.

  9. Machine Learning Based Diagnosis of Lithium Batteries

    NASA Astrophysics Data System (ADS)

    Ibe-Ekeocha, Chinemerem Christopher

    The depletion of the world's current petroleum reserve, coupled with the negative effects of carbon monoxide and other harmful petrochemical by-products on the environment, is the driving force behind the movement towards renewable and sustainable energy sources. Furthermore, the growing transportation sector consumes a significant portion of the total energy used in the United States. A complete electrification of this sector would require a significant development in electric vehicles (EVs) and hybrid electric vehicles (HEVs), thus translating to a reduction in the carbon footprint. As the market for EVs and HEVs grows, their battery management systems (BMS) need to be improved accordingly. The BMS is not only responsible for optimally charging and discharging the battery, but also monitoring battery's state of charge (SOC) and state of health (SOH). SOC, similar to an energy gauge, is a representation of a battery's remaining charge level as a percentage of its total possible charge at full capacity. Similarly, SOH is a measure of deterioration of a battery; thus it is a representation of the battery's age. Both SOC and SOH are not measurable, so it is important that these quantities are estimated accurately. An inaccurate estimation could not only be inconvenient for EV consumers, but also potentially detrimental to battery's performance and life. Such estimations could be implemented either online, while battery is in use, or offline when battery is at rest. This thesis presents intelligent online SOC and SOH estimation methods using machine learning tools such as artificial neural network (ANN). ANNs are a powerful generalization tool if programmed and trained effectively. Unlike other estimation strategies, the techniques used require no battery modeling or knowledge of battery internal parameters but rather uses battery's voltage, charge/discharge current, and ambient temperature measurements to accurately estimate battery's SOC and SOH. The developed algorithms are evaluated experimentally using two different batteries namely lithium iron phosphate (LiFePO 4) and lithium titanate (LTO), both subjected to constant and dynamic current profiles. Results highlight the robustness of these algorithms to battery's nonlinear dynamic nature, hysteresis, aging, dynamic current profile, and parametric uncertainties. Consequently, these methods are susceptible and effective if incorporated with the BMS of EVs', HEVs', and other battery powered devices.

  10. Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging.

    PubMed

    Yu, Mingzhe; Ren, Xiaodi; Ma, Lu; Wu, Yiying

    2014-10-03

    With a high theoretical specific energy, the non-aqueous rechargeable lithium-oxygen battery is a promising next-generation energy storage technique. However, the large charging overpotential remains a challenge due to the difficulty in electrochemically oxidizing the insulating lithium peroxide. Recently, a redox shuttle has been introduced into the electrolyte to chemically oxidize lithium peroxide. Here, we report the use of a triiodide/iodide redox shuttle to couple a built-in dye-sensitized titanium dioxide photoelectrode with the oxygen electrode for the photoassisted charging of a lithium-oxygen battery. On charging under illumination, triiodide ions are generated on the photoelectrode, and subsequently oxidize lithium peroxide. Due to the contribution of the photovoltage, the charging overpotential is greatly reduced. The use of a redox shuttle to couple a photoelectrode and an oxygen electrode offers a unique strategy to address the overpotential issue of non-aqueous lithium-oxygen batteries and also a distinct approach for integrating solar cells and batteries.

  11. A battery power model for the EUVE spacecraft

    NASA Technical Reports Server (NTRS)

    Yen, Wen L.; Littlefield, Ronald G.; Mclean, David R.; Tuchman, Alan; Broseghini, Todd A.; Page, Brenda J.

    1993-01-01

    This paper describes a battery power model that has been developed to simulate and predict the behavior of the 50 ampere-hour nickel-cadmium battery that supports the Extreme Ultraviolet Explorer (EUVE) spacecraft in its low Earth orbit. First, for given orbit, attitude, solar array panel and spacecraft load data, the model calculates minute-by-minute values for the net power available for charging the battery for a user-specified time period (usually about two weeks). Next, the model is used to calculate minute-by-minute values for the battery voltage, current and state-of-charge for the time period. The model's calculations are explained for its three phases: sunrise charging phase, constant voltage phase, and discharge phase. A comparison of predicted model values for voltage, current and state-of-charge with telemetry data for a complete charge-discharge cycle shows good correlation. This C-based computer model will be used by the EUVE Flight Operations Team for various 'what-if' scheduling analyses.

  12. Neutron Radiography, Tomography, and Diffraction of Commercial Lithium-ion Polymer Batteries

    NASA Astrophysics Data System (ADS)

    Butler, Leslie G.; Lehmann, Eberhard H.; Schillinger, Burkhard

    Imaging an intact, commercial battery as it cycles and wears is proved possible with neutron imaging. The wavelength range of imaging neutrons corresponds nicely with crystallographic dimensions of the electrochemically active species and the metal elec- trodes are relatively transparent. The time scale of charge/discharge cycling is well matched to dynamic tomography as performed with a golden ratio based projection angle ordering. The hydrogen content does create scatter which tends to blur internal struc- ture. In this report, three neutron experiments will be described: 3D images of charged and discharged batteries were obtained with monochromatic neutrons at the FRM II reactor. 2D images (PSI) of fresh and worn batteries as a function of charge state may show a new wear pattern. In situ neutron diffraction (SNS) of the intact battery provides more information about the concentrations of electrochemical species within the battery as a function of charge state and wear. The combination of 2D imaging, 3D imaging, and diffraction data show how neutron imaging can contribute to battery development and wear monitoring.

  13. Midcourse Space Experiment (MSX)

    DTIC Science & Technology

    1992-08-01

    Facility (PCF), on South Base. The PPF houses the MSX spacecraft for the prelaunch operations (installation of payload fairing, battery charging , etc...include: unpacking the spacecraft from its shipping container; charging the onboard nickel-hydrogen batteries ; filling the cryostat with solid...activities, and will remain in orbit for several hundred years. The MSX spacecraft is solar powered with a battery backup. The battery is capable of

  14. New battery model considering thermal transport and partial charge stationary effects in photovoltaic off-grid applications

    NASA Astrophysics Data System (ADS)

    Sanz-Gorrachategui, Iván; Bernal, Carlos; Oyarbide, Estanis; Garayalde, Erik; Aizpuru, Iosu; Canales, Jose María; Bono-Nuez, Antonio

    2018-02-01

    The optimization of the battery pack in an off-grid Photovoltaic application must consider the minimum sizing that assures the availability of the system under the worst environmental conditions. Thus, it is necessary to predict the evolution of the state of charge of the battery under incomplete daily charging and discharging processes and fluctuating temperatures over day-night cycles. Much of previous development work has been carried out in order to model the short term evolution of battery variables. Many works focus on the on-line parameter estimation of available charge, using standard or advanced estimators, but they are not focused on the development of a model with predictive capabilities. Moreover, normally stable environmental conditions and standard charge-discharge patterns are considered. As the actual cycle-patterns differ from the manufacturer's tests, batteries fail to perform as expected. This paper proposes a novel methodology to model these issues, with predictive capabilities to estimate the remaining charge in a battery after several solar cycles. A new non-linear state space model is proposed as a basis, and the methodology to feed and train the model is introduced. The new methodology is validated using experimental data, providing only 5% of error at higher temperatures than the nominal one.

  15. Ultra-Portable Solar-Powered 3D Printers for Onsite Manufacturing of Medical Resources.

    PubMed

    Wong, Julielynn Y

    2015-09-01

    The first space-based fused deposition modeling (FDM) 3D printer is powered by solar photovoltaics. This study seeks to demonstrate the feasibility of using solar energy to power a FDM 3D printer to manufacture medical resources at the Mars Desert Research Station and to design an ultra-portable solar-powered 3D printer for off-grid environments. Six solar panels in a 3×2 configuration, a voltage regulator/capacitor improvised from a power adapter, and two 12V batteries in series were connected to power a FDM 3D printer. Three designs were printed onsite and evaluated by experts post analogue mission. A solar-powered 3D printer composed of off-the-shelf components was designed to be transported in airline carry-on luggage. During the analogue mission, the solar-powered printer could only be operated for <1 h/d, but was able to fabricate a functional dental tool, scalpel handle, and customized mallet splint over 2 d. Post analogue mission, an ultra-portable plug-and-play solar-powered 3D printer was designed that could print an estimated 16 dental tools or 8 mallet finger splints or 7 scalpel handles on one fully charged 12V 150Wh battery with a 110V AC converter. It is feasible to use solar energy to power a 3D printer to manufacture functional and personalized medical resources at a Mars analogue research station. Based on these findings, a solar-powered suitcase 3D printing system containing solar panels, 12V battery with charge controller and AC inverter, and back-up solar charge controller and inverter was designed for transport to and use in off-grid communities.

  16. Fast Equalization for Large Lithium Ion Batteries

    DTIC Science & Technology

    2008-09-01

    Lithium - ion batteries use an electrolyte that is flammable if exposed to high temperatures. Slight differences between the series-connected cells in a LiIon battery pack can produce imbalances in the cell voltages, and this greatly reduces the charge capacity. These batteries cannot be trickle charged like a lead acid battery because this would slightly overcharge some cells and would cause these cells to ignite. There are different methods used to ensure that the cells of a battery pack are not overcharged. The targeted equalizer (EQU) described here can

  17. The thermodynamic origin of hysteresis in insertion batteries

    NASA Astrophysics Data System (ADS)

    Dreyer, Wolfgang; Jamnik, Janko; Guhlke, Clemens; Huth, Robert; Moškon, Jože; Gaberšček, Miran

    2010-05-01

    Lithium batteries are considered the key storage devices for most emerging green technologies such as wind and solar technologies or hybrid and plug-in electric vehicles. Despite the tremendous recent advances in battery research, surprisingly, several fundamental issues of increasing practical importance have not been adequately tackled. One such issue concerns the energy efficiency. Generally, charging of 1010-1017 electrode particles constituting a modern battery electrode proceeds at (much) higher voltages than discharging. Most importantly, the hysteresis between the charge and discharge voltage seems not to disappear as the charging/discharging current vanishes. Herein we present, for the first time, a general explanation of the occurrence of inherent hysteretic behaviour in insertion storage systems containing multiple particles. In a broader sense, the model also predicts the existence of apparent equilibria in battery electrodes, the sequential particle-by-particle charging/discharging mechanism and the disappearance of two-phase behaviour at special experimental conditions.

  18. The thermodynamic origin of hysteresis in insertion batteries.

    PubMed

    Dreyer, Wolfgang; Jamnik, Janko; Guhlke, Clemens; Huth, Robert; Moskon, Joze; Gaberscek, Miran

    2010-05-01

    Lithium batteries are considered the key storage devices for most emerging green technologies such as wind and solar technologies or hybrid and plug-in electric vehicles. Despite the tremendous recent advances in battery research, surprisingly, several fundamental issues of increasing practical importance have not been adequately tackled. One such issue concerns the energy efficiency. Generally, charging of 10(10)-10(17) electrode particles constituting a modern battery electrode proceeds at (much) higher voltages than discharging. Most importantly, the hysteresis between the charge and discharge voltage seems not to disappear as the charging/discharging current vanishes. Herein we present, for the first time, a general explanation of the occurrence of inherent hysteretic behaviour in insertion storage systems containing multiple particles. In a broader sense, the model also predicts the existence of apparent equilibria in battery electrodes, the sequential particle-by-particle charging/discharging mechanism and the disappearance of two-phase behaviour at special experimental conditions.

  19. Charge-discharge characteristics of nickel/zinc battery with polymer hydrogel electrolyte

    NASA Astrophysics Data System (ADS)

    Iwakura, Chiaki; Murakami, Hiroki; Nohara, Shinji; Furukawa, Naoji; Inoue, Hiroshi

    A new nickel/zinc (Ni/Zn) battery was assembled by using polymer hydrogel electrolyte prepared from cross-linked potassium poly(acrylate) and KOH aqueous solution, and its charge-discharge characteristics were investigated. The experimental Ni/Zn cell with the polymer hydrogel electrolyte exhibited well-defined charge-discharge curves and remarkably improved charge-discharge cycle performance, compared to that with a KOH aqueous solution. Moreover, it was found that dendritic growth hardly occurred on the zinc electrode surface during charge-discharge cycles in the polymer hydrogel electrolyte. These results indicate that the polymer hydrogel electrolyte can successfully be used in Ni/Zn batteries as an electrolyte with excellent performance.

  20. Combination field chopper and battery charger

    DOEpatents

    Steigerwald, R.L.; Crouch, K.E.; Wilson, J.W.A.

    1979-08-13

    A power transistor used in a chopper circuit to control field excitation of a vehicle motor when in a power mode is also used to control charging current from an a-c to d-c rectifier to the vehicle battery when in a battery charging mode. Two isolating diodes and a small high frequency filter inductor are the only elements required in the chopper circuit to reconfigure the circuit for power or charging modes of operation.

  1. Combination field chopper and battery charger

    DOEpatents

    Steigerwald, Robert L.; Crouch, Keith E.; Wilson, James W. A.

    1981-01-01

    A power transistor used in a chopper circuit to control field excitation of a vehicle motor when in a power mode is also used to control charging current from an a-c to d-c rectifier to the vehicle battery when in a battery charging mode. Two isolating diodes and a small high frequency filter inductor are the only elements required in the chopper circuit to reconfigure the circuit for power or charging modes of operation.

  2. A low-overpotential potassium-oxygen battery based on potassium superoxide.

    PubMed

    Ren, Xiaodi; Wu, Yiying

    2013-02-27

    Li-O(2) battery is regarded as one of the most promising energy storage systems for future applications. However, its energy efficiency is greatly undermined by the large overpotentials of the discharge (formation of Li(2)O(2)) and charge (oxidation of Li(2)O(2)) reactions. The parasitic reactions of electrolyte and carbon electrode induced by the high charging potential cause the decay of capacity and limit the battery life. Here, a K-O(2) battery is report that uses K(+) ions to capture O(2)(-) to form the thermodynamically stable KO(2) product. This allows for the battery to operate through the one-electron redox process of O(2)/O(2)(-). Our studies confirm the formation and removal of KO(2) in the battery cycle test. Furthermore, without the use of catalysts, the battery shows a low discharge/charge potential gap of less than 50 mV at a modest current density, which is the lowest one that has ever been reported in metal-oxygen batteries.

  3. 46 CFR 185.720 - Weekly maintenance and inspections.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... starting the engine; and (c) Each battery for rescue boat engine starting must be brought up to full charge at least once each week if: (1) The battery is of a type that requires recharging; and (2) The battery is not connected to a device that keeps it continuously charged. ...

  4. 46 CFR 185.720 - Weekly maintenance and inspections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... starting the engine; and (c) Each battery for rescue boat engine starting must be brought up to full charge at least once each week if: (1) The battery is of a type that requires recharging; and (2) The battery is not connected to a device that keeps it continuously charged. ...

  5. 46 CFR 185.720 - Weekly maintenance and inspections.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... starting the engine; and (c) Each battery for rescue boat engine starting must be brought up to full charge at least once each week if: (1) The battery is of a type that requires recharging; and (2) The battery is not connected to a device that keeps it continuously charged. ...

  6. 46 CFR 185.720 - Weekly maintenance and inspections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... starting the engine; and (c) Each battery for rescue boat engine starting must be brought up to full charge at least once each week if: (1) The battery is of a type that requires recharging; and (2) The battery is not connected to a device that keeps it continuously charged. ...

  7. 46 CFR 185.720 - Weekly maintenance and inspections.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... starting the engine; and (c) Each battery for rescue boat engine starting must be brought up to full charge at least once each week if: (1) The battery is of a type that requires recharging; and (2) The battery is not connected to a device that keeps it continuously charged. ...

  8. Nickel-cadmium battery system for electric vehicles

    NASA Astrophysics Data System (ADS)

    Klein, M.; Charkey, A.

    A nickel-cadmium battery system has been developed and is being evaluated for electric vehicle propulsion applications. The battery system design features include: (1) air circulation through gaps between cells for thermal management, (2) a metal-gas coulometric fuel gauge for state-of-charge and charge control, and (3) a modified constant current ac/dc power supply for the charger. The battery delivers one and a half to two times the energy density of comparable lead-acid batteries depending on operating conditions.

  9. Optical state-of-charge monitor for batteries

    DOEpatents

    Weiss, Jonathan D.

    1999-01-01

    A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cell or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

  10. "Fuel Gage" for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Rowlette, J. J.

    1984-01-01

    Gas-emmission and time-integrated-current measurements indicate battery charge state. Tests indicate possibility of monitoring state of charge of lead/acid batteries at any stage in charging cycle by measuring charging current and either gas evolution or electrode potential. Data then processed by microcomputer. Uses include cell voltage, cell pressure, cell temperature and rate of gas recombination on catalyst.

  11. Degradation mechanism of over-charged LiCoO 2/mesocarbon microbeads battery during shallow depth of discharge cycling

    DOE PAGES

    Zhang, Lingling; Ma, Yulin; Cheng, Xinqun; ...

    2016-08-26

    LiCoO 2/mesocarbon microbeads (MCMB) batteries are over-charged to different voltage (4.4 V, 4.5 V, 4.6 V, and 4.7 V, respectively) for ten times, and then are cycled 1000 times for shallow depth of discharge. The morphology, structure, and electrochemical performance of the electrode materials were studied in detail in order to identify the capacity fading mechanism of over-charged battery after long-term cycling. The cycling performances of LiCoO 2/MCMB batteries are gradually aggravated with the increase of over-charging voltage and the degradation mechanism is diverse upon the degree of over-charging. Furthermore, the capacity fading after long-term cycling of battery over-charged tomore » 4.6 V or 4.7 V is mainly attributed to the cathodes. Soft X-ray absorption spectroscopy (XAS) demonstrates that the lower valence state of cobalt exists on the surface of the LiCoO 2 after serious over-charging (4.6 V or 4.7 V), and cobalt is dissolved then deposited on the anode according to the result of energy dispersive spectrometry (EDS). But, after shallow over-charging (4.4 V or 4.5 V), the capacity deterioration is proposed as the loss of active lithium, presented by the generation of the SEI film on the anode, which is verified by water washed tests.« less

  12. Development of satellite borne nickel hydrogen battery experiment equipment for ETS-6

    NASA Astrophysics Data System (ADS)

    Kuwashima, Saburou; Kamimori, Norimitsu; Kusawake, Hiroaki; Takahashi, Kazumichi

    1992-08-01

    An overview of the support rendered for the Engineering Test Satellite-6 (ETS-6) system integration test and protoflight test by the ETS-6 borne experimental nickel hydrogen battery development part is presented. Articles in the ETS-6 specifications and procedures related to the experimental battery were prepared or supported in preparation because of the battery's special characteristics such as its automatic control dependency on the bus voltage, thermal sensitivity equivalent to that of other batteries and so forth. System tests were witnessed and the acquired data were evaluated. Charging characteristics from 0 V were verified at trickle charging rate, using a flight scale model of Nickel Hydrogen (Ni-H2) Battery (NHB) after long term storage and an engineering model of the Ni-H2 Battery Controller (NHC). Requests for approval were submitted to the related self governing bodies in accordance with the Explosives Control Law when NHB's were charged and discharged. Installation and calibration data acquisition of the inner pressure sensors for the Ni-H2 battery cells for the flight model NHB were conducted and the battery assembly was started.

  13. Management of Deep Brain Stimulator Battery Failure: Battery Estimators, Charge Density, and Importance of Clinical Symptoms

    PubMed Central

    Fakhar, Kaihan; Hastings, Erin; Butson, Christopher R.; Foote, Kelly D.; Zeilman, Pam; Okun, Michael S.

    2013-01-01

    Objective We aimed in this investigation to study deep brain stimulation (DBS) battery drain with special attention directed toward patient symptoms prior to and following battery replacement. Background Previously our group developed web-based calculators and smart phone applications to estimate DBS battery life (http://mdc.mbi.ufl.edu/surgery/dbs-battery-estimator). Methods A cohort of 320 patients undergoing DBS battery replacement from 2002–2012 were included in an IRB approved study. Statistical analysis was performed using SPSS 20.0 (IBM, Armonk, NY). Results The mean charge density for treatment of Parkinson’s disease was 7.2 µC/cm2/phase (SD = 3.82), for dystonia was 17.5 µC/cm2/phase (SD = 8.53), for essential tremor was 8.3 µC/cm2/phase (SD = 4.85), and for OCD was 18.0 µC/cm2/phase (SD = 4.35). There was a significant relationship between charge density and battery life (r = −.59, p<.001), as well as total power and battery life (r = −.64, p<.001). The UF estimator (r = .67, p<.001) and the Medtronic helpline (r = .74, p<.001) predictions of battery life were significantly positively associated with actual battery life. Battery status indicators on Soletra and Kinetra were poor predictors of battery life. In 38 cases, the symptoms improved following a battery change, suggesting that the neurostimulator was likely responsible for symptom worsening. For these cases, both the UF estimator and the Medtronic helpline were significantly correlated with battery life (r = .65 and r = .70, respectively, both p<.001). Conclusions Battery estimations, charge density, total power and clinical symptoms were important factors. The observation of clinical worsening that was rescued following neurostimulator replacement reinforces the notion that changes in clinical symptoms can be associated with battery drain. PMID:23536810

  14. Maximum Power Point tracking charge controllers for telecom applications -- Analysis and economics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wills, R.H.

    Simple charge controllers connect photovoltaic modules directly to the battery bank resulting in a significant power loss if the battery bank voltage differs greatly from the PV Maximum Power Point (MPP) voltage. Recent modeling work at AES has shown that dc-dc converter type MPP tracking charge controllers can deliver more than 30% more energy from PV modules to the battery when the PV modules are cool and the battery state of charge is low--this is typically both the worst case condition (i.e., winter) and also the design condition that determines the PV array size. Economic modeling, based on typical telecommore » system installed costs shows benefits of more than $3/Wp for MPPT over conventional charge controllers in this application--a value that greatly exceeds the additional cost of the dc-dc converter.« less

  15. Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li-S Batteries.

    PubMed

    Huang, Jing-Kai; Li, Mengliu; Wan, Yi; Dey, Sukumar; Ostwal, Mayur; Zhang, Daliang; Yang, Chih-Wen; Su, Chun-Jen; Jeng, U-Ser; Ming, Jun; Amassian, Aram; Lai, Zhiping; Han, Yu; Li, Sean; Li, Lain-Jong

    2018-01-23

    Ultrathin two-dimensional (2D) polymeric layers are capable of separating gases and molecules based on the reported size exclusion mechanism. What is equally important but missing today is an exploration of the 2D layers with charge functionality, which enables applications using the charge exclusion principle. This work demonstrates a simple and scalable method of synthesizing a free-standing 2D coordination polymer Zn 2 (benzimidazolate) 2 (OH) 2 at the air-water interface. The hydroxyl (-OH) groups are stoichiometrically coordinated and implement electrostatic charges in the 2D structures, providing powerful functionality as a charge barrier. Electrochemical performance of the Li-S battery shows that the Zn 2 (benzimidazolate) 2 (OH) 2 coordination polymer layers efficiently mitigate the polysulfide shuttling effects and largely enhance the battery capacity and cycle performance. The synthesis of the proposed coordination polymeric layers is simple, scalable, cost saving, and promising for practical use in batteries.

  16. Identifying Potential Markets for Behind-the-Meter Battery Energy Storage: A Survey of U.S. Demand Charges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaren, Joyce A; Gagnon, Pieter J; Mullendore, Seth

    This paper presents the first publicly available comprehensive survey of the magnitude of demand charges for commercial customers across the United States -- a key predictor of the financial performance of behind-the-meter battery storage systems. Notably, the analysis estimates that there are nearly 5 million commercial customers in the United States who can subscribe to retail electricity tariffs that have demand charges in excess of $15 per kilowatt (kW), over a quarter of the 18 million commercial customers in total in the United States. While the economic viability of installing battery energy storage must be determined on a case-by-case basis,more » high demand charges are often cited as a critical factor in battery project economics. Increasing use of demand charges in utility tariffs and anticipated future declines in storage costs will only serve to unlock additional markets and strengthen existing ones.« less

  17. Mechanical and electrochemical response of a LiCoO 2 cathode using reconstructed microstructures

    DOE PAGES

    Mendoza, Hector; Roberts, Scott Alan; Brunini, Victor; ...

    2016-01-01

    As LiCoO 2 cathodes are charged, delithiation of the LiCoO 2 active material leads to an increase in the lattice spacing, causing swelling of the particles. When these particles are packed into a bicontinuous, percolated network, as is the case in a battery electrode, this swelling leads to the generation of significant mechanical stress. In this study we performed coupled electrochemical-mechanical simulations of the charging of a LiCoO 2 cathode in order to elucidate the mechanisms of stress generation and the effect of charge rate and microstructure on these stresses. Energy dispersive spectroscopy combined with scanning electron microscopy imaging wasmore » used to create 3D reconstructions of a LiCoO 2 cathode, and the Conformal Decomposition Finite Element Method is used to automatically generate computational meshes on this reconstructed microstructure. Replacement of the ideal solution Fickian diffusion model, typically used in battery simulations, with a more general non-ideal solution model shows substantially smaller gradients of lithium within particles than is typically observed in the literature. Using this more general model, lithium gradients only appear at states of charge where the open-circuit voltage is relatively constant. While lithium gradients do affect the mechanical stress state in the particles, the maximum stresses are always found in the fully-charged state and are strongly affected by the local details of the microstructure and particle-to-particle contacts. These coupled electrochemical-mechanical simulations begin to yield insight into the partitioning of volume change between reducing pore space and macroscopically swelling the electrode. Lastly, preliminary studies that include the presence of the polymeric binder suggest that it can greatly impact stress generation and that it is an important area for future research.« less

  18. Wireless Power Transfer

    ScienceCinema

    None

    2018-01-16

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.

  19. Wireless Power Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forgetmore » to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.« less

  20. Mathematical analysis and coordinated current allocation control in battery power module systems

    NASA Astrophysics Data System (ADS)

    Han, Weiji; Zhang, Liang

    2017-12-01

    As the major energy storage device and power supply source in numerous energy applications, such as solar panels, wind plants, and electric vehicles, battery systems often face the issue of charge imbalance among battery cells/modules, which can accelerate battery degradation, cause more energy loss, and even incur fire hazard. To tackle this issue, various circuit designs have been developed to enable charge equalization among battery cells/modules. Recently, the battery power module (BPM) design has emerged to be one of the promising solutions for its capability of independent control of individual battery cells/modules. In this paper, we propose a new current allocation method based on charging/discharging space (CDS) for performance control in BPM systems. Based on the proposed method, the properties of CDS-based current allocation with constant parameters are analyzed. Then, real-time external total power requirement is taken into account and an algorithm is developed for coordinated system performance control. By choosing appropriate control parameters, the desired system performance can be achieved by coordinating the module charge balance and total power efficiency. Besides, the proposed algorithm has complete analytical solutions, and thus is very computationally efficient. Finally, the efficacy of the proposed algorithm is demonstrated using simulations.

  1. Annulated Dialkoxybenzenes as Catholyte Materials for Non-aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution

    DOE PAGES

    Zhang, Jingjing; Yang, Zheng; Shkrob, Ilya A.; ...

    2017-07-21

    1,4-Dimethoxybenzene derivatives are materials of choice for use as catholytes in nonaqueous redox flow batteries, as they exhibit high open-circuit potentials and excellent electrochemical reversibility. However, chemical stability of these materials in their oxidized form needs to be improved. Disubstitution in the arene ring is used to suppress parasitic reactions of their radical cations, but this does not fully prevent ring-addition reactions. By incorporating bicyclic substitutions and ether chains into the dialkoxybenzenes, a novel catholyte molecule, 9,10-bis(2-methoxyethoxy)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanenoanthracene (BODMA), is obtained and exhibits greater solubility and superior chemical stability in the charged state. As a result, a hybrid flow cell containingmore » BODMA is operated for 150 charge–discharge cycles with minimal loss of capacity.« less

  2. Constructing inorganic/polymer microsphere composite as lithium ion battery anode material

    NASA Astrophysics Data System (ADS)

    Zhou, Nan; Dong, Hui; Xu, Yunlong; Luo, Lei; Zhao, Chongjun; Wang, Di; Li, Haoran; Liu, Dong

    2018-03-01

    Spinel Li4Ti5O12 (LTO) holds great potential used as lithium ion battery(LIB) anode material for various hybrid, plug-in, and pure electrical vehicle applications. However, the low intrinsic conductivity and much underused capacity pose serious obstacles in practice for its wider and deeper utilization. Here we demonstrate a facile approach by which an LTO/Si/cyclized-polyacrylonitrile (PAN) inorganic/polymer composite is designed and implemented in attempt to tackle both challenges. Our results show that an optimal Si amount is needed in the composite so as to fully promote underused LTO capacity in a stable state while cyclized PAN not only improves conductivity, reaction kinetics and charge transfer resistance of the electrode through its turbostratic transition, but to much extent acts as a resilient binder to offset volumetric expansion caused by Si. The optimized composite exhibits admirable capacity and cycling performance during long-term operation.

  3. Charging a Li-O₂ battery using a redox mediator.

    PubMed

    Chen, Yuhui; Freunberger, Stefan A; Peng, Zhangquan; Fontaine, Olivier; Bruce, Peter G

    2013-06-01

    The non-aqueous Li-air (O2) battery is receiving intense interest because its theoretical specific energy exceeds that of Li-ion batteries. Recharging the Li-O2 battery depends on oxidizing solid lithium peroxide (Li2O2), which is formed on discharge within the porous cathode. However, transporting charge between Li2O2 particles and the solid electrode surface is at best very difficult and leads to voltage polarization on charging, even at modest rates. This is a significant problem facing the non-aqueous Li-O2 battery. Here we show that incorporation of a redox mediator, tetrathiafulvalene (TTF), enables recharging at rates that are impossible for the cell in the absence of the mediator. On charging, TTF is oxidized to TTF(+) at the cathode surface; TTF(+) in turn oxidizes the solid Li2O2, which results in the regeneration of TTF. The mediator acts as an electron-hole transfer agent that permits efficient oxidation of solid Li2O2. The cell with the mediator demonstrated 100 charge/discharge cycles.

  4. Electric and hybrid vehicles charge efficiency tests of ESB EV-106 lead acid batteries

    NASA Technical Reports Server (NTRS)

    Rowlette, J. J.

    1981-01-01

    Charge efficiencies were determined by measurements made under widely differing conditions of temperature, charge procedure, and battery age. The measurements were used to optimize charge procedures and to evaluate the concept of a modified, coulometric state of charge indicator. Charge efficiency determinations were made by measuring gassing rates and oxygen fractions. A novel, positive displacement gas flow meter which proved to be both simple and highly accurate is described and illustrated.

  5. Supervised chaos genetic algorithm based state of charge determination for LiFePO4 batteries in electric vehicles

    NASA Astrophysics Data System (ADS)

    Shen, Yanqing

    2018-04-01

    LiFePO4 battery is developed rapidly in electric vehicle, whose safety and functional capabilities are influenced greatly by the evaluation of available cell capacity. Added with adaptive switch mechanism, this paper advances a supervised chaos genetic algorithm based state of charge determination method, where a combined state space model is employed to simulate battery dynamics. The method is validated by the experiment data collected from battery test system. Results indicate that the supervised chaos genetic algorithm based state of charge determination method shows great performance with less computation complexity and is little influenced by the unknown initial cell state.

  6. A Hydrogen-Evolving Hybrid-Electrolyte Battery with Electrochemical/Photoelectrochemical Charging from Water Oxidation.

    PubMed

    Jin, Zhaoyu; Li, Panpan; Xiao, Dan

    2017-02-08

    Decoupled hydrogen and oxygen production were successfully embedded into an aqueous dual-electrolyte (acid-base) battery for simultaneous energy storage and conversion. A three-electrode configuration was adopted, involving an electrocatalytic hydrogen-evolving electrode as cathode, an alkaline battery-type or capacitor-type anode as shuttle, and a charging-assisting electrode for electro-/photoelectrochemically catalyzing water oxidation. The conceptual battery not only synergistically outputs electricity and chemical fuels with tremendous specific energy and power densities, but also supports various approaches to be charged by pure or solar-assisted electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries

    PubMed Central

    Li, Qi; Tan, Shen; Li, Linlin; Lu, Yingying; He, Yi

    2017-01-01

    High energy and safe electrochemical storage are critical components in multiple emerging fields of technologies. Rechargeable lithium-metal batteries are considered to be promising alternatives for current lithium-ion batteries, leading to as much as a 10-fold improvement in anode storage capacity (from 372 to 3860 mAh g−1). One of the major challenges for commercializing lithium-metal batteries is the reliability and safety issue, which is often associated with uneven lithium electrodeposition (lithium dendrites) during the charging stage of the battery cycling process. We report that stable lithium-metal batteries can be achieved by simply charging cells with square-wave pulse current. We investigated the effects of charging period and frequency as well as the mechanisms that govern this process at the molecular level. Molecular simulations were performed to study the diffusion and the solvation structure of lithium cations (Li+) in bulk electrolyte. The model predicts that loose association between cations and anions can enhance the transport of Li+ and eventually stabilize the lithium electrodeposition. We also performed galvanostatic measurements to evaluate the cycling behavior and cell lifetime under pulsed electric field and found that the cell lifetime can be more than doubled using certain pulse current waveforms. Both experimental and simulation results demonstrate that the effectiveness of pulse current charging on dendrite suppression can be optimized by choosing proper time- and frequency-dependent pulses. This work provides a molecular basis for understanding the mechanisms of pulse current charging to mitigating lithium dendrites and designing pulse current waveforms for stable lithium-metal batteries. PMID:28776039

  8. Efficient Strategies for Predictive Cell-Level Control of Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Xavier, Marcelo A.

    This dissertation introduces a set of state-space based model predictive control (MPC) algorithms tailored to a non-zero feedthrough term to account for the ohmic resistance that is inherent to the battery dynamics. MPC is herein applied to the problem of regulating cell-level measures of performance for lithium-ion batteries; the control methodologies are used first to compute a fast charging profile that respects input, output, and state constraints, i.e., input current, terminal voltage, and state of charge for an equivalent circuit model of the battery cell, and extended later to a linearized physics-based reduced-order model. The novelty of this work can summarized as follows: (1) the MPC variants are employed to a physics based reduce-order model in order to make use of the available set of internal electrochemical variables and mitigate internal mechanisms of cell degradation. (e.g., lithium plating); (2) we developed a dual-mode MPC closed-loop paradigm that suits the battery control problem with the objective of reducing computational effort by solving simpler optimization routines and guaranteeing stability; and finally (3) we developed a completely new approach of the use of a predictive control strategy where MPC is employed as a "smart sensor" for power estimation. Results are presented that show the comparative performance of the MPC algorithms for both EMC and PBROM These results highlight that dual-mode MPC can deliver optimal input current profiles by using a shorter horizon while still guaranteeing stability. Additionally, rigorous mathematical developments are presented for the development of the MPC algorithms. The use of MPC as a "smart sensor" presents it self as an appealing method for power estimation, since MPC permits a fully dynamic input profile that is able to achieve performance right at the proper constraint boundaries. Therefore, MPC is expected to produce accurate power limits for each computed sample time when compared to the Bisection method [1] which assumes constant input values over the prediction interval.

  9. Modelling of an advanced charging system for electric vehicles

    NASA Astrophysics Data System (ADS)

    Hassan Jaafar, Abdul; Rahman, Ataur; Mohiuddin, A. K. M.; Rashid, Mahbubur

    2017-03-01

    Climate Change is recognized as one of the greatest environmental problem facing the World today and it has long been appreciated by governments that reducing the impact of the internal combustion (IC) engine powered motor vehicle has an important part to play in addressing this threat. In Malaysia, IC engine powered motor vehicle accounts almost 90% of the national greenhouse gas (GHG) emissions. The need to reduce the emission is paramount, as Malaysia has pledged to reduce 40% of CO2 intensity by 2020 from 2005 level by 25% of improvement in average fuel consumption. The introduction of electric vehicles (EVs) is one of the initiatives. However in terms of percentage, the electric vehicles have not been commonly used by people nowadays and one of the reasons is lack in charging infrastructure especially when cars are on the road. The aim of this study is to simulate and model an advanced charging system for the charging infrastructure of EVs/HEVs all over the nation with slow charging mode with charging current 25 A, medium charging mode with charging current 50 A and fast charging mode with charging current 100 A. The slow charging mode is proposed for residence, medium charging mode for office parking lots, and fast charging mode is called fast charging track for charging station on road. With three modes charger topology, consumers could choose a suitable mode for their car based on their need. The simulation and experiment of advanced charging system has been conducted on a scale down battery pack of nominal voltage of 3.75 V and capacity of 1020 mAh. Result shows that the battery could be charging less than 1 hour with fast charging mode. However, due to limitation of Tenaga Nasional Berhad (TNB) power grid, the maximum 50 A current is considered to be the optimized passive mode for the EV’s battery charging system. The developed advanced charger prototype performance has been compared with the simulation result and conventional charger performance, the maximum variation has been found 15%, this closed agreement between the advanced charger prototype, simulation model and conventional charger validate the prototype model. Furthermore, based on the result presented in this report, the battery to be charged up to 85% of its rated capacity by constant current mode only rather than continue with constant voltage, which could shorten the battery charging time by 16% and prolong the battery life by 10%.

  10. Further demonstration of the VRLA-type UltraBattery under medium-HEV duty and development of the flooded-type UltraBattery for micro-HEV applications

    NASA Astrophysics Data System (ADS)

    Furukawa, J.; Takada, T.; Monma, D.; Lam, L. T.

    The UltraBattery has been invented by the CSIRO Energy Technology in Australia and has been developed and produced by the Furukawa Battery Co., Ltd., Japan. This battery is a hybrid energy storage device which combines a super capacitor and a lead-acid battery in single unit cells, taking the best from both technologies without the need of extra, expensive electronic controls. The capacitor enhances the power and lifespan of the lead-acid battery as it acts as a buffer during high-rate discharging and charging, thus enabling it to provide and absorb charge rapidly during vehicle acceleration and braking. The laboratory results of the prototype valve-regulated UltraBatteries show that the capacity, power, available energy, cold cranking and self-discharge of these batteries have met, or exceeded, all the respective performance targets set for both minimum and maximum power-assist HEVs. The cycling performance of the UltraBatteries under micro-, mild- and full-HEV duties is at least four times longer than that of the state-of-the-art lead-acid batteries. Importantly, the cycling performance of UltraBatteries is proven to be comparable or even better than that of the Ni-MH cells. On the other hand, the field trial of UltraBatteries in the Honda Insight HEV shows that the vehicle has surpassed 170,000 km and the batteries are still in a healthy condition. Furthermore, the UltraBatteries demonstrate very good acceptance of the charge from regenerative braking even at high state-of-charge, e.g., 70% during driving. Therefore, no equalization charge is required for the UltraBatteries during field trial. The HEV powered by UltraBatteries gives slightly higher fuel consumption (cf., 4.16 with 4.05 L/100 km) and CO 2 emissions (cf., 98.8 with 96 g km -1) compared with that by Ni-MH cells. There are no differences in driving experience between the Honda Insight powered by UltraBatteries and by Ni-MH cells. Given such comparable performance, the UltraBattery pack costs considerably less - only 20-40% of that of the Ni-MH pack by one estimate. In parallel with the field trial, a similar 144-V valve-regulated UltraBattery pack was also evaluated under simulated medium-HEV duty in our laboratories. In this study, the laboratory performance of the 144-V valve-regulated UltraBattery pack under simulated medium-HEV duty and that of the recently developed flooded-type UltraBattery under micro-HEV duty will be discussed. The flooded-type UltraBattery is expected to be favorable to the micro-HEVs because of reduced cost compared with the equivalent valve-regulated counterpart.

  11. Development of battery management system for nickel-metal hydride batteries in electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Jung, Do Yang; Lee, Baek Haeng; Kim, Sun Wook

    Electric vehicle (EV) performance is very dependent on traction batteries. For developing electric vehicles with high performance and good reliability, the traction batteries have to be managed to obtain maximum performance under various operating conditions. Enhancement of battery performance can be accomplished by implementing a battery management system (BMS) that plays an important role in optimizing the control mechanism of charge and discharge of the batteries as well as monitoring the battery status. In this study, a BMS has been developed for maximizing the use of Ni-MH batteries in electric vehicles. This system performs several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state-of-charge (SOC), safety, and thermal management. The BMS is installed in and tested in a DEV5-5 electric vehicle developed by Daewoo Motor Co. and the Institute for Advanced Engineering in Korea. Eighteen modules of a Panasonic nickel-metal hydride (Ni-MH) battery, 12 V, 95 A h, are used in the DEV5-5. High accuracy within a range of 3% and good reliability are obtained. The BMS can also improve the performance and cycle-life of the Ni-MH battery peak, as well as the reliability and the safety of the electric vehicles.

  12. Innovation Meets Performance Demands of Advanced Lithium-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Advancements in high capacity and low density battery technologies have led to a growing need for battery materials with greater charge capacity and therefore stability. NREL's developments in ALD and molecular layer MLD allow for thin film coatings to battery composite electrodes, which can improve battery lifespan, high charge capacity, and stability. Silicon, one of the best high-energy anode materials for Li-ion batteries, can experience capacity fade from volumetric expansion. Using MLD to examine how surface modification could stabilize silicon anode material in Li-ion batteries, researchers discovered a new reaction precursor that leads to a flexible surface coating that accommodatesmore » volumetric expansion of silicon electrodes.« less

  13. Sunlight-charged electrochromic battery based on hybrid film of tungsten oxide and polyaniline

    NASA Astrophysics Data System (ADS)

    Chang, Xueting; Hu, Ruirui; Sun, Shibin; Liu, Jingrong; Lei, Yanhua; Liu, Tao; Dong, Lihua; Yin, Yansheng

    2018-05-01

    Electrochromic (EC) energy storage devices that could realize the multifunctional integration of energy storage and electrochromism have gained much recent attention. Herein, an EC battery based on the hybrid film of W18O49 and polyaniline (PANI) is developed and assembled, which integrates energy storage and EC functions in one device. The W18O49/PANI-EC battery delivers a discharging capacity of 52.96 mA h g-1, which is about two times higher than that of the W18O49-EC battery. Sunlight irradiation could greatly promote the oxidation reactions of both W18O49 and PANI during the charging process of the W18O49/PANI-EC battery, thus effectively accelerating the charging rate. This work provides a green, convenient, environmentally friendly, and cost-free charging strategy for the EC energy systems and could further advance the development of the multifunctional EC devices based on the organic/inorganic composites.

  14. A method of computer modelling the lithium-ion batteries aging process based on the experimental characteristics

    NASA Astrophysics Data System (ADS)

    Czerepicki, A.; Koniak, M.

    2017-06-01

    The paper presents a method of modelling the processes of aging lithium-ion batteries, its implementation as a computer application and results for battery state estimation. Authors use previously developed behavioural battery model, which was built using battery operating characteristics obtained from the experiment. This model was implemented in the form of a computer program using a database to store battery characteristics. Batteries aging process is a new extended functionality of the model. Algorithm of computer simulation uses a real measurements of battery capacity as a function of the battery charge and discharge cycles number. Simulation allows to take into account the incomplete cycles of charge or discharge battery, which are characteristic for transport powered by electricity. The developed model was used to simulate the battery state estimation for different load profiles, obtained by measuring the movement of the selected means of transport.

  15. A new activation process for a Zr-based alloy as a negative electrode for Ni/MH electric vehicle batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J.S.; Lee, H.; Lee, S.M.

    1999-12-01

    The effects of a combination hot-immersion and slow-charging method on the activation of a Zr-based alloy were investigated. A Zr{sub 0.7}Ti{sub 0.3}Cr{sub 0.3}Mn{sub 0.3}V{sub 0.4}Ni{sub 1.0} alloy electrode was treated with two steps: alloy electrodes were immersed at 80 C for 12 h in a KOH solution and then charged at a low current density for one cycle. It was found that the alloy electrode activation was greatly improved after this hot-immersion and slow-charging treatment, and furthermore the treated electrodes were fully activated at the first normal cycle. The effects of this treatment are discussed on the basis of resultsmore » obtained by scanning electron microscopy, Auger electron spectroscopy, and inductively coupled plasma spectroscopy. The hot-immersion and slow-charging method was successfully applied to the formation process of 80 Ah Ni/MH cells using this Zr-based alloy.« less

  16. New Secondary Batteries Utilizing Electronically Conductive Polypyrrole Cathode. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yeu, Taewhan

    1991-01-01

    To gain a better understanding of the dynamic behavior in electronically conducting polypyrroles and to provide guidance toward designs of new secondary batteries based on these polymers, two mathematical models are developed; one for the potentiostatically controlled switching behavior of polypyrrole film, and one for the galvanostatically controlled charge/discharge behavior of lithium/polypyrrole secondary battery cell. The first model is used to predict the profiles of electrolyte concentrations, charge states, and electrochemical potentials within the thin polypyrrole film during switching process as functions of applied potential and position. Thus, the detailed mechanisms of charge transport and electrochemical reaction can be understood. Sensitivity analysis is performed for independent parameters, describing the physical and electrochemical characteristic of polypyrrole film, to verify their influences on the model performance. The values of independent parameters are estimated by comparing model predictions with experimental data obtained from identical conditions. The second model is used to predict the profiles of electrolyte concentrations, charge state, and electrochemical potentials within the battery system during charge and discharge processes as functions of time and position. Energy and power densities are estimated from model predictions and compared with existing battery systems. The independent design criteria on the charge and discharge performance of the cell are provided by studying the effects of design parameters.

  17. Phase Boundary Propagation in Li-Alloying Battery Electrodes Revealed by Liquid-Cell Transmission Electron Microscopy

    DOE PAGES

    Leenheer, Andrew J.; Jungjohann, Katherine L.; Zavadil, Kevin R.; ...

    2016-05-31

    Battery cycle life is directly influenced by the microstructural changes occurring in the electrodes during charge and discharge cycles. In this study, we image in situ the nanoscale phase evolution in negative electrode materials for Li-ion batteries using a fully enclosed liquid cell in a transmission electron microscope (TEM) to reveal early degradation that is not evident in the charge–discharge curves. To compare the electrochemical phase transformation behavior between three model materials, thin films of amorphous Si, crystalline Al, and crystalline Au were lithiated and delithiated at controlled rates while immersed in a commercial liquid electrolyte. This method allowed formore » the direct observation of lithiation mechanisms in nanoscale negative electrodes, revealing that a simplistic model of a surface-to-interior lithiation front is insufficient. For the crystalline films, a lithiation front spread laterally from a few initial nucleation points, with continued grain nucleation along the growing interface. The intermediate lithiated phases were identified using electron diffraction, and high-resolution postmortem imaging revealed the details of the final microstructure. Lastly, our results show that electrochemically induced solid–solid phase transformations can lead to highly concentrated stresses at the laterally propagating phase boundary which should be considered for future designs of nanostructured electrodes for Li-ion batteries.« less

  18. Charge retention test experiences on Hubble Space Telescope nickel-hydrogen battery cells

    NASA Technical Reports Server (NTRS)

    Nawrocki, Dave E.; Driscoll, J. R.; Armantrout, J. D.; Baker, R. C.; Wajsgras, H.

    1993-01-01

    The Hubble Space Telescope (HST) nickel-hydrogen battery module was designed by Lockheed Missile & Space Co (LMSC) and manufactured by Eagle-Picher Ind. (EPI) for the Marshall Space Flight Center (MSFC) as an Orbital Replacement Unit (ORU) for the nickel-cadmium batteries originally selected for this low earth orbit mission. The design features of the HST nickel hydrogen battery are described and the results of an extended charge retention test are summarized.

  19. High-Capacity Sodium Peroxide Based NaO 2 Batteries with Low Charge Overpotential via a Nanostructured Catalytic Cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Lu; Zhang, Dongzhou; Lei, Yu

    The superoxide based Na-O-2 battery has circumvented the issue of large charge overpotential in Li-O-2 batteries; however, the one-electron process leads to limited capacity. Herein, a sodium peroxide based low-overpotential (similar to 0.5 V) Na-O-2 battery with a capacity as high as 7.5 mAh/cm(2) is developed with Pd nanoparticles as catalysts on the cathode.

  20. Alternator control for battery charging

    DOEpatents

    Brunstetter, Craig A.; Jaye, John R.; Tallarek, Glen E.; Adams, Joseph B.

    2015-07-14

    In accordance with an aspect of the present disclosure, an electrical system for an automotive vehicle has an electrical generating machine and a battery. A set point voltage, which sets an output voltage of the electrical generating machine, is set by an electronic control unit (ECU). The ECU selects one of a plurality of control modes for controlling the alternator based on an operating state of the vehicle as determined from vehicle operating parameters. The ECU selects a range for the set point voltage based on the selected control mode and then sets the set point voltage within the range based on feedback parameters for that control mode. In an aspect, the control modes include a trickle charge mode and battery charge current is the feedback parameter and the ECU controls the set point voltage within the range to maintain a predetermined battery charge current.

  1. A comparative study of kalman filtering based observer and sliding mode observer for state of charge estimation

    NASA Astrophysics Data System (ADS)

    Ben Sassi, Hicham; Errahimi, Fatima; Es-Sbai, Najia; Alaoui, Chakib

    2018-05-01

    Nowadays, electric mobility is starting to define society and is becoming more and more irreplaceable and essential to daily activities. Safe and durable battery is of a great significance for this type of mobility, hence the increasing interest of research activity oriented to battery studies, in order to assure safe operating mode and to control the battery in case of any abnormal functioning conditions that could damage the battery if not properly managed. Lithium-ion technology is considered the most suitable existing technology for electrical storage, because of their interesting features such as their relatively long cycle life, lighter weight, their high energy density, However, there is a lot of work that is still needed to be done in order to assure safe operating lithium-ion batteries, starting with their internal status monitoring, cell balancing within a battery pack, and thermal management. Tasks that are accomplished by the battery management system (BMS) which uses the state of charge (SOC) as an indicator of the internal charge level of the battery, in order to avoid unpredicted system interruption. Since the state of charge is an inner state of a the battery which cannot be directly measured, a powerful estimation technique is inevitable, in this paper we investigate the performances of tow estimation strategies; kalman filtering based observers and sliding mode observers, both strategies are compared in terms of accuracy, design requirement, and overall performances.

  2. Prismatic sealed nickel-cadmium batteries utilizing fiber structured electrodes. II - Applications as a maintenance free aircraft battery

    NASA Astrophysics Data System (ADS)

    Anderman, Menahem; Benczur-Urmossy, Gabor; Haschka, Friedrich

    Test data on prismatic sealed Ni-Cd batteries utilizing fiber structured electrodes (sealed FNC) is discussed. It is shown that, under a voltage limited charging scheme, the charge acceptance of the sealed FNC battery is far superior to that of the standard vented aircraft Ni-Cd batteries. This results in the sealed FNC battery maintaining its capacity over several thousand cycles without any need for electrical conditioning or water topping. APU start data demonstrate superior power capabilities over existing technologies. Performance at low temperature is presented. Abuse test results reveal a safe fail mechanism even under severe electrical abuse.

  3. Photovoltaic battery charging experience in the Philippines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro, S.T. Jr.

    1997-12-01

    With the turn of the century, people in remote areas still live without electricity. Conventional electrification will hardly reach the remaining 50% of the population of the Philippines in remote areas. With photovoltaic technology, the delivery of electricity to remote areas can be sustainable. Malalison island was chosen as a project site for electrification using photovoltaic technology. With the fragile balance of ecology and seasonal income in this island, the PV electrification proved to be a better option than conventional fossil based electrification. The Solar Battery Charging Station (SBCS) was used to suit the economic and geographical condition of themore » island. Results showed that the system can charge as many as three batteries in a day for an average fee of $0.54 per battery. Charging is measured by an ampere-hour counter to determine the exact amount of charge the battery received. The system was highly accepted by the local residents and the demand easily outgrew the system within four months. A technical, economic and social evaluation was done. A recovery period of seven years and five months is expected when competed with the conventional battery charging in the mainland. The technical, economic, institutional and social risks faced by the project were analyzed. Statistics showed that there is a potential of 920,000 households that can benefit from PV electrification in the Philippines. The data and experiences gained in this study are valuable in designing SBCS for remote unelectrified communities in the Philippines and other developing countries.« less

  4. Method and apparatus for measuring the state of charge in a battery based on volume of battery components

    DOEpatents

    Rouhani, S. Zia

    1996-10-22

    The state of charge of electrochemical batteries of different kinds is determined by measuring the incremental change in the total volume of the reactive masses in the battery. The invention is based on the principle that all electrochemical batteries, either primary or secondary (rechargeable), produce electricity through a chemical reaction with at least one electrode, and the chemical reactions produce certain changes in the composition and density of the electrode. The reactive masses of the electrodes, the electrolyte, and any separator or spacers are usually contained inside a battery casing of a certain volume. As the battery is used, or recharged, the specific volume of at least one of the electrode masses will change and, since the masses of the materials do not change considerably, the total volume occupied by at least one of the electrodes will change. These volume changes may be measured in many different ways and related to the state of charge in the battery. In one embodiment, the volume change can be measured by monitoring the small changes in one of the principal dimensions of the battery casing as it expands or shrinks to accommodate the combined volumes of its components.

  5. High-temperature characteristics of advanced Ni-MH batteries using nickel electrodes containing CaF 2

    NASA Astrophysics Data System (ADS)

    Zhang, Xuezeng; Gong, Zhixin; Zhao, Shumei; Geng, Mingming; Wang, Yan; Northwood, Derek O.

    The high-temperature charge acceptance of Ni-MH batteries has been improved through the addition of calcium fluoride to the pasted nickel hydroxide electrode made using spherical Co(OH) 2-coated nickel hydroxide powder. The charge acceptance of the Ni-MH battery at 60 °C is over 95% at 1 C charge/discharge rates. The charge acceptance at 60 °C remains at over 90% through 10 cycles. The use of Co(OH) 2-coated Ni(OH) 2 plus a CaF 2 addition to the positive electrode also significantly improved the high-temperature stability in terms of reduced gas evolution.

  6. Model Based Optimal Control, Estimation, and Validation of Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Perez, Hector Eduardo

    This dissertation focuses on developing and experimentally validating model based control techniques to enhance the operation of lithium ion batteries, safely. An overview of the contributions to address the challenges that arise are provided below. Chapter 1: This chapter provides an introduction to battery fundamentals, models, and control and estimation techniques. Additionally, it provides motivation for the contributions of this dissertation. Chapter 2: This chapter examines reference governor (RG) methods for satisfying state constraints in Li-ion batteries. Mathematically, these constraints are formulated from a first principles electrochemical model. Consequently, the constraints explicitly model specific degradation mechanisms, such as lithium plating, lithium depletion, and overheating. This contrasts with the present paradigm of limiting measured voltage, current, and/or temperature. The critical challenges, however, are that (i) the electrochemical states evolve according to a system of nonlinear partial differential equations, and (ii) the states are not physically measurable. Assuming available state and parameter estimates, this chapter develops RGs for electrochemical battery models. The results demonstrate how electrochemical model state information can be utilized to ensure safe operation, while simultaneously enhancing energy capacity, power, and charge speeds in Li-ion batteries. Chapter 3: Complex multi-partial differential equation (PDE) electrochemical battery models are characterized by parameters that are often difficult to measure or identify. This parametric uncertainty influences the state estimates of electrochemical model-based observers for applications such as state-of-charge (SOC) estimation. This chapter develops two sensitivity-based interval observers that map bounded parameter uncertainty to state estimation intervals, within the context of electrochemical PDE models and SOC estimation. Theoretically, this chapter extends the notion of interval observers to PDE models using a sensitivity-based approach. Practically, this chapter quantifies the sensitivity of battery state estimates to parameter variations, enabling robust battery management schemes. The effectiveness of the proposed sensitivity-based interval observers is verified via a numerical study for the range of uncertain parameters. Chapter 4: This chapter seeks to derive insight on battery charging control using electrochemistry models. Directly using full order complex multi-partial differential equation (PDE) electrochemical battery models is difficult and sometimes impossible to implement. This chapter develops an approach for obtaining optimal charge control schemes, while ensuring safety through constraint satisfaction. An optimal charge control problem is mathematically formulated via a coupled reduced order electrochemical-thermal model which conserves key electrochemical and thermal state information. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting nonlinear multi-state optimal control problem. Minimum time charge protocols are analyzed in detail subject to solid and electrolyte phase concentration constraints, as well as temperature constraints. The optimization scheme is examined using different input current bounds, and an insight on battery design for fast charging is provided. Experimental results are provided to compare the tradeoffs between an electrochemical-thermal model based optimal charge protocol and a traditional charge protocol. Chapter 5: Fast and safe charging protocols are crucial for enhancing the practicality of batteries, especially for mobile applications such as smartphones and electric vehicles. This chapter proposes an innovative approach to devising optimally health-conscious fast-safe charge protocols. A multi-objective optimal control problem is mathematically formulated via a coupled electro-thermal-aging battery model, where electrical and aging sub-models depend upon the core temperature captured by a two-state thermal sub-model. The Legendre-Gauss-Radau (LGR) pseudo-spectral method with adaptive multi-mesh-interval collocation is employed to solve the resulting highly nonlinear six-state optimal control problem. Charge time and health degradation are therefore optimally traded off, subject to both electrical and thermal constraints. Minimum-time, minimum-aging, and balanced charge scenarios are examined in detail. Sensitivities to the upper voltage bound, ambient temperature, and cooling convection resistance are investigated as well. Experimental results are provided to compare the tradeoffs between a balanced and traditional charge protocol. Chapter 6: This chapter provides concluding remarks on the findings of this dissertation and a discussion of future work.

  7. Room Temperature Sulfur Battery Cathode Design and Processing Techniques

    NASA Astrophysics Data System (ADS)

    Carter, Rachel

    As the population grows and energy demand increases, climate change threatens causing energy storage research to focus on fulfilling the requirements of two major energy sectors with next generation batteries: (1) portable energy and (2) stationary storage.1 Where portable energy can decrease transportation-related harmful emissions and enable advanced next-generation technologies,1 and stationary storage can facilitate widespread deployment of renewable energy sources, alleviating the demand on fossil fuels and lowering emissions. Portable energy can enable zero-emission transportation and can deploy portable power in advanced electronics across fields including medical and defense. Currently fully battery powered cars are limited in driving distance, which is dictated by the energy density and weight of the state-of-the-art Li-ion battery, and similarly advancement of portable electronics is significantly hindered by heavy batteries with short charge lives. In attempt to enable advanced portable energy, significant research is aiming to improve the conventional Li-ion batteries and explore beyond Li-ion battery chemistries with the primary goal of demonstrating higher energy density to enable lighter weight cells with longer battery life. Further, with the inherent intermittency challenges of our most prominent renewable energy sources, wind and solar, discovery of batteries capable of cost effectively and reliably balancing the generation of the renewable energy sources with the real-time energy demand is required for grid scale viability. Stationary storage will provide load leveling to renewable resources by storing excess energy at peak generation and delivering stored excess during periods of lower generation. This application demands highly abundant, low-cost active materials and long-term cycle stability, since infrastructure costs (combined with the renewable) must compete with burning natural gas. Development of a battery with these characteristics will require exploration of chemistries beyond the Li-ion battery for a system consisting of low cost active materials and promising device performance. (Abstract shortened by ProQuest.).

  8. Battery and capacitor technology for uniform charge time in implantable cardioverter-defibrillators

    NASA Astrophysics Data System (ADS)

    Skarstad, Paul M.

    Implantable cardioverter-defibrillators (ICDs) are implantable medical devices designed to treat ventricular fibrillation by administering a high-voltage shock directly to the heart. Minimizing the time a patient remains in fibrillation is an important goal of this therapy. Both batteries and high-voltage capacitors used in these devices can display time-dependency in performance, resulting in significant extension of charge time. Altering the electrode balance in lithium/silver vanadium oxide batteries used to power these devices has minimized time-dependent changes in battery resistance. Charge-interval dependent changes in capacitor cycling efficiency have been minimized for stacked-plate aluminum electrolytic capacitors by a combination of material and processing factors.

  9. Research on SOC Calibration of Large Capacity Lead Acid Battery

    NASA Astrophysics Data System (ADS)

    Ye, W. Q.; Guo, Y. X.

    2018-05-01

    Large capacity lead-acid battery is used in track electric locomotive, and State of Charge (SOC) is an important quantitative parameter of locomotive power output and operating mileage of power emergency recovery vehicle. But State of Charge estimation has been a difficult part in the battery management system. In order to reduce the SOC estimation error better, this paper uses the linear relationship of Open Circuit Voltage (OCV) and State of Charge to fit the SOC-OCV curve equation by MATLAB. The method proposed in this paper is small, easy to implement and can be used in the battery non-working state SOC estimation correction, improve the estimation accuracy of SOC.

  10. Non-Faradaic Li + Migration and Chemical Coordination across Solid-State Battery Interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gittleson, Forrest S.; El Gabaly, Farid

    Efficient and reversible charge transfer is essential to realizing high-performance solid-state batteries. Efforts to enhance charge transfer at critical electrode–electrolyte interfaces have proven successful, yet interfacial chemistry and its impact on cell function remains poorly understood. Using X-ray photoelectron spectroscopy combined with electrochemical techniques, we elucidate chemical coordination near the LiCoO 2–LIPON interface, providing experimental validation of space-charge separation. Space-charge layers, defined by local enrichment and depletion of charges, have previously been theorized and modeled, but the unique chemistry of solid-state battery interfaces is now revealed. Here we highlight the non-Faradaic migration of Li+ ions from the electrode to themore » electrolyte, which reduces reversible cathodic capacity by ~15%. Inserting a thin, ion-conducting LiNbO 3 interlayer between the electrode and electrolyte, however, can reduce space-charge separation, mitigate the loss of Li+ from LiCoO 2, and return cathodic capacity to its theoretical value. This work illustrates the importance of interfacial chemistry in understanding and improving solid-state batteries.« less

  11. First-principles Study on the Charge Transport Mechanism of Lithium Sulfide (Li2 S) in Lithium-Sulfur Batteries.

    PubMed

    Kim, B S Do-Hoon; Lee, M S Byungju; Park, Kyu-Young; Kang, Kisuk

    2016-04-20

    The lithium-sulfur chemistry is regarded as a promising candidate for next-generation battery systems because of its high specific energy (1675 mA h g(-1) ). Although issues such as low cycle stability and power capability of the system remain to be addressed, extensive research has been performed experimentally to resolve these problems. Attaining a fundamental understanding of the reaction mechanism and its reaction product would further spur the development of lithium-sulfur batteries. Here, we investigated the charge transport mechanism of lithium sulfide (Li2 S), a discharge product of conventional lithium-sulfur batteries using first-principles calculations. Our calculations indicate that the major charge transport is governed by the lithium-ion vacancies among various possible charge carriers. Furthermore, the large bandgap and low concentration of electron polarons indicate that the electronic conduction negligibly contributes to the charge transport mechanism in Li2 S. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Implementation of Four-Phase Interleaved Balance Charger for Series-Connected Batteries with Power Factor Correction

    NASA Astrophysics Data System (ADS)

    Juan, Y. L.; Lee, Y. T.; Lee, Y. L.; Chen, L. L.; Huang, M. L.

    2017-11-01

    A four-phase interleaved balance charger for series-connected batteries with power factor correction is proposed in this dissertation. In the two phases of two buckboost converters, the rectified ac power is firstly converted to a dc link capacitor. In the other two phases of two flyback converters, the rectified ac power is directly converted to charge the corresponding batteries. Additionally, the energy on the leakage inductance of flyback converter is bypassed to the dc link capacitor. Then, a dual-output balance charging circuit is connected to the dc link to deliver the dc link power to charge two batteries in the series-connected batteries module. The constant-current/constant-voltage charging strategy is adopted. Finally, a prototype of the proposed charger with rated power 500 W is constructed. From the experimental results, the performance and validity of the proposed topology are verified. Compared to the conventional topology with passive RCD snubber, the efficiency of the proposed topology is improved about 3% and the voltage spike on the active switch is also reduced. The efficiency of the proposed charger is at least 83.6 % within the CC/CV charging progress.

  13. Hybrid supercapacitor-battery materials for fast electrochemical charge storage

    PubMed Central

    Vlad, A.; Singh, N.; Rolland, J.; Melinte, S.; Ajayan, P. M.; Gohy, J.-F.

    2014-01-01

    High energy and high power electrochemical energy storage devices rely on different fundamental working principles - bulk vs. surface ion diffusion and electron conduction. Meeting both characteristics within a single or a pair of materials has been under intense investigations yet, severely hindered by intrinsic materials limitations. Here, we provide a solution to this issue and present an approach to design high energy and high power battery electrodes by hybridizing a nitroxide-polymer redox supercapacitor (PTMA) with a Li-ion battery material (LiFePO4). The PTMA constituent dominates the hybrid battery charge process and postpones the LiFePO4 voltage rise by virtue of its ultra-fast electrochemical response and higher working potential. We detail on a unique sequential charging mechanism in the hybrid electrode: PTMA undergoes oxidation to form high-potential redox species, which subsequently relax and charge the LiFePO4 by an internal charge transfer process. A rate capability equivalent to full battery recharge in less than 5 minutes is demonstrated. As a result of hybrid's components synergy, enhanced power and energy density as well as superior cycling stability are obtained, otherwise difficult to achieve from separate constituents. PMID:24603843

  14. Battery charging and discharging research based on the interactive technology of smart grid and electric vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Mingyang

    2018-06-01

    To further study the bidirectional flow problem of V2G (Vehicle to Grid) charge and discharge motor, the mathematical model of AC/DC converter and bi-directional DC/DC converter was established. Then, lithium battery was chosen as the battery of electric vehicle and its mathematical model was established. In order to improve the service life of lithium battery, bidirectional DC/DC converter adopted constant current and constant voltage control strategy. In the initial stage of charging, constant current charging was adopted with current single closed loop control. After reaching a certain value, voltage was switched to constant voltage charging controlled by voltage and current. Subsequently, the V2G system simulation model was built in MATLAB/Simulink. The simulation results verified the correctness of the control strategy and showed that when charging, constant current and constant voltage charging was achieved, the grid side voltage and current were in the same phase, and the power factor was about 1. When discharging, the constant current discharge was applied, and the grid voltage and current phase difference was r. To sum up, the simulation results are correct and helpful.

  15. Multi-timescale power and energy assessment of lithium-ion battery and supercapacitor hybrid system using extended Kalman filter

    NASA Astrophysics Data System (ADS)

    Wang, Yujie; Zhang, Xu; Liu, Chang; Pan, Rui; Chen, Zonghai

    2018-06-01

    The power capability and maximum charge and discharge energy are key indicators for energy management systems, which can help the energy storage devices work in a suitable area and prevent them from over-charging and over-discharging. In this work, a model based power and energy assessment approach is proposed for the lithium-ion battery and supercapacitor hybrid system. The model framework of the lithium-ion battery and supercapacitor hybrid system is developed based on the equivalent circuit model, and the model parameters are identified by regression method. Explicit analyses of the power capability and maximum charge and discharge energy prediction with multiple constraints are elaborated. Subsequently, the extended Kalman filter is employed for on-board power capability and maximum charge and discharge energy prediction to overcome estimation error caused by system disturbance and sensor noise. The charge and discharge power capability, and the maximum charge and discharge energy are quantitatively assessed under both the dynamic stress test and the urban dynamometer driving schedule. The maximum charge and discharge energy prediction of the lithium-ion battery and supercapacitor hybrid system with different time scales are explored and discussed.

  16. Cell overcharge testing inside sodium metal halide battery

    NASA Astrophysics Data System (ADS)

    Frutschy, Kris; Chatwin, Troy; Bull, Roger

    2015-09-01

    Testing was conducted to measure electrical performance and safety of the General Electric Durathon™ E620 battery module (600 V class 20 kWh) during cell overcharge. Data gathered from this test was consistent with SAE Electric Vehicle Battery Abuse Testing specification J2464 [1]. After cell overcharge failure and 24 A current flow for additional 60 minutes, battery was then discharged at 7.5 KW average power to 12% state of charge (SOC) and recharged back to 100% SOC. This overcharging test was performed on two cells. No hydrogen chloride (HCl) gas was detected during front cell (B1) test, and small amount (6.2 ppm peak) was measured outside the battery after center cell (F13) overcharge. An additional overcharge test was performed per UL Standard 1973 - Batteries for Use in Light Electric Rail (LER) Applications and Stationary Applications[2]. With the battery at 11% SOC and 280 °C float temperature, an individual cell near the front (D1) was deliberately imbalanced by charging it to 62% SOC. The battery was then recharged to 100% SOC. In all three tests, the battery cell pack was stable and individual cell failure did not propagate to other cells. Battery discharge performance, charge performance, and electrical isolation were normal after all three tests.

  17. Analysis of the internal temperature of the cells in a battery pack during SOC balancing

    NASA Astrophysics Data System (ADS)

    Mizanur, R.; Rashid, M. M.; Rahman, A.; Zahirul Alam, A. H. M.; Ihsan, S.; Mollik, M. S.

    2017-03-01

    Lithium-ion batteries are more suitable for the application of electric vehicle due to high energy and power density compared to other rechargeable batteries. However, the battery pack temperature has a great impact on the overall performance, cycle life, normal charging-discharging behaviour and even safety. During rapid charge transferring process, the internal temperature may exceed its allowable limit (460C). In this paper, an analysis of internal temperature during charge balancing and discharging conditions is presented. Specific interest is paid to the effects of temperature on the different rate of ambient temperature and discharging current. Matlab/Simulink Li-ion battery model and quasi-resonant converter base balancing system are used to study the temperature effect. Rising internal temperature depends on the rate of balancing current and ambient temperature found in the simulation results.

  18. Flexible Hybrid Battery/Pseudocapacitor

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Paley, Steven

    2015-01-01

    Batteries keep devices working by utilizing high energy density, however, they can run down and take tens of minutes to hours to recharge. For rapid power delivery and recharging, high-power density devices, i.e., supercapacitors, are used. The electrochemical processes which occur in batteries and supercapacitors give rise to different charge-storage properties. In lithium ion (Li+) batteries, the insertion of Li+, which enables redox reactions in bulk electrode materials, is diffusion controlled and can be slow. Supercapacitor devices, also known as electrical double-layer capacitors (EDLCs) store charge by adsorption of electrolyte ions onto the surface of electrode materials. No redox reactions are necessary, so the response to changes in potential without diffusion limitations is rapid and leads to high power. However, the charge in EDLCs is confined to the surface, so the energy density is lower than that of batteries.

  19. Lithium-Ion Battery Failure: Effects of State of Charge and Packing Configuration

    DTIC Science & Technology

    2016-08-22

    and failure characteristics. Internal temperatures were obtained by designing and fabricating 18650 surrogate cells with embedded thermocouples which...Council Postdoctoral Associate Lithium-ion cell Lithium-ion battery fire Battery state of charge Packing configuration iii Contents 1.0 Background...and fabricating 18650 surrogate cells with embedded thermocouples which contained no active materials and were reused for multiple failure tests

  20. High-performance flexible energy storage and harvesting system for wearable electronics

    NASA Astrophysics Data System (ADS)

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-05-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices.

  1. High-performance flexible energy storage and harvesting system for wearable electronics.

    PubMed

    Ostfeld, Aminy E; Gaikwad, Abhinav M; Khan, Yasser; Arias, Ana C

    2016-05-17

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm(2) and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices.

  2. High-performance flexible energy storage and harvesting system for wearable electronics

    PubMed Central

    Ostfeld, Aminy E.; Gaikwad, Abhinav M.; Khan, Yasser; Arias, Ana C.

    2016-01-01

    This paper reports on the design and operation of a flexible power source integrating a lithium ion battery and amorphous silicon solar module, optimized to supply power to a wearable health monitoring device. The battery consists of printed anode and cathode layers based on graphite and lithium cobalt oxide, respectively, on thin flexible current collectors. It displays energy density of 6.98 mWh/cm2 and demonstrates capacity retention of 90% at 3C discharge rate and ~99% under 100 charge/discharge cycles and 600 cycles of mechanical flexing. A solar module with appropriate voltage and dimensions is used to charge the battery under both full sun and indoor illumination conditions, and the addition of the solar module is shown to extend the battery lifetime between charging cycles while powering a load. Furthermore, we show that by selecting the appropriate load duty cycle, the average load current can be matched to the solar module current and the battery can be maintained at a constant state of charge. Finally, the battery is used to power a pulse oximeter, demonstrating its effectiveness as a power source for wearable medical devices. PMID:27184194

  3. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  4. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  5. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  6. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  7. 46 CFR 111.15-10 - Ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... REQUIREMENTS Storage Batteries and Battery Chargers: Construction and Installation § 111.15-10 Ventilation. (a) General. Each room, locker, and box for storage batteries must be arranged or ventilated to prevent... with the battery charger so that the battery cannot be charged without ventilation. (c) Large battery...

  8. A comparative study of commercial lithium ion battery cycle life in electrical vehicle: Aging mechanism identification

    NASA Astrophysics Data System (ADS)

    Han, Xuebing; Ouyang, Minggao; Lu, Languang; Li, Jianqiu; Zheng, Yuejiu; Li, Zhe

    2014-04-01

    When lithium-ion batteries age with cycling, the battery capacity decreases and the resistance increases. The aging mechanism of different types of lithium-ion batteries differs. The loss of lithium inventory, loss of active material, and the increase in resistance may result in battery aging. Generally, analysis of the battery aging mechanism requires dismantling of batteries and using methods such as X-ray diffraction and scanning electron microscopy. These methods may permanently damage the battery. Therefore, the methods are inappropriate for the battery management system (BMS) in an electric vehicle. The constant current charging curves while charging the battery could be used to get the incremental capacity and differential voltage curves for identifying the aging mechanism; the battery state-of-health can then be estimated. This method can be potentially used in the BMS for online diagnostic and prognostic services. The genetic algorithm could be used to quantitatively analyze the battery aging offline. And the membership function could be used for onboard aging mechanism identification.

  9. The 1982 Goddard Space Flight Center Battery Workshop

    NASA Technical Reports Server (NTRS)

    Halpert, G. (Editor)

    1983-01-01

    Various topics concerned with advanced battery technology are addressed including lithium cell and battery safety developments, mathematical modelling, charge control of aerospace power systems, and the application of nickel hydrogen cells/batteries vis-a-vis nickel cadmium cells/batteries.

  10. Computational models of an inductive power transfer system for electric vehicle battery charge

    NASA Astrophysics Data System (ADS)

    Anele, A. O.; Hamam, Y.; Chassagne, L.; Linares, J.; Alayli, Y.; Djouani, K.

    2015-09-01

    One of the issues to be solved for electric vehicles (EVs) to become a success is the technical solution of its charging system. In this paper, computational models of an inductive power transfer (IPT) system for EV battery charge are presented. Based on the fundamental principles behind IPT systems, 3 kW single phase and 22 kW three phase IPT systems for Renault ZOE are designed in MATLAB/Simulink. The results obtained based on the technical specifications of the lithium-ion battery and charger type of Renault ZOE show that the models are able to provide the total voltage required by the battery. Also, considering the charging time for each IPT model, they are capable of delivering the electricity needed to power the ZOE. In conclusion, this study shows that the designed computational IPT models may be employed as a support structure needed to effectively power any viable EV.

  11. Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, R.L.; Turpin, J.F.; Corey, G.P.

    1996-12-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PVmore » market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.« less

  12. Monitoring state-of-charge of Ni-MH and Ni-Cd batteries using impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Hammouche, Abderrezak; Karden, Eckhard; De Doncker, Rik W.

    This paper reports on laboratory studies into the ac impedance spectra of nickel-metal hydride and nickel-cadmium batteries, aiming at finding out possible correlation between electrical parameters, extracted directly from the high frequency region, and the battery state-of-charge (SoC). Impedance diagrams were recorded immediately after interrupting the dc charge, or discharge, current. The study revealed that the series resonance frequency, at which the dynamic cell behavior switches from an inductive character ( Z″>0) to a capacitive one ( Z″<0), varied monotonously as a function of state-of-charge. This behavior was reproducible after intermittent charge and discharge. Half-cell measurements were also conducted to associate the cell impedance with either processes occurring at the positive or negative plates.

  13. Monitoring the battery status for photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Kim, Myungsoo; Hwang, Euijin

    Photovoltaic power systems in Korea have been installed in remote islands where it is difficult to connect the utilities. Lead/acid batteries are used as an energy storage device for the stand-alone photovoltaic system. Hence, monitoring the battery status of photovoltaic systems is quite important to extend the total system service life. To monitor the state-of-charge of batteries, we adopted a current interrupt technique to measure the internal resistance of the battery. The internal resistance increases at the end of charge/discharge steps and also with cycles. The specific gravity of the electrolyte was measured in relation to the state-of-charge. A home-made optical hydrometer was utilized for automatic monitoring of the specific gravity. It is shown that the specific gravity and stratification increase with cycle number. One of the photovoltaic systems in a remote island, Ho-do, which has 90 kW peak power was checked for actual operational conditions such as solar generation, load, and battery status.

  14. Charge-Control Unit for Testing Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Mazo, Michelle A.; Button, Robert M.

    2008-01-01

    A charge-control unit was developed as part of a program to validate Li-ion cells packaged together in batteries for aerospace use. The lithium-ion cell charge-control unit will be useful to anyone who performs testing of battery cells for aerospace and non-aerospace uses and to anyone who manufacturers battery test equipment. This technology reduces the quantity of costly power supplies and independent channels that are needed for test programs in which multiple cells are tested. Battery test equipment manufacturers can integrate the technology into their battery test equipment as a method to manage charging of multiple cells in series. The unit manages a complex scheme that is required for charging Li-ion cells electrically connected in series. The unit makes it possible to evaluate cells together as a pack using a single primary test channel, while also making it possible to charge each cell individually. Hence, inherent cell-to-cell variations in a series string of cells can be addressed, and yet the cost of testing is reduced substantially below the cost of testing each cell as a separate entity. The unit consists of electronic circuits and thermal-management devices housed in a common package. It also includes isolated annunciators to signal when the cells are being actively bypassed. These annunciators can be used by external charge managers or can be connected in series to signal that all cells have reached maximum charge. The charge-control circuitry for each cell amounts to regulator circuitry and is powered by that cell, eliminating the need for an external power source or controller. A 110-VAC source of electricity is required to power the thermal-management portion of the unit. A small direct-current source can be used to supply power for an annunciator signal, if desired.

  15. The testing of batteries linked to supercapacitors with electrochemical impedance spectroscopy: A comparison between Li-ion and valve regulated lead acid batteries

    NASA Astrophysics Data System (ADS)

    Ferg, Ernst; Rossouw, Claire; Loyson, Peter

    2013-03-01

    For electric vehicles, a supercapacitor can be coupled to the electrical system in order to increase and optimize the energy and power densities of the drive system during acceleration and regenerative breaking. This study looked at the charge acceptance and maximum discharge ability of a valve regulated lead acid (VRLA) and a Li-ion battery connected in parallel to supercapacitors. The test procedure evaluated the advantage of using a supercapacitor at a 2 F:1 Ah ratio with the battery types at various states of charge (SoC). The results showed that about 7% of extra charge was achieved over a 5-s test time for a Li-ion hybrid system at 20% SoC, whereas at the 80% SoC the additional capacity was approximately 16%. While for the VRLA battery hybrid system, an additional charge of up to 20% was achieved when the battery was at 80% SoC, with little or no benefit at the 20% SoC. The advantage of the supercapacitor in parallel with a VRLA battery was noticeable on its discharge ability, where significant extra capacity was achieved for short periods of time for a battery at the 60% and 40% SoC when compared to the Li-ion hybrid system. The study also made use of Electrochemical Impedance Spectroscopy (EIS) with a suitable equivalent circuit model to explain, in particular, the internal resistance and capacitance differences observed between the different battery chemistries with and without a supercapacitor.

  16. Reconditioning of Batteries on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hajela, Gyan; Cohen, Fred; Dalton, Penni

    2004-01-01

    Primary source of electric power for the International Space Station (ISS) is the photovoltaic module (PVM). At assembly complete stage, the ISS will be served by 4 PVMs. Each PVM contains two independent power channels such that one failure will result in loss of only one power channel. During early stages of assembly, the ISS is served by only one PVM designated as P6. Solar arrays are used to convert solar flux into electrical power. Nickel hydrogen batteries are used to store electrical power for use during periods when the solar input is not adequate to support channel loads. Batteries are operated per established procedures that ensure that they are maintained within specified temperature limits, charge current is controlled to conform to a specified charge profile, and battery voltages are maintained within specified limits. Both power channels on the PVM P6 have been operating flawlessly since December 2000 with 100 percent power availability. All components, including batteries, are monitored regularly to ensure that they are operating within specified limits and to trend their wear out and age effects. The paper briefly describes the battery trend data. Batteries have started to show some effects of aging and a battery reconditioning procedure is being evaluated at this time. Reconditioning is expected to reduce cell voltage divergence and provide data that can be used to update the state of charge (SOC) computation in the software to account for battery age. During reconditioning, each battery, one at a time, will be discharged per a specified procedure and then returned to a full state of charge. The paper describes the reconditioning procedure and the expected benefits. The reconditioning procedures have been thoroughly coordinated by all affected technical teams and approved by all required boards. The reconditioning is tentatively scheduled for September 2004.

  17. Mariner Mars 1971 battery design, test, and flight performance

    NASA Technical Reports Server (NTRS)

    Bogner, R. S.

    1973-01-01

    The design, integration, fabrication, test results, and flight performance of the battery system for the Mariner Mars spacecraft launched in May 1971 are presented. The battery consists of 26 20-Ah hermetically sealed nickel-cadmium cells housed in a machined magnesium chassis. The battery package weighs 29.5 kg and is unique in that the chassis also serves as part of the spacecraft structure. Active thermal control is accomplished by louvers mounted to the battery baseplate. Battery charge is accomplished by C/10 and C/30 constant current chargers. The switch from the high-rate to low-rate charge is automatic, based on terminal voltage. Additional control is possible by ground command or onboard computer. The performance data from the flight battery is compared to the data from various battery tests in the laboratory. Flight battery data was predictable based on ground test data.

  18. The effect of cell design and test criteria on the series/parallel performance of nickel cadmium cells and batteries

    NASA Technical Reports Server (NTRS)

    Halpert, G.; Webb, D. A.

    1983-01-01

    Three batteries were operated in parallel from a common bus during charge and discharge. SMM utilized NASA Standard 20AH cells and batteries, and LANDSAT-D NASA 50AH cells and batteries of a similar design. Each battery consisted of 22 series connected cells providing the nominal 28V bus. The three batteries were charged in parallel using the voltage limit/current taper mode wherein the voltage limit was temperature compensated. Discharge occurred on the demand of the spacecraft instruments and electronics. Both flights were planned for three to five year missions. The series/parallel configuration of cells and batteries for the 3-5 yr mission required a well controlled product with built-in reliability and uniformity. Examples of how component, cell and battery selection methods affect the uniformity of the series/parallel operation of the batteries both in testing and in flight are given.

  19. Design of Solar Street Lamp Control System Based on MPPT

    NASA Astrophysics Data System (ADS)

    Cui, Fengying

    This paper proposes a new solar street lamp control system which is composed of photovoltaic cell, controller, battery and load. In this system controller as the key part applies the microchip to achieve many functions. According to the nonlinear output characteristics of solar cell and the influence of environment, it uses the perturbation and observation (P&O) method to realize the maximum power point tracking (MPPT) and promotes the efficiency. In order to prolong the battery life the pulse width modulation (PWM) charge mode is selected to control the battery capacity and provent the battery from the state of over-charge and over-discharge. Meanwhile the function of temperature compensation, charge and discharge protection are set to improve the running safety and stability.

  20. Self-balancing feature of Lithium-Sulfur batteries

    NASA Astrophysics Data System (ADS)

    Knap, Vaclav; Stroe, Daniel-Ioan; Christensen, Andreas E.; Propp, Karsten; Fotouhi, Abbas; Auger, Daniel J.; Schaltz, Erik; Teodorescu, Remus

    2017-12-01

    The Li-S batteries are a prospective battery technology, which despite to its currently remaining drawbacks offers useable performance and interesting features. The polysulfide shuttle mechanism, a characteristic phenomenon for the Li-S batteries, causes a significant self-discharge at higher state-of-charge (SOC) levels, which leads to the energy dissipation of cells with higher charge. In an operation of series-connected Li-S cells, the shuttle mechanism results into a self-balancing effect which is studied here. A model for prediction of the self-balancing effect is proposed in this work and it is validated by experiments. Our results confirm the self-balancing feature of Li-S cells and illustrate their dependence on various conditions such as temperature, charging limits and idling time at high SOC.

  1. Operando characterization of cathodic reactions in a liquid-state lithium-oxygen micro-battery by scanning transmission electron microscopy.

    PubMed

    Liu, Pan; Han, Jiuhui; Guo, Xianwei; Ito, Yoshikazu; Yang, Chuchu; Ning, Shoucong; Fujita, Takeshi; Hirata, Akihiko; Chen, Mingwei

    2018-02-16

    Rechargeable non-aqueous lithium-oxygen batteries with a large theoretical capacity are emerging as a high-energy electrochemical device for sustainable energy strategy. Despite many efforts made to understand the fundamental Li-O 2 electrochemistry, the kinetic process of cathodic reactions, associated with the formation and decomposition of a solid Li 2 O 2 phase during charging and discharging, remains debate. Here we report direct visualization of the charge/discharge reactions on a gold cathode in a non-aqueous lithium-oxygen micro-battery using liquid-cell aberration-corrected scanning transmission electron microscopy (STEM) combining with synchronized electrochemical measurements. The real-time and real-space characterization by time-resolved STEM reveals the electrochemical correspondence of discharge/charge overpotentials to the nucleation, growth and decomposition of Li 2 O 2 at a constant current density. The nano-scale operando observations would enrich our knowledge on the underlying reaction mechanisms of lithium-oxygen batteries during round-trip discharging and charging and shed lights on the strategies in improving the performances of lithium-oxygen batteries by tailoring the cathodic reactions.

  2. Enhancing Capacity Performance by Utilizing the Redox Chemistry of the Electrolyte in a Dual-Electrolyte Sodium-Ion Battery.

    PubMed

    Senthilkumar, Sirugaloor Thangavel; Bae, Hyuntae; Han, Jinhyup; Kim, Youngsik

    2018-05-04

    A strategy is described to increase charge storage in a dual electrolyte Na-ion battery (DESIB) by combining the redox chemistry of the electrolyte with a Na + ion de-insertion/insertion cathode. Conventional electrolytes do not contribute to charge storage in battery systems, but redox-active electrolytes augment this property via charge transfer reactions at the electrode-electrolyte interface. The capacity of the cathode combined with that provided by the electrolyte redox reaction thus increases overall charge storage. An aqueous sodium hexacyanoferrate (Na 4 Fe(CN) 6 ) solution is employed as the redox-active electrolyte (Na-FC) and sodium nickel Prussian blue (Na x -NiBP) as the Na + ion insertion/de-insertion cathode. The capacity of DESIB with Na-FC electrolyte is twice that of a battery using a conventional (Na 2 SO 4 ) electrolyte. The use of redox-active electrolytes in batteries of any kind is an efficient and scalable approach to develop advanced high-energy-density storage systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Special Test Methods for Batteries

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1984-01-01

    Various methods are described for measuring heat generation in primary and secondary batteries as well as the specific heat of batteries and cell thermal conductance. Problems associated with determining heat generation in large batteries are examined. Special attention is given to monitoring temperature gradients in nickel cadmium cells, the use of auxiliary electrodes for conducting tests on battery charge control, evaluating the linear sweep of current from charge to discharge, and determining zero current voltage. The fast transient behavior of batteries in the microsecond range, and the electrical conductance of nickel sinters in the thickness direction are also considered. Mechanical problems experienced in the vibration of Ni-Cd batteries and tests to simulate cyclic fatigue of the steel table connecting the plates to the comb are considered. Methods of defining the distribution of forces when cells are compressed during battery packaging are also explored.

  4. Special test methods for batteries

    NASA Astrophysics Data System (ADS)

    Gross, S.

    1984-09-01

    Various methods are described for measuring heat generation in primary and secondary batteries as well as the specific heat of batteries and cell thermal conductance. Problems associated with determining heat generation in large batteries are examined. Special attention is given to monitoring temperature gradients in nickel cadmium cells, the use of auxiliary electrodes for conducting tests on battery charge control, evaluating the linear sweep of current from charge to discharge, and determining zero current voltage. The fast transient behavior of batteries in the microsecond range, and the electrical conductance of nickel sinters in the thickness direction are also considered. Mechanical problems experienced in the vibration of Ni-Cd batteries and tests to simulate cyclic fatigue of the steel table connecting the plates to the comb are considered. Methods of defining the distribution of forces when cells are compressed during battery packaging are also explored.

  5. A structural study of solid electrolyte interface on negative electrode of lithium-Ion battery by electron microscopy.

    PubMed

    Matsushita, Tadashi; Watanabe, Jiro; Nakao, Tatsuya; Yamashita, Seiichi

    2014-11-01

    For the last decades, the performance of the lithium-ion battery (LIB) has been significantly improved and its applications have been expanding rapidly. However, its performance has yet to be enhanced.In the lithium-ion battery development, it is important to elucidate the electrode structure change in detail during the charge and discharge cycling. In particular, solid electrolyte interface (SEI) formed by decomposition of the electrolytes on the graphite negative electrode surface should play an important role for battery properties. Therefore, it is essential to control the structure and composition of SEI to improve the battery performance. Here, we conducted a scanning electron microscope (SEM) and transmission electron microscope (TEM) study to elucidate the structures of the SEI during the charge and discharge process using LiNi1/3Co1/3Mn1/3O2 [1] cathode and graphite anode. [2] Since SEI is a lithium-containing compound with high activity, it was observed without being exposed to the atmosphere. The electrodes including SEI were sampled after dismantling batteries with cutoff voltages of 3V and 4.2V for the charge process and 3V for the discharge process. Fig.1 shows SEM images of the graphite electrode surface during the charge and discharge process. The change of the SEI structure during the process was clearly observed. Further, TEM images showed that the SEI grew thicker during the charge process and becomes thinner when discharged. These results with regard to the reversible SEI structure could give a new insight for the battery development.jmicro;63/suppl_1/i21/DFU056F1F1DFU056F1Fig. 1.SEM images of the graphite electrode surface:(a) before charge process;(b) with charge-cutoff voltage of 3.0V; (c) with charge-cutoff voltage of 4.2V; (d) with discharge-cutoff voltage of 3.0V. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Development and testing of a high cycle life 30 A-h sealed AgO-Zn battery

    NASA Technical Reports Server (NTRS)

    Bogner, R. S.

    1972-01-01

    A two-phase program was initiated to investigate design parameters and technology to develop an improved AgO-Zn battery. The basic performance goal was 100 charge/discharge cycles (22 h/2 h) at 50 percent depth of discharge following a six-month period of charged stand at room temperature. Phase 1, cell evaluation, involved testing 70 cells in five-cell groups. The major design variables were active material ratios, electrolyte concentrations, separator systems, and negative plate shape. Phase 1 testing showed that cycle life could be improved 10 percent to 20 percent by using greater ratios of zinc to silver oxide and higher electrolyte concentrations. Wedge-shaped negatives increased cycle life by nearly 100 percent. Phase 2 battery evaluation, which was initiated before the Phase 1 results were known completely, involved evaluation of six designs as 19-cell batteries. Only one battery exceeded 100 cycles following nine months charged stand.

  7. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries

    PubMed Central

    Jung, Kyu-Nam; Hwang, Soo Min; Park, Min-Sik; Kim, Ki Jae; Kim, Jae-Geun; Dou, Shi Xue; Kim, Jung Ho; Lee, Jong-Won

    2015-01-01

    Rechargeable metal-air batteries are considered a promising energy storage solution owing to their high theoretical energy density. The major obstacles to realising this technology include the slow kinetics of oxygen reduction and evolution on the cathode (air electrode) upon battery discharging and charging, respectively. Here, we report non-precious metal oxide catalysts based on spinel-type manganese-cobalt oxide nanofibres fabricated by an electrospinning technique. The spinel oxide nanofibres exhibit high catalytic activity towards both oxygen reduction and evolution in an alkaline electrolyte. When incorporated as cathode catalysts in Zn-air batteries, the fibrous spinel oxides considerably reduce the discharge-charge voltage gaps (improve the round-trip efficiency) in comparison to the catalyst-free cathode. Moreover, the nanofibre catalysts remain stable over the course of repeated discharge-charge cycling; however, carbon corrosion in the catalyst/carbon composite cathode degrades the cycling performance of the batteries. PMID:25563733

  8. Efficient Storing Energy Harvested by Triboelectric Nanogenerators Using a Safe and Durable All-Solid-State Sodium-Ion Battery.

    PubMed

    Hou, Huidan; Xu, Qingkai; Pang, Yaokun; Li, Lei; Wang, Jiulin; Zhang, Chi; Sun, Chunwen

    2017-08-01

    Storing energy harvested by triboelectric nanogenerators (TENGs) from ambient mechanical motion is still a great challenge for achieving low-cost and environmental benign power sources. Here, an all-solid-state Na-ion battery with safe and durable performance used for efficient storing pulsed energy harvested by the TENG is demonstrated. The solid-state sodium-ion batteries are charged by galvanostatic mode and pulse mode with the TENG, respectively. The all-solid-state sodium-ion battery displays excellent cyclic performance up to 1000 cycles with a capacity retention of about 85% even at a high charge and discharge current density of 48 mA g -1 . When charged by the TENG, an energy conversion efficiency of 62.3% is demonstrated. The integration of TENGs with the safe and durable all-solid-state sodium-ion batteries is potential for providing more stable power output for self-powered systems.

  9. Engineering and Abuse Testing of Panasonic Lithium-Ion Battery and Cells

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Bragg, Bobby J.

    2000-01-01

    This viewgraph presentation reviews the performance testing of Lithium Ion batteries and cells under different conditions of charge and discharge. The tests show that the 0.5 C rate of charge and discharge might be the ideal condition for long term cycling. It reviews the issues of overcharge and overdischarge of the cells. The cells and the battery have adequate protection under both conditions to prevent any catastrophic occurrences. Temperatures above 150 C are required to vent the cells or cause a thermal runaway, Since this situation is non-credible in the cabin of the Space Shuffle or ISS this should not pose a problem. The presentation includes graphs and charts showing the charge and discharge capacities of the battery and also the current and voltage profiles. A view of a circuit board which contains the controlling mechanism for the battery is also shown.

  10. Battery Safety Basics

    ERIC Educational Resources Information Center

    Roy, Ken

    2010-01-01

    Batteries commonly used in flashlights and other household devices produce hydrogen gas as a product of zinc electrode corrosion. The amount of gas produced is affected by the batteries' design and charge rate. Dangerous levels of hydrogen gas can be released if battery types are mixed, batteries are damaged, batteries are of different ages, or…

  11. Advanced batteries for load-leveling - The utility perspective on system integration

    NASA Astrophysics Data System (ADS)

    Delmonaco, J. L.; Lewis, P. A.; Roman, H. T.; Zemkoski, J.

    1982-09-01

    Rechargeable battery systems for applications as utility load-leveling units, particularly in urban areas, are discussed. Particular attention is given to advanced lead-acid, zinc-halogen, sodium-sulfer, and lithium-iron sulfide battery systems, noting that battery charging can proceed at light load hours and requires no fuel on-site. Each battery site will have a master site controller and related subsystems necessary for ensuring grid-quality power output from the batteries and charging when feasible. The actual interconnection with the grid is envisioned as similar to transmission, subtransmission, or distribution systems similar to cogeneration or wind-derived energy interconnections. Analyses are presented of factors influencing the planning economics, impacts on existing grids through solid-state converters, and operational and maintenance considerations. Finally, research directions towards large scale battery implementation are outlined.

  12. Fast charge implications: Pack and cell analysis and comparison

    NASA Astrophysics Data System (ADS)

    Tanim, Tanvir R.; Shirk, Matthew G.; Bewley, Randy L.; Dufek, Eric J.; Liaw, Bor Yann

    2018-03-01

    This study investigates the effect of 50-kW (about 2C) direct current fast charging on a full-size battery electric vehicle's battery pack in comparison to a pack exclusively charged at 3.3 kW, which is the common alternating current Level 2 charging power level. Comparable scaled charging protocols are also independently applied to individual cells at three different temperatures, 20 °C, 30 °C, and 40 °C, to perform a comparative analysis with the packs. Dominant cell-level aging modes were identified through incremental capacity analysis and compared with full packs to gain a clear understanding of additional key factors that affect pack aging. While the cell-level study showed a minor impact on performance due to direct current fast charging, the packs showed a significantly higher rate of capacity fade under similar charging protocols. This indicates that pack-level aging cannot be directly extrapolated from cell evaluation. Delayed fast charging, completing shortly before discharge, was found to have less of an impact on battery degradation than conventional alternating current Level 2 charging.

  13. New charging strategy for lithium-ion batteries based on the integration of Taguchi method and state of charge estimation

    NASA Astrophysics Data System (ADS)

    Vo, Thanh Tu; Chen, Xiaopeng; Shen, Weixiang; Kapoor, Ajay

    2015-01-01

    In this paper, a new charging strategy of lithium-polymer batteries (LiPBs) has been proposed based on the integration of Taguchi method (TM) and state of charge estimation. The TM is applied to search an optimal charging current pattern. An adaptive switching gain sliding mode observer (ASGSMO) is adopted to estimate the SOC which controls and terminates the charging process. The experimental results demonstrate that the proposed charging strategy can successfully charge the same types of LiPBs with different capacities and cycle life. The proposed charging strategy also provides much shorter charging time, narrower temperature variation and slightly higher energy efficiency than the equivalent constant current constant voltage charging method.

  14. Microprocessor control of photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Millner, A. R.; Kaufman, D. L.

    1984-01-01

    The present low power CMOS microprocessor controller for photovoltaic power systems possesses three programs, which are respectively intended for (1) conventional battery-charging systems with state-of-charge estimation and sequential shedding of subarrays and loads, (2) maximum power-controlled battery-charging systems, and (3) variable speed dc motor drives. Attention is presently given to the development of this terrestrial equipment for spacecraft use.

  15. Instantaneous charging & discharging cycle analysis of a novel supercapacitor based energy harvesting circuit

    NASA Astrophysics Data System (ADS)

    Khan, MD Shahrukh Adnan; Kuni, Sharsad Kara; Rajkumar, Rajprasad; Syed, Anas; Hawladar, Masum; Rahman, Md. Moshiur

    2017-12-01

    In this paper, an extensive effort has been made to design and develop a prototype in a laboratory setup environment in order to investigate experimentally the response of a novel Supercapacitor based energy harvesting circuit; particularly the phenomena of instantaneous charging and discharging cycle is analysed. To maximize battery lifespan and storage capacity, charging/discharging cycles need to be optimized in such a way, it ultimately enhances the system performances reliably. Keeping this into focus, an Arduino-MOSFET based control system is developed to charge the Supercapacitor from a low wind Vertical Axis Turbine (VAWT) and discharge it through a 6V battery. With a wind speed of 5m/s, the wind turbine requires approximately 8.1 hours to charge the 6V battery through Supercapacitor bank that constitutes 18 cycles in which each cycle consumes 27 minutes. The overall performance of the proposed system was quite convincing in a sense that the efficiency of the developed Energy Harvesting Circuit EHC raises to 19% in comparison to direct charging of the battery from the Vertical wind turbine. At low wind speed, such value of efficiency margin is quite encouraging which essentially validates the system design.

  16. Enabling fast charging – Vehicle considerations

    DOE PAGES

    Meintz, Andrew; Zhang, Jiucai; Vijayagopal, Ram; ...

    2017-11-01

    To achieve a successful increase in the plug-in battery electric vehicle (BEV) market it is anticipated that a significant improvement in battery performance is required to improve the range that BEVs can travel. While the range that BEVs can travel on a single recharge is improving, the rate at which these vehicles can be recharged is still much slower than conventional internal combustion engine vehicles. To achieve comparable recharge times we explore the vehicle considerations of charge rates up to 350 kW. This faster recharge is expected to significantly mitigate the perceived deficiencies for long-distance transportation, to provide alternative chargingmore » in densely populated areas where overnight charging at home may not be possible, and to reduce range anxiety for travel within a city when unplanned charging maybe required. This substantial increase in the charging rate is expected to create technical issues in the design of the battery system and the vehicle electrical architecture that must be resolved. This work will focus on the battery system thermal design and total recharge time to meet the goals of implementing higher charge rates as well as the impacts of the expected increase in system voltage on the components of the vehicle.« less

  17. Enabling fast charging – Vehicle considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meintz, Andrew; Zhang, Jiucai; Vijayagopal, Ram

    To achieve a successful increase in the plug-in battery electric vehicle (BEV) market it is anticipated that a significant improvement in battery performance is required to improve the range that BEVs can travel. While the range that BEVs can travel on a single recharge is improving, the rate at which these vehicles can be recharged is still much slower than conventional internal combustion engine vehicles. To achieve comparable recharge times we explore the vehicle considerations of charge rates up to 350 kW. This faster recharge is expected to significantly mitigate the perceived deficiencies for long-distance transportation, to provide alternative chargingmore » in densely populated areas where overnight charging at home may not be possible, and to reduce range anxiety for travel within a city when unplanned charging maybe required. This substantial increase in the charging rate is expected to create technical issues in the design of the battery system and the vehicle electrical architecture that must be resolved. This work will focus on the battery system thermal design and total recharge time to meet the goals of implementing higher charge rates as well as the impacts of the expected increase in system voltage on the components of the vehicle.« less

  18. Evaluation of nickel-hydrogen battery for space application

    NASA Technical Reports Server (NTRS)

    Billard, J. M.; Dupont, D.

    1983-01-01

    Results of electrical space qualification tests of nickel-hydrogen battery type HR 23S are presented. The results obtained for the nickel-cadmium battery type VO 23S are similar except that the voltage level and the charge conservation characteristics vary significantly. The electrical and thermal characteristics permit predictions of the following optimal applications: charge coefficient in the order of 1.3 to 1.4 at 20C; charge current density higher than C/10 at 20C; discharge current density from C/10 to C/3 at 20C; maximum discharge temperature: OC; storage temperature: -20C.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lingling; Ma, Yulin; Cheng, Xinqun

    LiCoO 2/mesocarbon microbeads (MCMB) batteries are over-charged to different voltage (4.4 V, 4.5 V, 4.6 V, and 4.7 V, respectively) for ten times, and then are cycled 1000 times for shallow depth of discharge. The morphology, structure, and electrochemical performance of the electrode materials were studied in detail in order to identify the capacity fading mechanism of over-charged battery after long-term cycling. The cycling performances of LiCoO 2/MCMB batteries are gradually aggravated with the increase of over-charging voltage and the degradation mechanism is diverse upon the degree of over-charging. Furthermore, the capacity fading after long-term cycling of battery over-charged tomore » 4.6 V or 4.7 V is mainly attributed to the cathodes. Soft X-ray absorption spectroscopy (XAS) demonstrates that the lower valence state of cobalt exists on the surface of the LiCoO 2 after serious over-charging (4.6 V or 4.7 V), and cobalt is dissolved then deposited on the anode according to the result of energy dispersive spectrometry (EDS). But, after shallow over-charging (4.4 V or 4.5 V), the capacity deterioration is proposed as the loss of active lithium, presented by the generation of the SEI film on the anode, which is verified by water washed tests.« less

  20. Device for detecting the specific gravity of a liquid. [Patent application

    DOEpatents

    Derouin, C.R.; Kerwin, W.J.; McCormick, J.B.; Bobbett, R.E.

    1980-11-18

    A device for detecting the specific gravity of a liquid and a device for detecting the state of charge of a liquid phase electrolyte battery are described. In one embodiment of the present invention, a change in the critical angle of total internal reflection is utilized to determine the index of refraction of the liquid to be measured. It is shown that the index of refraction of the liquid is a function of the specific gravity of the liquid. In applications for measuring the state of charge of a battery, the specific gravity is proportional to the state of charge of the battery. A change in intensity of rays intersecting an interface surface indicates the critical angle which is a direct indication of the specific gravity of the liquid and the state of charge of a battery. In another embodiment, a light beam is projected through a transparent medium and then through a portion of the liquid to be measured. A change in refraction due to a change in the index of refraction of the liquid produces a deflection of the beam which is measured by a detector. The magnitude of deflection of the beam is directly proportional to the specific gravity of the liquid and the state of charge of a battery.

  1. Thermal modeling of a Ni-H2 battery cell

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Dewitt, K. J.; Keith, T. G.

    1991-01-01

    The nickel-hydrogen secondary battery has many desirable features which make it attractive for satellite power systems. It can provide a significant improvement over the energy density of present spacecraft nickel-cadnium batteries, combined with longer life, tolerance to overcharge and possibility of state-of-charge indication. However, to realize these advantages, accurate thermal modeling of nickel-hydrogen cells is required in order to properly design the battery pack so that it operates within a specified temperature range during the operation. Maintenance of a low operating temperature and a uniform temperature profile within the cell will yield better reliability, improved cycle life and better charge/discharge efficiencies. This research has the objective of developing and testing a thermal model which can be used to characterize battery operation. Primarily, temperature distribution with the heat generation rates as a function of position and time will be evaluated for a Ni-H2 cell in the three operating modes: (1) charge cycle, (2) discharge cycle, and (3) overcharge condition, if applicable. Variables to be examined include charging current, discharge rates, state of charge, pressure and temperature. Once the thermal model has been developed, this resulting model will predict the actual operating temperature and temperature gradient for the specific cell geometry to be used.

  2. Modeling the effect of shunt current on the charge transfer efficiency of an all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Chen, Yong-Song; Ho, Sze-Yuan; Chou, Han-Wen; Wei, Hwa-Jou

    2018-06-01

    In an all-vanadium redox flow battery (VRFB), a shunt current is inevitable owing to the electrically conductive electrolyte that fills the flow channels and manifolds connecting cells. The shunt current decreases the performance of a VRFB stack as well as the energy conversion efficiency of a VRFB system. To understand the shunt-current loss in a VRFB stack with various designs and operating conditions, a mathematical model is developed to investigate the effects of the shunt current on battery performance. The model is calibrated with experimental data under the same operating conditions. The effects of the battery design, including the number of cells, state of charge (SOC), operating current, and equivalent resistance of the electrolytes in the flow channels and manifolds, on the shunt current are analyzed and discussed. The charge-transfer efficiency is calculated to investigate the effects of the battery design parameters on the shunt current. When the cell number is increased from 5 to 40, the charge transfer efficiency is decreased from 0.99 to a range between 0.76 and 0.88, depending on operating current density. The charge transfer efficiency can be maintained at higher than 0.9 by limiting the cell number to less than 20.

  3. Ultrathin Graphene-Protein Supercapacitors for Miniaturized Bioelectronics.

    PubMed

    Mosa, Islam M; Pattammattel, Ajith; Kadimisetty, Karteek; Pande, Paritosh; El-Kady, Maher F; Bishop, Gregory W; Novak, Marc; Kaner, Richard B; Basu, Ashis K; Kumar, Challa V; Rusling, James F

    2017-09-06

    Nearly all implantable bioelectronics are powered by bulky batteries which limit device miniaturization and lifespan. Moreover, batteries contain toxic materials and electrolytes that can be dangerous if leakage occurs. Herein, an approach to fabricate implantable protein-based bioelectrochemical capacitors (bECs) employing new nanocomposite heterostructures in which 2D reduced graphene oxide sheets are interlayered with chemically modified mammalian proteins, while utilizing biological fluids as electrolytes is described. This protein-modified reduced graphene oxide nanocomposite material shows no toxicity to mouse embryo fibroblasts and COS-7 cell cultures at a high concentration of 1600 μg mL -1 which is 160 times higher than those used in bECs, unlike the unmodified graphene oxide which caused toxic cell damage even at low doses of 10 μg mL -1 . The bEC devices are 1 μm thick, fully flexible, and have high energy density comparable to that of lithium thin film batteries. COS-7 cell culture is not affected by long-term exposure to encapsulated bECs over 4 d of continuous charge/discharge cycles. These bECs are unique, protein-based devices, use serum as electrolyte, and have the potential to power a new generation of long-life, miniaturized implantable devices.

  4. Charge–discharge properties of tin dioxide for sodium-ion battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jinsoo; Park, Jin-Woo; Han, Jeong-Hui

    Highlights: • The electrochemical reaction of SnO2 as an anode for Na-ion batteries was studied. • The SnO2 electrode delivered the initial discharge capacity of 747 mAh/g. • Alarge irreversible capacity (597 mAh/g)was observedin the first cycle. • The in-plain crack in the electrode caused the incompletereduction of SnO{sub 2}. - Abstract: Tin dioxide was investigated as an anode material for sodium-ion batteries. The Na/SnO{sub 2} cell delivered a first discharge capacity of 747 mAh/g, but the first charge capacity was 150 mAh/g. The irreversible capacity in the first cycle was examined through characterization by X-ray diffraction and scanning electron microscopy.more » X-ray diffraction analysis revealed that the SnO{sub 2} active material was not reduced fully to metallic Sn. Furrows and wrinkles were formed on the electrode surface owing to the volumetric expansion upon first discharge, which led to a deterioration of the electrode structure and a loss of electrical contact between the active materials. The analysis is summarized in the schematic drawing.« less

  5. Correlation of intercalation potential with d-electron configurations for cathode compounds of lithium-ion batteries.

    PubMed

    Chen, Zhenlian; Zhang, Caixia; Zhang, Zhiyong; Li, Jun

    2014-07-14

    The d-electron localization is widely recognized as important to transport properties of transition metal compounds, but its role in the energy conversion of intercalation reactions of cathode compounds is still not fully explored. In this work, the correlation of intercalation potential with electron affinity, a key energy term controlling electron intercalation, then with d-electron configuration, is investigated. Firstly, we find that the change of the intercalation potential with respect to the transition metal cations within the same structure class is correlated in an approximately mirror relationship with the electron affinity, based on first-principles calculations on three typical categories of cathode compounds including layered oxides and polyoxyanions Then, by using a new model Hamiltonian based on the crystal-field theory, we reveal that the evolution is governed by the combination of the crystal-field splitting and the on-site d-d exchange interactions. Further, we show that the charge order in solid-solution composites and the compatibility of multi-electron redox steps could be inferred from the energy terms with the d-electron configuration alternations. These findings may be applied to rationally designing new chemistry for the lithium-ion batteries and other metal-ion batteries.

  6. Sealed nickel cadmium batteries

    NASA Astrophysics Data System (ADS)

    Raudszus, W.; Kiehne, H. A.; Cloke, F. R.

    1982-10-01

    The design, manufacture, and application of maintenance-free sealed NiCd batteries are surveyed. The principles of electrochemical power supplies and the history of the development of NiCd cells are reviewed. The batteries produced by Varta Batterie AG are presented; topics discussed include design parameters, electrical and physical characteristics, performance under adverse conditions, type range, production, and quality control. Application techniques, including cell-type choice, charging units and charging circuits, and the construction of standby power supplies, are considered, with reference to national and international standards of performance and classification. No individual items are abstracted in this volume

  7. The impact of range anxiety and home, workplace, and public charging infrastructure on simulated battery electric vehicle lifetime utility

    NASA Astrophysics Data System (ADS)

    Neubauer, Jeremy; Wood, Eric

    2014-07-01

    Battery electric vehicles (BEVs) offer the potential to reduce both oil imports and greenhouse gas emissions, but have a limited utility due to factors including driver range anxiety and access to charging infrastructure. In this paper we apply NREL's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V) to examine the sensitivity of BEV utility to range anxiety and different charging infrastructure scenarios, including variable time schedules, power levels, and locations (home, work, and public installations). We find that the effects of range anxiety can be significant, but are reduced with access to additional charging infrastructure. We also find that (1) increasing home charging power above that provided by a common 15 A, 120 V circuit offers little added utility, (2) workplace charging offers significant utility benefits to select high mileage commuters, and (3) broadly available public charging can bring many lower mileage drivers to near-100% utility while strongly increasing the achieved miles of high mileage drivers.

  8. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai

    2017-03-01

    Batteries using lithium (Li) metal as anodes are considered promising energy storage systems because of their high energy densities. However, safety concerns associated with dendrite growth along with limited cycle life, especially at high charge current densities, hinder their practical uses. Here we report that an optimal amount (0.05 M) of LiPF6 as an additive in LiTFSI-LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. In a Li metal battery using a 4-V Li-ion cathode at a moderately high loading of 1.75mAh cm(-2), a cyclability of 97.1% capacity retention after 500 cycles along withmore » very limited increase in electrode overpotential is accomplished at a charge/discharge current density up to 1.75 mA cm(-2). The fast charging and stable cycling performances are ascribed to the generation of a robust and conductive solid electrolyte interphase at the Li metal surface and stabilization of the Al cathode current collector.« less

  9. Energy storage devices for future hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Karden, Eckhard; Ploumen, Servé; Fricke, Birger; Miller, Ted; Snyder, Kent

    Powertrain hybridization as well as electrical energy management are imposing new requirements on electrical storage systems in vehicles. This paper characterizes the associated vehicle attributes and, in particular, the various levels of hybrids. New requirements for the electrical storage system are derived, including: shallow-cycle life, high dynamic charge acceptance particularly for regenerative braking and robust service life in sustained partial-state-of-charge usage. Lead/acid, either with liquid or absorptive glass-fibre mat electrolyte, is expected to remain the predominant battery technology for 14 V systems, including micro-hybrids, and with a cost-effective battery monitoring system for demanding applications. Advanced AGM batteries may be considered for mild or even medium hybrids once they have proven robustness under real-world conditions, particularly with respect to cycle life at partial-states-of-charge and dynamic charge acceptance. For the foreseeable future, NiMH and Li-ion are the dominating current and potential battery technologies for higher-functionality HEVs. Li-ion, currently at development and demonstration stages, offers attractive opportunities for improvements in performance and cost. Supercapacitors may be considered for pulse power applications. Aside from cell technologies, attention to the issue of system integration of the battery into the powertrain and vehicle is growing. Opportunities and challenges for potential "battery pack" system suppliers are discussed.

  10. A new battery-charging method suggested by molecular dynamics simulations.

    PubMed

    Abou Hamad, Ibrahim; Novotny, M A; Wipf, D O; Rikvold, P A

    2010-03-20

    Based on large-scale molecular dynamics simulations, we propose a new charging method that should be capable of charging a lithium-ion battery in a fraction of the time needed when using traditional methods. This charging method uses an additional applied oscillatory electric field. Our simulation results show that this charging method offers a great reduction in the average intercalation time for Li(+) ions, which dominates the charging time. The oscillating field not only increases the diffusion rate of Li(+) ions in the electrolyte but, more importantly, also enhances intercalation by lowering the corresponding overall energy barrier.

  11. Nickel-cadium batteries for Apollo telescope mount

    NASA Technical Reports Server (NTRS)

    Kirsch, W. W.; Shikoh, A. E.

    1974-01-01

    The operational testing and evaluation program is presented which was conducted on 20-ampere-hour nickel-cadmium (Ni-Cd) batteries for use on the Apollo telescope mount (ATM). The test program was initiated in 1967 to determine if the batteries could meet ATM mission requirements and to determine operating characteristics and methods. The ATM system power and charging power for the Ni-Cd secondary batteries is provided by a solar array during the 58-minute daylight portion of the orbit; during the 36-minute night portion of the orbit, the Ni-Cd secondary batteries will supply ATM system power. The test results reflect battery operating characteristics and parameters relative to simulated ATM orbital test conditions. Maximum voltage, charge requirements, capacity, temperature, and cyclic characteristics are presented.

  12. Failure Analysis of Batteries Using Synchrotron-based Hard X-ray Microtomography

    PubMed Central

    Harry, Katherine J.; Parkinson, Dilworth Y.; Balsara, Nitash P.

    2015-01-01

    Imaging morphological changes that occur during the lifetime of rechargeable batteries is necessary to understand how these devices fail. Since the advent of lithium-ion batteries, researchers have known that the lithium metal anode has the highest theoretical energy density of any anode material. However, rechargeable batteries containing a lithium metal anode are not widely used in consumer products because the growth of lithium dendrites from the anode upon charging of the battery causes premature cell failure by short circuit. Lithium dendrites can also form in commercial lithium-ion batteries with graphite anodes if they are improperly charged. We demonstrate that lithium dendrite growth can be studied using synchrotron-based hard X-ray microtomography. This non-destructive imaging technique allows researchers to study the growth of lithium dendrites, in addition to other morphological changes inside batteries, and subsequently develop methods to extend battery life. PMID:26382323

  13. State of Charge estimation of lithium ion battery based on extended Kalman filtering algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Feng, Yiming; Pan, Binbiao; Wan, Renzhuo; Wang, Jun

    2017-08-01

    Accurate estimation of state-of-charge (SOC) for lithium ion battery is crucial for real-time diagnosis and prognosis in green energy vehicles. In this paper, a state space model of the battery based on Thevenin model is adopted. The strategy of estimating state of charge (SOC) based on extended Kalman fil-ter is presented, as well as to combine with ampere-hour counting (AH) and open circuit voltage (OCV) methods. The comparison between simulation and experiments indicates that the model’s performance matches well with that of lithium ion battery. The algorithm of extended Kalman filter keeps a good accura-cy precision and less dependent on its initial value in full range of SOC, which is proved to be suitable for online SOC estimation.

  14. Performance and Safety Characteristics of Sanyo NiCd Cells

    NASA Technical Reports Server (NTRS)

    Deng, Yi; Jeevarajan, Judith; Bragg, Bobby; Zhang, Wenlin

    2002-01-01

    NiCd batteries are widely used for high drain applications like power tools and also in other portable equipment like cameras, PCs, etc. NASA and Dreamtime Holdings, Inc. worked together to have the capability of a High Definition TV (HDTV) on the ISS and Space Shuttle. The Sanyo HD camcorder was used on the STS 105 fight in July, 2001 . The camcorder used two versions of a NiCd battery. One was a cOlnmercial off-the-shelf Sony BP90 battery pack that had Sanyo NiCd D cells. The other was a modified battery (FBP-90) made by Frezzi Energy, which also had the same Sanyo NiCd D cells. The battery has 10 NiCd D cells in series to form a 12 V pack with 5.0 Ah capacity. Our current study involved the perforn1ance and abuse tests on the Sanyo NiCd 5.0 Ah D cells. The best combination of charge/discharge current rate is 0.3C for charge and 1/2e for discharge within 200 cycles. No significant changes in capacity were observed in 200 cycles. The cell also showed capability of 5C (25.0A) high rate discharge. In overcharge and overdischarge tests, all tested cells passed the tests without venting. In imbalance tests, the battery pack could be charged and discharged only at relatively low current. At charge current of 1.0A or less, the imbalanced cells in the battery pack displayed relatively high temperatures during charge or discharge. The cells functioned normally during internal short and no mishap occurred during external short. Cells passed exposure tests at 80 C and no leakage till 150 C during heat-tovent tests.

  15. The characteristics and limitations of the MPS/MMS battery charging system

    NASA Technical Reports Server (NTRS)

    Ford, F. E.; Palandati, C. F.; Davis, J. F.; Tasevoli, C. M.

    1980-01-01

    A series of tests was conducted on two 12 ampere hour nickel cadmium batteries under a simulated cycle regime using the multiple voltage versus temperature levels designed into the modular power system (MPS). These tests included: battery recharge as a function of voltage control level; temperature imbalance between two parallel batteries; a shorted or partially shorted cell in one of the two parallel batteries; impedance imbalance of one of the parallel battery circuits; and disabling and enabling one of the batteries from the bus at various charge and discharge states. The results demonstrate that the eight commandable voltage versus temperature levels designed into the MPS provide a very flexible system that not only can accommodate a wide range of normal power system operation, but also provides a high degree of flexibility in responding to abnormal operating conditions.

  16. Lithium-ion Battery Charge Methodologies Observed with Portable Electronic Equipment

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith

    2009-01-01

    Commercial lithium-ion batteries in portable electronic equipment has been used by NASA for space applications since 1999. First battery that was certified for flight and flown for Shuttle use was the Canon BP 927 (2.7 Ah) battery pack. Since then, numerous portable equipment with li-ion batteries have been certified and flown and remain on-orbit for crew usage. Laptops (two generations with third one being worked on now) Camcorder Camera PDA 2 versions (second one being li-ion polymer cells) Satellite Phone Due to expense and time, certified batteries are used with different equipment with the help of adapters or by working with the manufacturer of the equipment to build the appropriate battery compartment and connector. Certified and dedicated chargers are available on Shuttle and on the ISS for safe charging.

  17. Performance characteristics of a battery charger and state-of-charge indicator

    NASA Technical Reports Server (NTRS)

    Edwards, D.; Klein, J.

    1984-01-01

    A battery charge/state of charge indicator (BC/SCI) system for electric vehicle use was developed. The original and subsequent objectives for the BC/SCI and the rationale for those objectives are described. The requirements generated from the objectives are listed and a description of the BC/SCI is provided. The power section problem, the tests, and the test results are discussed.

  18. Preparation and characterization of thick-film Ni/MH battery.

    PubMed

    Do, Jing-Shan; Yu, Sen-Hao; Cheng, Suh-Fen

    2004-07-30

    Using the porous polypropylene (PP) films sputtered with gold and the Ni as current collectors, the electroactive materials (Ni(OH)2 and metal hydride (MH)) of positive and negative electrodes were prepared on the current collector using thick-film technology. Two types of cell configurations were prepared and the characteristics of these batteries were compared. The cycle number for the formation of batteries based on the porous PP film was found to be 2, which was significantly less than that of batteries based on the ceramic substrates. Using the porous PP film as substrate, the number of cycles for the formation of battery increased from 2 to 5 with the increase of the charge/discharge rate from 0.1C/0.025C to 2.0C/0.5C. The silver oxides dendrites formed by the oxidation of silver paste used to adhere the current collectors and the conducting wires in the charge/discharge process caused a short contact between the positive and negative electrodes, which then caused the battery failure. The cycle life of the battery based on the porous PP film was found to be greater than 400 when the charge/discharge rate was 2.0C/0.5C.

  19. A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR

    DOE PAGES

    Duan, Wentao; Vemuri, Rama Ses; Milshtein, Jarrod D.; ...

    2016-03-10

    Redox flow batteries have shown outstanding promise for grid-scale energy storage to promote utilization of renewable energy and improve grid stability. Nonaqueous battery systems can potentially achieve high energy density because of their broad voltage window. In this paper, we report a new organic redox-active material for use in a nonaqueous redox flow battery, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO) that has high solubility (>2.6 M) in organic solvents. PTIO exhibits electrochemically reversible disproportionation reactions and thus can serve as both anolyte and catholyte redox materials in a symmetric flow cell. The PTIO flow battery has a moderate cell voltage of ~1.7 V andmore » shows good cyclability under both cyclic voltammetry and flow cell conditions. Moreover, we demonstrate that FTIR can offer accurate estimation of the PTIO concentration in electrolytes and determine the state of charge of the PTIO flow cell, which suggests FTIR potentially as a powerful online battery status sensor. In conclusion, this study is expected to inspire more insights in this under-addressed area of state of charge analysis aiming at operational safety and reliability of flow batteries.« less

  20. Flywheel Energy Storage System Designed for the International Space Station

    NASA Technical Reports Server (NTRS)

    Delventhal, Rex A.

    2002-01-01

    Following successful operation of a developmental flywheel energy storage system in fiscal year 2000, researchers at the NASA Glenn Research Center began developing a flight design of a flywheel system for the International Space Station (ISS). In such an application, a two-flywheel system can replace one of the nickel-hydrogen battery strings in the ISS power system. The development unit, sized at approximately one-eighth the size needed for ISS was run at 60,000 rpm. The design point for the flight unit is a larger composite flywheel, approximately 17 in. long and 13 in. in diameter, running at 53,000 rpm when fully charged. A single flywheel system stores 2.8 kW-hr of useable energy, enough to light a 100-W light bulb for over 24 hr. When housed in an ISS orbital replacement unit, the flywheel would provide energy storage with approximately 3 times the service life of the nickel-hydrogen battery currently in use.

  1. Advanced valve-regulated lead-acid batteries for hybrid vehicle applications

    NASA Astrophysics Data System (ADS)

    Soria, M. L.; Trinidad, F.; Lacadena, J. M.; Sánchez, A.; Valenciano, J.

    Future vehicle applications require the development of reliable and long life batteries operating under high-rate partial-state-of-charge (HRPSoC) working conditions. Work presented in this paper deals with the study of different design parameters, manufacturing process and charging conditions of spiral wound valve-regulated lead-acid (VRLA) batteries, in order to improve their reliability and cycle life for hybrid vehicle applications. Test results show that both electrolyte saturation and charge conditions have a strong effect on cycle life at HRPSoC performance, presumably because water loss finally accelerates battery failure, which is linked to irreversible sulphation in the upper part of the negative electrodes. By adding expanded graphite to the negative active mass formulation, increasing the electrolyte saturation degree (>95%) and controlling overcharge during regenerative braking periods (voltage limitation and occasional boosting) it is possible to achieve up to 220,000 cycles at 2.5% DOD, equivalent to 5500 capacity throughput. These results could make lead acid batteries a strong competitor for HEV applications versus other advanced systems such as Ni-MH or Li-ion batteries.

  2. Li-ion cells for terrestrial robots

    NASA Technical Reports Server (NTRS)

    Chin, Keith B.; Smart, M. C.; Narayanan, S. R.; Ratnakumar, B. V.; Whitcanack, L. D.; Davies, E. D.; Surampudi, S.; Raman, N. S.

    2003-01-01

    SAFT prismatic wound 5 Ahr MP series cells were evaluated for potential application in a lithium ion battery designed for Tactical Mobile Robots (TMR). In order to satisfy battery design requirements, a 10 Ahr battery containing two parallel 8-cell strings was proposed. The proposed battery has a weight and volume of approximately 3.2kg and 1.6 liters, respectively. Cell qualification procedures include initial characterization, followed by charge/discharge cycling at 100% DOD with intermittent EIS measurements at various state of charge. Certain cells were also subjected to extreme operational temperatures for worst-case analysis. Excellent specific energy (>130 Whr/kg) was obtained with initial characterization cycles. Even at abusive thermal conditions, the cell capacity fade was less than Ahr after 300 cycles. Rate characterization showed good cell discharge behavior with minimal decrease in capacity. At various state of charge, impedance measurements suggest that the cathode play a more significant role in capacity. At various state of charge impedance measurements suggest that the cathode play a more significant role in capacity fade than the anode.

  3. Modeling, hybridization, and optimal charging of electrical energy storage systems

    NASA Astrophysics Data System (ADS)

    Parvini, Yasha

    The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems analytically. Efficiency analysis for constant power (CP) and optimal charging strategies under different charging times (slow and fast) was performed. In case of the lithium ion battery, the model included the electronic as well as polarization resistance. Furthermore, in order to investigate the influence of temperature on the internal resistance of the lithium ion battery, the optimal charging problem for a three state electro-thermal model was solved using dynamic programming (DP). The ability to charge electric vehicles is a pace equivalent to fueling a gasoline car will be a game changer in the widespread acceptability and feasibility of the electric vehicles. Motivated by the knowledge gained from the optimal charging study, the challenges facing the fast charging of lithium ion batteries are investigated. In this context, the suitable models for the study of fast charging, high rate anode materials, and different charging strategies are studied. The side effects of fast charging such as lithium plating and mechanical failure are also discussed. This dissertation has targeted some of the most challenging questions in the field of electrical energy storage systems and the reported results are applicable to a wide range of applications such as in electronic gadgets, medical devices, electricity grid, and electric vehicles.

  4. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ. PMID:22163735

  5. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.

    PubMed

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ.

  6. Joint optimisation of arbitrage profits and battery life degradation for grid storage application of battery electric vehicles

    NASA Astrophysics Data System (ADS)

    Kies, Alexander

    2018-02-01

    To meet European decarbonisation targets by 2050, the electrification of the transport sector is mandatory. Most electric vehicles rely on lithium-ion batteries, because they have a higher energy/power density and longer life span compared to other practical batteries such as zinc-carbon batteries. Electric vehicles can thus provide energy storage to support the system integration of generation from highly variable renewable sources, such as wind and photovoltaics (PV). However, charging/discharging causes batteries to degradate progressively with reduced capacity. In this study, we investigate the impact of the joint optimisation of arbitrage revenue and battery degradation of electric vehicle batteries in a simplified setting, where historical prices allow for market participation of battery electric vehicle owners. It is shown that the joint optimisation of both leads to stronger gains then the sum of both optimisation strategies and that including battery degradation into the model avoids state of charges close to the maximum at times. It can be concluded that degradation is an important aspect to consider in power system models, which incorporate any kind of lithium-ion battery storage.

  7. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT XIII, BATTERY SERVICE AND TESTING PROCEDURES--PART II.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO FAMILIARIZE THE TRAINEE WITH PROCEDURES FOR SERVICING LEAD-ACID STORAGE BATTERIES USED ON DIESEL POWERED EQUIPMENT. TOPICS ARE (1) ELECTROLYTE AND SPECIFIC GRAVITY, (2) BATTERY CHARGING, (3) STORAGE BATTERY TYPES AND DESIGN, (4) BATTERY CAPACITY RATINGS, (5) BATTERY INSTALLATION, SERVICING, AND…

  8. New secondary batteries utilizing electronically conductive polymer cathodes

    NASA Technical Reports Server (NTRS)

    Martin, Charles R.; White, Ralph E.

    1989-01-01

    The objectives of this project are to characterize the transport properties in electronically conductive polymers and to assess the utility of these films as cathodes in lithium/polymer secondary batteries. During this research period, progress has been made in a literature survey of the historical background, methods of preparation, the physical and chemical properties, and potential technological applications of polythiophene. Progress has also been made in the characterization of polypyrrole flat films and fibrillar films. Cyclic voltammetry and potential step chronocoulometry were used to gain information on peak currents and potentials switching reaction rates, charge capacity, and charge retention. Battery charge/discharge studies were also performed.

  9. Analysis of Electric Vehicle DC High Current Conversion Technology

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Bai, Jing-fen; Lin, Fan-tao; Lu, Da

    2017-05-01

    Based on the background of electric vehicles, it is elaborated the necessity about electric energy accurate metering of electric vehicle power batteries, and it is analyzed about the charging and discharging characteristics of power batteries. It is needed a DC large current converter to realize accurate calibration of power batteries electric energy metering. Several kinds of measuring methods are analyzed based on shunts and magnetic induction principle in detail. It is put forward power batteries charge and discharge calibration system principle, and it is simulated and analyzed ripple waves containing rate and harmonic waves containing rate of power batteries AC side and DC side. It is put forward suitable DC large current measurement methods of power batteries by comparing different measurement principles and it is looked forward the DC large current measurement techniques.

  10. Method of minimizing the effects of parasitic currents

    DOEpatents

    Chi, Michael C.; Carr, Peter

    1983-02-01

    A method of minimizing the effect of parasitic currents in secondary batteries having a plurality of cells connected electrically in series and a common electrolyte in communication with the cells is described. Specifically, the parasitic currents flowing through the battery cause a cell imbalance over the charge/discharge cycle. This cell imbalance is minimized by first separating the cells of the battery into two equal groups. Then the battery is charged with the two groups of cells connected electrically in series, and subsequently discharged with the two groups of cells reconnected electrically in series in an inverted sequence.

  11. Hubble Space Telescope NiH2 six battery test

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Lanier, J. Roy

    1991-01-01

    The primary objectives of the test are: (1) to get a better understanding of the operating characteristics of the NiH2 batteries in the Hubble Space Telescope (HST) Electric Power Subsystem (EPS) by simulating every aspect of the expected operating environment; (2) to determine the optimum charge level and charge scheme for the NiH2 batteries in the HST EPS; (3) to predict the performance of the actual HST EPS; (4) to observe the aging characteristics of the batteries; and (5) to test different EPS anomalies before experiencing the anomalies on the actual HST.

  12. Molecular dynamics simulations of the first charge of a Li-ion—Si-anode nanobattery

    DOE PAGES

    Galvez-Aranda, Diego E.; Ponce, Victor; Seminario, Jorge M.

    2017-03-16

    Rechargeable lithium-ion batteries are the most popular devices for energy storage but still a lot of research needs to be done to improve their cycling and storage capacity. Silicon has been proposed as an anode material because of its large theoretical capacity of ~3600 mAh/g. Therefore, focus is needed on the lithiation process of silicon anodes where it is known that the anode increases its volume more than 300%, producing cracking and other damages. In this study, we performed molecular dynamics atomistic simulations to study the swelling, alloying, and amorphization of a silicon nanocrystal anode in a full nanobattery modelmore » during the first charging cycle. A dissolved salt of lithium hexafluorophosphate in ethylene carbonate was chosen as the electrolyte solution and lithium cobalt oxide as cathode. External electric fields are applied to emulate the charging, causing the migration of the Li-ions from the cathode to the anode, by drifting through the electrolyte solution, thus converting pristine Si gradually into Li 14Si 5 when fully lithiated. When the electric field is applied to the nanobattery, the temperature never exceeds 360 K due to a temperature control imposed resembling a cooling mechanism. The volume of the anode increases with the amorphization of the silicon as the external field is applied by creating a layer of LiSi alloy between the electrolyte and the silicon nanocrystal and then, at the arrival of more Li-ions changing to an alloy, where the drift velocity of Li-ions is greater than the velocity in the initial nanocrystal structure. Charge neutrality is maintained by concerted complementary reduction-oxidation reactions at the anode and cathode, respectively. Also, the nanobattery model developed here can be used to study charge mobility, current density, conductance and resistivity, among several other properties of several candidate materials for rechargeable batteries and constitutes the initial point for further studies on the formation of the solid electrolyte interphase in the anode.« less

  13. A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Yujie; Liu, Chang; Chen, Zonghai

    2018-02-01

    An accurate battery pack state of health (SOH) estimation is important to characterize the dynamic responses of battery pack and ensure the battery work with safety and reliability. However, the different performances in battery discharge/charge characteristics and working conditions in battery pack make the battery pack SOH estimation difficult. In this paper, the battery pack SOH is defined as the change of battery pack maximum energy storage. It contains all the cells' information including battery capacity, the relationship between state of charge (SOC) and open circuit voltage (OCV), and battery inconsistency. To predict the battery pack SOH, the method of particle swarm optimization-genetic algorithm is applied in battery pack model parameters identification. Based on the results, a particle filter is employed in battery SOC and OCV estimation to avoid the noise influence occurring in battery terminal voltage measurement and current drift. Moreover, a recursive least square method is used to update cells' capacity. Finally, the proposed method is verified by the profiles of New European Driving Cycle and dynamic test profiles. The experimental results indicate that the proposed method can estimate the battery states with high accuracy for actual operation. In addition, the factors affecting the change of SOH is analyzed.

  14. Modeling and simulation performance of photovoltaic system integration battery and supercapacitor paralellization of MPPT prototipe for solar vehicle

    NASA Astrophysics Data System (ADS)

    Ajiatmo, Dwi; Robandi, Imam

    2017-03-01

    This paper proposes a control scheme photovoltaic, battery and super capacitor connected in parallel for use in a solar vehicle. Based on the features of battery charging, the control scheme consists of three modes, namely, mode dynamic irradian, constant load mode and constant voltage charging mode. The shift of the three modes can be realized by controlling the duty cycle of the mosffet Boost converter system. Meanwhile, the high voltage which is more suitable for the application can be obtained. Compared with normal charging method with parallel connected current limiting detention and charging method with dynamic irradian mode, constant load mode and constant voltage charging mode, the control scheme is proposed to shorten the charging time and increase the use of power generated from the PV array. From the simulation results and analysis conducted to determine the performance of the system in state transient and steady-state by using simulation software Matlab / Simulink. Response simulation results demonstrate the suitability of the proposed concept.

  15. Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging

    NASA Astrophysics Data System (ADS)

    Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.

    2016-07-01

    One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells.

  16. Aqueous Lithium-Iodine Solar Flow Battery for the Simultaneous Conversion and Storage of Solar Energy.

    PubMed

    Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying

    2015-07-08

    Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.

  17. Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries.

    PubMed

    VanGelder, L E; Kosswattaarachchi, A M; Forrestel, P L; Cook, T R; Matson, E M

    2018-02-14

    Non-aqueous redox flow batteries have emerged as promising systems for large-capacity, reversible energy storage, capable of meeting the variable demands of the electrical grid. Here, we investigate the potential for a series of Lindqvist polyoxovanadate-alkoxide (POV-alkoxide) clusters, [V 6 O 7 (OR) 12 ] (R = CH 3 , C 2 H 5 ), to serve as the electroactive species for a symmetric, non-aqueous redox flow battery. We demonstrate that the physical and electrochemical properties of these POV-alkoxides make them suitable for applications in redox flow batteries, as well as the ability for ligand modification at the bridging alkoxide moieties to yield significant improvements in cluster stability during charge-discharge cycling. Indeed, the metal-oxide core remains intact upon deep charge-discharge cycling, enabling extremely high coulombic efficiencies (∼97%) with minimal overpotential losses (∼0.3 V). Furthermore, the bulky POV-alkoxide demonstrates significant resistance to deleterious crossover, which will lead to improved lifetime and efficiency in a redox flow battery.

  18. A Look Inside SLAC's Battery Lab

    ScienceCinema

    Wei Seh, Zhi

    2018-01-26

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  19. A Look Inside SLAC's Battery Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Seh, Zhi

    2014-07-17

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  20. Fast charging of lithium-ion batteries at all temperatures.

    PubMed

    Yang, Xiao-Guang; Zhang, Guangsheng; Ge, Shanhai; Wang, Chao-Yang

    2018-06-25

    Fast charging is a key enabler of mainstream adoption of electric vehicles (EVs). None of today's EVs can withstand fast charging in cold or even cool temperatures due to the risk of lithium plating. Efforts to enable fast charging are hampered by the trade-off nature of a lithium-ion battery: Improving low-temperature fast charging capability usually comes with sacrificing cell durability. Here, we present a controllable cell structure to break this trade-off and enable lithium plating-free (LPF) fast charging. Further, the LPF cell gives rise to a unified charging practice independent of ambient temperature, offering a platform for the development of battery materials without temperature restrictions. We demonstrate a 9.5 Ah 170 Wh/kg LPF cell that can be charged to 80% state of charge in 15 min even at -50 °C (beyond cell operation limit). Further, the LPF cell sustains 4,500 cycles of 3.5-C charging in 0 °C with <20% capacity loss, which is a 90× boost of life compared with a baseline conventional cell, and equivalent to >12 y and >280,000 miles of EV lifetime under this extreme usage condition, i.e., 3.5-C or 15-min fast charging at freezing temperatures.

  1. Moderate temperature sodium cells. V - Discharge reactions and rechargeability of NiS and NiS2 positive electrodes in molten NaAlCl4

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.; Elliot, J. E.

    1984-01-01

    NiS2 and NiS have been characterized as high energy density rechargeable positive electrodes for moderate-temperature Na batteries of the configuration, Na(1)/beta double prime-Al2O3/NaAlCl4(1), NiSx. The batteries operate in the temperature range 170 - 190 C. Positive electrode reactions during discharge/charge cycles have been characterized. Excellent rechargeability of the batteries has been demonstrated by extended cell cycling. A Na/NiS2 cell, operating at 190 C, exceeded 600 deep discharge/charge cycles with practically no capacity deterioration. The feasibility of secondary Na/NiSx batteries with specific energies equal to or greater than 50 Wh/lb and cycle lifes exceeding 1000 deep discharge/charge cycles has been demonstrated.

  2. Durability and reliability of electric vehicle batteries under electric utility grid operations: Bidirectional charging impact analysis

    NASA Astrophysics Data System (ADS)

    Dubarry, Matthieu; Devie, Arnaud; McKenzie, Katherine

    2017-08-01

    Vehicle-to-grid and Grid-to-vehicle strategies are often cited as promising to mitigate the intermittency of renewable energy on electric power grids. However, their impact on the vehicle battery degradation has not been investigated in detail. The aim of this work is to understand the impact of bidirectional charging on commercial Li-ion cells used in electric vehicles today. Results show that additional cycling to discharge vehicle batteries to the power grid, even at constant power, is detrimental to cell performance. This additional use of the battery packs could shorten the lifetime for vehicle use to less than five years. By contrast, the impact of delaying the charge in order to reduce the impact on the power grid is found to be negligible at room temperature, but could be significant in warmer climates.

  3. Modular Battery Charge Controller

    NASA Technical Reports Server (NTRS)

    Button, Robert; Gonzalez, Marcelo

    2009-01-01

    A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell-balancing calculations. The cell-balancing algorithm is based on the error between the cell s voltage and the other cells and is categorized into four zones of operation. The algorithm is executed every second and, if cell balancing is activated, the error variable is set to a negative low value. The largest error between the cell and the other cells is found and the zone of operation determined. If the error is zero or negative, then the cell is at the lowest voltage and no balancing action is needed. If the error is less than a predetermined negative value, a Cell Bad Flag is set. If the error is positive, then cell balancing is needed, but a hysteretic zone is added to prevent the bypass circuit from triggering repeatedly near zero error. This approach keeps the cells within a predetermined voltage range.

  4. Novel technique to ensure battery reliability in 42-V PowerNets for new-generation automobiles

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Haigh, N. P.; Phyland, C. G.; Huynh, T. D.

    The proposed 42-V PowerNet in automobiles requires the battery to provide a large number of shallow discharge-charge cycles at a high rate. High-rate discharge is necessary for engine cranking, while high-rate charge is associated with regenerative braking. The battery will therefore operate at these high rates in a partial-state-of-charge condition — 'HRPSoC duty'. Under simulated HRPSoC duty, it is found that the valve-regulated lead-acid (VRLA) battery fails prematurely due to the progressive accumulation of lead sulfate mainly on the surfaces of the negative plates. This is because the lead sulfate layer cannot be converted efficiently back to sponge lead during charging either from the engine or from the regenerative braking. Eventually, this layer of lead sulfate develops to such extent that the effective surface area of the plate is reduced markedly and the plate can no longer deliver the high-cranking current demanded by the automobile. The objective of this study is to develop and optimize a pulse-generation technique to minimize the development of lead sulfate layers on negative plates of VRLA batteries subjected to HRPSoC duty. The technique involves the application of sets of charging pulses of different frequency. It is found that the cycle-life performance of VRLA batteries is enhanced markedly when d.c. pulses of high frequency are used. For example, battery durability is raised from ˜10 600 cycles (no pulses) to 32 000 cycles with pulses of high frequency. Two key factors contribute to this improvement. The first factor is localization of the charging current on the surfaces of the plates — the higher the frequency, the greater is the amount of current concentrated on the plate surface. This phenomenon is known as the 'skin effect' as only the outer 'skin' of the plate is effectively carrying the current. The second factor is delivery of sufficient charge to the Faradaic resistance of the plate to compensate for the energy loss to inductance and double-layer capacitance effects. The Faradaic resistance represents the electrochemical reaction, i.e., conversion of lead sulfate to lead. The inductance simply results from the connection either between the cables and the terminals of the battery or between the terminals, bus-bars, and the lugs of the plates. The capacitance arises from the double layer which exists at the interface between the plate and the electrolyte solution. These findings have provided a demonstration and a scientific explanation of the benefit of superimposed pulsed current charging in suppressing the sulfation of negative plates in VRLA batteries operated under 42-V PowerNet and hybrid electric vehicle duties. A Novel Pulse™ device has been developed by the CSIRO. This device has the capability to be programmable to suite various applications and can be miniaturized to be encapsulated in the battery cover.

  5. Silver-silver sulfate reference electrodes for use in lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Ruetschi, Paul

    Electrochemical properties of silver-silver sulfate reference electrodes for lead-acid batteries are described, and the following possible applications discussed: Determination of individual capacities of positive and negative plates. Monitoring individual electrode behavior during deep discharge and cell reversal. Optimization charge or discharge parameters, by controlling the current such that pre-determined limits of positive or negative half-cell potential are respected. Observation of acid concentration differences, for example due to acid stratification, by measuring diffusion potentials (concentration-cell voltages). Detection of defective cells, and defective plate sets, in a string of cells, at the end of their service life. Silver-silver sulfate reference electrodes, permanently installed in lead-acid cells, may be a means to improve battery management, and therewith to improve reliability and service life. In vented batteries, reference electrodes may be used to limit positive plate polarization during charge, or float-charge. Limiting the positive half-cell potential to an upper, pre-set value would permit to keep anodic corrosion as low as possible. During cycling, discharge could be terminated when the half-cell potential of the positive electrode has dropped to a pre-set limit. This would prevent excessive discharge of the positive electrodes, which could result in an improvement of cycle life. In valve-regulated batteries, reference electrodes may be used to adjust float-charge conditions such as to assure sufficient cathodic polarization of the negative electrodes, in order to avoid sulfation. The use of such reference electrodes could be beneficial particularly in multi-cell batteries, with overall voltages above 12 V, operated in a partial-state-of-charge.

  6. The 2004 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Super NiCd(TradeMark) Energy Storage for Gravity Probe-B Relativity Mission; Hubble Space Telescope 2004 Battery Update; The Development of Hermetically Sealed Aerospace Nickel-Metal Hydride Cell; Serial Charging Test on High Capacity Li-Ion Cells for the Orbiter Advanced Hydraulic Power System; Cell Equalization of Lithium-Ion Cells; The Long-Term Performance of Small-Cell Batteries Without Cell-Balancing Electronics; Identification and Treatment of Lithium Battery Cell Imbalance under Flight Conditions; Battery Control Boards for Li-Ion Batteries on Mars Exploration Rovers; Cell Over Voltage Protection and Balancing Circuit of the Lithium-Ion Battery; Lithium-Ion Battery Electronics for Aerospace Applications; Lithium-Ion Cell Charge Control Unit; Lithium Ion Battery Cell Bypass Circuit Test Results at the U.S. Naval Research Laboratory; High Capacity Battery Cell By-Pass Switches: High Current Pulse Testing of Lithium-Ion; Battery By-Pass Switches to Verify Their Ability to Withstand Short-Circuits; Incorporation of Physics-Based, Spatially-Resolved Battery Models into System Simulations; A Monte Carlo Model for Li-Ion Battery Life Projections; Thermal Behavior of Large Lithium-Ion Cells; Thermal Imaging of Aerospace Battery Cells; High Rate Designed 50 Ah Li-Ion Cell for LEO Applications; Evaluation of Corrosion Behavior in Aerospace Lithium-Ion Cells; Performance of AEA 80 Ah Battery Under GEO Profile; LEO Li-Ion Battery Testing; A Review of the Feasibility Investigation of Commercial Laminated Lithium-Ion Polymer Cells for Space Applications; Lithium-Ion Verification Test Program; Panasonic Small Cell Testing for AHPS; Lithium-Ion Small Cell Battery Shorting Study; Low-Earth-Orbit and Geosynchronous-Earth-Orbit Testing of 80 Ah Batteries under Real-Time Profiles; Update on Development of Lithium-Ion Cells for Space Applications at JAXA; Foreign Comparative Technology: Launch Vehicle Battery Cell Testing; 20V, 40 Ah Lithium Ion Polymer Battery for the Spacesuit; Low Temperature Life-Cycle Testing of a Lithium-Ion Battery for Low-Earth-Orbiting Spacecraft; and Evaluation of the Effects of DoD and Charge Rate on a LEO Optimized 50 Ah Li-Ion Aerospace Cell.

  7. Optimization of batteries for plug-in hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity. Three sample optimizations were performed: a compact car, a, truck, and a sports car. The compact car benefits from increased battery capacity despite the associated higher cost. The truck returned the smallest possible battery of each chemistry, indicating that electrification is not advisable. The sports car optimization resulted in the largest possible battery, indicating large performance from increased electrification. These results mirror the current state of the electric vehicle market.

  8. Renewable Energy Systems for Forward Operating Bases: A Simulations-Based Optimization Approach

    DTIC Science & Technology

    2010-08-01

    07. C-8 ENERGY STORAGE MODELS Two types of energy storage were compared in these simulations: lead-acid batteries and molten salt storage...of charge: 80% The initial state of charge used for the molten salt storage system is slightly higher than that used for the lead-acid battery ...cost for lead-acid batteries was assumed to be $630/kWh. MOLTEN SALT STORAGE Domestic installed cost for the molten salt storage system was

  9. Ex-situ and in-situ observations of the effects of gamma radiation on lithium ion battery performance

    NASA Astrophysics Data System (ADS)

    Tan, Chuting; Bashian, Nicholas H.; Hemmelgarn, Chase W.; Thio, Wesley J.; Lyons, Daniel J.; Zheng, Yuan F.; Cao, Lei R.; Co, Anne C.

    2017-07-01

    Radiation effects induced by gamma rays on battery performance were investigated by measuring the capacity and resistance of a series of battery coin cells in-situ directly under gamma radiation and ex-situ. An experimental setup was developed to charge and discharge batteries directly under gamma radiation, equipped with precise temperature control, at The Ohio State University Nuclear Reactor Lab. Latent effects induced by gamma radiation on battery components directly influence their performance. Charge and discharge capacity and overall resistance throughout a time span of several weeks post irradiation were monitored and compared to control groups. It was found that exposure to gamma radiation does not significantly alter the available capacity and the overall cell resistance immediately, however, battery performance significantly decreases with time post irradiation. Also, batteries exposed to a higher cumulative dose showed close-to-zero capacity at two-week post irradiation.

  10. McArthur completes a battery charge on the defibrillator during Expedition 12

    NASA Image and Video Library

    2005-12-16

    ISS012-E-12570 (16 Dec. 2005) --- Astronaut William S. (Bill) McArthur Jr., Expedition 12 commander and NASA space station science officer, completes a battery charge on a cardiac defibrillator at the Human Research Facility (HRF) in the Destiny laboratory of the International Space Station.

  11. JLTV - Briefings to Industry, Ground Vehicle Power and Mobility (GVPM)

    DTIC Science & Technology

    2009-05-27

    lithium ion battery cathodes, separators, and electrolytes. This effort shall also access the...manufacturability of the improved designs using the new materials. PAYOFF: Improved lithium ion battery power density Improved lithium ion battery energy...negative electrodes in lithium-ion batteries. PAYOFF: Better understanding of lithium - ion battery charging limitations Improved safety for

  12. 46 CFR 169.668 - Batteries.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Batteries. 169.668 Section 169.668 Shipping COAST GUARD... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or gasoline...

  13. 46 CFR 169.668 - Batteries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Batteries. 169.668 Section 169.668 Shipping COAST GUARD... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or gasoline...

  14. 46 CFR 169.668 - Batteries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Batteries. 169.668 Section 169.668 Shipping COAST GUARD... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or gasoline...

  15. 46 CFR 169.668 - Batteries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Batteries. 169.668 Section 169.668 Shipping COAST GUARD... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or gasoline...

  16. 46 CFR 169.668 - Batteries.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Batteries. 169.668 Section 169.668 Shipping COAST GUARD... § 169.668 Batteries. (a) Each battery must be in a location that allows the gas generated in charging to... this section, a battery must not be located in the same compartment with a gasoline tank or gasoline...

  17. Exploring the Model Design Space for Battery Health Management

    NASA Technical Reports Server (NTRS)

    Saha, Bhaskar; Quach, Cuong Chi; Goebel, Kai Frank

    2011-01-01

    Battery Health Management (BHM) is a core enabling technology for the success and widespread adoption of the emerging electric vehicles of today. Although battery chemistries have been studied in detail in literature, an accurate run-time battery life prediction algorithm has eluded us. Current reliability-based techniques are insufficient to manage the use of such batteries when they are an active power source with frequently varying loads in uncertain environments. The amount of usable charge of a battery for a given discharge profile is not only dependent on the starting state-of-charge (SOC), but also other factors like battery health and the discharge or load profile imposed. This paper presents a Particle Filter (PF) based BHM framework with plug-and-play modules for battery models and uncertainty management. The batteries are modeled at three different levels of granularity with associated uncertainty distributions, encoding the basic electrochemical processes of a Lithium-polymer battery. The effects of different choices in the model design space are explored in the context of prediction performance in an electric unmanned aerial vehicle (UAV) application with emulated flight profiles.

  18. Cycle life performance of rechargeable lithium ion batteries and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Ning, Gang

    Capacity fade of commercial Sony US 18650 Li-ion batteries cycled at high discharge rates was studied at ambient temperature. Battery cycled at the highest discharge rate (3 C) shows the largest internal resistance increase of 27.7% relative to the resistance of fresh battery. It's been observed anode carbon loses 10.6% of its capability to intercalate or deintercalate Li+ after it was subjected to 300 cycles at discharge rate of 3 C. This loss dominates capacity fade of full battery. A mechanism considering continuous parasitic reaction at anode/electrolyte interface and film thickening has been proposed. First principles based charge-discharge models to simulate cycle life behavior of rechargeable Li-ion batteries have been developed. In the generalized model, transport in both electrolyte phase and solid phase were simultaneously taken into account. Under mild charge-discharge condition, transport of lithium in the electrolyte phase has been neglected in the simplified model. Both models are based on loss of the active lithium ions due to the electrochemical parasitic reaction at anode/electrolyte interface and on rise of the anode film resistance. The effect of parameters such as depth of discharge (DOD), end of charge voltage (EOCV) and overvoltage of the parasitic reaction on the cycle life behavior of a battery has been analyzed. The experimental results obtained at a charge rate of 1 C, discharge rate of 0.5 C, EOCV of 4.0 V and DOD of 0.4 have been used to validate cycle life models. Good agreement between the simulations and the experiments has been achieved up to 1968 cycles with both models. Simulation of cycle life of battery under multiple cycling regimes has also been demonstrated.

  19. Lithium-Ion Batteries Being Evaluated for Low-Earth-Orbit Applications

    NASA Technical Reports Server (NTRS)

    McKissock, Barbara I.

    2005-01-01

    The performance characteristics and long-term cycle life of aerospace lithium-ion (Li-ion) batteries in low-Earth-orbit applications are being investigated. A statistically designed test using Li-ion cells from various manufacturers began in September 2004 to study the effects of temperature, end-of-charge voltage, and depth-of-discharge operating conditions on the cycle life and performance of these cells. Performance degradation with cycling is being evaluated, and performance characteristics and failure modes are being modeled statistically. As technology improvements are incorporated into aerospace Li-ion cells, these new designs can be added to the test to evaluate the effect of the design changes on performance and life. Cells from Lithion and Saft have achieved over 2000 cycles under 10 different test condition combinations and are being evaluated. Cells from Mine Safety Appliances (MSA) and modules made up of commercial-off-the-shelf 18650 Li-ion cells connected in series/parallel combinations are scheduled to be added in the summer of 2005. The test conditions include temperatures of 10, 20, and 30 C, end-of-charge voltages of 3.85, 3.95, and 4.05 V, and depth-of-discharges from 20 to 40 percent. The low-Earth-orbit regime consists of a 55 min charge, at a constant-current rate that is 110 percent of the current required to fully recharge the cells in 55 min until the charge voltage limit is reached, and then at a constant voltage for the remaining charge time. Cells are discharged for 35 min at the current required for their particular depth-of-discharge condition. Cells are being evaluated in four-cell series strings with charge voltage limits being applied to individual cells by the use of charge-control units designed and produced at the NASA Glenn Research Center. These charge-control units clamp the individual cell voltages as each cell reaches its end-of-charge voltage limit, and they bypass the excess current from that cell, while allowing the full current flow to the remaining cells in the pack. The goal of this evaluation is to identify conditions and cell designs for Li-ion technology that can achieve more than 30,000 low-Earth-orbit cycles. Testing is being performed at the Naval Surface Warfare Center, Crane Division, in Crane, Indiana.

  20. Automated Coal-Mine Shuttle Car

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1984-01-01

    Cable-guided car increases efficiency in underground coal mines. Unmanned vehicle contains storage batteries in side panels for driving traction motors located in wheels. Batteries recharged during inactive periods or slid out as unit and replaced by fresh battery bank. Onboard generator charges batteries as car operates.

  1. Electrochemical characterization of Fe-air rechargeable oxide battery in planar solid oxide cell stacks

    NASA Astrophysics Data System (ADS)

    Fang, Qingping; Berger, Cornelius M.; Menzler, Norbert H.; Bram, Martin; Blum, Ludger

    2016-12-01

    Iron-air rechargeable oxide batteries (ROB) comprising solid oxide cells (SOC) as energy converters and Fe/metal-oxide redox couples were characterized using planar SOC stacks. The charge and discharge of the battery correspond to the operations in the electrolysis and fuel cell modes, respectively, but with a stagnant atmosphere consisting of hydrogen and steam. A novel method was employed to establish the stagnant atmosphere for battery testing during normal SOC operation without complicated modification to the test bench and stack/battery concept. Manipulation of the gas compositions during battery operation was not necessary, but the influence of the leakage current from the testing system had to be considered. Batteries incorporating Fe2O3/8YSZ, Fe2O3/CaO and Fe2O3/ZrO2 storage materials were characterized at 800 °C. A maximum charge capacity of 30.4 Ah per layer (with an 80 cm2 active cell area) with ∼0.5 mol Fe was reached with a current of 12 A. The charge capacity lost 11% after ∼130 ROB cycles due to the increased agglomeration of active materials and formation of a dense oxide layer on the surface. The round trip efficiencies of the tested batteries were ≤84% due to the large internal resistance. With state-of-the-art cells, the round trip efficiency can be further improved.

  2. Experimental data of lithium-ion battery and ultracapacitor under DST and UDDS profiles at room temperature.

    PubMed

    Wang, Yujie; Liu, Chang; Pan, Rui; Chen, Zonghai

    2017-06-01

    This article provides the dataset of both the LiFePO 4 type lithium-ion battery (LIB) behavior and the Maxwell ultracapacitor behavior. The dynamic stress test (DST) condition and the urban dynamometer driving schedule (UDDS) condition were carried out to analyze the battery/ultracapacitor features. The datasets were achieved at room temperature, in August, 2016. The shared data contributes to clarify the behavior of the LIBs and ultracapacitors and can be used to predict the state-of-charge (SOC) of the LIBs and ultracapacitors, which is also shown in the article of "Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator" (United States Advanced Battery Consortium, 1996) [1].

  3. On-board adaptive model for state of charge estimation of lithium-ion batteries based on Kalman filter with proportional integral-based error adjustment

    NASA Astrophysics Data System (ADS)

    Wei, Jingwen; Dong, Guangzhong; Chen, Zonghai

    2017-10-01

    With the rapid development of battery-powered electric vehicles, the lithium-ion battery plays a critical role in the reliability of vehicle system. In order to provide timely management and protection for battery systems, it is necessary to develop a reliable battery model and accurate battery parameters estimation to describe battery dynamic behaviors. Therefore, this paper focuses on an on-board adaptive model for state-of-charge (SOC) estimation of lithium-ion batteries. Firstly, a first-order equivalent circuit battery model is employed to describe battery dynamic characteristics. Then, the recursive least square algorithm and the off-line identification method are used to provide good initial values of model parameters to ensure filter stability and reduce the convergence time. Thirdly, an extended-Kalman-filter (EKF) is applied to on-line estimate battery SOC and model parameters. Considering that the EKF is essentially a first-order Taylor approximation of battery model, which contains inevitable model errors, thus, a proportional integral-based error adjustment technique is employed to improve the performance of EKF method and correct model parameters. Finally, the experimental results on lithium-ion batteries indicate that the proposed EKF with proportional integral-based error adjustment method can provide robust and accurate battery model and on-line parameter estimation.

  4. Modeling of the cranking and charging processes of conventional valve regulated lead acid (VRLA) batteries in micro-hybrid applications

    NASA Astrophysics Data System (ADS)

    Gou, Jun; Lee, Anson; Pyko, Jan

    2014-10-01

    The cranking and charging processes of a VRLA battery during stop-start cycling in micro-hybrid applications were simulated by one dimensional mathematical modeling, to study the formation and distribution of lead sulfate across the cell and analyze the resulting effect on battery aging. The battery focused on in this study represents a conventional VRLA battery without any carbon additives in the electrodes or carbon-based electrodes. The modeling results were validated against experimental data and used to analyze the "sulfation" of negative electrodes - the common failure mode of lead acid batteries under high-rate partial state of charge (HRPSoC) cycling. The analyses were based on two aging mechanisms proposed in previous studies and the predictions showed consistency with the previous teardown observations that the sulfate formed at the negative interface is more difficult to be converted back than anywhere else in the electrodes. The impact of cranking pulses during stop-start cycling on current density and the corresponding sulfate layer production was estimated. The effects of some critical design parameters on sulfate formation, distribution and aging over cycling were investigated, which provided guidelines for developing models and designing of VRLA batteries in micro-hybrid applications.

  5. Design and simulation of a fast-charging station for plug-in hybrid electric vehicle (PHEV) batteries

    NASA Astrophysics Data System (ADS)

    de Leon, Nathalie Pulmones

    2011-12-01

    With the increasing interest in green technologies in transportation, plug-in hybrid electric vehicles (PHEV) have proven to be the best short-term solution to minimize greenhouse gas emissions. Despite such interest, conventional vehicle drivers are still reluctant in using such a new technology, mainly because of the long duration (4-8 hours) required to charge PHEV batteries with the currently existing Level I and II chargers. For this reason, Level III fast-charging stations capable of reducing the charging duration to 10-15 minutes are being considered. The present thesis focuses on the design of a fast-charging station that uses, in addition to the electrical grid, two stationary energy storage devices: a flywheel energy storage and a supercapacitor. The power electronic converters used for the interface of the energy sources with the charging station are designed. The design also focuses on the energy management that will minimize the PHEV battery charging duration as well as the duration required to recharge the energy storage devices. For this reason, an algorithm that minimizes durations along with its mathematical formulation is proposed, and its application in fast charging environment will be illustrated by means of two scenarios.

  6. PSO Based PI Controller Design for a Solar Charger System

    PubMed Central

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs). PMID:23766713

  7. PSO based PI controller design for a solar charger system.

    PubMed

    Yau, Her-Terng; Lin, Chih-Jer; Liang, Qin-Cheng

    2013-01-01

    Due to global energy crisis and severe environmental pollution, the photovoltaic (PV) system has become one of the most important renewable energy sources. Many previous studies on solar charger integrated system only focus on load charge control or switching Maximum Power Point Tracking (MPPT) and charge control modes. This study used two-stage system, which allows the overall portable solar energy charging system to implement MPPT and optimal charge control of Li-ion battery simultaneously. First, this study designs a DC/DC boost converter of solar power generation, which uses variable step size incremental conductance method (VSINC) to enable the solar cell to track the maximum power point at any time. The voltage was exported from the DC/DC boost converter to the DC/DC buck converter, so that the voltage dropped to proper voltage for charging the battery. The charging system uses constant current/constant voltage (CC/CV) method to charge the lithium battery. In order to obtain the optimum PI charge controller parameters, this study used intelligent algorithm to determine the optimum parameters. According to the simulation and experimental results, the control parameters resulted from PSO have better performance than genetic algorithms (GAs).

  8. Efficient synthesis of tungsten oxide hydrate-based nanocomposites for applications in bifunctional electrochromic-energy storage devices

    NASA Astrophysics Data System (ADS)

    Chang, Xueting; Hu, Ruirui; Sun, Shibin; Lu, Tong; Liu, Tao; Lei, Yanhua; Dong, Lihua; Yin, Yansheng; Zhu, Yanqiu

    2018-05-01

    In this work, we realized the large-scale synthesis of WO3 · H2O nanoflakes (NFs), g-C3N4/WO3 · H2O nanocomposite (NC) and graphene (G)/WO3 · H2O NC via a sonochemical process with tungsten salt as the precursor, g-C3N4 or G sheets as the supports, and distilled water as the solvent. Both the g-C3N4/WO3 · H2O NC and G/WO3 · H2O NC exhibited much better electrochromic (EC) performance (higher coloration efficiencies and faster response times) than that of the WO3 · H2O NFs. Using the WO3 · H2O-based materials as electrode materials, EC batteries that integrate the energy storage and EC functions in one device have been assembled. The energy status of the EC batteries could be visually indicated by the reversible color variations. Compared with the plain WO3 · H2O-based EC batteries, the NC-based EC batteries possessed a lower color contrast between the charged and discharged conditions but much longer discharge durations. The EC batteries could be quickly charged in a few seconds by adding H2O2, and the charged batteries exhibited significantly-enhanced discharging durations in comparison with the initial ones. The g-C3N4/WO3 · H2O NC-EC batteries charged by a small amount of H2O2 could produce a long discharging duration up to 760 min.

  9. Tuning the Morphology of Li2O2 by Noble and 3d metals: A Planar Model Electrode Study for Li-O2 Battery.

    PubMed

    Yang, Yao; Liu, Wei; Wu, Nian; Wang, Xiaochen; Zhang, Tao; Chen, Linfeng; Zeng, Rui; Wang, Yingming; Lu, Juntao; Fu, Lei; Xiao, Li; Zhuang, Lin

    2017-06-14

    In this work, a planar model electrode method has been used to investigate the structure-activity relationship of multiple noble and 3d metal catalysts for the cathode reaction of Li-O 2 battery. The result shows that the battery performance (discharge/charge overpotential) strongly depends not only on the type of catalysts but also on the morphology of the discharge product (Li 2 O 2 ). Specifically, according to electrochemical characterization and scanning electron microscopy (SEM) observation, noble metals (Pd, Pt, Ru, Ir, and Au) show excellent battery performance (smaller discharge/charge overpotential), with wormlike Li 2 O 2 particles with size less than 200 nm on their surfaces. On the other hand, 3d metals (Fe, Co, Ni, and Mn) offered poor battery performance (larger discharge/charge overpotential), with much larger Li 2 O 2 particles (1 μm to a few microns) on their surfaces after discharging. Further research shows that a "volcano plot" is found by correlating the discharging/charging plateau voltage with the adsorption energy of LiO 2 on different metals. The metals with better battery performance and worm-like-shaped Li 2 O 2 are closer to the top of the "volcano", indicating adsorption energy of LiO 2 is one of the key characters for the catalyst to reach a good performance for the oxygen electrode of Li-O 2 battery, and it has a strong influence on the morphology of the discharge product on the electrode surface.

  10. The staging mechanism of AlCl4 intercalation in a graphite electrode for an aluminium-ion battery.

    PubMed

    Bhauriyal, Preeti; Mahata, Arup; Pathak, Biswarup

    2017-03-15

    Identifying a suitable electrode material with desirable electrochemical properties remains a primary challenge for rechargeable Al-ion batteries. Recently an ultrafast rechargeable Al-ion battery was reported with high charge/discharge rate, (relatively) high discharge voltage and high capacity that uses a graphite-based cathode. Using calculations from first-principles, we have investigated the staging mechanism of AlCl 4 intercalation into bulk graphite and evaluated the stability, specific capacity and voltage profile of AlCl 4 intercalated compounds. Ab initio molecular dynamics is performed to investigate the thermal stability of AlCl 4 intercalated graphite structures. Our voltage profiles show that the first AlCl 4 intercalation step could be a more sluggish step than the successive intercalation steps. However, the diffusion of AlCl 4 is very fast in the expanded graphite host layers with a diffusion barrier of ∼0.01 eV, which justifies the ultrafast charging rate of a graphite based Al-ion battery. And such an AlCl 4 intercalated battery provides an average voltage of 2.01-2.3 V with a maximum specific capacity of 69.62 mA h g -1 , which is excellent for anion intercalated batteries. Our density of states and Bader charge analysis shows that the AlCl 4 intercalation into the bulk graphite is a charging process. Hence, we believe that our present study will be helpful in understanding the staging mechanism of AlCl 4 intercalation into graphite-like layered electrodes for Al-ion batteries, thus encouraging further experimental work.

  11. Insights into the Effects of Zinc Doping on Structural Phase Transition of P2-Type Sodium Nickel Manganese Oxide Cathodes for High-Energy Sodium Ion Batteries.

    PubMed

    Wu, Xuehang; Xu, Gui-Liang; Zhong, Guiming; Gong, Zhengliang; McDonald, Matthew J; Zheng, Shiyao; Fu, Riqiang; Chen, Zonghai; Amine, Khalil; Yang, Yong

    2016-08-31

    P2-type sodium nickel manganese oxide-based cathode materials with higher energy densities are prime candidates for applications in rechargeable sodium ion batteries. A systematic study combining in situ high energy X-ray diffraction (HEXRD), ex situ X-ray absorption fine spectroscopy (XAFS), transmission electron microscopy (TEM), and solid-state nuclear magnetic resonance (SS-NMR) techniques was carried out to gain a deep insight into the structural evolution of P2-Na0.66Ni0.33-xZnxMn0.67O2 (x = 0, 0.07) during cycling. In situ HEXRD and ex situ TEM measurements indicate that an irreversible phase transition occurs upon sodium insertion-extraction of Na0.66Ni0.33Mn0.67O2. Zinc doping of this system results in a high structural reversibility. XAFS measurements indicate that both materials are almost completely dependent on the Ni(4+)/Ni(3+)/Ni(2+) redox couple to provide charge/discharge capacity. SS-NMR measurements indicate that both reversible and irreversible migration of transition metal ions into the sodium layer occurs in the material at the fully charged state. The irreversible migration of transition metal ions triggers a structural distortion, leading to the observed capacity and voltage fading. Our results allow a new understanding of the importance of improving the stability of transition metal layers.

  12. a Movable Charging Unit for Green Mobility

    NASA Astrophysics Data System (ADS)

    ElBanhawy, E. Y.; Nassar, K.

    2013-05-01

    Battery swapping of electric vehicles (EVs) matter appears to be the swiftest and most convenient to users. The existence of swapping stations increases the feasibility of distributed energy storage via the electric grid. However, it is a cost-prohibitive way of charging. Early adaptors' preferences of /perceptions about EV system in general, has its inflectional effects on potential users hence the market penetration level. Yet, the charging matter of electric batteries worries the users and puts more pressure on them with the more rigorous planning-ahead they have to make prior to any trip. This paper presents a distinctive way of charging. It aims at making the overall charging process at ease. From a closer look into the literature, most of EVs' populations depend on domestic charge. Domestic charging gives them more confidence and increases the usability factor of the EV system. Nevertheless, they still need to count on the publically available charging points to reach their destination(s). And when it comes to multifamily residences, it becomes a thorny problem as these apartments do not have a room for charging outlets. Having said the irritating charging time needed to fatten the batteries over the day and the minimal average mileage drove daily, hypothetically, home delivery charging (Movable Charging Unit-MCU) would be a stupendous solution. The paper discusses the integration of shortest path algorithm problem with the information about EV users within a metropolitan area, developing an optimal route for a charging unit. This MCU delivers charging till homes whether by swapping batteries or by fast charging facility. Information about users is to be provided by the service provider of the neighbourhood, which includes charging patterns (timing, power capacity). This problem lies under the shortest path algorithms problem. It provides optimal route of charging that in return shall add more reliability and usability values and alleviate the charging/ limited range / daily planning anxieties. The model is in a very preliminary stage of development, future work is needed to elaborate on the model and developing a complete feasibility study.

  13. Fast charging nickel-metal hydride traction batteries

    NASA Astrophysics Data System (ADS)

    Yang, Xiao Guang; Liaw, Bor Yann

    This paper describes the fast charge ability, or "fast rechargeability", of nominal 85 Ah Ni-MH modules under various fast charge conditions, including constant current (CC); typically 1-3C, and constant power (CP) regimes. Our tests revealed that there is no apparent difference between CC and CP fast charge regimes with respect to charge efficiency and time. Following the USABC Electric Vehicle Battery Test Procedures Manual (Revision 2, 1996), we demonstrated that we were able to return 40% state of charge (SOC) from 60% depth of discharge (DOD) to 20% DOD within 15 min. Most importantly, we found that the internal pressure of the cell is the most critical parameter in the control of the fast charge process and the safe operation of the modules.

  14. Molecular ion battery: a rechargeable system without using any elemental ions as a charge carrier

    PubMed Central

    Yao, Masaru; Sano, Hikaru; Ando, Hisanori; Kiyobayashi, Tetsu

    2015-01-01

    Is it possible to exceed the lithium redox potential in electrochemical systems? It seems impossible to exceed the lithium potential because the redox potential of the elemental lithium is the lowest among all the elements, which contributes to the high voltage characteristics of the widely used lithium ion battery. However, it should be possible when we use a molecule-based ion which is not reduced even at the lithium potential in principle. Here we propose a new model system using a molecular electrolyte salt with polymer-based active materials in order to verify whether a molecular ion species serves as a charge carrier. Although the potential of the negative-electrode is not yet lower than that of lithium at present, this study reveals that a molecular ion can work as a charge carrier in a battery and the system is certainly a molecular ion-based “rocking chair” type battery. PMID:26043147

  15. Space platform power system hardware testbed

    NASA Technical Reports Server (NTRS)

    Sable, D.; Patil, A.; Sizemore, T.; Deuty, S.; Noon, J.; Cho, B. H.; Lee, F. C.

    1991-01-01

    The scope of the work on the NASA Space Platform includes the design of a multi-module, multi-phase boost regulator, and a voltage-fed, push-pull autotransformer converter for the battery discharger. A buck converter was designed for the charge regulator. Also included is the associated mode control electronics for the charger and discharger, as well as continued development of a comprehensive modeling and simulation tool for the system. The design of the multi-module boost converter is discussed for use as a battery discharger. An alternative battery discharger design is discussed using a voltage-fed, push-pull autotransformer converter. The design of the charge regulator is explained using a simple buck converter. The design of the mode controller and effects of locating the bus filter capacitor bank 20 feet away from the power ORU are discussed. A brief discussion of some alternative topologies for battery charging and discharging is included. The power system modeling is described.

  16. A Window into Longer Lasting Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-11-29

    There’s a new tool in the push to engineer rechargeable batteries that last longer and charge more quickly. An X-ray microscopy technique recently developed at Berkeley Lab has given scientists the ability to image nanoscale changes inside lithium-ion battery particles as they charge and discharge. The real-time images provide a new way to learn how batteries work, and how to improve them. The method was developed at Berkeley Lab’s Advanced Light Source, a DOE Office of Science User Facility, by a team of researchers from the Department of Energy’s SLAC National Accelerator Laboratory, Berkeley Lab, Stanford University, and other institutions.

  17. Laboratory facility for testing electric-vehicle batteries Test rig for simulating duty cycles with different discharge modes

    NASA Astrophysics Data System (ADS)

    Hamilton, J. A.; Rand, D. A. J.

    1983-03-01

    A test rig has been designed and constructed to examine the performance of batteries under laboratory conditions that simulate the power characteristics of electric vehicles. Each station in the rig subjects a battery to continuous charge/discharge cycles, with an equalising charge every eighth cycle. The battery discharge follows the current-verse-time profile of a given vehicle operating under a driving schedule normal to road service. The test rig allows both smooth- and pulsed-current discharge to be investigated. Data collection is accomplished either with multi-pen recorders or with a computer-based information logger.

  18. The harmonic impact of electric vehicle battery charging

    NASA Astrophysics Data System (ADS)

    Staats, Preston Trent

    The potential widespread introduction of the electric vehicle (EV) presents both opportunities and challenges to the power systems engineers who will be required to supply power to EV batteries. One of the challenges associated with EV battery charging comes from the potentially high harmonic currents associated with the conversion of ac power system voltages to dc EV battery voltages. Harmonic currents lead to increased losses in distribution circuits and reduced life expectancy of such power distribution components as capacitors and transformers. Harmonic current injections also cause harmonic voltages on power distribution networks. These distorted voltages can affect power system loads and specific standards exist regulating acceptable voltage distortion. This dissertation develops and presents the theory required to evaluate the electric vehicle battery charger as a harmonic distorting load and its possible harmonic impact on various aspects of power distribution systems. The work begins by developing a method for evaluating the net harmonic current injection of a large collection of EV battery chargers which accounts for variation in the start-time and initial battery state-of-charge between individual chargers. Next, this method is analyzed to evaluate the effect of input parameter variation on the net harmonic currents predicted by the model. We then turn to an evaluation of the impact of EV charger harmonic currents on power distribution systems, first evaluating the impact of these currents on a substation transformer and then on power distribution system harmonic voltages. The method presented accounts for the uncertainty in EV harmonic current injections by modeling the start-time and initial battery state-of-charge (SOC) of an individual EV battery charger as random variables. Thus, the net harmonic current, and distribution system harmonic voltages are formulated in a stochastic framework. Results indicate that considering variation in start-time and SOC leads to reduced estimates of harmonic current injection when compared to more traditional methods that do not account for variation. Evaluation of power distribution system harmonic voltages suggests that for any power distribution network there is a definite threshold penetration of EVs, below which the total harmonic distortion of voltage exceeds 5% at an insignificant number of buses. Thus, most existing distribution systems will probably be able to accommodate the early introduction of EV battery charging without widespread harmonic voltage problems.

  19. RCA Satcom: In-orbit experience

    NASA Technical Reports Server (NTRS)

    Debaylo, P. W.; Gaston, S. J.

    1980-01-01

    The system characteristics of the Satcom batteries and Satcom power system are briefly discussed. Performance of the nickel cadmium 22 cell batteries onboard in parallel with independent redundant charges providing the charge rates is reported. Performance onboard reconditioning with individual cell bypasses with 1 ohm resistors is discussed for the F-1 and F-2 spacecraft.

  20. High resolution Li depth profiling of solid state Li ion battery by TERD technique with high energy light ions

    NASA Astrophysics Data System (ADS)

    Morita, K.; Tsuchiya, B.; Ohnishi, J.; Yamamoto, T.; Iriyama, Y.; Tsuchida, H.; Majima, T.; Suzuki, K.

    2018-07-01

    Li depth profiles in Au/Si/LiPON/LCO/Au (LCO = LiCoO2, LiPON = Li3.3PO3.8N0.2) thin films battery under charging condition, prepared on self-supporting Al substrate, have been in situ measured by means of transmission elastic recoil detection (TERD) and Rutherford backscattering spectroscopy (RBS) techniques not only with 5.4 MeV He2+ ion beam without absorber, but also 9 MeV O4+ ion beam with Al absorber. In experiments with 5.4 MeV He2+, well-resolved step-wise TERD spectra have been observed, from which thickness and Li composition of constituent films of the battery are directly estimated. The Li transport from LCO to Si films through LiPON as well as return-back of Li from Si to LCO films and Li leakage into the Al substrate out of the battery system by over-charging under charging condition have been observed in the experiments both 5.4 MeV He2+ and 9 MeV O4+. The latter result indicates that these techniques are applicable to testing degradation of the battery performance by repetition of charging and discharging. Both results are compared in details with each other.

  1. High temperature charging efficiency and degradation behavior of high capacity Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Choi, Jeon; Kim, Joong

    2001-02-01

    Recently the Ni/MH secondary battery has been studied extensively to achieve higher energy density, longer cycle life and faster charging-discharging rate for electric vehicles and portable computers, and etc. In this work, the charging efficiency of the Ni-MH battery which uses Ni electrode with addition of various compounds and the degradation behavior of the 90Ah battery were studied. The battery using the Ni electrode with Ca(OH)2 addition showed the charging efficiency and the utilization ratio significantly better than electrodes without added compounds. After 418 cycles, the residual capacities at the Ni electrode showed nearly the same values in the upper, middle and lower regions. In the case of the MH electrode, the residual capacity in the upper region appeared lower than that in other regions. As a result of ICP analysis, the amount of dissolved elements in the three regions appeared almost the same. The faster degradation in the upper region of the MH electrode was caused by the TiO2 oxide film formed at the electrode surface because of overcharging. The thickness of the oxide film increases with cycling, so it will form a layer that is not able to allow hydrogen to penetrate into the MH electrode.

  2. Analyzing Power Supply and Demand on the ISS

    NASA Technical Reports Server (NTRS)

    Thomas, Justin; Pham, Tho; Halyard, Raymond; Conwell, Steve

    2006-01-01

    Station Power and Energy Evaluation Determiner (SPEED) is a Java application program for analyzing the supply and demand aspects of the electrical power system of the International Space Station (ISS). SPEED can be executed on any computer that supports version 1.4 or a subsequent version of the Java Runtime Environment. SPEED includes an analysis module, denoted the Simplified Battery Solar Array Model, which is a simplified engineering model of the ISS primary power system. This simplified model makes it possible to perform analyses quickly. SPEED also includes a user-friendly graphical-interface module, an input file system, a parameter-configuration module, an analysis-configuration-management subsystem, and an output subsystem. SPEED responds to input information on trajectory, shadowing, attitude, and pointing in either a state-of-charge mode or a power-availability mode. In the state-of-charge mode, SPEED calculates battery state-of-charge profiles, given a time-varying power-load profile. In the power-availability mode, SPEED determines the time-varying total available solar array and/or battery power output, given a minimum allowable battery state of charge.

  3. Development and Testing of an Ultracapacitor Based Uninterruptible Power Supply (UPS) System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2010-01-01

    The NASA Glenn Research Center (GRC) initiated the development and testing of an ultracapacitor based uninterruptible power supply (UPS) system as a means to provide backup power for the many critical NASA applications. A UPS system typically utilizes batteries for energy storage. The battery is the most vulnerable part of the UPS system, requiring regular maintenance and replacement. Battery performance is also extremely temperature dependent. Ultracapacitors are ideal for UPS systems where long life, maintenance free operation, and excellent low temperature performance is essential. State of the art symmetric ultracapacitors were used for these tests. The ultracapacitors were interconnected in an innovative configuration to minimize interconnection impedance, and to provide voltage balancing. Ultracapacitors can be charged extremely rapidly and supply high current, which are essential characteristics for an effective UPS system. Charging ultracapacitors is significantly less complex than charging batteries since there is no chemical reaction occurring while charging ultracapacitors. The report concludes that the implementation of symmetric ultracapacitors in a UPS system can provide significant improvements in power system performance and reliability.

  4. Design and implementation of a fuzzy logic-based state-of-charge meter for Li-ion batteries used in portable defibrillators

    NASA Astrophysics Data System (ADS)

    Singh, Pritpal; Vinjamuri, Ramana; Wang, Xiquan; Reisner, David

    A fuzzy logic-based state-of-charge meter is being developed for Li-ion batteries for potential use in portable defibrillators. ac impedance and voltage recovery measurements have been made which are used as the input parameters for the fuzzy logic model. The load profile for the Li-ion battery packs comprises a continuous 1.4 A constant current discharge periodically interrupted by 10 A pulses. As the battery is cycled the available capacity diminishes and so the number of 10 A pulses that may be delivered decreases. Measurements are being made on a total of three battery packs at three different temperatures (0, 20 and 40 °C) and as expected the number of pulses deliverable by the battery pack diminishes as temperature is decreased. For example, at room temperature the battery pack was initially able to deliver 42 pulses early in the cycle life whereas at 0 °C the battery-pack is only able to initially deliver 12 pulses. The voltage recovery profile upon removal of the 10 A load has been used both in the time domain and frequency domain to develop fuzzy logic models to estimate the number of remaining pulses that the battery-pack can deliver. Accurate models are being developed to estimate the number of pulses that the battery pack can deliver at various stages of its cycle life and at the different temperatures. With sufficient data collected for the battery packs at room temperature accurate fuzzy logic models have been developed for estimation of state-of-charge and implemented in the Motorola MC 68HC12 microcontroller.

  5. A multi-port power electronics interface for battery powered electric vehicles: Application of inductively coupled wireless power transfer and hybrid energy storage system

    NASA Astrophysics Data System (ADS)

    McDonough, Matthew Kelly

    Climate change, pollution, and geopolitical conflicts arising from the extreme wealth concentrations caused by fossil fuel deposits are just a few of the side-effects of the way that we fuel our society. A new method to power our civilization is becoming more and more necessary. Research for new, more sustainable fuel sources is already underway due to research in wind, solar, geothermal, and hydro power. However this focus is mainly on stationary applications. A large portion of fossil fuel usage comes from transportation. Unfortunately, the transition to cleaner transportation fuels is being stunted by the inability to store adequate amounts of energy in electro-chemical batteries. The idea of charging while driving has been proposed by many researchers, however several challenges still exist. In this work some of these challenges are addressed. Specifically, the ability to route power from multiple sources/loads is investigated. Special attention is paid to adjusting the time constant of particular converters, namely the battery and ultra-capacitor converters to reduce the high frequency and high magnitude current components applied to the battery terminals. This is done by developing a closed loop model of the entire multi-port converter, including the state of charge of the ultra-capacitors. The development of closed loop models and two experimental testbeds for use as stationary vehicle charging platforms with their unique set of sources/loads are presented along-side an on-board charger to demonstrate the similarities and differences between stationary charging and mobile charging. Experimental results from each are given showing that it is not only possible, but feasible to utilize Inductively Coupled Wireless Power Transfer (ICWPT) to charge a battery powered electric vehicle while driving and still protect the life-span of the batteries under the new, harsher conditions generated by the ICWPT system.

  6. 46 CFR 129.350 - Batteries-general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Batteries-general. 129.350 Section 129.350 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.350 Batteries—general. (a) Wherever a battery is charged, there must be natural or induced ventilation to dissipate the gases generated. (b) Each battery...

  7. 46 CFR 129.350 - Batteries-general.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Batteries-general. 129.350 Section 129.350 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.350 Batteries—general. (a) Wherever a battery is charged, there must be natural or induced ventilation to dissipate the gases generated. (b) Each battery...

  8. 46 CFR 129.350 - Batteries-general.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Batteries-general. 129.350 Section 129.350 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.350 Batteries—general. (a) Wherever a battery is charged, there must be natural or induced ventilation to dissipate the gases generated. (b) Each battery...

  9. 46 CFR 129.350 - Batteries-general.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Batteries-general. 129.350 Section 129.350 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.350 Batteries—general. (a) Wherever a battery is charged, there must be natural or induced ventilation to dissipate the gases generated. (b) Each battery...

  10. 46 CFR 129.350 - Batteries-general.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Batteries-general. 129.350 Section 129.350 Shipping... INSTALLATIONS Power Sources and Distribution Systems § 129.350 Batteries—general. (a) Wherever a battery is charged, there must be natural or induced ventilation to dissipate the gases generated. (b) Each battery...

  11. Effect of Polymer Electrode Morphology on Performance of a Lithium/Polypyrrole Battery. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Nicholson, Marjorie Anne

    1991-01-01

    A variety of conducting polymer batteries were described in the recent literature. In this work, a Li/Polypyrrole secondary battery is described. The effect of controlling the morphology of the polymer on enhancement of counterion diffusion in the polymer phase is explored. A method of preparing conducting polymers was developed which yields high surface area per unit volume of electrode material. A porous membrane is used as a template in which to electrochemically polymerize pyrrole, then the membrane is dissolved, leaving the polymer in a fibrillar form. Conventionally, the polymer is electrochemically polymerized as a dense polymer film on a smooth Pt disk electrode. Previous work has shown that when the polymer is electrochemically polymerized in fribrillar form, charge transport rates are faster and charge capacities are greater than for dense, conventionally grown films containing the same amount of polymer. The purpose is to expand previous work by further investigating the possibilities of the optimization of transport rates in polypyrrole films by controlling the morphology of the films. The utility of fibrillar polypyrrole as a cathode material in a lithium/polymer secondary battery is then assessed. The performance of the fibrillar battery is compared to the performance of an analogous battery which employed a conventionally grown polypyrrole film. The study includes a comparison of cyclic voltammetry, shape of charge/discharge curves, discharge time and voltage, cycle life, coulombic efficiencies, charge capacities, energy densities, and energy efficiencies.

  12. Characterization of SnO2/Ni/SiO2-MCP anode in three-dimensional lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Lou, Xuefeng; Xu, Shaohui; Zhu, Yiping; Wang, Lianwei; Chu, Paul K.

    2013-12-01

    By combining a SnO2 thin film with silicon dioxide microchannel plate (SiO2-MCP), a three-dimensional (3D) structure with enough space to accommodate the volume change of SnO2 during charging-discharging is produced by MEMS and electroless deposition. Owing to the special structure of the MCP, the battery is able to deliver a reversible Li storage capacity of 408 mAhg-1 after 100 cycles. If the current density is reduced to 200 mAg-1 at a constant current during charging and discharging, the battery exhibits reversible capacities of 1575 and 996 mAhg-1 in the first discharging and charging cycle, respectively. However, a reversible Li-storage capacity of only 298 mAhg-1 is obtained after 50 cycles of deep charging at a current of 200 mAg-1. It is found that silicon is involved in the charging-discharging process at a low current.

  13. Fatigue of LiNi0.8Co0.15Al0.05O2 in commercial Li ion batteries

    NASA Astrophysics Data System (ADS)

    Kleiner, Karin; Dixon, Ditty; Jakes, Peter; Melke, Julia; Yavuz, Murat; Roth, Christina; Nikolowski, Kristian; Liebau, Verena; Ehrenberg, Helmut

    2015-01-01

    The degradation of LiNi0.8Co0.15Al0.05O2 (LNCAO), a cathode material in lithium-ion-batteries, was studied using in situ powder diffraction and in situ Ni K edge X-ray absorption spectroscopy (XAS). The fatigued material was taken from a 7 Ah battery which was cycled for 34 weeks under defined durability conditions. Meanwhile, a cell was stored, as reference, under controlled conditions without electrochemical treatment. The fatigued LNCAO used in this study showed a capacity loss of 26% ± 9% compared to the non-cycled material. During charge and discharge the local and the overall structure of LNCAO was investigated by X-ray near edge structure (XANES) analysis, the extended X-ray absorption fine structure (EXAFS) analysis and by using Rietveld refinement of in situ powder diffraction patterns. Both powder diffraction and XAS revealed additional, rhombohedral phases which do not change with electrochemical cycling. Moreover, a phase with the lattice parameters of fully lithiated LNCAO was still present in the fatigued material at high potentials, while it was absent in the non-fatigued reference material. The coexistence of these phases is described by domains within the LNCAO particles, in correlation with the observed fatigue.

  14. Molecular dynamics simulations of the first charge of a Li-ion-Si-anode nanobattery.

    PubMed

    Galvez-Aranda, Diego E; Ponce, Victor; Seminario, Jorge M

    2017-04-01

    Rechargeable lithium-ion batteries are the most popular devices for energy storage but still a lot of research needs to be done to improve their cycling and storage capacity. Silicon has been proposed as an anode material because of its large theoretical capacity of ∼3600 mAh/g. Therefore, focus is needed on the lithiation process of silicon anodes where it is known that the anode increases its volume more than 300%, producing cracking and other damages. We performed molecular dynamics atomistic simulations to study the swelling, alloying, and amorphization of a silicon nanocrystal anode in a full nanobattery model during the first charging cycle. A dissolved salt of lithium hexafluorophosphate in ethylene carbonate was chosen as the electrolyte solution and lithium cobalt oxide as cathode. External electric fields are applied to emulate the charging, causing the migration of the Li-ions from the cathode to the anode, by drifting through the electrolyte solution, thus converting pristine Si gradually into Li 14 Si 5 when fully lithiated. When the electric field is applied to the nanobattery, the temperature never exceeds 360 K due to a temperature control imposed resembling a cooling mechanism. The volume of the anode increases with the amorphization of the silicon as the external field is applied by creating a layer of LiSi alloy between the electrolyte and the silicon nanocrystal and then, at the arrival of more Li-ions changing to an alloy, where the drift velocity of Li-ions is greater than the velocity in the initial nanocrystal structure. Charge neutrality is maintained by concerted complementary reduction-oxidation reactions at the anode and cathode, respectively. In addition, the nanobattery model developed here can be used to study charge mobility, current density, conductance and resistivity, among several other properties of several candidate materials for rechargeable batteries and constitutes the initial point for further studies on the formation of the solid electrolyte interphase in the anode. Graphical Abstract Nanobattery: LiCoO 2 cathode, electrolyte solution of 1M Li + PF 6 - in ethylene carbonate, and Si crystal anode, which changes its volume due to lithiation during the first charge.

  15. Spatiotemporal electrochemical measurements across an electric double layer capacitor electrode with application to aqueous sodium hybrid batteries

    NASA Astrophysics Data System (ADS)

    Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn

    2014-02-01

    This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.

  16. Efficient Charging of Li‐Ion Batteries with Pulsed Output Current of Triboelectric Nanogenerators

    PubMed Central

    Pu, Xiong; Liu, Mengmeng; Li, Linxuan; Zhang, Chi; Pang, Yaokun; Jiang, Chunyan; Shao, Lihua

    2016-01-01

    The triboelectric nanogenerator (TENG) is a promising mechanical energy harvesting technology, but its pulsed output and the instability of input energy sources make associated energy‐storage devices necessary for real applications. In this work, feasible and efficient charging of Li‐ion batteries by a rotating TENG with pulsed output current is demonstrated. In‐depth discussions are made on how to maximize the power‐storage efficiency by achieving an impedance match between the TENG and a battery with appropriate design of transformers. With a transformer coil ratio of 36.7, ≈72.4% of the power generated by the TENG at 250 rpm can be stored in an LiFePO4–Li4Ti5O12 battery. Moreover, a 1 h charging of an LiCoO2–C battery by the TENG at 600 rpm delivers a discharge capacity of 130 mAh, capable of powering many smart electronics. Considering the readily scale‐up capability of the TENG, promising applications in personal electronics can be anticipated in the near future. PMID:27774382

  17. Non-Destructive Monitoring of Charge-Discharge Cycles on Lithium Ion Batteries using 7Li Stray-Field Imaging

    PubMed Central

    Tang, Joel A.; Dugar, Sneha; Zhong, Guiming; Dalal, Naresh S.; Zheng, Jim P.; Yang, Yong; Fu, Riqiang

    2013-01-01

    Magnetic resonance imaging provides a noninvasive method for in situ monitoring of electrochemical processes involved in charge/discharge cycling of batteries. Determining how the electrochemical processes become irreversible, ultimately resulting in degraded battery performance, will aid in developing new battery materials and designing better batteries. Here we introduce the use of an alternative in situ diagnostic tool to monitor the electrochemical processes. Utilizing a very large field-gradient in the fringe field of a magnet, stray-field-imaging (STRAFI) technique significantly improves the image resolution. These STRAFI images enable the real time monitoring of the electrodes at a micron level. It is demonstrated by two prototype half-cells, graphite∥Li and LiFePO4∥Li, that the high-resolution 7Li STRAFI profiles allow one to visualize in situ Li-ions transfer between the electrodes during charge/discharge cyclings as well as the formation and changes of irreversible microstructures of the Li components, and particularly reveal a non-uniform Li-ion distribution in the graphite. PMID:24005580

  18. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    PubMed Central

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates. PMID:26898772

  19. Design of an efficient electrolyte circulation system for the lead-acid battery

    NASA Astrophysics Data System (ADS)

    Thuerk, D.

    The design and operation of an electrolyte circulation system are described. Application of lead acid batteries to electric vehicle and other repetitive deep cycle services produces a nondesirable state in the battery cells, electrolyte stratification. This stratification is the result of acid and water generation at the electrodes during cycling. With continued cycling, the extent of the stratification increases and prevents complete charging with low percentages of overcharge. Ultimately this results in extremely short life for the battery system. The stratification problem was overcome by substantially overcharging the battery. This abusive overcharge produces gassing rates sufficient to mix the electrolyte during the end portion of the charge. Overcharge, even though it is required to eliminate stratification, produces the undesirable results related to high voltage and gassing rates.

  20. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    NASA Astrophysics Data System (ADS)

    Xavier, Marcelo A.; Trimboli, M. Scott

    2015-07-01

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggest significant performance improvements might be achieved by extending the result to electrochemical models.

  1. State of charge estimation in Ni-MH rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Milocco, R. H.; Castro, B. E.

    In this work we estimate the state of charge (SOC) of Ni-MH rechargeable batteries using the Kalman filter based on a simplified electrochemical model. First, we derive the complete electrochemical model of the battery which includes diffusional processes and kinetic reactions in both Ni and MH electrodes. The full model is further reduced in a cascade of two parts, a linear time invariant dynamical sub-model followed by a static nonlinearity. Both parts are identified using the current and potential measured at the terminals of the battery with a simple 1-D minimization procedure. The inverse of the static nonlinearity together with a Kalman filter provide the SOC estimation as a linear estimation problem. Experimental results with commercial batteries are provided to illustrate the estimation procedure and to show the performance.

  2. Applications technology satellites battery and power system design

    NASA Technical Reports Server (NTRS)

    Ford, F. E.; Bemis, B.

    1977-01-01

    A summary of the ATS battery design which is onboard the Applications Technology Satellite (ATS) is provided. The 15 ampere hour nickel cadmium cells were manufactured by Gulton, 19 series connected cells per battery, and there are two batteries in each spacecraft. The operating design life was two years in a synchronous orbit, and a maximum depth of discharge of 50 percent. The design temperature for the batteries in the spacecraft was 0 to 25 C, and the charge control consisted of 1 volt versus temperature on a constant percentage voltage. Also, C/10 current limit, and a commandable trickle charge rate, using C/20 or C/60. The undervoltage was sent across a 9 cell and a 10 cell group, and it was set at one volt average per group on either group.

  3. Powering up the future: radical polymers for battery applications.

    PubMed

    Janoschka, Tobias; Hager, Martin D; Schubert, Ulrich S

    2012-12-18

    Our society's dependency on portable electric energy, i.e., rechargeable batteries, which permit power consumption at any place and in any time, will eventually culminate in resource wars on limited commodities like lithium, cobalt, and rare earth metals. The substitution of conventional metals as means of electric charge storage by organic and polymeric materials, which may ultimately be derived from renewable resources, appears to be the only feasible way out. In this context, the novel class of organic radical batteries (ORBs) excelling in rate capability (i.e., charging speed) and cycling stability (>1000 cycles) sets new standards in battery research. This review examines stable nitroxide radical bearing polymers, their processing to battery systems, and their promising performance. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Understanding Side Reactions in K–O 2 Batteries for Improved Cycle Life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiaodi; Lau, Kah Chun; Yu, Mingzhe

    2014-10-20

    Superoxide based metal-air (or metal-oxygen) batteries, including potassium and sodium-oxygen batteries, have emerged as promising alternative chemistries in the metal-air battery family because of much improved round-trip efficiencies (>90%). In order to improve the cycle life of these batteries, it is crucial to understand and control the side reactions between the electrodes and the electrolyte. For potassium-oxygen batteries using ether-based electrolytes, the side reactions on the potassium anode have been identified as the main cause of battery failure. The composition of the side products formed on the anode, including some reaction intermediates, have been identified and quantified. Combined experimental studiesmore » and density functional theory (DFT) calculations show the side reactions are likely driven by the interaction of potassium with ether molecules and the crossover of oxygen from the cathode. To inhibit these side reactions, the incorporation of a polymeric potassium ion selective membrane (Nafion-K+) as a battery separator is demonstrated that significantly improves the battery cycle life. The K-O-2 battery with the Nafion-K+ separator can be discharged and charged for more than 40 cycles without increases in charging overpotential.« less

  5. Enabling fast charging - Vehicle considerations

    NASA Astrophysics Data System (ADS)

    Meintz, Andrew; Zhang, Jiucai; Vijayagopal, Ram; Kreutzer, Cory; Ahmed, Shabbir; Bloom, Ira; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Dufek, Eric J.; Francfort, James; Hardy, Keith; Jansen, Andrew N.; Keyser, Matthew; Markel, Anthony; Michelbacher, Christopher; Mohanpurkar, Manish; Pesaran, Ahmad; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Tanim, Tanvir

    2017-11-01

    To achieve a successful increase in the plug-in battery electric vehicle (BEV) market, it is anticipated that a significant improvement in battery performance is required to increase the range that BEVs can travel and the rate at which they can be recharged. While the range that BEVs can travel on a single recharge is improving, the recharge rate is still much slower than the refueling rate of conventional internal combustion engine vehicles. To achieve comparable recharge times, we explore the vehicle considerations of charge rates of at least 400 kW. Faster recharge is expected to significantly mitigate the perceived deficiencies for long-distance transportation, to provide alternative charging in densely populated areas where overnight charging at home may not be possible, and to reduce range anxiety for travel within a city when unplanned charging may be required. This substantial increase in charging rate is expected to create technical issues in the design of the battery system and the vehicle's electrical architecture that must be resolved. This work focuses on vehicle system design and total recharge time to meet the goals of implementing improved charge rates and the impacts of these expected increases on system voltage and vehicle components.

  6. Hubble Space Telescope On-orbit NiH2 Battery Performance

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Krol, Stanley J., Jr.

    2002-01-01

    This paper summarizes the Hubble Space Telescope (HST) nickel-hydrogen (NiH2) battery performance from launch to the present time. Over the life of HST vehicle configuration, charge system degradation and failures together with thermal design limitations have had a significant effect on the capacity of the HST batteries. Changes made to the charge system configuration in order to protect against power system failures and to maintain battery thermal stability resulted in undercharging of the batteries. This undercharging resulted in decreased usable battery capacity as well as battery cell voltage/capacity divergence. This cell divergence was made evident during on-orbit battery capacity measurements by a relatively shallow slope of the discharge curve following the discharge knee. Early efforts to improve the battery performance have been successful. On-orbit capacity measurement data indicates increases in the usable battery capacity of all six batteries as well as improvements in the battery cell voltage/capacity divergence. Additional measures have been implemented to improve battery performance, however, failures within the HST Power Control Unit (PCU) have prevented verification of battery status. As this PCU fault prevents the execution of on-orbit capacity testing, the HST Project has based the battery capacity on trends, which utilizes previous on-orbit battery capacity test data, for science mission and servicing mission planning. The Servicing Mission 38 (SM-3B) in March 2002 replaced the faulty PCU. Following the servicing mission, on-orbit capacity test resumed. A summary of battery performance is reviewed since launch in this paper.

  7. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE PAGES

    Rosewater, David; Ferreira, Summer; Schoenwald, David; ...

    2018-01-25

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  8. Effect of extreme temperatures on battery charging and performance of electric vehicles

    NASA Astrophysics Data System (ADS)

    Lindgren, Juuso; Lund, Peter D.

    2016-10-01

    Extreme temperatures pose several limitations to electric vehicle (EV) performance and charging. To investigate these effects, we combine a hybrid artificial neural network-empirical Li-ion battery model with a lumped capacitance EV thermal model to study how temperature will affect the performance of an EV fleet. We find that at -10 °C, the self-weighted mean battery charging power (SWMCP) decreases by 15% compared to standard 20 °C temperature. Active battery thermal management (BTM) during parking can improve SWMCP for individual vehicles, especially if vehicles are charged both at home and at workplace; the median SWMCP is increased by over 30%. Efficiency (km/kWh) of the vehicle fleet is maximized when ambient temperature is close to 20 °C. At low (-10 °C) and high (+40 °C) ambient temperatures, cabin preconditioning and BTM during parking can improve the median efficiency by 8% and 9%, respectively. At -10 °C, preconditioning and BTM during parking can also improve the fleet SOC by 3-6%-units, but this also introduces a ;base; load of around 140 W per vehicle. Finally, we observe that the utility of the fleet can be increased by 5%-units by adding 3.6 kW chargers to workplaces, but further improved charging infrastructure would bring little additional benefit.

  9. Battery Energy Storage State-of-Charge Forecasting: Models, Optimization, and Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosewater, David; Ferreira, Summer; Schoenwald, David

    Battery energy storage systems (BESS) are a critical technology for integrating high penetration renewable power on an intelligent electrical grid. As limited energy restricts the steady-state operational state-of-charge (SoC) of storage systems, SoC forecasting models are used to determine feasible charge and discharge schedules that supply grid services. Smart grid controllers use SoC forecasts to optimize BESS schedules to make grid operation more efficient and resilient. This study presents three advances in BESS state-of-charge forecasting. First, two forecasting models are reformulated to be conducive to parameter optimization. Second, a new method for selecting optimal parameter values based on operational datamore » is presented. Last, a new framework for quantifying model accuracy is developed that enables a comparison between models, systems, and parameter selection methods. The accuracies achieved by both models, on two example battery systems, with each method of parameter selection are then compared in detail. The results of this analysis suggest variation in the suitability of these models for different battery types and applications. Finally, the proposed model formulations, optimization methods, and accuracy assessment framework can be used to improve the accuracy of SoC forecasts enabling better control over BESS charge/discharge schedules.« less

  10. Electrochemical capacitors: mechanism, materials, systems, characterization and applications.

    PubMed

    Wang, Yonggang; Song, Yanfang; Xia, Yongyao

    2016-10-24

    Electrochemical capacitors (i.e. supercapacitors) include electrochemical double-layer capacitors that depend on the charge storage of ion adsorption and pseudo-capacitors that are based on charge storage involving fast surface redox reactions. The energy storage capacities of supercapacitors are several orders of magnitude higher than those of conventional dielectric capacitors, but are much lower than those of secondary batteries. They typically have high power density, long cyclic stability and high safety, and thus can be considered as an alternative or complement to rechargeable batteries in applications that require high power delivery or fast energy harvesting. This article reviews the latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications. In particular, the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour, which bridges the gap between battery behaviour and conventional pseudocapacitive behaviour, is also clarified for comparison. Finally, the prospects and challenges associated with supercapacitors in practical applications are also discussed.

  11. Polyoxometalate active charge-transfer material for mediated redox flow battery

    DOEpatents

    Anderson, Travis Mark; Hudak, Nicholas; Staiger, Chad; Pratt, Harry

    2017-01-17

    Redox flow batteries including a half-cell electrode chamber coupled to a current collecting electrode are disclosed herein. In a general embodiment, a separator is coupled to the half-cell electrode chamber. The half-cell electrode chamber comprises a first redox-active mediator and a second redox-active mediator. The first redox-active mediator and the second redox-active mediator are circulated through the half-cell electrode chamber into an external container. The container includes an active charge-transfer material. The active charge-transfer material has a redox potential between a redox potential of the first redox-active mediator and a redox potential of the second redox-active mediator. The active charge-transfer material is a polyoxometalate or derivative thereof. The redox flow battery may be particularly useful in energy storage solutions for renewable energy sources and for providing sustained power to an electrical grid.

  12. Optimal charge control strategies for stationary photovoltaic battery systems

    NASA Astrophysics Data System (ADS)

    Li, Jiahao; Danzer, Michael A.

    2014-07-01

    Battery systems coupled to photovoltaic (PV) modules for example fulfill one major function: they locally decouple PV generation and consumption of electrical power leading to two major effects. First, they reduce the grid load, especially at peak times and therewith reduce the necessity of a network expansion. And second, they increase the self-consumption in households and therewith help to reduce energy expenses. For the management of PV batteries charge control strategies need to be developed to reach the goals of both the distribution system operators and the local power producer. In this work optimal control strategies regarding various optimization goals are developed on the basis of the predicted household loads and PV generation profiles using the method of dynamic programming. The resulting charge curves are compared and essential differences discussed. Finally, a multi-objective optimization shows that charge control strategies can be derived that take all optimization goals into account.

  13. Battery materials for ultrafast charging and discharging.

    PubMed

    Kang, Byoungwoo; Ceder, Gerbrand

    2009-03-12

    The storage of electrical energy at high charge and discharge rate is an important technology in today's society, and can enable hybrid and plug-in hybrid electric vehicles and provide back-up for wind and solar energy. It is typically believed that in electrochemical systems very high power rates can only be achieved with supercapacitors, which trade high power for low energy density as they only store energy by surface adsorption reactions of charged species on an electrode material. Here we show that batteries which obtain high energy density by storing charge in the bulk of a material can also achieve ultrahigh discharge rates, comparable to those of supercapacitors. We realize this in LiFePO(4) (ref. 6), a material with high lithium bulk mobility, by creating a fast ion-conducting surface phase through controlled off-stoichiometry. A rate capability equivalent to full battery discharge in 10-20 s can be achieved.

  14. Opportunistic Wireless Charging System Design for an On-Demand Shuttle Service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meintz, Andrew; Doubleday, Kate; Markel, Tony

    System right-sizing is critical to the implementation of in-motion wireless power transfer (WPT) for electric vehicles. This study evaluates potential system designs for an on-demand employee shuttle by determining the required battery size based on the rated power at a variable number of charging locations. Vehicle power and state of charge are simulated over the drive cycle, based on position and velocity data at every second from the existing shuttle. Adding just one WPT location can halve the battery size. Many configurations are capable of self-sustaining with WPT, while others benefit from supplemental stationary charging.

  15. Lithium Ion Vehicle Start Batteries - Power for the Future

    DTIC Science & Technology

    2011-08-09

    results in less power being available as the battery state of charge (and voltage) is decreased. Lithium Nanophosphate ( LiFePO4 ) exhibits this to...a much lesser extent. As shown in figure 1, the voltage v. SOC curve for LiFePO4 is nearly flat throughout most of its state of charge.[1] This

  16. Prediction of Battery Life and Behavior from Analysis of Voltage Data

    NASA Technical Reports Server (NTRS)

    Mcdermott, P. P.

    1984-01-01

    A method for simulating charge and discharge characteristics of secondary batteries is discussed. The analysis utilizes a nonlinear regression technique where empirical data is computer fitted with a five coefficient nonlinear equation. The equations for charge and discharge voltage are identical except for a change of sign before the second and third terms.

  17. 46 CFR 122.720 - Weekly maintenance and inspections.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... battery for rescue boat engine starting must be brought up to full charge at least once each week if: (1) The battery is of a type that requires recharging; and (2) The battery is not connected to a device...

  18. 46 CFR 122.720 - Weekly maintenance and inspections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... battery for rescue boat engine starting must be brought up to full charge at least once each week if: (1) The battery is of a type that requires recharging; and (2) The battery is not connected to a device...

  19. 46 CFR 122.720 - Weekly maintenance and inspections.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... battery for rescue boat engine starting must be brought up to full charge at least once each week if: (1) The battery is of a type that requires recharging; and (2) The battery is not connected to a device...

  20. 46 CFR 122.720 - Weekly maintenance and inspections.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... battery for rescue boat engine starting must be brought up to full charge at least once each week if: (1) The battery is of a type that requires recharging; and (2) The battery is not connected to a device...

  1. 46 CFR 122.720 - Weekly maintenance and inspections.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... battery for rescue boat engine starting must be brought up to full charge at least once each week if: (1) The battery is of a type that requires recharging; and (2) The battery is not connected to a device...

  2. An analysis of nickel cadmium batteries

    NASA Technical Reports Server (NTRS)

    Turner, J. B., Jr.

    1982-01-01

    Temperature effects, reconditioning, divergencies, capacity, charge rates, depth of discharge, and cell matching and their effects on battery life are discussed. The development of a practical strategy for predicting battery life by subjecting cells to simulated cyclic operation is also addressed.

  3. A highly efficient Li2O2 oxidation system in Li-O2 batteries.

    PubMed

    Hase, Yoko; Seki, Juntaro; Shiga, Tohru; Mizuno, Fuminori; Nishikoori, Hidetaka; Iba, Hideki; Takechi, Kensuke

    2016-10-06

    A novel indirect charging system that uses a redox mediator was demonstrated for Li-O 2 batteries. 4-Methoxy-2,2,6,6-tetramethylpiperidinyl-1-oxyl (MeO-TEMPO) was applied as a mediator to enable the oxidation of Li 2 O 2 , even though Li 2 O 2 is electrochemically isolated. This system promotes the oxidation of Li 2 O 2 without parasitic reactions attributed to electrochemical charging and reduces the charging time.

  4. Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Propp, Karsten; Marinescu, Monica; Auger, Daniel J.; O'Neill, Laura; Fotouhi, Abbas; Somasundaram, Karthik; Offer, Gregory J.; Minton, Geraint; Longo, Stefano; Wild, Mark; Knap, Vaclav

    2016-10-01

    Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a 'behavioural' interpretation of the ECN model; as Li-S exhibits a 'steep' open-circuit voltage (OCV) profile at high states-of-charge, identification methods are designed to take into account OCV changes during current pulses. The prediction-error minimization technique is used. The model is parameterized from laboratory experiments using a mixed-size current pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict the behaviour of a validation data set representing an automotive NEDC driving cycle, the terminal voltage predictions are judged accurate with a root mean square error of 32 mV.

  5. Microfluidic redox battery.

    PubMed

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-07

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  6. Hubble Space Telescope electrical power system

    NASA Technical Reports Server (NTRS)

    Whitt, Thomas H.; Bush, John R., Jr.

    1990-01-01

    The Hubble Space Telescope (HST) electrical power system (EPS) is supplying between 2000 and 2400 W of continuous power to the electrical loads. The major components of the EPS are the 5000-W back surface field reflector solar array, the six nickel-hydrogen (NiH2) 22-cell 88-Ah batteries, and the charge current controllers, which, in conjunction with the flight computer, control battery charging. The operation of the HST EPS and the results of the HST NiH2 six-battery test are discussed, and preliminary flight data are reviewed. The HST NiH2 six-battery test is a breadboard of the HST EPS on test at Marshall Space Flight Center.

  7. State of charge modeling of lithium-ion batteries using dual exponential functions

    NASA Astrophysics Data System (ADS)

    Kuo, Ting-Jung; Lee, Kung-Yen; Huang, Chien-Kang; Chen, Jau-Horng; Chiu, Wei-Li; Huang, Chih-Fang; Wu, Shuen-De

    2016-05-01

    A mathematical model is developed by fitting the discharging curve of LiFePO4 batteries and used to investigate the relationship between the state of charge and the closed-circuit voltage. The proposed mathematical model consists of dual exponential terms and a constant term which can fit the characteristics of dual equivalent RC circuits closely, representing a LiFePO4 battery. One exponential term presents the stable discharging behavior and the other one presents the unstable discharging behavior and the constant term presents the cut-off voltage.

  8. How Things Work: What is the Secret of "Maintenance-Free" Car Batteries?

    ERIC Educational Resources Information Center

    Crane, H. Richard, Ed.

    1985-01-01

    Explains "maintenance free" car batteries which do not involve any changes in principles from traditional car batteries (which require the addition of distilled water). The newer systems have reduced water loss to near zero by improvements in the batteries themselves and in the electrical systems which charge them. (JN)

  9. Towards a thermally regenerative all-copper redox flow battery.

    PubMed

    Peljo, Pekka; Lloyd, David; Doan, Nguyet; Majaneva, Marko; Kontturi, Kyösti

    2014-02-21

    An all-copper redox flow battery based on strong complexation of Cu(+) with acetonitrile is demonstrated, exhibiting reasonable battery performance. More interestingly, the battery can be charged by heat sources of 100 °C, by distilling off the acetonitrile. This destabilizes the Cu(+) complex, leading to recovery of the starting materials.

  10. Smart electric vehicle (EV) charging and grid integration apparatus and methods

    DOEpatents

    Gadh, Rajit; Mal, Siddhartha; Prabhu, Shivanand; Chu, Chi-Cheng; Sheikh, Omar; Chung, Ching-Yen; He, Lei; Xiao, Bingjun; Shi, Yiyu

    2015-05-05

    An expert system manages a power grid wherein charging stations are connected to the power grid, with electric vehicles connected to the charging stations, whereby the expert system selectively backfills power from connected electric vehicles to the power grid through a grid tie inverter (if present) within the charging stations. In more traditional usage, the expert system allows for electric vehicle charging, coupled with user preferences as to charge time, charge cost, and charging station capabilities, without exceeding the power grid capacity at any point. A robust yet accurate state of charge (SOC) calculation method is also presented, whereby initially an open circuit voltage (OCV) based on sampled battery voltages and currents is calculated, and then the SOC is obtained based on a mapping between a previously measured reference OCV (ROCV) and SOC. The OCV-SOC calculation method accommodates likely any battery type with any current profile.

  11. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models

    NASA Astrophysics Data System (ADS)

    Saxena, Samveg; Le Floch, Caroline; MacDonald, Jason; Moura, Scott

    2015-05-01

    Electric vehicles enable clean and efficient transportation, however concerns about range anxiety and battery degradation hinder EV adoption. The common definition for battery end-of-life is when 70-80% of original energy capacity remains, however little analysis is available to support this retirement threshold. By applying detailed physics-based models of EVs with data on how drivers use their cars, we show that EV batteries continue to meet daily travel needs of drivers well beyond capacity fade of 80% remaining energy storage capacity. Further, we show that EV batteries with substantial energy capacity fade continue to provide sufficient buffer charge for unexpected trips with long distances. We show that enabling charging in more locations, even if only with 120 V wall outlets, prolongs useful life of EV batteries. Battery power fade is also examined and we show EVs meet performance requirements even down to 30% remaining power capacity. Our findings show that defining battery retirement at 70-80% remaining capacity is inaccurate. Battery retirement should instead be governed by when batteries no longer satisfy daily travel needs of a driver. Using this alternative retirement metric, we present results on the fraction of EV batteries that may be retired with different levels of energy capacity fade.

  12. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models

    DOE PAGES

    Saxena, Samveg; Le Floch, Caroline; MacDonald, Jason; ...

    2015-05-15

    Electric vehicles enable clean and efficient transportation; however, concerns about range anxiety and battery degradation hinder EV adoption. The common definition for battery end-of-life is when 70-80% of original energy capacity remain;, however, little analysis is available to support this retirement threshold. By applying detailed physics-based models of EVs with data on how drivers use their cars, we show that EV batteries continue to meet daily travel needs of drivers well beyond capacity fade of 80% remaining energy storage capacity. Further, we show that EV batteries with substantial energy capacity fade continue to provide sufficient buffer charge for unexpected tripsmore » with long distances. We show that enabling charging in more locations, even if only with 120 V wall outlets, prolongs useful life of EV batteries. Battery power fade is also examined and we show EVs meet performance requirements even down to 30% remaining power capacity. Our findings show that defining battery retirement at 70-80% remaining capacity is inaccurate. Battery retirement should instead be governed by when batteries no longer satisfy daily travel needs of a driver. Using this alternative retirement metric, we present results on the fraction of EV batteries that may be retired with different levels of energy capacity fade.« less

  13. Quantifying EV battery end-of-life through analysis of travel needs with vehicle powertrain models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saxena, Samveg; Le Floch, Caroline; MacDonald, Jason

    Electric vehicles enable clean and efficient transportation; however, concerns about range anxiety and battery degradation hinder EV adoption. The common definition for battery end-of-life is when 70-80% of original energy capacity remain;, however, little analysis is available to support this retirement threshold. By applying detailed physics-based models of EVs with data on how drivers use their cars, we show that EV batteries continue to meet daily travel needs of drivers well beyond capacity fade of 80% remaining energy storage capacity. Further, we show that EV batteries with substantial energy capacity fade continue to provide sufficient buffer charge for unexpected tripsmore » with long distances. We show that enabling charging in more locations, even if only with 120 V wall outlets, prolongs useful life of EV batteries. Battery power fade is also examined and we show EVs meet performance requirements even down to 30% remaining power capacity. Our findings show that defining battery retirement at 70-80% remaining capacity is inaccurate. Battery retirement should instead be governed by when batteries no longer satisfy daily travel needs of a driver. Using this alternative retirement metric, we present results on the fraction of EV batteries that may be retired with different levels of energy capacity fade.« less

  14. Mechanical abuse simulation and thermal runaway risks of large-format Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Hsin; Lara-Curzio, Edgar; Rule, Evan T.; Winchester, Clinton S.

    2017-02-01

    Internal short circuit of large-format Li-ion pouch cells induced by mechanical abuse was simulated using a modified mechanical pinch test. A torsion force was added manually at ∼40% maximum compressive loading force during the pinch test. The cell was twisted about 5° to the side by horizontally pulling a wire attached to the anode tab. The combined torsion-compression force created small failure at the separator yet allowed testing of fully charged large format Li-ion cells without triggering thermal runaway. Two types of commercial cells were tested using 4-6 cells at each state-of-charge (SOC). Commercially available 18 Ahr LiFePO4 (LFP) and 25 Ahr Li(NiMnCo)1/3O2 (NMC) cells were tested, and a thermal runaway risk (TRR) score system was used to evaluate the safety of the cells under the same testing conditions. The aim was to provide the cell manufacturers and end users with a tool to compare different designs and safety features.

  15. Thermal analysis of large-capacity LiFePO4 power batteries for electric vehicles

    NASA Astrophysics Data System (ADS)

    Lin, Chunjing; Xu, Sichuan; Li, Zhao; Li, Bin; Chang, Guofeng; Liu, Jinling

    2015-10-01

    Excellent design of a thermal management system requires good understanding of the thermal behaviors of power batteries. In this study, the electrochemical and heat performances of a prismatic 40 Ah C/LiFePO4 battery are investigated with a focus on the influence of temperature on cell capacity in a mixed charge-discharge cycle. In addition, the heat generation and energy efficiency of a battery are determined during charge and discharge at different current rates. The experimental results indicate that in certain temperature ranges, both the charging and discharging capacities increase significantly as the temperature increases. In addition, the energy efficiency reaches more than 95% when the battery runs at a current rate of 0.33 C-2 C and temperature of 25-45 °C. A thermal mathematical model based on experimentally obtained internal resistances and entropy coefficients is developed. Using this model, the increase in the battery temperature is simulated based on specific heat values that are measured experimentally and calculated theoretically. The results from the simulation indicate that the temperature increase agrees well with the experimental values, the measured specific heat provides better results than the calculated specific heat and the heat generated decreases as the temperature increases.

  16. A prediction model based on artificial neural network for surface temperature simulation of nickel-metal hydride battery during charging

    NASA Astrophysics Data System (ADS)

    Fang, Kaizheng; Mu, Daobin; Chen, Shi; Wu, Borong; Wu, Feng

    2012-06-01

    In this study, a prediction model based on artificial neural network is constructed for surface temperature simulation of nickel-metal hydride battery. The model is developed from a back-propagation network which is trained by Levenberg-Marquardt algorithm. Under each ambient temperature of 10 °C, 20 °C, 30 °C and 40 °C, an 8 Ah cylindrical Ni-MH battery is charged in the rate of 1 C, 3 C and 5 C to its SOC of 110% in order to provide data for the model training. Linear regression method is adopted to check the quality of the model training, as well as mean square error and absolute error. It is shown that the constructed model is of excellent training quality for the guarantee of prediction accuracy. The surface temperature of battery during charging is predicted under various ambient temperatures of 50 °C, 60 °C, 70 °C by the model. The results are validated in good agreement with experimental data. The value of battery surface temperature is calculated to exceed 90 °C under the ambient temperature of 60 °C if it is overcharged in 5 C, which might cause battery safety issues.

  17. Update: Viking Lander NiCd batteries. Year six

    NASA Technical Reports Server (NTRS)

    Britting, A. O., Jr.

    1982-01-01

    The performance of NiCd batteries on the Viking Mars landers is discussed. During evaluation, three of the four batteries were maintained in the discharged state. Battery charge regimes and close-together, deep-discharge, reconditioning cycles to retard degradation of batteries are discussed. The effect of elevated temperatures during Martian summer on battery performance were also considered. Tabulated data for average battery capacity as a function of time are given. A design uplink to allow more frequent, greater depth of discharge reconditioning cycles was proposed.

  18. Feasibility of Fuel Cell APUs for Automotive Applications

    DTIC Science & Technology

    2005-12-07

    6TMF, and VRLA. The first battery to be used was the 6TN battery. This battery was a lead- acid chemistry with antimony used as the hardening alloy for...to maintain the battery, and the need to add water on an almost constant basis. Water was needed in a lea~- acid battery to charge the battery. Even...began to transition into calcium instead of antimony to support the lead in the battery. Antimony is a very toxic material, and along with the acid

  19. Parametric tests of a 40-Ah bipolar nickel-hydrogen battery

    NASA Technical Reports Server (NTRS)

    Cataldo, R. L.

    1986-01-01

    A series of tests were performed to characterize battery performance relating to certain operating parameters which include charge current, discharge current, temperature, and pressure. The parameters were varied to confirm battery design concepts and to determine optimal operating conditions.

  20. The 1971 NASA/Goddard-Aerospace Industry Battery Workshop, volume 2

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The proceedings of the final two sessions the conference on nickel-cadmium batteries are reported. The major subject areas covered in these two sessions include: (1) materials and pre-charge, and (2) thermal problems experienced with nickel-cadmium batteries.

  1. Toward an Aqueous Solar Battery: Direct Electrochemical Storage of Solar Energy in Carbon Nitrides.

    PubMed

    Podjaski, Filip; Kröger, Julia; Lotsch, Bettina V

    2018-03-01

    Graphitic carbon nitrides have emerged as an earth-abundant family of polymeric materials for solar energy conversion. Herein, a 2D cyanamide-functionalized polyheptazine imide (NCN-PHI) is reported, which for the first time enables the synergistic coupling of two key functions of energy conversion within one single material: light harvesting and electrical energy storage. Photo-electrochemical measurements in aqueous electrolytes reveal the underlying mechanism of this "solar battery" material: the charge storage in NCN-PHI is based on the photoreduction of the carbon nitride backbone and charge compensation is realized by adsorption of alkali metal ions within the NCN-PHI layers and at the solution interface. The photoreduced carbon nitride can thus be described as a battery anode operating as a pseudocapacitor, which can store light-induced charge in the form of long-lived, "trapped" electrons for hours. Importantly, the potential window of this process is not limited by the water reduction reaction due to the high intrinsic overpotential of carbon nitrides for hydrogen evolution, potentially enabling new applications for aqueous batteries. Thus, the feasibility of light-induced electrical energy storage and release on demand by a one-component light-charged battery anode is demonstrated, which provides a sustainable solution to overcome the intermittency of solar radiation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optimal Dispatch of Unreliable Electric Grid-Connected Diesel Generator-Battery Power Systems

    NASA Astrophysics Data System (ADS)

    Xu, D.; Kang, L.

    2015-06-01

    Diesel generator (DG)-battery power systems are often adopted by telecom operators, especially in semi-urban and rural areas of developing countries. Unreliable electric grids (UEG), which have frequent and lengthy outages, are peculiar to these regions. DG-UEG-battery power system is an important kind of hybrid power system. System dispatch is one of the key factors to hybrid power system integration. In this paper, the system dispatch of a DG-UEG-lead acid battery power system is studied with the UEG of relatively ample electricity in Central African Republic (CAR) and UEG of poor electricity in Congo Republic (CR). The mathematical models of the power system and the UEG are studied for completing the system operation simulation program. The net present cost (NPC) of the power system is the main evaluation index. The state of charge (SOC) set points and battery bank charging current are the optimization variables. For the UEG in CAR, the optimal dispatch solution is SOC start and stop points 0.4 and 0.5 that belong to the Micro-Cycling strategy and charging current 0.1 C. For the UEG in CR, the optimal dispatch solution is of 0.1 and 0.8 that belongs to the Cycle-Charging strategy and 0.1 C. Charging current 0.1 C is suitable for both grid scenarios compared to 0.2 C. It makes the dispatch strategy design easier in commercial practices that there are a few very good candidate dispatch solutions with system NPC values close to that of the optimal solution for both UEG scenarios in CAR and CR.

  3. Lithium-ion battery cell-level control using constrained model predictive control and equivalent circuit models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xavier, MA; Trimboli, MS

    This paper introduces a novel application of model predictive control (MPC) to cell-level charging of a lithium-ion battery utilizing an equivalent circuit model of battery dynamics. The approach employs a modified form of the MPC algorithm that caters for direct feed-though signals in order to model near-instantaneous battery ohmic resistance. The implementation utilizes a 2nd-order equivalent circuit discrete-time state-space model based on actual cell parameters; the control methodology is used to compute a fast charging profile that respects input, output, and state constraints. Results show that MPC is well-suited to the dynamics of the battery control problem and further suggestmore » significant performance improvements might be achieved by extending the result to electrochemical models. (C) 2015 Elsevier B.V. All rights reserved.« less

  4. Research on Battery Energy Storage System Based on User Side

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Zhang, Yichi; Yun, Zejian; Wang, Xuguang; Zhang, Dong; Bian, Di

    2018-01-01

    This paper introduces the effect of user side energy storage on the user side and the network side, a battery energy storage system for the user side is designed. The main circuit topology of the battery energy storage system based on the user side is given, the structure is mainly composed of two parts: DC-DC two-way half bridge converter and DC-AC two-way converter, a control strategy combining battery charging and discharging characteristics is proposed to decouple the grid side and the energy storage side, and the block diagram of the charging and discharging control of the energy storage system is given. The simulation results show that the battery energy storage system of the user side can not only realize reactive power compensation of low-voltage distribution network, but also improve the power quality of the users.

  5. Nickel-metal hydride (Ni-MH) batteries for aircraft power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erbacher, J.K.; Kruchek, C.L.; Vukson, S.P.

    1995-12-31

    Commercial nickel metal hydride (Ni-MH) batteries are under evaluation for potential application as a replacement for existing Ni-Cd and Pb-Acid batteries currently used by the USAF. Replacement of these batteries is desirable due to the high cost of maintenance and acquisition, the environmental hazards associated with worker exposure to hazardous materials, and the high cost of reclamation programs for these existing batteries. Both cylindrical and prismatic AB5 cells show promise for this application, but will require alloy and single cell development to reduce self-discharge, increase discharge and charge rates, and expand the temperature range to meet austere military environments. Testedmore » AB{sub 2} cylindrical cell technology appear inadequate to meet military requirements although these cells show better charge capability at 71 C than AB{sub 5} cylindrical or prismatic cells.« less

  6. Rechargeable Seawater Battery and Its Electrochemical Mechanism

    DOE PAGES

    Kim, Jae-Kwang; Lee, Eungje; Kim, Hyojin; ...

    2014-11-25

    Here in this paper, we explore the electrochemical mechanism of a novel rechargeable seawater battery system that uses seawater as the cathode material. Sodium is harvested from seawater while charging the battery, and the harvested sodium is discharged with oxygen dissolved in the seawater, functioning as oxidants to produce electricity. The seawater provides both anode (Na metal) and cathode (O 2) materials for the proposed battery. Based on the discharge voltage (~2.9 V) with participation of O 2 and the charge voltage (~4.1 V) with Cl 2 evolution during the first cycle, a voltage efficiency of about 73% is obtained.more » If the seawater battery is constructed using hard carbon as the anode and a Na super ion conductor as the solid electrolyte, a strong cycle performance of 84% is observed after 40 cycles.« less

  7. A two-stage stochastic optimization model for scheduling electric vehicle charging loads to relieve distribution-system constraints

    DOE PAGES

    Wu, Fei; Sioshansi, Ramteen

    2017-05-25

    Electric vehicles (EVs) hold promise to improve the energy efficiency and environmental impacts of transportation. However, widespread EV use can impose significant stress on electricity-distribution systems due to their added charging loads. This paper proposes a centralized EV charging-control model, which schedules the charging of EVs that have flexibility. This flexibility stems from EVs that are parked at the charging station for a longer duration of time than is needed to fully recharge the battery. The model is formulated as a two-stage stochastic optimization problem. The model captures the use of distributed energy resources and uncertainties around EV arrival timesmore » and charging demands upon arrival, non-EV loads on the distribution system, energy prices, and availability of energy from the distributed energy resources. We use a Monte Carlo-based sample-average approximation technique and an L-shaped method to solve the resulting optimization problem efficiently. We also apply a sequential sampling technique to dynamically determine the optimal size of the randomly sampled scenario tree to give a solution with a desired quality at minimal computational cost. Here, we demonstrate the use of our model on a Central-Ohio-based case study. We show the benefits of the model in reducing charging costs, negative impacts on the distribution system, and unserved EV-charging demand compared to simpler heuristics. Lastly, we also conduct sensitivity analyses, to show how the model performs and the resulting costs and load profiles when the design of the station or EV-usage parameters are changed.« less

  8. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  9. HST Replacement Battery Initial Performance

    NASA Technical Reports Server (NTRS)

    Krol, Stan; Waldo, Greg; Hollandsworth, Roger

    2009-01-01

    The Hubble Space Telescope (HST) original Nickel-Hydrogen (NiH2) batteries were replaced during the Servicing Mission 4 (SM4) after 19 years and one month on orbit.The purpose of this presentation is to highlight the findings from the assessment of the initial sm4 replacement battery performance. The batteries are described, the 0 C capacity is reviewed, descriptions, charts and tables reviewing the State Of Charge (SOC) Performance, the Battery Voltage Performance, the battery impedance, the minimum voltage performance, the thermal performance, the battery current, and the battery system recharge ratio,

  10. Short Range Wireless Power Transfer (WPT) for UAV/UAS Battery Charging - Phase 1

    DTIC Science & Technology

    2014-12-01

    WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) Department of Electrical and Computer Engineering 8...Research Computer Engineering iii THIS PAGE INTENTIONALLY LEFT BLANK iv ABSTRACT The...battery charging, spacecraft recharging and station keeping, and direct propulsion of UAVs and hovering airships . The client antenna is usually of low

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galvez-Aranda, Diego E.; Ponce, Victor; Seminario, Jorge M.

    Rechargeable lithium-ion batteries are the most popular devices for energy storage but still a lot of research needs to be done to improve their cycling and storage capacity. Silicon has been proposed as an anode material because of its large theoretical capacity of ~3600 mAh/g. Therefore, focus is needed on the lithiation process of silicon anodes where it is known that the anode increases its volume more than 300%, producing cracking and other damages. In this study, we performed molecular dynamics atomistic simulations to study the swelling, alloying, and amorphization of a silicon nanocrystal anode in a full nanobattery modelmore » during the first charging cycle. A dissolved salt of lithium hexafluorophosphate in ethylene carbonate was chosen as the electrolyte solution and lithium cobalt oxide as cathode. External electric fields are applied to emulate the charging, causing the migration of the Li-ions from the cathode to the anode, by drifting through the electrolyte solution, thus converting pristine Si gradually into Li 14Si 5 when fully lithiated. When the electric field is applied to the nanobattery, the temperature never exceeds 360 K due to a temperature control imposed resembling a cooling mechanism. The volume of the anode increases with the amorphization of the silicon as the external field is applied by creating a layer of LiSi alloy between the electrolyte and the silicon nanocrystal and then, at the arrival of more Li-ions changing to an alloy, where the drift velocity of Li-ions is greater than the velocity in the initial nanocrystal structure. Charge neutrality is maintained by concerted complementary reduction-oxidation reactions at the anode and cathode, respectively. Also, the nanobattery model developed here can be used to study charge mobility, current density, conductance and resistivity, among several other properties of several candidate materials for rechargeable batteries and constitutes the initial point for further studies on the formation of the solid electrolyte interphase in the anode.« less

  12. Redox probing study of the potential dependence of charge transport through Li 2O 2

    DOE PAGES

    Knudsen, Kristian B.; Luntz, Alan C.; Jensen, Søren H.; ...

    2015-11-20

    In the field of energy storage devices the pursuit for cheap, high energy density, reliable secondary batteries is at the top of the agenda. The Li–O 2 battery is one of the possible technologies that, in theory, should be able to close the gap, which exists between the present state-of-the-art Li-ion technologies and the demand placed on batteries by technologies such as electrical vehicles. Here we present a redox probing study of the charge transfer across the main deposition product lithium peroxide, Li 2O 2, in the Li–O 2 battery using outer-sphere redox shuttles. The change in heterogeneous electron transfermore » exchange rate as a function of the potential and the Li 2O 2 layer thickness (~depth-of-discharge) was determined using electrochemical impedance spectroscopy. In addition, the attenuation of the electron transfer exchange rate with film thickness is dependent on the probing potential, providing evidence that hole transport is the dominant process for charge transfer through Li 2O 2 and showing that the origin of the sudden death observed upon discharge is due to charge transport limitations.« less

  13. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai

    2017-03-01

    Lithium (Li) metal battery is an attractive energy storage system owing to the ultrahigh specific capacity and the lowest redox potential of Li metal anode. However, safety concern associated with dendrite growth and limited cycle life especially at a high charge current density are two critical challenges hindering the practical applications of rechargeable Li metal batteries. Here, we report for the first time that an optimal amount (0.05 M) of LiPF6 as additive in the LiTFSI-LiBOB dual-salt/carbonate-based electrolyte can significantly enhance the charging capability and the long-term cycle life of Li metal batteries with a moderately high cathode loading ofmore » 1.75 mAh cm-2. Unprecedented stable-cycling (97.1% capacity retention after 500 cycles) along with very limited increase in electrode over-potential has been achieved at a high current density of 1.75 mA cm-2. This unparalleled fast charging and stable cycling performance is contributed from both the stabilized Al cathode current collector, and, more importantly, the robust and conductive SEI layer formed on Li metal anode in the presence of the LiPF6 additive.« less

  14. Effect of LEO cycling at shallow depths of discharge on MANTECH IPV nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.

    1988-01-01

    An individual pressure vessel nickel-hydrogen battery is being considered as an alternate for a nickel-cadmium battery on the Hubble Space Telescope. The space telescope battery will primarily be operating at a shallow depth of discharge (10 percent DOD) with an occasional 40 percent DOD. This shallow DOD raises several issues: (1) What is the cycle life. It is projected to be acceptable; however, there is no reported real time data base for validation. (2) The state of charge of the nickel electrode at the beginning of charge is 90 percent. Will this cause an acceleration of divergence in the battery individual cell voltages. (3) After prolonged cycling at 10 percent DOD, will there be enough capacity remaining to support the 40 percent DOD. (4) Is the state of charge really 90 percent during cycling. There is no reported real time data base at shallow depths of discharge. A data base to address the above issues was initiated.

  15. Research on power equalization using a low-loss DC-DC chopper for lithium-ion batteries in electric vehicle

    NASA Astrophysics Data System (ADS)

    Wei, Y. W.; Liu, G. T.; Xiong, S. N.; Cheng, J. Z.; Huang, Y. H.

    2017-01-01

    In the near future, electric vehicle is entirely possible to replace traditional cars due to its zero pollution, small power consumption and low noise. Lithium-ion battery, which owns lots of advantages such as lighter and larger capacity and longer life, has been widely equipped in different electric cars all over the world. One disadvantage of this energy storage device is state of charge (SOC) difference among these cells in each series branch. If equalization circuit is not allocated for series-connected batteries, its safety and lifetime are declined due to over-charge or over-discharge happened, unavoidably. In this paper, a novel modularized equalization circuit, based on DC-DC chopper, is proposed to supply zero loss in theory. The proposed circuit works as an equalizer when Lithium-ion battery pack is charging or discharging or standing idle. Theoretical analysis and control method have been finished, respectively. Simulation and small scale experiments are applied to verify its real effect.

  16. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling.

    PubMed

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P; Brownrigg, Alex; Wright, Jonathan P; van Dijk, Niels H; Wagemaker, Marnix

    2015-09-23

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements.

  17. Direct view on the phase evolution in individual LiFePO4 nanoparticles during Li-ion battery cycling

    PubMed Central

    Zhang, Xiaoyu; van Hulzen, Martijn; Singh, Deepak P.; Brownrigg, Alex; Wright, Jonathan P.; van Dijk, Niels H.; Wagemaker, Marnix

    2015-01-01

    Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO4, a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements. PMID:26395323

  18. Change control microcomputer device for vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morishita, M.; Kouge, S.

    1986-08-19

    A charge control microcomputer device for a vehicle is described which consists of: a clutch device for transmitting the rotary output of an engine; a charging generator driven by the clutch device; a battery charged by an output of the charging generator; a voltage regulator for controlling an output voltage of the charging generator to a predetermined value; an engine controlling microcomputer for receiving engine data, to control the engine; and a charge control microcomputer for processing the engine data from the engine controlling microcomputer and charge system data including terminal voltage data from the battery and generated voltage datamore » from the charging generator, to determine a reference voltage for the voltage regulator in accordance with the engine data and the charge system data, and for processing an engine rotation signal to generate and apply an operating instruction to the clutch device in accordance with the engine data and the charge system data, such that the charging generator is driven within a predetermined range of revolutions per minute at all times.« less

  19. Battery Cell By-Pass Circuit

    NASA Technical Reports Server (NTRS)

    Mumaw, Susan J. (Inventor); Evers, Jeffrey (Inventor); Craig, Calvin L., Jr. (Inventor); Walker, Stuart D. (Inventor)

    2001-01-01

    The invention is a circuit and method of limiting the charging current voltage from a power supply net work applied to an individual cell of a plurality of cells making up a battery being charged in series. It is particularly designed for use with batteries that can be damaged by overcharging, such as Lithium-ion type batteries. In detail. the method includes the following steps: 1) sensing the actual voltage level of the individual cell; 2) comparing the actual voltage level of the individual cell with a reference value and providing an error signal representative thereof; and 3) by-passing the charging current around individual cell necessary to keep the individual cell voltage level generally equal a specific voltage level while continuing to charge the remaining cells. Preferably this is accomplished by by-passing the charging current around the individual cell if said actual voltage level is above the specific voltage level and allowing the charging current to the individual cell if the actual voltage level is equal or less than the specific voltage level. In the step of bypassing the charging current, the by-passed current is transferred at a proper voltage level to the power supply. The by-pass circuit a voltage comparison circuit is used to compare the actual voltage level of the individual cell with a reference value and to provide an error signal representative thereof. A third circuit, designed to be responsive to the error signal, is provided for maintaining the individual cell voltage level generally equal to the specific voltage level. Circuitry is provided in the third circuit for bypassing charging current around the individual cell if the actual voltage level is above the specific voltage level and transfers the excess charging current to the power supply net work. The circuitry also allows charging of the individual cell if the actual voltage level is equal or less than the specific voltage level.

  20. Charging system using solar panels and a highly resonant wireless power transfer model for small UAS applications

    NASA Astrophysics Data System (ADS)

    Hallman, Sydney N.; Huck, Robert C.; Sluss, James J.

    2016-05-01

    The use of a wireless charging system for small, unmanned aircraft system applications is useful for both military and commercial consumers. An efficient way to keep the aircraft's batteries charged without interrupting flight would be highly marketable. While the general concepts behind highly resonant wireless power transfer are discussed in a few publications, the details behind the system designs are not available even in academic journals, especially in relation to avionics. Combining a highly resonant charging system with a solar panel charging system can produce enough power to extend the flight time of a small, unmanned aircraft system without interruption. This paper provides an overview of a few of the wireless-charging technologies currently available and outlines a preliminary design for an aircraft-mounted battery charging system.

Top