Sample records for fully consistent radiation

  1. LIDT-DD: A New Self-Consistent Debris Disc Model Including Radiation Pressure and Coupling Dynamical and Collisional Evolution

    NASA Astrophysics Data System (ADS)

    Kral, Q.; Thebault, P.; Charnoz, S.

    2014-01-01

    The first attempt at developing a fully self-consistent code coupling dynamics and collisions to study debris discs (Kral et al. 2013) is presented. So far, these two crucial mechanisms were studied separately, with N-body and statistical collisional codes respectively, because of stringent computational constraints. We present a new model named LIDT-DD which is able to follow over long timescales the coupled evolution of dynamics (including radiation forces) and collisions in a self-consistent way.

  2. The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Hassler, Donald M.; de Wet, Wouter; Ehresmann, Bent; Firan, Ana; Flores-McLaughlin, John; Guo, Jingnan; Heilbronn, Lawrence H.; Lee, Kerry; Ratliff, Hunter; Rios, Ryan R.; Slaba, Tony C.; Smith, Michael; Stoffle, Nicholas N.; Townsend, Lawrence W.; Berger, Thomas; Reitz, Günther; Wimmer-Schweingruber, Robert F.; Zeitlin, Cary

    2017-08-01

    The radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations. In this work the outcome of a workshop held in June 2016 in Boulder, CO, USA is presented: experimental results from the Radiation Assessment Detector of the Mars Science Laboratory are compared to model results from GEANT4, HETC-HEDS, HZETRN, MCNP6, and PHITS. Charged and neutral particle spectra and dose rates measured between 15 November 2015 and 15 January 2016 and model results calculated for this time period are investigated.

  3. The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data.

    PubMed

    Matthiä, Daniel; Hassler, Donald M; de Wet, Wouter; Ehresmann, Bent; Firan, Ana; Flores-McLaughlin, John; Guo, Jingnan; Heilbronn, Lawrence H; Lee, Kerry; Ratliff, Hunter; Rios, Ryan R; Slaba, Tony C; Smith, Michael; Stoffle, Nicholas N; Townsend, Lawrence W; Berger, Thomas; Reitz, Günther; Wimmer-Schweingruber, Robert F; Zeitlin, Cary

    2017-08-01

    The radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations. In this work the outcome of a workshop held in June 2016 in Boulder, CO, USA is presented: experimental results from the Radiation Assessment Detector of the Mars Science Laboratory are compared to model results from GEANT4, HETC-HEDS, HZETRN, MCNP6, and PHITS. Charged and neutral particle spectra and dose rates measured between 15 November 2015 and 15 January 2016 and model results calculated for this time period are investigated. Copyright © 2017 The Committee on Space Research (COSPAR). All rights reserved.

  4. Global Properties of Fully Convective Accretion Disks from Local Simulations

    NASA Astrophysics Data System (ADS)

    Bodo, G.; Cattaneo, F.; Mignone, A.; Ponzo, F.; Rossi, P.

    2015-08-01

    We present an approach to deriving global properties of accretion disks from the knowledge of local solutions derived from numerical simulations based on the shearing box approximation. The approach consists of a two-step procedure. First, a local solution valid for all values of the disk height is constructed by piecing together an interior solution obtained numerically with an analytical exterior radiative solution. The matching is obtained by assuming hydrostatic balance and radiative equilibrium. Although in principle the procedure can be carried out in general, it simplifies considerably when the interior solution is fully convective. In these cases, the construction is analogous to the derivation of the Hayashi tracks for protostars. The second step consists of piecing together the local solutions at different radii to obtain a global solution. Here we use the symmetry of the solutions with respect to the defining dimensionless numbers—in a way similar to the use of homology relations in stellar structure theory—to obtain the scaling properties of the various disk quantities with radius.

  5. Design and development of a hard tube flexible radiator system

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1980-01-01

    The construction and operational characteristics of an extended life flexible radiator panel is described. The radiator panel consists of a flexible fin laminate and stainless steel flow tubes designed for a 90 percent probability of surviving 5 years in an Earth orbit micrometeoroid environment. The radiator panel rejects 1.1 kW sub t of heat into an environmental sink temperature of 0 F. Total area is 170 square feet and the panel extends 25 feet in the fully deployed position. When retracted the panel rolls onto a 11.5 inch diameter by 52 inch long storage drum, for a final stored diameter of 22 inches.

  6. Observable Signatures of Wind-driven Chemistry with a Fully Consistent Three-dimensional Radiative Hydrodynamics Model of HD 209458b

    NASA Astrophysics Data System (ADS)

    Drummond, B.; Mayne, N. J.; Manners, J.; Carter, A. L.; Boutle, I. A.; Baraffe, I.; Hébrard, É.; Tremblin, P.; Sing, D. K.; Amundsen, D. S.; Acreman, D.

    2018-03-01

    We present a study of the effect of wind-driven advection on the chemical composition of hot-Jupiter atmospheres using a fully consistent 3D hydrodynamics, chemistry, and radiative transfer code, the Met Office Unified Model (UM). Chemical modeling of exoplanet atmospheres has primarily been restricted to 1D models that cannot account for 3D dynamical processes. In this work, we couple a chemical relaxation scheme to the UM to account for the chemical interconversion of methane and carbon monoxide. This is done consistently with the radiative transfer meaning that departures from chemical equilibrium are included in the heating rates (and emission) and hence complete the feedback between the dynamics, thermal structure, and chemical composition. In this Letter, we simulate the well studied atmosphere of HD 209458b. We find that the combined effect of horizontal and vertical advection leads to an increase in the methane abundance by several orders of magnitude, which is directly opposite to the trend found in previous works. Our results demonstrate the need to include 3D effects when considering the chemistry of hot-Jupiter atmospheres. We calculate transmission and emission spectra, as well as the emission phase curve, from our simulations. We conclude that gas-phase nonequilibrium chemistry is unlikely to explain the model–observation discrepancy in the 4.5 μm Spitzer/IRAC channel. However, we highlight other spectral regions, observable with the James Webb Space Telescope, where signatures of wind-driven chemistry are more prominant.

  7. GLOBAL PROPERTIES OF FULLY CONVECTIVE ACCRETION DISKS FROM LOCAL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodo, G.; Ponzo, F.; Rossi, P.

    2015-08-01

    We present an approach to deriving global properties of accretion disks from the knowledge of local solutions derived from numerical simulations based on the shearing box approximation. The approach consists of a two-step procedure. First, a local solution valid for all values of the disk height is constructed by piecing together an interior solution obtained numerically with an analytical exterior radiative solution. The matching is obtained by assuming hydrostatic balance and radiative equilibrium. Although in principle the procedure can be carried out in general, it simplifies considerably when the interior solution is fully convective. In these cases, the construction ismore » analogous to the derivation of the Hayashi tracks for protostars. The second step consists of piecing together the local solutions at different radii to obtain a global solution. Here we use the symmetry of the solutions with respect to the defining dimensionless numbers—in a way similar to the use of homology relations in stellar structure theory—to obtain the scaling properties of the various disk quantities with radius.« less

  8. Radiative energy transfer in molecular gases

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N.

    1992-01-01

    Basic formulations, analyses, and numerical procedures are presented to study radiative interactions in gray as well as nongray gases under different physical and flow conditions. After preliminary fluid-dynamical considerations, essential governing equations for radiative transport are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions. Auxiliary relations for relaxation times and spectral absorption models are also provided. For specific applications, several simple gaseous systems are analyzed. The first system considered consists of a gas bounded by two parallel plates having the same temperature. Within the gas there is a uniform heat source per unit volume. For this system, both vibrational nonequilibrium effects and radiation conduction interactions are studied. The second system consists of fully developed laminar flow and heat transfer in a parallel plate duct under the boundary condition of a uniform surface heat flux. For this system, effects of gray surface emittance are studied. With the single exception of a circular geometry, the third system is considered identical to the second system. Here, the influence of nongray walls is also studied.

  9. Anticoagulation and high dose liver radiation. A preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lightdale, C.J.; Wasser, J.; Coleman, M.

    Two groups of patients were observed for evidence of acute radiation hepatitis during high dose radiation to the liver. The first group of 18 patients with metastatic liver disease received an average of 4,050 rad to the whole liver. Half received anticoagulation with warfarin. One patient on anticoagulation developed evidence of acute radiation hepatitis while 2 patients did so without anticoagulation. Eleven patients with Hodgkin's disease received 4,000 rad to the left lobe of the liver during extended field radiation. Four of these 11 patients were anticoagulated to therapeutic range. Only one of the fully anticoagulated patients showed changes onmore » liver scan consistent with radiation hepatitis whereas three did so without anticoagulation. No serious sequelae from anticoagulation occurred in either group. These preliminary data suggest that anticoagulation may be safely administered with high dose hepatic radiation and that further trials with anticoagulation are warranted.« less

  10. Consistent transport coefficients in astrophysics

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Rovira, M.; Ferrofontan, C.

    1986-01-01

    A consistent theory for dealing with transport phenomena in stellar atmospheres starting with the kinetic equations and introducing three cases (LTE, partial LTE, and non-LTE) was developed. The consistent hydrodynamical equations were presented for partial-LTE, the transport coefficients defined, and a method shown to calculate them. The method is based on the numerical solution of kinetic equations considering Landau, Boltzmann, and Focker-Planck collision terms. Finally a set of results for the transport coefficients derived for a partially ionized hydrogen gas with radiation was shown, considering ionization and recombination as well as elastic collisions. The results obtained imply major changes is some types of theoretical model calculations and can resolve some important current problems concerning energy and mass balance in the solar atmosphere. It is shown that energy balance in the lower solar transition region can be fully explained by means of radiation losses and conductive flux.

  11. They tamed the photon: early days of radiation dosimetry.

    PubMed

    Patterson, John R

    2017-03-01

    This article is a tribute to the many physicists who tamed the photon in the service of mankind. Many received Nobel Prizes and other high awards. Several have units named after them. Some invented the equipment we use. Some sacrificed their lives before the hazards and benefits of radiation were fully understood. I discuss the progress over 120 years, both theoretical and technical, in the development of radiation protection regulations based on quantitative measurements and a consistent set of units, the gray and sievert. It is an expanded version of a recent talk I gave at the ISHRAD (International Society for the History of Radiology) meeting in Würzburg which commemorated the 120th anniversary of the discovery of X-rays by Wilhelm Conrad Rōntgen.

  12. An improved patch for radiative coolers

    NASA Astrophysics Data System (ADS)

    Bly, Vincent T.

    1993-09-01

    A unique structure for constructing the emissive patch of a spaceborne radiative cooler is shown. The structure has very high emissivity for all angles up to a designed-in maximum angle and near zero emissivity for greater angles. The structure also allows the use of high emissivity, nonconducting paints while fully complying with the NASA Electrostatic Discharge Susceptibility requirements for spacecraft. To accomplish these tasks, two previous disadvantages of prior art methods are addressed; eliminating background thermal radiation sources and problems concerning the high emissivity paints used in association with the black body radiator. A reflector consisting of an array of parabolic concentrators is separated from a black body element by an electrically conductive spacer. The concentrators serve to limit the field of view while the conductive spacer eliminates the need to use a conductive paint on the emissive element.

  13. An improved patch for radiative coolers

    NASA Astrophysics Data System (ADS)

    Bly, Vincent T.

    1993-01-01

    A unique structure for constructing the emissive patch of a spaceborne radiative cooler is shown. The structure has very high emissivity for all angles up to a designed-in maximum angle and near zero emissivity for greater angles. The structure also allows the use of high emissivity, nonconducting paints while fully complying with the NASA Electrostatic Discharge Susceptibility requirements for spacecraft. To accomplish these tasks, two previous disadvantages of prior art methods are addressed; eliminating background thermal radiation sources and problems concerning the high emissivity paints used in association with the black body radiator. A reflector consisting of an array of parabolic concentrators is separated from a black body element by an electrically conductive spacer. The concentrators serve to limit the field of view while the conductive spacer eliminates the need to use a conductive paint on the emissive element.

  14. Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects. I: Properties of the Corona and the Spectrum of Escaping Radiation

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Jorn; Begelman, Mitchell C.

    1997-01-01

    We present the properties of accretion disk corona (ADC) models in which the radiation field, the temperature, and the total opacity of the corona are determined self-consistently. We use a nonlinear Monte Carlo code to perform the calculations. As an example, we discuss models in which the corona is situated above and below a cold accretion disk with a plane-parallel (slab) geometry, similar to the model of Haardt & Maraschi. By Comptonizing the soft radiation emitted by the accretion disk, the corona is responsible for producing the high-energy component of the escaping radiation. Our models include the reprocessing of radiation in the accretion disk. Here the photons either are Compton-reflected or photoabsorbed, giving rise to fluorescent line emission and thermal emission. The self- consistent coronal temperature is determined by balancing heating (due to viscous energy dissipation) with Compton cooling, determined using the fully relativistic, angle-dependent cross sections. The total opacity is found by balancing pair productions with annihilations. We find that, for a disk temperature kT(sub BB) approx. less than 200 eV, these coronae are unable to have a self-consistent temperature higher than approx. 140 keV if the total optical depth is approx. less than 0.2, regardless of the compactness parameter of the corona and the seed opacity. This limitation corresponds to the angle-averaged spectrum of escaping radiation having a photon index approx. greater than 1.8 within the 5-30 keV band. Finally, all models that have reprocessing features also predict a large thermal excess at lower energies. These constraints make explaining the X-ray spectra of persistent black hole candidates with ADC models very problematic.

  15. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    NASA Astrophysics Data System (ADS)

    Ghosh, Somnath; Friedrich, Rainer

    2015-05-01

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.

  16. Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Somnath, E-mail: sghosh@aero.iitkgp.ernet.in; Friedrich, Rainer

    2015-05-15

    We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. Themore » filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.« less

  17. Full control of far-field radiation via photonic integrated circuits decorated with plasmonic nanoantennas.

    PubMed

    Sun, Yi-Zhi; Feng, Li-Shuang; Bachelot, Renaud; Blaize, Sylvain; Ding, Wei

    2017-07-24

    We theoretically develop a hybrid architecture consisting of photonic integrated circuit and plasmonic nanoantennas to fully control optical far-field radiation with unprecedented flexibility. By exploiting asymmetric and lateral excitation from silicon waveguides, single gold nanorod and cascaded nanorod pair can function as component radiation pixels, featured by full 2π phase coverage and nanoscale footprint. These radiation pixels allow us to design scalable on-chip devices in a wavefront engineering fashion. We numerically demonstrate beam collimation with 30° out of the incident plane and nearly diffraction limited divergence angle. We also present high-numerical-aperture (NA) beam focusing with NA ≈0.65 and vector beam generation (the radially-polarized mode) with the mode similarity greater than 44%. This concept and approach constitutes a designable optical platform, which might be a future bridge between integrated photonics and metasurface functionalities.

  18. Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study: Radiation Belt Seed Population

    DOE PAGES

    Tang, C. L.; Wang, Y. X.; Ni, B.; ...

    2017-05-19

    Using the Van Allen Probes data, we study the radiation belt seed population and it associated with the relativistic electron dynamics during 74 geomagnetic storm events. Based on the flux changes of 1 MeV electrons before and after the storm peak, these storm events are divided into two groups of “non-preconditioned” and “preconditioned”. The statistical study shows that the storm intensity is of significant importance for the distribution of the seed population (336 keV electrons) in the outer radiation belt. However, substorm intensity can also be important to the evolution of the seed population for some geomagnetic storm events. Formore » non-preconditioned storm events, the correlation between the peak fluxes and their L-shell locations of the seed population and relativistic electrons (592 keV, 1.0 MeV, 1.8 MeV, and 2.1 MeV) is consistent with the energy-dependent dynamic processes in the outer radiation belt. For preconditioned storm events, the correlation between the features of the seed population and relativistic electrons is not fully consistent with the energy-dependent processes. It is suggested that the good correlation between the radiation belt seed population and ≤1.0 MeV electrons contributes to the prediction of the evolution of ≤1.0 MeV electrons in the Earth’s outer radiation belt during periods of geomagnetic storms.« less

  19. Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study: Radiation Belt Seed Population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, C. L.; Wang, Y. X.; Ni, B.

    Using the Van Allen Probes data, we study the radiation belt seed population and it associated with the relativistic electron dynamics during 74 geomagnetic storm events. Based on the flux changes of 1 MeV electrons before and after the storm peak, these storm events are divided into two groups of “non-preconditioned” and “preconditioned”. The statistical study shows that the storm intensity is of significant importance for the distribution of the seed population (336 keV electrons) in the outer radiation belt. However, substorm intensity can also be important to the evolution of the seed population for some geomagnetic storm events. Formore » non-preconditioned storm events, the correlation between the peak fluxes and their L-shell locations of the seed population and relativistic electrons (592 keV, 1.0 MeV, 1.8 MeV, and 2.1 MeV) is consistent with the energy-dependent dynamic processes in the outer radiation belt. For preconditioned storm events, the correlation between the features of the seed population and relativistic electrons is not fully consistent with the energy-dependent processes. It is suggested that the good correlation between the radiation belt seed population and ≤1.0 MeV electrons contributes to the prediction of the evolution of ≤1.0 MeV electrons in the Earth’s outer radiation belt during periods of geomagnetic storms.« less

  20. X-Ray Spectra from MHD Simulations of Accreting Black Holes

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.; Noble, Scott C.; Krolik, Julian H.

    2011-01-01

    We present new global calculations of X-ray spectra from fully relativistic magneto-hydrodynamic (MHO) simulations of black hole (BH) accretion disks. With a self consistent radiative transfer code including Compton scattering and returning radiation, we can reproduce the predominant spectral features seen in decades of X-ray observations of stellar-mass BHs: a broad thermal peak around 1 keV, power-law continuum up to >100 keV, and a relativistically broadened iron fluorescent line. By varying the mass accretion rate, different spectral states naturally emerge: thermal-dominant, steep power-law, and low/hard. In addition to the spectral features, we briefly discuss applications to X-ray timing and polarization.

  1. Extracting Information about the Initial State from the Black Hole Radiation.

    PubMed

    Lochan, Kinjalk; Padmanabhan, T

    2016-02-05

    The crux of the black hole information paradox is related to the fact that the complete information about the initial state of a quantum field in a collapsing spacetime is not available to future asymptotic observers, belying the expectations from a unitary quantum theory. We study the imprints of the initial quantum state contained in a specific class of distortions of the black hole radiation and identify the classes of in states that can be partially or fully reconstructed from the information contained within. Even for the general in state, we can uncover some specific information. These results suggest that a classical collapse scenario ignores this richness of information in the resulting spectrum and a consistent quantum treatment of the entire collapse process might allow us to retrieve much more information from the spectrum of the final radiation.

  2. Radiative, two-temperature simulations of low-luminosity black hole accretion flows in general relativity

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Wielgus, Maciek; Narayan, Ramesh; Abarca, David; McKinney, Jonathan C.; Chael, Andrew

    2017-04-01

    We present a numerical method that evolves a two-temperature, magnetized, radiative, accretion flow around a black hole, within the framework of general relativistic radiation magnetohydrodynamics. As implemented in the code KORAL, the gas consists of two sub-components - ions and electrons - which share the same dynamics but experience independent, relativistically consistent, thermodynamical evolution. The electrons and ions are heated independently according to a prescription from the literature for magnetohydrodynamical turbulent dissipation. Energy exchange between the particle species via Coulomb collisions is included. In addition, electrons gain and lose energy and momentum by absorbing and emitting synchrotron and bremsstrahlung radiation and through Compton scattering. All evolution equations are handled within a fully covariant framework in the relativistic fixed-metric space-time of the black hole. Numerical results are presented for five models of low-luminosity black hole accretion. In the case of a model with a mass accretion rate dot{M}˜ 4× 10^{-8} dot{M}_Edd, we find that radiation has a negligible effect on either the dynamics or the thermodynamics of the accreting gas. In contrast, a model with a larger dot{M}˜ 4× 10^{-4} dot{M}_Edd behaves very differently. The accreting gas is much cooler and the flow is geometrically less thick, though it is not quite a thin accretion disc.

  3. Impacts of future radiation management scenarios on terrestrial carbon dynamics simulated with fully coupled NorESM

    NASA Astrophysics Data System (ADS)

    Ekici, Altug; Tjiputra, Jerry; Grini, Alf; Muri, Helene

    2017-04-01

    We have simulated 3 different radiation management geoengineering methods (CCT - cirrus cloud thinning; SAI - stratospheric aerosol injection; MSB - marine sky brightening) on top of future RCP8.5 scenario with the fully coupled Norwegian Earth System Model (NorESM). A globally consistent cooling in both atmosphere and soil is observed with all methods. However, precipitation patterns are dependent on the used method. Globally CCT and MSB methods do not affect the vegetation carbon budget, while SAI leads to a loss compared to RCP8.5 simulations. Spatially the most sensitive region is the tropics. Here, the changes in vegetation carbon content are related to the precipitation changes. Increase in soil carbon is projected in all three methods, the biggest change seen in SAI method. Simulations with CCT method leads to twice as much soil carbon retention in the tropics compared to the MSB method. Our findings show that there are unforeseen regional consequences of such geoengineering methods in the biogeochemical cycles and they should be considered with care in future climate policies.

  4. Entropy-based artificial viscosity stabilization for non-equilibrium Grey Radiation-Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delchini, Marc O., E-mail: delchinm@email.tamu.edu; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim, E-mail: jim.morel@tamu.edu

    2015-09-01

    The entropy viscosity method is extended to the non-equilibrium Grey Radiation-Hydrodynamic equations. The method employs a viscous regularization to stabilize the numerical solution. The artificial viscosity coefficient is modulated by the entropy production and peaks at shock locations. The added dissipative terms are consistent with the entropy minimum principle. A new functional form of the entropy residual, suitable for the Radiation-Hydrodynamic equations, is derived. We demonstrate that the viscous regularization preserves the equilibrium diffusion limit. The equations are discretized with a standard Continuous Galerkin Finite Element Method and a fully implicit temporal integrator within the MOOSE multiphysics framework. The methodmore » of manufactured solutions is employed to demonstrate second-order accuracy in both the equilibrium diffusion and streaming limits. Several typical 1-D radiation-hydrodynamic test cases with shocks (from Mach 1.05 to Mach 50) are presented to establish the ability of the technique to capture and resolve shocks.« less

  5. Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis.

    PubMed

    Kammen, Alexandra; Law, Meng; Tjan, Bosco S; Toga, Arthur W; Shi, Yonggang

    2016-01-15

    Diffusion MRI tractography provides a non-invasive modality to examine the human retinofugal projection, which consists of the optic nerves, optic chiasm, optic tracts, the lateral geniculate nuclei (LGN) and the optic radiations. However, the pathway has several anatomic features that make it particularly challenging to study with tractography, including its location near blood vessels and bone-air interface at the base of the cerebrum, crossing fibers at the chiasm, somewhat-tortuous course around the temporal horn via Meyer's Loop, and multiple closely neighboring fiber bundles. To date, these unique complexities of the visual pathway have impeded the development of a robust and automated reconstruction method using tractography. To overcome these challenges, we develop a novel, fully automated system to reconstruct the retinofugal visual pathway from high-resolution diffusion imaging data. Using multi-shell, high angular resolution diffusion imaging (HARDI) data, we reconstruct precise fiber orientation distributions (FODs) with high order spherical harmonics (SPHARM) to resolve fiber crossings, which allows the tractography algorithm to successfully navigate the complicated anatomy surrounding the retinofugal pathway. We also develop automated algorithms for the identification of ROIs used for fiber bundle reconstruction. In particular, we develop a novel approach to extract the LGN region of interest (ROI) based on intrinsic shape analysis of a fiber bundle computed from a seed region at the optic chiasm to a target at the primary visual cortex. By combining automatically identified ROIs and FOD-based tractography, we obtain a fully automated system to compute the main components of the retinofugal pathway, including the optic tract and the optic radiation. We apply our method to the multi-shell HARDI data of 215 subjects from the Human Connectome Project (HCP). Through comparisons with post-mortem dissection measurements, we demonstrate the retinotopic organization of the optic radiation including a successful reconstruction of Meyer's loop. Then, using the reconstructed optic radiation bundle from the HCP cohort, we construct a probabilistic atlas and demonstrate its consistency with a post-mortem atlas. Finally, we generate a shape-based representation of the optic radiation for morphometry analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and thatmore » a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.« less

  7. Chromosomal changes in cultured human epithelial cells transformed by low- and high-let radiation

    NASA Astrophysics Data System (ADS)

    Chui-Hsu Yang, Tracy; Craise, Laurie M.; Prioleau, John C.; Stampfer, Martha R.; Rhim, Johng S.

    1992-07-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  8. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    NASA Technical Reports Server (NTRS)

    Craise, L. M.; Prioleau, J. C.; Stampfer, M. R.; Rhim, J. S.; Yang, TC-H (Principal Investigator)

    1992-01-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude mice. Neoplastic transformation was achieved by irradiating cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level.

  9. Active control of turbulent boundary layer-induced sound transmission through the cavity-backed double panels

    NASA Astrophysics Data System (ADS)

    Caiazzo, A.; Alujević, N.; Pluymers, B.; Desmet, W.

    2018-05-01

    This paper presents a theoretical study of active control of turbulent boundary layer (TBL) induced sound transmission through the cavity-backed double panels. The aerodynamic model used is based on the Corcos wall pressure distribution. The structural-acoustic model encompasses a source panel (skin panel), coupled through an acoustic cavity to the radiating panel (trim panel). The radiating panel is backed by a larger acoustic enclosure (the back cavity). A feedback control unit is located inside the acoustic cavity between the two panels. It consists of a control force actuator and a sensor mounted at the actuator footprint on the radiating panel. The control actuator can react off the source panel. It is driven by an amplified velocity signal measured by the sensor. A fully coupled analytical structural-acoustic model is developed to study the effects of the active control on the sound transmission into the back cavity. The stability and performance of the active control system are firstly studied on a reduced order model. In the reduced order model only two fundamental modes of the fully coupled system are assumed. Secondly, a full order model is considered with a number of modes large enough to yield accurate simulation results up to 1000 Hz. It is shown that convincing reductions of the TBL-induced vibrations of the radiating panel and the sound pressure inside the back cavity can be expected. The reductions are more pronounced for a certain class of systems, which is characterised by the fundamental natural frequency of the skin panel larger than the fundamental natural frequency of the trim panel.

  10. Elements of radiative interactions in gaseous systems

    NASA Technical Reports Server (NTRS)

    Tiwari, Surendra N.

    1991-01-01

    Basic formulations, analyses, and numerical procedures are presented to study radiative interactions in gray as well as nongray gases under different physical and flow conditions. After preliminary fluid-dynamical considerations, essential governing equations for radiative transport are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions. Auxiliary relations for relaxation times and spectral absorption model are also provided. For specific applications, several simple gaseous systems are analyzed. The first system considered consists of a gas bounded by two parallel plates having the same temperature. For this system, both vibrational nonequilibrium effects and radiation conduction interactions are studied. The second system consists of fully developed laminar flow and heat transfer in a parallel plate duct under the boundary condition of a uniform surface heat flux. For this system, effects of gray surface emittance are studied. With the single exception of a circular geometry, the third system is identical to the second system. Here, the influence of nongray walls is also studied, and a correlation between the parallel plates and circular tube results is presented. The particular gases selected are CO, CO2, H2O, CH4, N2O, NH3, OH, and NO. The temperature and pressure range considered are 300 to 2000 K, and 0.1 to 100 atmosphere, respectively. Illustrative results obtained for different cases are discussed and some specific conclusions are provided.

  11. Method for Monitoring of Neutron Fields near High-Energy Accelerators

    NASA Astrophysics Data System (ADS)

    Beskrovnaia, L. G.; Guseva, S. V.; Timoshenko, G. N.

    2018-05-01

    The monitoring of neutron radiation from high-energy accelerators cannot fully rely on the standard dosimeters and radiometers manufactured in Russia, since these are sensitive only to neutrons with energies below some 10 MeV. This is because neutrons of higher energies can significantly contribute to the personnel doses both close to the accelerator shield and in the neutron multiscattered field around the shield. In this paper, we propose to measure the ambient neutron dose in energy range 10-2 MeV to 1 GeV with a device consisting of two polyethylene balls with diameters of 3 and 10 in. housing slow-neutron detectors. The larger ball also comprises a lead converter (10'' + Pb). This device can be implemented in zonal radiation monitoring in the near-accelerator area.

  12. Validation of the Fully-Coupled Air-Sea-Wave COAMPS System

    NASA Astrophysics Data System (ADS)

    Smith, T.; Campbell, T. J.; Chen, S.; Gabersek, S.; Tsu, J.; Allard, R. A.

    2017-12-01

    A fully-coupled, air-sea-wave numerical model, COAMPS®, has been developed by the Naval Research Laboratory to further enhance understanding of oceanic, atmospheric, and wave interactions. The fully-coupled air-sea-wave system consists of an atmospheric component with full physics parameterizations, an ocean model, NCOM (Navy Coastal Ocean Model), and two wave components, SWAN (Simulating Waves Nearshore) and WaveWatch III. Air-sea interactions between the atmosphere and ocean components are accomplished through bulk flux formulations of wind stress and sensible and latent heat fluxes. Wave interactions with the ocean include the Stokes' drift, surface radiation stresses, and enhancement of the bottom drag coefficient in shallow water due to the wave orbital velocities at the bottom. In addition, NCOM surface currents are provided to SWAN and WaveWatch III to simulate wave-current interaction. The fully-coupled COAMPS system was executed for several regions at both regional and coastal scales for the entire year of 2015, including the U.S. East Coast, Western Pacific, and Hawaii. Validation of COAMPS® includes observational data comparisons and evaluating operational performance on the High Performance Computing (HPC) system for each of these regions.

  13. Heat transfer in a compact tubular heat exchanger with helium gas at 3.5 MPa

    NASA Technical Reports Server (NTRS)

    Olson, Douglas A.; Glover, Michael P.

    1990-01-01

    A compact heat exchanger was constructed consisting of circular tubes in parallel brazed to a grooved base plate. This tube specimen heat exchanger was tested in an apparatus which radiatively heated the specimen on one side at a heat flux of up to 54 W/sq cm, and cooled the specimen with helium gas at 3.5 MPa and Reynolds numbers of 3000 to 35,000. The measured friction factor of the tube specimen was lower than that of a circular tube with fully developed turbulent flow, although the uncertainty was high due to entrance and exit losses. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in circular tubes.

  14. Fully coupled simulation of cosmic reionization. I. numerical methods and tests

    DOE PAGES

    Norman, Michael L.; Reynolds, Daniel R.; So, Geoffrey C.; ...

    2015-01-09

    Here, we describe an extension of the Enzo code to enable fully coupled radiation hydrodynamical simulation of inhomogeneous reionization in large similar to(100 Mpc)(3) cosmological volumes with thousands to millions of point sources. We solve all dynamical, radiative transfer, thermal, and ionization processes self-consistently on the same mesh, as opposed to a postprocessing approach which coarse-grains the radiative transfer. But, we employ a simple subgrid model for star formation which we calibrate to observations. The numerical method presented is a modification of an earlier method presented in Reynolds et al. differing principally in the operator splitting algorithm we use tomore » advance the system of equations. Radiation transport is done in the gray flux-limited diffusion (FLD) approximation, which is solved by implicit time integration split off from the gas energy and ionization equations, which are solved separately. This results in a faster and more robust scheme for cosmological applications compared to the earlier method. The FLD equation is solved using the hypre optimally scalable geometric multigrid solver from LLNL. By treating the ionizing radiation as a grid field as opposed to rays, our method is scalable with respect to the number of ionizing sources, limited only by the parallel scaling properties of the radiation solver. We test the speed and accuracy of our approach on a number of standard verification and validation tests. We show by direct comparison with Enzo's adaptive ray tracing method Moray that the well-known inability of FLD to cast a shadow behind opaque clouds has a minor effect on the evolution of ionized volume and mass fractions in a reionization simulation validation test. Finally, we illustrate an application of our method to the problem of inhomogeneous reionization in a 80 Mpc comoving box resolved with 3200(3) Eulerian grid cells and dark matter particles.« less

  15. Creation and utilization of a World Wide Web based space radiation effects code: SIREST

    NASA Technical Reports Server (NTRS)

    Singleterry, R. C. Jr; Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.; Thibeault, S. A.; Noor, A. K.; Cucinotta, F. A.; Badavi, F. F.; Chang, C. K.; Qualls, G. D.; hide

    2001-01-01

    In order for humans and electronics to fully and safely operate in the space environment, codes like HZETRN (High Charge and Energy Transport) must be included in any designer's toolbox for design evaluation with respect to radiation damage. Currently, spacecraft designers do not have easy access to accurate radiation codes like HZETRN to evaluate their design for radiation effects on humans and electronics. Today, the World Wide Web is sophisticated enough to support the entire HZETRN code and all of the associated pre and post processing tools. This package is called SIREST (Space Ionizing Radiation Effects and Shielding Tools). There are many advantages to SIREST. The most important advantage is the instant update capability of the web. Another major advantage is the modularity that the web imposes on the code. Right now, the major disadvantage of SIREST will be its modularity inside the designer's system. This mostly comes from the fact that a consistent interface between the designer and the computer system to evaluate the design is incomplete. This, however, is to be solved in the Intelligent Synthesis Environment (ISE) program currently being funded by NASA.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bu; Yu, Yingtian; Bauchy, Mathieu, E-mail: bauchy@ucla.edu

    Although quartz (α-form) is a mineral used in numerous applications wherein radiation exposure is an issue, the nature of the atomistic defects formed during radiation-induced damage has not been fully clarified. Especially, the extent of oxygen vacancy formation is still debated, which is an issue of primary importance as optical techniques based on charged oxygen vacancies have been utilized to assess the level of radiation damage in quartz. In this paper, molecular dynamics simulations are applied to study the effects of ballistic impacts on the atomic network of quartz. We show that the defects that are formed mainly consist ofmore » over-coordinated Si and O, as well as Si–O connectivity defects, e.g., small Si–O rings and edge-sharing Si tetrahedra. Oxygen vacancies, on the contrary, are found in relatively low abundance, suggesting that characterizations based on E′ centers do not adequately capture radiation-induced structural damage in quartz. Finally, we evaluate the dependence on the incident energy, of the amount of each type of the point defects formed, and quantify unambiguously the threshold displacement energies for both O and Si atoms. These results provide a comprehensive basis to assess the nature and extent of radiation damage in quartz.« less

  17. The effect of metallicity on the atmospheres of exoplanets with fully coupled 3D hydrodynamics, equilibrium chemistry, and radiative transfer

    NASA Astrophysics Data System (ADS)

    Drummond, B.; Mayne, N. J.; Baraffe, I.; Tremblin, P.; Manners, J.; Amundsen, D. S.; Goyal, J.; Acreman, D.

    2018-05-01

    In this work, we have performed a series of simulations of the atmosphere of GJ 1214b assuming different metallicities using the Met Office Unified Model (UM). The UM is a general circulation model (GCM) that solves the deep, non-hydrostatic equations of motion and uses a flexible and accurate radiative transfer scheme, based on the two-stream and correlated-k approximations, to calculate the heating rates. In this work we consistently couple a well-tested Gibbs energy minimisation scheme to solve for the chemical equilibrium abundances locally in each grid cell for a general set of elemental abundances, further improving the flexibility and accuracy of the model. As the metallicity of the atmosphere is increased we find significant changes in the dynamical and thermal structure, with subsequent implications for the simulated phase curve. The trends that we find are qualitatively consistent with previous works, though with quantitative differences. We investigate in detail the effect of increasing the metallicity by splitting the mechanism into constituents, involving the mean molecular weight, the heat capacity and the opacities. We find the opacity effect to be the dominant mechanism in altering the circulation and thermal structure. This result highlights the importance of accurately computing the opacities and radiative transfer in 3D GCMs.

  18. Capacitance-Based Dosimetry of Co-60 Radiation using Fully-Depleted Silicon-on-Insulator Devices

    PubMed Central

    Li, Yulong; Porter, Warren M.; Ma, Rui; Reynolds, Margaret A.; Gerbi, Bruce J.; Koester, Steven J.

    2015-01-01

    The capacitance based sensing of fully-depleted silicon-on-insulator (FDSOI) variable capacitors for Co-60 gamma radiation is investigated. Linear response of the capacitance is observed for radiation dose up to 64 Gy, while the percent capacitance change per unit dose is as high as 0.24 %/Gy. An analytical model is developed to study the operational principles of the varactors and the maximum sensitivity as a function of frequency is determined. The results show that FDSOI varactor dosimeters have potential for extremely-high sensitivity as well as the potential for high frequency operation in applications such as wireless radiation sensing. PMID:27840451

  19. Age Spreads and the Temperature Dependence of Age Estimates in Upper Sco

    NASA Astrophysics Data System (ADS)

    Fang, Qiliang; Herczeg, Gregory J.; Rizzuto, Aaron

    2017-06-01

    Past estimates for the age of the Upper Sco Association are typically 11–13 Myr for intermediate-mass stars and 4–5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate-mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on a timescale similar to that of the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution, and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Qiliang; Herczeg, Gregory J.; Rizzuto, Aaron

    Past estimates for the age of the Upper Sco Association are typically 11–13 Myr for intermediate-mass stars and 4–5 Myr for low-mass stars. In this study, we simulate populations of young stars to investigate whether this apparent dependence of estimated age on spectral type may be explained by the star formation history of the association. Solar and intermediate mass stars begin their pre-main sequence evolution on the Hayashi track, with fully convective interiors and cool photospheres. Intermediate-mass stars quickly heat up and transition onto the radiative Henyey track. As a consequence, for clusters in which star formation occurs on amore » timescale similar to that of the transition from a convective to a radiative interior, discrepancies in ages will arise when ages are calculated as a function of temperature instead of mass. Simple simulations of a cluster with constant star formation over several Myr may explain about half of the difference in inferred ages versus photospheric temperature; speculative constructions that consist of a constant star formation followed by a large supernova-driven burst could fully explain the differences, including those between F and G stars where evolutionary tracks may be more accurate. The age spreads of low-mass stars predicted from these prescriptions for star formation are consistent with the observed luminosity spread of Upper Sco. The conclusion that a lengthy star formation history will yield a temperature dependence in ages is expected from the basic physics of pre-main sequence evolution, and is qualitatively robust to the large uncertainties in pre-main sequence evolutionary models.« less

  1. A High-Order Low-Order Algorithm with Exponentially Convergent Monte Carlo for Thermal Radiative Transfer

    DOE PAGES

    Bolding, Simon R.; Cleveland, Mathew Allen; Morel, Jim E.

    2016-10-21

    In this paper, we have implemented a new high-order low-order (HOLO) algorithm for solving thermal radiative transfer problems. The low-order (LO) system is based on the spatial and angular moments of the transport equation and a linear-discontinuous finite-element spatial representation, producing equations similar to the standard S 2 equations. The LO solver is fully implicit in time and efficiently resolves the nonlinear temperature dependence at each time step. The high-order (HO) solver utilizes exponentially convergent Monte Carlo (ECMC) to give a globally accurate solution for the angular intensity to a fixed-source pure-absorber transport problem. This global solution is used tomore » compute consistency terms, which require the HO and LO solutions to converge toward the same solution. The use of ECMC allows for the efficient reduction of statistical noise in the Monte Carlo solution, reducing inaccuracies introduced through the LO consistency terms. Finally, we compare results with an implicit Monte Carlo code for one-dimensional gray test problems and demonstrate the efficiency of ECMC over standard Monte Carlo in this HOLO algorithm.« less

  2. The Dynamics of Incomplete Lineage Sorting across the Ancient Adaptive Radiation of Neoavian Birds

    PubMed Central

    Suh, Alexander; Smeds, Linnéa; Ellegren, Hans

    2015-01-01

    The diversification of neoavian birds is one of the most rapid adaptive radiations of extant organisms. Recent whole-genome sequence analyses have much improved the resolution of the neoavian radiation and suggest concurrence with the Cretaceous-Paleogene (K-Pg) boundary, yet the causes of the remaining genome-level irresolvabilities appear unclear. Here we show that genome-level analyses of 2,118 retrotransposon presence/absence markers converge at a largely consistent Neoaves phylogeny and detect a highly differential temporal prevalence of incomplete lineage sorting (ILS), i.e., the persistence of ancestral genetic variation as polymorphisms during speciation events. We found that ILS-derived incongruences are spread over the genome and involve 35% and 34% of the analyzed loci on the autosomes and the Z chromosome, respectively. Surprisingly, Neoaves diversification comprises three adaptive radiations, an initial near-K-Pg super-radiation with highly discordant phylogenetic signals from near-simultaneous speciation events, followed by two post-K-Pg radiations of core landbirds and core waterbirds with much less pronounced ILS. We provide evidence that, given the extreme level of up to 100% ILS per branch in super-radiations, particularly rapid speciation events may neither resemble a fully bifurcating tree nor are they resolvable as such. As a consequence, their complex demographic history is more accurately represented as local networks within a species tree. PMID:26284513

  3. Numerical modeling of the coupling of an ICRH antenna with a plasma with self-consistent antenna currents

    NASA Astrophysics Data System (ADS)

    Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.

    2002-07-01

    A realistic modeling of ICRH antennas requires the knowledge of the antenna currents. The code ICANT determines self-consistently these currents and, as a byproduct, the electrical characteristics of the antenna (radiated power, propagation constants on straps, frequency response, … ). The formalism allows for the description of three-dimensional antenna elements (for instance, finite size thick screen blades). The results obtained for various cases where analytical results are available are discussed. The resonances appearing in the spectrum and the occurrence of unphysical resonant modes are discussed. The capability of this self-consistent method is illustrated by a number of examples, e.g., fully conducting thin or thick screen bars leading to magnetic shielding effects, frequency response and resonances of an end-tuned antenna, field distributions in front of a Tore-Supra type antenna with tilted screen blades.

  4. Effect of electron beam radiation processing on mechanical and thermal properties of fully biodegradable crops straw/poly (vinyl alcohol) biocomposites

    NASA Astrophysics Data System (ADS)

    Guo, Dan

    2017-01-01

    Fully biodegradable biocomposites based on crops straw and poly(vinyl alcohol) was prepared through thermal processing, and the effect of electron beam radiation processing with N,N-methylene double acrylamide as radiation sensitizer on mechanical and thermal properties of the biocomposites were investigated. The results showed that, when the radiation dose were in the range of 0-50 kGy, the mechanical and thermal properties of the biocomposites could be improved significantly through the electron beam radiation processing, and the interface compatibility was also improved because of the formation of stable cross-linked network structure, when the radiation dose were above the optimal value (50 kGy), the comprehensive properties of the biocomposites were gradually destroyed. EB radiation processing could be used as an effective technology to improve the comprehensive performance of the biocomposites, and as a green and efficient processing technology, radiation processing takes place at room temperature, and no contamination and by-product are possible.

  5. Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts.

    PubMed

    Kabiri, Zahra; Greicius, Gediminas; Madan, Babita; Biechele, Steffen; Zhong, Zhendong; Zaribafzadeh, Hamed; Edison; Aliyev, Jamal; Wu, Yonghui; Bunte, Ralph; Williams, Bart O; Rossant, Janet; Virshup, David M

    2014-06-01

    Wnt/β-catenin signaling supports intestinal homeostasis by regulating proliferation in the crypt. Multiple Wnts are expressed in Paneth cells as well as other intestinal epithelial and stromal cells. Ex vivo, Wnts secreted by Paneth cells can support intestinal stem cells when Wnt signaling is enhanced with supplemental R-Spondin 1 (RSPO1). However, in vivo, the source of Wnts in the stem cell niche is less clear. Genetic ablation of Porcn, an endoplasmic reticulum resident O-acyltransferase that is essential for the secretion and activity of all vertebrate Wnts, confirmed the role of intestinal epithelial Wnts in ex vivo culture. Unexpectedly, mice lacking epithelial Wnt activity (Porcn(Del)/Villin-Cre mice) had normal intestinal proliferation and differentiation, as well as successful regeneration after radiation injury, indicating that epithelial Wnts are dispensable for these processes. Consistent with a key role for stroma in the crypt niche, intestinal stromal cells endogenously expressing Wnts and Rspo3 support the growth of Porcn(Del) organoids ex vivo without RSPO1 supplementation. Conversely, increasing pharmacologic PORCN inhibition, affecting both stroma and epithelium, reduced Lgr5 intestinal stem cells, inhibited recovery from radiation injury, and at the highest dose fully blocked intestinal proliferation. We conclude that epithelial Wnts are dispensable and that stromal production of Wnts can fully support normal murine intestinal homeostasis.

  6. Multiple pure tone noise prediction

    NASA Astrophysics Data System (ADS)

    Han, Fei; Sharma, Anupam; Paliath, Umesh; Shieh, Chingwei

    2014-12-01

    This paper presents a fully numerical method for predicting multiple pure tones, also known as “Buzzsaw” noise. It consists of three steps that account for noise source generation, nonlinear acoustic propagation with hard as well as lined walls inside the nacelle, and linear acoustic propagation outside the engine. Noise generation is modeled by steady, part-annulus computational fluid dynamics (CFD) simulations. A linear superposition algorithm is used to construct full-annulus shock/pressure pattern just upstream of the fan from part-annulus CFD results. Nonlinear wave propagation is carried out inside the duct using a pseudo-two-dimensional solution of Burgers' equation. Scattering from nacelle lip as well as radiation to farfield is performed using the commercial solver ACTRAN/TM. The proposed prediction process is verified by comparing against full-annulus CFD simulations as well as against static engine test data for a typical high bypass ratio aircraft engine with hardwall as well as lined inlets. Comparisons are drawn against nacelle unsteady pressure transducer measurements at two axial locations as well as against near- and far-field microphone array measurements outside the duct. This is the first fully numerical approach (no experimental or empirical input is required) to predict multiple pure tone noise generation, in-duct propagation and far-field radiation. It uses measured blade coordinates to calculate MPT noise.

  7. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    During prolonged spaceflight, astronauts are exposed to both microgravity and space radiation, and are at risk for increased skeletal fragility due to bone loss. Evidence from rodent experiments demonstrates that both microgravity and ionizing radiation can cause bone loss due to increased bone-resorbing osteoclasts and decreased bone-forming osteoblasts, although the underlying molecular mechanisms for these changes are not fully understood. We hypothesized that excess reactive oxidative species (ROS), produced by conditions that simulate spaceflight, alter the tight balance between osteoclast and osteoblast activities, leading to accelerated skeletal remodeling and culminating in bone loss. To test this, we used the MCAT mouse model; these transgenic mice over-express the human catalase gene targeted to mitochondria, the major organelle contributing free radicals. Catalase is an anti-oxidant that converts reactive species, hydrogen peroxide into water and oxygen. This animal model was selected as it displays extended lifespan, reduced cardiovascular disease and reduced central nervous system radio-sensitivity, consistent with elevated anti-oxidant activity conferred by the transgene. We reasoned that mice overexpressing catalase in mitochondria of osteoblast and osteoclast lineage cells would be protected from the bone loss caused by simulated spaceflight. Over-expression of human catalase localized to mitochondria caused various skeletal phenotypic changes compared to WT mice; this includes greater bone length, decreased cortical bone area and moment of inertia, and indications of altered microarchitecture. These findings indicate mitochondrial ROS are important for normal bone-remodeling and skeletal integrity. Catalase over-expression did not fully protect skeletal tissue from structural decrements caused by simulated spaceflight; however there was significant protection in terms of cellular oxidative damage (MDA levels) to the skeletal tissue. Furthermore, we used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues.

  8. Effects of low-dose ionizing radiation and menadione, an inducer of oxidative stress, alone and in combination in a vertebrate embryo model.

    PubMed

    Bladen, Catherine L; Kozlowski, David J; Dynan, William S

    2012-11-01

    Prior work has established the zebrafish embryo as an in vivo model for studying the biological effects of exposure to low doses of ionizing radiation. One of the known effects of radiation is to elevate the levels of reactive oxygen species (ROS) in tissue. However, ROS are also produced as by-products of normal metabolism and, regardless of origin, ROS produce similar chemical damage to DNA. Here we use the zebrafish embryo model to investigate whether the effects of low-dose (0-1.5 Gy) radiation and endogenous ROS are mechanistically distinct. We increased levels of endogenous ROS by exposure to low concentrations of the quinone drug, menadione. Imaging studies in live embryos showed that exposure to 3 μM or higher concentrations of menadione dramatically increased ROS levels. This treatment was associated with a growth delay and morphologic abnormalities, which were partially or fully reversible. By contrast, exposure to low doses of ionizing radiation had no discernable effects on overall growth or morphology, although, there was an increase in TUNEL-positive apoptotic cells, consistent with the results of prior studies. Further studies showed that the combined effect of radiation and menadione exposure are greater than with either agent alone, and that attenuation of the expression of Ku80, a gene important for repair of radiation-induced DNA damage, had only a slight effect on menadione sensitivity. Together, results suggest that ionizing radiation and menadione affect the embryo by distinct mechanisms.

  9. Evolution of the axial electron cyclotron maser instability, with applications to solar microwave spikes

    NASA Technical Reports Server (NTRS)

    Vlahos, Loukas; Sprangle, Phillip

    1987-01-01

    The nonlinear evolution of cyclotron radiation from streaming and gyrating electrons in an external magnetic field is analyzed. The nonlinear dynamics of both the fields and the particles are treated fully relativistically and self-consistently. The model includes a background plasma and electrostatic effects. The analytical and numerical results show that a substantial portion of the beam particle energy can be converted to electromagnetic wave energy at frequencies far above the electron cyclotron frequency. In general, the excited radiation can propagate parallel to the magnetic field and, hence, escape gyrothermal absorption at higher cyclotron harmonics. The high-frequency Doppler-shifted cyclotron instability can have saturation efficiencies far higher than those associated with well-known instabilities of the electron cyclotron maser type. Although the analysis is general, the possibility of using this model to explain the intense radio emission observed from the sun is explored in detail.

  10. Photothermoelastic contrast in nanoscale infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Morozovska, Anna N.; Eliseev, Eugene A.; Borodinov, Nikolay; Ovchinnikova, Olga S.; Morozovsky, Nicholas V.; Kalinin, Sergei V.

    2018-01-01

    The contrast formation mechanism in nanoscale Infrared (IR) Spectroscopy is analyzed. The temperature distribution and elastic displacement across the illuminated T-shape boundary between two materials with different IR-radiation absorption coefficients and thermo-physical and elastic properties located on a rigid substrate are calculated self-consistently for different frequencies f ˜ (1 kHz-1 MHz) of IR-radiation modulation (fully coupled problem). Analytical expressions for the temperature and displacement profiles across the "thermo-elastic step" are derived in the decoupling approximation for f = 0 ("static limit"), and conditions for approximation validity at low frequencies of IR-modulation are established. The step height was found to be thickness-independent for thick layers and proportional to the square of the thickness for very thin films. The theoretical results will be of potential interest for applications in the scanning thermo-ionic and thermal infrared microscopies for relatively long sample thermalization times and possibly for photothermal induced resonance microscopy using optomechanical probes.

  11. Measurement of the radiative decay of polarized muons in the MEG experiment

    DOE PAGES

    Baldini, A. M.; Bao, Y.; Baracchini, E.; ...

    2016-02-29

    Here, we studied the radiative muon decay μ + → e +νν¯γ by using for the first time an almost fully polarized muon source. We identified a large sample (~13,000) of these decays in a total sample of 1.8×10 14 positive muon decays collected in the MEG experiment in the years 2009–2010 and measured the branching ratio B(μ → eνν¯γ)=(6.03 ± 0.14(stat.) ± 0.53(sys.))×10 –8 for E e > 45 MeV and E γ > 40 MeV, consistent with the Standard Model prediction. The precise measurement of this decay mode provides a basic tool for the timing calibration, a normalizationmore » channel, and a strong quality check of the complete MEG experiment in the search for μ+→e+γ process.« less

  12. Asymptotic analysis of discrete schemes for non-equilibrium radiation diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Xia, E-mail: cui_xia@iapcm.ac.cn; Yuan, Guang-wei; Shen, Zhi-jun

    Motivated by providing well-behaved fully discrete schemes in practice, this paper extends the asymptotic analysis on time integration methods for non-equilibrium radiation diffusion in [2] to space discretizations. Therein studies were carried out on a two-temperature model with Larsen's flux-limited diffusion operator, both the implicitly balanced (IB) and linearly implicit (LI) methods were shown asymptotic-preserving. In this paper, we focus on asymptotic analysis for space discrete schemes in dimensions one and two. First, in construction of the schemes, in contrast to traditional first-order approximations, asymmetric second-order accurate spatial approximations are devised for flux-limiters on boundary, and discrete schemes with second-ordermore » accuracy on global spatial domain are acquired consequently. Then by employing formal asymptotic analysis, the first-order asymptotic-preserving property for these schemes and furthermore for the fully discrete schemes is shown. Finally, with the help of manufactured solutions, numerical tests are performed, which demonstrate quantitatively the fully discrete schemes with IB time evolution indeed have the accuracy and asymptotic convergence as theory predicts, hence are well qualified for both non-equilibrium and equilibrium radiation diffusion. - Highlights: • Provide AP fully discrete schemes for non-equilibrium radiation diffusion. • Propose second order accurate schemes by asymmetric approach for boundary flux-limiter. • Show first order AP property of spatially and fully discrete schemes with IB evolution. • Devise subtle artificial solutions; verify accuracy and AP property quantitatively. • Ideas can be generalized to 3-dimensional problems and higher order implicit schemes.« less

  13. Severe myositis of the hip flexors after pre-operative chemoradiation therapy for locally advanced rectal cancer: case report.

    PubMed

    Florczynski, Matthew M; Sanatani, Michael S; Mai, Lauren; Fisher, Barbara; Moulin, Dwight E; Cao, Jeffrey; Louie, Alexander V; Pope, Janet E; Leung, Eric

    2016-03-22

    The use of neoadjuvant radiation therapy and chemotherapy in the treatment of locally advanced rectal adenocarcinoma has been shown to reduce disease recurrence when combined with surgery and adjuvant chemotherapy. We report a case of a patient who developed a debilitating bilateral myopathy of the hip flexors after successful treatment for rectal cancer. To the best of our knowledge, this is the first such complication from radiation therapy reported in a patient with colorectal cancer. The disproportionate severity of our patient's myopathy relative to the dose of radiation used also makes this case unique among reports of neuromuscular complications from radiation therapy. The patient is a 65-year-old male with node negative, high-grade adenocarcinoma of the rectum penetrating through the distal rectal wall. He underwent neoadjuvant concurrent pelvic radiation therapy and capecitabine-based chemotherapy, followed by abdominoperineal resection and post-operative FOLFOX chemotherapy. Five months post-completion of pelvic radiotherapy and 2 months after the completion of adjuvant chemotherapy, he presented with bilateral weakness of the iliopsoas muscles and severe pain radiating to the groin. The patient improved with 40 mg/d of prednisone, which was gradually tapered to 2 mg/d over 6 months, with substantial recovery of muscle strength and elimination of pain. The timing, presentation and response of our patient's symptoms to corticosteroids are most consistent with a radiation recall reaction. Radiation recall is a phenomenon whereby previously irradiated tissue becomes vulnerable to toxicity by subsequent systemic therapy and is rarely associated with myopathies. Radiation recall should be considered a potential complication of neoadjuvant radiation therapy for rectal cancer, and for ongoing research into the optimization of treatment for these patients. Severe myopathies caused by radiation recall may be fully reversible with corticosteroid treatment.

  14. Dynamics of the baryonic component in hierarchical clustering universes

    NASA Technical Reports Server (NTRS)

    Navarro, Julio

    1993-01-01

    I present self-consistent 3-D simulations of the formation of virialized systems containing both gas and dark matter in a flat universe. A fully Lagrangian code based on the Smoothed Particle Hydrodynamics technique and a tree data structure has been used to evolve regions of comoving radius 2-3 Mpc. Tidal effects are included by coarse-sampling the density of the outer regions up to a radius approx. 20 Mpc. Initial conditions are set at high redshift (z greater than 7) using a standard Cold Dark Matter perturbation spectrum and a baryon mass fraction of 10 percent (omega(sub b) = 0.1). Simulations in which the gas evolves either adiabatically or radiates energy at a rate determined locally by its cooling function were performed. This allows us to investigate with the same set of simulations the importance of radiative losses in the formation of galaxies and the equilibrium structure of virialized systems where cooling is very inefficient. In the absence of radiative losses, the simulations can be rescaled to the density and radius typical of galaxy clusters. A summary of the main results is presented.

  15. Evolution of jets driven by relativistic radiation hydrodynamics as Long and Low Luminosity GRBs

    NASA Astrophysics Data System (ADS)

    Rivera-Paleo, F. J.; Guzmán, F. S.

    2018-06-01

    We present numerical simulations of jets modeled with Relativistic Radiation Hydrodynamics (RRH), that evolve across two environments: i) a stratified surrounding medium and ii) a 16TI progenitor model. We consider opacities consistent with various processes of interaction between the fluid and radiation, specifically, free-free, bound-free, bound-bound and electron scattering. We explore various initial conditions, with different radiation energy densities of the beam in hydrodynamical and radiation pressure dominated scenarios, considering only highly-relativistic jets. In order to investigate the impact of the radiation field on the evolution of the jets, we compare our results with purely hydrodynamical jets. Comparing among jets driven by RRH, we find that radiation pressure dominated jets propagate slightly faster than gas pressure dominated ones. Finally, we construct the luminosity Light Curves (LCs) associated with the two cases. The construction of LCs uses the fluxes of the radiation field which is fully coupled to the hydrodynamics equations during the evolution. The main properties of the jets propagating on the stratified surrounding medium are that the LCs show the same order of magnitude as the gamma-ray luminosity of typical Long Gamma-Ray Bursts 1050 - 1054erg/s and the difference between the radiation and gas temperatures is of nearly one order of magnitude. The properties of jets breaking out from the progenitor star model are that the LCs are of the order of magnitude of low-luminosity GRBs 1046 - 1049 erg/s, and in this scenario the difference between the gas and radiation temperature is of four orders of magnitude, which is a case far from thermal equilibrium.

  16. Effects of Low-Dose Ionizing Radiation and Menadione, an Inducer of Oxidative Stress, Alone and in Combination in a Vertebrate Embryo Model

    PubMed Central

    Bladen, Catherine L.; Kozlowski, David J.; Dynan, William S.

    2014-01-01

    Prior work has established the zebrafish embryo as an in vivo model for studying the biological effects of exposure to low doses of ionizing radiation. One of the known effects of radiation is to elevate the levels of reactive oxygen species (ROS) in tissue. However, ROS are also produced as byproducts of normal metabolism and, regardless of origin, ROS produce similar chemical damage to DNA. Here we use the zebrafish embryo model to investigate whether the effects of low-dose (0–1.5 Gy) radiation and endogenous ROS are mechanistically distinct. We increased levels of endogenous ROS by exposure to low concentrations of the quinone drug, menadione. Imaging studies in live embryos showed that exposure to 3 μM or higher concentrations of menadione dramatically increased ROS levels. This treatment was associated with a growth delay and morphologic abnormalities, which were partially or fully reversible. By contrast, exposure to low doses of ionizing radiation had no discernable effects on overall growth or morphology, although, there was an increase in TUNEL-positive apoptotic cells, consistent with the results of prior studies. Further studies showed that the combined effect of radiation and menadione exposure are greater than with either agent alone, and that attenuation of the expression of Ku80, a gene important for repair of radiation-induced DNA damage, had only a slight effect on menadione sensitivity. Together, results suggest that ionizing radiation and menadione affect the embryo by distinct mechanisms. PMID:23092554

  17. New measurements quantify atmospheric greenhouse effect

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-10-01

    In spite of a large body of existing measurements of incoming short-wave solar radiation and outgoing long-wave terrestrial radiation at the surface of the Earth and, more recently, in the upper atmosphere, there are few observations documenting how radiation profiles change through the atmosphere—information that is necessary to fully quantify the greenhouse effect of Earth's atmosphere. Through the use of existing technology but employing improvements in observational techniques it may now be possible not only to quantify but also to understand how different components of the atmosphere (e.g., concentration of gases, cloud cover, moisture, and aerosols) contribute to the greenhouse effect. Using weather balloons equipped with radiosondes, Philipona et al. continuously measured radiation fluxes from the surface of Earth up to altitudes of 35 kilometers in the upper stratosphere. Combining data from flights conducted during both day and night with continuous 24-hour measurements made at the surface of the Earth, the researchers created radiation profiles of all four components necessary to fully capture the radiation budget of Earth, namely, the upward and downward short-wave and long-wave radiation as a function of altitude.

  18. The SMAP Level-4 ECO Project: Linking the Terrestrial Water and Carbon Cycles

    NASA Technical Reports Server (NTRS)

    Kolassa, J.; Reichle, R. H.; Liu, Qing; Koster, Randal D.

    2017-01-01

    The SMAP (Soil Moisture Active Passive) Level-4 projects aims to develop a fully coupled hydrology-vegetation data assimilation algorithm to generate improved estimates of modeled hydrological fields and carbon fluxes. This includes using the new NASA Catchment-CN (Catchment-Carbon-Nitrogen) model, which combines the Catchment land surface hydrology model with dynamic vegetation components from the Community Land Model version 4 (CLM4). As such, Catchment-CN allows a more realistic, fully coupled feedback between the land hydrology and the biosphere. The L4 ECO project further aims to inform the model through the assimilation of Soil Moisture Active Passive (SMAP) brightness temperature observations as well as observations of Moderate Resolution Imaging Spectroradiometer (MODIS) fraction of absorbed photosynthetically active radiation (FPAR). Preliminary results show that the assimilation of SMAP observations leads to consistent improvements in the model soil moisture skill. An evaluation of the Catchment-CN modeled vegetation characteristics showed that a calibration of the model's vegetation parameters is required before an assimilation of MODIS FPAR observations is feasible.

  19. Active and Passive 3D Vector Radiative Transfer with Preferentially-Aligned Ice Particles

    NASA Astrophysics Data System (ADS)

    Adams, I. S.; Munchak, S. J.; Pelissier, C.; Kuo, K. S.; Heymsfield, G. M.

    2017-12-01

    To support the observation of clouds and precipitation using combinations of radars and radiometers, a forward model capable of representing diverse sensing geometries for active and passive instruments is necessary for correctly interpreting and consistently combining multi-sensor measurements from ground-based, airborne, and spaceborne platforms. As such, the Atmospheric Radiative Transfer Simulator (ARTS) uses Monte Carlo integration to produce radar reflectivities and radiometric brightness temperatures for three-dimensional cloud and precipitation input fields. This radiative transfer framework is capable of efficiently sampling Gaussian antenna beams and fully accounting for multiple scattering. By relying on common ray-tracing tools, gaseous absorption models, and scattering properties, the model reproduces accurate and consistent radar and radiometer observables. While such a framework is an important component for simulating remote sensing observables, the key driver for self-consistent radiative transfer calculations of clouds and precipitation is scattering data. Research over the past decade has demonstrated that spheroidal models of frozen hydrometeors cannot accurately reproduce all necessary scattering properties at all desired frequencies. The discrete dipole approximation offers flexibility in calculating scattering for arbitrary particle geometries, but at great computational expense. When considering scattering for certain pristine ice particles, the Extended Boundary Condition Method, or T-Matrix, is much more computationally efficient; however, convergence for T-Matrix calculations fails at large size parameters and high aspect ratios. To address these deficiencies, we implemented the Invariant Imbedding T-Matrix Method (IITM). A brief overview of ARTS and IITM will be given, including details for handling preferentially-aligned hydrometeors. Examples highlighting the performance of the model for simulating space-based and airborne measurements will be offered, and some case studies showing the response to particle type and orientation will be presented. Simulations of polarized radar (Z, LDR, ZDR) and radiometer (Stokes I and Q) quantities will be used to demonstrate the capabilities of the model.

  20. Anomalous radiation effects in fully depleted SOI MOSFETs fabricated on SIMOX

    NASA Astrophysics Data System (ADS)

    Li, Ying; Niu, Guofu; Cressler, J. D.; Patel, J.; Marshall, C. J.; Marshall, P. W.; Kim, H. S.; Reed, R. A.; Palmer, M. J.

    2001-12-01

    We investigate the proton tolerance of fully depleted silicon-on-insulator (SOI) MOSFETs with H-gate and regular-gate structural configurations. For the front-gate characteristics, the H-gate does not show the edge leakage observed in the regular-gate transistor. An anomalous kink in the back-gate linear I/sub D/-V/sub GS/ characteristics of the fully depleted SOI nFETs has been observed at high radiation doses. This kink is attributed to charged traps generated in the bandgap at the buried oxide/silicon film interface during irradiation. Extensive two-dimensional simulations with MEDICI were used to understand the physical origin of this kink. We also report unusual self-annealing effects in the devices when they are cooled to liquid nitrogen temperature.

  1. Microfluidic stretchable RF electronics.

    PubMed

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  2. Radiation protection and environmental management at the relativistic heavy ion collider.

    PubMed

    Musolino, S V; Briggs, S L; Stevens, A J

    2001-01-01

    The Relativistic Heavy Ion Collider (RHIC) is a high energy hadron accelerator built to study basic nuclear physics. It consists of two counter-rotating beams of fully stripped gold ions that are accelerated in two rings to an energy of 100 GeV/nucleon or protons at 250 GeV/c. The beams can be stored for a period of five to ten hours and brought into collision for experiments during that time. The first major physics objective is to recreate a state of matter, the quark-gluon plasma, that has been predicted to have existed at a short time after the creation of the universe. Because there are only a few other high energy particle accelerators like RHIC in the world, the rules promulgated in the US Code of Federal Regulations under the Atomic Energy Act, State regulations, or international guidance documents do not cover prompt radiation from accelerators to govern directly the design and operation of a superconducting collider. Special design criteria for prompt radiation were developed to provide guidance tor the design of radiation shielding. Environmental Management at RHIC is accomplished through the ISO 14001 Environmental Management System. The applicability, benefits, and implementation of ISO 14001 within the framework of a large research accelerator complex are discussed in the paper.

  3. The Rotation of M Dwarfs Observed by the Apache Point Galactic Evolution Experiment

    NASA Astrophysics Data System (ADS)

    Gilhool, Steven H.; Blake, Cullen H.; Terrien, Ryan C.; Bender, Chad; Mahadevan, Suvrath; Deshpande, Rohit

    2018-01-01

    We present the results of a spectroscopic analysis of rotational velocities in 714 M-dwarf stars observed by the SDSS-III Apache Point Galactic Evolution Experiment (APOGEE) survey. We use a template-fitting technique to estimate v\\sin i while simultaneously estimating {log}g, [{{M}}/{{H}}], and {T}{eff}. We conservatively estimate that our detection limit is 8 km s‑1. We compare our results to M-dwarf rotation studies in the literature based on both spectroscopic and photometric measurements. Like other authors, we find an increase in the fraction of rapid rotators with decreasing stellar temperature, exemplified by a sharp increase in rotation near the M4 transition to fully convective stellar interiors, which is consistent with the hypothesis that fully convective stars are unable to shed angular momentum as efficiently as those with radiative cores. We compare a sample of targets observed both by APOGEE and the MEarth transiting planet survey and find no cases where the measured v\\sin i and rotation period are physically inconsistent, requiring \\sin i> 1. We compare our spectroscopic results to the fraction of rotators inferred from photometric surveys and find that while the results are broadly consistent, the photometric surveys exhibit a smaller fraction of rotators beyond the M4 transition by a factor of ∼2. We discuss possible reasons for this discrepancy. Given our detection limit, our results are consistent with a bimodal distribution in rotation that is seen in photometric surveys.

  4. The influence of radiative core growth on coronal X-ray emission from pre-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Gregory, Scott G.; Adams, Fred C.; Davies, Claire L.

    2016-04-01

    Pre-main-sequence (PMS) stars of mass ≳0.35 M⊙ transition from hosting fully convective interiors to configurations with a radiative core and outer convective envelope during their gravitational contraction. This stellar structure change influences the external magnetic field topology and, as we demonstrate herein, affects the coronal X-ray emission as a stellar analogue of the solar tachocline develops. We have combined archival X-ray, spectroscopic, and photometric data for ˜1000 PMS stars from five of the best studied star-forming regions: the Orion Nebula Cluster, NGC 2264, IC 348, NGC 2362, and NGC 6530. Using a modern, PMS calibrated, spectral type-to-effective temperature and intrinsic colour scale, we de-redden the photometry using colours appropriate for each spectral type, and determine the stellar mass, age, and internal structure consistently for the entire sample. We find that PMS stars on Henyey tracks have, on average, lower fractional X-ray luminosities (LX/L*) than those on Hayashi tracks, where this effect is driven by changes in LX. X-ray emission decays faster with age for higher mass PMS stars. There is a strong correlation between L* and LX for Hayashi track stars but no correlation for Henyey track stars. There is no correlation between LX and radiative core mass or radius. However, the longer stars have spent with radiative cores, the less X-ray luminous they become. The decay of coronal X-ray emission from young early K to late G-type PMS stars, the progenitors of main-sequence A-type stars, is consistent with the dearth of X-ray detections of the latter.

  5. WORK SAFETY CONDITIONS WITH CLOSED RADIATION SOURCES (in Polish)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brosziewicz, R.

    1963-01-01

    A discussion is presented of principles of radiological protection observed in the Radiation Chemistry Dept. of the Nuclear Research Inst., during operation of large sources of ionizing radiation. It has been revealed that a properly designed servicing system of these sources ensures full protection of personnel even with not fully protected sources. (auth)

  6. Procesos cuasi-moleculares en enanas blancas frías

    NASA Astrophysics Data System (ADS)

    Rohrmann, R. D.; Althaus, L. G.; Kepler, S. O.

    We show that the radiation emitted by very cool white dwarf stars (Teff ~< 3000 K) with pure hydrogen atmospheres, is fully formed by radiative processes induced by atomic and molecular collisions. FULL TEXT IN SPANISH

  7. Retrieval of exoplanet emission spectra with HyDRA

    NASA Astrophysics Data System (ADS)

    Gandhi, Siddharth; Madhusudhan, Nikku

    2018-02-01

    Thermal emission spectra of exoplanets provide constraints on the chemical compositions, pressure-temperature (P-T) profiles, and energy transport in exoplanetary atmospheres. Accurate inferences of these properties rely on the robustness of the atmospheric retrieval methods employed. While extant retrieval codes have provided significant constraints on molecular abundances and temperature profiles in several exoplanetary atmospheres, the constraints on their deviations from thermal and chemical equilibria have yet to be fully explored. Our present work is a step in this direction. We report HyDRA, a disequilibrium retrieval framework for thermal emission spectra of exoplanetary atmospheres. The retrieval code uses the standard architecture of a parametric atmospheric model coupled with Bayesian statistical inference using the Nested Sampling algorithm. For a given dataset, the retrieved compositions and P-T profiles are used in tandem with the GENESIS self-consistent atmospheric model to constrain layer-by-layer deviations from chemical and radiative-convective equilibrium in the observable atmosphere. We demonstrate HyDRA on the Hot Jupiter WASP-43b with a high-precision emission spectrum. We retrieve an H2O mixing ratio of log(H2O) = -3.54^{+0.82}_{-0.52}, consistent with previous studies. We detect H2O and a combined CO/CO2 at 8-sigma significance. We find the dayside P-T profile to be consistent with radiative-convective equilibrium within the 1-sigma limits and with low day-night redistribution, consistent with previous studies. The derived compositions are also consistent with thermochemical equilibrium for the corresponding distribution of P-T profiles. In the era of high precision and high resolution emission spectroscopy, HyDRA provides a path to retrieve disequilibrium phenomena in exoplanetary atmospheres.

  8. Two dimensional model for coherent synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Huang, Chengkun; Kwan, Thomas J. T.; Carlsten, Bruce E.

    2013-01-01

    Understanding coherent synchrotron radiation (CSR) effects in a bunch compressor requires an accurate model accounting for the realistic beam shape and parameters. We extend the well-known 1D CSR analytic model into two dimensions and develop a simple numerical model based on the Liénard-Wiechert formula for the CSR field of a coasting beam. This CSR numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in the space charge field calculation present in a 1D model. Good agreement is obtained with 1D CSR analytic result for free electron laser (FEL) related beam parameters but it can also give a more accurate result for low-energy/large spot size beams and off-axis/transient fields. This 2D CSR model can be used for understanding the limitation of various 1D models and for benchmarking fully electromagnetic multidimensional particle-in-cell simulations for self-consistent CSR modeling.

  9. The link between outgoing longwave radiation and the altitude at which a spaceborne lidar beam is fully attenuated

    NASA Astrophysics Data System (ADS)

    Vaillant de Guélis, Thibault; Chepfer, Hélène; Noel, Vincent; Guzman, Rodrigo; Dubuisson, Philippe; Winker, David M.; Kato, Seiji

    2017-12-01

    According to climate model simulations, the changing altitude of middle and high clouds is the dominant contributor to the positive global mean longwave cloud feedback. Nevertheless, the mechanisms of this longwave cloud altitude feedback and its magnitude have not yet been verified by observations. Accurate, stable, and long-term observations of a metric-characterizing cloud vertical distribution that are related to the longwave cloud radiative effect are needed to achieve a better understanding of the mechanism of longwave cloud altitude feedback. This study shows that the direct measurement of the altitude of atmospheric lidar opacity is a good candidate for the necessary observational metric. The opacity altitude is the level at which a spaceborne lidar beam is fully attenuated when probing an opaque cloud. By combining this altitude with the direct lidar measurement of the cloud-top altitude, we derive the effective radiative temperature of opaque clouds which linearly drives (as we will show) the outgoing longwave radiation. We find that, for an opaque cloud, a cloud temperature change of 1 K modifies its cloud radiative effect by 2 W m-2. Similarly, the longwave cloud radiative effect of optically thin clouds can be derived from their top and base altitudes and an estimate of their emissivity. We show with radiative transfer simulations that these relationships hold true at single atmospheric column scale, on the scale of the Clouds and the Earth's Radiant Energy System (CERES) instantaneous footprint, and at monthly mean 2° × 2° scale. Opaque clouds cover 35 % of the ice-free ocean and contribute to 73 % of the global mean cloud radiative effect. Thin-cloud coverage is 36 % and contributes 27 % of the global mean cloud radiative effect. The link between outgoing longwave radiation and the altitude at which a spaceborne lidar beam is fully attenuated provides a simple formulation of the cloud radiative effect in the longwave domain and so helps us to understand the longwave cloud altitude feedback mechanism.

  10. An Implicit Finite Difference Solution to the Viscous Radiating Shock Layer with Strong Blowing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.

    1971-01-01

    An implicit finite difference scheme is developed for the fully coupled solution of the viscous radiating stagnation line equations, including strong blowing. Solutions are presented for both air injection and carbon phenolic ablation products injection into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized.

  11. Radiation reaction in fusion plasmas.

    PubMed

    Hazeltine, R D; Mahajan, S M

    2004-10-01

    The effects of a radiation reaction on thermal electrons in a magnetically confined plasma, with parameters typical of planned burning plasma experiments, are studied. A fully relativistic kinetic equation that includes the radiation reaction is derived. The associated rate of phase-space contraction is computed and the relative importance of the radiation reaction in phase space is estimated. A consideration of the moments of the radiation reaction force show that its effects are typically small in reactor-grade confined plasmas, but not necessarily insignificant.

  12. Interface- and discontinuity-aware numerical schemes for plasma 3-T radiation diffusion in two and three dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, William W., E-mail: dai@lanl.gov; Scannapieco, Anthony J.

    2015-11-01

    A set of numerical schemes is developed for two- and three-dimensional time-dependent 3-T radiation diffusion equations in systems involving multi-materials. To resolve sub-cell structure, interface reconstruction is implemented within any cell that has more than one material. Therefore, the system of 3-T radiation diffusion equations is solved on two- and three-dimensional polyhedral meshes. The focus of the development is on the fully coupling between radiation and material, the treatment of nonlinearity in the equations, i.e., in the diffusion terms and source terms, treatment of the discontinuity across cell interfaces in material properties, the formulations for both transient and steady states,more » the property for large time steps, and second order accuracy in both space and time. The discontinuity of material properties between different materials is correctly treated based on the governing physics principle for general polyhedral meshes and full nonlinearity. The treatment is exact for arbitrarily strong discontinuity. The scheme is fully nonlinear for the full nonlinearity in the 3-T diffusion equations. Three temperatures are fully coupled and are updated simultaneously. The scheme is general in two and three dimensions on general polyhedral meshes. The features of the scheme are demonstrated through numerical examples for transient problems and steady states. The effects of some simplifications of numerical schemes are also shown through numerical examples, such as linearization, simple average of diffusion coefficient, and approximate treatment for the coupling between radiation and material.« less

  13. Requirements for Simulating Space Radiation With Particle Accelerators

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.; Wilson, J. W.; Cucinotta, F.; Kim, M-H Y.

    2004-01-01

    Interplanetary space radiation consists of fully ionized nuclei of atomic elements with high energy for which only the few lowest energy ions can be stopped in shielding materials. The health risk from exposure to these ions and their secondary radiations generated in the materials of spacecraft and planetary surface enclosures is a major limiting factor in the management of space radiation risk. Accurate risk prediction depends on a knowledge of basic radiobiological mechanisms and how they are modified in the living tissues of a whole organism. To a large extent, this knowledge is not currently available. It is best developed at ground-based laboratories, using particle accelerator beams to simulate the components of space radiation. Different particles, in different energy regions, are required to study different biological effects, including beams of argon and iron nuclei in the energy range 600 to several thousand MeV/nucleon and carbon beams in the energy range of approximately 100 MeV/nucleon to approximately 1000 MeV/nucleon. Three facilities, one each in the United States, in Germany and in Japan, currently have the partial capability to satisfy these constraints. A facility has been proposed using the Brookhaven National Laboratory Booster Synchrotron in the United States; in conjunction with other on-site accelerators, it will be able to provide the full range of heavy ion beams and energies required. International cooperation in the use of these facilities is essential to the development of a safe international space program.

  14. Space Radiation and the Brain

    NASA Astrophysics Data System (ADS)

    Hampson, R. E.

    Solar and cosmic radiation pose a number of physiological challenges to human spaceflight outside the protective region of Earth's magnetosphere. Aside from well-described effects of radiation on the blood-forming tissues of the hematopoietic system, there is increasing evidence of direct effects of radiation on the brain as evidenced by studies showing longitudinal decline in memory and cognitive function following radiation specifically directed at brain tissue. These indications strengthen the need to more fully research effects of radiation - particular those components associated with solar wind and galactic cosmic radiation - on the nervous system of mammals from rodents to humans.

  15. Solar-type dynamo behaviour in fully convective stars without a tachocline.

    PubMed

    Wright, Nicholas J; Drake, Jeremy J

    2016-07-28

    In solar-type stars (with radiative cores and convective envelopes like our Sun), the magnetic field powers star spots, flares and other solar phenomena, as well as chromospheric and coronal emission at ultraviolet to X-ray wavelengths. The dynamo responsible for generating the field depends on the shearing of internal magnetic fields by differential rotation. The shearing has long been thought to take place in a boundary layer known as the tachocline between the radiative core and the convective envelope. Fully convective stars do not have a tachocline and their dynamo mechanism is expected to be very different, although its exact form and physical dependencies are not known. Here we report observations of four fully convective stars whose X-ray emission correlates with their rotation periods in the same way as in solar-type stars. As the X-ray activity-rotation relationship is a well-established proxy for the behaviour of the magnetic dynamo, these results imply that fully convective stars also operate a solar-type dynamo. The lack of a tachocline in fully convective stars therefore suggests that this is not a critical ingredient in the solar dynamo and supports models in which the dynamo originates throughout the convection zone.

  16. The solar ultraviolet B radiation protection provided by shading devices with regard to its diffuse component.

    PubMed

    Kudish, Avraham I; Harari, Marco; Evseev, Efim G

    2011-10-01

    The composition of the incident solar global ultraviolet B (UVB) radiation with regard to its beam and diffuse radiation fractions is highly relevant with regard to outdoor sun protection. This is especially true with respect to sun protection during leisure-time outdoor sun exposure at the shore and pools, where people tend to escape the sun under shade trees or different types of shading devices, e.g., umbrellas, overhangs, etc., believing they offer protection from the erythemal solar radiation. The degree of sun protection offered by such devices is directly related to the composition of the solar global UVB radiation, i.e., its beam and diffuse fractions. The composition of the incident solar global UVB radiation can be determined by measuring the global UVB (using Solar Light Co. Inc., Model 501A UV-Biometer) and either of its components. The beam component of the UVB radiation was determined by measuring the normal incidence beam radiation using a prototype, tracking instrument consisting of a Solar Light Co. Inc. Model 501A UV-Biometer mounted on an Eppley Solar Tracker Model St-1. The horizontal beam component of the global UVB radiation was calculated from the measured normal incidence using a simple geometric correlation and the diffuse component is determined as the difference between global and horizontal beam radiations. Horizontal and vertical surfaces positioned under a horizontal overhang/sunshade or an umbrella are not fully protected from exposure to solar global UVB radiation. They can receive a significant fraction of the UVB radiation, depending on their location beneath the shading device, the umbrella radius and the albedo (reflectance) of the surrounding ground surface in the case of a vertical surface. Shading devices such as an umbrella or horizontal overhang/shade provide relief from the solar global radiation and do block the solar global UVB radiation to some extent; nevertheless, a significant fraction of the solar global UVB radiation does penetrate this supposedly 'protective or comfort zone'. As a result, it is imperative to either apply sunscreen or cover up the exposed body surfaces even when under such shading devices. © 2011 John Wiley & Sons A/S.

  17. Optimal location of radiation therapy centers with respect to geographic access.

    PubMed

    Santibáñez, Pablo; Gaudet, Marc; French, John; Liu, Emma; Tyldesley, Scott

    2014-07-15

    To develop a framework with which to evaluate locations of radiation therapy (RT) centers in a region based on geographic access. Patient records were obtained for all external beam radiation therapy started in 2011 for the province of British Columbia, Canada. Two metrics of geographic access were defined. The primary analysis was percentage of patients (coverage) within a 90-minute drive from an RT center (C90), and the secondary analysis was the average drive time (ADT) to an RT center. An integer programming model was developed to determine optimal center locations, catchment areas, and capacity required under different scenarios. Records consisted of 11,096 courses of radiation corresponding to 161,616 fractions. Baseline geographic access was estimated at 102.5 minutes ADT (each way, per fraction) and 75.9% C90. Adding 2 and 3 new centers increased C90 to 88% and 92%, respectively, and decreased ADT by between 43% and 61%, respectively. A scenario in which RT was provided in every potential location that could support at least 1 fully utilized linear accelerator resulted in 35.3 minutes' ADT and 93.6% C90. The proposed framework and model provide a data-driven means to quantitatively evaluate alternative configurations of a regional RT system. Results suggest that the choice of location for future centers can significantly improve geographic access to RT. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system ismore » based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.« less

  19. CERTAIN SPECIFIC FEATURES OF THE HIGHER NERVOUS ACTIVITY OF FULLY GROWN ANIMALS IRRADIATED ANTENATALLY WITH IONIZING RADIATION. I. THE INFLUENCE OF IONIZING RADIATION ON THE OFFSPRING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piontkovskii, I.A.

    1958-09-01

    Irradiation of pregnant female aniamals and women with ionizing radiation may cause the appearance of a variety of congenital deformities in the offspring and may interfere with their postnatal development. L. Hicks points out the particular sensitivity of the nervous system of the embryo to ionizing radiation. Thus irradiation of rats on the 9th, 11th, 12th, and 13th days of prenatal development may cause, in addition to somatic deformities, anencephaly (on the 9th day), hydrocephaly (on the 11th day), microcephaly (on the 12th13th day), failure of development of the subcortical structures, the corpora callosa and so on. The influence ofmore » ionizing radiation on the nervous system during antenatal irradiation has been studied mainly morphologically. There are no indications in the literature of the state of the higher nervous activity of fully grown animals exposed at various periods of their antenatal development to the action of ionizing radiation. The effect of ionizing radiation, applied in various doses and at different stages of embryonic development, on the state of the higher nervous activity of animals was studied. (auth)« less

  20. The Lithium Vapor Box Divertor

    NASA Astrophysics Data System (ADS)

    Goldston, Robert; Hakim, Ammar; Hammett, Gregory; Jaworski, Michael; Myers, Rachel; Schwartz, Jacob

    2015-11-01

    Projections of scrape-off layer width to a demonstration power plant suggest an immense parallel heat flux, of order 12 GW/m2, which will necessitate nearly fully detached operation. Building on earlier work by Nagayama et al. and by Ono et al., we propose to use a series of differentially pumped boxes filled with lithium vapor to isolate the buffering vapor from the main plasma chamber, allowing stable detachment. This powerful differential pumping is only available for condensable vapors, not conventional gases. We demonstrate the properties of such a system through conservation laws for vapor mass and enthalpy, and then include plasma entrainment and ultimately an estimate of radiated power. We find that full detachment should be achievable with little leakage of lithium to the main plasma chamber. We also present progress towards solving the Navier-Stokes equation numerically for the chain of vapor boxes, including self-consistent wall boundary conditions and fully-developed shocks, as well as concepts for an initial experimental demonstration-of-concept. This work supported by DOE Contract No. DE-AC02-09CH11466.

  1. Triphasic contrast enhanced CT simulation with bolus tracking for pancreas SBRT target delineation.

    PubMed

    Godfrey, Devon J; Patel, Bhavik N; Adamson, Justus D; Subashi, Ergys; Salama, Joseph K; Palta, Manisha

    Bolus-tracked multiphasic contrast computed tomography (CT) is often used in diagnostic radiology to enhance the visibility of pancreas tumors, but is uncommon in radiation therapy pancreas CT simulation, and its impact on gross tumor volume (GTV) delineation is unknown. This study evaluates the lesion conspicuity and consistency of pancreas stereotactic body radiation therapy (SBRT) GTVs contoured in the different contrast phases of triphasic CT simulation scans. Triphasic, bolus-tracked planning CT simulation scans of 10 consecutive pancreas SBRT patients were acquired, yielding images of the pancreas during the late arterial (LA), portal venous (PV), and either the early arterial or delayed phase. GTVs were contoured on each phase by a gastrointestinal-specialized radiation oncologist and reviewed by a fellowship-trained abdominal radiologist who specializes in pancreatic imaging. The volumes of the registered GTVs, their overlap ratio, and the 3-dimensional margin expansions necessary for each GTV to fully encompass GTVs from the other phases were calculated. The contrast difference between tumor and normal pancreas was measured, and 2 radiation oncologists rank-ordered the phases according to their value for the lesion-contouring task. Tumor-to-pancreas enhancement was on average much larger for the LA and PV than the delayed phase or early arterial phases; the LA and PV phases were also consistently preferred by the radiation oncologists. Enhancement differences among the phases resulted in highly variable GTV volumes with no observed trends. Overlap ratios ranged from 18% to 75% across all 3 phases, improving to 43% to 91% when considering only the preferred LA and PV phases. GTV expansions necessary to encompass all GTVs ranged from 0.3 to 1.8 cm for all 3 phases, improving slightly to 0.1 to 1.4 cm when considering just the LA and PV phases. For pancreas SBRT, we recommend combining the GTVs from a multiphasic CT simulation with bolus-tracking, including, at a minimum, a Boolean "OR" of the LA and PV phases. Copyright © 2017 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.

  2. 7 Millimeter VLBA Observations of Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Backer, Donald C.

    1998-04-01

    We present 7 mm Very Long Baseline Array observations of the compact nonthermal radio source in the Galactic center, Sagittarius A*. These observations confirm the hypothesis that the image of Sgr A* is a resolved elliptical Gaussian caused by the scattering of an intervening thermal plasma. The measured major axis of Sgr A* is 0.76+/-0.04 mas, consistent with the predicted scattering size of 0.67+/-0.03. We find an axial ratio of 0.73+/-0.10 and a position angle of 77.0d +/- 7.4d. These results are fully consistent with VLBI observations at longer wavelengths and at 3 mm. We find no evidence for any additional compact structure to a limit of 35 mJy. The underlying radio source must be smaller than 4.1 AU for a Galactocentric distance of 8.5 kpc. This result is consistent with the conclusion that the radio emission from Sgr A* results from synchrotron or cyclo-synchrotron radiation of gas in the vicinity of a black hole with a mass near 106 Msolar.

  3. Local effects of partly cloudy skies on solar and emitted radiations

    NASA Technical Reports Server (NTRS)

    Whitney, D. A.; Venable, D. D.

    1981-01-01

    Solar radiation measurements are made on a routine basis. Global solar, atmospheric emitted, downwelled diffuse solar, and direct solar radiation measurement systems are fully operational with the first two in continuous operation. Fractional cloud cover measurements are made from GOES imagery or from ground based whole sky photographs. Normalized global solar irradiance values for partly cloudy skies were correlated to fractional cloud cover.

  4. The Juno Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Benn, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; Murphy, S.; Odom, J.; Oliversen, R.; Schnurr, R.; Sheppard, D.; Smith, E. J.

    2017-11-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ˜20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 × 106 nT per axis) with a resolution of ˜0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno's spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.

  5. The Juno Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Benna, M.; Bjarno, J. B.; Denver, T.; Espley, J.; Jorgensen, J. L.; Jorgensen, P. S.; Lawton, P.; Malinnikova, A.; Merayo, J. M.; hide

    2017-01-01

    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to approx. 20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 x 10(exp. 6) nT per axis) with a resolution of approx. 0.05 nT in the most sensitive dynamic range (+/-1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields andor sensor offsets are monitored in flight taking advantage of Juno's spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.

  6. All-Particle Spectrum Measured by the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.; Guzik, T. G.; hide

    2007-01-01

    The Advanced Thin Ionization Calorimeter (ATIC), a balloon-borne experiment, is designed to investigate the composition and energy spectra of cosmic rays of charge Z = 1 to 26 over the energy range - 10(exp 11) - 10(exp 14) ev. The instrument consists of a silicon matrix charge detector, plastic-scintillator strip hodoscopes interleaved with graphite interaction targets, and an 18 radiation length deep, fully active bismuth germanate (BGO) calorimeter. ATIC has had two successful long duration balloon (LDB) flights launched from McMurdo Station, Antarc't'ica in 2000 and 2002. In this paper, we present the all-particle spectrum extracted from data collected during the ATIC flights, and compare it with results from other experiments at both lower and higher energies.

  7. Guidelines for the welfare and use of animals in cancer research

    PubMed Central

    Workman, P; Aboagye, E O; Balkwill, F; Balmain, A; Bruder, G; Chaplin, D J; Double, J A; Everitt, J; Farningham, D A H; Glennie, M J; Kelland, L R; Robinson, V; Stratford, I J; Tozer, G M; Watson, S; Wedge, S R; Eccles, S A

    2010-01-01

    Animal experiments remain essential to understand the fundamental mechanisms underpinning malignancy and to discover improved methods to prevent, diagnose and treat cancer. Excellent standards of animal care are fully consistent with the conduct of high quality cancer research. Here we provide updated guidelines on the welfare and use of animals in cancer research. All experiments should incorporate the 3Rs: replacement, reduction and refinement. Focusing on animal welfare, we present recommendations on all aspects of cancer research, including: study design, statistics and pilot studies; choice of tumour models (e.g., genetically engineered, orthotopic and metastatic); therapy (including drugs and radiation); imaging (covering techniques, anaesthesia and restraint); humane endpoints (including tumour burden and site); and publication of best practice. PMID:20502460

  8. The interaction with the lower ionosphere of electromagnetic pulses from lightning: Excitation of optical emissions

    NASA Technical Reports Server (NTRS)

    Taranenko, Y. N.; Inan, U. S.; Bell, T. F.

    1993-01-01

    A self consistent and fully kinetic simulation of the interaction of lightning radiated electromagnetic (EM) pulses with the nighttime lower ionosphere indicates that optical emissions observable with conventional instruments would be excited. For example, emissions of the 1st and 2nd positive bands of N2 occur at rates reaching 7 x 10(exp 7) and 10(exp 7) cu cm/s respectively at 92 km altitude for a lightning discharge with an electric field E(sub 100) = 20 V/m (normalized to a 100 km distance). The maximum height integrated intensities of these emissions are 4 x 10(exp 7) and 6 x 10(exp 6) R respectively, lasting for approx. 50 micrometers.

  9. Method of manufacturing a matrix for the detection of mismatches

    DOEpatents

    Ershov, Gennady Moiseevich; Mirzabekov, Andrei Darievich

    1998-01-01

    This method for preparing micromatrices consists in applying a specially-patterned intermediate layer of laser-absorbing substance on a solid support. The configuration of the sublayer fully corresponds to the topology of the manufactured matrix. The intermediate layer is further covered by a continuous layer of gel , the gel and the material of the support being transparent towards laser radiation. The gel layer is irradiated by a laser beam for a time needed to evaporate simultaneously the gel in the places immediately above the laser-absorbing sublayer and the sublayer itself. Oligonucleotides from a chosen set are then attached to the formed gel `cells`, one oligonucleotide to each cell. This method is intended for use in biotechnology, specifically for deciphering the nucleotide sequence of DNA.

  10. The LCLS Project

    NASA Astrophysics Data System (ADS)

    Paterson, James M.

    2000-04-01

    The Linac Coherent Light Source (LCLS) is a linac driven FEL which uses a 1km electron linac (the last third of the SLAC linac) and a 100m long undulator to produce 1.5 angstrom X-rays of extremely high peak brightness. This radiation is fully tranversely coherent and is in sub-picosecond long pulses. The LCLS Project is a four year R&D program to solidify the design, to develop required technologies, to optimize the cost and performance and to study the potential experimental programs using these unique beam characteristics. The program is conducted by a multi-institutional collaboration consisting of SLAC as the lead laboratory, along with ANL, BNL, LLNL, LANL and UCLA.The LCLS design and the R&D programs are described.

  11. Multisource Estimation of Long-term Global Terrestrial Surface Radiation

    NASA Astrophysics Data System (ADS)

    Peng, L.; Sheffield, J.

    2017-12-01

    Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual components. The goal of this study is to provide a merged observational benchmark for large-scale diagnostic analyses, remote sensing and land surface modeling.

  12. Effects of Preionization in Radiative Shocks. II. Application to the Herbig–Haro Objects

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Sutherland, Ralph S.

    2017-04-01

    In an earlier paper we treated the preionization problem in shocks over the velocity range 20 km s‑1 < {v}{{s}}< 1000 km s‑1 in a fully self-consistent manner. Here we investigate in detail the effect of the upstream UV photon field generated in the radiative zone of shocks in the range in which hydrogen is only partly ionized 20 km s‑1 (< {v}{{s}}< 150 km s‑1). We show that, as a result of superheating in the nonequilibrium preshock plasma, both the magnetic parameter and the Mach number of the shock are strongly affected by the preionization state of the gas, which controls to a large extent the radiative spectrum of the shock. We use these models to provide specific line diagnostics for Herbig–Haro objects, which allow us to solve for both the preshock density and shock velocity, and we present detailed models of the HH 34 jet, which allows us to derive the shock conditions, mass-loss rate, momentum flux, and chemical abundances in the jet. We show that the refractory elements Mg, Ca, Fe, and Ni are enhanced by 0.22 dex over the solar values, which provides interesting clues about the jet-launching mechanism in pre-main-sequence evolution.

  13. TRUST. I. A 3D externally illuminated slab benchmark for dust radiative transfer

    NASA Astrophysics Data System (ADS)

    Gordon, K. D.; Baes, M.; Bianchi, S.; Camps, P.; Juvela, M.; Kuiper, R.; Lunttila, T.; Misselt, K. A.; Natale, G.; Robitaille, T.; Steinacker, J.

    2017-07-01

    Context. The radiative transport of photons through arbitrary three-dimensional (3D) structures of dust is a challenging problem due to the anisotropic scattering of dust grains and strong coupling between different spatial regions. The radiative transfer problem in 3D is solved using Monte Carlo or Ray Tracing techniques as no full analytic solution exists for the true 3D structures. Aims: We provide the first 3D dust radiative transfer benchmark composed of a slab of dust with uniform density externally illuminated by a star. This simple 3D benchmark is explicitly formulated to provide tests of the different components of the radiative transfer problem including dust absorption, scattering, and emission. Methods: The details of the external star, the slab itself, and the dust properties are provided. This benchmark includes models with a range of dust optical depths fully probing cases that are optically thin at all wavelengths to optically thick at most wavelengths. The dust properties adopted are characteristic of the diffuse Milky Way interstellar medium. This benchmark includes solutions for the full dust emission including single photon (stochastic) heating as well as two simplifying approximations: One where all grains are considered in equilibrium with the radiation field and one where the emission is from a single effective grain with size-distribution-averaged properties. A total of six Monte Carlo codes and one Ray Tracing code provide solutions to this benchmark. Results: The solution to this benchmark is given as global spectral energy distributions (SEDs) and images at select diagnostic wavelengths from the ultraviolet through the infrared. Comparison of the results revealed that the global SEDs are consistent on average to a few percent for all but the scattered stellar flux at very high optical depths. The image results are consistent within 10%, again except for the stellar scattered flux at very high optical depths. The lack of agreement between different codes of the scattered flux at high optical depths is quantified for the first time. Convergence tests using one of the Monte Carlo codes illustrate the sensitivity of the solutions to various model parameters. Conclusions: We provide the first 3D dust radiative transfer benchmark and validate the accuracy of this benchmark through comparisons between multiple independent codes and detailed convergence tests.

  14. A Systems Approach to Evaluating Ionizing Radiation: Six Focus Areas to Improve Quality, Efficiency, and Patient Safety

    PubMed Central

    Mower, Laura; Bushe, Chris

    2015-01-01

    Abstract: Ionizing radiation is an essential component of the care process. However, providers and patients may not be fully aware of the risks involved, the level of ionizing radiation delivered with various procedures, or the potential for harm through incidental overexposure or cumulative dose. Recent high-profile incidents demonstrating the devastating short-term consequences of radiation overexposure have drawn attention to these risks, but applicable solutions are lacking. Although various recommendations and guidelines have been proposed, organizational variability challenges providers to identify their own practical solutions. To identify potential failure modes and develop solutions to preserve patient safety within a large, national healthcare system, we assembled a multidisciplinary team to conduct a comprehensive analysis of practices surrounding the delivery of ionizing radiation. Workgroups were developed to analyze existing culture, processes, and technology to identify deficiencies and propose solutions. Six focus areas were identified: competency and certification; equipment; monitoring and auditing; education; clinical pathways; and communication and marketing. This manuscript summarizes this comprehensive, multidisciplinary, and systemic analysis of risk and provides examples to illustrate how these focus areas can be used to improve the use of ionizing radiation. The proposed solutions, once fully implemented, may advance patient safety and care. PMID:26042626

  15. Bismuth and antimony-based oxyhalides and chalcohalides as potential optoelectronic materials

    NASA Astrophysics Data System (ADS)

    Ran, Zhao; Wang, Xinjiang; Li, Yuwei; Yang, Dongwen; Zhao, Xin-Gang; Biswas, Koushik; Singh, David J.; Zhang, Lijun

    2018-03-01

    In the last decade the ns2 cations (e.g., Pb2+ and Sn2+)-based halides have emerged as one of the most exciting new classes of optoelectronic materials, as exemplified by for instance hybrid perovskite solar absorbers. These materials not only exhibit unprecedented performance in some cases, but they also appear to break new ground with their unexpected properties, such as extreme tolerance to defects. However, because of the relatively recent emergence of this class of materials, there remain many yet to be fully explored compounds. Here, we assess a series of bismuth/antimony oxyhalides and chalcohalides using consistent first principles methods to ascertain their properties and obtain trends. Based on these calculations, we identify a subset consisting of three types of compounds that may be promising as solar absorbers, transparent conductors, and radiation detectors. Their electronic structure, connection to the crystal geometry, and impact on band-edge dispersion and carrier effective mass are discussed.

  16. Bismuth and antimony-based oxyhalides and chalcohalides as potential optoelectronic materials

    DOE PAGES

    Ran, Zhao; Wang, Xinjiang; Li, Yuwei; ...

    2018-03-22

    In the last decade the ns 2 cations (e.g., Pb 2+ and Sn 2+)-based halides have emerged as one of the most exciting new classes of optoelectronic materials, as exemplified by for instance hybrid perovskite solar absorbers. These materials not only exhibit unprecedented performance in some cases, but they also appear to break new ground with their unexpected properties, such as extreme tolerance to defects. However, because of the relatively recent emergence of this class of materials, there remain many yet to be fully explored compounds. Here, we assess a series of bismuth/antimony oxyhalides and chalcohalides using consistent first principlesmore » methods to ascertain their properties and obtain trends. Based on these calculations, we identify a subset consisting of three types of compounds that may be promising as solar absorbers, transparent conductors, and radiation detectors. Their electronic structure, connection to the crystal geometry, and impact on band-edge dispersion and carrier effective mass are discussed.« less

  17. Nevada National Security Site Radiation Protection Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    2013-04-30

    Title 10 Code of Federal Regulations (CFR) Part 835, “Occupational Radiation Protection,” establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada National Security Site (NNSS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operations, and environmental restoration off-site projects. This RPP section consists of general statementsmore » that are applicable to the NNSS as a whole. The RPP also includes a series of appendices which provide supporting detail for the associated NNSS Tennant Organizations (TOs). Appendix H, “Compliance Demonstration Table,” contains a cross-walk for the implementation of 10 CFR 835 requirements. This RPP does not contain any exemptions from the established 10 CFR 835 requirements. The RSPC and TOs are fully compliant with 10 CFR 835 and no additional funding is required in order to meet RPP commitments. No new programs or activities are needed to meet 10 CFR 835 requirements and there are no anticipated impacts to programs or activities that are not included in the RPP. There are no known constraints to implementing the RPP. No guides or technical standards are adopted in this RPP as a means to meet the requirements of 10 CFR 835.« less

  18. Heating and cooling of the multiply charged ion nonequilibrium plasma in a high-current extended low-inductance discharge

    NASA Astrophysics Data System (ADS)

    Burtsev, V. A.; Kalinin, N. V.

    2014-09-01

    Using a radiation magnetohydrodynamics two-temperature model (RMHD model) of a high-current volumetric radiating Z-discharge, the heating and cooling of the nitrogen plasma in a pulsed pinched extended discharge is investigated as applied to the problem of creating a recombination laser based on 3 → 2 transitions of hydrogen-like nitrogen ions (λ = 13.4 nm). It is shown that the power supply of the discharge, which is represented by a dual storage-forming line and a transmission line, makes it possible to raise the power density of the nitrogen plasma to 0.01-1.00 TW/cm3. Accordingly, there arises the possibility of generating a fully ionized (i.e., consisting of bare nuclei and electrons) plasma through the heating (compression) of electrons owing to the self-magnetic field of the plasma current and Joule heat even if the plasma is cooled by its own radiation at this stage. Such a plasma is needed to produce the lasing (active) medium of a recombination laser based on electron transitions in hydrogen-like ions. At the second stage, it is necessary to rapidly and deeply cool the plasma to 20-40 eV for 1-2 ns. Cooling of the fully ionized expanding plasma was numerically simulated with the discharge current switched on and off by means of a switch with a rapidly rising resistance. In both cases, the plasma expansion in the discharge is not adiabatic. Even after the discharge current is fairly rapidly switched off, heating of electrons continues inside the plasma column for a time longer than the switching time. Discharge current switchoff improves the electron cooling efficiency only slightly. Under such conditions, the plasma cools down to 50-60 eV in the former case and to 46-54 eV in the latter case for 2-3 ns.

  19. Top-pair production and decay at NLO matched with parton showers

    DOE PAGES

    Campbell, John M.; Ellis, R. Keith; Nason, Paolo; ...

    2015-04-21

    We present a next-to-leading order (NLO) calculation of tt¯ production in hadronic collisions interfaced to shower generators according to the POWHEG method. We start from an NLO result from previous work, obtained in the zero width limit, where radiative corrections to both production and decays are included. The POWHEG interface required an extension of the POWHEG BOX framework, in order to deal with radiation from the decay of resonances. This extension is fully general (i.e. it can be applied in principle to any process considered in the zero width limit), and is here applied for the first time. In ordermore » to perform a realistic simulation, we introduce finite width effects using different approximations, that we validated by comparing with published exact NLO results. We have interfaced our POWHEG code to the PYTHIA8 shower Monte Carlo generator. At this stage, we dealt with novel issues related to the treatment of resonances, especially with regard to the initial scale for the shower that needs to be set appropriately. This procedure affects, for example, the fragmentation function of the b quark, that we have studied with particular attention. We believe that the tool presented here improves over previous generators for all aspects that have to do with top decays, and especially for the study of issues related to top mass measurements that involve B hadrons or b jets. As a result, the work presented here also constitutes a first step towards a fully consistent matching of NLO calculations involving intermediate resonances decaying into coloured particles, with parton showers.« less

  20. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS

    USGS Publications Warehouse

    Haas, Kevin A.; Warner, John C.

    2009-01-01

    Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales.

  1. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS

    USGS Publications Warehouse

    Haas, K.A.; Warner, J.C.

    2009-01-01

    Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales. ?? 2008 Elsevier Ltd.

  2. On the r-mode spectrum of relativistic stars: the inclusion of the radiation reaction

    NASA Astrophysics Data System (ADS)

    Ruoff, Johannes; Kokkotas, Kostas D.

    2002-03-01

    We consider both mode calculations and time-evolutions of axial r modes for relativistic uniformly rotating non-barotropic neutron stars, using the slow-rotation formalism, in which rotational corrections are considered up to linear order in the angular velocity Ω. We study various stellar models, such as uniform density models, polytropic models with different polytropic indices n, and some models based on realistic equations of state. For weakly relativistic uniform density models and polytropes with small values of n, we can recover the growth times predicted from Newtonian theory when standard multipole formulae for the gravitational radiation are used. However, for more compact models, we find that relativistic linear perturbation theory predicts a weakening of the instability compared to the Newtonian results. When turning to polytropic equations of state, we find that for certain ranges of the polytropic index n, the r mode disappears, and instead of a growth, the time-evolutions show a rapid decay of the amplitude. This is clearly at variance with the Newtonian predictions. It is, however, fully consistent with our previous results obtained in the low-frequency approximation.

  3. Nuclear resonant forward scattering of synchrotron radiation by randomly oriented iron complexes which exhibit nuclear Zeeman interaction

    NASA Astrophysics Data System (ADS)

    Haas, M.; Realo, E.; Winkler, H.; Meyer-Klaucke, W.; Trautwein, A. X.; Leupold, O.; Rüter, H. D.

    1997-12-01

    An expression for the amplitude of a pulse of synchrotron radiation (SR) coherently scattered in forward direction by a randomly oriented Mössbauer absorber is derived from the theory of γ optics. It is assumed that the hyperfine splittings present in the Mössbauer nuclei can be described in the framework of the spin-Hamiltonian formalism. In the general case of a thick Mössbauer sample, which consists of randomly oriented paramagnetic iron-containing molecules (for example, a frozen solution of a 57Fe protein) in an applied magnetic field, the response of this sample on an incident monochromatic and fully polarized SR beam cannot be given analytically because of the integrations involved. The way to evaluate nuclear forward-scattering spectra for this general case numerically is outlined and results of calculations with a corresponding program package called SYNFOS are shown and compared with experimental results obtained by measurements of the high-spin iron (II) ``picket-fence'' porphyrin [Fe(CH3COO)TPpivP]- in an applied field of 6 T.

  4. Measurements of [C I] Emission from Comet Hale-Bopp

    NASA Astrophysics Data System (ADS)

    Oliversen, R. J.; Doane, N.; Scherb, F.; Harris, W. M.; Morgenthaler, J. P.

    2002-12-01

    We present quantitative measurements of cometary [C I] 9850 Å emission obtained during observations of comet Hale-Bopp (C/1995 O1) in 1997 March and April. The observations were carried out using a high-resolution (λ/Δλ~40,000) Fabry-Pérot/CCD spectrometer at the McMath-Pierce Solar telescope on Kitt Peak. This forbidden line, the carbon analog of [O I] 6300 Å, is emitted in the radiative decay of C(1D) atoms. In the absence of other sources and sinks, [C I] 9850 Å emission can be used as a direct tracer of CO photodissociation in comets. However, in Hale-Bopp's large, dense coma, other processes, such as collisional excitation of ground-state C(3P), dissociative recombination of CO+, and collisional dissociation of CO and CO2 may produce significant amounts of C(1D). The long C(1D) radiative lifetime (~4000 s) makes collisional deexcitation (quenching) the primary loss mechanism in the inner coma. Thus, a detailed, self-consistent global model of collisional and photochemical interactions is necessary to fully account for [C I] 9850 Å emission in comet Hale-Bopp.

  5. Active galactic nuclei feedback, quiescence and circumgalactic medium metal enrichment in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Eisenreich, Maximilian; Naab, Thorsten; Choi, Ena; Ostriker, Jeremiah P.; Emsellem, Eric

    2017-06-01

    We present three-dimensional hydrodynamical simulations showing the effect of kinetic and radiative active galactic nuclei (AGN) feedback on a model galaxy representing a massive quiescent low-redshift early-type galaxy of M* = 8.41 × 1010 M⊙, harbouring an MBH = 4 × 108 M⊙ black hole surrounded by a cooling gaseous halo. We show that, for a total baryon fraction of ˜20 per cent of the cosmological value, feedback from the AGN can keep the galaxy quiescent for about 4.35 Gyr and with properties consistent with black hole mass and X-ray luminosity scaling relations. However, this can only be achieved if the AGN feedback model includes both kinetic and radiative feedback modes. The simulation with only kinetic feedback fails to keep the model galaxy fully quiescent, while one with only radiative feedback leads to excessive black hole growth. For higher baryon fractions (e.g. 50 per cent of the cosmological value), the X-ray luminosities exceed observed values by at least one order of magnitude, and rapid cooling results in a star-forming galaxy. The AGN plays a major role in keeping the circumgalactic gas at observed metallicities of Z/Z⊙ ≳ 0.3 within the central ˜30 kpc by venting nuclear gas enriched with metals from residual star formation activity. As indicated by previous cosmological simulations, our results are consistent with a model for which the black hole mass and the total baryon fraction are set at higher redshifts z > 1 and the AGN alone can keep the model galaxy on observed scaling relations. Models without AGN feedback violate both the quiescence criterion as well as circumgalactic medium metallicity constraints.

  6. Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics.

    PubMed

    Canestrari, Niccolo; Chubar, Oleg; Reininger, Ruben

    2014-09-01

    X-ray beamlines in modern synchrotron radiation sources make extensive use of grazing-incidence reflective optics, in particular Kirkpatrick-Baez elliptical mirror systems. These systems can focus the incoming X-rays down to nanometer-scale spot sizes while maintaining relatively large acceptance apertures and high flux in the focused radiation spots. In low-emittance storage rings and in free-electron lasers such systems are used with partially or even nearly fully coherent X-ray beams and often target diffraction-limited resolution. Therefore, their accurate simulation and modeling has to be performed within the framework of wave optics. Here the implementation and benchmarking of a wave-optics method for the simulation of grazing-incidence mirrors based on the local stationary-phase approximation or, in other words, the local propagation of the radiation electric field along geometrical rays, is described. The proposed method is CPU-efficient and fully compatible with the numerical methods of Fourier optics. It has been implemented in the Synchrotron Radiation Workshop (SRW) computer code and extensively tested against the geometrical ray-tracing code SHADOW. The test simulations have been performed for cases without and with diffraction at mirror apertures, including cases where the grazing-incidence mirrors can be hardly approximated by ideal lenses. Good agreement between the SRW and SHADOW simulation results is observed in the cases without diffraction. The differences between the simulation results obtained by the two codes in diffraction-dominated cases for illumination with fully or partially coherent radiation are analyzed and interpreted. The application of the new method for the simulation of wavefront propagation through a high-resolution X-ray microspectroscopy beamline at the National Synchrotron Light Source II (Brookhaven National Laboratory, USA) is demonstrated.

  7. USAF Summer Faculty Research Program. 1980. Research Reports. Volume II.

    DTIC Science & Technology

    1980-10-01

    Radiation Damage Profiles and Annealing Dr. Samuel C. Ling Effects of 120 keV Sulfur Implants in GaAs 45 Finite Element Modeling of Elastic-Plastic Dr...described more fully in a later section. II. OBJECTIVES: Laboratory management is acutely aware of the shortcomings of the current informational processes...are fixed, there are only two modes of heat trans- fer - radiation and conduction. At the low temperatures necessary for superconductivity, radiation

  8. Radiation Diffusion:. AN Overview of Physical and Numerical Concepts

    NASA Astrophysics Data System (ADS)

    Graziani, Frank

    2005-12-01

    An overview of the physical and mathematical foundations of radiation transport is given. Emphasis is placed on how the diffusion approximation and its transport corrections arise. An overview of the numerical handling of radiation diffusion coupled to matter is also given. Discussions center on partial temperature and grey methods with comments concerning fully implicit methods. In addition finite difference, finite element and Pert representations of the div-grad operator is also discussed

  9. Optimal Location of Radiation Therapy Centers With Respect to Geographic Access

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santibáñez, Pablo; Gaudet, Marc; French, John

    2014-07-15

    Purpose: To develop a framework with which to evaluate locations of radiation therapy (RT) centers in a region based on geographic access. Methods and Materials: Patient records were obtained for all external beam radiation therapy started in 2011 for the province of British Columbia, Canada. Two metrics of geographic access were defined. The primary analysis was percentage of patients (coverage) within a 90-minute drive from an RT center (C90), and the secondary analysis was the average drive time (ADT) to an RT center. An integer programming model was developed to determine optimal center locations, catchment areas, and capacity required undermore » different scenarios. Results: Records consisted of 11,096 courses of radiation corresponding to 161,616 fractions. Baseline geographic access was estimated at 102.5 minutes ADT (each way, per fraction) and 75.9% C90. Adding 2 and 3 new centers increased C90 to 88% and 92%, respectively, and decreased ADT by between 43% and 61%, respectively. A scenario in which RT was provided in every potential location that could support at least 1 fully utilized linear accelerator resulted in 35.3 minutes' ADT and 93.6% C90. Conclusions: The proposed framework and model provide a data-driven means to quantitatively evaluate alternative configurations of a regional RT system. Results suggest that the choice of location for future centers can significantly improve geographic access to RT.« less

  10. Radiation Safety and Quality Assurance in North American Dental Schools.

    ERIC Educational Resources Information Center

    Farman, Allan G.; Hines, Vickie G.

    1986-01-01

    A survey of dental schools that revealed processing quality control and routine maintenance checks on x-ray generators are being carried out in a timely manner is discussed. However, methods for reducing patient exposure to radiation are not being fully implemented, and some dental students are being exposed to x-rays. (Author/MLW)

  11. 10 CFR 36.27 - Fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Fire protection. 36.27 Section 36.27 Energy NUCLEAR... Requirements for Irradiators § 36.27 Fire protection. (a) The radiation room at a panoramic irradiator must... become fully shielded if a fire is detected. (b) The radiation room at a panoramic irradiator must be...

  12. Predicting the response of a submillimeter bolometer to cosmic rays.

    PubMed

    Woodcraft, Adam L; Sudiwala, Rashmi V; Ade, Peter A R; Griffin, Matthew J; Wakui, Elley; Bhatia, Ravinder S; Lange, Andrew E; Bock, James J; Turner, Anthony D; Yun, Minhee H; Beeman, Jeffrey W

    2003-09-01

    Bolometers designed to detect submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model.

  13. Predicting the response of a submillimeter bolometer to cosmic rays

    NASA Astrophysics Data System (ADS)

    Woodcraft, Adam L.; Sudiwala, Rashmi V.; Ade, Peter A. R.; Griffin, Matthew J.; Wakui, Elley; Bhatia, Ravinder S.; Lange, Andrew E.; Bock, James J.; Turner, Anthony D.; Yun, Minhee H.; Beeman, Jeffrey W.

    2003-09-01

    Bolometers designed to detect submillimeter radiation also respond to cosmic, gamma, and x rays. Because detectors cannot be fully shielded from such energy sources, it is necessary to understand the effect of a photon or cosmic-ray particle being absorbed. The resulting signal (known as a glitch) can then be removed from raw data. We present measurements using an Americium-241 gamma radiation source to irradiate a prototype bolometer for the High Frequency Instrument in the Planck Surveyor satellite. Our measurements showed no variation in response depending on where the radiation was absorbed, demonstrating that the bolometer absorber and thermistor thermalize quickly. The bolometer has previously been fully characterized both electrically and optically. We find that using optically measured time constants underestimates the time taken for the detector to recover from a radiation absorption event. However, a full thermal model for the bolometer, with parameters taken from electrical and optical measurements, provides accurate time constants. Slight deviations from the model were seen at high energies; these can be accounted for by use of an extended model.

  14. Radiative interactions in laminar duct flows

    NASA Technical Reports Server (NTRS)

    Trivedi, P. A.; Tiwari, S. N.

    1990-01-01

    Analyses and numerical procedures are presented for infrared radiative energy transfer in gases when other modes of energy transfer occur simultaneously. Two types of geometries are considered, a parallel plate duct and a circular duct. Fully developed laminar incompressible flows of absorbing-emitting species in black surfaced ducts are considered under the conditions of uniform wall heat flux. The participating species considered are OH, CO, CO2, and H2O. Nongray as well as gray formulations are developed for both geometries. Appropriate limiting solutions of the governing equations are obtained and conduction-radiation interaction parameters are evaluated. Tien and Lowder's wide band model correlation was used in nongray formulation. Numerical procedures are presented to solve the integro-differential equations for both geometries. The range of physical variables considered are 300 to 2000 K for temperature, 0.1 to 100.0 atm for pressure, and 0.1 to 100 cm spacings between plates/radius of the tube. An extensive parametric study based on nongray formulation is presented. Results obtained for different flow conditions indicate that the radiative interactions can be quite significant in fully developed incompressible flows.

  15. Radiative recombination data for tungsten ions: III.  W{sup 14+}–W{sup 23+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trzhaskovskaya, M.B., E-mail: Trzhask@MT5605.spb.edu; Nikulin, V.K.

    2014-09-15

    This paper completes the cycle of our calculations of the radiative recombination and photoionization data for tungsten ions. Presented here are the photoionization and radiative recombination cross sections, radiative recombination rate coefficients, and radiated power loss rate coefficients for ten tungsten impurity ions from W{sup 14+} to W{sup 23+}. These data are required in diagnostics and modeling fusion plasmas studied in such devices as ITER, ASDEX Upgrade, and EBIT. Partial photoionization cross sections have been fitted by an analytical expression with five fit parameters tabulated here. Total radiative recombination cross sections are presented in the electron energy range from 1 eVmore » to ∼80 keV. Radiative recombination rates and radiated power loss rates are given in the temperature range from 10{sup 4}  K to 10{sup 9}  K. Calculations have been performed on the basis of the fully relativistic treatment of photoionization and radiative recombination taking into account all significant multipoles of the radiative field. Electron wave functions have been obtained by the Dirac–Fock method with the proper consideration of the electron exchange. The relativistic Maxwell–Jüttner distribution of continuum electrons has been used in calculations of radiative recombination rates and radiated power loss rates. This decreases values of the rates noticeably at a high temperature as compared to the usual non-relativistic Maxwell–Boltzmann distribution. -- Highlights: •Radiative recombination data for ten tungsten ions W{sup 14+}–W{sup 23+} are presented. •Photoionization cross sections are also given. •Calculations are fully relativistic including all multipoles of the radiative field. •We use the Dirac–Fock method to obtain the electron wave functions. •The data are required for diagnostics and modeling fusion plasmas studied in ITER.« less

  16. Recent Developments in Three Dimensional Radiation Transport Using the Green's Function Technique

    NASA Technical Reports Server (NTRS)

    Rockell, Candice; Tweed, John; Blattnig, Steve R.; Mertens, Christopher J.

    2010-01-01

    In the future, astronauts will be sent into space for longer durations of time compared to previous missions. The increased risk of exposure to dangerous radiation, such as Galactic Cosmic Rays and Solar Particle Events, is of great concern. Consequently, steps must be taken to ensure astronaut safety by providing adequate shielding. In order to better determine and verify shielding requirements, an accurate and efficient radiation transport code based on a fully three dimensional radiation transport model using the Green's function technique is being developed

  17. Reassessing the Ritz-Einstein debate on the radiation asymmetry in classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Frisch, Mathias; Pietsch, Wolfgang

    2016-08-01

    We investigate the debate between Walter Ritz and Albert Einstein on the origin and nature of the radiation asymmetry. We argue that Ritz's views on the radiation asymmetry were far richer and nuanced than the oft-cited joint letter with Einstein (Ritz & Einstein, 1909) suggests, and that Einstein's views in 1909 on the asymmetry are far more ambiguous than is commonly recognized. Indeed, there is strong evidence that Einstein ultimately came to agree with Ritz that elementary radiation processes in classical electrodynamics are non-symmetric and fully retarded.

  18. The origin of the infrared luminosity in Centaurus A

    NASA Technical Reports Server (NTRS)

    Joy, Marshall; Lester, Daniel F.; Harvey, Paul M.; Ellis, H. Benton

    1988-01-01

    The origin of the infrared luminosity in Centaurus A is studied using new tracking and data acquisition techniques which yield diffraction-limited profiles at both 50 and 100 microns. Ninety percent of the 100 micron flux is found to originate in a source which extends 5 kpc along the optical dust lane that bisects the galaxy; the remaining 10 percent comes from an unresolved source coincident with the active radio nucleus. The extended 100 micron emission profile is fully consistent with a uniform disk of thermally radiating particles; when combined with results of previous studies at shorter wavelengths, these measurements indicate that nearly all of the infrared luminosity is produced by thermally emitting grains which are heated by massive young stars distributed throughout the optically thick dust lane.

  19. Observational evidence of dust evolution in galactic extinction curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cecchi-Pestellini, Cesare; Casu, Silvia; Mulas, Giacomo

    Although structural and optical properties of hydrogenated amorphous carbons are known to respond to varying physical conditions, most conventional extinction models are basically curve fits with modest predictive power. We compare an evolutionary model of the physical properties of carbonaceous grain mantles with their determination by homogeneously fitting observationally derived Galactic extinction curves with the same physically well-defined dust model. We find that a large sample of observed Galactic extinction curves are compatible with the evolutionary scenario underlying such a model, requiring physical conditions fully consistent with standard density, temperature, radiation field intensity, and average age of diffuse interstellar clouds.more » Hence, through the study of interstellar extinction we may, in principle, understand the evolutionary history of the diffuse interstellar clouds.« less

  20. JEWEL 2.0.0: directions for use

    NASA Astrophysics Data System (ADS)

    Zapp, Korinna

    2014-02-01

    In this publication the first official release of the Jewel 2.0.0 code [The first version Jewel 1 (Zapp et al. in Eur Phys J C 60:617, 2009) could only treat elastic scattering explicitly and the code was never published, The code can be downloaded from the official Jewel homepage http://jewel.hepforge.org] is presented. Jewel is a Monte Carlo event generator simulating QCD jet evolution in heavy-ion collisions. It treats the interplay of QCD radiation and re-scattering in a medium with fully microscopic dynamics in a consistent perturbative framework with minimal assumptions. After a qualitative introduction into the physics of Jewel detailed information about the practical aspects of using the code is given. The code is available from the official Jewel homepage http://jewel.hepforge.org.

  1. Formation and Coalescence of Cosmological Supermassive-Black-Hole Binaries in Supermassive-Star Collapse

    NASA Astrophysics Data System (ADS)

    Reisswig, C.; Ott, C. D.; Abdikamalov, E.; Haas, R.; Mösta, P.; Schnetter, E.

    2013-10-01

    We study the collapse of rapidly rotating supermassive stars that may have formed in the early Universe. By self-consistently simulating the dynamics from the onset of collapse using three-dimensional general-relativistic hydrodynamics with fully dynamical spacetime evolution, we show that seed perturbations in the progenitor can lead to the formation of a system of two high-spin supermassive black holes, which inspiral and merge under the emission of powerful gravitational radiation that could be observed at redshifts z≳10 with the DECIGO or Big Bang Observer gravitational-wave observatories, assuming supermassive stars in the mass range 104-106M⊙. The remnant is rapidly spinning with dimensionless spin a*=0.9. The surrounding accretion disk contains ˜10% of the initial mass.

  2. Multidimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2015-09-01

    We discuss a new, conservative, fully implicit 2D-3V particle-in-cell algorithm for non-radiative, electromagnetic kinetic plasma simulations, based on the Vlasov-Darwin model. Unlike earlier linearly implicit PIC schemes and standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. This has been demonstrated in 1D electrostatic and electromagnetic contexts. In this study, we build on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the Darwin field and particle orbit equations for multiple species in multiple dimensions. The Vlasov-Darwin model is very attractive for PIC simulations because it avoids radiative noise issues in non-radiative electromagnetic regimes. The algorithm conserves global energy, local charge, and particle canonical-momentum exactly, even with grid packing. The nonlinear iteration is effectively accelerated with a fluid preconditioner, which allows efficient use of large timesteps, O(√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D and 2D. Support from the LANL LDRD program and the DOE-SC ASCR office.

  3. Design and Impacts of Land-Biogenic-Atmosphere Coupling in the NASA-Unified WRF (NU-WRF) Modeling System

    NASA Technical Reports Server (NTRS)

    Tan, Qian; Santanello, Joseph A., Jr.; Zhou, Shujia; Tao, Zhining; Peters-Lidard, Christa d.; Chn, Mian

    2011-01-01

    Land-Atmosphere coupling is typically designed and implemented independently for physical (e.g. water and energy) and chemical (e.g. biogenic emissions and surface depositions)-based models and applications. Differences in scale, data requirements, and physics thus limit the ability of Earth System models to be fully coupled in a consistent manner. In order for the physical-chemical-biological coupling to be complete, treatment of the land in terms of surface classification, condition, fluxes, and emissions must be considered simultaneously and coherently across all components. In this study, we investigate a coupling strategy for the NASA-Unified Weather Research and Forecasting (NU-WRF) model that incorporates the traditionally disparate fluxes of water and energy through NASA's LIS (Land Information System) and biogenic emissions through BEIS (Biogenic Emissions Inventory System) and MEGAN (Model of Emissions of Gases and Aerosols from Nature) into the atmosphere. In doing so, inconsistencies across model inputs and parameter data are resolved such that the emissions from a particular plant species are consistent with the heat and moisture fluxes calculated for that land cover type. In turn, the response of the atmospheric turbulence and mixing in the planetary boundary layer (PBL) acts on the identical surface type, fluxes, and emissions for each. In addition, the coupling of dust emission within the NU-WRF system is performed in order to ensure consistency and to maximize the benefit of high-resolution land representation in LIS. The impacts of those self-consistent components on' the simulation of atmospheric aerosols are then evaluated through the WRF-Chem-GOCART (Goddard Chemistry Aerosol Radiation and Transport) model. Overall, this ambitious project highlights the current difficulties and future potential of fully coupled. components. in Earth System models, and underscores the importance of the iLEAPS community in supporting improved knowledge of processes and innovative approaches for models and observations.

  4. Fully kinetic particle simulations of high pressure streamer propagation

    NASA Astrophysics Data System (ADS)

    Rose, David; Welch, Dale; Thoma, Carsten; Clark, Robert

    2012-10-01

    Streamer and leader formation in high pressure devices is a dynamic process involving a hierarchy of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. We have performed 2D and 3D fully EM implicit particle-in-cell simulation model of gas breakdown leading to streamer formation under DC and RF fields. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm [D. R. Welch, et al., J. Comp. Phys. 227, 143 (2007)] that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge. These models are being applied to the analysis of high-pressure gas switches [D. V. Rose, et al., Phys. Plasmas 18, 093501 (2011)] and gas-filled RF accelerator cavities [D. V. Rose, et al. Proc. IPAC12, to appear].

  5. A Fast Solver for Implicit Integration of the Vlasov--Poisson System in the Eulerian Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, C. Kristopher; Hauck, Cory D.

    In this paper, we present a domain decomposition algorithm to accelerate the solution of Eulerian-type discretizations of the linear, steady-state Vlasov equation. The steady-state solver then forms a key component in the implementation of fully implicit or nearly fully implicit temporal integrators for the nonlinear Vlasov--Poisson system. The solver relies on a particular decomposition of phase space that enables the use of sweeping techniques commonly used in radiation transport applications. The original linear system for the phase space unknowns is then replaced by a smaller linear system involving only unknowns on the boundary between subdomains, which can then be solvedmore » efficiently with Krylov methods such as GMRES. Steady-state solves are combined to form an implicit Runge--Kutta time integrator, and the Vlasov equation is coupled self-consistently to the Poisson equation via a linearized procedure or a nonlinear fixed-point method for the electric field. Finally, numerical results for standard test problems demonstrate the efficiency of the domain decomposition approach when compared to the direct application of an iterative solver to the original linear system.« less

  6. ALMA sub-mm maser and dust distribution of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Richards, A. M. S.; Impellizzeri, C. M. V.; Humphreys, E. M.; Vlahakis, C.; Vlemmings, W.; Baudry, A.; De Beck, E.; Decin, L.; Etoka, S.; Gray, M. D.; Harper, G. M.; Hunter, T. R.; Kervella, P.; Kerschbaum, F.; McDonald, I.; Melnick, G.; Muller, S.; Neufeld, D.; O'Gorman, E.; Parfenov, S. Yu.; Peck, A. B.; Shinnaga, H.; Sobolev, A. M.; Testi, L.; Uscanga, L.; Wootten, A.; Yates, J. A.; Zijlstra, A.

    2014-12-01

    Aims: Cool, evolved stars have copious, enriched winds. Observations have so far not fully constrained models for the shaping and acceleration of these winds. We need to understand the dynamics better, from the pulsating stellar surface to ~10 stellar radii, where radiation pressure on dust is fully effective. Asymmetric nebulae around some red supergiants imply the action of additional forces. Methods: We retrieved ALMA Science Verification data providing images of sub-mm line and continuum emission from VY CMa. This enables us to locate water masers with milli-arcsec accuracy and to resolve the dusty continuum. Results: The 658, 321, and 325 GHz masers lie in irregular, thick shells at increasing distances from the centre of expansion. For the first time this is confirmed as the stellar position, coinciding with a compact peak offset to the NW of the brightest continuum emission. The maser shells overlap but avoid each other on scales of up to 10 au. Their distribution is broadly consistent with excitation models but the conditions and kinematics are complicated by wind collisions, clumping, and asymmetries. Appendices are available in electronic form at http://www.aanda.org

  7. Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas

    NASA Technical Reports Server (NTRS)

    Olson, D. A.

    1991-01-01

    Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.

  8. A Fast Solver for Implicit Integration of the Vlasov--Poisson System in the Eulerian Framework

    DOE PAGES

    Garrett, C. Kristopher; Hauck, Cory D.

    2018-04-05

    In this paper, we present a domain decomposition algorithm to accelerate the solution of Eulerian-type discretizations of the linear, steady-state Vlasov equation. The steady-state solver then forms a key component in the implementation of fully implicit or nearly fully implicit temporal integrators for the nonlinear Vlasov--Poisson system. The solver relies on a particular decomposition of phase space that enables the use of sweeping techniques commonly used in radiation transport applications. The original linear system for the phase space unknowns is then replaced by a smaller linear system involving only unknowns on the boundary between subdomains, which can then be solvedmore » efficiently with Krylov methods such as GMRES. Steady-state solves are combined to form an implicit Runge--Kutta time integrator, and the Vlasov equation is coupled self-consistently to the Poisson equation via a linearized procedure or a nonlinear fixed-point method for the electric field. Finally, numerical results for standard test problems demonstrate the efficiency of the domain decomposition approach when compared to the direct application of an iterative solver to the original linear system.« less

  9. Forward Monte Carlo Computations of Polarized Microwave Radiation

    NASA Technical Reports Server (NTRS)

    Battaglia, A.; Kummerow, C.

    2000-01-01

    Microwave radiative transfer computations continue to acquire greater importance as the emphasis in remote sensing shifts towards the understanding of microphysical properties of clouds and with these to better understand the non linear relation between rainfall rates and satellite-observed radiance. A first step toward realistic radiative simulations has been the introduction of techniques capable of treating 3-dimensional geometry being generated by ever more sophisticated cloud resolving models. To date, a series of numerical codes have been developed to treat spherical and randomly oriented axisymmetric particles. Backward and backward-forward Monte Carlo methods are, indeed, efficient in this field. These methods, however, cannot deal properly with oriented particles, which seem to play an important role in polarization signatures over stratiform precipitation. Moreover, beyond the polarization channel, the next generation of fully polarimetric radiometers challenges us to better understand the behavior of the last two Stokes parameters as well. In order to solve the vector radiative transfer equation, one-dimensional numerical models have been developed, These codes, unfortunately, consider the atmosphere as horizontally homogeneous with horizontally infinite plane parallel layers. The next development step for microwave radiative transfer codes must be fully polarized 3-D methods. Recently a 3-D polarized radiative transfer model based on the discrete ordinate method was presented. A forward MC code was developed that treats oriented nonspherical hydrometeors, but only for plane-parallel situations.

  10. Foundations of an effective-one-body model for coalescing binaries on eccentric orbits

    NASA Astrophysics Data System (ADS)

    Hinderer, Tanja; Babak, Stanislav

    2017-11-01

    We develop the foundations of an effective-one-body (EOB) model for eccentric binary coalescences that includes the conservative dynamics, radiation reaction, and gravitational waveform modes from the inspiral and the merger-ringdown signals. Our approach uses the strategy that is commonly employed in black-hole perturbation theory: we introduce an efficient, relativistic parameterization of the dynamics that is defined by the orbital geometry and consists of a set of phase variables and quantities that evolve only due to gravitational radiation reaction. Specializing to nonspinning binaries, we derive the EOB equations of motion for the new variables and make use of the fundamental frequencies of the motion to compute the binary's radiative multipole moments that determine the gravitational waves. Our treatment has several advantages over the quasi-Keplerian approach that is often used in post-Newtonian (PN) calculations: a smaller set of variables, parameters that reflect the features of strong-field dynamics, and a greater transparency of the calculations when using the fundamental frequencies that leads to simplifications and an unambiguous orbit-averaging operation. While our description of the conservative dynamics is fully relativistic, we limit explicit derivations in the radiative sector to 1.5PN order for simplicity. This already enables us to establish methods for computing both instantaneous and hereditary contributions to the gravitational radiation in EOB coordinates that have straightforward extensions to higher PN order. The weak-field, small eccentricity limit of our results for the orbit-averaged fluxes agrees with known PN results when expressed in terms of gauge-invariant quantities. We further address considerations for the numerical implementation of the model and the completion of the waveforms to include the merger and ringdown signals, and provide illustrative results.

  11. Effect of Velocity of Detonation of Explosives on Seismic Radiation

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2014-12-01

    We studied seismic body wave generation from four fully contained explosions of approximately the same yields (68 kg of TNT equivalent) conducted in anisotropic granite in Barre, VT. The explosions were detonated using three types of explosives with different velocities of detonation (VOD): Black Powder (BP), Ammonium Nitrate Fuel Oil/Emulsion (ANFO), and Composition B (COMP B). The main objective of the experiment was to study differences in seismic wave generation among different types of explosives, and to determine the mechanism responsible for these differences. The explosives with slow burn rate (BP) produced lower P-wave amplitude and lower corner frequency, which resulted in lower seismic efficiency (0.35%) in comparison with high burn rate explosives (2.2% for ANFO and 3% for COMP B). The seismic efficiency estimates for ANFO and COMP B agree with previous studies for nuclear explosions in granite. The body wave radiation pattern is consistent with an isotropic explosion with an added azimuthal component caused by vertical tensile fractures oriented along pre-existing micro-fracturing in the granite, although the complexities in the P- and S-wave radiation patterns suggest that more than one fracture orientation could be responsible for their generation. High S/P amplitude ratios and low P-wave amplitudes suggest that a significant fraction of the BP source mechanism can be explained by opening of the tensile fractures as a result of the slow energy release.

  12. Effect of Thin Cirrus Clouds on Dust Optical Depth Retrievals From MODIS Observations

    NASA Technical Reports Server (NTRS)

    Feng, Qian; Hsu, N. Christina; Yang, Ping; Tsay, Si-Chee

    2011-01-01

    The effect of thin cirrus clouds in retrieving the dust optical depth from MODIS observations is investigated by using a simplified aerosol retrieval algorithm based on the principles of the Deep Blue aerosol property retrieval method. Specifically, the errors of the retrieved dust optical depth due to thin cirrus contamination are quantified through the comparison of two retrievals by assuming dust-only atmospheres and the counterparts with overlapping mineral dust and thin cirrus clouds. To account for the effect of the polarization state of radiation field on radiance simulation, a vector radiative transfer model is used to generate the lookup tables. In the forward radiative transfer simulations involved in generating the lookup tables, the Rayleigh scattering by atmospheric gaseous molecules and the reflection of the surface assumed to be Lambertian are fully taken into account. Additionally, the spheroid model is utilized to account for the nonsphericity of dust particles In computing their optical properties. For simplicity, the single-scattering albedo, scattering phase matrix, and optical depth are specified a priori for thin cirrus clouds assumed to consist of droxtal ice crystals. The present results indicate that the errors in the retrieved dust optical depths due to the contamination of thin cirrus clouds depend on the scattering angle, underlying surface reflectance, and dust optical depth. Under heavy dusty conditions, the absolute errors are comparable to the predescribed optical depths of thin cirrus clouds.

  13. Kinetic modeling of x-ray laser-driven solid Al plasmas via particle-in-cell simulation

    NASA Astrophysics Data System (ADS)

    Royle, R.; Sentoku, Y.; Mancini, R. C.; Paraschiv, I.; Johzaki, T.

    2017-06-01

    Solid-density plasmas driven by intense x-ray free-electron laser (XFEL) radiation are seeded by sources of nonthermal photoelectrons and Auger electrons that ionize and heat the target via collisions. Simulation codes that are commonly used to model such plasmas, such as collisional-radiative (CR) codes, typically assume a Maxwellian distribution and thus instantaneous thermalization of the source electrons. In this study, we present a detailed description and initial applications of a collisional particle-in-cell code, picls, that has been extended with a self-consistent radiation transport model and Monte Carlo models for photoionization and K L L Auger ionization, enabling the fully kinetic simulation of XFEL-driven plasmas. The code is used to simulate two experiments previously performed at the Linac Coherent Light Source investigating XFEL-driven solid-density Al plasmas. It is shown that picls-simulated pulse transmissions using the Ecker-Kröll continuum-lowering model agree much better with measurements than do simulations using the Stewart-Pyatt model. Good quantitative agreement is also found between the time-dependent picls results and those of analogous simulations by the CR code scfly, which was used in the analysis of the experiments to accurately reproduce the observed K α emissions and pulse transmissions. Finally, it is shown that the effects of the nonthermal electrons are negligible for the conditions of the particular experiments under investigation.

  14. Microscopic calculations of the characteristics of radiative nuclear reactions for double-magic nuclei

    NASA Astrophysics Data System (ADS)

    Achakovskiy, Oleg; Kamerdzhiev, Sergei; Tselyaev, Victor; Shitov, Mikhail

    2016-01-01

    The neutron capture cross sections and average radiative widths Γγ of neutron resonances for two double-magic nuclei 132Sn and 208Pb have been calculated using the microscopic photon strength functions (PSF), which were obtained within the microscopic self-consistent version of the extended theory of finite Fermi systems in the time blocking approximation. For the first time, the microscopic PSFs have been obtained within the fully self-consistent approach with exact accounting for the single particle continuum (for 208Pb). The approach includes phonon coupling effects in addition to the standard RPA approach. The known Skyrme force has been used. The calculations of nuclear reaction characteristics have been performed with the EMPIRE 3.1 nuclear reaction code. Here, three nuclear level density (NLD) models have been used: the so-called phenomenological GSM, the EMPIRE specific (or Enhanced GSM) and the microscopical combinatorial HFB NLD models. For both considered characteristics we found a significant disagreement between the results obtained with the GSM and HFB NLD models. For 208Pb, a reasonable agreement has been found with systematic for the Γγ values with HFB NLD and with the experimental data for the HFB NLD average resonance spacing D0, while for these two quantities the differences between the values obtained with GSM and HFB NLD are of several orders of magnitude. The discrepancies between the results with the phenomenological EGLO PSF and microscopic RPA or TBA are much less for the same NLD model.

  15. Adjustable lead glass shielding device for use with an over-the-table x-ray tube.

    PubMed

    Eubig, C; Groves, B M; Davey, G

    1978-12-01

    Sources of scattered radiation exposure to personnel from a ceiling-mounted x-ray tube were examined at the side of cardiac catheterization patients. A fully adjustable mounting for a lead glass shield was designed to afford maximum radiation protection to the attending physician's head and neck area, while minimizing interference with the procedure.

  16. Radiation Planning Assistant - A Streamlined, Fully Automated Radiotherapy Treatment Planning System

    PubMed Central

    Court, Laurence E.; Kisling, Kelly; McCarroll, Rachel; Zhang, Lifei; Yang, Jinzhong; Simonds, Hannah; du Toit, Monique; Trauernicht, Chris; Burger, Hester; Parkes, Jeannette; Mejia, Mike; Bojador, Maureen; Balter, Peter; Branco, Daniela; Steinmann, Angela; Baltz, Garrett; Gay, Skylar; Anderson, Brian; Cardenas, Carlos; Jhingran, Anuja; Shaitelman, Simona; Bogler, Oliver; Schmeller, Kathleen; Followill, David; Howell, Rebecca; Nelson, Christopher; Peterson, Christine; Beadle, Beth

    2018-01-01

    The Radiation Planning Assistant (RPA) is a system developed for the fully automated creation of radiotherapy treatment plans, including volume-modulated arc therapy (VMAT) plans for patients with head/neck cancer and 4-field box plans for patients with cervical cancer. It is a combination of specially developed in-house software that uses an application programming interface to communicate with a commercial radiotherapy treatment planning system. It also interfaces with a commercial secondary dose verification software. The necessary inputs to the system are a Treatment Plan Order, approved by the radiation oncologist, and a simulation computed tomography (CT) image, approved by the radiographer. The RPA then generates a complete radiotherapy treatment plan. For the cervical cancer treatment plans, no additional user intervention is necessary until the plan is complete. For head/neck treatment plans, after the normal tissue and some of the target structures are automatically delineated on the CT image, the radiation oncologist must review the contours, making edits if necessary. They also delineate the gross tumor volume. The RPA then completes the treatment planning process, creating a VMAT plan. Finally, the completed plan must be reviewed by qualified clinical staff. PMID:29708544

  17. Improved Finite-Volume Method for Radiative Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Wray, Alan

    2012-01-01

    Fully coupled simulations of hydrodynamics and radiative transfer are essential to a number of fields ranging from astrophysics to engineering applications. Of particular interest in this work are hypersonic atmospheric entries and associated experimental apparatus, e.g., shock tubes and high enthalpy testing facilities. The radiative transfer calculations must supply to the CFD a heating term in the energy equation in the form of the divergence of the radiative heat flux and the radiative heat fluxes to bounding surfaces. It is most efficient to solve the radiative transfer equation on the same grid as the CFD solution, and this work presents an algorithm with improved accuracy for such simulations on structured and unstructured grids compared to more conventional approaches. Results will be shown for shock radiation during hypersonic reentry. Issues of parallelization within a radiation sweep will also be discussed.

  18. Constraints on Decreases in Eta Carinae's Mass-loss from 3D Hydrodynamic Simulations of Its Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Madura, T. I.; Gull, T. R.; Okazaki, A. T.; Russell, C. M. P.; Owocki, S. P.; Groh, J. H.; Corcoran, M. F.; Hamaguchi, K.; Teodoro, M.

    2013-01-01

    Recent work suggests that the mass-loss rate of the primary star Eta-A in the massive colliding wind binary Eta Carinae dropped by a factor of 2-3 between 1999 and 2010. We present result from large- (+/- 1545 au) and small- (+/- 155 au) domain, 3D smoothed particle hydrodynamics (SPH) simulations of Eta Car's colliding winds for three Eta-A mass-loss rates ( (dot-M(sub Eta-A) = 2.4, 4.8 and 8.5 × 10(exp -4) M(solar)/ yr), investigating the effects on the dynamics of the binary wind-wind collision (WWC). These simulations include orbital motion, optically thin radiative cooling and radiative forces. We find that dot-M Eta-A greatly affects the time-dependent hydrodynamics at all spatial scales investigated. The simulations also show that the post-shock wind of the companion star Eta-B switches from the adiabatic to the radiative-cooling regime during periastron passage (Phi approx.= 0.985-1.02). This switchover starts later and ends earlier the lower the value of dot-M Eta-A and is caused by the encroachment of the wind of Eta-A into the acceleration zone of Eta-B's wind, plus radiative inhibition of Eta-B's wind by Eta-A. The SPH simulations together with 1D radiative transfer models of Eta-A's spectra reveal that a factor of 2 or more drop in dot-M EtaA should lead to substantial changes in numerous multiwavelength observables. Recent observations are not fully consistent with the model predictions, indicating that any drop in dot- M Eta-A was likely by a factor of approx. < 2 and occurred after 2004. We speculate that most of the recent observed changes in Eta Car are due to a small increase in the WWC opening angle that produces significant effects because our line of sight to the system lies close to the dense walls of the WWC zone. A modest decrease in dot-M Eta-A may be responsible, but changes in the wind/stellar parameter of Eta-B, while less likely, cannot yet be fully ruled out. We suggest observations during Eta-Car's next periastron in 2014 to further test for decreases in dot-M Eta-A. If dot-M Eta-A is declining and continues to do so, the 2014 X-ray minimum should be even shorter than that of 2009.

  19. Environmental Exposure and Risk of Childhood Leukemia: An Overview.

    PubMed

    Schüz, Joachim; Erdmann, Friederike

    2016-11-01

    Childhood leukemia is the most common cancer diagnosed in children worldwide. However, only a few causes have been established so far, mainly some genetic syndromes and high doses of ionizing radiation. Major efforts have been undertaken to study the relationship between environmental factors and the risk of childhood leukemia, inspired by geographical variation in incidence rates. Some evidence has emerged for parental occupational exposures to pesticides, whereas there is less evidence for an association with postnatal pesticide exposure. Diagnostic radiation and radon exposure have been suggested but there remains a lack of convincing studies. Extremely low-frequency magnetic fields consistently showed a small increase in risk in numerous studies, but bias and confounding cannot be ruled out as possible explanations. From among factors other than environmental and radiation-related, the most promising candidate is abnormal patterns to common infections, but which children are most at risk and the pathways are not fully understood. In conclusion, although childhood leukemia shows some distinct incidence patterns by sex, age, and geography suggesting a role of the environment in its etiology, no major environmental risk factors including radiation have been established as major contributors to the global childhood leukemia burden. Due to the young age at diagnosis and evidence of chromosomal damage before birth in many of the affected children, parental exposures remain of high interest. Although cure rates of childhood leukemia are high in economically developed countries, because of the adverse late effects of the disease and its treatment, identification of modifiable risk factors for implementing primary prevention remains the ultimate goal. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  20. Heat transfer in damaged material

    NASA Astrophysics Data System (ADS)

    Kruis, J.

    2013-10-01

    Fully coupled thermo-mechanical analysis of civil engineering problems is studied. The mechanical analysis is based on damage mechanics which is useful for modeling of behaviour of quasi-brittle materials, especially in tension. The damage is assumed to be isotropic. The heat transfer is assumed in the form of heat conduction governed by the Fourier law and heat radiation governed by the Stefan-Boltzmann law. Fully coupled thermo-mechanical problem is formulated.

  1. 308nm Excimer Laser in Dermatology

    PubMed Central

    Mehraban, Shadi

    2014-01-01

    308nm xenon-chloride excimer laser, a novel mode of phototherapy, is an ultraviolet B radiation system consisting of a noble gas and halide. The aim of this systematic review was to investigate the literature and summarize all the experiments, clinical trials and case reports on 308-nm excimer laser in dermatological disorders. 308-nm excimer laser has currently a verified efficacy in treating skin conditions such as vitiligo, psoriasis, atopic dermatitis, alopecia areata, allergic rhinitis, folliculitis, granuloma annulare, lichen planus, mycosis fungoides, palmoplantar pustulosis, pityriasis alba, CD30+ lympho proliferative disorder, leukoderma, prurigo nodularis, localized scleroderma and genital lichen sclerosus. Although the 308-nm excimer laser appears to act as a promising treatment modality in dermatology, further large-scale studies should be undertaken in order to fully affirm its safety profile considering the potential risk, however minimal, of malignancy, it may impose. PMID:25606333

  2. Simultaneous observations of Ca II K and Mg II k in T Tauri stars

    NASA Technical Reports Server (NTRS)

    Calvet, N.; Basri, G.; Imhoff, C. L.; Giampapa, M. S.

    1985-01-01

    The first simultaneous, calibrated observations of the Ca II K and Mg II k resonance lines in T Tauri stars are presented. It is found that for T Tauri stars with mass greater than 1.5 solar mass, which have radiative cores and tend to be fast rotators, the k line seems to arise in an extended region (probably also responsible for the H-alpha emission), whereas the K line apparently originates closer to the highly inhomogeneous stellar surface. The lower mass stars, which are fully convective and tend to be slow rotators, are more easily described by a largely chromospheric model, consistent with main-sequence activity structures but at greater values of the nonradiative flux. The strongest emission-line stars in the low-mass group, however, are also likely to have extended k line regions.

  3. Sea ice simulations based on fields generated by the GLAS GCM. [Goddard Laboratory for Atmospheric Sciences General Circulation Model

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Herman, G. F.

    1980-01-01

    The GLAS General Circulation Model (GCM) was applied to the four-month simulation of the thermodynamic part of the Parkinson-Washington sea ice model using atmospheric boundary conditions. The sea ice thickness and distribution were predicted for the Jan. 1-Apr. 30 period using the GCM-fields of solar and infrared radiation, specific humidity and air temperature at the surface, and snow accumulation; the sensible heat and evaporative surface fluxes were consistent with the ground temperatures produced by the ice model and the air temperatures determined by the atmospheric concept. It was concluded that the Parkinson-Washington sea ice model results in acceptable ice concentrations and thicknesses when used with GLAS GCM for the Jan.-Apr. period suggesting the feasibility of fully coupled ice-atmosphere simulations with these two approaches.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolding, Simon R.; Cleveland, Mathew Allen; Morel, Jim E.

    In this paper, we have implemented a new high-order low-order (HOLO) algorithm for solving thermal radiative transfer problems. The low-order (LO) system is based on the spatial and angular moments of the transport equation and a linear-discontinuous finite-element spatial representation, producing equations similar to the standard S 2 equations. The LO solver is fully implicit in time and efficiently resolves the nonlinear temperature dependence at each time step. The high-order (HO) solver utilizes exponentially convergent Monte Carlo (ECMC) to give a globally accurate solution for the angular intensity to a fixed-source pure-absorber transport problem. This global solution is used tomore » compute consistency terms, which require the HO and LO solutions to converge toward the same solution. The use of ECMC allows for the efficient reduction of statistical noise in the Monte Carlo solution, reducing inaccuracies introduced through the LO consistency terms. Finally, we compare results with an implicit Monte Carlo code for one-dimensional gray test problems and demonstrate the efficiency of ECMC over standard Monte Carlo in this HOLO algorithm.« less

  5. Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958-2009.

    PubMed

    Grant, Eric J; Brenner, Alina; Sugiyama, Hiromi; Sakata, Ritsu; Sadakane, Atsuko; Utada, Mai; Cahoon, Elizabeth K; Milder, Caitlin M; Soda, Midori; Cullings, Harry M; Preston, Dale L; Mabuchi, Kiyohiko; Ozasa, Kotaro

    2017-05-01

    This is the third analysis of solid cancer incidence among the Life Span Study (LSS) cohort of atomic bomb survivors in Hiroshima and Nagasaki, adding eleven years of follow-up data since the previously reported analysis. For this analysis, several changes and improvements were implemented, including updated dose estimates (DS02R1) and adjustment for smoking. Here, we focus on all solid cancers in aggregate. The eligible cohort included 105,444 subjects who were alive and had no known history of cancer at the start of follow-up. A total of 80,205 subjects had individual dose estimates and 25,239 were not in either city at the time of the bombings. The follow-up period was 1958-2009, providing 3,079,484 person-years of follow-up. Cases were identified by linkage with population-based Hiroshima and Nagasaki Cancer Registries. Poisson regression methods were used to elucidate the nature of the radiation-associated risks per Gy of weighted absorbed colon dose using both excess relative risk (ERR) and excess absolute risk (EAR) models adjusted for smoking. Risk estimates were reported for a person exposed at age 30 years with attained age of 70 years. In this study, 22,538 incident first primary solid cancer cases were identified, of which 992 were associated with radiation exposure. There were 5,918 cases (26%) that occurred in the 11 years (1999-2009) since the previously reported study. For females, the dose response was consistent with linearity with an estimated ERR of 0.64 per Gy (95% CI: 0.52 to 0.77). For males, significant upward curvature over the full dose range as well as restricted dose ranges was observed and therefore, a linear-quadratic model was used, which resulted in an ERR of 0.20 (95% CI: 0.12 to 0.28) at 1 Gy and an ERR of 0.010 (95% CI: -0.0003 to 0.021) at 0.1 Gy. The shape of the ERR dose response was significantly different among males and females (P = 0.02). While there was a significant decrease in the ERR with increasing attained age, this decrease was more rapid in males compared to females. The lowest dose range that showed a statistically significant dose response using the sex-averaged, linear ERR model was 0-100 mGy (P = 0.038). In conclusion, this analysis demonstrates that solid cancer risks remain elevated more than 60 years after exposure. Sex-averaged upward curvature was observed in the dose response independent of adjustment for smoking. Findings from the current analysis regarding the dose-response shape were not fully consistent with those previously reported, raising unresolved questions. At this time, uncertainties in the shape of the dose response preclude definitive conclusions to confidently guide radiation protection policies. Upcoming results from a series of analyses focusing on the radiation risks for specific organs or organ families, as well as continued follow-up are needed to fully understand the nature of radiation-related cancer risk and its public health significance. Data and analysis scripts are available for download at: http://www.rerf.or.jp .

  6. Applications of high-energy heavy-ions from superconducting cyclotrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, T. L.

    1999-06-10

    The superconducting cyclotrons of the National Superconducting Cyclotron Laboratory (NSCL), a major nuclear physics facility, can provide ions of any element from hydrogen to uranium. A major upgrade to the NSCL is underway and will consist of an electron cyclotron resonance (ECR) ion source followed by two large superconducting cyclotrons (K500 and K1200). Ions can be extracted at any point along this chain allowing a large range of energies and charge states. The ion energies range from a few keV to over 20 GeV, and charge states up to fully stripped {sup 197}Au{sup 79+} and two electron {sup 238}U{sup 90+}more » are possible. The long range of the high-energy heavy-ions allows them to penetrate deeply into a target that is placed in air, outside a vacuum chamber. The ion beams have already been used for a number of applications including; ion implantation, atomic physics, single event effects in integrated circuits, DNA radiation studies, radiation detector studies, flux pinning in high-T{sub c} superconductors, calibration of a space-based spectrometer, isotropic ratio measurements, material wear studies, and continuous positron emission tomography imaging.« less

  7. Pulse-like partial ruptures and high-frequency radiation at creeping-locked transition during megathrust earthquakes

    NASA Astrophysics Data System (ADS)

    Michel, Sylvain; Avouac, Jean-Philippe; Lapusta, Nadia; Jiang, Junle

    2017-08-01

    Megathrust earthquakes tend to be confined to fault areas locked in the interseismic period and often rupture them only partially. For example, during the 2015 M7.8 Gorkha earthquake, Nepal, a slip pulse propagating along strike unzipped the bottom edge of the locked portion of the Main Himalayan Thrust (MHT). The lower edge of the rupture produced dominant high-frequency (>1 Hz) radiation of seismic waves. We show that similar partial ruptures occur spontaneously in a simple dynamic model of earthquake sequences. The fault is governed by standard laboratory-based rate-and-state friction with the aging law and contains one homogenous velocity-weakening (VW) region embedded in a velocity-strengthening (VS) area. Our simulations incorporate inertial wave-mediated effects during seismic ruptures (they are thus fully dynamic) and account for all phases of the seismic cycle in a self-consistent way. Earthquakes nucleate at the edge of the VW area and partial ruptures tend to stay confined within this zone of higher prestress, producing pulse-like ruptures that propagate along strike. The amplitude of the high-frequency sources is enhanced in the zone of higher, heterogeneous stress at the edge of the VW area.

  8. Pulse-Like Partial Ruptures and High-Frequency Radiation at Creeping-Locked Transition during Megathrust Earthquakes

    NASA Astrophysics Data System (ADS)

    Michel, S. G. R. M.; Avouac, J. P.; Lapusta, N.; Jiang, J.

    2017-12-01

    Megathrust earthquakes tend to be confined to fault areas locked in the interseismic period and often rupture them only partially. For example, during the 2015 M7.8 Gorkha earthquake, Nepal, a slip pulse propagating along strike unzipped the bottom edge of the locked portion of the Main Himalayan Thrust (MHT). The lower edge of the rupture produced dominant high-frequency (>1 Hz) radiation of seismic waves. We show that similar partial ruptures occur spontaneously in a simple dynamic model of earthquake sequences. The fault is governed by standard laboratory-based rate-and-state friction with the ageing law and contains one homogenous velocity-weakening (VW) region embedded in a velocity-strengthening (VS) area. Our simulations incorporate inertial wave-mediated effects during seismic ruptures (they are thus fully dynamic) and account for all phases of the seismic cycle in a self-consistent way. Earthquakes nucleate at the edge of the VW area and partial ruptures tend to stay confined within this zone of higher prestress, producing pulse-like ruptures that propagate along strike. The amplitude of the high-frequency sources is enhanced in the zone of higher, heterogeneous stress at the edge of the VW area.

  9. Power Flow in Phonation

    NASA Astrophysics Data System (ADS)

    Zhang, Lucy; Yu, Feimi; Krane, Michael

    2017-11-01

    The control volume analysis of power flow during sustained phonation is performed using results of a fully-coupled aeroelastic-aeroacoustic simulation. The control volumes consist of the laryngeal region, and the larynx and the vocal tract. Two cases are considered: an effectively infinite length vocal tract, where sound produced in the larynx radiates away and is not reflected back, and a constant-area vocal tract of normal adult human dimensions, in which phonatory sound resonates before radiating from the mouth opening. In both cases the lungs are modeled to absorb all incident sound, while providing a constant volume flow toward the larynx. Control of the acoustic boundary conditions is accomplished using perfectly matched- layers, and flow from the lungs is provided by a source distribution near the entrance to the trachea region. For both cases the power flow for the larynx and larynx plus vocal tract control volumes are computed using the integral form of the mechanical energy equation, expanded to consider power exchanges between slightly compressible flow in the larynx and the acoustic fields in the vocal tract and trachea. The funding from NIH 2R01DC005642-10A1 is greatly acknowledged.

  10. Mathematical model for Dengue with three states of infection

    NASA Astrophysics Data System (ADS)

    Hincapie, Doracelly; Ospina, Juan

    2012-06-01

    A mathematical model for dengue with three states of infection is proposed and analyzed. The model consists in a system of differential equations. The three states of infection are respectively asymptomatic, partially asymptomatic and fully asymptomatic. The model is analyzed using computer algebra software, specifically Maple, and the corresponding basic reproductive number and the epidemic threshold are computed. The resulting basic reproductive number is an algebraic synthesis of all epidemic parameters and it makes clear the possible control measures. The microscopic structure of the epidemic parameters is established using the quantum theory of the interactions between the atoms and radiation. In such approximation, the human individual is represented by an atom and the mosquitoes are represented by radiation. The force of infection from the mosquitoes to the humans is considered as the transition probability from the fundamental state of atom to excited states. The combination of computer algebra software and quantum theory provides a very complete formula for the basic reproductive number and the possible control measures tending to stop the propagation of the disease. It is claimed that such result may be important in military medicine and the proposed method can be applied to other vector-borne diseases.

  11. Measurements of [C I] 9850 A Emission from Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Oliversen, R. J.; Doane, N.; Scherb, F.; Harris, W. M.; Morgenthaler, J. P.

    2002-01-01

    We present quantitative measurements of cometary [C I] 9850 A, emission obtained during observations of comet Hale-Bopp (C/1995 O1) in 1997 March and April. The observations were carried out using a high-resolution (lambda/Delta lambda approx. 40,000) Fabry-Perot/CCD spectrometer at the McMath-Pierce solar telescope on Kitt Peak. This forbidden line, the carbon analog of [O I] 6300 A, is emitted in the radiative decay of C(1D) atoms. In the absence of other sources and sinks, [C I] 9850 A emission may be used as a direct tracer of CO photodissociation in comets. However, in Hale-Bopp's large, dense coma, other processes, such as collisional excitation of ground-state C(3P), dissociative recombination of CO+, and collisional dissociation of CO and CO2 may produce significant amounts of C(1D). The long C(1D) radiative lifetime (approx. 4000 s) makes collisional de-excitation (quenching) the primary loss mechanism in the inner coma. Thus, a detailed, self-consistent global model of collisional and photochemical interactions is necessary to fully account for [C I] 9850 A emission in comet Hale-Bopp.

  12. FULLY COUPLED "ONLINE" CHEMISTRY WITHIN THE WRF MODEL

    EPA Science Inventory

    A fully coupled "online" Weather Research and Forecasting/Chemistry (WRF/Chem) model has been developed. The air quality component of the model is fully consistent with the meteorological component; both components use the same transport scheme (mass and scalar preserving), the s...

  13. Role of genetic background in induced instability

    NASA Technical Reports Server (NTRS)

    Kadhim, Munira A.; Nelson, G. A. (Principal Investigator)

    2003-01-01

    Genomic instability is effectively induced by ionizing radiation. Recently, evidence has accumulated supporting a relationship between genetic background and the radiation-induced genomic instability phenotype. This is possibly due to alterations in proteins responsible for maintenance of genomic integrity or altered oxidative metabolism. Studies in human cell lines, human primary cells, and mouse models have been performed predominantly using high linear energy transfer (LET) radiation, or high doses of low LET radiation. The interplay between genetics, radiation response, and genomic instability has not been fully determined at low doses of low LET radiation. However, recent studies using low doses of low LET radiation suggest that the relationship between genetic background and radiation-induced genomic instability may be more complicated than these same relationships at high LET or high doses of low LET radiation. The complexity of this relationship at low doses of low LET radiation suggests that more of the population may be at risk than previously recognized and may have implications for radiation risk assessment.

  14. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling

    NASA Astrophysics Data System (ADS)

    Zhai, Yao; Ma, Yaoguang; David, Sabrina N.; Zhao, Dongliang; Lou, Runnan; Tan, Gang; Yang, Ronggui; Yin, Xiaobo

    2017-03-01

    Passive radiative cooling draws heat from surfaces and radiates it into space as infrared radiation to which the atmosphere is transparent. However, the energy density mismatch between solar irradiance and the low infrared radiation flux from a near-ambient-temperature surface requires materials that strongly emit thermal energy and barely absorb sunlight. We embedded resonant polar dielectric microspheres randomly in a polymeric matrix, resulting in a metamaterial that is fully transparent to the solar spectrum while having an infrared emissivity greater than 0.93 across the atmospheric window. When backed with a silver coating, the metamaterial shows a noontime radiative cooling power of 93 watts per square meter under direct sunshine. More critically, we demonstrated high-throughput, economical roll-to-roll manufacturing of the metamaterial, which is vital for promoting radiative cooling as a viable energy technology.

  15. A 1D radiative transfer benchmark with polarization via doubling and adding

    NASA Astrophysics Data System (ADS)

    Ganapol, B. D.

    2017-11-01

    Highly precise numerical solutions to the radiative transfer equation with polarization present a special challenge. Here, we establish a precise numerical solution to the radiative transfer equation with combined Rayleigh and isotropic scattering in a 1D-slab medium with simple polarization. The 2-Stokes vector solution for the fully discretized radiative transfer equation in space and direction derives from the method of doubling and adding enhanced through convergence acceleration. Updates to benchmark solutions found in the literature to seven places for reflectance and transmittance as well as for angular flux follow. Finally, we conclude with the numerical solution in a partially randomly absorbing heterogeneous medium.

  16. Radiative Transfer in Stellar Atmospheres

    NASA Astrophysics Data System (ADS)

    Rutten, Robert J.

    2003-05-01

    The main topic treated in these graduate course notes is the classical theory of radiative transfer for explaining stellar spectra. It needs relatively much attention to be mastered. Radiative transfer in gaseous media that are neither optically thin nor fully opaque and scatter to boot is a key part of astrophysics but not a transparent subject. These course notes represent a middle road between Mihalas' "Stellar Atmospheres" (graduate level and up) and the books by Novotny and Boehm-Vitense (undergraduate level). They are at about the level of Gray's "The observation and analysis of stellar photospheres" but emphasize NLTE radiative transfer rather than observational techniques and data interpretation.

  17. Gold-coated copper cone detector as a new standard detector for F2 laser radiation at 157 nm.

    PubMed

    Kück, Stefan; Brandt, Friedhelm; Taddeo, Mario

    2005-04-20

    A new standard detector for high-accuracy measurements of F2 laser radiation at 157 nm is presented. This gold-coated copper cone detector permits the measurement of average powers up to 2 W with an uncertainty of approximately 1%. To the best of our knowledge, this is the first highly accurate standard detector for F2 laser radiation for this power level. It is fully characterized according to Guide to the Expression of Uncertainty in Measurement of the International Organization for Standardization and is connected to the calibration chain for laser radiation established by the German National Metrology Institute.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jin; Fan, Cuncai; Ding, Jie

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. We show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studiesmore » show dose-rate-dependent diffusivity of defect clusters. Our study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.« less

  19. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, Peter G., E-mail: maginot1@llnl.gov; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim E., E-mail: morel@tamu.edu

    This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  20. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  1. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE PAGES

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    2016-09-29

    This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  2. Transient radiative energy transfer in incompressible laminar flows

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Singh, D. J.

    1987-01-01

    Analysis and numerical procedures are presented to investigate the transient radiative interactions of nongray absorbing-emitting species in laminar fully-developed flows between two parallel plates. The particular species considered are OH, CO, CO2, and H2O and different mixtures of these. Transient and steady-state results are obtained for the temperaure distribution and bulk temperature for different plate spacings, wall temperatures, and pressures. Results, in general, indicate that the rate of radiative heating can be quite high during earlier times. This information is useful in designing thermal protection systems for transient operations.

  3. Hormetic Response to Low-Dose Radiation: Focus on the Immune System and Its Clinical Implications

    PubMed Central

    Cui, Jiuwei; Yang, Guozi; Pan, Zhenyu; Zhao, Yuguang; Liang, Xinyue; Li, Wei; Cai, Lu

    2017-01-01

    The interrelationship between ionizing radiation and the immune system is complex, multifactorial, and dependent on radiation dose/quality and immune cell type. High-dose radiation usually results in immune suppression. On the contrary, low-dose radiation (LDR) modulates a variety of immune responses that have exhibited the properties of immune hormesis. Although the underlying molecular mechanism is not fully understood yet, LDR has been used clinically for the treatment of autoimmune diseases and malignant tumors. These advancements in preclinical and clinical studies suggest that LDR-mediated immune modulation is a well-orchestrated phenomenon with clinical potential. We summarize recent developments in the understanding of LDR-mediated immune modulation, with an emphasis on its potential clinical applications. PMID:28134809

  4. Space and radiation protection: scientific requirements for space research

    NASA Technical Reports Server (NTRS)

    Schimmerling, W.

    1995-01-01

    Ionizing radiation poses a significant risk to humans living and working in space. The major sources of radiation are solar disturbances and galactic cosmic rays. The components of this radiation are energetic charged particles, protons, as well as fully ionized nuclei of all elements. The biological effects of these particles cannot be extrapolated in a straightforward manner from available data on x-rays and gamma-rays. A radiation protection program that meets the needs of spacefaring nations must have a solid scientific basis, capable not only of predicting biological effects, but also of making reliable estimates of the uncertainty in these predictions. A strategy leading to such predictions is proposed, and scientific requirements arising from this strategy are discussed.

  5. A Novel Implementation of Massively Parallel Three Dimensional Monte Carlo Radiation Transport

    NASA Astrophysics Data System (ADS)

    Robinson, P. B.; Peterson, J. D. L.

    2005-12-01

    The goal of our summer project was to implement the difference formulation for radiation transport into Cosmos++, a multidimensional, massively parallel, magneto hydrodynamics code for astrophysical applications (Peter Anninos - AX). The difference formulation is a new method for Symbolic Implicit Monte Carlo thermal transport (Brooks and Szöke - PAT). Formerly, simultaneous implementation of fully implicit Monte Carlo radiation transport in multiple dimensions on multiple processors had not been convincingly demonstrated. We found that a combination of the difference formulation and the inherent structure of Cosmos++ makes such an implementation both accurate and straightforward. We developed a "nearly nearest neighbor physics" technique to allow each processor to work independently, even with a fully implicit code. This technique coupled with the increased accuracy of an implicit Monte Carlo solution and the efficiency of parallel computing systems allows us to demonstrate the possibility of massively parallel thermal transport. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48

  6. Highly coherent vacuum ultraviolet radiation at the 15th harmonic with echo-enabled harmonic generation technique

    NASA Astrophysics Data System (ADS)

    Hemsing, E.; Dunning, M.; Hast, C.; Raubenheimer, T. O.; Weathersby, S.; Xiang, D.

    2014-07-01

    X-ray free-electron lasers are enabling access to new science by producing ultrafast and intense x rays that give researchers unparalleled power and precision in examining the fundamental nature of matter. In the quest for fully coherent x rays, the echo-enabled harmonic generation technique is one of the most promising methods. In this technique, coherent radiation at the high harmonic frequencies of two seed lasers is generated from the recoherence of electron beam phase space memory. Here we report on the generation of highly coherent and stable vacuum ultraviolet radiation at the 15th harmonic of an infrared seed laser with this technique. The experiment demonstrates two distinct advantages that are intrinsic to the highly nonlinear phase space gymnastics of echo-enabled harmonic generation in a new regime, i.e., high frequency up-conversion efficiency and insensitivity to electron beam phase space imperfections. Our results allow comparison and confirmation of predictive models and scaling laws, and mark a significant step towards fully coherent x-ray free-electron lasers that will open new scientific research.

  7. High-Density Signal Interface Electromagnetic Radiation Prediction for Electromagnetic Compatibility Evaluation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halligan, Matthew

    Radiated power calculation approaches for practical scenarios of incomplete high- density interface characterization information and incomplete incident power information are presented. The suggested approaches build upon a method that characterizes power losses through the definition of power loss constant matrices. Potential radiated power estimates include using total power loss information, partial radiated power loss information, worst case analysis, and statistical bounding analysis. A method is also proposed to calculate radiated power when incident power information is not fully known for non-periodic signals at the interface. Incident data signals are modeled from a two-state Markov chain where bit state probabilities aremore » derived. The total spectrum for windowed signals is postulated as the superposition of spectra from individual pulses in a data sequence. Statistical bounding methods are proposed as a basis for the radiated power calculation due to the statistical calculation complexity to find a radiated power probability density function.« less

  8. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au

    DOE PAGES

    Li, Jin; Fan, Cuncai; Ding, Jie; ...

    2017-01-03

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. We show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studiesmore » show dose-rate-dependent diffusivity of defect clusters. Our study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Geoffrey D.; Friedel, Reiner H. W.; Larsen, Brian A.

    Here, we present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are moremore » common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of “slot filling” events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.« less

  10. Introducing CoDa (Cosmic Dawn): Radiation-Hydrodynamics of Galaxy Formation in the Early Universe

    NASA Astrophysics Data System (ADS)

    Ocvirk, Pierre; Gillet, Nicolas; Shapiro, Paul; Aubert, Dominique; Iliev, Ilian; Romain, Teyssier; Yepes, Gustavo; Choi, Jun-hwan; Sullivan, David; Knebe, Alexander; Gottloeber, Stefan; D'Aloisio, Anson; Park, Hyunbae; Hoffman, Yehuda

    2015-08-01

    CoDa (Cosmic Dawn) is the largest fully coupled radiation hydrodynamics simulation of the reionization of the local Universe to date. It was performed using RAMSES-CUDATON running on 8192 nodes (i.e. 8192 GPUs) on the titan supercomputer at Oak Ridge National Laboratory to simulate a 64 h-1Mpc side box down to z=4.23. In this simulation, reionization proceeds self-consistently, driven by stellar radiation. We compare the simulation's reionization history, ionizing flux density, the cosmic star formation history and the CMB Thompson scattering optical depth with their observational values. Luminosity functions are also in rather good agreement with high redshift observations, although very bright objects (MAB1600 < -21) are overabundant in CoDa. We investigate the evolution of the intergalactic medium, and find that gas filaments present a sheathed structure, with a hot envelope surrounding a cooler core. They are however not able to self-shield, while regions denser than 10^-4.5 H atoms per comoving h^-3cm^3 are. Haloes below M ˜ 3.10^9 M⊙ are severely affected by the expanding, rising UV background: their ISM is quickly photo-heated to temperatures above our star formation threshold and therefore stop forming stars after local reionization has occured. Overall, the haloes between 10^(10-11) M⊙ dominate the star formation budget of the box for most of the Epoch of Reionization. Several additional studies will follow, looking for instance at environmental effects on galaxy properties, and the regimes of accretion.

  11. Simultaneous diagnosis of radial profiles and mix in NIF ignition-scale implosions via X-ray spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciricosta, O.; Scott, H.; Durey, P.

    In a National Ignition Facility implosion, hydrodynamic instabilities may cause the cold material from the imploding shell to be injected into the hot-spot (hot-spot mix), enhancing the radiative and conductive losses, which in turn may lead to a quenching of the ignition process. The bound-bound features of the spectrum emitted by high-Z ablator dopants that get mixed into the hot-spot have been previously used to infer the total amount of mixed mass; however, the typical errorbars are larger than the maximum tolerable mix. We present in this paper an improved 2D model for mix spectroscopy which can be used tomore » retrieve information on both the amount of mixed mass and the full imploded plasma profile. By performing radiation transfer and simultaneously fitting all of the features exhibited by the spectra, we are able to constrain self-consistently the effect of the opacity of the external layers of the target on the emission, thus improving the accuracy of the inferred mixed mass. The model's predictive capabilities are first validated by fitting simulated spectra arising from fully characterized hydrodynamic simulations, and then, the model is applied to previously published experimental results, providing values of mix mass in agreement with previous estimates. Finally, we show that the new self consistent procedure leads to better constrained estimates of mix and also provides insight into the sensitivity of the hot-spot spectroscopy to the spatial properties of the imploded capsule, such as the in-flight aspect ratio of the cold fuel surrounding the hotspot.« less

  12. Simultaneous diagnosis of radial profiles and mix in NIF ignition-scale implosions via X-ray spectroscopy

    DOE PAGES

    Ciricosta, O.; Scott, H.; Durey, P.; ...

    2017-11-06

    In a National Ignition Facility implosion, hydrodynamic instabilities may cause the cold material from the imploding shell to be injected into the hot-spot (hot-spot mix), enhancing the radiative and conductive losses, which in turn may lead to a quenching of the ignition process. The bound-bound features of the spectrum emitted by high-Z ablator dopants that get mixed into the hot-spot have been previously used to infer the total amount of mixed mass; however, the typical errorbars are larger than the maximum tolerable mix. We present in this paper an improved 2D model for mix spectroscopy which can be used tomore » retrieve information on both the amount of mixed mass and the full imploded plasma profile. By performing radiation transfer and simultaneously fitting all of the features exhibited by the spectra, we are able to constrain self-consistently the effect of the opacity of the external layers of the target on the emission, thus improving the accuracy of the inferred mixed mass. The model's predictive capabilities are first validated by fitting simulated spectra arising from fully characterized hydrodynamic simulations, and then, the model is applied to previously published experimental results, providing values of mix mass in agreement with previous estimates. Finally, we show that the new self consistent procedure leads to better constrained estimates of mix and also provides insight into the sensitivity of the hot-spot spectroscopy to the spatial properties of the imploded capsule, such as the in-flight aspect ratio of the cold fuel surrounding the hotspot.« less

  13. Simultaneous diagnosis of radial profiles and mix in NIF ignition-scale implosions via X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Ciricosta, O.; Scott, H.; Durey, P.; Hammel, B. A.; Epstein, R.; Preston, T. R.; Regan, S. P.; Vinko, S. M.; Woolsey, N. C.; Wark, J. S.

    2017-11-01

    In a National Ignition Facility implosion, hydrodynamic instabilities may cause the cold material from the imploding shell to be injected into the hot-spot (hot-spot mix), enhancing the radiative and conductive losses, which in turn may lead to a quenching of the ignition process. The bound-bound features of the spectrum emitted by high-Z ablator dopants that get mixed into the hot-spot have been previously used to infer the total amount of mixed mass; however, the typical errorbars are larger than the maximum tolerable mix. We present here an improved 2D model for mix spectroscopy which can be used to retrieve information on both the amount of mixed mass and the full imploded plasma profile. By performing radiation transfer and simultaneously fitting all of the features exhibited by the spectra, we are able to constrain self-consistently the effect of the opacity of the external layers of the target on the emission, thus improving the accuracy of the inferred mixed mass. The model's predictive capabilities are first validated by fitting simulated spectra arising from fully characterized hydrodynamic simulations, and then, the model is applied to previously published experimental results, providing values of mix mass in agreement with previous estimates. We show that the new self consistent procedure leads to better constrained estimates of mix and also provides insight into the sensitivity of the hot-spot spectroscopy to the spatial properties of the imploded capsule, such as the in-flight aspect ratio of the cold fuel surrounding the hotspot.

  14. Cosmic Reionization On Computers III. The Clumping Factor

    DOE PAGES

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2015-09-09

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective "clumping factor." The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field ("proximity zones"). This ambiguity precludesmore » computing the IGM clumping factor to better than about 20%. Furthermore, we discuss a "local clumping factor," defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.« less

  15. Air Brayton Solar Receiver, phase 2

    NASA Technical Reports Server (NTRS)

    Deanda, L. E.

    1981-01-01

    An air Brayton solar receiver (ABSR) is discussed. The ABSR consists of a cylindrical, insulated, offset plate fin heat exchanger which is mounted at the focal plane of a fully tracking parabolic solar collector. The receiver transfer heat from the concentrated solar radiation (which impinges on the inside walls of the heat exchanger) to the working fluid i.e., air. The hot air would then e used to drive a small Brayton cycle heat engine. The engine in turn drives a generator which produces electrical energy. Symmetrical and asymmetrical solar power input into the ABSR are analyzed. The symmetrical cases involve the baseline incident flux and the axially shifted incident fluxes. The asymmetrical cases correspond to the solar fluxes that are obtained by reduced solar input from one half of the concentrator or by receiver offset of plus or minus 1 inch from the concentrator optical axis.

  16. A systematic investigation of PET Radionuclide Specific Activity on Miniaturization of Radiochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeanne M Link, PhD

    2012-03-08

    The PET radionuclides, 18F and 11C consist of very high radiation to mass amounts and should be easily adapted to new technologies such as chip chemistry with nanofluidics. However, environmental contamination with nonradioactive fluorine, carbon and other trace contaminants add sufficient mass, micrograms to milligrams, to prevent adapting PET radiochemistry to the nanochip technologies. In addition, the large volumes of material required for beam irradiation make it necessary to also remove the 18F and 11C from their chemical matrices. These steps add contaminants. The work described in this report was a systematic investigation of sources of these contaminants and methodsmore » to reduce these contaminants and the reaction volumes for radiochemical synthesis. Several methods were found to lower the contaminants and matrices to within a factor of 2 to 100 of those needed to fully implement chip technology but further improvements are needed.« less

  17. Cosmic Reionization On Computers III. The Clumping Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective "clumping factor." The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field ("proximity zones"). This ambiguity precludesmore » computing the IGM clumping factor to better than about 20%. Furthermore, we discuss a "local clumping factor," defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.« less

  18. Cosmic reionization on computers. I. Design and calibration of simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnedin, Nickolay Y., E-mail: gnedin@fnal.gov

    Cosmic Reionization On Computers is a long-term program of numerical simulations of cosmic reionization. Its goal is to model fully self-consistently (albeit not necessarily from the first principles) all relevant physics, from radiative transfer to gas dynamics and star formation, in simulation volumes of up to 100 comoving Mpc, and with spatial resolution approaching 100 pc in physical units. In this method paper, we describe our numerical method, the design of simulations, and the calibration of numerical parameters. Using several sets (ensembles) of simulations in 20 h {sup –1} Mpc and 40 h {sup –1} Mpc boxes with spatial resolutionmore » reaching 125 pc at z = 6, we are able to match the observed galaxy UV luminosity functions at all redshifts between 6 and 10, as well as obtain reasonable agreement with the observational measurements of the Gunn-Peterson optical depth at z < 6.« less

  19. COSMIC REIONIZATION ON COMPUTERS. III. THE CLUMPING FACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaurov, Alexander A.; Gnedin, Nickolay Y., E-mail: kaurov@uchicago.edu, E-mail: gnedin@fnal.gov

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective “clumping factor.” The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field (“proximity zones”). That ambiguity precludesmore » computing the IGM clumping factor to better than about 20%. We also discuss a “local clumping factor,” defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.« less

  20. Impacts of Aerosol-Monsoon Interaction on Rainfall and Circulation over Northern India and the Himalaya Foothills

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong; Shi, Jainn-Jong; Matsui, T.; Chin, M.; Tan, Qian; Peters-Lidard, C.; Tao, W. K.

    2016-01-01

    The boreal summer of 2008 was unusual for the Indian monsoon, featuring exceptional heavy loading of dust aerosols over the Arabian Sea and northern-central India, near normal all- India rainfall, but excessive heavy rain, causing disastrous flooding in the Northern Indian Himalaya Foothills (NIHF) regions, accompanied by persistent drought conditions in central and southern India. Using NASA Unified-physics Weather Research Forecast (NUWRF) model with fully interactive aerosol physics and dynamics, we carried out three sets of 7-day ensemble model forecast experiments: 1) control with no aerosol, 2) aerosol radiative effect only and 3) aerosol radiative and aerosol-cloud-microphysics effects, to study the impacts of aerosol monsoon interactions on monsoon variability over the NIHF during the summer of 2008. Results show that aerosol-radiation interaction (ARI), i.e., dust aerosol transport, and dynamical feedback processes induced by aerosol-radiative heating, plays a key role in altering the large scale monsoon circulation system, reflected by an increased north-south tropospheric temperature gradient, a northward shift of heavy monsoon rainfall, advancing the monsoon onset by 1-5 days over the HF, consistent with the EHP hypothesis (Lau et al. 2006). Additionally, we found that dust aerosols, via the semi-direct effect, increase atmospheric stability, and cause the dissipation of a developing monsoon onset cyclone over northeastern India northern Bay of Bengal. Eventually, in a matter of several days, ARI transforms the developing monsoon cyclone into mesoscale convective cells along the HF slopes. Aerosol-Cloud-microphysics Interaction (ACI) further enhances the ARI effect in invigorating the deep convection cells and speeding up the transformation processes. Results indicate that even in short-term (up to weekly) numerical forecasting of monsoon circulation and rainfall, effects of aerosol-monsoon interaction can be substantial and cannot be ignored.

  1. Information retrieval from black holes

    NASA Astrophysics Data System (ADS)

    Lochan, Kinjalk; Chakraborty, Sumanta; Padmanabhan, T.

    2016-08-01

    It is generally believed that, when matter collapses to form a black hole, the complete information about the initial state of the matter cannot be retrieved by future asymptotic observers, through local measurements. This is contrary to the expectation from a unitary evolution in quantum theory and leads to (a version of) the black hole information paradox. Classically, nothing else, apart from mass, charge, and angular momentum is expected to be revealed to such asymptotic observers after the formation of a black hole. Semiclassically, black holes evaporate after their formation through the Hawking radiation. The dominant part of the radiation is expected to be thermal and hence one cannot know anything about the initial data from the resultant radiation. However, there can be sources of distortions which make the radiation nonthermal. Although the distortions are not strong enough to make the evolution unitary, these distortions carry some part of information regarding the in-state. In this work, we show how one can decipher the information about the in-state of the field from these distortions. We show that the distortions of a particular kind—which we call nonvacuum distortions—can be used to fully reconstruct the initial data. The asymptotic observer can do this operationally by measuring certain well-defined observables of the quantum field at late times. We demonstrate that a general class of in-states encode all their information content in the correlation of late time out-going modes. Further, using a 1 +1 dimensional dilatonic black hole model to accommodate backreaction self-consistently, we show that observers can also infer and track the information content about the initial data, during the course of evaporation, unambiguously. Implications of such information extraction are discussed.

  2. The Greenhouse Effect - Re-examination of the Impact of an Increase in Carbon Dioxide in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Underwood, T. G.

    2017-12-01

    Examination of the radiation budget at the surface of the Earth shows that there are three factors affecting the surface temperature; the amount of solar radiation absorbed by the atmosphere and by the surface respectively, and the amount of leakage of infrared radiation emitted from the surface directly into space. If there were no leakage, the upwelling infrared radiation from the Earth's surface would be equal to the incoming solar radiation absorbed by the atmosphere plus twice the solar radiation absorbed by the surface. This results from the summation of a sequence of equal upward and downward re-emissions of infrared radiation absorbed by the atmosphere following the initial absorption of solar radiation. At current levels of solar absorption, this would result in total upwelling radiation of approximately 398.6 W/m2, or a maximum surface temperature of 16.4°C. Allowing for leakage of infrared radiation through the atmospheric window, the resulting emission from the Earth's surface is reduced to around 396 W/m2, corresponding to the current average global surface temperature of around 15.9°C. Absorption of solar and infrared radiation by greenhouse gases is determined by the absorption bands for the respective gases and their concentrations. Absorption of incoming solar radiation is largely by water vapor and ozone, and an increase in absorption would reduce not increase the surface temperature. Moreover, it is probable that all emitted infrared radiation that can be absorbed by greenhouse gases, primarily water vapor, with a small contribution from carbon dioxide and ozone, is already fully absorbed, and the leakage of around 5.5 % corresponds to the part of the infrared red spectrum that is not absorbed by greenhouse gases. The carbon dioxide absorption bands, which represent a very small percentage of the infrared spectrum, are most likely fully saturated. In these circumstances, increased concentrations of greenhouse gases, and carbon dioxide in particular, will have no effect on the emitted radiation. The surface temperature is probably at the thermodynamic limit for the current luminosity of the sun. Satellite based measurements since 1979 suggest that any global warming over the past 150 years may be due to an increase in total solar irradiance, which we are still a decade or two from being able to confirm.

  3. A NUMERICAL SCHEME FOR SPECIAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS BASED ON SOLVING THE TIME-DEPENDENT RADIATIVE TRANSFER EQUATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsuga, Ken; Takahashi, Hiroyuki R.

    2016-02-20

    We develop a numerical scheme for solving the equations of fully special relativistic, radiation magnetohydrodynamics (MHDs), in which the frequency-integrated, time-dependent radiation transfer equation is solved to calculate the specific intensity. The radiation energy density, the radiation flux, and the radiation stress tensor are obtained by the angular quadrature of the intensity. In the present method, conservation of total mass, momentum, and energy of the radiation magnetofluids is guaranteed. We treat not only the isotropic scattering but also the Thomson scattering. The numerical method of MHDs is the same as that of our previous work. The advection terms are explicitlymore » solved, and the source terms, which describe the gas–radiation interaction, are implicitly integrated. Our code is suitable for massive parallel computing. We present that our code shows reasonable results in some numerical tests for propagating radiation and radiation hydrodynamics. Particularly, the correct solution is given even in the optically very thin or moderately thin regimes, and the special relativistic effects are nicely reproduced.« less

  4. First-principles study of low-spin LaCoO3 with structurally consistent Hubbard U

    NASA Astrophysics Data System (ADS)

    Hsu, H.; Umemoto, K.; Cococcioni, M.; Wentzcovitch, R.

    2008-12-01

    We use the local density approximation + Hubbard U (LDA+U) method to calculate the structural and electronic properties of low-spin LaCoO3. The Hubbard U is obtained by first principles and consistent with each fully-optimized atomic structure at different pressures. With structurally consistent U, the fully-optimized atomic structure agrees with experimental data better than the calculations with fixed or vanishing U. A discussion on how the Hubbard U affects the electronic and atomic structure of LaCoO3 is also given.

  5. Standardization Process for Space Radiation Models Used for Space System Design

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Daly, Eamonn; Brautigam, Donald

    2005-01-01

    The space system design community has three concerns related to models of the radiation belts and plasma: 1) AP-8 and AE-8 models are not adequate for modern applications; 2) Data that have become available since the creation of AP-8 and AE-8 are not being fully exploited for modeling purposes; 3) When new models are produced, there is no authorizing organization identified to evaluate the models or their datasets for accuracy and robustness. This viewgraph presentation provided an overview of the roadmap adopted by the Working Group Meeting on New Standard Radiation Belt and Space Plasma Models.

  6. BioSentinel: Developing a Space Radiation Biosensor

    NASA Technical Reports Server (NTRS)

    Santa Maria, Sergio R.

    2015-01-01

    BioSentinel is an autonomous fully self-contained science mission that will conduct the first study of the biological response to space radiation outside low Earth orbit (LEO) in over 40 years. The 4-unit (4U) BioSentinel biosensor system, is housed within a 6-Unit (6U) spacecraft, and uses yeast cells in multiple independent microfluidic cards to detect and measure DNA damage that occurs in response to ambient space radiation. Cell growth and metabolic activity will be measured using a 3-color LED detection system and a metabolic indicator dye with a dedicated thermal control system per fluidic card.

  7. How Big Data, Comparative Effectiveness Research, and Rapid-Learning Health-Care Systems Can Transform Patient Care in Radiation Oncology.

    PubMed

    Sanders, Jason C; Showalter, Timothy N

    2018-01-01

    Big data and comparative effectiveness research methodologies can be applied within the framework of a rapid-learning health-care system (RLHCS) to accelerate discovery and to help turn the dream of fully personalized medicine into a reality. We synthesize recent advances in genomics with trends in big data to provide a forward-looking perspective on the potential of new advances to usher in an era of personalized radiation therapy, with emphases on the power of RLHCS to accelerate discovery and the future of individualized radiation treatment planning.

  8. Multifunctional Inflatable Structure Being Developed for the PowerSphere Concept

    NASA Technical Reports Server (NTRS)

    Peterson, Todd T.

    2004-01-01

    NASA has funded a collaborative team of The Aerospace Corporation, ILC Dover, Lockheed Martin, and NASA Glenn Research Center to develop the Multifunctional Inflatable Structure (MIS) for a "PowerSphere" concept through a NASA Research Announcement. This power system concept has several advantages, including a high collection area, low weight and stowage volume, and the elimination of all solar array pointing mechanisms. The current 3-year effort will culminate with the fabrication and testing of a fully functional engineering development unit. The baseline design of the Power-Sphere consists of two opposing semispherical domes connected to a central spacecraft. Each semispherical dome consists of hexagonal and pentagonal solar cell panels that together form a geodetic sphere. Inflatable ultraviolet (UV) rigidizable tubular hinges between the solar cell panels and UV rigidizable isogrid center columns with imbedded flex circuitry form the MIS. The reference configuration for the PowerSphere is a 0.6-m-diameter (fully deployed) spacecraft with a total mass budget of 4 kg (1 kg for PowerSphere, 3 kg for spacecraft) capable of producing 29 W of electricity with 10-percent-efficient thin-film solar cells. In a stowed configuration, the solar cell panels will be folded sequentially to the outside of the instrument decks. The center column will be z-folded between the instrument decks and the spacecraft housing for packaging. The instrument panel will secure the z-folded stack with launch ties. After launch, once the release tie is triggered, the center column and hinge tubes will inflate and be rigidized in their final configurations by ultraviolet radiation. The overall PowerSphere deployment sequence is shown pictorially in the following illustration.

  9. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations for flutter applications

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0.

  10. Radiation Tolerant Intelligent Memory Stack (RTIMS)

    NASA Technical Reports Server (NTRS)

    Ng, Tak-kwong; Herath, Jeffrey A.

    2006-01-01

    The Radiation Tolerant Intelligent Memory Stack (RTIMS), suitable for both geostationary and low earth orbit missions, has been developed. The memory module is fully functional and undergoing environmental and radiation characterization. A self-contained flight-like module is expected to be completed in 2006. RTIMS provides reconfigurable circuitry and 2 gigabits of error corrected or 1 gigabit of triple redundant digital memory in a small package. RTIMS utilizes circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuitries are stacked into a module of 42.7mm x 42.7mm x 13.00mm. Triple module redundancy, current limiting, configuration scrubbing, and single event function interrupt detection are employed to mitigate radiation effects. The mitigation techniques significantly simplify system design. RTIMS is well suited for deployment in real-time data processing, reconfigurable computing, and memory intensive applications.

  11. Application of laser radiation and magnetostimulation in therapy of patients with multiple sclerosis.

    PubMed

    Kubsik, Anna; Klimkiewicz, Robert; Janczewska, Katarzyna; Klimkiewicz, Paulina; Jankowska, Agnieszka; Woldańska-Okońska, Marta

    2016-01-01

    Multiple sclerosis is one of the most common neurological disorders. It is a chronic inflammatory demyelinating disease of the CNS, whose etiology is not fully understood. Application of new rehabilitation methods are essential to improve functional status. The material studied consisted of 120 patients of both sexes (82 women and 38 men) aged 21-81 years. The study involved patients with a diagnosis of multiple sclerosis. The aim of the study was to evaluate the effect of laser radiation and other therapies on the functional status of patients with multiple sclerosis. Patients were randomly divided into four treatment groups. The evaluation was performed three times - before the start of rehabilitation, immediately after rehabilitation (21 days of treatment) and subsequent control - 30 days after the patients leave the clinic. The following tests were performed for all patients to assess functional status: Expanded Disability Status Scale (EDSS) of Kurtzke and Barthel Index. Results of all testing procedures show that the treatment methods are improving the functional status of patients with multiple sclerosis, with the significant advantage of the synergistic action of laser and magneto stimulation. The combination of laser and magneto stimulation significantly confirmed beneficial effect on quality of life. The results of these studies present new scientific value and are improved compared to program of rehabilitation of patients with multiple sclerosis by laser radiation which was previously used. This study showed that synergic action of laser radiation and magneto stimulation has a beneficial effect on improving functional status, and thus improves the quality of life of patients with multiple sclerosis. The effects of all methods of rehabilitation are persisted after cessation of treatment applications, with a particular advantage of the synergistic action of laser radiation and magneto stimulation, which indicates the possibility to elicitation in these methods the phenomenon of the biological hysteresis.

  12. Predicting Where a Radiation Will Occur: Acoustic and Molecular Surveys Reveal Overlooked Diversity in Indian Ocean Island Crickets (Mogoplistinae: Ornebius).

    PubMed

    Warren, Ben H; Baudin, Rémy; Franck, Antoine; Hugel, Sylvain; Strasberg, Dominique

    2016-01-01

    Recent theory suggests that the geographic location of island radiations (local accumulation of species diversity due to cladogenesis) can be predicted based on island area and isolation. Crickets are a suitable group for testing these predictions, as they show both the ability to reach some of the most isolated islands in the world, and to speciate at small spatial scales. Despite substantial song variation between closely related species in many island cricket lineages worldwide, to date this characteristic has not received attention in the western Indian Ocean islands; existing species descriptions are based on morphology alone. Here we use a combination of acoustics and DNA sequencing to survey these islands for Ornebius crickets. We uncover a small but previously unknown radiation in the Mascarenes, constituting a three-fold increase in the Ornebius species diversity of this archipelago (from two to six species). A further new species is detected in the Comoros. Although double archipelago colonisation is the best explanation for species diversity in the Seychelles, in situ cladogenesis is the best explanation for the six species in the Mascarenes and two species of the Comoros. Whether the radiation of Mascarene Ornebius results from intra- or purely inter- island speciation cannot be determined on the basis of the phylogenetic data alone. However, the existence of genetic, song and ecological divergence at the intra-island scale is suggestive of an intra-island speciation scenario in which ecological and mating traits diverge hand-in-hand. Our results suggest that the geographic location of Ornebius radiations is partially but not fully explained by island area and isolation. A notable anomaly is Madagascar, where our surveys are consistent with existing accounts in finding no Ornebius species present. Possible explanations are discussed, invoking ecological differences between species and differences in environmental history between islands.

  13. Predicting Where a Radiation Will Occur: Acoustic and Molecular Surveys Reveal Overlooked Diversity in Indian Ocean Island Crickets (Mogoplistinae: Ornebius)

    PubMed Central

    Warren, Ben H.; Baudin, Rémy; Franck, Antoine; Hugel, Sylvain; Strasberg, Dominique

    2016-01-01

    Recent theory suggests that the geographic location of island radiations (local accumulation of species diversity due to cladogenesis) can be predicted based on island area and isolation. Crickets are a suitable group for testing these predictions, as they show both the ability to reach some of the most isolated islands in the world, and to speciate at small spatial scales. Despite substantial song variation between closely related species in many island cricket lineages worldwide, to date this characteristic has not received attention in the western Indian Ocean islands; existing species descriptions are based on morphology alone. Here we use a combination of acoustics and DNA sequencing to survey these islands for Ornebius crickets. We uncover a small but previously unknown radiation in the Mascarenes, constituting a three-fold increase in the Ornebius species diversity of this archipelago (from two to six species). A further new species is detected in the Comoros. Although double archipelago colonisation is the best explanation for species diversity in the Seychelles, in situ cladogenesis is the best explanation for the six species in the Mascarenes and two species of the Comoros. Whether the radiation of Mascarene Ornebius results from intra- or purely inter- island speciation cannot be determined on the basis of the phylogenetic data alone. However, the existence of genetic, song and ecological divergence at the intra-island scale is suggestive of an intra-island speciation scenario in which ecological and mating traits diverge hand-in-hand. Our results suggest that the geographic location of Ornebius radiations is partially but not fully explained by island area and isolation. A notable anomaly is Madagascar, where our surveys are consistent with existing accounts in finding no Ornebius species present. Possible explanations are discussed, invoking ecological differences between species and differences in environmental history between islands. PMID:26871932

  14. A new strips tracker for the upgraded ATLAS ITk detector

    NASA Astrophysics Data System (ADS)

    David, C.

    2018-01-01

    The ATLAS detector has been designed and developed to function in the environment of the present Large Hadron Collider (LHC). At the next-generation tracking detector proposed for the High Luminosity LHC (HL-LHC), the so-called ATLAS Phase-II Upgrade, the fluences and radiation levels will be higher by as much as a factor of ten. The new sub-detectors must thus be faster, of larger area, more segmented and more radiation hard while the amount of inactive material should be minimized and the power supply to the front-end systems should be increased. For those reasons, the current inner tracker of the ATLAS detector will be fully replaced by an all-silicon tracking system that consists of a pixel detector at small radius close to the beam line and a large area strip tracker surrounding it. This document gives an overview of the design of the strip inner tracker (Strip ITk) and summarises the intensive R&D activities performed over the last years by the numerous institutes within the Strips ITk collaboration. These studies are accompanied with a strong prototyping effort to contribute to the optimisation of the Strip ITk's structure and components. This effort culminated recently in the release of the ATLAS Strips ITk Technical Design Report (TDR).

  15. Assessment of automatic exposure control performance in digital mammography using a no-reference anisotropic quality index

    NASA Astrophysics Data System (ADS)

    Barufaldi, Bruno; Borges, Lucas R.; Bakic, Predrag R.; Vieira, Marcelo A. C.; Schiabel, Homero; Maidment, Andrew D. A.

    2017-03-01

    Automatic exposure control (AEC) is used in mammography to obtain acceptable radiation dose and adequate image quality regardless of breast thickness and composition. Although there are physics methods for assessing the AEC, it is not clear whether mammography systems operate with optimal dose and image quality in clinical practice. In this work, we propose the use of a normalized anisotropic quality index (NAQI), validated in previous studies, to evaluate the quality of mammograms acquired using AEC. The authors used a clinical dataset that consists of 561 patients and 1,046 mammograms (craniocaudal breast views). The results show that image quality is often maintained, even at various radiation levels (mean NAQI = 0.14 +/- 0.02). However, a more careful analysis of NAQI reveals that the average image quality decreases as breast thickness increases. The NAQI is reduced by 32% on average, when the breast thickness increases from 31 to 71 mm. NAQI also decreases with lower breast density. The variation in breast parenchyma alone cannot fully account for the decrease of NAQI with thickness. Examination of images shows that images of large, fatty breasts are often inadequately processed. This work shows that NAQI can be applied in clinical mammograms to assess mammographic image quality, and highlights the limitations of the automatic exposure control for some images.

  16. Three-dimensional Monte-Carlo simulation of gamma-ray scattering and production in the atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, D.J.

    1989-05-15

    Monte Carlo codes have been developed to simulate gamma-ray scattering and production in the atmosphere. The scattering code simulates interactions of low-energy gamma rays (20 to several hundred keV) from an astronomical point source in the atmosphere; a modified code also simulates scattering in a spacecraft. Four incident spectra, typical of gamma-ray bursts, solar flares, and the Crab pulsar, and 511 keV line radiation have been studied. These simulations are consistent with observations of solar flare radiation scattered from the atmosphere. The production code simulates the interactions of cosmic rays which produce high-energy (above 10 MeV) photons and electrons. Itmore » has been used to calculate gamma-ray and electron albedo intensities at Palestine, Texas and at the equator; the results agree with observations in most respects. With minor modifications this code can be used to calculate intensities of other high-energy particles. Both codes are fully three-dimensional, incorporating a curved atmosphere; the production code also incorporates the variation with both zenith and azimuth of the incident cosmic-ray intensity due to geomagnetic effects. These effects are clearly reflected in the calculated albedo by intensity contrasts between the horizon and nadir, and between the east and west horizons.« less

  17. Detectability of the first cosmic explosions

    NASA Astrophysics Data System (ADS)

    de Souza, R. S.; Ishida, E. E. O.; Johnson, J. L.; Whalen, D. J.; Mesinger, A.

    2013-12-01

    We present a fully self-consistent simulation of a synthetic survey of the furthermost cosmic explosions. The appearance of the first generation of stars (Population III) in the Universe represents a critical point during cosmic evolution, signalling the end of the dark ages, a period of absence of light sources. Despite their importance, there is no confirmed detection of Population III stars so far. A fraction of these primordial stars are expected to die as pair-instability supernovae (PISNe), and should be bright enough to be observed up to a few hundred million years after the big bang. While the quest for Population III stars continues, detailed theoretical models and computer simulations serve as a testbed for their observability. With the upcoming near-infrared missions, estimates of the feasibility of detecting PISNe are not only timely but imperative. To address this problem, we combine state-of-the-art cosmological and radiative simulations into a complete and self-consistent framework, which includes detailed features of the observational process. We show that a dedicated observational strategy using ≲ 8 per cent of the total allocation time of the James Webb Space Telescope mission can provide us with up to ˜9-15 detectable PISNe per year.

  18. Comparison of Radiation Pressure Perturbations on Rocket Bodies and Debris at Geosynchronous Earth Orbit

    DTIC Science & Technology

    2014-09-01

    has highlighted the need for physically consistent radiation pressure and Bidirectional Reflectance Distribution Function ( BRDF ) models . This paper...seeks to evaluate the impact of BRDF -consistent radiation pres- sure models compared to changes in the other BRDF parameters. The differences in...orbital position arising because of changes in the shape, attitude, angular rates, BRDF parameters, and radiation pressure model are plotted as a

  19. Theoretical Studies Relating to the Interaction of Radiation with Matter

    DTIC Science & Technology

    1989-09-15

    and Heisenberg picture calculations of resonance fluorescence in the presence of a strong field. Again, the Schrodinger calculation is quite...discussed in Sec. VIII. numerous effects have been discussed assuming fluctuat- ing radiation fields (resonant fluorescence , double reso- nance, multiphoton...tered at t12 =0. The peak has temporal width It 2 1 = rcl2 and, moreover, for fully correlated pulses (0) = 1) there is FIG. 6. Signal of order n = 1 as a

  20. Report on the PWR-radiation protection/ALARA Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, D.J.

    1995-03-01

    In 1992, representatives from several utilities with operational Pressurized Water Reactors (PWR) formed the PWR-Radiation Protection/ALARA Committee. The mission of the Committee is to facilitate open communications between member utilities relative to radiation protection and ALARA issues such that cost effective dose reduction and radiation protection measures may be instituted. While industry deregulation appears inevitable and inter-utility competition is on the rise, Committee members are fully committed to sharing both positive and negative experiences for the benefit of the health and safety of the radiation worker. Committee meetings provide current operational experiences through members providing Plant status reports, and informationmore » relative to programmatic improvements through member presentations and topic specific workshops. The most recent Committee workshop was facilitated to provide members with defined experiences that provide cost effective ALARA performance.« less

  1. Spontaneous acalculous gallbladder perforation in a man secondary to chemotherapy and radiation: A rare case report.

    PubMed

    Zhang, Jungang; Shen, Guoliang; Shi, Ying; Zhang, Chengwu; Hong, Defei; Jin, Li; Yang, Hongguo; Sun, Wei; Cai, Hanhui; Hu, Zhiming; Wu, Weiding

    2018-05-01

    Gallbladder perforation is a serious clinical condition and associated with high morbidity and mortality. A definitive diagnosis is contentious before surgery. We herein report a case of perforation of the gallbladder neck secondary to chemotherapy and radiation for nasopharyngeal carcinoma patient. Gallbladder perforation secondary to chemotherapy and radiation. To decrease the mortality associated with gallbladder perforation, Laparoscopic cholecystectomy and peritoneal lavage were performed followed for gallbladder perforation patient because of chemotherapy and radiation. The patient recovered fully without serious complication and discharged on the 10th postoperative day. A pathological examination of the resected gallbladder revealed cholecystitis in the thinning of the neck. Early diagnosis and surgical intervention of gallbladder perforation in relation to asopharyngeal carcinoma chemotherapy and radiation are of prime importance. The laparoscopic procedure is safe and feasible in the selected patients.

  2. Investigation of radiative interaction in laminar flows using Monte Carlo simulation

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, S. N.

    1993-01-01

    The Monte Carlo method (MCM) is employed to study the radiative interactions in fully developed laminar flow between two parallel plates. Taking advantage of the characteristics of easy mathematical treatment of the MCM, a general numerical procedure is developed for nongray radiative interaction. The nongray model is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. To validate the Monte Carlo simulation for nongray radiation problems, the results of radiative dissipation from the MCM are compared with two available solutions for a given temperature profile between two plates. After this validation, the MCM is employed to solve the present physical problem and results for the bulk temperature are compared with available solutions. In general, good agreement is noted and reasons for some discrepancies in certain ranges of parameters are explained.

  3. The consistency of positive fully fuzzy linear system

    NASA Astrophysics Data System (ADS)

    Malkawi, Ghassan O.; Alfifi, Hassan Y.

    2017-11-01

    In this paper, the consistency of fuzziness of positive solution of the n × n fully fuzzy linear system (P - FFLS) is studied based on its associated linear system (P - ALS). That can consist of the whole entries of triangular fuzzy numbers in a linear system without fuzzy operations. The nature of solution is differentiated in case of fuzzy solution, non-fuzzy solution and fuzzy non-positive solution. Moreover, the analysis reveals that the P - ALS is applicable to provide the set of infinite number of solutions. Numerical examples are presented to illustrate the proposed analysis.

  4. Solution for Direct Solar Impingement Problem on Landsat-7 ETM+ Cooler Door During Cooler Outgas in Flight

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    1999-01-01

    There was a thermal anomaly of the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) radiative cooler cold stage during the cooler outgas phase in flight. With the cooler door in the outgas position and the outgas heaters enabled, the cold stage temperature increased to a maximum of 323 K when the spacecraft was in the sunlight, which was warmer than the 316.3 K upper set point of the outgas heater controller on the cold stage. Also, the outgas heater cycled off when the cold stage was warming up to 323 K. A corrective action was taken before the attitude of the spacecraft was changed during the first week in flight. One orbit before the attitude was changed, the outgas heaters were disabled to cool off the cold stage. The cold stage temperature increase was strongly dependent on the spacecraft roll and yaw. It provided evidence that direct solar radiation entered the gap between the cooler door and cooler shroud. There was a concern that the direct solar radiation could cause polymerization of hydrocarbons, which could contaminate the cooler and lead to a thermal short. After outgas with the cooler door in the outgas position for seven days, the cooler door was changed to the fully open position. With the cooler door fully open, the maximum cold stage temperature was 316.3 K when the spacecraft was in the sunlight, and the duty cycle of the outgas heater in the eclipse was the same as that in the sunlight. It provided more evidence that direct solar radiation had entered the gap between the cooler door and cooler shroud. Cooler outgas continued for seven more days, with the cooler door fully open. The corrective actions had prevented overheating of the cold stage and cold focal plane array (CFPA), which could damage these two components. They also minimized the risk of contamination on the cold stage, which could lead to a thermal short.

  5. Shifting the focus to practice quality improvement in radiation oncology.

    PubMed

    Crozier, Cheryl; Erickson-Wittmann, Beth; Movsas, Benjamin; Owen, Jean; Khalid, Najma; Wilson, J Frank

    2011-09-01

    To demonstrate how the American College of Radiology, Quality Research in Radiation Oncology (QRRO) process survey database can serve as an evidence base for assessing quality of care in radiation oncology. QRRO has drawn a stratified random sample of radiation oncology facilities in the USA and invited those facilities to participate in a Process Survey. Information from a prior QRRO Facilities Survey has been used along with data collected under the current National Process Survey to calculate national averages and make statistically valid inferences for national process measures for selected cancers in which radiation therapy plays a major role. These measures affect outcomes important to patients and providers and measure quality of care. QRRO's survey data provides national benchmark data for numerous quality indicators. The Process Survey is "fully qualified" as a Practice Quality Improvement project by the American Board of Radiology under its Maintenance of Certification requirements for radiation oncology and radiation physics. © 2011 National Association for Healthcare Quality.

  6. Epidemiology of radiation-induced cancer.

    PubMed Central

    Radford, E P

    1983-01-01

    The epidemiology of radiation-induced cancer is important for theoretical and practical insights that these studies give to human cancer in general and because we have more evidence from radiation-exposed populations than for any other environmental carcinogen. On theoretical and experimental grounds, the linear no-threshold dose-response relationship is a reasonable basis for extrapolating effects to low doses. Leukemia is frequently the earliest observed radiogenic cancer but is now considered to be of minor importance, because the radiation effect dies out after 25 or 30 years, whereas solid tumors induced by radiation develop later and the increased cancer risk evidently persists for the remaining lifetime. Current estimates of the risk of particular cancers from radiation exposure cannot be fully evaluated until the population under study have been followed at least 40 or 50 years after exposure. Recent evidence indicates that for lung cancer induction, combination of cigarette smoking and radiation exposure leads to risks that are not multiplicative but rather nearly additive. PMID:6653538

  7. Purification and characterization of two fully deuterated enzymes

    NASA Technical Reports Server (NTRS)

    Crespi, H. L.; Katz, J. J.; Parmerter, S.; Rokop, S.

    1969-01-01

    Comparative data reveal little difference between kinetic and thermal stabilities of pure preparations of two ordinary enzymes and their fully deuterated counterparts. The effects of temperature on the enzymes proved to be consistent with earlier results.

  8. Application of MODIS-Derived Active Fire Radiative Energy to Fire Disaster and Smoke Pollution Monitoring

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Hao, Wei Min; Habib, Shahid

    2004-01-01

    The radiative energy emitted by large fires and the corresponding smoke aerosol loading are simultaneously measured from the MODIS sensor from both the Terra and Aqua satellites. Quantitative relationships between the rates of emission of fire radiative energy and smoke are being developed for different fire-prone regions of the globe. Preliminary results are presented. When fully developed, the system will enable the use of MODIS direct broadcast fire data for near real-time monitoring of fire strength and smoke emission as well as forecasting of fire progression and smoke dispersion, several hours to a few days in advance.

  9. Analytic solution for quasi-Lambertian radiation transfer.

    PubMed

    Braun, Avi; Gordon, Jeffrey M

    2010-02-10

    An analytic solution is derived for radiation transfer between flat quasi-Lambertian surfaces of arbitrary orientation, i.e., surfaces that radiate in a Lambertian fashion but within a numerical aperture smaller than unity. These formulas obviate the need for ray trace simulations and provide exact, physically transparent results. Illustrative examples that capture the salient features of the flux maps and the efficiency of flux transfer are presented for a few configurations of practical interest. There is also a fundamental reciprocity relation for quasi-Lambertian exchange, akin to the reciprocity theorem for fully Lambertian surfaces. Applications include optical fiber coupling, fiber-optic biomedical procedures, and solar concentrators.

  10. SU-G-TeP4-06: An Integrated Application for Radiation Therapy Treatment Plan Directives, Management, and Reporting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matuszak, M; Anderson, C; Lee, C

    Purpose: With electronic medical records, patient information for the treatment planning process has become disseminated across multiple applications with limited quality control and many associated failure modes. We present the development of a single application with a centralized database to manage the planning process. Methods: The system was designed to replace current functionalities of (i) static directives representing the physician intent for the prescription and planning goals, localization information for delivery, and other information, (ii) planning objective reports, (iii) localization and image guidance documents and (iv) the official radiation therapy prescription in the medical record. Using the Eclipse Scripting Applicationmore » Programming Interface, a plug-in script with an associated domain-specific SQL Server database was created to manage the information in (i)–(iv). The system’s user interface and database were designed by a team of physicians, clinical physicists, database experts, and software engineers to ensure usability and robustness for clinical use. Results: The resulting system has been fully integrated within the TPS via a custom script and database. Planning scenario templates, version control, approvals, and logic-based quality control allow this system to fully track and document the planning process as well as physician approval of tradeoffs while improving the consistency of the data. Multiple plans and prescriptions are supported along with non-traditional dose objectives and evaluation such as biologically corrected models, composite dose limits, and management of localization goals. User-specific custom views were developed for the attending physician review, physicist plan checks, treating therapists, and peer review in chart rounds. Conclusion: A method was developed to maintain cohesive information throughout the planning process within one integrated system by using a custom treatment planning management application that interfaces directly with the TPS. Future work includes quantifying the improvements in quality, safety and efficiency that are possible with the routine clinical use of this system. Supported in part by NIH-P01-CA-059827.« less

  11. Three-temperature plasma shock solutions with gray radiation diffusion

    DOE PAGES

    Johnson, Bryan M.; Klein, Richard I.

    2016-04-19

    Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less

  12. Three-temperature plasma shock solutions with gray radiation diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Bryan M.; Klein, Richard I.

    Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less

  13. Radiative recombination data for tungsten ions: II. W{sup 47+}–W{sup 71+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trzhaskovskaya, M.B., E-mail: Trzhask@MT5605.spb.edu; Nikulin, V.K.

    2014-07-15

    New radiative recombination and photoionization cross sections, radiative recombination rate coefficients, and radiated power loss rate coefficients are presented for 23 tungsten impurity ions in plasmas. We consider ions from W{sup 47+} to W{sup 71+} that are of importance to fusion studies for ITER and for experiments using electron beam ion traps. The calculations are fully relativistic and all significant multipoles of the radiative field are taken into account. The Dirac–Fock method is used to compute the electron wavefunctions. Radiative recombination rates and radiated power loss rates are found using the relativistic Maxwell–Jüttner distribution of the continuum electron velocity. Themore » total radiative recombination cross sections are given in the electron energy range from 1 eV to ∼80keV. Partial cross sections for ground and excited states are approximated by an analytical expression involving five fit parameters. Radiative recombination rates and radiated power loss rates are calculated in the temperature range from 10{sup 4}K to 10{sup 9}K. The total radiative recombination rates are approximated by another analytical expression with four fit parameters.« less

  14. Multiplate Radiation Shields: Investigating Radiational Heating Errors

    NASA Astrophysics Data System (ADS)

    Richardson, Scott James

    1995-01-01

    Multiplate radiation shield errors are examined using the following techniques: (1) analytic heat transfer analysis, (2) optical ray tracing, (3) numerical fluid flow modeling, (4) laboratory testing, (5) wind tunnel testing, and (6) field testing. Guidelines for reducing radiational heating errors are given that are based on knowledge of the temperature sensor to be used, with the shield being chosen to match the sensor design. Small, reflective sensors that are exposed directly to the air stream (not inside a filter as is the case for many temperature and relative humidity probes) should be housed in a shield that provides ample mechanical and rain protection while impeding the air flow as little as possible; protection from radiation sources is of secondary importance. If a sensor does not meet the above criteria (i.e., is large or absorbing), then a standard Gill shield performs reasonably well. A new class of shields, called part-time aspirated multiplate radiation shields, are introduced. This type of shield consists of a multiplate design usually operated in a passive manner but equipped with a fan-forced aspiration capability to be used when necessary (e.g., low wind speed). The fans used here are 12 V DC that can be operated with a small dedicated solar panel. This feature allows the fan to operate when global solar radiation is high, which is when the largest radiational heating errors usually occur. A prototype shield was constructed and field tested and an example is given in which radiational heating errors were reduced from 2 ^circC to 1.2 ^circC. The fan was run continuously to investigate night-time low wind speed errors and the prototype shield reduced errors from 1.6 ^ circC to 0.3 ^circC. Part-time aspirated shields are an inexpensive alternative to fully aspirated shields and represent a good compromise between cost, power consumption, reliability (because they should be no worse than a standard multiplate shield if the fan fails), and accuracy. In addition, it is possible to modify existing passive shields to incorporate part-time aspiration, thus making them even more cost-effective. Finally, a new shield is described that incorporates a large diameter top plate that is designed to shade the lower portion of the shield. This shield increases flow through it by 60%, compared to the Gill design and it is likely to reduce radiational heating errors, although it has not been tested.

  15. Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions.

    PubMed

    Reeves, Geoffrey D; Friedel, Reiner H W; Larsen, Brian A; Skoug, Ruth M; Funsten, Herbert O; Claudepierre, Seth G; Fennell, Joseph F; Turner, Drew L; Denton, Mick H; Spence, Harlan E; Blake, J Bernard; Baker, Daniel N

    2016-01-01

    We present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are more common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of "slot filling" events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.

  16. Energy-dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions

    DOE PAGES

    Reeves, Geoffrey D.; Friedel, Reiner H. W.; Larsen, Brian A.; ...

    2016-01-28

    Here, we present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are moremore » common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of “slot filling” events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy- and L shell-dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions.« less

  17. Collimated thermal radiation transfer via half Maxwell's fish-eye lens for thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Chung, Haejun; Zhou, Zhiguang; Bermel, Peter

    2017-05-01

    Thermophotovoltaics (TPV) convert heat into electricity by capturing thermal radiation with a photovoltaic (PV) cell, ideally at efficiencies of 50% or more. However, excess heating of the PV cell from close proximity to the emitter substantially reduces the system efficiency. In this work, we theoretically develop and numerically demonstrate an approach to fundamentally improving TPV systems that allow for a much greater separation of an emitter and a receiver. Thus, we solve the excess heating dilemma, required for achieving theoretically high efficiencies. It consists of a spherically graded index lens known as Maxwell's Fish-Eye (MFE) structure, capable of collimating hemispherical emission into a much narrower range of angles, close to the normal direction. To fully characterize the power radiation profile of the MFE, we perform finite-difference time-domain simulations for a quarter MFE and then map it onto a Gaussian beam approximation. The modeled beam properties are subsequently used to study a half MFE. In an optimized half MFE design, 90% of all thermal photons reach a receiver at a distance of 100 λ; by comparison, only 15.6% of a blackbody emitter reach a receiver in the same geometry. It is also shown that the emission achieved by a half MFE can lead to a photon recycling rate above 95% for below bandgap photons at an emitter-receiver separation of 100 λ. By applying a half MFE, the absolute TPV efficiency can be improved from 5.74% to 37.15%, which represents a significant step forward in realizing high-efficiency TPV systems.

  18. Progress towards a more predictive model for hohlraum radiation drive and symmetry

    NASA Astrophysics Data System (ADS)

    Jones, O. S.; Suter, L. J.; Scott, H. A.; Barrios, M. A.; Farmer, W. A.; Hansen, S. B.; Liedahl, D. A.; Mauche, C. W.; Moore, A. S.; Rosen, M. D.; Salmonson, J. D.; Strozzi, D. J.; Thomas, C. A.; Turnbull, D. P.

    2017-05-01

    For several years, we have been calculating the radiation drive in laser-heated gold hohlraums using flux-limited heat transport with a limiter of 0.15, tabulated values of local thermodynamic equilibrium gold opacity, and an approximate model for not in a local thermodynamic equilibrium (NLTE) gold emissivity (DCA_2010). This model has been successful in predicting the radiation drive in vacuum hohlraums, but for gas-filled hohlraums used to drive capsule implosions, the model consistently predicts too much drive and capsule bang times earlier than measured. In this work, we introduce a new model that brings the calculated bang time into better agreement with the measured bang time. The new model employs (1) a numerical grid that is fully converged in space, energy, and time, (2) a modified approximate NLTE model that includes more physics and is in better agreement with more detailed offline emissivity models, and (3) a reduced flux limiter value of 0.03. We applied this model to gas-filled hohlraum experiments using high density carbon and plastic ablator capsules that had hohlraum He fill gas densities ranging from 0.06 to 1.6 mg/cc and hohlraum diameters of 5.75 or 6.72 mm. The new model predicts bang times to within ±100 ps for most experiments with low to intermediate fill densities (up to 0.85 mg/cc). This model predicts higher temperatures in the plasma than the old model and also predicts that at higher gas fill densities, a significant amount of inner beam laser energy escapes the hohlraum through the opposite laser entrance hole.

  19. Energy‐dependent dynamics of keV to MeV electrons in the inner zone, outer zone, and slot regions

    PubMed Central

    Friedel, Reiner H. W.; Larsen, Brian A.; Skoug, Ruth M.; Funsten, Herbert O.; Claudepierre, Seth G.; Fennell, Joseph F.; Turner, Drew L.; Denton, Mick H.; Spence, Harlan E.; Blake, J. Bernard; Baker, Daniel N.

    2016-01-01

    Abstract We present observations of the radiation belts from the Helium Oxygen Proton Electron and Magnetic Electron Ion Spectrometer particle detectors on the Van Allen Probes satellites that illustrate the energy dependence and L shell dependence of radiation belt enhancements and decays. We survey events in 2013 and analyze an event on 1 March in more detail. The observations show the following: (a) at all L shells, lower energy electrons are enhanced more often than higher energies; (b) events that fill the slot region are more common at lower energies; (c) enhancements of electrons in the inner zone are more common at lower energies; and (d) even when events do not fully fill the slot region, enhancements at lower energies tend to extend to lower L shells than higher energies. During enhancement events the outer zone extends to lower L shells at lower energies while being confined to higher L shells at higher energies. The inner zone shows the opposite with an outer boundary at higher L shells for lower energies. Both boundaries are nearly straight in log(energy) versus L shell space. At energies below a few 100 keV, radiation belt electron penetration through the slot region into the inner zone is commonplace, but the number and frequency of “slot filling” events decreases with increasing energy. The inner zone is enhanced only at energies that penetrate through the slot. Energy‐ and L shell‐dependent losses (that are consistent with whistler hiss interactions) return the belts to more quiescent conditions. PMID:27818855

  20. July 2012 Greenland melt extent enhanced by low-level liquid clouds.

    PubMed

    Bennartz, R; Shupe, M D; Turner, D D; Walden, V P; Steffen, K; Cox, C J; Kulie, M S; Miller, N B; Pettersen, C

    2013-04-04

    Melting of the world's major ice sheets can affect human and environmental conditions by contributing to sea-level rise. In July 2012, an historically rare period of extended surface melting was observed across almost the entire Greenland ice sheet, raising questions about the frequency and spatial extent of such events. Here we show that low-level clouds consisting of liquid water droplets ('liquid clouds'), via their radiative effects, played a key part in this melt event by increasing near-surface temperatures. We used a suite of surface-based observations, remote sensing data, and a surface energy-balance model. At the critical surface melt time, the clouds were optically thick enough and low enough to enhance the downwelling infrared flux at the surface. At the same time they were optically thin enough to allow sufficient solar radiation to penetrate through them and raise surface temperatures above the melting point. Outside this narrow range in cloud optical thickness, the radiative contribution to the surface energy budget would have been diminished, and the spatial extent of this melting event would have been smaller. We further show that these thin, low-level liquid clouds occur frequently, both over Greenland and across the Arctic, being present around 30-50 per cent of the time. Our results may help to explain the difficulties that global climate models have in simulating the Arctic surface energy budget, particularly as models tend to under-predict the formation of optically thin liquid clouds at supercooled temperatures--a process potentially necessary to account fully for temperature feedbacks in a warming Arctic climate.

  1. The formation of ozone and UV radiation from high-power pulsed electric discharges

    NASA Astrophysics Data System (ADS)

    Piskarev, I. M.; Ushkanov, V. A.; Selemir, V. D.; Spirov, G. M.; Malevannaya Pikar', I. A.; Zuimach, E. A.

    2008-09-01

    High-power electric discharges with pulse energies of from 0.15 J to 4 kJ were studied. The yields of UV photons and ozone were found to be approximately equal, which led us to conclude that discharge conditions under which UV radiation and ozone fully destroyed each other were possible. If ozone formation was suppressed, as when a negative volume charge was created in the spark gap region, the flux of UV photons reached 3 × 1023 photons/(cm2 s).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchat, Thomas K.; Jernigan, Dann A.

    A set of experiments and test data are outlined in this report that provides radiation intensity data for the validation of models for the radiative transfer equation. The experiments were performed with lightly-sooting liquid hydrocarbon fuels that yielded fully turbulent fires 2 m diameter). In addition, supplemental measurements of air flow and temperature, fuel temperature and burn rate, and flame surface emissive power, wall heat, and flame height and width provide a complete set of boundary condition data needed for validation of models used in fire simulations.

  3. Radiative transfer within seagrass canopies: impact on carbon budgets and light requirements

    NASA Astrophysics Data System (ADS)

    Zimmerman, Richard C.; Mobley, Curtis D.

    1997-02-01

    Seagrasses are ecologically important but extremely vulnerable to anthropogenic modifications of the coastal zone that affect light availability within these unique ecosystems. Strongly pigmented seagrass leaves can extend for more than 1 m above the substrate and biomass is distributed unevenly throughout the canopy. in this study, light attenuation in a 7 m water column that contained a seagrass canopy extending 1.5 m above the bottom was calculated by the radiative transfer model Hydrolight using the spectral absorbance of eelgrass leaves and a non-uniform vertical distribution of biomass. Runs were performed in clear and turbid water columns, over san d and mud substrates, and with shoot densities ranging from 25 to 200 m-2 using solar angles for both winter and summer solstices. The flux of photosynthetically active irradiance (EPAR) reaching the top of the seagrass canopy was twice as high in summer compared to winter, and in clear water compared to turbid water. Sediment type had a measurable effect on EPAR only within the bottom third of the canopy. Light penetration within the canopy was inversely proportional to shoot density. Introduction of daylength and a sinusoidal distribution of EPAR throughout the day greatly increased the importance of solar elevation on daily integrated production relative to water column turbidity and sediment type. Shoot-specific productivity decreased and the position of maximum shoot productivity within the canopy shallowed as shoot density increased. Positive net photosynthesis for entire shoots was possible only when plant density was lower than 100 shoots m-2 in winter; values consistent with field observations. Although very simplistic with regard to inherent optical properties of real seagrass leaves, this model was able to generate estimates of maximum sustainable shoot density that were fully testable by, and wholly consistent with, field observations.

  4. Integrated analysis of large space systems

    NASA Technical Reports Server (NTRS)

    Young, J. P.

    1980-01-01

    Based on the belief that actual flight hardware development of large space systems will necessitate a formalized method of integrating the various engineering discipline analyses, an efficient highly user oriented software system capable of performing interdisciplinary design analyses with tolerable solution turnaround time is planned Specific analysis capability goals were set forth with initial emphasis given to sequential and quasi-static thermal/structural analysis and fully coupled structural/control system analysis. Subsequently, the IAC would be expanded to include a fully coupled thermal/structural/control system, electromagnetic radiation, and optical performance analyses.

  5. Study of the consistency of climatological products of Nimbus-7

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.

    1988-01-01

    The study, in addition to investigating the consistency of climatological products from Nimbus-7 Earth Radiation Budget and Temperature Humidity Infrared Radiometer experiments, focussed on the climatological analysis of the specified regions of the Earth. The climatological study consisted of the effects of various types of clouds on the net radiation, albedos, and emitted radiation. In addition to a correlational study for determining consistency level of data, a population study of the regions was formulated and conducted. The regions under this study were formed by clustering the target areas using the criteria of climatological conditions such as geography, ocean, and land. Research is limited to tropics from 18 deg north to 18 deg south. A correlational study indicates that there is high positive correlation between high clouds and albedo, and a reduced negative correlation between albedo and net radiation.

  6. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hehemann, Jan -Hendrik; Arevalo, Philip; Datta, Manoshi S.

    Adaptive radiations are important drivers of niche filling, since they rapidly adapt a single clade of organisms to ecological opportunities. Although thought to be common for animals and plants, adaptive radiations have remained difficult to document for microbes in the wild. Here we describe a recent adaptive radiation leading to fine-scale ecophysiological differentiation in the degradation of an algal glycan in a clade of closely related marine bacteria. Horizontal gene transfer is the primary driver in the diversification of the pathway leading to several ecophysiologically differentiated Vibrionaceae populations adapted to different physical forms of alginate. Furthermore, pathway architecture is predictivemore » of function and ecology, underscoring that horizontal gene transfer without extensive regulatory changes can rapidly assemble fully functional pathways in microbes.« less

  7. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes

    DOE PAGES

    Hehemann, Jan -Hendrik; Arevalo, Philip; Datta, Manoshi S.; ...

    2016-09-22

    Adaptive radiations are important drivers of niche filling, since they rapidly adapt a single clade of organisms to ecological opportunities. Although thought to be common for animals and plants, adaptive radiations have remained difficult to document for microbes in the wild. Here we describe a recent adaptive radiation leading to fine-scale ecophysiological differentiation in the degradation of an algal glycan in a clade of closely related marine bacteria. Horizontal gene transfer is the primary driver in the diversification of the pathway leading to several ecophysiologically differentiated Vibrionaceae populations adapted to different physical forms of alginate. Furthermore, pathway architecture is predictivemore » of function and ecology, underscoring that horizontal gene transfer without extensive regulatory changes can rapidly assemble fully functional pathways in microbes.« less

  8. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes

    PubMed Central

    Hehemann, Jan-Hendrik; Arevalo, Philip; Datta, Manoshi S.; Yu, Xiaoqian; Corzett, Christopher H.; Henschel, Andreas; Preheim, Sarah P.; Timberlake, Sonia; Alm, Eric J.; Polz, Martin F.

    2016-01-01

    Adaptive radiations are important drivers of niche filling, since they rapidly adapt a single clade of organisms to ecological opportunities. Although thought to be common for animals and plants, adaptive radiations have remained difficult to document for microbes in the wild. Here we describe a recent adaptive radiation leading to fine-scale ecophysiological differentiation in the degradation of an algal glycan in a clade of closely related marine bacteria. Horizontal gene transfer is the primary driver in the diversification of the pathway leading to several ecophysiologically differentiated Vibrionaceae populations adapted to different physical forms of alginate. Pathway architecture is predictive of function and ecology, underscoring that horizontal gene transfer without extensive regulatory changes can rapidly assemble fully functional pathways in microbes. PMID:27653556

  9. Comparison of codes assessing galactic cosmic radiation exposure of aircraft crew.

    PubMed

    Bottollier-Depois, J F; Beck, P; Bennett, B; Bennett, L; Bütikofer, R; Clairand, I; Desorgher, L; Dyer, C; Felsberger, E; Flückiger, E; Hands, A; Kindl, P; Latocha, M; Lewis, B; Leuthold, G; Maczka, T; Mares, V; McCall, M J; O'Brien, K; Rollet, S; Rühm, W; Wissmann, F

    2009-10-01

    The assessment of the exposure to cosmic radiation onboard aircraft is one of the preoccupations of bodies responsible for radiation protection. Cosmic particle flux is significantly higher onboard aircraft than at ground level and its intensity depends on the solar activity. The dose is usually estimated using codes validated by the experimental data. In this paper, a comparison of various codes is presented, some of them are used routinely, to assess the dose received by the aircraft crew caused by the galactic cosmic radiation. Results are provided for periods close to solar maximum and minimum and for selected flights covering major commercial routes in the world. The overall agreement between the codes, particularly for those routinely used for aircraft crew dosimetry, was better than +/-20 % from the median in all but two cases. The agreement within the codes is considered to be fully satisfactory for radiation protection purposes.

  10. Spectral Invariance Principles Observed in Spectral Radiation Measurements of the Transition Zone

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2011-01-01

    The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.

  11. Comparative diversification dynamics among palaeocontinents during the Ordovician Radiation

    NASA Technical Reports Server (NTRS)

    Miller, A. I.

    1997-01-01

    The Ordovician Radiation was among the most extensive intervals of diversification in the history of life. However, a delineation of the proximal cause(s) of the Radiation remains elusive. Any such determination should involve an analysis of geographic overprints on diversification: did the Radiation occur randomly around the world or, alternatively, was it focused in particular geographic or depositional regimes? Here, I present a comparative evaluation of Ordovician diversification among several palaeocontinents to determine whether biotas associated with certain palaeocontinents exhibited different diversification patterns than others; in part, this involves a numerical "correction" to raw diversity trajectories. Clear disparities among palaeocontinents are indicated by the data, which appear to reflect differences in the extent of siliciclastic input partly in association with tectonic activity. Further testing will be required to fully substantiate the implication that siliciclastic influx was a predominant factor in the Ordovician Radiation, affecting a variety of higher taxa among all three Phanerozoic evolutionary faunas.

  12. Astrophysical Connections to Collapsing Radiative Shock Experiments

    NASA Astrophysics Data System (ADS)

    Reighard, A. B.; Hansen, J. F.; Bouquet, S.; Koenig, M.

    2005-10-01

    Radiative shocks occur in many high-energy density explosions, but prove difficult to create in laboratory experiments or to fully model with astrophysical codes. Low astrophysical densities combined with powerful explosions provide ideal conditions for producing radiative shocks. Here we describe an experiment significant to astrophysical shocks, which produces a driven, planar radiative shock in low density Xe gas. Including radiation effects precludes scaling experiments directly to astrophysical conditions via Euler equations, as can be done in purely hydrodynamic experiments. We use optical depth considerations to make comparisons between the driven shock in xenon and specific astrophysical phenomena. This planar shock may be subject to thin shell instabilities similar to those affecting the evolution of astrophysical shocks. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.

  13. Report: EPA Plans for Managing Counter Terrorism/ Emergency Response Equipment and Protecting Critical Assets Not Fully Implemented

    EPA Pesticide Factsheets

    Report #09-P-0087, January 27, 2009. EPA has progressed in implementing the counter terrorism/emergency response (CT/ER) initiatives, but is behind schedule in implementing the Radiation Ambient Monitoring (RadNet) System.

  14. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies

    NASA Astrophysics Data System (ADS)

    Holt, Robert W.; Zhang, Rongxiao; Esipova, Tatiana V.; Vinogradov, Sergei A.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2014-09-01

    Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.

  15. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies.

    PubMed

    Holt, Robert W; Zhang, Rongxiao; Esipova, Tatiana V; Vinogradov, Sergei A; Glaser, Adam K; Gladstone, David J; Pogue, Brian W

    2014-09-21

    Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.

  16. Simulating and Detecting Radiation-Induced Errors for Onboard Machine Learning

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri L.; Bornstein, Benjamin; Granat, Robert; Tang, Benyang; Turmon, Michael

    2009-01-01

    Spacecraft processors and memory are subjected to high radiation doses and therefore employ radiation-hardened components. However, these components are orders of magnitude more expensive than typical desktop components, and they lag years behind in terms of speed and size. We have integrated algorithm-based fault tolerance (ABFT) methods into onboard data analysis algorithms to detect radiation-induced errors, which ultimately may permit the use of spacecraft memory that need not be fully hardened, reducing cost and increasing capability at the same time. We have also developed a lightweight software radiation simulator, BITFLIPS, that permits evaluation of error detection strategies in a controlled fashion, including the specification of the radiation rate and selective exposure of individual data structures. Using BITFLIPS, we evaluated our error detection methods when using a support vector machine to analyze data collected by the Mars Odyssey spacecraft. We found ABFT error detection for matrix multiplication is very successful, while error detection for Gaussian kernel computation still has room for improvement.

  17. Comparison of a fully mapped plot design to three alternative designs for volume and area estimates using Maine inventory data

    Treesearch

    Stanford L. Arner

    1998-01-01

    A fully mapped plot design is compared to three alternative designs using data collected for the recent inventory of Maine's forest resources. Like the fully mapped design, one alternative eliminates the bias of previous procedures, and should be less costly and more consistent. There was little difference in volume and area estimates or in sampling errors among...

  18. Buoyancy Effects in Fully-Modulated, Turbulent Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.; Page, K. L.

    2003-01-01

    Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The objective of this experiment (PuFF, for Pulsed-Fully Flames) is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This gives rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Normal-gravity experiments suggest that the fully-modulated technique also has the potential for producing turbulent jet flames significantly more compact than steady flames with no increase in exhaust emissions. The technique also simplifies the combustion process by avoiding the acoustic forcing generally present in pulsed combustors. Fundamental issues addressed in this experiment include the impact of buoyancy on the structure and flame length, temperatures, radiation, and emissions of fully-modulated flames.

  19. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  20. General Relativistic Magnetohydrodynamics Simulations of Tilted Black Hole Accretion Flows and Their Radiative Properties

    NASA Astrophysics Data System (ADS)

    Shiokawa, Hotaka; Gammie, C. F.; Dolence, J.; Noble, S. C.

    2013-01-01

    We perform global General Relativistic Magnetohydrodynamics (GRMHD) simulations of non-radiative, magnetized disks that are initially tilted with respect to the black hole's spin axis. We run the simulations with different size and tilt angle of the tori for 2 different resolutions. We also perform radiative transfer using Monte Carlo based code that includes synchrotron emission, absorption and Compton scattering to obtain spectral energy distribution and light curves. Similar work was done by Fragile et al. (2007) and Dexter & Fragile (2012) to model the super massive black hole SgrA* with tilted accretion disks. We compare our results of fully conservative hydrodynamic code and spectra that include X-ray, with their results.

  1. Effects of Drift-Shell Splitting by Chorus Waves on Radiation Belt Electrons

    NASA Astrophysics Data System (ADS)

    Chan, A. A.; Zheng, L.; O'Brien, T. P., III; Tu, W.; Cunningham, G.; Elkington, S. R.; Albert, J.

    2015-12-01

    Drift shell splitting in the radiation belts breaks all three adiabatic invariants of charged particle motion via pitch angle scattering, and produces new diffusion terms that fully populate the diffusion tensor in the Fokker-Planck equation. Based on the stochastic differential equation method, the Radbelt Electron Model (REM) simulation code allows us to solve such a fully three-dimensional Fokker-Planck equation, and to elucidate the sources and transport mechanisms behind the phase space density variations. REM has been used to perform simulations with an empirical initial phase space density followed by a seed electron injection, with a Tsyganenko 1989 magnetic field model, and with chorus wave and ULF wave diffusion models. Our simulation results show that adding drift shell splitting changes the phase space location of the source to smaller L shells, which typically reduces local electron energization (compared to neglecting drift-shell splitting effects). Simulation results with and without drift-shell splitting effects are compared with Van Allen Probe measurements.

  2. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    NASA Astrophysics Data System (ADS)

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.

  3. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Hyun; Kang, Jeong Wook; Lee, Dong Won

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a highmore » cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.« less

  4. Conduction in fully ionized liquid metals

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Ashcroft, N. W.

    1973-01-01

    Electron transport is considered in high density fully ionized liquid metals. Ionic structure is described in terms of hard-sphere correlation functions and the scattering is determined from self-consistently screened point ions. Applications to the physical properties of the deep interior of Jupiter are briefly considered.

  5. Characteristics of Coupled Nongray Radiating Gas Flows with Ablation Product Effects About Blunt Bodies During Planetary Entries. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Sutton, K.

    1973-01-01

    A computational method was developed for the fully-coupled solution of nongray, radiating gas flows with ablation product effects about blunt bodies during planetary entries. The treatment of radiation accounts for molecular band, continuum, and atomic line transitions with a detailed frequency dependence of the absorption coefficient. The ablation of the entry body was solved as part of the solution for a steady-state ablation process. The method was applied by results at typical conditions during entry to Venus. The radiative heating rates along the downstream region of the body can exceed the stagnation point value. The radiative heating to the body is attenuated in the boundary layer at the downstream region of the body and at the stagnation point of the body. A study of the radiation, inviscid flow about spherically capped, conical bodies during planetary entries shows that the nondimensional, radiative heating distributions are nonsimilar with entry conditions. Caution should be exercised in attempting to extrapolate results from known distributions to other entry conditions for which solutions have not yet been obtained.

  6. An overview of results from the GEWEX radiation flux assessment

    NASA Astrophysics Data System (ADS)

    Raschke, E.; Stackhouse, P.; Kinne, S.; Contributors from Europe; the USA

    2013-05-01

    Multi-annual radiative flux averages of the International Cloud Climatology Project (ISCCP), of the GEWEX - Surface Radiation Budget Project (SRB) and of the Clouds and Earth Radiative Energy System (CERES) are compared and analyzed to characterize the Earth's radiative budget, assess differences and identify possible causes. These satellite based data-sets are also compared to results of a median model, which represents 20 climate models, that participated in the 4th IPCC assessment. Consistent distribution patterns and seasonal variations among the satellite data-sets demonstrate their scientific value, which would further increase if the datasets would be reanalyzed with more accurate and consistent ancillary data.

  7. METHOD AND MEANS FOR RADIATION DOSIMETRY

    DOEpatents

    Shulte, J.W.; Suttle, J.F.

    1958-02-18

    This patent relates to a method and device for determining quantities of gamma radiation and x radiation by exposing to such radiation a mature of a purified halogenated hydrocarbon chosen from the class consisting of chloroform, bromoform, tetrachloroethane and 1,1,2trichloroethane, and a minor quantity of a sensitizer chosen from the class consisting of oxygen, benzoyl peroxide, sodium peroxide, and nitrobenzene, the proportion of the sensitizer being at least about 10/sup -5/ moles per cubic centimeter of halogenated hydrocarbon, the total amount of sensitizer depending upon the range of radiation to be measured, and chemically measuring the amount of decomposition generated by the irradiation of the sensitized halogenated hydrocarbon.

  8. Anomalous Transient Amplification of Waves in Non-normal Photonic Media

    NASA Astrophysics Data System (ADS)

    Makris, K. G.; Ge, L.; Türeci, H. E.

    2014-10-01

    Dissipation is a ubiquitous phenomenon in dynamical systems encountered in nature because no finite system is fully isolated from its environment. In optical systems, a key challenge facing any technological application has traditionally been the mitigation of optical losses. Recent work has shown that a new class of optical materials that consist of a precisely balanced distribution of loss and gain can be exploited to engineer novel functionalities for propagating and filtering electromagnetic radiation. Here we show a generic property of optical systems that feature an unbalanced distribution of loss and gain, described by non-normal operators, namely, that an overall lossy optical system can transiently amplify certain input signals by several orders of magnitude. We present a mathematical framework to analyze the dynamics of wave propagation in media with an arbitrary distribution of loss and gain, and we construct the initial conditions to engineer such non-normal power amplifiers. Our results point to a new design space for engineered optical systems employed in photonics and quantum optics.

  9. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects.

    PubMed

    González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L

    2016-06-03

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.

  10. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    PubMed Central

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  11. Laser Encapsulation of Organic Electronics with Adapted Diode Lasers in Flexible Production Processes

    NASA Astrophysics Data System (ADS)

    Brosda, Maximilian; Olowinsky, Alexander; Pelzer, Alexander

    Flexible organic electronics such as OLPV and OLED modules are highly sensitive against water and oxygen. To protect them against the environment and to ensure a long lifetime visual transparent ultra high barrier films are used for the encapsulation process. These multilayer films usually consist of a polymer substrate on which, depending on the requirements, various functional layers are applied. The organic device is then fully packed in this films. Instead of conventional joining these film with adhesive, a flexible laser based process can be an interesting alternative especially for roll2roll applications. According to a precise spectral analysis and a consideration of the interaction between the laser radiation and the individual layers of the film a suitable laser beam source is selected. With this laser beam source the weldability of the films is investigated. For analysis of the weldseam and the melted volume cross sections and scanning-electron-microscopy-images are prepared. The strength of the weld is determined by T-Peel tensile tests.

  12. The basic physics of the binary black hole merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Fiore, L. Di; Giovanni, M. Di; Girolamo, T. Di; Lieto, A. Di; Pace, S. Di; Palma, I. Di; Virgilio, A. Di; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2017-01-01

    The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here, features of the signal visible in the data are analyzed using concepts from Newtonian physics and general relativity, accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere,in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately 35 Msun, still orbited each other as close as ~350 km apart, and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves.

  13. Ultrasensitive Kilo-Pixel Imaging Array of Photon Noise-Limited Kinetic Inductance Detectors Over an Octave of Bandwidth for THz Astronomy

    NASA Astrophysics Data System (ADS)

    Bueno, J.; Murugesan, V.; Karatsu, K.; Thoen, D. J.; Baselmans, J. J. A.

    2018-05-01

    We present the development of a background-limited kilo-pixel imaging array of ultrawide bandwidth kinetic inductance detectors (KIDs) suitable for space-based THz astronomy applications. The array consists of 989 KIDs, in which the radiation is coupled to each KID via a leaky lens antenna, covering the frequency range between 1.4 and 2.8 THz. The single pixel performance is fully characterised using a representative small array in terms of sensitivity, optical efficiency, beam pattern and frequency response, matching very well its expected performance. The kilo-pixel array is characterised electrically, finding a yield larger than 90% and an averaged noise-equivalent power lower than 3 × 10^{-19} W/Hz^{1/2} . The interaction between the kilo-pixel array and cosmic rays is studied, with an expected dead time lower than 0.6% when operated in an L2 or a similar far-Earth orbit.

  14. An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons

    NASA Astrophysics Data System (ADS)

    Laffont, L.; Jday, R.; Lacaze, J.

    2018-04-01

    Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.

  15. Line-driven ablation of circumstellar discs - I. Optically thin decretion discs of classical Oe/Be stars.

    PubMed

    Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J O

    2016-05-21

    The extreme luminosities of massive, hot OB stars drive strong stellar winds through line-scattering of the star's UV continuum radiation. For OB stars with an orbiting circumstellar disc, we explore here the effect of such line-scattering in driving an ablation of material from the disc's surface layers, with initial focus on the marginally optically thin decretion discs of classical Oe and Be stars. For this we apply a multidimensional radiation-hydrodynamics code that assumes simple optically thin ray tracing for the stellar continuum, but uses a multiray Sobolev treatment of the line transfer; this fully accounts for the efficient driving by non-radial rays, due to desaturation of line-absorption by velocity gradients associated with the Keplerian shear in the disc. Results show a dense, intermediate-speed surface ablation, consistent with the strong, blueshifted absorption of UV wind lines seen in Be shell stars that are observed from near the disc plane. A key overall result is that, after an initial adjustment to the introduction of the disc, the asymptotic disc destruction rate is typically just an order-unity factor times the stellar wind mass-loss rate. For optically thin Be discs, this leads to a disc destruction time of order months to years, consistent with observationally inferred disc decay times. The much stronger radiative forces of O stars reduce this time to order days, making it more difficult for decretion processes to sustain a disc in earlier spectral types, and so providing a natural explanation for the relative rarity of Oe stars in the Galaxy. Moreover, the decrease in line-driving at lower metallicity implies both a reduction in the winds that help spin-down stars from near-critical rotation, and a reduction in the ablation of any decretion disc; together these provide a natural explanation for the higher fraction of classical Be stars, as well as the presence of Oe stars, in the lower metallicity Magellanic Clouds. We conclude with a discussion of future extensions to study line-driven ablation of denser, optically thick, accretion discs of pre-main-sequence massive stars.

  16. Line-driven ablation of circumstellar discs – I. Optically thin decretion discs of classical Oe/Be stars

    PubMed Central

    Kee, Nathaniel Dylan; Owocki, Stanley; Sundqvist, J. O.

    2016-01-01

    The extreme luminosities of massive, hot OB stars drive strong stellar winds through line-scattering of the star's UV continuum radiation. For OB stars with an orbiting circumstellar disc, we explore here the effect of such line-scattering in driving an ablation of material from the disc's surface layers, with initial focus on the marginally optically thin decretion discs of classical Oe and Be stars. For this we apply a multidimensional radiation-hydrodynamics code that assumes simple optically thin ray tracing for the stellar continuum, but uses a multiray Sobolev treatment of the line transfer; this fully accounts for the efficient driving by non-radial rays, due to desaturation of line-absorption by velocity gradients associated with the Keplerian shear in the disc. Results show a dense, intermediate-speed surface ablation, consistent with the strong, blueshifted absorption of UV wind lines seen in Be shell stars that are observed from near the disc plane. A key overall result is that, after an initial adjustment to the introduction of the disc, the asymptotic disc destruction rate is typically just an order-unity factor times the stellar wind mass-loss rate. For optically thin Be discs, this leads to a disc destruction time of order months to years, consistent with observationally inferred disc decay times. The much stronger radiative forces of O stars reduce this time to order days, making it more difficult for decretion processes to sustain a disc in earlier spectral types, and so providing a natural explanation for the relative rarity of Oe stars in the Galaxy. Moreover, the decrease in line-driving at lower metallicity implies both a reduction in the winds that help spin-down stars from near-critical rotation, and a reduction in the ablation of any decretion disc; together these provide a natural explanation for the higher fraction of classical Be stars, as well as the presence of Oe stars, in the lower metallicity Magellanic Clouds. We conclude with a discussion of future extensions to study line-driven ablation of denser, optically thick, accretion discs of pre-main-sequence massive stars. PMID:27346978

  17. Self-consistent hybrid functionals for solids: a fully-automated implementation

    NASA Astrophysics Data System (ADS)

    Erba, A.

    2017-08-01

    A fully-automated algorithm for the determination of the system-specific optimal fraction of exact exchange in self-consistent hybrid functionals of the density-functional-theory is illustrated, as implemented into the public Crystal program. The exchange fraction of this new class of functionals is self-consistently updated proportionally to the inverse of the dielectric response of the system within an iterative procedure (Skone et al 2014 Phys. Rev. B 89, 195112). Each iteration of the present scheme, in turn, implies convergence of a self-consistent-field (SCF) and a coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) procedure. The present implementation, beside improving the user-friendliness of self-consistent hybrids, exploits the unperturbed and electric-field perturbed density matrices from previous iterations as guesses for subsequent SCF and CPHF/KS iterations, which is documented to reduce the overall computational cost of the whole process by a factor of 2.

  18. Towards a fully self-consistent inversion combining historical and paleomagnetic data for geomagnetic field reconstructions

    NASA Astrophysics Data System (ADS)

    Arneitz, P.; Leonhardt, R.; Fabian, K.; Egli, R.

    2017-12-01

    Historical and paleomagnetic data are the two main sources of information about the long-term geomagnetic field evolution. Historical observations extend to the late Middle Ages, and prior to the 19th century, they consisted mainly of pure declination measurements from navigation and orientation logs. Field reconstructions going back further in time rely solely on magnetization acquired by rocks, sediments, and archaeological artefacts. The combined dataset is characterized by a strongly inhomogeneous spatio-temporal distribution and highly variable data reliability and quality. Therefore, an adequate weighting of the data that correctly accounts for data density, type, and realistic error estimates represents the major challenge for an inversion approach. Until now, there has not been a fully self-consistent geomagnetic model that correctly recovers the variation of the geomagnetic dipole together with the higher-order spherical harmonics. Here we present a new geomagnetic field model for the last 4 kyrs based on historical, archeomagnetic and volcanic records. The iterative Bayesian inversion approach targets the implementation of reliable error treatment, which allows different record types to be combined in a fully self-consistent way. Modelling results will be presented along with a thorough analysis of model limitations, validity and sensitivity.

  19. Mesoscale modeling of smoke radiative feedback over the Sahel region

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Wang, J.; Ichoku, C. M.; Ellison, L.; Zhang, F.; Yue, Y.

    2013-12-01

    This study employs satellite observations and a fully-coupled meteorology-chemistry-aerosol model, Weather Research and Forecasting model with Chemistry (WRF-Chem) to study the smoke radative feedback on surface energy budget, boundary layer processes, and atmospheric lapse rate in February 2008 over the Sahel region. The smoke emission inventories we use come from various sources, including but not limited to the Fire Locating and Modeling of Burning Emissions (FLAMBE) developed by NRL and the Fire Energetic and Emissions Research (FEER) developed by NASA GSFC. Model performance is evaluated using numerous satellite and ground-based datasets: MODIS true color images, ground-based Aerosol Optical Depth (AOD) measurements from AERONET, MODIS AOD retrievals, and Cloud-Aerosol Lidar data with Orthogonal Polarization (CALIOP) atmospheric backscattering and extinction products. Specification of smoke injection height of 650 m in WRF-Chem yields aerosol vertical profiles that are most consistent with CALIOP observations of aerosol layer height. Statistically, 5% of the CALIPSO valid measurements of aerosols in February 2008 show aerosol layers either above the clouds or between the clouds, reinforcing the importance of the aerosol vertical distribution for quantifying aerosol impact on climate in the Sahel region. The results further show that the smoke radiative feedbacks are sensitive to assumptions of black carbon and organic carbon ratio in the particle emission inventory. Also investigated is the smoke semi-direct effect as a function of cloud fraction.

  20. Phase I Trial and Pharmacokinetic Study of Lexatumumab in Pediatric Patients With Solid Tumors

    PubMed Central

    Merchant, Melinda S.; Geller, James I.; Baird, Kristin; Chou, Alexander J.; Galli, Susana; Charles, Ava; Amaoko, Martha; Rhee, Eunice H.; Price, Anita; Wexler, Leonard H.; Meyers, Paul A.; Widemann, Brigitte C.; Tsokos, Maria; Mackall, Crystal L.

    2012-01-01

    Purpose Lexatumumab is an agonistic, fully human monoclonal antibody against tumor necrosis factor–related apoptosis-inducing ligand receptor 2 with preclinical evidence of activity in pediatric solid tumors. Patients and Methods This phase I dose-escalation study examined the safety, tolerability, pharmacokinetics, and immunogenicity of lexatumumab at doses up to, but not exceeding, the adult maximum-tolerated dose (3, 5, 8, and 10 mg/kg), administered once every 2 weeks to patients age ≤ 21 years with recurrent or progressive solid tumors. Results Twenty-four patients received a total of 56 cycles of lexatumumab over all four planned dose levels. One patient had grade 2 pericarditis consistent with radiation recall, and one patient developed grade 3 pneumonia with hypoxia during the second cycle. Five patients experienced stable disease for three to 24 cycles. No patients experienced complete or partial response, but several showed evidence of antitumor activity, including one patient with recurrent progressive osteosarcoma who experienced resolution of clinical symptoms and positron emission tomography activity, ongoing more than 1 year off therapy. One patient with hepatoblastoma showed a dramatic biomarker response. Conclusion Pediatric patients tolerate 10 mg/kg of lexatumumab administered once every 14 days, the maximum-tolerated dose identified in adults. The drug seems to mediate some clinical activity in pediatric solid tumors and may work with radiation to enhance antitumor effects. PMID:23071222

  1. Leading-Color Fully Differential Two-Loop Soft Corrections to QCD Dipole Showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dulat, Falko; Höche, Stefan; Prestel, Stefan

    We compute the next-to-leading order corrections to soft-gluon radiation differentially in the one-emission phase space. We show that their contribution to the evolution of color dipoles can be obtained in a modified subtraction scheme, such that both one- and two-emission terms are amenable to Monte-Carlo integration. The two-loop cusp anomalous dimension is recovered naturally upon integration over the full phase space. We present two independent implementations of the new algorithm in the two event generators Pythia and Sherpa, and we compare the resulting fully differential simulation to the CMW scheme.

  2. Associated Higgs-W-boson production at hadron colliders: a fully exclusive QCD calculation at NNLO.

    PubMed

    Ferrera, Giancarlo; Grazzini, Massimiliano; Tramontano, Francesco

    2011-10-07

    We consider QCD radiative corrections to standard model Higgs-boson production in association with a W boson in hadron collisions. We present a fully exclusive calculation up to next-to-next-to-leading order (NNLO) in QCD perturbation theory. To perform this NNLO computation, we use a recently proposed version of the subtraction formalism. Our calculation includes finite-width effects, the leptonic decay of the W boson with its spin correlations, and the decay of the Higgs boson into a bb pair. We present selected numerical results at the Tevatron and the LHC.

  3. The LENS Facilities and Experimental Studies to Evaluate the Modeling of Boundary Layer Transition, Shock/Boundary Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes

    DTIC Science & Technology

    2010-04-01

    Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes Michael S. Holden, PhD CUBRC , Inc. 4455 Genesee Street Buffalo...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CUBRC , Inc. 4455 Genesee Street Buffalo, NY 14225, USA 8. PERFORMING...HyFly Navy EMRG Reentry-F Slide 2 X-43 HIFiRE-2 Figure 17: Transition in Hypervelocity Flows: CUBRC Focus – Fully Duplicated Ground Test

  4. Gravitational radiation from rotating gravitational collapse

    NASA Technical Reports Server (NTRS)

    Stark, Richard F.

    1989-01-01

    The efficiency of gravitational wave emission from axisymmetric rotating collapse to a black hole was found to be very low: Delta E/Mc sq. less than 7 x 10(exp -4). The main waveform shape is well defined and nearly independent of the details of the collapse. Such a signature will allow pattern recognition techniques to be used when searching experimental data. These results (which can be scaled in mass) were obtained using a fully general relativistic computer code that evolves rotating axisymmetric configurations and directly computes their gravitational radiation emission.

  5. The Clinical Management of Multiple Melanoma Brain Metastases: A Systematic Review

    PubMed Central

    Goyal, Sharad; Silk, Ann W.; Tian, Sibo; Mehnert, Janice; Danish, Shabbar; Ranjan, Sinthu; Kaufman, Howard L.

    2017-01-01

    Importance The treatment of multiple brain metastases (MBM) from melanoma is controversial and includes surgical resection, stereotactic radiosurgery and whole brain radiation. Several new classes of agents have revolutionized the treatment of metastatic melanoma allowing for subsets of patients to have long-term survival. Given this, management of MBM from melanoma is continually evolving. Objective To review the current evidence regarding the treatment of MBM from melanoma. Evidence Review The Pubmed database was searched using combinations of search terms and synonyms for melanoma, brain metastases, radiation, chemotherapy, immunotherapy and targeted therapy published between January 1, 1995 and January 1, 2015. Articles were selected for inclusion based on targeted keyword searches, manual review of bibliographies, and whether the article was a clinical trial, large observational study, or retrospective study focusing on melanoma brain metastases. Of 2243 articles initially identified, 110 were selected for full review. Of these, the most pertinent 76 articles were included. Findings Patients with newly diagnosed MBM can be treated with various modalities, either alone or in combination. Level 1 evidence supports the use of radiosurgery alone, whole brain radiation therapy (WBRT), and radiosurgery with WBRT. Though the addition of WBRT to SRS improves the overall brain relapse rate, WBRT has no significant impact on overall survival and has detrimental neurocognitive outcomes. Cytotoxic chemotherapy has largely been ineffective; targeted therapies and immunotherapies have reported to have high response rates and deserve further attention in the setting of larger clinical trials. Further studies are needed to fully evaluate the efficacy of these novel regimens in combination with radiation therapy. Conclusions and Relevance At this time, the standard management for patients with MBM from melanoma includes SRS, WBRT, or combination of both. Emerging data exists to support the notion that SRS in combination with targeted therapies or immune therapy may obviate the need for whole brain radiation and prospective studies are required to fully evaluate the efficacy of these novel regimens in combination with radiation therapy. PMID:26181286

  6. THE STRUCTURE AND SPECTRAL FEATURES OF A THIN DISK AND EVAPORATION-FED CORONA IN HIGH-LUMINOSITY ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J. Y.; Liu, B. F.; Qiao, E. L.

    We investigate the accretion process in high-luminosity active galactic nuclei (HLAGNs) in the scenario of the disk evaporation model. Based on this model, the thin disk can extend down to the innermost stable circular orbit (ISCO) at accretion rates higher than 0.02 M-dot{sub Edd} while the corona is weak since part of the coronal gas is cooled by strong inverse Compton scattering of the disk photons. This implies that the corona cannot produce as strong X-ray radiation as observed in HLAGNs with large Eddington ratio. In addition to the viscous heating, other heating to the corona is necessary to interpretmore » HLAGN. In this paper, we assume that a part of accretion energy released in the disk is transported into the corona, heating up the electrons, and is thereby radiated away. For the first time, we compute the corona structure with additional heating, fully taking into account the mass supply to the corona, and find that the corona could indeed survive at higher accretion rates and that its radiation power increases. The spectra composed of bremsstrahlung and Compton radiation are also calculated. Our calculations show that the Compton-dominated spectrum becomes harder with the increase of energy fraction (f) liberating in the corona, and the photon index for hard X-ray (2-10 keV) is 2.2 < {Gamma} < 2.7. We discuss possible heating mechanisms for the corona. Combining the energy fraction transported to the corona with the accretion rate by magnetic heating, we find that the hard X-ray spectrum becomes steeper at a larger accretion rate and the bolometric correction factor (L{sub bol}/L{sub 2-10keV}) increases with increasing accretion rate for f < 8/35, which is roughly consistent with the observational results.« less

  7. Exploring the observational constraints on the simulation of brown carbon

    NASA Astrophysics Data System (ADS)

    Wang, Xuan; Heald, Colette L.; Liu, Jiumeng; Weber, Rodney J.; Campuzano-Jost, Pedro; Jimenez, Jose L.; Schwarz, Joshua P.; Perring, Anne E.

    2018-01-01

    Organic aerosols (OA) that strongly absorb solar radiation in the near-UV are referred to as brown carbon (BrC). The sources, evolution, and optical properties of BrC remain highly uncertain and contribute significantly to uncertainty in the estimate of the global direct radiative effect (DRE) of aerosols. Previous modeling studies of BrC optical properties and DRE have been unable to fully evaluate model performance due to the lack of direct measurements of BrC absorption. In this study, we develop a global model simulation (GEOS-Chem) of BrC and test it against BrC absorption measurements from two aircraft campaigns in the continental US (SEAC4RS and DC3). To the best of our knowledge, this is the first study to compare simulated BrC absorption with direct aircraft measurements. We show that BrC absorption properties estimated based on previous laboratory measurements agree with the aircraft measurements of freshly emitted BrC absorption but overestimate aged BrC absorption. In addition, applying a photochemical scheme to simulate bleaching/degradation of BrC improves model skill. The airborne observations are therefore consistent with a mass absorption coefficient (MAC) of freshly emitted biomass burning OA of 1.33 m2 g-1 at 365 nm coupled with a 1-day whitening e-folding time. Using the GEOS-Chem chemical transport model integrated with the RRTMG radiative transfer model, we estimate that the top-of-the-atmosphere all-sky direct radiative effect (DRE) of OA is -0.344 Wm-2, 10 % higher than that without consideration of BrC absorption. Therefore, our best estimate of the absorption DRE of BrC is +0.048 Wm-2. We suggest that the DRE of BrC has been overestimated previously due to the lack of observational constraints from direct measurements and omission of the effects of photochemical whitening.

  8. PantherPix hybrid pixel γ-ray detector for radio-therapeutic applications

    NASA Astrophysics Data System (ADS)

    Neue, G.; Benka, T.; Havránek, M.; Hejtmánek, M.; Janoška, Z.; Kafka, V.; Korchak, O.; Lednický, D.; Marčišovská, M.; Marčišovský, M.; Popule, J.; Şmarhák, J.; Şvihra, P.; Tomášek, L.; Vrba, V.; Konček, O.; Semmler, M.

    2018-02-01

    This work focuses on the design of a semiconductor pixelated γ-ray camera with a pixel size of 1 mm2. The cost of semiconductor manufacturing is mainly driven by economies of scale, which makes silicon the cheapest semiconductor material due to its widespread utilization. The energy of γ-photons used in radiation therapy are in a range, in which the dominant interaction mechanism is Compton scattering in every conceivable sensor material. Since the Compton scattering cross section is linearly dependent upon Z, it is less rewarding to utilize high Z sensor materials, than it is in the case of X-ray detectors (X-rays interact also via the photoelectric effect whose cross section scales proportional to Zn, where n is ≈ 4,5). For the stated reasons it was decided to use the low Z material silicon (Z = 14) despite its worse detection efficiency. The proposed detector is designed as a portal detector to be used in radiation cancer therapy. The purpose of the detector is to ensure correct patient alignment, spatial dose monitoring and to provide the feedback necessary for an emergency shutdown should the spatial dose rate profile deviate from the treatment plan. Radiation therapy equipment is complex and thus failure prone and the consequences of malfunction are often life threatening. High spatial resolution and high detection efficiency are not a high design priority. The detector design priorities are focused up on radiation hardness, robustness and the ability to cover a large area cost efficiently. The quintessential idea of the PanterPix detector exploits the relaxed spatial resolution requirement to achieve the stated goals. The detector is composed of submodules, each submodule consisting of a Si sensor with an array of fully depleted detection diodes and 8 miniature custom design readout ASICs collecting and measuring the minuscule charge packets generated due to ionization in the PN junctions.

  9. Impacts of aerosol-monsoon interaction on rainfall and circulation over Northern India and the Himalaya Foothills

    NASA Astrophysics Data System (ADS)

    Lau, William K. M.; Kim, Kyu-Myong; Shi, Jainn-Jong; Matsui, T.; Chin, M.; Tan, Qian; Peters-Lidard, C.; Tao, W. K.

    2017-09-01

    The boreal summer of 2008 was unusual for the Indian monsoon, featuring exceptional heavy loading of dust aerosols over the Arabian Sea and northern-central India, near normal all-India rainfall, but excessive heavy rain, causing disastrous flooding in the Northern Indian Himalaya Foothills (NIHF) regions, accompanied by persistent drought conditions in central and southern India. Using the NASA Unified-physics Weather Research Forecast (NUWRF) model with fully interactive aerosol physics and dynamics, we carried out three sets of 7-day ensemble model forecast experiments: (1) control with no aerosol, (2) aerosol radiative effect only and (3) aerosol radiative and aerosol-cloud-microphysics effects, to study the impacts of aerosol-monsoon interactions on monsoon variability over the NIHF during the summer of 2008. Results show that aerosol-radiation interaction (ARI), i.e., dust aerosol transport, and dynamical feedback processes induced by aerosol-radiative heating, plays a key role in altering the large-scale monsoon circulation system, reflected by an increased north-south tropospheric temperature gradient, a northward shift of heavy monsoon rainfall, advancing the monsoon onset by 1-5 days over the HF, consistent with the EHP hypothesis (Lau et al. in Clim Dyn 26(7-8):855-864, 2006). Additionally, we found that dust aerosols, via the semi-direct effect, increase atmospheric stability, and cause the dissipation of a developing monsoon onset cyclone over northeastern India/northern Bay of Bengal. Eventually, in a matter of several days, ARI transforms the developing monsoon cyclone into meso-scale convective cells along the HF slopes. Aerosol-Cloud-microphysics Interaction (ACI) further enhances the ARI effect in invigorating the deep convection cells and speeding up the transformation processes. Results indicate that even in short-term (up to weekly) numerical forecasting of monsoon circulation and rainfall, effects of aerosol-monsoon interaction can be substantial and cannot be ignored.

  10. Satellite-based trends of solar radiation and cloud parameters in Europe

    NASA Astrophysics Data System (ADS)

    Pfeifroth, Uwe; Bojanowski, Jedrzej S.; Clerbaux, Nicolas; Manara, Veronica; Sanchez-Lorenzo, Arturo; Trentmann, Jörg; Walawender, Jakub P.; Hollmann, Rainer

    2018-04-01

    Solar radiation is the main driver of the Earth's climate. Measuring solar radiation and analysing its interaction with clouds are essential for the understanding of the climate system. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based, high-quality climate data records, with a focus on the energy balance and water cycle. Here, multiple of these data records are analyzed in a common framework to assess the consistency in trends and spatio-temporal variability of surface solar radiation, top-of-atmosphere reflected solar radiation and cloud fraction. This multi-parameter analysis focuses on Europe and covers the time period from 1992 to 2015. A high correlation between these three variables has been found over Europe. An overall consistency of the climate data records reveals an increase of surface solar radiation and a decrease in top-of-atmosphere reflected radiation. In addition, those trends are confirmed by negative trends in cloud cover. This consistency documents the high quality and stability of the CM SAF climate data records, which are mostly derived independently from each other. The results of this study indicate that one of the main reasons for the positive trend in surface solar radiation since the 1990's is a decrease in cloud coverage even if an aerosol contribution cannot be completely ruled out.

  11. a Rigorous Comparison of Theoretical and Measured Carbon Dioxide Line Intensities

    NASA Astrophysics Data System (ADS)

    Yi, Hongming; Fleisher, Adam J.; Gameson, Lyn; Zak, Emil J.; Polyansky, Oleg; Tennyson, Jonathan; Hodges, Joseph T.

    2017-06-01

    The ability to calculate molecular line intensities from first principles plays an increasingly important role in populating line-by-line spectroscopic databases because of its generality and extensibility to various isotopologues, spectral ranges and temperature conditions. Such calculations require a spectroscopically determined potential energy surface, and an accurate dipole moment surface that can be either fully ab initio or an effective quantity based on fits to measurements Following our recent work where we used high-precision measurements of intensities in the (30013 →00001) band of ^{12}C^{16}O_2 to bound the uncertainty of calculated line lists, here we carry out high-precision, frequency-stabilized cavity ring-down spectroscopy measurements in the R-branch of the ^{12}C^{16}O_2 (20012 →00001) band from J = 16 to 52. Gas samples consisted of 50 μmol mol^{-1} or 100 μmol mol^{-1} of nitrogen-broadened carbon dioxide with gravimetrically determined SI-traceable molar composition. We demonstrate relative measurement precision (Type A) at the 0.15 % level and estimate systematic (Type B) uncertainty contributions in % of: isotopic abundance 0.01; sample density, 0.016; cavity free spectral rang,e 0.03; line shape, 0.05; line interferences, 0.05; and carbon dioxide molar fraction, 0.06. Combined in quadrature, these components yield a relative standard uncertainty in measured line intensity less than 0.2 % for most observed transitions. These intensities differ by more than 2 % from those measured by Fourier transform spectroscopy and archived in HITRAN 2012 but differ by less than 0.5 % with the calculations of Zak et al. E. Zak et al., J. Quant. Spectrosc. Radiat. Transf. 177, (2016) 31. Huang et al., J. Quant. Spectrosc. Radiat. Transf. 130, (2013) 134. Tashkun et al., J. Quant. Spectrosc. Radiat. Transf. 152, (2015) 45.

  12. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma

    NASA Astrophysics Data System (ADS)

    Bald, Tobias; Quast, Thomas; Landsberg, Jennifer; Rogava, Meri; Glodde, Nicole; Lopez-Ramos, Dorys; Kohlmeyer, Judith; Riesenberg, Stefanie; van den Boorn-Konijnenberg, Debby; Hömig-Hölzel, Cornelia; Reuten, Raphael; Schadow, Benjamin; Weighardt, Heike; Wenzel, Daniela; Helfrich, Iris; Schadendorf, Dirk; Bloch, Wilhelm; Bianchi, Marco E.; Lugassy, Claire; Barnhill, Raymond L.; Koch, Manuel; Fleischmann, Bernd K.; Förster, Irmgard; Kastenmüller, Wolfgang; Kolanus, Waldemar; Hölzel, Michael; Gaffal, Evelyn; Tüting, Thomas

    2014-03-01

    Intermittent intense ultraviolet (UV) exposure represents an important aetiological factor in the development of malignant melanoma. The ability of UV radiation to cause tumour-initiating DNA mutations in melanocytes is now firmly established, but how the microenvironmental effects of UV radiation influence melanoma pathogenesis is not fully understood. Here we report that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression, independent of its tumour-initiating effects. UV irradiation enhanced the expansion of tumour cells along abluminal blood vessel surfaces and increased the number of lung metastases. This effect depended on the recruitment and activation of neutrophils, initiated by the release of high mobility group box 1 (HMGB1) from UV-damaged epidermal keratinocytes and driven by Toll-like receptor 4 (TLR4). The UV-induced neutrophilic inflammatory response stimulated angiogenesis and promoted the ability of melanoma cells to migrate towards endothelial cells and use selective motility cues on their surfaces. Our results not only reveal how UV irradiation of epidermal keratinocytes is sensed by the innate immune system, but also show that the resulting inflammatory response catalyses reciprocal melanoma-endothelial cell interactions leading to perivascular invasion, a phenomenon originally described as angiotropism in human melanomas by histopathologists. Angiotropism represents a hitherto underappreciated mechanism of metastasis that also increases the likelihood of intravasation and haematogenous dissemination. Consistent with our findings, ulcerated primary human melanomas with abundant neutrophils and reactive angiogenesis frequently show angiotropism and a high risk for metastases. Our work indicates that targeting the inflammation-induced phenotypic plasticity of melanoma cells and their association with endothelial cells represent rational strategies to specifically interfere with metastatic progression.

  13. Assessing the Chemistry of Tidally Locked Earth-like Planets around M-type Stars Using a 3D Coupled Chemistry-Climate Model (CESM/WACCM)

    NASA Astrophysics Data System (ADS)

    Lanzano, Alexander

    2016-10-01

    Given recent discoveries there is a very real potential for tidally-locked Earth-like planets to exist orbiting M stars. To determine whether these planets may be habitable it is necessary to understand the nature of their atmospheres. In our investigation we simulate the evolution of present-day Earth while placed in tidally-locked orbit (meaning the same side of the planet always faces the star) around an M dwarf star. We are particularly interested in the evolution of the planet's ozone layer and whether it will shield the planet, and therefore life, from harmful radiation.To accomplish the above objectives we use a state-of-the-art 3-D terrestrial model, the Whole Atmosphere Community Climate Model (WACCM), which fully couples chemistry and climate, and therefore allows self-consistent simulations of atmospheric constituents and their effects on a planet's climate, surface radiation and thus habitability. Preliminary results show that this model is stable and that a tidally-locked Earth is protected from harmful UV radiation produced by G stars. The next step shall be to adapt this model for an M star by including its UV and visible spectrum.This investigation will both provide an insight into the potential for habitable exoplanets and further define the nature of the habitable zones for M class stars. We will also be able to narrow the definition of the habitable zones around distant stars, which will help us identify these planets in the future. Furthermore, this project will allow for a more thorough analysis of data from past and future exoplanet observing missions by defining the atmospheric composition of Earth-like planets around a variety of types of stars.

  14. Exploring the observational constraints on the simulation of brown carbon

    NASA Astrophysics Data System (ADS)

    Wang, X.; Heald, C. L.; Liu, J.; Weber, R. J.; Campuzano-Jost, P.; Jimenez, J. L.; Schwarz, J. P.; Perring, A. E.

    2017-12-01

    Brown carbon (BrC) is the component of organic aerosols (OA) which strongly absorbs solar radiation in the near-UV range of the spectrum. However the sources, evolution, and optical properties of BrC remain highly uncertain, and therefore constitute a large source of uncertainty in estimating the global direct radiative effect (DRE) of aerosols. Previous modeling studies of BrC optical properties and DRE have been unable to fully evaluate the skill of their simulations, given the lack of direct measurements of organic aerosol absorption. In this study, we develop a global model simulation (GEOS-Chem) of BrC and test it against BrC absorption measurements from two aircraft campaigns in the U.S. (SEAC4RS and DC3). To our knowledge, this is the first study to compare simulated BrC absorption with direct, continuous ambient measurements. We show that the laboratory-based BrC absorption properties from biomass burning overestimate the aircraft measurements of ambient BrC. In addition, applying a photochemical whitening scheme to simulated BrC is better able to represent the observed BrC absorption. These observations are consistent with a mass absorption coefficient (MAC) of freshly emitted biomass burning OA of 0.57m2g-1. Using the RRTMG model integrated with GEOS-Chem, we estimate that the all-sky top-of-atmosphere direct radiative effect (DRE) of OA is -0.350 Wm-2, 10% higher than that without consideration of BrC absorption. Therefore, our best estimate of the absorption DRE of BrC is +0.042 Wm-2. We suggest that the DRE of BrC has been overestimated previously due to the lack of observational constraints from direct measurements as well as neglect of the effects of photochemical whitening.

  15. Technical Note: Partial body irradiation of mice using a customized PMMA apparatus and a clinical 3D planning/LINAC radiotherapy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karagounis, Ilias V.; Koukourakis, Michael I., E-mail: targ@her.forthnet.gr, E-mail: mkoukour@med.duth.gr; Abatzoglou, Ioannis M., E-mail: abadzoglou@yahoo.gr

    Purpose: In vivo radiobiology experiments involving partial body irradiation (PBI) of mice are of major importance because they allow for the evaluation of individual organ tolerance; overcoming current limitations of experiments using lower dose, whole body irradiation. In the current study, the authors characterize and validate an effective and efficient apparatus for multiple animal PBI, directed to the head, thorax, or abdomen of mice. Methods: The apparatus is made of polymethylmethacrylate and consists of a rectangular parallelepiped prism (40 cm × 16 cm × 8 cm), in which five holes were drilled to accomodate standard 60 ml syringes, each housingmore » an unanesthetized, fully immobilized mouse. Following CT-scanning and radiotherapy treatment planning, radiation fields were designed to irradiate the head, thorax, or abdomen of the animal. Thermoluminescent dosimeters (TLDs) were used to confirm the treatment planning dosimetry for primary beam and scattered radiation. Results: Mice are efficiently placed into 60 ml syringes and immobilized, without the use of anesthetics. Although partial rotational movement around the longitudinal axis and a minor 2 mm forward/backward movement are permitted, this does not compromise the irradiation of the chosen body area. TLDs confirmed the dose values predicted by the treatment planning dosimetry, both for primary beam and scattered radiation. Conclusions: The customized PMMA apparatus described and validated is cost-effective, convenient to use, and efficient in performing PBI without the use of anesthesia. The developed apparatus permits the isolated irradiation of the mouse head, thorax, and abdomen. Importantly, the apparatus allows the delivery of PBI to five mice, simultaneously, representing an efficient way to effectively expose a large number of animals to PBI through multiple daily fractions, simulating clinical radiotherapy treatment schedules.« less

  16. Technical Note: Partial body irradiation of mice using a customized PMMA apparatus and a clinical 3D planning/LINAC radiotherapy system.

    PubMed

    Karagounis, Ilias V; Abatzoglou, Ioannis M; Koukourakis, Michael I

    2016-05-01

    In vivo radiobiology experiments involving partial body irradiation (PBI) of mice are of major importance because they allow for the evaluation of individual organ tolerance; overcoming current limitations of experiments using lower dose, whole body irradiation. In the current study, the authors characterize and validate an effective and efficient apparatus for multiple animal PBI, directed to the head, thorax, or abdomen of mice. The apparatus is made of polymethylmethacrylate and consists of a rectangular parallelepiped prism (40 cm × 16 cm × 8 cm), in which five holes were drilled to accomodate standard 60 ml syringes, each housing an unanesthetized, fully immobilized mouse. Following CT-scanning and radiotherapy treatment planning, radiation fields were designed to irradiate the head, thorax, or abdomen of the animal. Thermoluminescent dosimeters (TLDs) were used to confirm the treatment planning dosimetry for primary beam and scattered radiation. Mice are efficiently placed into 60 ml syringes and immobilized, without the use of anesthetics. Although partial rotational movement around the longitudinal axis and a minor 2 mm forward/backward movement are permitted, this does not compromise the irradiation of the chosen body area. TLDs confirmed the dose values predicted by the treatment planning dosimetry, both for primary beam and scattered radiation. The customized PMMA apparatus described and validated is cost-effective, convenient to use, and efficient in performing PBI without the use of anesthesia. The developed apparatus permits the isolated irradiation of the mouse head, thorax, and abdomen. Importantly, the apparatus allows the delivery of PBI to five mice, simultaneously, representing an efficient way to effectively expose a large number of animals to PBI through multiple daily fractions, simulating clinical radiotherapy treatment schedules.

  17. Modeling charge collection efficiency degradation in partially depleted GaAs photodiodes using the 1- and 2-carrier Hecht equations

    DOE PAGES

    Auden, E. C.; Vizkelethy, G.; Serkland, D. K.; ...

    2017-03-24

    Here, the Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al 0.3Ga 0.7As/GaAs/Al 0.25Ga 0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation asmore » photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.« less

  18. Modeling charge collection efficiency degradation in partially depleted GaAs photodiodes using the 1- and 2-carrier Hecht equations

    NASA Astrophysics Data System (ADS)

    Auden, E. C.; Vizkelethy, G.; Serkland, D. K.; Bossert, D. J.; Doyle, B. L.

    2017-05-01

    The Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al0.3Ga0.7As/GaAs/Al0.25Ga0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation as photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.

  19. Modeling charge collection efficiency degradation in partially depleted GaAs photodiodes using the 1- and 2-carrier Hecht equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auden, E. C.; Vizkelethy, G.; Serkland, D. K.

    Here, the Hecht equation can be used to model the nonlinear degradation of charge collection efficiency (CCE) in response to radiation-induced displacement damage in both fully and partially depleted GaAs photodiodes. CCE degradation is measured for laser-generated photocurrent as a function of fluence and bias in Al 0.3Ga 0.7As/GaAs/Al 0.25Ga 0.75As p-i-n photodiodes which have been irradiated with 12 MeV C and 7.5 MeV Si ions. CCE is observed to degrade more rapidly with fluence in partially depleted photodiodes than in fully depleted photodiodes. When the intrinsic GaAs layer is fully depleted, the 2-carrier Hecht equation describes CCE degradation asmore » photogenerated electrons and holes recombine at defect sites created by radiation damage in the depletion region. If the GaAs layer is partially depleted, CCE degradation is more appropriately modeled as the sum of the 2-carrier Hecht equation applied to electrons and holes generated within the depletion region and the 1-carrier Hecht equation applied to minority carriers that diffuse from the field-free (non-depleted) region into the depletion region. Enhanced CCE degradation is attributed to holes that recombine within the field-free region of the partially depleted intrinsic GaAs layer before they can diffuse into the depletion region.« less

  20. UPDATE A COMPUTER MODEL, TITLED GENII-NESHAPS VERSION 2, FOR EVALUATING ATMOSPHERIC RELEASES OF RADIONUCLIDES.

    EPA Science Inventory

    The GENII System provides a state-of-the-art, fully documented set of programs for calculating radiation dose and risk from radionuclides released to the environment. The GENII-NESHAPs Edition can be utilized for assessing compliance with 40 CFR 61, Subparts H and I.

  1. Skylab program earth resources experiment package: Ground truth data for test sites (SL-2)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Field measurements were performed at selected ground sites in order to provide comparative calibration measurements of sensors for the Earth Resources Experiment Package. Specifically, the solar radiation (400 to 1300 namometers) and thermal radiation (8-14 micrometers) were measured. Sites employed for the thermal measurements consisted of warm and cold water lakes. The thermal brightness temperature of the lake water, the temperature and humidity profile above the lake, and near surface meteorology (wind speed, pressure, etc.) were measured near the time of overpass. Sites employed for the solar radiation measurements were two desert type sites. Ground measurements consisted of: (1) direct solar radiation - optical depth; (2) diffuse solar radiation; (3) total solar radiation, (4) target directional (normal) reflectance; (5) target hemispherical reflectance; and (6) near surface meteorology.

  2. Angular behavior of synchrotron radiation harmonics.

    PubMed

    Bagrov, V G; Bulenok, V G; Gitman, D M; Jara, Jose Acosta; Tlyachev, V B; Jarovoi, A T

    2004-04-01

    The detailed analysis of angular dependence of the synchrotron radiation (SR) is presented. Angular distributions of linear and circular polarization integrated over all harmonics, well known for relativistic electron energies, are extended to include radiation from electrons that are not fully relativistic. In particular, we analyze the angular dependence of the integral SR intensity and peculiarities of the angular dependence of the first harmonics SR. Studying spectral SR intensities, we have discovered their unexpected angular behavior, completely different from that of the integral SR intensity; namely, for any given synchrotron frequency, maxima of the spectral SR intensities recede from the orbit plane with increasing particle energy. Thus, in contrast with the integral SR intensity, the spectral ones have the tendency to deconcentrate themselves on the orbit plane.

  3. Nickel(II) affects poly(ADP-ribose) polymerase-mediated DNA repair in normal and cancer cells.

    PubMed

    Wozniak, Katarzyna; Czechowska, Agnieszka; Blasiak, Janusz

    2006-01-01

    Nickel(II) can be genotoxic, but the mechanism of its genotoxicity is not fully understood and the process of DNA repair may be considered as its potential target. We studied the effect of nickel chloride on the poly(ADP-ribose) polymerase (PARP)-mediated repair of DNA damaged by gamma-radiation and idarubicin with the alkaline comet assay in normal and cancer cells. Our results indicate that nickel chloride at very low, non-cytotoxic concentration of 1 microM can affect PARP-mediated DNA repair of lesions evoked by idarubicin and gamma-radiation. We also suggest that in the quiescent lymphocytes treated with gamma-radiation, nickel(II) could interfere with DNA repair process independent of PARP.

  4. Development and validation of P-MODTRAN7 and P-MCScene, 1D and 3D polarimetric radiative transfer models

    NASA Astrophysics Data System (ADS)

    Hawes, Frederick T.; Berk, Alexander; Richtsmeier, Steven C.

    2016-05-01

    A validated, polarimetric 3-dimensional simulation capability, P-MCScene, is being developed by generalizing Spectral Sciences' Monte Carlo-based synthetic scene simulation model, MCScene, to include calculation of all 4 Stokes components. P-MCScene polarimetric optical databases will be generated by a new version (MODTRAN7) of the government-standard MODTRAN radiative transfer algorithm. The conversion of MODTRAN6 to a polarimetric model is being accomplished by (1) introducing polarimetric data, by (2) vectorizing the MODTRAN radiation calculations and by (3) integrating the newly revised and validated vector discrete ordinate model VDISORT3. Early results, presented here, demonstrate a clear pathway to the long-term goal of fully validated polarimetric models.

  5. Multi-dimensional, fully implicit, exactly conserving electromagnetic particle-in-cell simulations in curvilinear geometry

    NASA Astrophysics Data System (ADS)

    Chen, Guangye; Chacon, Luis

    2015-11-01

    We discuss a new, conservative, fully implicit 2D3V Vlasov-Darwin particle-in-cell algorithm in curvilinear geometry for non-radiative, electromagnetic kinetic plasma simulations. Unlike standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. Here, we extend these algorithms to curvilinear geometry. The algorithm retains its exact conservation properties in curvilinear grids. The nonlinear iteration is effectively accelerated with a fluid preconditioner for weakly to modestly magnetized plasmas, which allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D (slow shock) and 2D (island coalescense).

  6. Markedly enhanced direct radiative forcing of black carbon particles under polluted urban environments

    NASA Astrophysics Data System (ADS)

    Peng, Jianfei; Hu, Min; Guo, Song; Du, Zhuofei; Zheng, Jing; Shang, Dongjie; Zamora, Misti; Zeng, Liming; Shao, Min; Wu, Yusheng; Zheng, Jun; Wang, Yuan; Collins, Don; Zhang, Renyi

    2016-04-01

    Black carbon (BC) particles, produced from incomplete fossil fuel combustion and biomass burning, are ubiquitous in the atmosphere and have profound impacts on air quality, human health, weather, and climate. For example, in areas identified as aerosol hotspots, which include many urban centers and megacities worldwide, solar heating by BC particles has been shown to be comparable to warming due to the greenhouse gases2. Although BC represents a key short-lived climate forcer, its direct radiative forcing remains highly uncertain. In particular, the available results of absorption enhancement of BC particles during atmospheric aging are conflicting from the previous studies, leading to a large uncertainty in global radiative transfer calculation. Here, we quantified the aging and variation in the optical properties of BC particles under ambient conditions in Beijing, China and Houston, US, using a novel chamber approach. BC aging exhibits two distinct stages - initial transformation from a fractal to spherical morphology with little absorption variation and the subsequent growth of fully compact particles with a maximum absorption enhancement factor of 2.4. The variation in BC direct radiative forcing is highly dependent of the rate and timescale of aging, with an estimated increase of 0.45 (0.21 - 0.80) W m-2 from fresh to fully aged particles. Our results reveal a high climatic impact in polluted environments due to rapid aging and a clear distinction between urban cities in developed and developing countries for BC particles, highlighting a larger than recognized co-benefit in air quality improvement and climate protection by BC mediation.

  7. Radiative loss and charge exchange in low energy Na - Ca+ collisions

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; McAlpine, K.; McCann, J. F.; Pattillo, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.

    2016-05-01

    Experiments on radiative loss and capture are currently being performed at the University of Connecticut. In response to this experimental effort we have performed detailed calculations for a variety of loss and capture processes. Several low lying states of the NaCa+ cation are used with the accurate potentials energy curves, transition dipole moments and non-adiabatic coupling matrix elements between the states, obtained at the MRCI+Q level of approximation with the MOLPRO suite of quantum chemistry codes. Cross sections and rate coefficients are calculated for radiative charge transfer (RCX), radiative association (RA) and charge exchange in a fully quantum molecular close-coupling (MOCC) approximation at the higher energies. We use a variety of approaches, the optical potential method, semi-classical and MOCC methods to compare and contrast approximations. In addition a kinetic theory recently applied to SiO is utilized which illustrates the dramatic impact resonances have on the radiative association rates. Supported by NASA and HLRS at Stuttgart University.

  8. Quantifying the impact of smoke aerosol on the UV radiation

    NASA Astrophysics Data System (ADS)

    Sokolik, I. N.; Tatarskii, V.; Hall, S. R.; Petropavlovskikh, I. V.

    2017-12-01

    We present an analysis of the impact of smoke on the UV radiation. The analysis is performed for a case study by combining the modeling and measurements. The case study is focusing in wildfires occurred in California in ????. The fires have been affecting the environment in the region, posing a serious threat to the human well - being.The modeling is performed using a fully couple WRF- Chem- SMOKE model. The model uses the FRP MODIS satellite data to generate the smoke emission for an actual event. The smoke aerosol is treated in a size and composition resolved manner. The optical properties are computed online and provided to the TUV model that is incorporated in the WRF - Chem-SMOKE model. The analysis of the impact of smoke on the UV radiation is performed. We assess the impact of smoke on the TOA radiative forcing. Our results show a significant impact of smoke on the radiative regime of the atmosphere.

  9. Robust inverse-consistent affine CT-MR registration in MRI-assisted and MRI-alone prostate radiation therapy.

    PubMed

    Rivest-Hénault, David; Dowson, Nicholas; Greer, Peter B; Fripp, Jurgen; Dowling, Jason A

    2015-07-01

    CT-MR registration is a critical component of many radiation oncology protocols. In prostate external beam radiation therapy, it allows the propagation of MR-derived contours to reference CT images at the planning stage, and it enables dose mapping during dosimetry studies. The use of carefully registered CT-MR atlases allows the estimation of patient specific electron density maps from MRI scans, enabling MRI-alone radiation therapy planning and treatment adaptation. In all cases, the precision and accuracy achieved by registration influences the quality of the entire process. Most current registration algorithms do not robustly generalize and lack inverse-consistency, increasing the risk of human error and acting as a source of bias in studies where information is propagated in a particular direction, e.g. CT to MR or vice versa. In MRI-based treatment planning where both CT and MR scans serve as spatial references, inverse-consistency is critical, if under-acknowledged. A robust, inverse-consistent, rigid/affine registration algorithm that is well suited to CT-MR alignment in prostate radiation therapy is presented. The presented method is based on a robust block-matching optimization process that utilises a half-way space definition to maintain inverse-consistency. Inverse-consistency substantially reduces the influence of the order of input images, simplifying analysis, and increasing robustness. An open source implementation is available online at http://aehrc.github.io/Mirorr/. Experimental results on a challenging 35 CT-MR pelvis dataset demonstrate that the proposed method is more accurate than other popular registration packages and is at least as accurate as the state of the art, while being more robust and having an order of magnitude higher inverse-consistency than competing approaches. The presented results demonstrate that the proposed registration algorithm is readily applicable to prostate radiation therapy planning. Copyright © 2015. Published by Elsevier B.V.

  10. American Society for Radiation Oncology (ASTRO) Survey of Radiation Biology Educators in U.S. and Canadian Radiation Oncology Residency Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenstein, Barry S., E-mail: barry.rosenstein@mssm.ed; Department of Radiation Oncology, New York University School of Medicine, New York, NY; Held, Kathryn D.

    2009-11-01

    Purpose: To obtain, in a survey-based study, detailed information on the faculty currently responsible for teaching radiation biology courses to radiation oncology residents in the United States and Canada. Methods and Materials: In March-December 2007 a survey questionnaire was sent to faculty having primary responsibility for teaching radiation biology to residents in 93 radiation oncology residency programs in the United States and Canada. Results: The responses to this survey document the aging of the faculty who have primary responsibility for teaching radiation biology to radiation oncology residents. The survey found a dramatic decline with time in the percentage of educatorsmore » whose graduate training was in radiation biology. A significant number of the educators responsible for teaching radiation biology were not fully acquainted with the radiation sciences, either through training or practical application. In addition, many were unfamiliar with some of the organizations setting policies and requirements for resident education. Freely available tools, such as the American Society for Radiation Oncology (ASTRO) Radiation and Cancer Biology Practice Examination and Study Guides, were widely used by residents and educators. Consolidation of resident courses or use of a national radiation biology review course was viewed as unlikely by most programs. Conclusions: A high priority should be given to the development of comprehensive teaching tools to assist those individuals who have responsibility for teaching radiation biology courses but who do not have an extensive background in critical areas of radiobiology related to radiation oncology. These findings also suggest a need for new graduate programs in radiobiology.« less

  11. Ecological opportunity and predator–prey interactions: linking eco-evolutionary processes and diversification in adaptive radiations

    PubMed Central

    2018-01-01

    Much of life's diversity has arisen through ecological opportunity and adaptive radiations, but the mechanistic underpinning of such diversification is not fully understood. Competition and predation can affect adaptive radiations, but contrasting theoretical and empirical results show that they can both promote and interrupt diversification. A mechanistic understanding of the link between microevolutionary processes and macroevolutionary patterns is thus needed, especially in trophic communities. Here, we use a trait-based eco-evolutionary model to investigate the mechanisms linking competition, predation and adaptive radiations. By combining available micro-evolutionary theory and simulations of adaptive radiations we show that intraspecific competition is crucial for diversification as it induces disruptive selection, in particular in early phases of radiation. The diversification rate is however decreased in later phases owing to interspecific competition as niche availability, and population sizes are decreased. We provide new insight into how predation tends to have a negative effect on prey diversification through decreased population sizes, decreased disruptive selection and through the exclusion of prey from parts of niche space. The seemingly disparate effects of competition and predation on adaptive radiations, listed in the literature, may thus be acting and interacting in the same adaptive radiation at different relative strength as the radiation progresses. PMID:29514970

  12. Measuring the greenhouse effect and radiative forcing through the atmosphere

    NASA Astrophysics Data System (ADS)

    Philipona, Rolf; Kräuchi, Andreas; Brocard, Emmanuel

    2013-04-01

    In spite of a large body of existing measurements of incoming shortwave solar radiation and outgoing longwave terrestrial radiation at the Earth's surface and at the top of the atmosphere, there are few observations documenting how radiation profiles change through the atmosphere - information that is necessary to fully quantify the greenhouse effect of the Earth's atmosphere. Using weather balloons and specific radiometer equipped radiosondes, we continuously measured shortwave and longwave radiation fluxes from the surface of the Earth up to altitudes of 35 kilometers in the upper stratosphere. Comparing radiation profiles from night measurements with different amounts of water vapor, we show evidence of large greenhouse forcing. We show, that under cloud free conditions, water vapor increases with Clausius-Clapeyron ( 7% / K), and longwave downward radiation at the surface increases by 8 Watts per square meter per Kelvin. The longwave net radiation however, shows a positive increase (downward) of 2.4 Watts per square meter and Kelvin at the surface, which decreases with height and shows a similar but negative increase (upward) at the tropopause. Hence, increased tropospheric water vapor increases longwave net radiation towards the ground and towards space, and produces a heating of 0.42 Kelvin per Watt per square meter at the surface. References: Philipona et al., 2012: Solar and thermal radiation profiles and radiative forcing measured through the atmosphere. Geophys. Res. Lett., 39, L13806, doi: 10.1029/2012GL052087.

  13. Synchrotron Radiation Workshop (SRW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chubar, O.; Elleaume, P.

    2013-03-01

    "Synchrotron Radiation Workshop" (SRW) is a physical optics computer code for calculation of detailed characteristics of Synchrotron Radiation (SR) generated by relativistic electrons in magnetic fields of arbitrary configuration and for simulation of the radiation wavefront propagation through optical systems of beamlines. Frequency-domain near-field methods are used for the SR calculation, and the Fourier-optics based approach is generally used for the wavefront propagation simulation. The code enables both fully- and partially-coherent radiation propagation simulations in steady-state and in frequency-/time-dependent regimes. With these features, the code has already proven its utility for a large number of applications in infrared, UV, softmore » and hard X-ray spectral range, in such important areas as analysis of spectral performances of new synchrotron radiation sources, optimization of user beamlines, development of new optical elements, source and beamline diagnostics, and even complete simulation of SR based experiments. Besides the SR applications, the code can be efficiently used for various simulations involving conventional lasers and other sources. SRW versions interfaced to Python and to IGOR Pro (WaveMetrics), as well as cross-platform library with C API, are available.« less

  14. An implicit finite-difference solution to the viscous shock layer, including the effects of radiation and strong blowing

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.; Smith, G. L.; Perkins, J. N.

    1972-01-01

    An implicit finite-difference scheme is developed for the fully coupled solution of the viscous, radiating stagnation-streamline equations, including strong blowing. Solutions are presented for both air injection and injection of carbon-phenolic ablation products into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative-transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized in the study. With minimum number of assumptions for the initially unknown parameters and profile distributions, convergent solutions to the full stagnation-line equations are rapidly obtained by a method of successive approximations. Damping of selected profiles is required to aid convergence of the solutions for massive blowing. It is shown that certain finite-difference approximations to the governing differential equations stabilize and improve the solutions. Detailed comparisons are made with the numerical results of previous investigations. Results of the present study indicate lower radiative heat fluxes at the wall for carbonphenolic ablation than previously predicted.

  15. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  16. Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    NASA Astrophysics Data System (ADS)

    Flanner, M. G.; Huang, X.; Chen, X.; Krinner, G.

    2018-02-01

    Greenhouse gas (GHG) additions to Earth's atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near-surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short-lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.

  17. A review of advances in pixel detectors for experiments with high rate and radiation

    NASA Astrophysics Data System (ADS)

    Garcia-Sciveres, Maurice; Wermes, Norbert

    2018-06-01

    The large Hadron collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the high luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.

  18. Geoengineering on exoplanets

    NASA Astrophysics Data System (ADS)

    Lockley, Andrew

    2015-04-01

    Solar radiation management (SRM) geoengineering can be used to deliberately alter the Earth's radiation budget, by reflecting sunlight to space. SRM has been suggested as a response to Anthropogenic Global Warming (AGW), to partly or fully balance radiative forcing from AGW [1]. Approximately 22% of sun-like stars have Earth-like exoplanets[2]. Advanced civilisations may exist on these, and may use geoengineering for positive or negative radiative forcing. Additionally, terraforming projects [e.g. 3], may be used to expand alien habitable territory, or for resource management or military operations on non-home planets. Potential observations of alien geoengineering and terraforming may enable detection of technologically advanced alien civilisations, and may help identify widely-used and stable geoengineering technologies. This knowledge may assist the development of safe and stable geoengineering methods for Earth. The potential risks and benefits of possible alien detection of Earth-bound geoengineering schemes must be considered before deployment of terrestrial geoengineering schemes.

  19. CVD diamond detectors for ionizing radiation

    NASA Astrophysics Data System (ADS)

    Friedl, M.; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; van Eijk, B.; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K. K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knöpfle, K. T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P. F.; Manfredotti, C.; Marshall, R. D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L. S.; Palmieri, V. G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J. L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R. J.; Tesarek, R.; Thomson, G. B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A. M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M.; RD42 Collaboration

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2×4 cm2 have been grown and refined for better charge collection properties, which are measured with a β source or in a testbeam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5×10 15 cm-2 to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics.

  20. Meeting the Needs for Radiation Protection: Diagnostic Imaging.

    PubMed

    Frush, Donald P

    2017-02-01

    Radiation and potential risk during medical imaging is one of the foremost issues for the imaging community. Because of this, there are growing demands for accountability, including appropriate use of ionizing radiation in diagnostic and image-guided procedures. Factors contributing to this include increasing use of medical imaging; increased scrutiny (from awareness to alarm) by patients/caregivers and the public over radiation risk; and mounting calls for accountability from regulatory, accrediting, healthcare coverage (e.g., Centers for Medicare and Medicaid Services), and advisory agencies and organizations as well as industry (e.g., NEMA XR-29, Standard Attributes on CT Equipment Related to Dose Optimization and Management). Current challenges include debates over uncertainty with risks with low-level radiation; lack of fully developed and targeted products for diagnostic imaging and radiation dose monitoring; lack of resources for and clarity surrounding dose monitoring programs; inconsistencies across and between practices for design, implementation and audit of dose monitoring programs; lack of interdisciplinary programs for radiation protection of patients; potential shortages in personnel for these and other consensus efforts; and training concerns as well as inconsistencies for competencies throughout medical providers' careers for radiation protection of patients. Medical care providers are currently in a purgatory between quality- and value-based imaging paradigms, a state that has yet to mature to reward this move to quality-based performance. There are also deficits in radiation expertise personnel in medicine. For example, health physics academic programs and graduates have recently declined, and medical physics residency openings are currently at a third of the number of graduates. However, leveraging solutions to the medical needs will require money and resources, beyond personnel alone. Energy and capital will need to be directed to:• innovative and cooperative cross-disciplinary institutional/practice oversight of and guidance for the use of diagnostic imaging (e.g., radiology, surgical specialties, cardiologists, and intensivists);• initiatives providing practical benchmarks (e.g., dose index registries);• comprehensive (consisting of access, integrity, metrology, analytics, informatics) and effective and efficient dose monitoring programs;• collaboration with industry;• improved use of imaging, such as through decision support combined with evidence-based appropriateness for imaging use;• integration with e-health such as medical records;• education, including information extending beyond the medical imaging community that is relevant to patients, public, and providers and administration;• identification of opportunities for alignment with salient media and advocacy organizations to deliver balanced information regarding medical radiation and risk;• open lines of communication between medical radiation experts and appropriate bodies such as the U.S. Environmental Protection Agency, the U.S. Food and Drug Administration, and the Joint Commission to assure appropriate guidance on documents and actions originating from these organizations; and• increased grant funding to foster translational work that advances understanding of low-level radiation and biological effects.

  1. Surface application of soybean peroxidase and calcium peroxide for reducing odorous VOC emissions from swine manure slurry

    USDA-ARS?s Scientific Manuscript database

    A laboratory experiment was conducted to evaluate and compare topical and fully mixed treatments of soybean peroxidase and calcium peroxide (SBP/CaO2) for reducing odorous volatile organic compound (VOC) emissions from swine manure slurry. The five treatments consisted of a control, the fully mixed ...

  2. Hybrid broadband Ground Motion simulation based on a dynamic rupture model of the 2011 Mw 9.0 Tohoku earthquake.

    NASA Astrophysics Data System (ADS)

    Galvez, P.; Somerville, P.; Bayless, J.; Dalguer, L. A.

    2015-12-01

    The rupture process of the 2011 Tohoku earthquake exhibits depth-dependent variations in the frequency content of seismic radiation from the plate interface. This depth-varying rupture property has also been observed in other subduction zones (Lay et al, 2012). During the Tohoku earthquake, the shallow region radiated coherent low frequency seismic waves whereas the deeper region radiated high frequency waves. Several kinematic inversions (Suzuki et al, 2011; Lee et al, 2011; Bletery et al, 2014; Minson et al, 2014) detected seismic waves below 0.1 Hz coming from the shallow depths that produced slip larger than 40-50 meters close to the trench. Using empirical green functions, Asano & Iwata (2012), Kurahashi and Irikura (2011) and others detected regions of strong ground motion radiation at frequencies up to 10Hz located mainly at the bottom of the plate interface. A recent dynamic model that embodies this depth-dependent radiation using physical models has been developed by Galvez et al (2014, 2015). In this model the rupture process is modeled using a linear weakening friction law with slip reactivation on the shallow region of the plate interface (Galvez et al, 2015). This model reproduces the multiple seismic wave fronts recorded on the Kik-net seismic network along the Japanese coast up to 0.1 Hz as well as the GPS displacements. In the deep region, the rupture sequence is consistent with the sequence of the strong ground motion generation areas (SMGAs) that radiate high frequency ground motion at the bottom of the plate interface (Kurahashi and Irikura, 2013). It remains challenging to perform ground motions fully coupled with a dynamic rupture up to 10 Hz for a megathrust event. Therefore, to generate high frequency ground motions, we make use of the stochastic approach of Graves and Pitarka (2010) but add to the source spectrum the slip rate function of the dynamic model. In this hybrid-dynamic approach, the slip rate function is windowed with Gaussian noise where the duration of the time window and the starting rupture is determined by the slip rate function at each point in the fault (Dalguer et al, 2002). Finally, to validate this method we compare the synthetic seismograms with the recorded ground motion for the 2011 Tohoku earthquake up to 10 Hz.

  3. Radiative effects during the assembly of direct collapse black holes

    NASA Astrophysics Data System (ADS)

    Smith, Aaron; Becerra, Fernando; Bromm, Volker; Hernquist, Lars

    2017-11-01

    We perform a post-processing radiative feedback analysis on a 3D ab initio cosmological simulation of an atomic cooling halo under the direct collapse black hole (DCBH) scenario. We maintain the spatial resolution of the simulation by incorporating native ray-tracing on unstructured mesh data, including Monte Carlo Lyman α (Ly α) radiative transfer. DCBHs are born in gas-rich, metal-poor environments with the possibility of Compton-thick conditions, NH ≳ 1024 cm-2. Therefore, the surrounding gas is capable of experiencing the full impact of the bottled-up radiation pressure. In particular, we find that multiple scattering of Ly α photons provides an important source of mechanical feedback after the gas in the sub-parsec region becomes partially ionized, avoiding the bottleneck of destruction via the two-photon emission mechanism. We provide detailed discussion of the simulation environment, expansion of the ionization front, emission and escape of Ly α radiation, and Compton scattering. A sink particle prescription allows us to extract approximate limits on the post-formation evolution of the radiative feedback. Fully coupled Ly α radiation hydrodynamics will be crucial to consider in future DCBH simulations.

  4. The effect of UV radiation from oxygen and argon plasma on the adhesion of organosilicon coatings on polypropylene

    NASA Astrophysics Data System (ADS)

    Jaritz, M.; Behm, H.; Hopmann, Ch; Kirchheim, D.; Mitschker, F.; Awakowicz, P.; Dahlmann, R.

    2017-01-01

    The influence of ultraviolet (UV) radiation from oxygen and argon pretreatment plasmas on a plastic substrate has not been fully understood yet. In particular, its influence on the adhesion properties has not been sufficiently researched so far. This paper addresses this issue by comparing the bond strength of a plasmapolymerized silicon organic coating (SiO x C y H z ) on polypropylene (PP) after oxygen and argon plasma pretreatment and pretreatment by UV radiation emitted by the same plasmas. The UV radiation is isolated from the other species from the plasma by means of a magnesium fluoride (MgF2) optical filter. It could be shown that UV radiation originating from an oxygen plasma has a significant impact on both substrate surface chemistry and coating adhesion. The same maximum bond strength enhancement can be reached by pretreating the polypropylene surface either with pulsed oxygen plasma, or with only the UV radiation from this oxygen plasma. Also, similar surface chemistry and topography modifications are induced. For argon plasma no significant influence of its UV radiation on the substrate could be observed in this study.

  5. Commensurate comparisons of models with energy budget observations reveal consistent climate sensitivities

    NASA Astrophysics Data System (ADS)

    Armour, K.

    2017-12-01

    Global energy budget observations have been widely used to constrain the effective, or instantaneous climate sensitivity (ICS), producing median estimates around 2°C (Otto et al. 2013; Lewis & Curry 2015). A key question is whether the comprehensive climate models used to project future warming are consistent with these energy budget estimates of ICS. Yet, performing such comparisons has proven challenging. Within models, values of ICS robustly vary over time, as surface temperature patterns evolve with transient warming, and are generally smaller than the values of equilibrium climate sensitivity (ECS). Naively comparing values of ECS in CMIP5 models (median of about 3.4°C) to observation-based values of ICS has led to the suggestion that models are overly sensitive. This apparent discrepancy can partially be resolved by (i) comparing observation-based values of ICS to model values of ICS relevant for historical warming (Armour 2017; Proistosescu & Huybers 2017); (ii) taking into account the "efficacies" of non-CO2 radiative forcing agents (Marvel et al. 2015); and (iii) accounting for the sparseness of historical temperature observations and differences in sea-surface temperature and near-surface air temperature over the oceans (Richardson et al. 2016). Another potential source of discrepancy is a mismatch between observed and simulated surface temperature patterns over recent decades, due to either natural variability or model deficiencies in simulating historical warming patterns. The nature of the mismatch is such that simulated patterns can lead to more positive radiative feedbacks (higher ICS) relative to those engendered by observed patterns. The magnitude of this effect has not yet been addressed. Here we outline an approach to perform fully commensurate comparisons of climate models with global energy budget observations that take all of the above effects into account. We find that when apples-to-apples comparisons are made, values of ICS in models are consistently in good agreement with values of ICS inferred from global energy budget constraints. This suggests that the current generation of coupled climate models are not overly sensitive. However, since global energy budget observations do not constrain ECS, it is less certain whether model ECS values are realistic.

  6. Poloidal radiation asymmetries during disruption mitigation by massive gas injection on the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Eidietis, N. W.

    2016-10-01

    Measurements of poloidal asymmetry in the radiated power during thermal quench (TQ) mitigation by massive gas injection (MGI) on DIII-D show poloidal peaking in the radiated heat flux at the wall generally consistent with 3D resistive MHD modeling, that indicates a large n=1 tearing mode causes these asymmetries. Radiation asymmetries are a concern to ITER because they can cause localized melting of the first wall even if globally the mitigation successfully radiates 100% of the plasma thermal energy. Toroidal radiation asymmetries have been well-studied, but until now the equally important poloidal asymmetries were not well constrained. Radiation emissivity profiles are reconstructed by tomographic inversion of AXUV photodiode arrays, from which the peaking measurements are derived. The poloidal peaking measurements are compared to NIMROD 3D resistive MHD simulations. Qualitatively, the measured and modeled peaking evolve similarly. In both cases, peaking during the TQ changes little with toroidal phase, consistent with predictions of n=1 MHD during the TQ producing the asymmetry. Quantitatively, the measured TQ peaking amplitudes are comparable to but consistently higher than the modeled values. This is a result of the measured radiation exhibiting high emissivity lobes at larger minor radius (and outside the separatrix) than the modeled cases, which may indicate incomplete treatment of the plasma-neutral interaction at the plasma edge in the model. This work, combined with previous measurement and modeling and toroidal radiation asymmetries, provides a basis for constraining localized mitigation radiation heat flux in ITER. Work supported by US DOE under DE-FC02-04ER54698.

  7. On the relationship between the greenhouse effect, atmospheric photochemistry, and species distribution

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Boughner, R. E.; Natarajan, M.

    1983-01-01

    The coupling that exists between infrared opacity changes and tropospheric (and to a lesser extent stratospheric) chemistry is explored in considerable detail, and the effects arising from various perturbations are examined. The studies are carried out with a fully coupled one-dimensional radiative-convective-photochemical model (RCP) that extends from the surface to 53.5 km and has the capability of calculating surface temperature changes due to both chemical and radiative perturbations. The model encompasses contemporary atmospheric chemistry and photochemistry involving the O(x), HO(x), NO(x), and Cl(x) species.

  8. Formal Solutions for Polarized Radiative Transfer. I. The DELO Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janett, Gioele; Carlin, Edgar S.; Steiner, Oskar

    The discussion regarding the numerical integration of the polarized radiative transfer equation is still open and the comparison between the different numerical schemes proposed by different authors in the past is not fully clear. Aiming at facilitating the comprehension of the advantages and drawbacks of the different formal solvers, this work presents a reference paradigm for their characterization based on the concepts of order of accuracy , stability , and computational cost . Special attention is paid to understand the numerical methods belonging to the Diagonal Element Lambda Operator family, in an attempt to highlight their specificities.

  9. Partially coherent wavefront propagation simulations: Mirror and monochromator crystal quality assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiegart, L., E-mail: lwiegart@bnl.gov; Fluerasu, A.; Chubar, O.

    2016-07-27

    We have applied fully-and partially-coherent synchrotron radiation wavefront propagation simulations, implemented in the “Synchrotron Radiation Workshop” (SRW) computer code, to analyse the effects of imperfect mirrors and monochromator at the Coherent Hard X-ray beamline. This beamline is designed for X-ray Photon Correlation Spectroscopy, a technique that heavily relies on the partial coherence of the X-ray beam and benefits from a careful preservation of the X-ray wavefront. We present simulations and a comparison with the measured beam profile at the sample position, which show the impact of imperfect optics on the wavefront.

  10. Radiation of sound from unflanged cylindrical ducts

    NASA Technical Reports Server (NTRS)

    Hartharan, S. L.; Bayliss, A.

    1983-01-01

    Calculations of sound radiated from unflanged cylindrical ducts are presented. The numerical simulation models the problem of an aero-engine inlet. The time dependent linearized Euler equations are solved from a state of rest until a harmonic solution is attained. A fourth order accurate finite difference scheme is used and solutions are obtained from a fully vectorized Cyber-203 computer program. Cases of both plane waves and spin modes are treated. Spin modes model the sound generated by a turbofan engine. Boundary conditions for both plane waves and spin modes are treated. Solutions obtained are compared with experiments conducted at NASA Langley Research Center.

  11. Tables of model atmospheres of bursting neutron stars

    NASA Technical Reports Server (NTRS)

    Madej, Jerzy

    1991-01-01

    This paper presents tables of plane-parallel neutron star model atmospheres in radiative and hydrostatic equilibrium, with effective temperatures of 8 x 10 exp 6, 1.257 x 10 exp 7, 2 x 10 exp 7, and 3 x 10 exp 7 K, and surface gravities of 15.0 and less (cgs units). The equations of model atmospheres on which the tables are based fully account for nonisotropies of the radiation field and effects of noncoherent Compton scattering of thermal X-rays by free electrons. Both the effective temperatures and gravities listed above are measured on the neutron star surface.

  12. METHOD AND APPARATUS FOR MEASURING RADIATION

    DOEpatents

    Reeder, S.D.

    1962-04-17

    A chemical dosimeter for measuring the progress of a radiation-induced oxidation-reduction reaction is described. The dosimeter comprises a container filled with an aqueous chemical oxidation-reduction system which reacts quantitatively to the radiation. An anode of the group consisting of antimony and tungsten and a cathode of the group consisting of gold and platnium are inserted into the system. Means are provided to stir the system and a potential sensing device is connected across the anode and cathode to detect voltage changes. (AEC)

  13. Ferroelectric Thin-Film Capacitors As Ultraviolet Detectors

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita

    1995-01-01

    Advantages include rapid response, solar blindness, and relative invulnerability to ionizing radiation. Ferroelectric capacitor made to function as photovoltaic detector of ultraviolet photons by making one of its electrodes semitransparent. Photovoltaic effect exploited more fully by making Schottky barrier at illuminated semitransparent-electrode/ferroelectric interface taller than Schottky barrier at other electrode/ferroelectric interface.

  14. Analysis of WindSat Data over Arctic Sea Ice

    USDA-ARS?s Scientific Manuscript database

    The radiation of the 3rd and 4th Stokes components emitted by Arctic sea ice and observed by the spaceborne fully polarimetric radiometer WindSat is investigated. Two types of analysis are carried out, spatial (maps of different quadrants of azimuth look angles) and temporal (time series of daily av...

  15. Modern Projection of the Old Electroscope for Nuclear Radiation Quantitative Work and Demonstrations

    ERIC Educational Resources Information Center

    Bastos, Rodrigo Oliveira; Boch, Layara Baltokoski

    2017-01-01

    Although quantitative measurements in radioactivity teaching and research are only believed to be possible with high technology, early work in this area was fully accomplished with very simple apparatus such as zinc sulphide screens and electroscopes. This article presents an experimental practice using the electroscope, which is a very simple…

  16. Mitigation of radiation-pressure-induced angular instability of a Fabry-Perot cavity consisting of suspended mirrors

    NASA Astrophysics Data System (ADS)

    Nagano, Koji; Enomoto, Yutaro; Nakano, Masayuki; Furusawa, Akira; Kawamura, Seiji

    2016-12-01

    To observe radiation pressure noise in optical cavities consisting of suspended mirrors, high laser power is necessary. However, because the radiation pressure on the mirrors could cause an angular anti-spring effect, the high laser power could induce angular instability to the cavity. An angular control system using radiation pressure as an actuator, which was previously invented to reduce the anti-spring effect for the low power case, was applied to the higher power case where the angular instability would occur. As a result the angular instability was mitigated. It was also demonstrated that the cavity was unstable without this control system.

  17. SEEING THROUGH THE RING: NEAR-INFRARED PHOTOMETRY OF V582 MON (KH 15D)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arulanantham, Nicole A.; Herbst, William; Cody, Ann Marie

    2016-04-15

    We examine the light and color evolution of the T Tauri binary KH 15D through photometry obtained at wavelengths between 0.55 and 8.0 μm. The data were collected with A Novel Dual Imaging CAMera (ANDICAM) on the 1.3 m SMARTS telescope at Cerro-Tololo Inter-American Observatory and with InfraRed Array Camera on the Spitzer Space Telescope. We show that the system’s circumbinary ring, which acts as a screen that covers and uncovers different portions of the binary orbit as the ring precesses, has reached an orientation where the brighter component (star B) fully or nearly fully emerges during each orbital cycle.more » The fainter component (star A) remains fully occulted by the screen at all phases. The leading and trailing edges of the screen move across the sky at the same rate of ∼15 m s{sup −1}, consistent with expectation for a ring with a radius and width of ∼4 au and a precession period of ∼6500 years. Light and color variations continue to indicate that the screen is sharp edged and opaque at VRIJH wavelengths. However, we find an increasing transparency of the ring edge at 2.2, 3.6, and 4.5 μm. Reddening seen at the beginning of the eclipse that occurred during the CSI 2264 campaign particularly suggests selective extinction by a population of large dust grains. Meanwhile, the gradual bluing observed while star B is setting is indicative of forward scattering effects at the edge of the ring. The spectral energy distribution of the system at its bright phase shows no evidence of infrared excess emission that can be attributed to radiation from the ring or other dust component out to 8 μm.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spickermann, Thomas

    There are opportunities for advancement within the team. Operators advance by: (1) Becoming fully qualified - following the LANSCE Accelerator Operator Training Manual, Operator trainees go through 5 levels of qualification, from Radiation Security System to Experimental Area Operator. Must obtain Knowledge and Performance checkouts by an OSS or AOSS, and an End-of-Card checkout by the team leader or RSS engineer (level I). Program was inspired by US NAVY qualification program for nuclear reactor operators. Time to complete: 2-2.5 years. (2) Fully qualified operators are eligible to apply for vacant (OSS)/AOSS positions; and (3) Alternatively, experienced operators can sign upmore » for the voluntary Senior Operator Qualification Program. They must demonstrate in-depth knowledge of all areas of the accelerator complex. Time to complete is 2-3 years (Minimum 4 years from fully qualified). Eligible for promotion to level between qualified operator and AOSS.« less

  19. Radiation effects in LDD MOS devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodruff, R.L.; Adams, J.R.

    1987-12-01

    The purpose of this work is to investigate the response of lightly doped drain (LDD) n-channel transistors to ionizing radiation. Transistors were fabricated with conventional (non-LDD) and lightly doped drain (LDD) structures using both standard (non-hardened) and radiation hardened gate oxides. Characterization of the transistors began with a correlation of the total-dose effects due to 10 keV x-rays with Co-60 gamma rays. The authors find that for the gate oxides and transistor structures investigated in this work, 10 keV x-rays produce more fixed-charge guild-up in the gate oxide, and more interface charge than do Co-60 gamma rays. They determined thatmore » the radiation response of LDD transistors is similar to that of conventional (non-LDD) transistors. In addition, both standard and radiation-hardened transistors subjected to hot carrier stress before irradiation show a similar radiation response. After exposure to 1.0 x 10/sup 6/ rads(Si), non-hardened transistors show increased susceptibility to hot-carrier graduation, while the radiation-hardened transistors exhibit similar hot-carrier degradation to non-irradiated devices. The authors have demonstrated a fully-integrated radiation hardened process tht is solid to 1.0 x 10/sup 6/ rads(Si), and shows promise for achieving 1.0 x 10/sup 7/ rad(Si) total-dose capability.« less

  20. ULTRAVIOLET PROTECTIVE PIGMENTS AND DNA DIMER INDUCTION AS RESPONSES TO ULTRAVIOLET RADIATION

    EPA Science Inventory

    Life on Earth has evolved adaptations to many environmental stresses over the epochs. One consistent stress has been exposure to ultraviolet (UV) radiation. The most basic effect of UV radiation on biological systems is damage to DNA. In response to UV radiation organisms have ad...

  1. Amplification of global warming through pH dependence of DMS production simulated with a fully coupled Earth system model

    NASA Astrophysics Data System (ADS)

    Schwinger, Jörg; Tjiputra, Jerry; Goris, Nadine; Six, Katharina D.; Kirkevåg, Alf; Seland, Øyvind; Heinze, Christoph; Ilyina, Tatiana

    2017-08-01

    We estimate the additional transient surface warming ΔTs caused by a potential reduction of marine dimethyl sulfide (DMS) production due to ocean acidification under the high-emission scenario RCP8.5 until the year 2200. Since we use a fully coupled Earth system model, our results include a range of feedbacks, such as the response of marine DMS production to the additional changes in temperature and sea ice cover. Our results are broadly consistent with the findings of a previous study that employed an offline model set-up. Assuming a medium (strong) sensitivity of DMS production to pH, we find an additional transient global warming of 0.30 K (0.47 K) towards the end of the 22nd century when DMS emissions are reduced by 7.3 Tg S yr-1 or 31 % (11.5 Tg S yr-1 or 48 %). The main mechanism behind the additional warming is a reduction of cloud albedo, but a change in shortwave radiative fluxes under clear-sky conditions due to reduced sulfate aerosol load also contributes significantly. We find an approximately linear relationship between reduction of DMS emissions and changes in top of the atmosphere radiative fluxes as well as changes in surface temperature for the range of DMS emissions considered here. For example, global average Ts changes by -0. 041 K per 1 Tg S yr-1 change in sea-air DMS fluxes. The additional warming in our model has a pronounced asymmetry between northern and southern high latitudes. It is largest over the Antarctic continent, where the additional temperature increase of 0.56 K (0.89 K) is almost twice the global average. We find that feedbacks are small on the global scale due to opposing regional contributions. The most pronounced feedback is found for the Southern Ocean, where we estimate that the additional climate change enhances sea-air DMS fluxes by about 9 % (15 %), which counteracts the reduction due to ocean acidification.

  2. From analytic inversion to contemporary IMRT optimization: Radiation therapy planning revisited from a mathematical perspective

    PubMed Central

    Censor, Yair; Unkelbach, Jan

    2011-01-01

    In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). PMID:21616694

  3. Feasibility study of generating ultra-high harmonic radiation with a single stage echo-enabled harmonic generation scheme

    NASA Astrophysics Data System (ADS)

    Zhou, Kaishang; Feng, Chao; Wang, Dong

    2016-10-01

    The echo enabled harmonic generation (EEHG) scheme holds the ability for the generation of fully coherent soft x-ray free-electron laser (FEL) pulses directly from external UV seeding sources. In this paper, we study the feasibility of using a single stage EEHG to generate coherent radiation in the "water window" and beyond. Using the high-order operating modes of the EEHG scheme, intensive numerical simulations have been performed considering various three-dimensional effects. The simulation results demonstrated that coherent soft x-ray radiation at 150th harmonic (1.77 nm) of the seed can be produced by a single stage EEHG. The decreasing of the final bunching factor at the desired harmonic caused by intra beam scattering (IBS) effect has also been analyzed.

  4. Final-state QED multipole radiation in antenna parton showers

    NASA Astrophysics Data System (ADS)

    Kleiss, Ronald; Verheyen, Rob

    2017-11-01

    We present a formalism for a fully coherent QED parton shower. The complete multipole structure of photonic radiation is incorporated in a single branching kernel. The regular on-shell 2 → 3 kinematic picture is kept intact by dividing the radiative phase space into sectors, allowing for a definition of the ordering variable that is similar to QCD antenna showers. A modified version of the Sudakov veto algorithm is discussed that increases performance at the cost of the introduction of weighted events. Due to the absence of a soft singularity, the formalism for photon splitting is very similar to the QCD analogon of gluon splitting. However, since no color structure is available to guide the selection of a spectator, a weighted selection procedure from all available spectators is introduced.

  5. Self Consistent Bathymetric Mapping From Robotic Vehicles in the Deep Ocean

    DTIC Science & Technology

    2005-06-01

    that have been aligned in a consistent manner. Experimental results from the fully automated processing of a multibeam survey over the TAG hydrothermal structure at the Mid-Atlantic ridge are presented to validate the proposed method.

  6. Feedbacks between air pollution and weather, Part 1: Effects on weather

    NASA Astrophysics Data System (ADS)

    Makar, P. A.; Gong, W.; Milbrandt, J.; Hogrefe, C.; Zhang, Y.; Curci, G.; Žabkar, R.; Im, U.; Balzarini, A.; Baró, R.; Bianconi, R.; Cheung, P.; Forkel, R.; Gravel, S.; Hirtl, M.; Honzak, L.; Hou, A.; Jiménez-Guerrero, P.; Langer, M.; Moran, M. D.; Pabla, B.; Pérez, J. L.; Pirovano, G.; San José, R.; Tuccella, P.; Werhahn, J.; Zhang, J.; Galmarini, S.

    2015-08-01

    The meteorological predictions of fully coupled air-quality models running in ;feedback; versus ;no-feedback; simulations were compared against each other and observations as part of Phase 2 of the Air Quality Model Evaluation International Initiative. In the ;no-feedback; mode, the aerosol direct and indirect effects were disabled, with the models reverting to either climatologies of aerosol properties, or a no-aerosol weather simulation. In the ;feedback; mode, the model-generated aerosols were allowed to modify the radiative transfer and/or cloud formation parameterizations of the respective models. Annual simulations with and without feedbacks were conducted on domains over North America for the years 2006 and 2010, and over Europe for the year 2010. The incorporation of feedbacks was found to result in systematic changes to forecast predictions of meteorological variables, both in time and space, with the largest impacts occurring in the summer and near large sources of pollution. Models incorporating only the aerosol direct effect predicted feedback-induced reductions in temperature, surface downward and upward shortwave radiation, precipitation and PBL height, and increased upward shortwave radiation, in both Europe and North America. The feedback response of models incorporating both the aerosol direct and indirect effects varied across models, suggesting the details of implementation of the indirect effect have a large impact on model results, and hence should be a focus for future research. The feedback response of models incorporating both direct and indirect effects was also consistently larger in magnitude to that of models incorporating the direct effect alone, implying that the indirect effect may be the dominant process. Comparisons across modelling platforms suggested that direct and indirect effect feedbacks may often act in competition: the sign of residual changes associated with feedbacks often changed between those models incorporating the direct effect alone versus those incorporating both feedback processes. Model comparisons to observations for no-feedback and feedback implementations of the same model showed that differences in performance between models were larger than the performance changes associated with implementing feedbacks within a given model. However, feedback implementation was shown to result in improved forecasts of meteorological parameters such as the 2 m surface temperature and precipitation. These findings suggest that meteorological forecasts may be improved through the use of fully coupled feedback models, or through incorporation of improved climatologies of aerosol properties, the latter designed to include spatial, temporal and aerosol size and/or speciation variations.

  7. Formation of Partially and Fully Elaborated Generalized Equivalence Classes

    ERIC Educational Resources Information Center

    Fields, Lanny; Moss, Patricia

    2008-01-01

    Most complex categories observed in real-world settings consist of perceptually disparate stimuli, such as a picture of a person's face, the person's name as written, and the same name as heard, as well as dimensional variants of some or all of these stimuli. The stimuli function as members of a single partially or fully elaborated generalized…

  8. A passive and active microwave-vector radiative transfer (PAM-VRT) model

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Min, Qilong

    2015-11-01

    A passive and active microwave vector radiative transfer (PAM-VRT) package has been developed. This fast and accurate forward microwave model, with flexible and versatile input and output components, self-consistently and realistically simulates measurements/radiation of passive and active microwave sensors. The core PAM-VRT, microwave radiative transfer model, consists of five modules: gas absorption (two line-by-line databases and four fast models); hydrometeor property of water droplets and ice (spherical and nonspherical) particles; surface emissivity (from Community Radiative Transfer Model (CRTM)); vector radiative transfer of successive order of scattering (VSOS); and passive and active microwave simulation. The PAM-VRT package has been validated against other existing models, demonstrating good accuracy. The PAM-VRT not only can be used to simulate or assimilate measurements of existing microwave sensors, but also can be used to simulate observation results at some new microwave sensors.

  9. Towards a fully kinetic 3D electromagnetic particle-in-cell model of streamer formation and dynamics in high-pressure electronegative gases

    NASA Astrophysics Data System (ADS)

    Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.

    2011-09-01

    Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF6.

  10. SU-F-J-202: Secondary Radiation Measurements for Charged Particle Therapy Monitoring: Fragmentation of Therapeutic He, C and O Ion Beams Impinging On a PMMA Target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucinski, A; Mancini-Terracciano, C; Paramatti, R

    Purpose: In Charged Particle Therapy (CPT), besides protons, there has been recently a growing interest in 4He, 12C and 16O beams. The secondary radiation produced in the interaction of those beams with a patient could be potentially used for on-line monitoring of range uncertainties in order to fully exploit the advantages of those light ions resulting from increased Radio Biological Effectiveness, reduced multiple scattering and Oxygen Enhancement Ratio. The study and precise characterization of secondary radiation (beta+, prompt gamma, charged fragments) is the cornerstone of any R&D activity aiming for online monitoring development and purpose of the analysis presented here.more » Methods: We present the measurements of the secondary radiation generated by He, C and O beams impinging on a beam stopping PMMA target. The data has been collected at the Heidelberg Ionbeam Therapy center (HIT), where several millions of collisions were recorded at different energies, relevant for therapeutical applications. Results: The experimental setup, as well as the analysis strategies will be reviewed. The detected particle fluxes as a function of the primary beam energy and the emission angle with respect to the beam direction will be presented and compared to the results of other available measurements. In addition, the energy spectra and emission shapes of charged secondary particles will be shown and discussed in the context of the primary beam range monitoring technique that is being developed by the ARPG collaboration, within the INSIDE project funded by the Italian research ministry. The implications for dose monitoring applications will be discussed, in the context of the current (or planned) state-of- the-art detector solutions. Conclusion: The characterization of the radiation produced by 12C, 4He and 16O beams fully supports the feasibility of on-line range monitoring in the clinical practice of CPT by means of secondary particles detection.« less

  11. High-Operating Temperature HgCdTe: A Vision for the Near Future

    NASA Astrophysics Data System (ADS)

    Lee, D.; Carmody, M.; Piquette, E.; Dreiske, P.; Chen, A.; Yulius, A.; Edwall, D.; Bhargava, S.; Zandian, M.; Tennant, W. E.

    2016-09-01

    We review recent advances in the HgCdTe material quality and detector performance achieved at Teledyne using molecular beam epitaxy growth and the double-layer planar hetero-junction (DLPH) detector architecture. By using an un-doped, fully depleted absorber, Teledyne's DLPH architecture can be extended for use in high operating temperatures and other applications. We assess the potential achievable performance for long wavelength infrared (LWIR) hetero-junction p-lightly-doped n or p-intrinsic- n (p-i-n) detectors based on recently reported results for 10.7 μm cutoff 1 K × 1 K focal plane arrays (FPAs) tested at temperatures down to 30 K. Variable temperature dark current measurements show that any Shockley-Read-Hall currents in the depletion region of these devices have lifetimes that are reproducibly greater than 100 ms. Under the assumption of comparable lifetimes at higher temperatures, it is predicted that fully-depleted background radiation-limited performance can be expected for 10- μm cutoff detectors from room temperature to well below liquid nitrogen temperatures, with room-temperature dark current nearly 400 times lower than predicted by Rule 07. The hetero-junction p-i-n diode is shown to have numerous other significant potential advantages including minimal or no passivation requirements for pBn-like processing, low 1/ f noise, compatibility with small pixel pitch while maintaining high modulation transfer function, low crosstalk and good quantum efficiency. By appropriate design of the FPA dewar shielding, analysis shows that dark current can theoretically be further reduced below the thermal equilibrium radiative limit. Modeling shows that background radiation-limited LWIR HgCdTe operating with f/1 optics has the potential to operate within √2 of background-limited performance at 215 K. By reducing the background radiation by 2/3 using novel shielding methods, operation with a single-stage thermo-electric-cooler may be possible. If the background radiation can be reduced by 90%, then room-temperature operation is possible.

  12. 1994 SSRL Activity Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-11-18

    SSRL, a division of the Stanford Linear Accelerator Center, is a national user facility which provides synchrotron radiation, a name given to x-rays or light produced by electrons circulating in a storage ring at nearly the speed of light. The synchrotron radiation is produced by the 3.3 GeV storage ring, SPEAR. SPEAR is a fully dedicated synchrotron radiation facility which has been operating for user experiments 6 to 7 months per year. 1994, the third year of operation of SSRL as a fully dedicated, low-emittance, independent user facility was superb. The facility ran extremely well, delivering 89% of the scheduledmore » user beam to 25 experimental stations during 6.5 months of user running. Over 600 users came from 167 institutions to participate in 343 experiments. Users from private industry were involved in 31% of these experiments. The SPEAR accelerator ran very well with no major component failures and an unscheduled down time of only 2.9%. In addition to this increased reliability, there was a significant improvement in the stability of the beam. The enhancements to the SPEAR orbit as part of a concerted three-year program were particularly noticeable to users. the standard deviation of beam movement (both planes) in the last part of the run was 80 microns, major progress toward the ultimate goal of 50-micron stability. This was a significant improvement from the previous year when the movement was 400 microns in the horizontal and 200 microns in the vertical. A new accelerator Personal Protection System (PPS), built with full redundancy and providing protection from both radiation exposure and electrical hazards, was installed in 1994.« less

  13. Accurate Ray-tracing of Realistic Neutron Star Atmospheres for Constraining Their Parameters

    NASA Astrophysics Data System (ADS)

    Vincent, Frederic H.; Bejger, Michał; Różańska, Agata; Straub, Odele; Paumard, Thibaut; Fortin, Morgane; Madej, Jerzy; Majczyna, Agnieszka; Gourgoulhon, Eric; Haensel, Paweł; Zdunik, Leszek; Beldycki, Bartosz

    2018-03-01

    Thermal-dominated X-ray spectra of neutron stars in quiescent, transient X-ray binaries and neutron stars that undergo thermonuclear bursts are sensitive to mass and radius. The mass–radius relation of neutron stars depends on the equation of state (EoS) that governs their interior. Constraining this relation accurately is therefore of fundamental importance to understand the nature of dense matter. In this context, we introduce a pipeline to calculate realistic model spectra of rotating neutron stars with hydrogen and helium atmospheres. An arbitrarily fast-rotating neutron star with a given EoS generates the spacetime in which the atmosphere emits radiation. We use the LORENE/NROTSTAR code to compute the spacetime numerically and the ATM24 code to solve the radiative transfer equations self-consistently. Emerging specific intensity spectra are then ray-traced through the neutron star’s spacetime from the atmosphere to a distant observer with the GYOTO code. Here, we present and test our fully relativistic numerical pipeline. To discuss and illustrate the importance of realistic atmosphere models, we compare our model spectra to simpler models like the commonly used isotropic color-corrected blackbody emission. We highlight the importance of considering realistic model-atmosphere spectra together with relativistic ray-tracing to obtain accurate predictions. We also insist upon the crucial impact of the star’s rotation on the observables. Finally, we close a controversy that has been ongoing in the literature in the recent years, regarding the validity of the ATM24 code.

  14. Development and dosimetry of a small animal lung irradiation platform

    PubMed Central

    McGurk, Ross; Hadley, Caroline; Jackson, Isabel L.; Vujaskovic, Zeljko

    2015-01-01

    Advances in large scale screening of medical counter measures for radiation-induced normal tissue toxicity are currently hampered by animal irradiation paradigms that are both inefficient and highly variable among institutions. Here, we introduce a novel high-throughput small animal irradiation platform for use in orthovoltage small animal irradiators. We used radiochromic film and metal oxide semiconductor field effect transistor detectors to examine several parameters, including 2D field uniformity, dose rate consistency, and shielding transmission. We posit that this setup will improve efficiency of drug screens by allowing for simultaneous, targeted irradiation of multiple animals, improving efficiency within a single institution. Additionally, we suggest that measurement of the described parameters in all centers conducting counter measure studies will improve the translatability of findings among institutions. We also investigated the use of tissue equivalent phantoms in performing dosimetry measurements for small animal irradiation experiments. Though these phantoms are commonly used in dosimetry, we recorded a significant difference in both the entrance and target tissue dose rates between euthanized rats and mice with implanted detectors and the corresponding phantom measurement. This suggests that measurements using these phantoms may not provide accurate dosimetry for in vivo experiments. Based on these measurements, we propose that this small animal irradiation platform can increase the capacity of animal studies by allowing for more efficient animal irradiation. We also suggest that researchers fully characterize the parameters of whatever radiation setup is in use in order to facilitate better comparison among institutions. PMID:23091878

  15. Evaluation of the deformation and corresponding dosimetric implications in prostate cancer treatment

    NASA Astrophysics Data System (ADS)

    Wen, Ning; Glide-Hurst, Carri; Nurushev, Teamour; Xing, Lei; Kim, Jinkoo; Zhong, Hualiang; Liu, Dezhi; Liu, Manju; Burmeister, Jay; Movsas, Benjamin; Chetty, Indrin J.

    2012-09-01

    The cone-beam computed tomography (CBCT) imaging modality is an integral component of image-guided adaptive radiation therapy (IGART), which uses patient-specific dynamic/temporal information for potential treatment plan modification. In this study, an offline process for the integral component IGART framework has been implemented that consists of deformable image registration (DIR) and its validation, dose reconstruction, dose accumulation and dose verification. This study compares the differences between planned and estimated delivered doses under an IGART framework of five patients undergoing prostate cancer radiation therapy. The dose calculation accuracy on CBCT was verified by measurements made in a Rando pelvic phantom. The accuracy of DIR on patient image sets was evaluated in three ways: landmark matching with fiducial markers, visual image evaluation and unbalanced energy (UE); UE has been previously demonstrated to be a feasible method for the validation of DIR accuracy at a voxel level. The dose calculated on each CBCT image set was reconstructed and accumulated over all fractions to reflect the ‘actual dose’ delivered to the patient. The deformably accumulated (delivered) plans were then compared to the original (static) plans to evaluate tumor and normal tissue dose discrepancies. The results support the utility of adaptive planning, which can be used to fully elucidate the dosimetric impact based on the simulated delivered dose to achieve the desired tumor control and normal tissue sparing, which may be of particular importance in the context of hypofractionated radiotherapy regimens.

  16. Remote Sensing of Cloud Properties using Ground-based Measurements of Zenith Radiance

    NASA Technical Reports Server (NTRS)

    Chiu, J. Christine; Marshak, Alexander; Knyazikhin, Yuri; Wiscombe, Warren J.; Barker, Howard W.; Barnard, James C.; Luo, Yi

    2006-01-01

    An extensive verification of cloud property retrievals has been conducted for two algorithms using zenith radiances measured by the Atmospheric Radiation Measurement (ARM) Program ground-based passive two-channel (673 and 870 nm) Narrow Field-Of-View Radiometer. The underlying principle of these algorithms is that clouds have nearly identical optical properties at these wavelengths, but corresponding spectral surface reflectances (for vegetated surfaces) differ significantly. The first algorithm, the RED vs. NIR, works for a fully three-dimensional cloud situation. It retrieves not only cloud optical depth, but also an effective radiative cloud fraction. Importantly, due to one-second time resolution of radiance measurements, we are able, for the first time, to capture detailed changes in cloud structure at the natural time scale of cloud evolution. The cloud optical depths tau retrieved by this algorithm are comparable to those inferred from both downward fluxes in overcast situations and microwave brightness temperatures for broken clouds. Moreover, it can retrieve tau for thin patchy clouds, where flux and microwave observations fail to detect them. The second algorithm, referred to as COUPLED, couples zenith radiances with simultaneous fluxes to infer 2. In general, the COUPLED and RED vs. NIR algorithms retrieve consistent values of tau. However, the COUPLED algorithm is more sensitive to the accuracies of measured radiance, flux, and surface reflectance than the RED vs. NIR algorithm. This is especially true for thick overcast clouds where it may substantially overestimate z.

  17. Occupational Exposure to Ionizing Radiation for Crews of Suborbital Spacecraft: Questions and Answers

    DTIC Science & Technology

    2013-12-01

    the Van Allen belts to be of concern. Ionizing radiation consists of subatomic particles that, on interacting with an atom, can cause the atom to...What is ionizing radiation? Ionizing radiation refers to subatomic particles that, on interacting with an atom, can directly or indirectly cause the

  18. Earth Radiation Budget Science, 1978. 1: Introduction. [to obtain radiation budget measurements by satellite observation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An earth radiation budget satellite system (ERBSS) is planned in order to understand climate on various temporal and spatial scales. The system consists of three satellites and is designed to obtain radiation budget data from the earth's surface. Among the topics discussed are the climate modeling and climate diagnostics, the applications of radiation modeling to ERBSS, and the influence of albedo clouds on radiation budget and atmospheric circulation.

  19. Improved Modeling of Open Waveguide Aperture Radiators for use in Conformal Antenna Arrays

    NASA Astrophysics Data System (ADS)

    Nelson, Gregory James

    Open waveguide apertures have been used as radiating elements in conformal arrays. Individual radiating element model patterns are used in constructing overall array models. The existing models for these aperture radiating elements may not accurately predict the array pattern for TEM waves which are not on boresight for each radiating element. In particular, surrounding structures can affect the far field patterns of these apertures, which ultimately affects the overall array pattern. New models of open waveguide apertures are developed here with the goal of accounting for the surrounding structure effects on the aperture far field patterns such that the new models make accurate pattern predictions. These aperture patterns (both E plane and H plane) are measured in an anechoic chamber and the manner in which they deviate from existing model patterns are studied. Using these measurements as a basis, existing models for both E and H planes are updated with new factors and terms which allow the prediction of far field open waveguide aperture patterns with improved accuracy. These new and improved individual radiator models are then used to predict overall conformal array patterns. Arrays of open waveguide apertures are constructed and measured in a similar fashion to the individual aperture measurements. These measured array patterns are compared with the newly modeled array patterns to verify the improved accuracy of the new models as compared with the performance of existing models in making array far field pattern predictions. The array pattern lobe characteristics are then studied for predicting fully circularly conformal arrays of varying radii. The lobe metrics that are tracked are angular location and magnitude as the radii of the conformal arrays are varied. A constructed, measured array that is close to conforming to a circular surface is compared with a fully circularly conformal modeled array pattern prediction, with the predicted lobe angular locations and magnitudes tracked, plotted and tabulated. The close match between the patterns of the measured array and the modeled circularly conformal array verifies the validity of the modeled circularly conformal array pattern predictions.

  20. Performance of a PTW 60019 microDiamond detector in a 1.5 T MRI-linac

    NASA Astrophysics Data System (ADS)

    Woodings, S. J.; Wolthaus, J. W. H.; van Asselen, B.; de Vries, J. H. W.; Kok, J. G. M.; Lagendijk, J. J. W.; Raaymakers, B. W.

    2018-03-01

    Accurate small-field dosimetry is critical for a magnetic resonance linac (MRI-linac). The PTW 60019 microDiamond is close to an ideal detector for small field dosimetry due to its small physical size, high signal-to-noise ratio and approximate water equivalence. It is important to fully characterise the performance of the detector in a 1.5 T magnetic field prior to its use for MRI-linac commissioning and quality assurance. Standard techniques of detector testing have been implemented, or adapted where necessary to suit the capabilities of the MRI-linac. Detector warmup, constancy, dose linearity, dose rate linearity, field size dependence and leakage were within tolerance. Measurements with the detector were consistent with ion chamber measurements for medium sized fields. The effective point of measurement of the detector when used within a 1.5 T magnetic field was determined to be 0.80 ± 0.23 mm below the top surface of the device, consistent with the existing vendor recommendation and alignment mark at 1.0 mm. The angular dependence was assessed. Variations of up to 9.7% were observed, which are significantly greater than in a 0 T environment. Within the expected range of use, the maximum effect is approximately 0.6% which is within tolerance. However for large beams within a magnetic field, the divergence and consequent variation in angle of photon incidence means that the microDiamond would not be ideal for characterising the profiles and it would not be suitable for determining large-field beam parameters such as symmetry. It would also require a correction factor prior to use for patient-specific QA measurements where radiation is delivered from different gantry angles. The results of this study demonstrate that the PTW 60019 microDiamond detector is suitable for measuring small radiation fields within a 1.5 T magnetic field and thus is suitable for use in MRI-linac commissioning and quality assurance.

  1. Performance of a PTW 60019 microDiamond detector in a 1.5 T MRI-linac.

    PubMed

    Woodings, S J; Wolthaus, J W H; van Asselen, B; de Vries, J H W; Kok, J G M; Lagendijk, J J W; Raaymakers, B W

    2018-03-08

    Accurate small-field dosimetry is critical for a magnetic resonance linac (MRI-linac). The PTW 60019 microDiamond is close to an ideal detector for small field dosimetry due to its small physical size, high signal-to-noise ratio and approximate water equivalence. It is important to fully characterise the performance of the detector in a 1.5 T magnetic field prior to its use for MRI-linac commissioning and quality assurance. Standard techniques of detector testing have been implemented, or adapted where necessary to suit the capabilities of the MRI-linac. Detector warmup, constancy, dose linearity, dose rate linearity, field size dependence and leakage were within tolerance. Measurements with the detector were consistent with ion chamber measurements for medium sized fields. The effective point of measurement of the detector when used within a 1.5 T magnetic field was determined to be 0.80 ± 0.23 mm below the top surface of the device, consistent with the existing vendor recommendation and alignment mark at 1.0 mm. The angular dependence was assessed. Variations of up to 9.7% were observed, which are significantly greater than in a 0 T environment. Within the expected range of use, the maximum effect is approximately 0.6% which is within tolerance. However for large beams within a magnetic field, the divergence and consequent variation in angle of photon incidence means that the microDiamond would not be ideal for characterising the profiles and it would not be suitable for determining large-field beam parameters such as symmetry. It would also require a correction factor prior to use for patient-specific QA measurements where radiation is delivered from different gantry angles. The results of this study demonstrate that the PTW 60019 microDiamond detector is suitable for measuring small radiation fields within a 1.5 T magnetic field and thus is suitable for use in MRI-linac commissioning and quality assurance.

  2. Revisiting a Hydrological Analysis Framework with International Satellite Land Surface Climatology Project Initiative 2 Rainfall, Net Radiation, and Runoff Fields

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Fekete, Balazs M.; Huffman, George J.; Stackhouse, Paul W.

    2006-01-01

    The International Satellite Land Surface Climatology Project Initiative 2 (ISLSCP-2) data set provides the data needed to characterize the surface water budget across much of the globe in terms of energy availability (net radiation) and water availability (precipitation) controls. The data, on average, are shown to be consistent with Budyko s decades-old framework, thereby demonstrating the continuing relevance of Budyko s semiempirical relationships. This consistency, however, appears only when a small subset of the data with hydrologically suspicious behavior is removed from the analysis. In general, the precipitation, net radiation, and runoff data also appear consistent in their interannual variability and in the phasing of their seasonal cycles.

  3. Infrared radiation models for atmospheric methane

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Kratz, D. P.; Caldwell, J.; Kim, S. J.

    1986-01-01

    Mutually consistent line-by-line, narrow-band and broad-band infrared radiation models are presented for methane, a potentially important anthropogenic trace gas within the atmosphere. Comparisons of the modeled band absorptances with existing laboratory data produce the best agreement when, within the band models, spurious band intensities are used which are consistent with the respective laboratory data sets, but which are not consistent with current knowledge concerning the intensity of the infrared fundamental band of methane. This emphasizes the need for improved laboratory band absorptance measurements. Since, when applied to atmospheric radiation calculations, the line-by-line model does not require the use of scaling approximations, the mutual consistency of the band models provides a means of appraising the accuracy of scaling procedures. It is shown that Curtis-Godson narrow-band and Chan-Tien broad-band scaling provide accurate means of accounting for atmospheric temperature and pressure variations.

  4. Metal oxide composite dosimeter method and material

    DOEpatents

    Miller, Steven D.

    1998-01-01

    The present invention is a method of measuring a radiation dose wherein a radiation responsive material consisting essentially of metal oxide is first exposed to ionizing radiation. The metal oxide is then stimulating with light thereby causing the radiation responsive material to photoluminesce. Photons emitted from the metal oxide as a result of photoluminescence may be counted to provide a measure of the ionizing radiation.

  5. Fully implicit moving mesh adaptive algorithm

    NASA Astrophysics Data System (ADS)

    Chacon, Luis

    2005-10-01

    In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. A crucial element is the development of an effective multilevel treatment of the grid equation.ootnotetextL. Chac'on, G. Lapenta, A fully implicit, nonlinear adaptive grid strategy, J. Comput. Phys., accepted (2005) We will show that such an approach is competitive vs. uniform grids both from the accuracy (due to adaptivity) and the efficiency standpoints. Results for a variety of models 1D and 2D geometries, including nonlinear diffusion, radiation-diffusion, Burgers equation, and gas dynamics will be presented.

  6. Radiation Coupling with the FUN3D Unstructured-Grid CFD Code

    NASA Technical Reports Server (NTRS)

    Wood, William A.

    2012-01-01

    The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.

  7. Environment of Space Interactions with Space Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The primary product of this research project was a computer program named SAVANT. This program uses the Displacement Damage Dose (DDD) method of calculating radiation damage to solar cells. This calculation method was developed at the Naval Research Laboratory, and uses fundamental physical properties of the solar cell materials to predict radiation damage to the solar cells. This means that fewer experimental measurements are required to characterize the radiation damage to the cells, which results in a substantial cost savings to qualify solar cells for orbital missions. In addition, the DDD method makes it easier to characterize cells that are already being used, but have not been fully tested using the older technique of characterizing radiation damage. The computer program combines an orbit generator with NASA's AP-8 and AE-8 models of trapped protons and electrons. This allows the user to specify an orbit, and the program will calculate how the spacecraft moves during the mission, and the radiation environment that it encounters. With the spectrum of the particles, the program calculates how they would slow down while traversing the coverglass, and provides a slowed-down spectrum.

  8. Calculation and measurement of radiation corrections for plasmon resonances in nanoparticles

    NASA Astrophysics Data System (ADS)

    Hung, L.; Lee, S. Y.; McGovern, O.; Rabin, O.; Mayergoyz, I.

    2013-08-01

    The problem of plasmon resonances in metallic nanoparticles can be formulated as an eigenvalue problem under the condition that the wavelengths of the incident radiation are much larger than the particle dimensions. As the nanoparticle size increases, the quasistatic condition is no longer valid. For this reason, the accuracy of the electrostatic approximation may be compromised and appropriate radiation corrections for the calculation of resonance permittivities and resonance wavelengths are needed. In this paper, we present the radiation corrections in the framework of the eigenvalue method for plasmon mode analysis and demonstrate that the computational results accurately match analytical solutions (for nanospheres) and experimental data (for nanorings and nanocubes). We also demonstrate that the optical spectra of silver nanocube suspensions can be fully assigned to dipole-type resonance modes when radiation corrections are introduced. Finally, our method is used to predict the resonance wavelengths for face-to-face silver nanocube dimers on glass substrates. These results may be useful for the indirect measurements of the gaps in the dimers from extinction cross-section observations.

  9. The Lyman-alpha signature of the first galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Aaron

    2018-01-01

    Radiation from the first stars and galaxies initiated the dramatic phase transition marking an end to the cosmic dark ages. The emission and absorption signatures from the Lyman-alpha (Lyα) transition of neutral hydrogen have been indispensable in extending the observational frontier for high-redshift galaxies into the epoch of reionization. Lyα radiative transfer provides clues about the processes leading to Lyα escape from individual galaxies and the subsequent transmission through the intergalactic medium. Cosmological simulations incorporating Lyα radiative transfer enhance our understanding of fundamental physics by supplying the inferred spectra and feedback on the gas. In this talk, I will discuss the dynamical impact of Lyα radiation pressure on galaxy formation throughout cosmic reionization with the first fully coupled Lyα radiation-hydrodynamics simulations. Based on a suite of spherically symmetric models and high-resolution ab initio cosmological simulations we find that Lyα radiation pressure is dynamically important during the assembly of direct collapse black holes (DCBHs), which may be the seeds of the first supermassive black holes in the universe. Finally, I will discuss recent advances in Lyα modeling based on current state-of-the-art simulations and observational insights.

  10. Cascaded second-order processes for the efficient generation of narrowband terahertz radiation

    NASA Astrophysics Data System (ADS)

    Cirmi, Giovanni; Hemmer, Michael; Ravi, Koustuban; Reichert, Fabian; Zapata, Luis E.; Calendron, Anne-Laure; Çankaya, Hüseyin; Ahr, Frederike; Mücke, Oliver D.; Matlis, Nicholas H.; Kärtner, Franz X.

    2017-02-01

    The generation of high-energy narrowband terahertz radiation has gained heightened importance in recent years due to its potentially transformative impact on spectroscopy, high-resolution radar and more recently electron acceleration. Among various applications, such terahertz radiation is particularly important for table-top free electron lasers, which are at the moment a subject of extensive research. Second-order nonlinear optical methods are among the most promising techniques to achieve the required coherent radiation with energy > 10 mJ, peak field > 100 MV m-1, and frequency between 0.1 and 1 THz. However, they are conventionally thought to suffer from low efficiencies < ˜10-3, due to the high ratio between optical and terahertz photon energies, in what is known as the Manley-Rowe limitation. In this paper, we review the current second-order nonlinear optical methods for the generation of narrowband terahertz radiation. We explain how to employ spectral cascading to increase the efficiency beyond the Manley-Rowe limit and describe the first experimental results in the direction of a terahertz-cascaded optical parametric amplifier, a novel technique which promises to fully exploit spectral cascading to generate narrowband terahertz radiation with few percent optical-to-terahertz conversion efficiency.

  11. Main functions, recent updates, and applications of Synchrotron Radiation Workshop code

    NASA Astrophysics Data System (ADS)

    Chubar, Oleg; Rakitin, Maksim; Chen-Wiegart, Yu-Chen Karen; Chu, Yong S.; Fluerasu, Andrei; Hidas, Dean; Wiegart, Lutz

    2017-08-01

    The paper presents an overview of the main functions and new application examples of the "Synchrotron Radiation Workshop" (SRW) code. SRW supports high-accuracy calculations of different types of synchrotron radiation, and simulations of propagation of fully-coherent radiation wavefronts, partially-coherent radiation from a finite-emittance electron beam of a storage ring source, and time-/frequency-dependent radiation pulses of a free-electron laser, through X-ray optical elements of a beamline. An extended library of physical-optics "propagators" for different types of reflective, refractive and diffractive X-ray optics with its typical imperfections, implemented in SRW, enable simulation of practically any X-ray beamline in a modern light source facility. The high accuracy of calculation methods used in SRW allows for multiple applications of this code, not only in the area of development of instruments and beamlines for new light source facilities, but also in areas such as electron beam diagnostics, commissioning and performance benchmarking of insertion devices and individual X-ray optical elements of beamlines. Applications of SRW in these areas, facilitating development and advanced commissioning of beamlines at the National Synchrotron Light Source II (NSLS-II), are described.

  12. Radiation-induced insulator discharge pulses in the CRRES internal discharge monitor satellite experiment

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Mullen, E. G.; Brautigam, D. H.; Kerns, K. J.

    1992-01-01

    The Internal Discharge Monitor (IDM) was designed to observe electrical pulses from common electrical insulators in space service. The sixteen insulator samples included twelve planar printed circuit boards and four cables. The samples were fully enclosed, mutually isolated, and space radiation penetrated 0.02 cm of aluminum before striking the samples. Pulsing began on the seventh orbit, the maximum pulse rate occurred on the seventeenth orbit when 13 pulses occurred, and the pulses slowly diminished to about one per 3 orbits six months later. After 8 months, the radiation belts abruptly increased and the pulse rates attained a new high. These pulse rates were in agreement with laboratory experience on shorter time scales. Several of the samples never pulsed. If the pulses were not confined within IDM, the physical processes could spread to become a full spacecraft anomaly. The IDM results indicate the rate at which small insulator pulses occur. Small pulses are the seeds of larger satellite electrical anomalies. The pulse rates are compared with space radiation intensities, L shell location, and spectral distributions from the radiation spectrometers on the Combined Release and Radiation Effects Satellite.

  13. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling

    NASA Astrophysics Data System (ADS)

    Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang

    2017-12-01

    Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.

  14. FLUXCOM - Overview and First Synthesis

    NASA Astrophysics Data System (ADS)

    Jung, M.; Ichii, K.; Tramontana, G.; Camps-Valls, G.; Schwalm, C. R.; Papale, D.; Reichstein, M.; Gans, F.; Weber, U.

    2015-12-01

    We present a community effort aiming at generating an ensemble of global gridded flux products by upscaling FLUXNET data using an array of different machine learning methods including regression/model tree ensembles, neural networks, and kernel machines. We produced products for gross primary production, terrestrial ecosystem respiration, net ecosystem exchange, latent heat, sensible heat, and net radiation for two experimental protocols: 1) at a high spatial and 8-daily temporal resolution (5 arc-minute) using only remote sensing based inputs for the MODIS era; 2) 30 year records of daily, 0.5 degree spatial resolution by incorporating meteorological driver data. Within each set-up, all machine learning methods were trained with the same input data for carbon and energy fluxes respectively. Sets of input driver variables were derived using an extensive formal variable selection exercise. The performance of the extrapolation capacities of the approaches is assessed with a fully internally consistent cross-validation. We perform cross-consistency checks of the gridded flux products with independent data streams from atmospheric inversions (NEE), sun-induced fluorescence (GPP), catchment water balances (LE, H), satellite products (Rn), and process-models. We analyze the uncertainties of the gridded flux products and for example provide a breakdown of the uncertainty of mean annual GPP originating from different machine learning methods, different climate input data sets, and different flux partitioning methods. The FLUXCOM archive will provide an unprecedented source of information for water, energy, and carbon cycle studies.

  15. Atmospherical simulations of the OMEGA/MEX observations

    NASA Astrophysics Data System (ADS)

    Melchiorri, R.; Drossart, P.; Combes, M.; Encrenaz, T.; Fouchet, T.; Forget, F.; Bibring, J. P.; Ignatiev, N.; Moroz, V.; OMEGA Team

    The modelization of the atmospheric contribution in the martian spectrum is an important step for the OMEGA data analysis.A full line by line radiative transfer calculation is made for the gas absorption; the dust opacity component, in a first approximation, is calculated as an optically thin additive component.Due to the large number of parameters needed in the calculations, the building of a huge data base to be interpolated is not envisageable, for each observed OMEGA spectrum with calculation for all the involved parameters (atmospheric pressure, water abundance, CO abundance, dust opacity and geometric angles of observation). The simulation of the observations allows us to fix all the orbital parameters and leave the unknown parameters as the only variables.Starting from the predictions of the current meteorological models of Mars we build a smaller data base corresponding on each observation. We present here a first order simulation, which consists in retrieving atmospheric contribution from the solar reflected component as a multiplicative (for gas absorption) and an additive component (for suspended dust contribution); although a fully consistent approach will require to include surface and atmosphere contributions together in synthetic calculations, this approach is sufficient for retrieving mineralogic information cleaned from atmospheric absorption at first order.First comparison to OMEGA spectra will be presented, with first order retrieval of CO2 pressure, CO and H2O abundance, and dust opacity.

  16. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; DePasquale, Massimiliano; Mao, Jirong; Sakamoto, Taka; Shady, Patricia; Covino, Stefano; Yi-Zhong, Fan; Zhi-Ping, Jin; D'Avanzo, Paolo; Antonelli, Angelo; hide

    2011-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift UltraViolet Optical Telescope with ground-based optical and infrared data obtained using the REM and ROTSE telescopes to construct a detailed data set extending from 86 s to approx. 100000 s after the BAT trigger. Our data cover a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 5000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.

  17. πN scattering and γN → Nπ photoproduction within the unitary improved Born approximation

    NASA Astrophysics Data System (ADS)

    Mariano, A.

    2007-07-01

    Following the programme of describing consistently several processes where the isobar Δ(1232 MeV) nucleon resonance appears as an intermediate state, in this work we propose to unitarize our old improved Born approximation already used to describe successfully π+p elastic and radiative scattering, to treat pion photoproduction. First we add the effect of final state interactions and make a new determination of the mass, width and the coupling constant to the pion-nucleon state of the Δ resonance. Then extending the model for pion photoproduction and using the resonance parameters determined previously, we are able to define effective form factors (at k2γ = 0) for the γN → Δ vertex with values GM = 2.97 ± 0.08 and GE = 0.055 ± 0.010, by fitting the data for the M3/21+ and E3/21+ multipoles. These values are fully consistent with recent chiral effective field theory calculations, and using them we can predict satisfactorily the data for other multipoles and the photoproduction cross section. Finally, we intend a model-independent determination of the bare form factors making a dynamical dressing of the vertex, getting G0M = 1.69 ± 0.02, G0E = 0.028 ± 0.008 and R0EM = -1.67 ± 0.45%, which are compared with different quark models.

  18. Radiation Hardness Assurance (RHA) for Space Systems

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Buchner, Stephen

    2007-01-01

    This presentation discusses radiation hardness assurance (RHA) for space systems, providing both the programmatic aspects of RHA and the RHA procedure. RHA consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the space radiation environment. RHA also pertains to environment definition, part selection, part testing, spacecraft layout, radiation tolerant design, and mission/system/subsystems requirements. RHA procedure consists of establishing mission requirements, defining and evaluating the radiation hazard, selecting and categorizing the appropriate parts, and evaluating circuit response to hazard. The RHA approach is based on risk management and is confined only to parts, it includes spacecraft layout, system/subsystem/circuit design, and system requirements and system operations. RHA should be taken into account in the early phases of a program including the proposal and feasibility analysis phases.

  19. Relativistic initial conditions for N-body simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidler, Christian; Tram, Thomas; Crittenden, Robert

    2017-06-01

    Initial conditions for (Newtonian) cosmological N-body simulations are usually set by re-scaling the present-day power spectrum obtained from linear (relativistic) Boltzmann codes to the desired initial redshift of the simulation. This back-scaling method can account for the effect of inhomogeneous residual thermal radiation at early times, which is absent in the Newtonian simulations. We analyse this procedure from a fully relativistic perspective, employing the recently-proposed Newtonian motion gauge framework. We find that N-body simulations for ΛCDM cosmology starting from back-scaled initial conditions can be self-consistently embedded in a relativistic space-time with first-order metric potentials calculated using a linear Boltzmann code.more » This space-time coincides with a simple ''N-body gauge'' for z < 50 for all observable modes. Care must be taken, however, when simulating non-standard cosmologies. As an example, we analyse the back-scaling method in a cosmology with decaying dark matter, and show that metric perturbations become large at early times in the back-scaling approach, indicating a breakdown of the perturbative description. We suggest a suitable ''forwards approach' for such cases.« less

  20. Boundary Layer Protuberance Simulations in Channel Nozzle Arc-Jet

    NASA Technical Reports Server (NTRS)

    Marichalar, J. J.; Larin, M. E.; Campbell, C. H.; Pulsonetti, M. V.

    2010-01-01

    Two protuberance designs were modeled in the channel nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Structures Facility with the Data-Parallel Line Relaxation computational fluid dynamics code. The heating on the protuberance was compared to nominal baseline heating at a single fixed arc-jet condition in order to obtain heating augmentation factors for flight traceability in the Boundary Layer Transition Flight Experiment on Space Shuttle Orbiter flights STS-119 and STS-128. The arc-jet simulations were performed in conjunction with the actual ground tests performed on the protuberances. The arc-jet simulations included non-uniform inflow conditions based on the current best practices methodology and used variable enthalpy and constant mass flow rate across the throat. Channel walls were modeled as fully catalytic isothermal surfaces, while the test section (consisting of Reaction Cured Glass tiles) was modeled as a partially catalytic radiative equilibrium wall. The results of the protuberance and baseline simulations were compared to the applicable ground test results, and the effects of the protuberance shock on the opposite channel wall were investigated.

  1. Quantitative analysis of mycosporine-like amino acids in marine algae by capillary electrophoresis with diode-array detection

    PubMed Central

    Hartmann, Anja; Murauer, Adele; Ganzera, Markus

    2017-01-01

    Marine species have evolved a variety of physical or chemical strategies to diminish damage from elevated environmental ultraviolet radiation. Mycosporine-like amino acids, a group of widely distributed small water soluble compounds, are biologically relevant because of their photo-protective potential. In addition, presumed antioxidant and skin protective strategies raise the interest for possible medicinal and cosmetic applications. In this study the first CE method for the quantification of mycosporine-like amino acids in marine species is presented. A borate buffer system consisting of 30 mM sodium tetraborate in water at a pH-value of 10.3 enabled the baseline separation of five MAAs, namely palythine, mycosporine-serinol, asterina-330, shinorine and porphyra-334, in 27 min. Separation voltage, temperature and detection wavelength were 25 kV, 25 °C and 320 nm, respectively. The optimized method was fully validated and applied for the quantitative determination of MAAs in the marine macroalgae Palmaria palmata, Porphyra umbilicalis, and Porphyra sp., as well as the lichen Lichina pygmaea. PMID:28213175

  2. VizieR Online Data Catalog: Effects of preionization in radiative shocks (Sutherland+, 2017)

    NASA Astrophysics Data System (ADS)

    Sutherland, R. S.; Dopita, M. A.

    2017-06-01

    In this paper we treat the preionization problem in shocks over the velocity range 10

  3. Optimal aperture synthesis radar imaging

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Chau, J. L.

    2006-03-01

    Aperture synthesis radar imaging has been used to investigate coherent backscatter from ionospheric plasma irregularities at Jicamarca and elsewhere for several years. Phenomena of interest include equatorial spread F, 150-km echoes, the equatorial electrojet, range-spread meteor trails, and mesospheric echoes. The sought-after images are related to spaced-receiver data mathematically through an integral transform, but direct inversion is generally impractical or suboptimal. We instead turn to statistical inverse theory, endeavoring to utilize fully all available information in the data inversion. The imaging algorithm used at Jicamarca is based on an implementation of the MaxEnt method developed for radio astronomy. Its strategy is to limit the space of candidate images to those that are positive definite, consistent with data to the degree required by experimental confidence limits; smooth (in some sense); and most representative of the class of possible solutions. The algorithm was improved recently by (1) incorporating the antenna radiation pattern in the prior probability and (2) estimating and including the full error covariance matrix in the constraints. The revised algorithm is evaluated using new 28-baseline electrojet data from Jicamarca.

  4. Radiative and Physiological Effects of Increased CO2: How Does This Interaction Affect Climate?

    NASA Technical Reports Server (NTRS)

    Bounoua, Lahouari

    2011-01-01

    Several climate models indicate that in a 2xCO2 environment, temperature and precipitation would increase and runoff would increase faster than precipitation. These models, however, did not allow the vegetation to increase its leaf density as a response to the physiological effects of increased CO2 and consequent changes in climate. Other assessments included these interactions but did not account for the vegetation downregulation to reduce plant's photosynthetic activity and as such resulted in a weak vegetation negative response. When we combine these interactions in climate simulations with 2xCO2, the associated increase in precipitation contributes primarily to increase evapotranspiration rather than surface runoff, consistent with observations, and results in an additional cooling effect not fully accounted for in previous 2xCO2 simulations. By accelerating the water cycle, this feedback slows but does not alleviate the projected warming, reducing the land surface warming by 0.6 C. Compared to previous studies, these results imply that long term negative feedback from CO2-induced increases in vegetation density could reduce temperature following a stabilization of CO2 concentration.

  5. Rapid temporal evolution of radiation from non-thermal electrons in solar flares

    NASA Technical Reports Server (NTRS)

    Lu, Edward T.; Petrosian, Vahe

    1987-01-01

    Solutions of the time dependent Fokker-Planck equation was found for accelerated electrons undergoing Coulomb collisions in a magnetized, fully ionized plasma. An exact solution was found for arbitrary pitch angle and energy distribution in a uniform background plasma. Then, for an inhomogeneous plasma, a solution was found for particles with small pitch angles. These solutions were used to calculate the temporal evolution of bremsstrahlung x-rays from short bursts of nonthermal electron beams, and these spectra were compared with observed high time resolution spectra of short timescale solar hard x-ray bursts. It is shown that the observed softening in time of the spectra rules out a homogeneous background and therefore the possibility of electrons being confined to the corona either because of converging magnetic field or high densities. The inhomogeneous solution was also applied to a model with constant coronal density and exponentially rising chromospheric density. The spectra are shown to be consistent with that produced by a collimated beam of electrons accelerated in the corona with certain given conditions. These conditions could be violated if large pitch angle electrons are present.

  6. The Belle-II Depfet Pixel Detector at the Superkekb Flavour Factory

    NASA Astrophysics Data System (ADS)

    Heindl, Stefan

    2012-08-01

    The ongoing upgrade of the asymmetric electron positron collider KEKB also requires extensive detector upgrades to cope with the new design luminosity of 8 · 1035 cm-2 · s-1 · Of critical importance is the new silicon pixel vertex tracker, which will significantly improve the decay vertex resolution, crucial for time dependent CP violation measurements. This new detector will consist of two layers of DEPFET pixel seii8ors very close to the interaction point. These sensors combine both particle detection and amplification of the signal by embedding a field effect transistor into a 75 μm thick fully depleted silicon substrate, providing very high signal to noise ratios and excellent spatial resolution. Using this technology satisfies the given requirements of extremely low material and high radiation tolerance at the new Belle II experiment. The power dissipation due to continuous readout at high rate and spatial constraints also give strict requirements for the mechanical support and cooling of the new detector. We will discuss the overall concept of the pixel vertex tracker, its expected performance and the challenging mechanical integration.

  7. Informed consent in human research: what to say and how to say it.

    PubMed

    Reiman, Robert E

    2013-02-01

    To ensure that the possibility of harm to human research subjects is minimized, clinical trials and other research protocols are subject to oversight by Institutional Review Boards (IRBs). IRBs require that subjects be fully informed about the real or potential risks of participation in a research study. The use of radiological examinations in research protocols subjects the participants to exposure to ionizing radiation, which in theory carries a risk of stochastic effects such as radiation-induced cancer, and in practice may lead to deterministic effects such as skin injury. Because IRB members and clinical study coordinators may have little knowledge of radiation effects or how best to communicate the risk to the research subjects, they will consult with institutional Radiation Safety Committees and radiation protection professionals regarding how to integrate radiation risk information into the informed consent process. Elements of radiation informed consent include: (1) comparison of the radiation dose to some benchmark that enables the study subjects to make a value judgment regarding the acceptability of the risk; (2) a quantitative expression of the absolute risk of stochastic effects; (3) an expression of uncertainty in the risk; and (4) understandability. Standardized risk statement templates may be created for specific radiological examinations. These standardized risk statements may be deployed as paper forms or electronically in the form of internet-based applications. The technical nature of creating useful radiation risk statements represents an opportunity for radiation protection professionals to participate productively in the clinical research process.

  8. Radiation damage evaluation on concrete within a facility for Selective Production of Exotic Species (SPES Project), Italy.

    PubMed

    Pomaro, B; Salomoni, V A; Gramegna, F; Prete, G; Majorana, C E

    2011-10-30

    Concrete is commonly used as a biological shield against nuclear radiation. As long as, in the design of nuclear facilities, its load carrying capacity is required together with its shielding properties, changes in the mechanical properties due to nuclear radiation are of particular significance and may have to be taken into account in such circumstances. The study presented here allows for reaching first evidences on the behavior of concrete when exposed to nuclear radiation in order to evaluate the consequent effect on the mechanical field, by means of a proper definition of the radiation damage, strictly connected with the strength properties of the building material. Experimental evidences on the decay of the mechanical modulus of concrete have allowed for implementing the required damage law within a 3D F.E. research code which accounts for the coupling among moisture, heat transfer and the mechanical field in concrete treated as a fully coupled porous medium. The development of the damage front in a concrete shielding wall is analyzed under neutron radiation and results within the wall thickness are reported for long-term radiation spans and several concrete mixtures in order to discuss the resulting shielding properties. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. A study of the stable boundary layer in strong gap flows in northwest Greenland using a research aircraft

    NASA Astrophysics Data System (ADS)

    Heinemann, Günther; Drüe, Clemens

    2016-04-01

    Gap flows and the stable boundary layer (SBL) were studied in northwest Greenland during the aircraft-based experiment IKAPOS (Investigation of Katabatic winds and Polynyas during Summer) in June 2010. The measurements were performed using the research aircraft POLAR 5 of Alfred Wegener Institute (AWI, Bremerhaven). Besides navigational and basic meteorological instrumentation, the aircraft was equipped with radiation and surface temperature sensors, two laser altimeters, and video and digital cameras. In order to determine turbulent heat and momentum fluxes, POLAR 5 was instrumented with a turbulence measurement system collecting data on a nose boom with a sampling rate of 100 Hz. In the area of the Nares Strait a stable, but fully turbulent boundary layer with strong winds of 15 m s-1 to 20 m s-1 was found during conditions of relatively warm synoptically induced northerly winds through the Nares Strait. Strong surface inversions were present in the lowest 100 m to 200 m. As a consequence of channeling effects a well-pronounced low-level jet (LLJ) system was documented. The channeling process is consistent with gap flow theory and can be shown to occur at the topographic gap between Greenland and Canada represented by the Smith Sound. While the flow through the gap and over the surrounding mountains leads to the lowering of isotropic surfaces and the acceleration of the flow, the strong turbulence associated with the LLJ leads to the development of an internal thermal SBL past the gap. Turbulence statistics in this fully turbulent SBL can be shown to follow the local scaling behaviour.

  10. Achieving quasi-adiabatic thermal environment to maximize resolution power in very high-pressure liquid chromatography: Theory, models, and experiments.

    PubMed

    Gritti, Fabrice; Gilar, Martin; Jarrell, Joseph A

    2016-04-29

    A cylindrical vacuum chamber (inner diameter 5 cm) housing a narrow-bore 2.1 mm×100 mm column packed with 1.8 μm HSS-T3 fully porous particles was built in order to isolate thermally the chromatographic column from the external air environment. Consistent with statistical physics and the mean free path of air molecules, the experimental results show that natural air convection and conduction are fully eliminated for housing air pressures smaller than 10(-4) Torr. Heat radiation is minimized by wrapping up the column with low-emissivity aluminum-tape (emissivity coefficient ϵ=0.03 vs. 0.28 for polished stainless steel 316). Overall, the heat flux at the column wall is reduced by 96% with respect to standard still-air ovens. From a practical viewpoint, the efficiency of the column run at a flow rate of 0.6 mL/min at a constant 13,000 psi pressure drop (the viscous heat power is around 9 W/m) is improved by up to 35% irrespective of the analyte retention. Models of heat and mass transfer reveal that (1) the amplitude of the radial temperature gradient is significantly reduced from 0.30 to 0.01 K and (2) the observed improvement in resolution power stems from a more uniform distribution of the flow velocity across the column diameter. The eddy dispersion term in the van Deemter equation is reduced by 0.8±0.1 reduced plate height unit, a significant gain in column performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Two-Dimensional Study of Mass Outflow from Central Gravitational Astrophysical Object. Analytical 2-D solutions for thermo-radiatively driven stellar winds.

    NASA Astrophysics Data System (ADS)

    Kakouris, A.

    The present PhD Thesis deals with the two-dimensional description of the plasma outflow from central astrophysical objects. The concept of stellar winds was originated by Eugene Parker 1958, and has become a very hot area of research the last decade. Mass outflow from all types of stars, as well as AGNs, quasars or planetary nebulae are observed in all astrophysical scales indicating at least two-dimensional (2-D) features (e.g. Hughes (editor), 1991, Beams and jets in astrophysics, Cambridge University Press). In a first stage, the flows are modeled empirically but their origin has to be in accordance with the fluid mechanics and the conservation laws. So, self-consistent 2-D models are needed (i.e. full solutions of the total set of equations which conserve mass, momentum and energy). The main mechanisms of ejecting plasma from an astrophysical object are the thermal (similar to solar wind), the radiative and the magnetic. Self consistent analytical 2-D steady hydrodynamic (HD) solutions for stellar winds have been presented by Tsinganos & Vlastou 1988, Tsinganos & Trussoni 1990, Tsinganos & Sauty 1992 and Lima & Priest 1993. Following their description we derive a new set of solutions in the present work. Our main assumptions are steady state (\\partial/\\partial t = 0), axisymmetry to the rotational axis (\\partial/\\partial \\phi = 0) and helicoidal geometry for the streamlines (meridional velocity {\\vec u}_{\\theta} = {\\vec 0} ). Besides, the fluid is assumed to be a nonmagnetized fully ionized hydrogen. The model could be named as non polytropic since we do not follow the polytropic assumption with a constant polytropic exponent but we evaluate the total external energy needed by the 1st law of Thermodynamics. Also, the solutions are \\theta-self similar since the dependence to the colatitude is given from the beginning. The generalized differential rotation of the fluid is taken into account considering a dependence of the rotational velocity of (V\\phi \\propto \\sin\\mu \\theta / R ) where \\mu is a parameter and R the radial distance. Using these assumptions we derive fully analytical (only a Simpson integration is needed) 2-D solutions of four types (with velocity maximum either along the equator or the polar axis of the central astrophysical object). One of them (named as solution in Range I) exhibits suitable features for stellar wind interpretation with velocity maximum along the equator because the outflow starts subsonic at the stellar surface and terminates supersonic at infinity. The other solutions are subsonic (breeze) or they could be examined only as inflows. The Range I solution is applied to real astrophysical objects. Moreover, the thermally driven 2 - D solutions are extended including the radiative force due to the absorption of the stellar light in the fluid. So, the 2-D solutions represent thermally and radiatively driven flows. The assumptions for the radiative force inclusion are that the radiative acceleration is radial and it is a function of radial distance solely (i.e. it is independent of the velocity). The first radiatively driven wind model was presented in 1975 by Castor, Abbott & Klein and was applied to O5f main sequence stars. In order to describe the radiative origin of the massive winds from early and late spectral type stars, the radiative force is separated into its continuum, thick lines and thin lines parts. The mechanism of the continuous absorption is the Thomson scattering of the photons by the free plasma electrons and it is always present. If the line contribution corresponds to the thick absorption spectral lines the model is named as 'thick line driven' otherwise the atmosphere is thought 'optically thin'. In this Thesis we consider an optically thin atmosphere and in this case the radiative force is written as a power law of distance (Chen & Marlborough 1994, Lamers 1986). Moreover, we examine the exponential dependence of the radiative acceleration upon the radial distance and exponential deviations from power laws. We apply to supergiant B stars and we obtain results in agreement with observations (Underhill & i oazan 1982). In the first chapter of the Thesis, the reader is introduced in the concept of the astrophysical flows. I show some observational data for outflows and the basic mechanisms of the outflows are reported. In chapter 2, the basic hydrodynamic equations are presented. In chapter 3, some 1-D or 2-D models (relevant to this Thesis) are reported. The new results appear in chapters 4, 5, 6 which posses the 3/4 of the Thesis. In chapter 4, the basic assumptions are presented and the full mathematical derivation and deduction of the solutions are given. The inclusion of the radiative force is also given. In chapter 5, the thermally driven solution is applied to astrophysical objects. We first apply to Sun and to young T Tauri stars and to late type supergiant stars. The 2-D nature of the solutions is presented. We note that the model fails to describe the outflow at the stellar surface because it needs relatively high initial velocities. In that area the magnetic field plays probably an important role. I deduce the role of the centrifugal force in the solutions comparing it with the thermal pressure force, the radiative force and gravity. The result is that the influence of the centrifugal force is negligible. Moreover, I apply the thermally and radiatively driven solution in Range I to B type supergiants. The problem of the high initial velocity at the stellar surface is waved when the radiative force is important. The results coincide with observations. In chapter 6, the haracteristics of the model are summarized and compared with previous models.

  12. Status of LDEF radiation modeling

    NASA Technical Reports Server (NTRS)

    Watts, John W.; Armstrong, T. W.; Colborn, B. L.

    1995-01-01

    The current status of model prediction and comparison with LDEF radiation dosimetry measurements is summarized with emphasis on major results obtained in evaluating the uncertainties of present radiation environment model. The consistency of results and conclusions obtained from model comparison with different sets of LDEF radiation data (dose, activation, fluence, LET spectra) is discussed. Examples where LDEF radiation data and modeling results can be utilized to provide improved radiation assessments for planned LEO missions (e.g., Space Station) are given.

  13. Cloud types and the tropical Earth radiation budget, revised

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.; Kyle, H. Lee

    1989-01-01

    Nimbus-7 cloud and Earth radiation budget data are compared in a study of the effects of clouds on the tropical radiation budget. The data consist of daily averages over fixed 500 sq km target areas, and the months of July 1979 and January 1980 were chosen to show the effect of seasonal changes. Six climate regions, consisting of 14 to 24 target areas each, were picked for intensive analysis because they exemplified the range in the tropical cloud/net radiation interactions. The normal analysis was to consider net radiation as the independent variable and examine how cloud cover, cloud type, albedo and emitted radiation varied with the net radiation. Two recurring themes keep repeating on a local, regional, and zonal basis: the net radiation is strongly influenced by the average cloud type and amount present, but most net radiation values could be produced by several combinations of cloud types and amount. The regions of highest net radiation (greater than 125 W/sq m) tend to have medium to heavy cloud cover. In these cases, thin medium altitude clouds predominate. Their cloud tops are normally too warm to be classified as cirrus by the Nimbus cloud algorithm. A common feature in the tropical oceans are large regions where the total regional cloud cover varies from 20 to 90 percent, but with little regional difference in the net radiation. The monsoon and rain areas are high net radiation regions.

  14. Implicit filtered P{sub N} for high-energy density thermal radiation transport using discontinuous Galerkin finite elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laboure, Vincent M., E-mail: vincent.laboure@tamu.edu; McClarren, Ryan G., E-mail: rgm@tamu.edu; Hauck, Cory D., E-mail: hauckc@ornl.gov

    2016-09-15

    In this work, we provide a fully-implicit implementation of the time-dependent, filtered spherical harmonics (FP{sub N}) equations for non-linear, thermal radiative transfer. We investigate local filtering strategies and analyze the effect of the filter on the conditioning of the system, showing in particular that the filter improves the convergence properties of the iterative solver. We also investigate numerically the rigorous error estimates derived in the linear setting, to determine whether they hold also for the non-linear case. Finally, we simulate a standard test problem on an unstructured mesh and make comparisons with implicit Monte Carlo (IMC) calculations.

  15. Modes competition in superradiant emission from an inverted sub-wavelength thick slab of two-level atoms

    NASA Astrophysics Data System (ADS)

    Manassah, Jamal T.

    2016-08-01

    Using the expansion in the eigenmodes of 1-D Lienard-Wiechert kernel, the temporal and spectral profiles of the radiation emitted by a fully inverted collection of two-level atoms in a sub-wavelength slab geometry are computed. The initial number of amplifying modes determine the specific regime of radiation. In particular, the temporal profile of the field intensity is oscillatory and the spectral profile is non-Lorentzian with two unequal height peaks in a narrow band centered at the slab thickness value at which the real parts of the lowest order odd and even eigenvalues are equal.

  16. Solar ultraviolet radiation cataract.

    PubMed

    Löfgren, Stefan

    2017-03-01

    Despite being a treatable disease, cataract is still the leading cause for blindness in the world. Solar ultraviolet radiation is epidemiologically linked to cataract development, while animal and in vitro studies prove a causal relationship. However, the pathogenetic pathways for the disease are not fully understood and there is still no perfect model for human age related cataract. This non-comprehensive overview focus on recent developments regarding effects of solar UV radiation wavebands on the lens. A smaller number of fundamental papers are also included to provide a backdrop for the overview. Future studies are expected to further clarify the cellular and subcellular mechanisms for UV radiation-induced cataract and especially the isolated or combined temporal and spatial effects of UVA and UVB in the pathogenesis of human cataract. Regardless of the cause for cataract, there is a need for advances in pharmaceutical or other treatment modalities that do not require surgical replacement of the lens. Copyright © 2016. Published by Elsevier Ltd.

  17. A theoretical approach to sound propagation and radiation for ducts with suppressors

    NASA Technical Reports Server (NTRS)

    Rice, E. J.; Sawdy, D. T.

    1981-01-01

    The several phenomena involved in theoretical prediction of the far-field sound radiation attenuation from an acoustically lined duct were studied. These include absorption by the suppressor, termination reflections, and far-field radiation. Extensive parametric studies show that the suppressor absorption performance can be correlated with mode cut-off ratio or angle of propagation. The other phenomena can be shown to depend explicitly upon mode cut-off ratio. A complete system can thus be generated which can be used to evaluate aircraft sound suppressors and which can be related to the sound source through the cut-off ratio-acoustic power distribution. Although the method is most fully developed for inlet suppressors, several aft radiated noise phenomena are also discussed. This simplified suppressor design and evaluation method is summarized, the recent improvements in the technique are presented, and areas where further refinement is necessary are discussed. Noise suppressor data from engine experiments are compared with the theoretical calculations.

  18. Precision Measurement of Phonon-Polaritonic Near-Field Energy Transfer between Macroscale Planar Structures Under Large Thermal Gradients

    NASA Astrophysics Data System (ADS)

    Ghashami, Mohammad; Geng, Hongyao; Kim, Taehoon; Iacopino, Nicholas; Cho, Sung Kwon; Park, Keunhan

    2018-04-01

    Despite its strong potentials in emerging energy applications, near-field thermal radiation between large planar structures has not been fully explored in experiments. Particularly, it is extremely challenging to control a subwavelength gap distance with good parallelism under large thermal gradients. This article reports the precision measurement of near-field radiative energy transfer between two macroscale single-crystalline quartz plates that support surface phonon polaritons. Our measurement scheme allows the precise control of a gap distance down to 200 nm in a highly reproducible manner for a surface area of 5 × 5 mm2 . We have measured near-field thermal radiation as a function of the gap distance for a broad range of thermal gradients up to ˜156 K , observing more than 40 times enhancement of thermal radiation compared to the blackbody limit. By comparing with theoretical prediction based on fluctuational electrodynamics, we demonstrate that such remarkable enhancement is owing to phonon-polaritonic energy transfer across a nanoscale vacuum gap.

  19. Status and future trends of radiation processing in Brazil

    NASA Astrophysics Data System (ADS)

    Lugão, A. B.; Andrade, E.; Silva, L. G.

    1998-06-01

    Electron-beam and gamma irradiation of polymers are widely applied in Brazil today. The main applications are: - radio-induced crosslinking of wire and cable for automobile and appliance industry; - heat shrinkable tubes for appliance, automobile and electronic; - heat shrinkable packing for food processing industry; - sterilization of medical supplies and so on. Nevertheless, there are only a few industrial facilities about 20 years old in full operation at present and there are some new low energy machines for food packing. The reason for such absence of investment in this area was studied and the relation between automobile and appliance production with radiation processing was fully demonstrated for Brazil case. In conclusion, it was shown that the industry of radiation processing of polymers is likely to experience a strong growth based on the continuous increase in the production of automobiles and appliances. The R&D activities of IPEN are an important support for developing the necessary technology and developing the necessary confidence in the radiation as tool for economical and social growth.

  20. Multidimensional Modeling of Atmospheric Effects and Surface Heterogeneities on Remote Sensing

    NASA Technical Reports Server (NTRS)

    Gerstl, S. A. W.; Simmer, C.; Zardecki, A. (Principal Investigator)

    1985-01-01

    The overall goal of this project is to establish a modeling capability that allows a quantitative determination of atmospheric effects on remote sensing including the effects of surface heterogeneities. This includes an improved understanding of aerosol and haze effects in connection with structural, angular, and spatial surface heterogeneities. One important objective of the research is the possible identification of intrinsic surface or canopy characteristics that might be invariant to atmospheric perturbations so that they could be used for scene identification. Conversely, an equally important objective is to find a correction algorithm for atmospheric effects in satellite-sensed surface reflectances. The technical approach is centered around a systematic model and code development effort based on existing, highly advanced computer codes that were originally developed for nuclear radiation shielding applications. Computational techniques for the numerical solution of the radiative transfer equation are adapted on the basis of the discrete-ordinates finite-element method which proved highly successful for one and two-dimensional radiative transfer problems with fully resolved angular representation of the radiation field.

  1. AIR Instrument Array

    NASA Technical Reports Server (NTRS)

    Jones, I. W.; Wilson, J. W.; Maiden, D. L.; Goldhagen, P.; Shinn, J. L.

    2003-01-01

    The large number of radiation types composing the atmospheric radiation requires a complicated combination of instrument types to fully characterize the environment. A completely satisfactory combination has not as yet been flown and would require a large capital outlay to develop. In that the funds of the current project were limited to essential integration costs, an international collaboration was formed with partners from six countries and fourteen different institutions with their own financial support for their participation. Instruments were chosen to cover sensitivity to all radiation types with enough differential sensitivity to separate individual components. Some instruments were chosen as important to specify the physical field component and other instruments were chosen on the basis that they could be useful in dosimetric evaluation. In the present paper we will discuss the final experimental flight package for the ER-2 flight campaign.

  2. Radiative Heating in MSL Entry: Comparison of Flight Heating Discrepancy to Ground Test and Predictive Models

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Brandis, Aaron M.; White, Todd R.; Mahzari, Milad; Bose, Deepak

    2014-01-01

    During the recent entry of the Mars Science Laboratory (MSL), the heat shield was equipped with thermocouple stacks to measure in-depth heating of the thermal protection system (TPS). When only convective heating was considered, the derived heat flux from gauges in the stagnation region was found to be underpredicted by as much as 17 W/sq cm, which is significant compared to the peak heating of 32 W/sq cm. In order to quantify the contribution of radiative heating phenomena to the discrepancy, ground tests and predictive simulations that replicated the MSL entry trajectory were performed. An analysis is carried through to assess the quality of the radiation model and the impact to stagnation line heating. The impact is shown to be significant, but does not fully explain the heating discrepancy.

  3. Non-abelian factorisation for next-to-leading-power threshold logarithms

    NASA Astrophysics Data System (ADS)

    Bonocore, D.; Laenen, E.; Magnea, L.; Vernazza, L.; White, C. D.

    2016-12-01

    Soft and collinear radiation is responsible for large corrections to many hadronic cross sections, near thresholds for the production of heavy final states. There is much interest in extending our understanding of this radiation to next-to-leading power (NLP) in the threshold expansion. In this paper, we generalise a previously proposed all-order NLP factorisation formula to include non-abelian corrections. We define a nonabelian radiative jet function, organising collinear enhancements at NLP, and compute it for quark jets at one loop. We discuss in detail the issue of double counting between soft and collinear regions. Finally, we verify our prescription by reproducing all NLP logarithms in Drell-Yan production up to NNLO, including those associated with double real emission. Our results constitute an important step in the development of a fully general resummation formalism for NLP threshold effects.

  4. Radiation from advanced solid rocket motor plumes

    NASA Technical Reports Server (NTRS)

    Farmer, Richard C.; Smith, Sheldon D.; Myruski, Brian L.

    1994-01-01

    The overall objective of this study was to develop an understanding of solid rocket motor (SRM) plumes in sufficient detail to accurately explain the majority of plume radiation test data. Improved flowfield and radiation analysis codes were developed to accurately and efficiently account for all the factors which effect radiation heating from rocket plumes. These codes were verified by comparing predicted plume behavior with measured NASA/MSFC ASRM test data. Upon conducting a thorough review of the current state-of-the-art of SRM plume flowfield and radiation prediction methodology and the pertinent data base, the following analyses were developed for future design use. The NOZZRAD code was developed for preliminary base heating design and Al2O3 particle optical property data evaluation using a generalized two-flux solution to the radiative transfer equation. The IDARAD code was developed for rapid evaluation of plume radiation effects using the spherical harmonics method of differential approximation to the radiative transfer equation. The FDNS CFD code with fully coupled Euler-Lagrange particle tracking was validated by comparison to predictions made with the industry standard RAMP code for SRM nozzle flowfield analysis. The FDNS code provides the ability to analyze not only rocket nozzle flow, but also axisymmetric and three-dimensional plume flowfields with state-of-the-art CFD methodology. Procedures for conducting meaningful thermo-vision camera studies were developed.

  5. Effect of long-term exposure to mobile phone radiation on alpha-Int1 gene sequence of Candida albicans

    PubMed Central

    Shahin-jafari, Ariyo; Bayat, Mansour; Shahhosseiny, Mohammad Hassan; Tajik, Parviz; Roudbar-mohammadi, Shahla

    2015-01-01

    Over the last decade, communication industries have witnessed a tremendous expansion, while, the biological effects of electromagnetic waves have not been fully elucidated. Current study aimed at evaluating the mutagenic effect of long-term exposure to 900-MHz radiation on alpha-Int1 gene sequences of Candida albicans. A standard 900 MHz radiation generator was used for radiation. 10 ml volumes from a stock suspension of C. albicans were transferred into 10 polystyrene tubes. Five tubes were exposed at 4 °C to a fixed magnitude of radiation with different time periods of 10, 70, 210, 350 and 490 h. The other 5 tubes were kept far enough from radiation. The samples underwent genomic DNA extraction. PCR amplification of alpha-Int1 gene sequence was done using one set of primers. PCR products were resolved using agarose gel electrophoresis and the nucleotide sequences were determined. All samples showed a clear electrophoretic band around 441 bp and further sequencing revealed the amplified DNA segments are related to alpha-Int1 gene of the yeast. No mutations in the gene were seen in radiation exposed samples. Long-term exposure of the yeast to mobile phone radiation under the above mentioned conditions had no mutagenic effect on alpha-Int1 gene sequence. PMID:27081370

  6. Effect of long-term exposure to mobile phone radiation on alpha-Int1 gene sequence of Candida albicans.

    PubMed

    Shahin-Jafari, Ariyo; Bayat, Mansour; Shahhosseiny, Mohammad Hassan; Tajik, Parviz; Roudbar-Mohammadi, Shahla

    2016-05-01

    Over the last decade, communication industries have witnessed a tremendous expansion, while, the biological effects of electromagnetic waves have not been fully elucidated. Current study aimed at evaluating the mutagenic effect of long-term exposure to 900-MHz radiation on alpha-Int1 gene sequences of Candida albicans. A standard 900 MHz radiation generator was used for radiation. 10 ml volumes from a stock suspension of C. albicans were transferred into 10 polystyrene tubes. Five tubes were exposed at 4 °C to a fixed magnitude of radiation with different time periods of 10, 70, 210, 350 and 490 h. The other 5 tubes were kept far enough from radiation. The samples underwent genomic DNA extraction. PCR amplification of alpha-Int1 gene sequence was done using one set of primers. PCR products were resolved using agarose gel electrophoresis and the nucleotide sequences were determined. All samples showed a clear electrophoretic band around 441 bp and further sequencing revealed the amplified DNA segments are related to alpha-Int1 gene of the yeast. No mutations in the gene were seen in radiation exposed samples. Long-term exposure of the yeast to mobile phone radiation under the above mentioned conditions had no mutagenic effect on alpha-Int1 gene sequence.

  7. The American Society for Radiation Oncology's 2015 Core Physics Curriculum for Radiation Oncology Residents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burmeister, Jay, E-mail: burmeist@karmanos.org; Chen, Zhe; Chetty, Indrin J.

    Purpose: The American Society for Radiation Oncology (ASTRO) Physics Core Curriculum Subcommittee (PCCSC) has updated the recommended physics curriculum for radiation oncology resident education to improve consistency in teaching, intensity, and subject matter. Methods and Materials: The ASTRO PCCSC is composed of physicists and physicians involved in radiation oncology residency education. The PCCSC updated existing sections within the curriculum, created new sections, and attempted to provide additional clinical context to the curricular material through creation of practical clinical experiences. Finally, we reviewed the American Board of Radiology (ABR) blueprint of examination topics for correlation with this curriculum. Results: The newmore » curriculum represents 56 hours of resident physics didactic education, including a 4-hour initial orientation. The committee recommends completion of this curriculum at least twice to assure both timely presentation of material and re-emphasis after clinical experience. In addition, practical clinical physics and treatment planning modules were created as a supplement to the didactic training. Major changes to the curriculum include addition of Fundamental Physics, Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy, and Safety and Incidents sections, and elimination of the Radiopharmaceutical Physics and Dosimetry and Hyperthermia sections. Simulation and Treatment Verification and optional Research and Development in Radiation Oncology sections were also added. A feedback loop was established with the ABR to help assure that the physics component of the ABR radiation oncology initial certification examination remains consistent with this curriculum. Conclusions: The ASTRO physics core curriculum for radiation oncology residents has been updated in an effort to identify the most important physics topics for preparing residents for careers in radiation oncology, to reflect changes in technology and practice since the publication of previous recommended curricula, and to provide practical training modules in clinical radiation oncology physics and treatment planning. The PCCSC is committed to keeping the curriculum current and consistent with the ABR examination blueprint.« less

  8. The American Society for Radiation Oncology's 2015 Core Physics Curriculum for Radiation Oncology Residents.

    PubMed

    Burmeister, Jay; Chen, Zhe; Chetty, Indrin J; Dieterich, Sonja; Doemer, Anthony; Dominello, Michael M; Howell, Rebecca M; McDermott, Patrick; Nalichowski, Adrian; Prisciandaro, Joann; Ritter, Tim; Smith, Chadd; Schreiber, Eric; Shafman, Timothy; Sutlief, Steven; Xiao, Ying

    2016-07-15

    The American Society for Radiation Oncology (ASTRO) Physics Core Curriculum Subcommittee (PCCSC) has updated the recommended physics curriculum for radiation oncology resident education to improve consistency in teaching, intensity, and subject matter. The ASTRO PCCSC is composed of physicists and physicians involved in radiation oncology residency education. The PCCSC updated existing sections within the curriculum, created new sections, and attempted to provide additional clinical context to the curricular material through creation of practical clinical experiences. Finally, we reviewed the American Board of Radiology (ABR) blueprint of examination topics for correlation with this curriculum. The new curriculum represents 56 hours of resident physics didactic education, including a 4-hour initial orientation. The committee recommends completion of this curriculum at least twice to assure both timely presentation of material and re-emphasis after clinical experience. In addition, practical clinical physics and treatment planning modules were created as a supplement to the didactic training. Major changes to the curriculum include addition of Fundamental Physics, Stereotactic Radiosurgery/Stereotactic Body Radiation Therapy, and Safety and Incidents sections, and elimination of the Radiopharmaceutical Physics and Dosimetry and Hyperthermia sections. Simulation and Treatment Verification and optional Research and Development in Radiation Oncology sections were also added. A feedback loop was established with the ABR to help assure that the physics component of the ABR radiation oncology initial certification examination remains consistent with this curriculum. The ASTRO physics core curriculum for radiation oncology residents has been updated in an effort to identify the most important physics topics for preparing residents for careers in radiation oncology, to reflect changes in technology and practice since the publication of previous recommended curricula, and to provide practical training modules in clinical radiation oncology physics and treatment planning. The PCCSC is committed to keeping the curriculum current and consistent with the ABR examination blueprint. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Radiation signatures from a locally energized flaring loop

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.; Vlahos, L.

    1980-01-01

    The radiation signatures from a locally energized solar flare loop based on the physical properties of the energy release mechanisms were consistent with hard X-ray, microwave, and EUV observations for plausible source parameters. It was found that a suprathermal tail of high energy electrons is produced by the primary energy release, and that the number of energetic charged particles ejected into the interplanetary medium in the model is consistent with observations. The radiation signature model predicts that the intrinsic polarization of the hard X-ray burst should increase over the photon energy range of 20 to 100 keV.

  10. Design and construction of portable survey meter

    NASA Astrophysics Data System (ADS)

    Singseeta, W.; Thong-aram, D.; Pencharee, S.

    2017-09-01

    This work was aimed to design and construction of portable survey meter for radiation dose measuring. The designed system consists of 4 main parts consisting of low voltage power supply, radiation detection, radiation measurement and data display part on android phone. The test results show that the ripple voltage of low voltage power supply is less than 1%, the maximum integral counts are found to be 104 counts per second and the maximum distance of wireless commination between the server and the client is about 10 meter. It was found that the developed system had small size and light weight for portable instrument.

  11. Non-uniform Solar Temperature Field on Large Aperture, Fully-Steerable Telescope Structure

    NASA Astrophysics Data System (ADS)

    Liu, Yan

    2016-09-01

    In this study, a 110-m fully steerable radio telescope was used as an analysis platform and the integral parametric finite element model of the antenna structure was built in the ANSYS thermal analysis module. The boundary conditions of periodic air temperature, solar radiation, long-wave radiation shadows of the surrounding environment, etc. were computed at 30 min intervals under a cloudless sky on a summer day, i.e., worstcase climate conditions. The transient structural temperatures were then analyzed under a period of several days of sunshine with a rational initial structural temperature distribution until the whole set of structural temperatures converged to the results obtained the day before. The non-uniform temperature field distribution of the entire structure and the main reflector surface RMS were acquired according to changes in pitch and azimuth angle over the observation period. Variations in the solar cooker effect over time and spatial distributions in the secondary reflector were observed to elucidate the mechanism of the effect. The results presented here not only provide valuable realtime data for the design, construction, sensor arrangement and thermal deformation control of actuators but also provide a troubleshooting reference for existing actuators.

  12. European Crew Personal Active Dosimeter (EuCPAD), a novel dosimetry system utilizing operational and scientific synergies for the benefit of humans in space

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas

    A significant expansion of Human presence in space can be recognized over the last decade. Not only the frequency of human space mission did rise, but also time in space, mission duration with extended flights lasting half a year or more are becoming "standard". Despite the challenges to human health and well-being are still significant, or may even increase with mission length and work density. Also radiation exposure in space remains one of the inevitable and dominating factors relevant to crew- health, -safety and therefore mission success. The radiation environment that the space crews are exposed to differs significantly as compared to earth. Exposure in flight exceed doses that are usually received by terrestrial radiation workers on ground. Expanding "medical" demands are not a solely characteristics of current and current and upcoming mission scenarios. Likewise the margins for what is understood as "efficient utilization" for the fully operational science platform ISS, are immense. Understanding, accepting and approaching these challenges ESA-HSO did choose a particular pass of implementation for one of their current developments. Exploiting synergies of research, science and medical operational aspects, the "European Crew Personal Active Dosimeter for Astronauts (EuCPAD)" development exactly addresses these circumstances. It becomes novel part of ESA Radiation Protection Initiative for astronauts. The EuCPAD project aims at the development and manufacturing of an active (powered) dosimeter system to measure astronaut's exposures, support risk assessment dose management by providing a differentiated data set. Final goal is the verification of the system capabilities for medical monitoring at highest standards. The EuCPAD consists of several small portable Personal Active Dosimeters (MU = Mobile Unitas) and a rack mounted docking station “Personal Storage Device (PSD)” for MU storage, data read out and telemetry. The PSD furthermore contains a Tissue Equivalent Proportional Counter (TEPC) and an internal MU(iMU) to enable complex environmental measurements and cross calibrations. This presentation will give an introduction to the dosimetry system and of the current status. The EuCPAD project is carried out under ESA Contract No. 4200023059/09/NL/CP,

  13. A phylogeny for the pomatiopsidae (Gastropoda: Rissooidea): a resource for taxonomic, parasitological and biodiversity studies.

    PubMed

    Liu, Liang; Huo, Guan-Nan; He, Hong-Bin; Zhou, Benjiang; Attwood, Stephen W

    2014-02-18

    The Pomatiopsidae are reported from northern India into southern China and Southeast Asia, with two sub-families, the Pomatiopsinae (which include freshwater, amphibious, terrestrial and marine species) and the freshwater Triculinae. Both include species acting as intermediate host for species of the blood-fluke Schistosoma which cause a public health problem in East Asia. Also, with around 120 species, triculine biodiversity exceeds that of any other endemic freshwater molluscan fauna. Nevertheless, the origins of the Pomatiopsidae, the factors driving such a diverse radiation and aspects of their co-evolution with Schistosoma are not fully understood. Many taxonomic questions remain; there are problems identifying medically relevant species. The predicted range is mostly unsurveyed and the true biodiversity of the family is underestimated. Consequently, the aim of the study was to collect DNA-sequence data for as many pomatiopsid taxa as possible, as a first step in providing a resource for identification of epidemiologically significant species (by non-malacologists), for use in resolving taxonomic confusion and for testing phylogeographical hypotheses. The evolutionary radiation of the Triculinae was shown to have been rapid and mostly post late Miocene. Molecular dating indicated that the radiation of these snails was driven first by the uplift of the Himalaya and onset of a monsoon system, and then by late-Pliocene global warming. The status of Erhaia as Anmicolidae is supported. The genera Tricula and Neotricula are shown to be non-monophyletic and the tribe Jullieniini may be polyphyletic (based on convergent characters). Triculinae from northern Vietnam could be derived from Gammatricula of Fujian/Yunnan, China. The molecular dates and phylogenetic estimates in this study are consistent with an Australasian origin for the Pomatiopsidae and an East to West radiation via Oligocene Borneo-Philippines island hopping to Japan and then China (Triculinae arising mid-Miocene in Southeast China), and less so with a triculine origin in Tibet. The lack of monophyly in the medically important genera and indications of taxonomic inaccuracies, call for further work to identify epidemiologically significant taxa (e.g., Halewisia may be potential hosts for Schistosoma mekongi) and highlight the need for surveys to determine the true biodiversity of the Triculinae.

  14. Mice heterozygous for the ATM gene are more sensitive to heavy ions exposure than are wildtypes

    NASA Astrophysics Data System (ADS)

    Worgul, B.; Smilenov, L.; Brenner, D.; Vazquez, M.; Hall, E.

    Previous studies have shown that the eyes of atm heterozygous mice exposed to Low LET radiation (X-rays) are more susceptible to the development of cataracts than are those of wildtype mice. The findings, as well as others, run counter to the assumption underpinning current radiation safety guidelines, that individuals are all equally sensitive to the biological effects of radiation. A question, highly relevant to human space activities is whether or not, in similar fashion there may exist a genetic predisposition to High LET radiation damage. Again the lens and, its primary radiopathy, cataract, were used to assay for the effects of ATM deficiency in a late-responding tissue. Together with those of wildtypes, the eyes of AT heterozygous knockout mice were exposed to 325 mGy of 1 GEV/amu 56Fe ions at the AGS facility of Brookhaven National Laboratory. The fluence was equivalent to 1 ion per nuclear area. As was the case in the earlier X-ray studies all irradiations were done on the 28th day after birth. Controls consisted of wildtype irradiated as well as unirradiated wildtype and heterozygotes. Ten mice from each group were examined weekly by conventional slitlamp biomicroscopy for a total of 35 weeks. The time required for prevalence to reach 50% (T50) as an endpoint for each stage indicated that not only cataract onset but also progression were accelerated in the mice haplo-deficient for the atm gene. For example the T50 for definitive cataract onset (stage 1) in the atm heterozygotes was 10 weeks whereas 17 weeks were required for the wildtypes. Similarly at the conclusion of the experiment (35 weeks), 40% of the lenses of allele-deficient mice had progressed to stage 3 (near fully opaque and obviously visually debilitating), while only one lens (5%) from the wildtype irradiated eyes achieved that stage. The data show that heterozygosity for the atm gene predisposes the eye to the cataractogenic influence of heavy ions and suggest that AT heterozygotes in the human population may also be radiosensitive. This may have to be considered in the selection of individuals who will be exposed to both HZE particles and Low-LET radiation as they may be predisposed to increased late normal tissue damage. Supported by NASA Grant NAG 9-1148 and Research to Prevent Blindness, Inc.

  15. Space: The Final Frontier-Research Relevant to Mars.

    PubMed

    Boice, John D

    2017-04-01

    A critically important gap in knowledge surrounds the health consequences of exposure to radiation received gradually over time. Much is known about the health effects of brief high-dose exposures, such as from the atomic bombings in Japan, but the concerns today focus on the frequent low-dose exposures received by members of the public, workers, and, as addressed in this paper, astronauts. Additional guidance is needed by the National Aeronautics and Space Administration (NASA) for planning long-term missions where the rate of radiation exposure is gradual over years and the cumulative amounts high. The direct study of low doses and low-dose rates is of immeasurable value in understanding the possible range of health effects from gradual exposures and in providing guidance for radiation protection, not only of workers and the public but also astronauts. The ongoing Million Person Study (MPS) is 10 times larger than the study of the Japanese atomic bomb survivors of 86,000 survivors with estimated doses. The number of workers with >100 mSv career dose is substantially greater. The large study size, broad range of doses, and long follow-up indicate substantial statistical ability to quantify the risk of exposures that are received gradually over time. The study consists of 360,000 U.S. Department of Energy workers from the Manhattan Project; 150,000 nuclear utility workers from the inception of the nuclear age; 115,000 atomic veterans who participated in above-ground atmospheric tests at the Nevada Test Site and the Bikini and Enewetak Atolls and Johnston Island in the Pacific Proving Grounds (PPG); 250,000 radiologists and medical workers; and 130,000 industrial radiographers. NASA uses an individual risk-based system for radiation protection in contrast to the system of dose limits for occupational exposures used by terrestrial-based organizations. The permissible career exposure limit set by NASA for each astronaut is a 3% risk of exposure-induced death (REID) from cancer at a 95% confidence level to account for uncertainties in risk projections. The large size of the MPS will reduce the uncertainty in the risk estimates, narrowing the 95% confidence interval, and thus allow more time in space for astronauts. Further differences between men and women in their response to radiation can be more fully examined, and non-cancer outcomes, such as neurological disorders and cardiovascular disease, can be evaluated in a way not hitherto possible.

  16. Coupling hydrodynamics with comoving frame radiative transfer. I. A unified approach for OB and WR stars

    NASA Astrophysics Data System (ADS)

    Sander, A. A. C.; Hamann, W.-R.; Todt, H.; Hainich, R.; Shenar, T.

    2017-07-01

    Context. For more than two decades, stellar atmosphere codes have been used to derive the stellar and wind parameters of massive stars. Although they have become a powerful tool and sufficiently reproduce the observed spectral appearance, they can hardly be used for more than measuring parameters. One major obstacle is their inconsistency between the calculated radiation field and the wind stratification due to the usage of prescribed mass-loss rates and wind-velocity fields. Aims: We present the concepts for a new generation of hydrodynamically consistent non-local thermodynamical equilibrium (non-LTE) stellar atmosphere models that allow for detailed studies of radiation-driven stellar winds. As a first demonstration, this new kind of model is applied to a massive O star. Methods: Based on earlier works, the PoWR code has been extended with the option to consistently solve the hydrodynamic equation together with the statistical equations and the radiative transfer in order to obtain a hydrodynamically consistent atmosphere stratification. In these models, the whole velocity field is iteratively updated together with an adjustment of the mass-loss rate. Results: The concepts for obtaining hydrodynamically consistent models using a comoving-frame radiative transfer are outlined. To provide a useful benchmark, we present a demonstration model, which was motivated to describe the well-studied O4 supergiant ζPup. The obtained stellar and wind parameters are within the current range of literature values. Conclusions: For the first time, the PoWR code has been used to obtain a hydrodynamically consistent model for a massive O star. This has been achieved by a profound revision of earlier concepts used for Wolf-Rayet stars. The velocity field is shaped by various elements contributing to the radiative acceleration, especially in the outer wind. The results further indicate that for more dense winds deviations from a standard β-law occur.

  17. Effective metrics and a fully covariant description of constitutive tensors in electrodynamics

    NASA Astrophysics Data System (ADS)

    Schuster, Sebastian; Visser, Matt

    2017-12-01

    Using electromagnetism to study analogue space-times is tantamount to considering consistency conditions for when a given (meta-) material would provide an analogue space-time model or—vice versa—characterizing which given metric could be modeled with a (meta-) material. While the consistency conditions themselves are by now well known and studied, the form the metric takes once they are satisfied is not. This question is mostly easily answered by keeping the formalisms of the two research fields here in contact as close to each other as possible. While fully covariant formulations of the electrodynamics of media have been around for a long while, they are usually abandoned for (3 +1 )- or six-dimensional formalisms. Here we use the fully unified and fully covariant approach. This enables us even to generalize the consistency conditions for the existence of an effective metric to arbitrary background metrics beyond flat space-time electrodynamics. We also show how the familiar matrices for permittivity ɛ , permeability μ-1, and magnetoelectric effects ζ can be seen as the three independent pieces of the Bel decomposition for the constitutive tensor Za b c d, i.e., the components of an orthogonal decomposition with respect to a given observer with four-velocity Va. Finally, we use the Moore-Penrose pseudoinverse and the closely related pseudodeterminant to then gain the desired reconstruction of the effective metric in terms of the permittivity tensor ɛa b, the permeability tensor [μ-1]a b, and the magnetoelectric tensor ζa b, as an explicit function geff(ɛ ,μ-1,ζ ).

  18. Role of vanguard counter-potential in terahertz emission due to surface currents explicated by three-dimensional ensemble Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Cortie, D. L.; Lewis, R. A.

    2011-10-01

    The discovery that short pulses of near-infrared radiation striking a semiconductor may lead to emission of radiation at terahertz frequencies paved the way for terahertz time-domain spectroscopy. Previous modeling has allowed the physical mechanisms to be understood in general terms but it has not fully explored the role of key physical parameters of the emitter material nor has it fully revealed the competing nature of the surface-field and photo-Dember effects. In this context, our purpose has been to more fully explicate the mechanisms of terahertz emission from transient currents at semiconductor surfaces and to determine the criteria for efficient emission. To achieve this purpose we employ an ensemble Monte Carlo simulation in three dimensions. To ground the calculations, we focus on a specific emitter, InAs. We separately vary distinct physical parameters to determine their specific contribution. We find that scattering as a whole has relatively little impact on the terahertz emission. The emission is found to be remarkably resistant to alterations of the dark surface potential. Decreasing the band gap leads to a strong increase in terahertz emission, as does decreasing the electron mass. Increasing the absorption dramatically influences the peak-peak intensity and peak shape. We conclude that increasing absorption is the most direct path to improve surface-current semiconductor terahertz emitters. We find for longer pump pulses that the emission is limited by a newly identified vanguard counter-potential mechanism: Electrons at the leading edge of longer laser pulses repel subsequent electrons. This discovery is the main result of our work.

  19. Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning

    DOE PAGES

    Sanchez-Gonzalez, A.; Micaelli, P.; Olivier, C.; ...

    2017-06-05

    Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy,more » we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. Lastly, this opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.« less

  20. Accurate prediction of X-ray pulse properties from a free-electron laser using machine learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Gonzalez, A.; Micaelli, P.; Olivier, C.

    Free-electron lasers providing ultra-short high-brightness pulses of X-ray radiation have great potential for a wide impact on science, and are a critical element for unravelling the structural dynamics of matter. To fully harness this potential, we must accurately know the X-ray properties: intensity, spectrum and temporal profile. Owing to the inherent fluctuations in free-electron lasers, this mandates a full characterization of the properties for each and every pulse. While diagnostics of these properties exist, they are often invasive and many cannot operate at a high-repetition rate. Here, we present a technique for circumventing this limitation. Employing a machine learning strategy,more » we can accurately predict X-ray properties for every shot using only parameters that are easily recorded at high-repetition rate, by training a model on a small set of fully diagnosed pulses. Lastly, this opens the door to fully realizing the promise of next-generation high-repetition rate X-ray lasers.« less

  1. Cosmic reionization on computers. Ultraviolet continuum slopes and dust opacities in high redshift galaxies

    DOE PAGES

    Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.

    2016-03-30

    In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less

  2. Cosmic reionization on computers. Ultraviolet continuum slopes and dust opacities in high redshift galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.

    In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less

  3. Accelerated heavy particles and the lens. VII: The cataractogenic potential of 450 MeV/amu iron ions

    NASA Technical Reports Server (NTRS)

    Worgul, B. V.; Brenner, D. J.; Medvedovsky, C.; Merriam, G. R. Jr; Huang, Y.

    1993-01-01

    PURPOSE. To determine the cataractogenic potential dose of high velocity iron ions as a fixation of dose administered singly or fractionated. The dose is critical to risk assessment and to theories of radiation action and cataractogenesis. METHODS. Twenty-eight-day-old rats were examined by slit-lamp biomicroscopy on a weekly-bi-weekly basis for more than 2 yr after radiation exposure. For the acute exposure study doses of 1, 2, 5, 25, and 50 cGy were evaluated. The fractionated regimens involved total doses of 2, 25, and 50 cGy. The reference radiation consisted of 50, 100, 200, or 700 cGy of 250 kilovolt (peak) x-rays. RESULTS. In accordance with previous findings in the rat using 570 MeV/amu 40Ar ions, the relative biologic effectiveness increased rapidly with decreasing dose, reaching values as high as 100. Unlike 40Ar ions, fractionation of the 56Fe doses did not produce a consistent enhancement at any of the doses examined. CONCLUSIONS. The data support the previous findings of a high cataractogenic potential for high linear energy transfer (LET) radiation. The effectiveness for the production of cataracts increases with decreasing dose relative to x-rays and is independent of dose protraction. Although the present study did not reveal a consistent enhancement of effect when the ions were applied in fractions, the results are consistent with at least one theory of the inverse dose-rate effect observed for high-LET radiation.

  4. 49 CFR Appendix B to Part 222 - Alternative Safety Measures

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-Engineering ASMs, and Engineering ASMs. Modified SSMs are SSMs that do not fully comply with the provisions... reduction credit for pre-existing modified SSMs under the final rule. Non-engineering ASMs consist of... reduce risk within a quiet zone. Engineering ASMs consist of engineering improvements that address...

  5. 49 CFR Appendix B to Part 222 - Alternative Safety Measures

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-Engineering ASMs, and Engineering ASMs. Modified SSMs are SSMs that do not fully comply with the provisions... reduction credit for pre-existing modified SSMs under the final rule. Non-engineering ASMs consist of... reduce risk within a quiet zone. Engineering ASMs consist of engineering improvements that address...

  6. Compression mechanisms in the plasma focus pinch

    NASA Astrophysics Data System (ADS)

    Lee, S.; Saw, S. H.; Ali, Jalil

    2017-03-01

    The compression of the plasma focus pinch is a dynamic process, governed by the electrodynamics of pinch elongation and opposed by the negative rate of change of current dI/dt associated with the current dip. The compressibility of the plasma is influenced by the thermodynamics primarily the specific heat ratio; with greater compressibility as the specific heat ratio γ reduces with increasing degree of freedom f of the plasma ensemble due to ionization energy for the higher Z (atomic number) gases. The most drastic compression occurs when the emitted radiation of a high-Z plasma dominates the dynamics leading in extreme cases to radiative collapse which is terminated only when the compressed density is sufficiently high for the inevitable self-absorption of radiation to occur. We discuss the central pinch equation which contains the basic electrodynamic terms with built-in thermodynamic factors and a dQ/dt term; with Q made up of a Joule heat component and absorption-corrected radiative terms. Deuterium is considered as a thermodynamic reference (fully ionized perfect gas with f = 3) as well as a zero-radiation reference (bremsstrahlung only; with radiation power negligible compared with electrodynamic power). Higher Z gases are then considered and regimes of thermodynamic enhancement of compression are systematically identified as are regimes of radiation-enhancement. The code which incorporates all these effects is used to compute pinch radius ratios in various gases as a measure of compression. Systematic numerical experiments reveal increasing severity in radiation-enhancement of compressions as atomic number increases. The work progresses towards a scaling law for radiative collapse and a generalized specific heat ratio incorporating radiation.

  7. Modeling and simulation of radiation from hypersonic flows with Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Sohn, Ilyoup

    During extreme-Mach number reentry into Earth's atmosphere, spacecraft experience hypersonic non-equilibrium flow conditions that dissociate molecules and ionize atoms. Such situations occur behind a shock wave leading to high temperatures, which have an adverse effect on the thermal protection system and radar communications. Since the electronic energy levels of gaseous species are strongly excited for high Mach number conditions, the radiative contribution to the total heat load can be significant. In addition, radiative heat source within the shock layer may affect the internal energy distribution of dissociated and weakly ionized gas species and the number density of ablative species released from the surface of vehicles. Due to the radiation total heat load to the heat shield surface of the vehicle may be altered beyond mission tolerances. Therefore, in the design process of spacecrafts the effect of radiation must be considered and radiation analyses coupled with flow solvers have to be implemented to improve the reliability during the vehicle design stage. To perform the first stage for radiation analyses coupled with gas-dynamics, efficient databasing schemes for emission and absorption coefficients were developed to model radiation from hypersonic, non-equilibrium flows. For bound-bound transitions, spectral information including the line-center wavelength and assembled parameters for efficient calculations of emission and absorption coefficients are stored for typical air plasma species. Since the flow is non-equilibrium, a rate equation approach including both collisional and radiatively induced transitions was used to calculate the electronic state populations, assuming quasi-steady-state (QSS). The Voigt line shape function was assumed for modeling the line broadening effect. The accuracy and efficiency of the databasing scheme was examined by comparing results of the databasing scheme with those of NEQAIR for the Stardust flowfield. An accuracy of approximately 1 % was achieved with an efficiency about three times faster than the NEQAIR code. To perform accurate and efficient analyses of chemically reacting flowfield - radiation interactions, the direct simulation Monte Carlo (DSMC) and the photon Monte Carlo (PMC) radiative transport methods are used to simulate flowfield - radiation coupling from transitional to peak heating freestream conditions. The non-catalytic and fully catalytic surface conditions were modeled and good agreement of the stagnation-point convective heating between DSMC and continuum fluid dynamics (CFD) calculation under the assumption of fully catalytic surface was achieved. Stagnation-point radiative heating, however, was found to be very different. To simulate three-dimensional radiative transport, the finite-volume based PMC (FV-PMC) method was employed. DSMC - FV-PMC simulations with the goal of understanding the effect of radiation on the flow structure for different degrees of hypersonic non-equilibrium are presented. It is found that except for the highest altitudes, the coupling of radiation influences the flowfield, leading to a decrease in both heavy particle translational and internal temperatures and a decrease in the convective heat flux to the vehicle body. The DSMC - FV-PMC coupled simulations are compared with the previous coupled simulations and correlations obtained using continuum flow modeling and one-dimensional radiative transport. The modeling of radiative transport is further complicated by radiative transitions occurring during the excitation process of the same radiating gas species. This interaction affects the distribution of electronic state populations and, in turn, the radiative transport. The radiative transition rate in the excitation/de-excitation processes and the radiative transport equation (RTE) must be coupled simultaneously to account for non-local effects. The QSS model is presented to predict the electronic state populations of radiating gas species taking into account non-local radiation. The definition of the escape factor which is dependent on the incoming radiative intensity from over all directions is presented. The effect of the escape factor on the distribution of electronic state populations of the atomic N and O radiating species is examined in a highly non-equilibrium flow condition using DSMC and PMC methods and the corresponding change of the radiative heat flux due to the non-local radiation is also investigated.

  8. From analytic inversion to contemporary IMRT optimization: radiation therapy planning revisited from a mathematical perspective.

    PubMed

    Censor, Yair; Unkelbach, Jan

    2012-04-01

    In this paper we look at the development of radiation therapy treatment planning from a mathematical point of view. Historically, planning for Intensity-Modulated Radiation Therapy (IMRT) has been considered as an inverse problem. We discuss first the two fundamental approaches that have been investigated to solve this inverse problem: Continuous analytic inversion techniques on one hand, and fully-discretized algebraic methods on the other hand. In the second part of the paper, we review another fundamental question which has been subject to debate from the beginning of IMRT until the present day: The rotation therapy approach versus fixed angle IMRT. This builds a bridge from historic work on IMRT planning to contemporary research in the context of Intensity-Modulated Arc Therapy (IMAT). Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Low Earth Orbit Environmental Effects on Space Tether Materials

    NASA Technical Reports Server (NTRS)

    Finckernor, Miria M.; Gitlemeier, Keith A.; Hawk, Clark W.; Watts, Ed

    2005-01-01

    Atomic oxygen (AO) and ultraviolet (UV) radiation erode and embrittle most polymeric materials. This research was designed to test several different materials and coatings under consideration for their application to space tethers, for resistance to these effects. The samples were vacuum dehydrated, weighed and then exposed to various levels of AO or UV radiation at the NASA Marshall Space Flight Center. They were then re-weighed to determine mass loss due to atomic oxygen erosion, inspected for damage and tensile tested to determine strength loss. The experiments determined that the Photosil coating process, while affording some protection, damaged the tether materials worse than the AO exposure. TOR-LM also failed to fully protect the materials, especially from UV radiation. The POSS and nickel coatings did provide some protection to the tethers, which survived the entire test regime. M5 was tested, uncoated, and survived AO exposure, though its brittleness prevented any tensile testing.

  10. Fully automatic bone age estimation from left hand MR images.

    PubMed

    Stern, Darko; Ebner, Thomas; Bischof, Horst; Grassegger, Sabine; Ehammer, Thomas; Urschler, Martin

    2014-01-01

    There has recently been an increased demand in bone age estimation (BAE) of living individuals and human remains in legal medicine applications. A severe drawback of established BAE techniques based on X-ray images is radiation exposure, since many countries prohibit scanning involving ionizing radiation without diagnostic reasons. We propose a completely automated method for BAE based on volumetric hand MRI images. On our database of 56 male caucasian subjects between 13 and 19 years, we are able to estimate the subjects age with a mean difference of 0.85 ± 0.58 years compared to the chronological age, which is in line with radiologist results using established radiographic methods. We see this work as a promising first step towards a novel MRI based bone age estimation system, with the key benefits of lacking exposure to ionizing radiation and higher accuracy due to exploitation of volumetric data.

  11. A web-based remote radiation treatment planning system using the remote desktop function of a computer operating system: a preliminary report.

    PubMed

    Suzuki, Keishiro; Hirasawa, Yukinori; Yaegashi, Yuji; Miyamoto, Hideki; Shirato, Hiroki

    2009-01-01

    We developed a web-based, remote radiation treatment planning system which allowed staff at an affiliated hospital to obtain support from a fully staffed central institution. Network security was based on a firewall and a virtual private network (VPN). Client computers were installed at a cancer centre, at a university hospital and at a staff home. We remotely operated the treatment planning computer using the Remote Desktop function built in to the Windows operating system. Except for the initial setup of the VPN router, no special knowledge was needed to operate the remote radiation treatment planning system. There was a time lag that seemed to depend on the volume of data traffic on the Internet, but it did not affect smooth operation. The initial cost and running cost of the system were reasonable.

  12. Mechanism of stimulated Hawking radiation in a laboratory Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Hsieh; Jacobson, Ted; Edwards, Mark; Clark, Charles W.

    2017-08-01

    We model a sonic black-hole analog in a quasi-one-dimensional Bose-Einstein condensate, using a Gross-Pitaevskii equation matching the configuration of a recent experiment by Steinhauer [Nat. Phys. 10, 864 (2014), 10.1038/nphys3104]. The model agrees well with important features of the experimental observations, demonstrating their hydrodynamic nature. We find that a zero-frequency bow wave is generated at the inner (white-hole) horizon, which grows in proportion to the square of the background condensate density. The relative motion of the black- and white-hole horizons produces a Doppler shift of the bow wave at the black hole, where it stimulates the emission of monochromatic Hawking radiation. The mechanism is confirmed using temporal and spatial windowed Fourier spectra of the condensate. Mean field behavior similar to that in the experiment can thus be fully explained without the presence of self-amplifying Hawking radiation.

  13. Frequency locking and monitoring based on Bi-directional terahertz radiation of a 3 rd-order distributed feedback quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Marrewijk, N.; Mirzaei, B.; Hayton, D.

    2015-10-07

    In this study, we have performed frequency locking of a dual, forward reverse emitting third-order distributed feedback quantum cascade laser (QCL) at 3.5 THz. By using both directions of THz emission in combination with two gas cells and two power detectors, we can for the first time perform frequency stabilization, while monitor the frequency locking quality independently. We also characterize how the use of a less sensitive pyroelectric detector can influence the quality of frequency locking, illustrating experimentally that the sensitivity of the detectors is crucial. Using both directions of terahertz (THz) radiation has a particular advantage for the applicationmore » of a QCL as a local oscillator, where radiation from one side can be used for frequency/phase stabilization, leaving the other side to be fully utilized as a local oscillator to pump a mixer.« less

  14. Effects of ATR-2 Irradiation to High Fluence on Nine RPV Surveillance Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanstad, Randy K.; Odette, George R.; Almirall, Nathan

    2017-05-01

    The reactor pressure vessel (RPV) in a light-water reactor (LWR) represents the first line of defense against a release of radiation in case of an accident. Thus, regulations that govern the operation of commercial nuclear power plants require conservative margins of fracture toughness, both during normal operation and under accident scenarios. In the unirradiated condition, the RPV has sufficient fracture toughness such that failure is implausible under any postulated condition, including pressurized thermal shock (PTS) in pressurized water reactors (PWR). In the irradiated condition, however, the fracture toughness of the RPV may be severely degraded, with the degree of toughnessmore » loss dependent on the radiation sensitivity of the materials. The available embrittlement predictive models and our present understanding of radiation damage are not fully quantitative, and do not treat all potentially significant variables and issues, particularly considering extension of operation to 80y.« less

  15. Deterministic control of radiative processes by shaping the mode field

    NASA Astrophysics Data System (ADS)

    Pellegrino, D.; Pagliano, F.; Genco, A.; Petruzzella, M.; van Otten, F. W.; Fiore, A.

    2018-04-01

    Quantum dots (QDs) interacting with confined light fields in photonic crystal cavities represent a scalable light source for the generation of single photons and laser radiation in the solid-state platform. The complete control of light-matter interaction in these sources is needed to fully exploit their potential, but it has been challenging due to the small length scales involved. In this work, we experimentally demonstrate the control of the radiative interaction between InAs QDs and one mode of three coupled nanocavities. By non-locally moulding the mode field experienced by the QDs inside one of the cavities, we are able to deterministically tune, and even inhibit, the spontaneous emission into the mode. The presented method will enable the real-time switching of Rabi oscillations, the shaping of the temporal waveform of single photons, and the implementation of unexplored nanolaser modulation schemes.

  16. THERMAL FATIGUE OF INCONEL ALLOY DA718

    DTIC Science & Technology

    2016-10-27

    this material meets the required improvement and offers a low cost alternative to powder metallurgy Rene’95. However, its thermal fatigue resistance ...remains to be fully clarified. Its nominal chemical composition is shown in Table B-1. In the fully heat treated condition, DA718 consists of a γ...chromel-alumel thermocouple , spot-welded to the mid-length of the specimen. The thermal strain, induced by the expansion and contraction of the

  17. Radiation Hardened Electronics for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches.

  18. Depopulation of metastable helium by radiative association with hydrogen and lithium ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustovičová, L.; Soldán, P.; Kraemer, W. P., E-mail: pavel.soldan@mff.cuni.cz

    2014-02-10

    Depopulation of metastable He(2{sup 3}S) by radiative association with hydrogen and lithium ions is investigated using a fully quantal approach. Rate coefficients for spontaneous and stimulated radiative association of the HeH{sup +}, HeD{sup +}, and LiHe{sup +} molecular ions on the spin-triplet manifold are presented as functions of temperature considering the association to rotational-vibrational states of the lowest triplet electronic states a {sup 3}Σ{sup +} and b {sup 3}Σ{sup +} from the continuum states of the b {sup 3}Σ{sup +} electronic state. Evaluation of the rate coefficients is based on highly accurate quantum calculations, taking into account all possible state-to-statemore » transitions at thermal energies (for spontaneous association) or at higher background energies (stimulated association). As expected, calculations show that the rate coefficients for radiative association to the a state are several orders of magnitude larger than the one for the b state formation. A noticeable effect by blackbody background radiation on the radiative association is only obtained for the b → b process. Aspects of the formation and abundance of the metastable HeH{sup +}(a {sup 3}Σ{sup +}) in astrophysical environments are briefly discussed.« less

  19. Study on radiation production in the charge stripping section of the RISP linear accelerator

    NASA Astrophysics Data System (ADS)

    Oh, Joo-Hee; Oranj, Leila Mokhtari; Lee, Hee-Seock; Ko, Seung-Kook

    2015-02-01

    The linear accelerator of the Rare Isotope Science Project (RISP) accelerates 200 MeV/nucleon 238U ions in a multi-charge states. Many kinds of radiations are generated while the primary beam is transported along the beam line. The stripping process using thin carbon foil leads to complicated radiation environments at the 90-degree bending section. The charge distribution of 238U ions after the carbon charge stripper was calculated by using the LISE++ program. The estimates of the radiation environments were carried out by using the well-proved Monte Carlo codes PHITS and FLUKA. The tracks of 238U ions in various charge states were identified using the magnetic field subroutine of the PHITS code. The dose distribution caused by U beam losses for those tracks was obtained over the accelerator tunnel. A modified calculation was applied for tracking the multi-charged U beams because the fundamental idea of PHITS and FLUKA was to transport fully-ionized ion beam. In this study, the beam loss pattern after a stripping section was observed, and the radiation production by heavy ions was studied. Finally, the performance of the PHITS and the FLUKA codes was validated for estimating the radiation production at the stripping section by applying a modified method.

  20. Preliminary investigation of proton and helium ion radiation effects on fluorescent dyes for use in astrobiology applications.

    PubMed

    Thompson, Daniel P; Wilson, Paul K; Sims, Mark R; Cullen, David C; Holt, John M C; Parker, David J; Smith, Mike D

    2006-04-15

    The Specific Molecular Identification of Life Experiment (SMILE) instrument (Sims et al. Planet. Space Science 2005, 53, 781-791) proposes to use specific molecular receptors for the detection of organic biomarkers on future astrobiology missions (e.g., to Mars). Such receptors will be used in assays with fluorescently labeled assay reagents. A key uncertainty of this approach is whether the fluorescent labels used in the system will survive exposure to levels of solar and galactic particle radiation encountered during a flight to Mars. Therefore, two fluorescent dyes (fluorescein and Alexa Fluor 633) have been exposed to low-energy proton and alpha radiation with total fluences comparable or exceeding that expected during an unshielded cruise to Mars. The results of these initial experiments are presented, which show that both dyes retain their fluorescent properties after irradiation. No significant alteration in the absorption and emission wavelengths or the quantum yields of the dyes with either radiation exposure was found. These results suggest other structurally similar fluorophores will likely retain their fluorescent properties after exposure to similar levels of proton and alpha radiation. However, more extensive radiation fluorophore testing is needed before their suitability for astrobiology missions to Mars can be fully confirmed.

  1. Radiation-induced genomic instability: Are epigenetic mechanisms the missing link?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    Purpose: This review examines the evidence for the hypothesis that epigenetics are involved in the initiation and perpetuation of radiation-induced genomic instability (RIGI). Conclusion: In addition to the extensively studied targeted effects of radiation, it is now apparent that non-targeted delayed effects such as RIGI are also important post-irradiation outcomes. In RIGI, unirradiated progeny cells display phenotypic changes at delayed times after radiation of the parental cell. RIGI is thought to be important in the process of carcinogenesis, however, the mechanism by which this occurs remains to be elucidated. In the genomically unstable clones developed by Morgan and colleagues, radiation-inducedmore » mutations, double-strand breaks, or changes in mRNA levels alone could not account for the initiation or perpetuation of RIGI. Since changes in the DNA sequence could not fully explain the mechanism of RIGI, inherited epigenetic changes may be involved. Epigenetics are known to play an important role in many cellular processes and epigenetic aberrations can lead to carcinogenesis. Recent studies in the field of radiation biology suggest that the changes in methylation patterns may be involved in RIGI. Together these clues have led us to hypothesize that epigenetics may be the missing link in understanding the mechanism behind RIGI.« less

  2. Assessing the Current Status of Atmospheric Radiation Modelling: Progress, Challenges and the Needs for the Next Generation of Models

    NASA Astrophysics Data System (ADS)

    Joyce, C. J.; Tobiska, W. K.; Copeland, K.; Smart, D. F.; Shea, M. A.; Nowicki, S.; Atwell, W.; Benton, E. R.; Wilkins, R.; Hands, A.; Gronoff, G.; Meier, M. M.; Schwadron, N.

    2017-12-01

    Despite its potential for causing a wide range of harmful effects, including health hazards to airline passengers and damage to aircraft and satellite electronics, atmospheric radiation remains a relatively poorly defined risk, lacking sufficient measurements and modelling to fully evaluate the dangers posed. While our reliance on airline travel has increased dramatically over time, there remains an absence of international guidance and standards to protect aircraft passengers from potential health impacts due to radiation exposure. This subject has been gaining traction within the scientific community in recent years, with an expanding number of models with increasing capabilities being made available to evaluate atmospheric radiation hazards. We provide a general description of these modelling efforts, including the physics and methods used by the models, as well as their data inputs and outputs. We also discuss the current capacity for model validation via measurements and discuss the needs for the next generation of models, both in terms of their capabilities and the measurements required to validate them. This review of the status of atmospheric radiation modelling is part of a larger series of studies made as part of the SAFESKY program, with other efforts focusing on the underlying physics and implications, measurements and regulations/standards of atmospheric radiation.

  3. Ignition of Cellulosic Paper at Low Radiant Fluxes

    NASA Technical Reports Server (NTRS)

    White, K. Alan

    1996-01-01

    The ignition of cellulosic paper by low level thermal radiation is investigated. Past work on radiative ignition of paper is briefly reviewed. No experimental study has been reported for radiative ignition of paper at irradiances below 10 Watts/sq.cm. An experimental study of radiative ignition of paper at these low irradiances is reported. Experimental parameters investigated and discussed include radiant power levels incident on the sample, the method of applying the radiation (focussed vs. diffuse Gaussian source), the presence and relative position of a separate pilot ignition source, and the effects of natural convection (buoyancy) on the ignition process in a normal gravity environment. It is observed that the incident radiative flux (in W/sq.cm) has the greatest influence on ignition time. For a given flux level, a focussed Gaussian source is found to be advantageous to a more diffuse, lower amplitude, thermal source. The precise positioning of a pilot igniter relative to gravity and to the fuel sample affects the ignition process, but the precise effects are not fully understood. Ignition was more readily achieved and sustained with a horizontal fuel sample, indicating the buoyancy plays a role in the ignition process of cellulosic paper. Smoldering combustion of doped paper samples was briefly investigated, and results are discussed.

  4. Task-based image quality assessment in radiation therapy: initial characterization and demonstration with CT simulation images

    NASA Astrophysics Data System (ADS)

    Dolly, Steven R.; Anastasio, Mark A.; Yu, Lifeng; Li, Hua

    2017-03-01

    In current radiation therapy practice, image quality is still assessed subjectively or by utilizing physically-based metrics. Recently, a methodology for objective task-based image quality (IQ) assessment in radiation therapy was proposed by Barrett et al.1 In this work, we present a comprehensive implementation and evaluation of this new IQ assessment methodology. A modular simulation framework was designed to perform an automated, computer-simulated end-to-end radiation therapy treatment. A fully simulated framework was created that utilizes new learning-based stochastic object models (SOM) to obtain known organ boundaries, generates a set of images directly from the numerical phantoms created with the SOM, and automates the image segmentation and treatment planning steps of a radiation therapy work ow. By use of this computational framework, therapeutic operating characteristic (TOC) curves can be computed and the area under the TOC curve (AUTOC) can be employed as a figure-of-merit to guide optimization of different components of the treatment planning process. The developed computational framework is employed to optimize X-ray CT pre-treatment imaging. We demonstrate that use of the radiation therapy-based-based IQ measures lead to different imaging parameters than obtained by use of physical-based measures.

  5. Europa Propulsion Valve Seat Material Testing

    NASA Technical Reports Server (NTRS)

    Addona, Brad M.

    2017-01-01

    The Europa mission and spacecraft design presented unique challenges for selection of valve seat materials that met the fluid compatibility requirements, and combined fluid compatibility and high radiation exposure level requirements. The Europa spacecraft pressurization system valves will be exposed to fully saturated propellant vapor for the duration of the mission. The effects of Nitrogen Tetroxide (NTO) and Monomethylhydrazine (MMH) propellant vapors on heritage valve seat materials, such as Vespel SP-1 and Polychlorotrifluoroethylene (PCTFE), were evaluated to determine if an alternate material is required. In liquid system applications, Teflon is the only available compatible valve seat material. Radiation exposure data for Teflon in an air or vacuum environment has been previously documented. Radiation exposure data for Teflon in an oxidizer environment such as NTO, was not available, and it was unknown whether the effects would be similar to those on air-exposed samples. Material testing was conducted by Marshall Space Flight Center (MSFC) and White Sands Test Facility (WSTF) to determine the effects of propellant vapor on heritage seat materials for pressurization valve applications, and the effects of combined radiation and NTO propellant exposure on Teflon. The results indicated that changes in heritage pressurization valve seat materials' properties rendered them unsuitable for the Europa application. The combined radiation and NTO exposure testing of Teflon produced results equivalent to combined radiation and air exposure results.

  6. Phosphors containing boron and metals of Group IIIA and IIIB

    DOEpatents

    Setlur, Anant Achyut; Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-10-31

    A phosphor comprises: (a) at least a first metal selected from the group consisting of yttrium and elements of lanthanide series other than europium; (b) at least a second metal selected from the group consisting of aluminum, gallium, indium, and scandium; (c) boron; and (d) europium. The phosphor is used in light source that comprises a UV radiation source to convert UV radiation to visible light.

  7. Exploring the elevated water vapor signal associated with biomass burning aerosol over the southeast Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Pistone, K.; Redemann, J.; Wood, R.; Zuidema, P.; Flynn, C. J.; LeBlanc, S. E.; Noone, D.; Podolske, J. R.; Segal-Rosenhaimer, M.; Shinozuka, Y.; Thornhill, K. L., II

    2017-12-01

    The quantification of radiative forcing due to the cumulative effects of aerosols, both direct and on cloud properties, remains the biggest source of uncertainty in our understanding of the physical climate. An important factor in understanding this question is how the magnitude of these effects may be modified by meteorological conditions. In the Southeast Atlantic Ocean, seasonal biomass burning smoke plumes are continuously advected over a persistent stratocumulus cloud deck, offering a natural observatory in which to study the complexities of aerosol-cloud interactions. To this end, the NASA ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) campaign consists of three field deployments over three years (2016-2018) with the goal of gaining a better understanding of the complex processes (direct and indirect) by which BB aerosols affect clouds. We present results from the first two ORACLES field deployments, which took place in September 2016 out of Walvis Bay, Namibia, and August 2017 out of São Tomé, São Tomé and Príncipe. In observations collected from the NASA P-3 aircraft (from near-surface up to 6-7km), we describe a strong correlation between the in-situ pollution indicators (carbon monoxide and aerosol properties) and atmospheric water vapor content, seen at all altitudes above the boundary layer. This condition is seen to persist over all flights, with minimal detrainment during advection from the continental source. We next explore the potential causal factors behind and implications of this relationship. Meteorological reanalysis indicates that convective dynamics over the continent likely contribute to this elevated signal, but both reanalysis and a trajectory analysis do not fully capture the magnitude and vertical structure of the elevated signal. We finally discuss the radiative implications of the observed correlations: understanding the mechanisms which cause water vapor to covary with plume strength is important to quantifying the radiative effects (direct and semi-direct) of biomass burning aerosol in the region.

  8. Estimating the uncertainty of calculated out-of-field organ dose from a commercial treatment planning system.

    PubMed

    Wang, Lilie; Ding, George X

    2018-06-12

    Therapeutic radiation to cancer patients is accompanied by unintended radiation to organs outside the treatment field. It is known that the model-based dose algorithm has limitation in calculating the out-of-field doses. This study evaluated the out-of-field dose calculated by the Varian Eclipse treatment planning system (v.11 with AAA algorithm) in realistic treatment plans with the goal of estimating the uncertainties of calculated organ doses. Photon beam phase-space files for TrueBeam linear accelerator were provided by Varian. These were used as incident sources in EGSnrc Monte Carlo simulations of radiation transport through the downstream jaws and MLC. Dynamic movements of the MLC leaves were fully modeled based on treatment plans using IMRT or VMAT techniques. The Monte Carlo calculated out-of-field doses were then compared with those calculated by Eclipse. The dose comparisons were performed for different beam energies and treatment sites, including head-and-neck, lung, and pelvis. For 6 MV (FF/FFF), 10 MV (FF/FFF), and 15 MV (FF) beams, Eclipse underestimated out-of-field local doses by 30%-50% compared with Monte Carlo calculations when the local dose was <1% of prescribed dose. The accuracy of out-of-field dose calculations using Eclipse is improved when collimator jaws were set at the smallest possible aperture for MLC openings. The Eclipse system consistently underestimates out-of-field dose by a factor of 2 for all beam energies studied at the local dose level of less than 1% of prescribed dose. These findings are useful in providing information on the uncertainties of out-of-field organ doses calculated by Eclipse treatment planning system. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  9. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Zhen; Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081; Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocationmore » and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.« less

  10. Influence of Coupled Radiation and Ablation on the Aerothermodynamic Environment of Planetary Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.; Gnoffo, Peter A.; Mazaheri, Alireza

    2013-01-01

    A review of recently published coupled radiation and ablation capabilities involving the simulation of hypersonic flowfields relevant to Earth, Mars, or Venus entry is presented. The three fundamental mechanisms of radiation coupling are identified as radiative cooling, precursor photochemistry, and ablation-radiation interaction. The impact of these mechanisms are shown to be significant for a 3 m radius sphere entering Earth at hypothetical Mars return conditions (approximately 15 km/s). To estimate the influence precursor absorption on the radiative flux for a wide range of conditions, a simplified approach is developed that requires only the non-precursor solution. Details of a developed coupled ablation approach, which is capable of treating both massively ablating flowfields in the sublimation regime and weakly ablating diffusion Climited oxidation cases, are presented. A review of the two primary uncoupled ablation approximations, identified as the blowing correction and film coefficient approximations, is made and their impact for Earth and Mars entries is shown to be significant for recession and convective heating predictions. Fully coupled ablation and radiation simulations are presented for the Mars return sphere throughout its entire trajectory. Applying to the Mars return sphere the Pioneer- Venus heritage carbon phenolic heatshield, which has properties available in the open literature, the differences between steady state ablation and coupling to a material response code are shown to be significant.

  11. Validation experiments to determine radiation partitioning of heat flux to an object in a fully turbulent fire.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricks, Allen; Blanchat, Thomas K.; Jernigan, Dann A.

    2006-06-01

    It is necessary to improve understanding and develop validation data of the heat flux incident to an object located within the fire plume for the validation of SIERRA/ FUEGO/SYRINX fire and SIERRA/CALORE. One key aspect of the validation data sets is the determination of the relative contribution of the radiative and convective heat fluxes. To meet this objective, a cylindrical calorimeter with sufficient instrumentation to measure total and radiative heat flux had been designed and fabricated. This calorimeter will be tested both in the controlled radiative environment of the Penlight facility and in a fire environment in the FLAME/Radiant Heatmore » (FRH) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparisons between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. A significant question of interest to modeling heat flux incident to an object in or near a fire is the contribution of the radiation and convection modes of heat transfer. The series of experiments documented in this test plan is designed to provide data on the radiation partitioning, defined as the fraction of the total heat flux that is due to radiation.« less

  12. Acquisition of reproducible transmission near-infrared (NIR) spectra of solid samples with inconsistent shapes by irradiation with isotropically diffused radiation using polytetrafluoroethylene (PTFE) beads.

    PubMed

    Lee, Jinah; Duy, Pham Khac; Yoon, Jihye; Chung, Hoeil

    2014-06-21

    A bead-incorporated transmission scheme (BITS) has been demonstrated for collecting reproducible transmission near-infrared (NIR) spectra of samples with inconsistent shapes. Isotropically diffused NIR radiation was applied around a sample and the surrounding radiation was allowed to interact homogeneously with the sample for transmission measurement. Samples were packed in 1.40 mm polytetrafluoroethylene (PTFE) beads, ideal diffusers without NIR absorption, and then transmission spectra were collected by illuminating the sample-containing beads using NIR radiation. When collimated radiation was directly applied, a small portion of the non-fully diffused radiation (NFDR) propagated through the void space of the packing and eventually degraded the reproducibility. Pre-diffused radiation was introduced by placing an additional PTFE disk in front of the packing to diminish NFDR, which produced more reproducible spectral features. The proposed scheme was evaluated by analyzing two different solid samples: density determination for individual polyethylene (PE) pellets and identification of mining locality for tourmalines. Because spectral collection was reproducible, the use of the spectrum acquired from one PE pellet was sufficient to accurately determine the density of nine other pellets with different shapes. The differentiation of tourmalines, which are even more dissimilar in appearance, according to their mining locality was also feasible with the help of the scheme.

  13. Single mode terahertz quantum cascade amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Y., E-mail: yr235@cam.ac.uk; Wallis, R.; Shah, Y. D.

    2014-10-06

    A terahertz (THz) optical amplifier based on a 2.9 THz quantum cascade laser (QCL) structure has been demonstrated. By depositing an antireflective coating on the QCL facet, the laser mirror losses are enhanced to fully suppress the lasing action, creating a THz quantum cascade (QC) amplifier. Terahertz radiation amplification has been obtained, by coupling a separate multi-mode THz QCL of the same active region design to the QC amplifier. A bare cavity gain is achieved and shows excellent agreement with the lasing spectrum from the original QCL without the antireflective coating. Furthermore, a maximum optical gain of ∼30 dB with single-modemore » radiation output is demonstrated.« less

  14. Communication: "Position" does matter: The photofragmentation of the nitroimidazole isomers

    NASA Astrophysics Data System (ADS)

    Bolognesi, P.; Casavola, A. R.; Cartoni, A.; Richter, R.; Markus, P.; Borocci, S.; Chiarinelli, J.; Tošić, S.; Sa'adeh, H.; Masič, M.; Marinković, B. P.; Prince, K. C.; Avaldi, L.

    2016-11-01

    A combined experimental and theoretical approach has been used to disentangle the fundamental mechanisms of the fragmentation of the three isomers of nitroimidazole induced by vacuum ultra-violet (VUV) radiation, namely, 4-, 5-, and 2-nitroimidazole. The results of mass spectrometry as well as photoelectron-photoion coincidence spectroscopy display striking differences in the radiation-induced decomposition of the different nitroimidazole radical cations. Based on density functional theory (DFT) calculations, a model is proposed which fully explains such differences, and reveals the subtle fragmentation mechanisms leading to the release of neutral species like NO, CO, and HCN. Such species have a profound impact in biological media and may play a fundamental role in radiosensitising mechanisms during radiotherapy.

  15. Influence of electron correlation on the cross section and linear polarization of radiation emitted by electron-impact excitation of Ca+ and Ba+ ions

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin

    2018-04-01

    Calculations of the electron-impact excitation (EIE) of singly charged Ca+ and Ba+ ions and subsequent de-excitation process are performed using a fully relativistic distorted wave (RDW) method. To resolve the discrepancy between previous theory and experiment, careful consideration is given to the generation of the target state wave-functions through the systematic inclusion of electron correlations. It is found that the electron correlation effects play a significant role on the cross section, while the effects on the linear polarization of the emitted radiation are relatively small. Good agreement between our result and experiment is obtained.

  16. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles

    PubMed Central

    2013-01-01

    This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation and growth process in the formation of nanoparticles can determine the size of nanoparticles which is influenced by certain parameters such as the choice of solvents and stabilizer, the precursor to stabilizer ratio, pH during synthesis, and absorbed dose. PMID:24225302

  17. The Measurement of Spectral Characteristics and Composition of Radiation in Atlas with MEDIPIX2-USB Devices

    NASA Astrophysics Data System (ADS)

    Campbell, M.; Doležal, Z.; Greiffenberg, D.; Heijne, E.; Holy, T.; Idárraga, J.; Jakůbek, J.; Král, V.; Králík, M.; Lebel, C.; Leroy, C.; Llopart, X.; Lord, G.; Maneuski, D.; Ouellette, O.; Sochor, V.; Pospíšil, S.; Suk, M.; Tlustos, L.; Vykydal, Z.; Wilhelm, I.

    2008-06-01

    A network of devices to perform real-time measurements of the spectral characteristics and composition of radiation in the ATLAS detector and cavern during its operation is being built. This system of detectors will be a stand alone system fully capable of delivering real-time images of fluxes and spectral composition of different particle species including slow and fast neutrons. The devices are based on MEDIPIX2 pixel silicon detectors that will be operated via active USB cables and USB-Ethernet extenders through an Ethernet network by a PC located in the USA15 ATLAS control room. The installation of 14 devices inside ATLAS (detector and cavern) is in progress.

  18. Energy levels and radiative rates for transitions in B-like to F-like Kr ions (Kr XXXII XXVIII)

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Keenan, F. P.; Lawson, K. D.

    2008-05-01

    Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Kr ions, Kr XXXIII-XXVIII. For the calculations, the fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 125, 236, 272, 226, and 113 levels of Kr XXXII, Kr XXXI, Kr XXX, Kr XXIX, and Kr XXVIII, respectively, belonging to the n ⩽ 3 configurations. Comparisons are made with earlier available theoretical and experimental results, and some discrepancies have been noted and explained.

  19. X-ray Free-electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldhaus, J.; /DESY; Arthur, J.

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, andmore » can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.« less

  20. Measurements of gas temperature in a radiatively heated particle laden turbulent duct flow

    NASA Astrophysics Data System (ADS)

    Kim, Ji Hoon; Banko, Andrew; Villafane, Laura; Elkins, Chris; Eaton, John

    2017-11-01

    Predicting the absorption of radiation through a turbulent, particle laden flow is relevant in atmospheric sciences, turbulent combustion, and in the design of a particle solar receivers. In order to better understand the coupling between the particle phase, the turbulent fluid phase, and the incident radiation, the effects of radiation absorption by disperse inertial particles in a turbulent duct flow was studied experimentally. A fully-developed turbulent duct flow at Reynolds numbers of O(104) , laden with particles at mass loading ratios of 0.1-0.8, was subject to infrared radiation at varying incident powers. The particle Stokes number based on the Kolmogorov length scale was approximately 12, resulting in a preferentially concentrated particle phase. Measurements of the mean and fluctuating components of the gas phase temperature were made along the wall bisector. Results from mean temperature traverses of the gas phase show that a one-dimensional model can account for much of the mean gas temperature rise. Temperature fluctuations due to preferential concentration are significant and can reach approximately 50% of the mean temperature rise. This work was funded by the U.S. Department of Energy under Grant No. DE-NA0002373-1.

  1. Shielding calculations for the National Synchrotron Light Source-II experimental beamlines

    NASA Astrophysics Data System (ADS)

    Job, Panakkal K.; Casey, William R.

    2013-01-01

    Brookhaven National Laboratory is in the process of building a new Electron storage ring for scientific research using synchrotron radiation. This facility, called the "National Synchrotron Light Source II" (NSLS-II), will provide x-ray radiation of ultra-high brightness and exceptional spatial and energy resolution. It will also provide advanced insertion devices, optics, detectors, and robotics, designed to maximize the scientific output of the facility. The project scope includes the design of an electron storage ring and the experimental beamlines, which stores a maximum of 500 mA electron beam current at an energy of 3.0 GeV. When fully built there will be at least 58 beamlines using synchrotron radiation for experimental programs. It is planned to operate the facility primarily in a top-off mode, thereby maintaining the maximum variation in the synchrotron radiation flux to <1%. Because of the very demanding requirements for synchrotron radiation brilliance for the experiments, each of the 58 beamlines will be unique in terms of the source properties and experimental configuration. This makes the shielding configuration of each of the beamlines unique. The shielding calculation methodology and the results for five representative beamlines of NSLS-II, have been presented in this paper.

  2. Fluid Line Evacuation and Freezing Experiments for Digital Radiator Concept

    NASA Technical Reports Server (NTRS)

    Berisford, Daniel F.; Birur, Gajanana C.; Miller, Jennifer R.; Sunada, Eric T.; Ganapathi, Gani B.; Stephan, Ryan; Johnson, Mark

    2011-01-01

    The digital radiator technology is one of three variable heat rejection technologies being investigated for future human-rated NASA missions. The digital radiator concept is based on a mechanically pumped fluid loop with parallel tubes carrying coolant to reject heat from the radiator surface. A series of valves actuate to start and stop fluid flow to di erent combinations of tubes, in order to vary the heat rejection capability of the radiator by a factor of 10 or more. When the flow in a particular leg is stopped, the fluid temperature drops and the fluid can freeze, causing damage or preventing flow from restarting. For this reason, the liquid in a stopped leg must be partially or fully evacuated upon shutdown. One of the challenges facing fluid evacuation from closed tubes arises from the vapor generated during pumping to low pressure, which can cause pump cavitation and incomplete evacuation. Here we present a series of laboratory experiments demonstrating fluid evacuation techniques to overcome these challenges by applying heat and pumping to partial vacuum. Also presented are results from qualitative testing of the freezing characteristics of several different candidate fluids, which demonstrate significant di erences in freezing properties, and give insight to the evacuation process.

  3. Solar Energy Meteorological Research and Training Site: Region 5. Annual report, 30 September 1977-29 September 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, C.R.N.; Hewson, E.W.

    The primary facility which is to be a benchmark site for the acquisition of research quality solar radiation and solar energy related meteorological data has been set up and will be fully operational in the near future. The training program has been established with the introduction of two, two-quarter courses on solar radiation and meteorological measurements and on atmospheric radiative processes. Also, as part of the training program, a week-long workshop on solar energy measurement and instrumentation was conducted during the summer of '78 and a series of seminars on solar energy related topics, catering to both professionals and non-professionals,more » was arranged during the 1977-78 academic year. A meeting of solar radiation scientists from the five states of the region was held in Corvallis (August '78) to explore the feasibility of setting up a regional network of stations to acquire research quality solar radiation and meteorological data. Useful global irradiance measurements have been made at the five sites, making up the general quality network in Oregon, over the greater part of the year.« less

  4. Cherenkov radiation of superluminal particles

    NASA Astrophysics Data System (ADS)

    Rohrlich, Daniel; Aharonov, Yakir

    2002-10-01

    Any charged particle moving faster than light through a medium emits Cherenkov radiation. We show that charged particles moving faster than light through the vacuum emit Cherenkov radiation. How can a particle move faster than light? The weak speed of a charged particle can exceed the speed of light. By definition, the weak velocity w is <Ψfin|v|Ψin>/<Ψfin|Ψin>, where v is the velocity operator and |Ψin> and |Ψfin> are, respectively, the states of a particle before and after a velocity measurement. We discuss the consistency of weak values and show that superluminal weak speed is consistent with relativistic causality.

  5. The Integrated Radiation Mapper Assistant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlton, R.E.; Tripp, L.R.

    1995-03-01

    The Integrated Radiation Mapper Assistant (IRMA) system combines state-of-the-art radiation sensors and microprocessor based analysis techniques to perform radiation surveys. Control of the survey function is from a control station located outside the radiation thus reducing time spent in radiation areas performing radiation surveys. The system consists of a directional radiation sensor, a laser range finder, two area radiation sensors, and a video camera mounted on a pan and tilt platform. THis sensor package is deployable on a remotely operated vehicle. The outputs of the system are radiation intensity maps identifying both radiation source intensities and radiation levels throughout themore » room being surveyed. After completion of the survey, the data can be removed from the control station computer for further analysis or archiving.« less

  6. Dynamical properties and acceleration of hierarchical dust in the vicinity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Skorov, Yu; Reshetnyk, V.; Rezac, L.; Zhao, Y.; Marschall, R.; Blum, J.; Hartogh, P.

    2018-07-01

    A significant fraction of cometary dust grains leaving the nucleus surface are extremely porous and fluffy particles as revealed by recent observation from the Rosetta mission. In this paper our aim is to investigate the dynamics of such grains when subjected to a gas flow, representing the cometary outgassing. We perform numerical experiments to quantify how the internal porous texture is reflected in quantities such as effective cross-section, gas drag coefficient, and light scattering efficiency. We also derive particle speeds for the different types of aggregates as a function of radial distance and compare them to the observations by the GIADA instrument. Using our original method for constructing hierarchical aggregates we increase the level of aggregation to reach particle sizes up to few millimeters, consistent with the observations. In addition, a non-constant gas velocity is now considered in the framework of free molecular as well as fully collisional flow models, and radiation pressure calculations use the effective medium theory appropriate for such particles. These improvements lead us to conclude that dynamical models should account for accelerating gas flow, which leads to a smaller terminal speed of fluffy dust grains. Secondly, solar radiation pressure calculated based on the Mie theory approximation can lead to orders of magnitude error for the very porous particles, instead the effective medium theory should be used. Finally, although numerical simulations can reproduce the GIADA measurements of dust speeds, we cannot conclude that there exists a preferred model of porous particles build as a ballistic cluster aggregate.

  7. Dynamical properties and acceleration of hierarchical dust in the vicinity of comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Skorov, Yu; Reshetnyk, V.; Rezac, L.; Zhao, Y.; Marschall, R.; Blum, J.; Hartogh, P.

    2018-04-01

    A significant fraction of cometary dust grains leaving the nucleus surface are extremely porous and fluffy particles as recent observation from the Rosetta mission revealed. In this paper our aim is to investigate the dynamics of such grains when subjected to a gas flow, representing the cometary outgassing. We perform numerical experiments to quantify how the internal porous texture is reflected in quantities such as: effective cross-section, gas drag coefficient, and light scattering efficiency. We also derive particle speeds for the different types of aggregates as a function of radial distance and compare them to the observations by the GIADA instrument. Using our original method for constructing hierarchical aggregates we increase the level of aggregation to reach particle sizes up to few millimeters, consistent with the observations. In addition, a non-constant gas velocity is now considered in the framework of free molecular as well as fully collisional flow models, and radiation pressure calculations use the effective medium theory appropriate for such particles. These improvements lead us to conclude that dynamical models should account for accelerating gas flow, which leads to a smaller terminal speed of fluffy dust grains. Second, solar radiation pressure calculated based on the Mie theory approximation can lead to orders of magnitude error for the very porous particles, instead the effective medium theory should be used. Finally, although numerical simulations can reproduce the GIADA measurements of dust speeds, we cannot conclude that there exists a preferred model of porous particles build as a ballistic cluster aggregate.

  8. Model Atmospheres and Spectral Irradiance Library of the Exoplanet Host Stars Observed in the MUSCLES Survey

    NASA Astrophysics Data System (ADS)

    Linsky, Jeffrey

    2017-08-01

    We propose to compute state-of-the-art model atmospheres (photospheres, chromospheres, transition regions and coronae) of the 4 K and 7 M exoplanet host stars observed by HST in the MUSCLES Treasury Survey, the nearest host star Proxima Centauri, and TRAPPIST-1. Our semi-empirical models will fit theunique high-resolution panchromatic (X-ray to infrared) spectra of these stars in the MAST High-Level Science Products archive consisting of COS and STIS UV spectra and near-simultaneous Chandra, XMM-Newton, and ground-based observations. We will compute models with the fully tested SSRPM computer software incorporating 52 atoms and ions in full non-LTE (435,986 spectral lines) and the 20 most-abundant diatomic molecules (about 2 million lines). This code has successfully fit the panchromatic spectrum of the M1.5 V exoplanet host star GJ 832 (Fontenla et al. 2016), the first M star with such a detailed model, and solar spectra. Our models will (1) predict the unobservable extreme-UV spectra, (2) determine radiative energy losses and balancing heating rates throughout these atmospheres, (3) compute a stellar irradiance library needed to describe the radiation environment of potentially habitable exoplanets to be studied by TESS and JWST, and (4) in the long post-HST era when UV observations will not be possible, the stellar irradiance library will be a powerful tool for predicting the panchromatic spectra of host stars that have only limited spectral coverage, in particular no UV spectra. The stellar models and spectral irradiance library will be placed quickly in MAST.

  9. Miniature Loop Heat Pipe (MLHP) Thermal Management System

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2004-01-01

    The MLHP Thermal Management System consists of a loop heat pipe (LHP) with multiple evaporators and condensers, thermal electrical coolers, and deployable radiators coated with variable emittance coatings (VECs). All components are miniaturized. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, versatility, and reliability of the system, including flexible locations of instruments and radiators, a single interface temperature for multiple instruments, cooling the on instruments and warming the off instruments simultaneously, improving. start-up success, maintaining a constant LHP operating temperature over a wide range of instrument powers, effecting automatic thermal switching and thermal diode actions, and reducing supplemental heater powers. It can fully achieve low mass, low power and compactness necessary for future small spacecraft. Potential applications of the MLHP thermal technology for future missions include: 1) Magnetospheric Constellation; 2) Solar Sentinels; 3) Mars Science Laboratory; 4) Mars Scouts; 5) Mars Telecom Orbiter; 6) Space Interferometry Mission; 7) Laser Interferometer Space Antenna; 8) Jupiter Icy Moon Orbiter; 9) Terrestrial Planet Finder; 10) Single Aperture Far-Infrared Observatory, and 11) Exploration Missions. The MLHP Thermal Management System combines the operating features of a variable conductance heat pipe, a thermal switch, a thermal diode, and a state-of-the-art LHP into a single integrated thermal system. It offers many advantages over conventional thermal control techniques, and can be a technology enabler for future space missions. Successful flight validation will bring the benefits of MLHP technology to the small satellite arena and will have cross-cutting applications to both Space Science and Earth Science Enterprises.

  10. Snowpack Chemistry of Reactive Gases at Station Concordia, Antarctica

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Mass, Alex; Hueber, Jacques; Fain, Xavier; Dommergue, Aurelien; Barbero, Albane; Savarino, Joel

    2013-04-01

    During December 2012 a new experiment for the study of snow photochemical processes and surface gas exchange was installed at Dome Concordia, Antarctica. The experiment consists of two sampling manifolds ('snow tower') which facilitate the withdrawal of interstitial firn air from four depths in the snowpack and from above the surface. One of these snow towers can be shaded for investigation of the dependency of snow chemistry on solar radiation. A nearby 12 m meteorological tower facilitates above surface turbulence and trace gas gradient measurements. Temperature profiles and UV and IR light penetration are monitored in the snowpack. Air samples are directed through sampling lines to a nearby underground laboratory that houses the experiment control system and gas monitors. The system is fully automated, sampling gases from the array of inlet ports sequentially, and is intended to be operated continuously for a full annual cycle. The computerized control system can be accessed remotely for data retrieval and quality control and for configuring experimental details. Continuous gas measurements include ozone, nitrogen oxides, methane, carbon monoxide, and gaseous elemental mercury. Whole air samples were sampled on four occasions for volatile organic compound analysis. The objective of this research is the study of the year-round snowpack gas chemistry and its dependency on snowpack and above surface physical and environmental conditions. A particular emphasis will be the investigation of the effects of increased UV radiation during the occurrence of the stratospheric ozone hole. We will present the conceptual design of the experiment and data examples from the first three months of the experiment.

  11. The Formation of Super-Earths by Tidally Forced Turbulence

    NASA Astrophysics Data System (ADS)

    Yu, Cong

    2017-12-01

    The Kepler observations indicate that many exoplanets are super-Earths, which brings about a puzzle for the core-accretion scenario. Since observed super-Earths are in the range of critical mass, they accrete gas efficiently and become gas giants. Theoretically, super-Earths are predicted to be rare in the core-accretion framework. To resolve this contradiction, we propose that the tidally forced turbulent diffusion may affect the heat transport inside the planet. Thermal feedback induced by turbulent diffusion is investigated. We find that the tidally forced turbulence generates pseudo-adiabatic regions within radiative zones, which pushes the radiative-convective boundaries inward. This decreases the cooling luminosity and enhances the Kelvin-Helmholtz (KH) timescale. For a given lifetime of protoplanetary disks (PPDs), there exists a critical threshold for the turbulent diffusivity, ν critical. If ν turb > ν critical, the KH timescale is longer than the disk lifetime and the planet becomes a super-Earth, rather than a gas giant. We find that even a small value of turbulent diffusion has influential effects on the evolution of super-Earths. The ν critical increases with the core mass. We further ascertain that, within the minimum-mass extrasolar nebula, ν critical increases with the semimajor axis. This may explain the feature that super-Earths are common in inner PPD regions, while gas giants are common in outer PPD regions. The predicted envelope mass fraction is not fully consistent with observations. We discuss physical processes, such as late core assembly and mass-loss mechanisms, that may be operating during super-Earth formation.

  12. Evaluating weather factors and material response during outdoor exposure to determine accelerated test protocols for predicting service life

    Treesearch

    R. Sam Williams; Steven Lacher; Corey Halpin; Christopher White

    2005-01-01

    To develop service life prediction methods for the study of sealants, a fully instrumented weather station was installed at an outdoor test site near Madison, WI. Temperature, relative humidiy, rainfall, ultraviolet (UV) radiation at 18 wavelengths, and wind speed and direction are being continuously measured and stored. The weather data can be integrated over time to...

  13. Entanglement in a model for Hawking radiation: An application of quadratic algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bambah, Bindu A., E-mail: bbsp@uohyd.ernet.in; Mukku, C., E-mail: mukku@iiit.ac.in; Shreecharan, T., E-mail: shreecharan@gmail.com

    2013-03-15

    Quadratic polynomially deformed su(1,1) and su(2) algebras are utilized in model Hamiltonians to show how the gravitational system consisting of a black hole, infalling radiation and outgoing (Hawking) radiation can be solved exactly. The models allow us to study the long-time behaviour of the black hole and its outgoing modes. In particular, we calculate the bipartite entanglement entropies of subsystems consisting of (a) infalling plus outgoing modes and (b) black hole modes plus the infalling modes, using the Janus-faced nature of the model. The long-time behaviour also gives us glimpses of modifications in the character of Hawking radiation. Finally, wemore » study the phenomenon of superradiance in our model in analogy with atomic Dicke superradiance. - Highlights: Black-Right-Pointing-Pointer We examine a toy model for Hawking radiation with quantized black hole modes. Black-Right-Pointing-Pointer We use quadratic polynomially deformed su(1,1) algebras to study its entanglement properties. Black-Right-Pointing-Pointer We study the 'Dicke Superradiance' in black hole radiation using quadratically deformed su(2) algebras. Black-Right-Pointing-Pointer We study the modification of the thermal character of Hawking radiation due to quantized black hole modes.« less

  14. Interpreting MAD within multiple accretion regimes

    NASA Astrophysics Data System (ADS)

    Mocz, Philip; Guo, Xinyi

    2015-02-01

    General relativistic magnetohydrodynamic (GRMHD) simulations of accreting black holes in the radiatively inefficient regime show that systems with sufficient magnetic poloidal flux become magnetically arrested disc (MAD) systems, with a well-defined relationship between the magnetic flux and the mass accretion rate. Recently, Zamaninasab et al. report that the jet magnetic flux and accretion disc luminosity are tightly correlated over 7 orders of magnitude for a sample of 76 radio-loud active galaxies, concluding that the data are explained by the MAD mode of accretion. Their analysis assumes radiatively efficient accretion, and their sample consists primarily of radiatively efficient sources, while GRMHD simulations of MAD thus far have been carried out in the radiatively inefficient regime. We propose a model to interpret MAD systems in the context of multiple accretion regimes, and apply it to the sample in Zamaninasab et al., along with additional radiatively inefficient sources from archival data. We show that most of the radiatively inefficient radio-loud galaxies are consistent with being MAD systems. Assuming the MAD relationship found in radiatively inefficient simulations holds at other accretion regimes, a significant fraction of our sample can be candidates for MAD systems. Future GRMHD simulations have yet to verify the validity of this assumption.

  15. Painting Dose: The ART of Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Hannah J.; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Zietman, Anthony L.

    The discovery of X rays in 1895 captivated society like no other scientific advance. Radiation instantly became the subject not only of numerous scientific papers but also of circus bazaars, poetry, fiction, costume design, comics, and marketing for household items. Its spread was “viral.” What is not well known, however, is its incorporation into visual art, despite the long tradition of medicine and surgery as a subject in art. Using several contemporary search methods, we identified 5 examples of paintings or sculpture that thematically feature radiation therapy. All were by artists with exhibited careers in art: Georges Chicotot, Marcel Duchamp,more » David Alfaro Siqueiros, Robert Pope, and Cookie Kerxton. Each artist portrays radiation differently, ranging from traditional healer, to mysterious danger, to futuristic propaganda, to the emotional challenges of undergoing cancer therapy. This range captures the complex role of radiation as both a therapy and a hazard. Whereas some of these artists are now world famous, none of these artworks are as well known as their surgical counterparts. The penetration of radiation into popular culture was rapid and pervasive; yet, its role as a thematic subject in art never fully caught on, perhaps because of a lack of understanding of the technology, radiation's intangibility, or even a suppressive effect of society's ambivalent relationship with it. These 5 artists have established a rich foundation upon which pop culture and art can further develop with time to reflect the extraordinary progress of modern radiation therapy.« less

  16. Commentary regarding: "The effect of simulated space radiation on the N-glycosylation of human immunoglobulin G1".

    PubMed

    Bevelacqua, Joseph John; Mortazavi, S M J

    2018-06-27

    Deep space missions, including Mars voyages, are an important area of research. Protection of astronauts' health during these long-term missions is of paramount importance. The paper authored by Szarka et al. entitled "The effect of simulated space radiation on the N-glycosylation of human immunoglobulin G1" is indeed a step forward in this effort. Despite numerous strengths, there are some shortcomings in this paper including an incomplete description of the space radiation environment as well as discussion of the resulting biological effects. Due to complexity of the space radiation environment, a careful analysis is needed to fully evaluate the spectrum of particles associated with solar particle events (SPEs) and galactic cosmic radiation (GCR). The radiation source used in this experiment does not reproduce the range of primary GCR and SPE particles and their associated energies. Furthermore, the effect of radiation interactions within the spacecraft shell and the potential effects of microgravity are not considered. Moreover, the importance of radioadaptation in deep space missions that is confirmed in a NASA report is neither considered. Other shortcomings are also discussed in this commentary. Considering these shortcoming, it can be argued that Szarka et al. draws conclusions based on an incomplete description of the space radiation environment that could affect the applicability of this study. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Time-dependent radiation dose simulations during interplanetary space flights

    NASA Astrophysics Data System (ADS)

    Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju

    2016-07-01

    Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.

  18. Painting Dose: The ART of Radiation.

    PubMed

    Roberts, Hannah J; Zietman, Anthony L; Efstathiou, Jason A

    2016-11-15

    The discovery of X rays in 1895 captivated society like no other scientific advance. Radiation instantly became the subject not only of numerous scientific papers but also of circus bazaars, poetry, fiction, costume design, comics, and marketing for household items. Its spread was "viral." What is not well known, however, is its incorporation into visual art, despite the long tradition of medicine and surgery as a subject in art. Using several contemporary search methods, we identified 5 examples of paintings or sculpture that thematically feature radiation therapy. All were by artists with exhibited careers in art: Georges Chicotot, Marcel Duchamp, David Alfaro Siqueiros, Robert Pope, and Cookie Kerxton. Each artist portrays radiation differently, ranging from traditional healer, to mysterious danger, to futuristic propaganda, to the emotional challenges of undergoing cancer therapy. This range captures the complex role of radiation as both a therapy and a hazard. Whereas some of these artists are now world famous, none of these artworks are as well known as their surgical counterparts. The penetration of radiation into popular culture was rapid and pervasive; yet, its role as a thematic subject in art never fully caught on, perhaps because of a lack of understanding of the technology, radiation's intangibility, or even a suppressive effect of society's ambivalent relationship with it. These 5 artists have established a rich foundation upon which pop culture and art can further develop with time to reflect the extraordinary progress of modern radiation therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. An LNG release, transport, and fate model system for marine spills.

    PubMed

    Spaulding, Malcolm L; Swanson, J Craig; Jayko, Kathy; Whittier, Nicole

    2007-02-20

    LNGMAP, a fully integrated, geographic information based modular system, has been developed to predict the fate and transport of marine spills of LNG. The model is organized as a discrete set of linked algorithms that represent the processes (time dependent release rate, spreading, transport on the water surface, evaporation from the water surface, transport and dispersion in the atmosphere, and, if ignited, burning and associated radiated heat fields) affecting LNG once it is released into the environment. A particle-based approach is employed in which discrete masses of LNG released from the source are modeled as individual masses of LNG or spillets. The model is designed to predict the gas mass balance as a function of time and to display the spatial and temporal evolution of the gas (and radiated energy field). LNGMAP has been validated by comparisons to predictions of models developed by ABS Consulting and Sandia for time dependent point releases from a draining tank, with and without burning. Simulations were in excellent agreement with those performed by ABS Consulting and consistent with Sandia's steady state results. To illustrate the model predictive capability for realistic emergency scenarios, simulations were performed for a tanker entering Block Island Sound. Three hypothetical cases were studied: the first assumes the vessel continues on course after the spill starts, the second that the vessel stops as soon as practical after the release begins (3 min), and the third that the vessel grounds at the closest site practical. The model shows that the areas of the surface pool and the incident thermal radiation field (with burning) are minimized and dispersed vapor cloud area (without burning) maximized if the vessel continues on course. For this case the surface pool area, with burning, is substantially smaller than for the without burning case because of the higher mass loss rate from the surface pool due to burning. Since the vessel speed substantially exceeds the spill spreading rate, both the thermal radiation fields and surface pool trail the vessel. The relative directions and speeds of the wind and vessel movement govern the orientation of the dispersed plume. If the vessel stops, the areas of the surface pool and incident radiation field (with burning) are maximized and the dispersed cloud area (without burning) minimized. The longer the delay in stopping the vessel, the smaller the peak values are for the pool area and the size of the thermal radiation field. Once the vessel stops, the spill pool is adjacent to the vessel and moving down current. The thermal radiation field is oriented similarly. These results may be particularly useful in contingency planning for underway vessels.

  20. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Optimal two-mirror system for laser radiation focusing

    NASA Astrophysics Data System (ADS)

    Gitin, Andrey V.

    2009-10-01

    An optical system for laser radiation focusing, which consists of parabolic and elliptic mirrors, is considered. It is shown by the method of elementary reflections that the maximum concentration of laser radiation on the target can be achieved at a certain position of these mirrors.

  1. Saturation and energy-conversion efficiency of auroral kilometric radiation

    NASA Technical Reports Server (NTRS)

    Wu, C. S.; Tsai, S. T.; Xu, M. J.; Shen, J. W.

    1981-01-01

    A quasi-linear theory is used to study the saturation level of the auroral kilometric radiation. The investigation is based on the assumption that the emission is due to a cyclotron maser instability as suggested by Wu and Lee and Lee et al. The thermodynamic bound on the radiation energy is also estimated separately. The energy-conversion efficiency of the radiation process is discussed. The results are consistent with observations.

  2. The Impact of Aerosol Microphysical Representation in Models on the Direct Radiative Effect

    NASA Astrophysics Data System (ADS)

    Ridley, D. A.; Heald, C. L.

    2017-12-01

    Aerosol impacts the radiative balance of the atmosphere both directly and indirectly. There is considerable uncertainty remaining in the aerosol direct radiative effect (DRE), hampering understanding of the present magnitude of anthropogenic aerosol forcing and how future changes in aerosol loading will influence climate. Computationally expensive explicit aerosol microphysics are usually reserved for modelling of the aerosol indirect radiative effects that depend upon aerosol particle number. However, the direct radiative effects of aerosol are also strongly dependent upon the aerosol size distribution, especially particles between 0.2µm - 2µm diameter. In this work, we use a consistent model framework and consistent emissions to explore the impact of prescribed size distributions (bulk scheme) relative to explicit microphysics (sectional scheme) on the aerosol radiative properties. We consider the difference in aerosol burden, water uptake, and extinction efficiency resulting from the two representations, highlighting when and where the bulk and sectional schemes diverge significantly in their estimates of the DRE. Finally, we evaluate the modelled size distributions using in-situ measurements over a range of regimes to provide constraints on both the accumulation and coarse aerosol sizes.

  3. First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors

    NASA Astrophysics Data System (ADS)

    Pernegger, H.; Bates, R.; Buttar, C.; Dalla, M.; van Hoorne, J. W.; Kugathasan, T.; Maneuski, D.; Musa, L.; Riedler, P.; Riegel, C.; Sbarra, C.; Schaefer, D.; Schioppa, E. J.; Snoeys, W.

    2017-06-01

    The upgrade of the ATLAS [1] tracking detector for the High-Luminosity Large Hadron Collider (LHC) at CERN requires novel radiation hard silicon sensor technologies. Significant effort has been put into the development of monolithic CMOS sensors but it has been a challenge to combine a low capacitance of the sensing node with full depletion of the sensitive layer. Low capacitance brings low analog power. Depletion of the sensitive layer causes the signal charge to be collected by drift sufficiently fast to separate hits from consecutive bunch crossings (25 ns at the LHC) and to avoid losing the charge by trapping. This paper focuses on the characterization of charge collection properties and detection efficiency of prototype sensors originally designed in the framework of the ALICE Inner Tracking System (ITS) upgrade [2]. The prototypes are fabricated both in the standard TowerJazz 180nm CMOS imager process [3] and in an innovative modification of this process developed in collaboration with the foundry, aimed to fully deplete the sensitive epitaxial layer and enhance the tolerance to non-ionizing energy loss. Sensors fabricated in standard and modified process variants were characterized using radioactive sources, focused X-ray beam and test beams before and after irradiation. Contrary to sensors manufactured in the standard process, sensors from the modified process remain fully functional even after a dose of 1015neq/cm2, which is the the expected NIEL radiation fluence for the outer pixel layers in the future ATLAS Inner Tracker (ITk) [4].

  4. Adapting the γ-H2AX assay for automated processing in human lymphocytes. 1. Technological aspects.

    PubMed

    Turner, Helen C; Brenner, David J; Chen, Youhua; Bertucci, Antonella; Zhang, Jian; Wang, Hongliang; Lyulko, Oleksandra V; Xu, Yanping; Shuryak, Igor; Schaefer, Julia; Simaan, Nabil; Randers-Pehrson, Gerhard; Yao, Y Lawrence; Amundson, Sally A; Garty, Guy

    2011-03-01

    The immunofluorescence-based detection of γ-H2AX is a reliable and sensitive method for quantitatively measuring DNA double-strand breaks (DSBs) in irradiated samples. Since H2AX phosphorylation is highly linear with radiation dose, this well-established biomarker is in current use in radiation biodosimetry. At the Center for High-Throughput Minimally Invasive Radiation Biodosimetry, we have developed a fully automated high-throughput system, the RABIT (Rapid Automated Biodosimetry Tool), that can be used to measure γ-H2AX yields from fingerstick-derived samples of blood. The RABIT workstation has been designed to fully automate the γ-H2AX immunocytochemical protocol, from the isolation of human blood lymphocytes in heparin-coated PVC capillaries to the immunolabeling of γ-H2AX protein and image acquisition to determine fluorescence yield. High throughput is achieved through the use of purpose-built robotics, lymphocyte handling in 96-well filter-bottomed plates, and high-speed imaging. The goal of the present study was to optimize and validate the performance of the RABIT system for the reproducible and quantitative detection of γ-H2AX total fluorescence in lymphocytes in a multiwell format. Validation of our biodosimetry platform was achieved by the linear detection of a dose-dependent increase in γ-H2AX fluorescence in peripheral blood samples irradiated ex vivo with γ rays over the range 0 to 8 Gy. This study demonstrates for the first time the optimization and use of our robotically based biodosimetry workstation to successfully quantify γ-H2AX total fluorescence in irradiated peripheral lymphocytes.

  5. Space radiation absorbed dose distribution in a human phantom

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose-rate predictions are 20% lower than the observations. Assuming that the trapped-belt models lead to a correct orbit-averaged energy spectrum, the measurements of dose rates inside the phantom cannot be fully understood. Passive measurements using 6Li- and 7Li-based detectors on the astronauts and inside the brain and thyroid of the phantom show the presence of a significant contribution due to thermal neutrons, an area requiring additional study.

  6. Self-consistent models for Coulomb heated X-ray pulsar atmospheres

    NASA Technical Reports Server (NTRS)

    Harding, A.; Meszaros, S. P.; Kirk, J.; Galloway, D.

    1983-01-01

    Calculations of accreting magnetized neutron star atmospheres heated by the gradual deceleration of protons via Coulomb collisions are presented. Self consistent determinations of the temperature and density structure for different accretion rates are made by assuming hydrostatic equilibrium and energy balance, coupled with radiative transfer. The full radiative transfer in two polarizations, using magnetic cross sections but with cyclotron resonance effects treated approximately, is carried out in the inhomogeneous atmospheres.

  7. CMacIonize: Monte Carlo photoionisation and moving-mesh radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, Bert; Wood, Kenneth

    2018-02-01

    CMacIonize simulates the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given time, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code and also as a moving-mesh code.

  8. Opportunities for nutritional amelioration of radiation-induced cellular damage

    NASA Technical Reports Server (NTRS)

    Turner, Nancy D.; Braby, Leslie A.; Ford, John; Lupton, Joanne R.

    2002-01-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations.

  9. Precision Measurement of Phonon-Polaritonic Near-Field Energy Transfer between Macroscale Planar Structures Under Large Thermal Gradients.

    PubMed

    Ghashami, Mohammad; Geng, Hongyao; Kim, Taehoon; Iacopino, Nicholas; Cho, Sung Kwon; Park, Keunhan

    2018-04-27

    Despite its strong potentials in emerging energy applications, near-field thermal radiation between large planar structures has not been fully explored in experiments. Particularly, it is extremely challenging to control a subwavelength gap distance with good parallelism under large thermal gradients. This article reports the precision measurement of near-field radiative energy transfer between two macroscale single-crystalline quartz plates that support surface phonon polaritons. Our measurement scheme allows the precise control of a gap distance down to 200 nm in a highly reproducible manner for a surface area of 5×5  mm^{2}. We have measured near-field thermal radiation as a function of the gap distance for a broad range of thermal gradients up to ∼156  K, observing more than 40 times enhancement of thermal radiation compared to the blackbody limit. By comparing with theoretical prediction based on fluctuational electrodynamics, we demonstrate that such remarkable enhancement is owing to phonon-polaritonic energy transfer across a nanoscale vacuum gap.

  10. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    PubMed Central

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-01-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo. PMID:23907528

  11. Collisional-radiative modeling of tungsten at temperatures of 1200–2400 eV

    DOE PAGES

    Colgan, James; Fontes, Christopher; Zhang, Honglin; ...

    2015-04-30

    We discuss new collisional-radiative modeling calculations of tungsten at moderate temperatures of 1200 to 2400 eV. Such plasma conditions are relevant to ongoing experimental work at ASDEX Upgrade and are expected to be relevant for ITER. Our calculations are made using the Los Alamos National Laboratory (LANL) collisional-radiative modeling ATOMIC code. These calculations formed part of a submission to the recent NLTE-8 workshop that was held in November 2013. This series of workshops provides a forum for detailed comparison of plasma and spectral quantities from NLTE collisional-radiative modeling codes. We focus on the LANL ATOMIC calculations for tungsten that weremore » submitted to the NLTE-8 workshop and discuss different models that were constructed to predict the tungsten emission. In particular, we discuss comparisons between semi-relativistic configuration-average and fully relativistic configuration-average calculations. As a result, we also present semi-relativistic calculations that include fine-structure detail, and discuss the difficult problem of ensuring completeness with respect to the number of configurations included in a CR calculation.« less

  12. Comparison of International Guidelines on Mucosal Melanoma of the Head and Neck: A Comprehensive Review of the Role of Radiation Therapy.

    PubMed

    Pittaka, Maria; Kardamakis, Dimitrios; Spyropoulou, Despina

    2016-01-01

    Mucosal melanomas of the head and neck are rare pathological entities that correlate with poor prognosis due to their high propensity for local failure and distant metastases. The exact role of radiation therapy in the management of mucosal melanoma patients has not yet been fully proven, even though in everyday clinical practice these patients are referred for radiotherapy, in an effort to improve locoregional control. The guidelines of various societies on the role of radiation therapy for the treatment of mucosal melanoma of the head and neck region are very limited. We reviewed and analyzed the guidelines developed in the U.S.A. (National Comprehensive Cancer Network), Canada (Cancer Care Ontario and Canadian Medical Association), Europe (European Society for Medical Oncology and European Society for Radiotherapy and Oncology) and Australia and New Zealand (Cancer Council Australia) and isolated evidence for the management of mucosal melanomas of the head and neck region with radiation therapy worldwide. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. Three-dimensional large-eddy simulations of the early phase of contrail-to-cirrus transition: effects of atmospheric turbulence and radiative transfer

    DOE PAGES

    Paoli, Roberto; Thouron, Odile; Cariolle, Daniel; ...

    2017-12-08

    Here, this article presents the results from numerical experiments of the early phase of contrail-cirrus formation using a limited set of fully three-dimensional, high-resolution large-eddy-simulations. The focus is laid on the interplay between atmospheric turbulence and the radiative transfer (and to a limited extent the ambient ice relative humidity), and how this interaction affects the contrail evolution and the characteristics of the resulting contrail-cirrus one hour after emission. Turbulence is sustained via a large-scale stochastic forcing that creates a non-uniform shear in addition to pure turbulent fluctuations. This effect manifests in the formation of vertically sheared structures of ice crystals.more » When radiative transfer is activated, ice tends to redistribute more uniformly along the vertical direction forming spotty vertical structures. For the conditions analyzed in this study, atmospheric turbulence, inclusive of non-uniform turbulent shear and turbulent fluctuations, affects primarily the contrail width whereas the microphysical properties such ice water path and ice mass are controlled by radiative transfer and relative humidity.« less

  14. Development of a digital method for neutron/gamma-ray discrimination based on matched filtering

    NASA Astrophysics Data System (ADS)

    Korolczuk, S.; Linczuk, M.; Romaniuk, R.; Zychor, I.

    2016-09-01

    Neutron/gamma-ray discrimination is crucial for measurements with detectors sensitive to both neutron and gamma-ray radiation. Different techniques to discriminate between neutrons and gamma-rays based on pulse shape analysis are widely used in many applications, e.g., homeland security, radiation dosimetry, environmental monitoring, fusion experiments, nuclear spectroscopy. A common requirement is to improve a radiation detection level with a high detection reliability. Modern electronic components, such as high speed analog to digital converters and powerful programmable digital circuits for signal processing, allow us to develop a fully digital measurement system. With this solution it is possible to optimize digital signal processing algorithms without changing any electronic components in an acquisition signal path. We report on results obtained with a digital acquisition system DNG@NCBJ designed at the National Centre for Nuclear Research. A 2'' × 2'' EJ309 liquid scintillator was used to register mixed neutron and gamma-ray radiation from PuBe sources. A dedicated algorithm for pulse shape discrimination, based on real-time filtering, was developed and implemented in hardware.

  15. Gauss-Seidel and Successive Overrelaxation Methods for Radiative Transfer with Partial Frequency Redistribution

    NASA Astrophysics Data System (ADS)

    Sampoorna, M.; Trujillo Bueno, J.

    2010-04-01

    The linearly polarized solar limb spectrum that is produced by scattering processes contains a wealth of information on the physical conditions and magnetic fields of the solar outer atmosphere, but the modeling of many of its strongest spectral lines requires solving an involved non-local thermodynamic equilibrium radiative transfer problem accounting for partial redistribution (PRD) effects. Fast radiative transfer methods for the numerical solution of PRD problems are also needed for a proper treatment of hydrogen lines when aiming at realistic time-dependent magnetohydrodynamic simulations of the solar chromosphere. Here we show how the two-level atom PRD problem with and without polarization can be solved accurately and efficiently via the application of highly convergent iterative schemes based on the Gauss-Seidel and successive overrelaxation (SOR) radiative transfer methods that had been previously developed for the complete redistribution case. Of particular interest is the Symmetric SOR method, which allows us to reach the fully converged solution with an order of magnitude of improvement in the total computational time with respect to the Jacobi-based local accelerated lambda iteration method.

  16. Development of a hemispherical rotational modulation collimator system for imaging spatial distribution of radiation sources

    NASA Astrophysics Data System (ADS)

    Na, M.; Lee, S.; Kim, G.; Kim, H. S.; Rho, J.; Ok, J. G.

    2017-12-01

    Detecting and mapping the spatial distribution of radioactive materials is of great importance for environmental and security issues. We design and present a novel hemispherical rotational modulation collimator (H-RMC) system which can visualize the location of the radiation source by collecting signals from incident rays that go through collimator masks. The H-RMC system comprises a servo motor-controlled rotating module and a hollow heavy-metallic hemisphere with slits/slats equally spaced with the same angle subtended from the main axis. In addition, we also designed an auxiliary instrument to test the imaging performance of the H-RMC system, comprising a high-precision x- and y-axis staging station on which one can mount radiation sources of various shapes. We fabricated the H-RMC system which can be operated in a fully-automated fashion through the computer-based controller, and verify the accuracy and reproducibility of the system by measuring the rotational and linear positions with respect to the programmed values. Our H-RMC system may provide a pivotal tool for spatial radiation imaging with high reliability and accuracy.

  17. Three-dimensional large-eddy simulations of the early phase of contrail-to-cirrus transition: effects of atmospheric turbulence and radiative transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paoli, Roberto; Thouron, Odile; Cariolle, Daniel

    Here, this article presents the results from numerical experiments of the early phase of contrail-cirrus formation using a limited set of fully three-dimensional, high-resolution large-eddy-simulations. The focus is laid on the interplay between atmospheric turbulence and the radiative transfer (and to a limited extent the ambient ice relative humidity), and how this interaction affects the contrail evolution and the characteristics of the resulting contrail-cirrus one hour after emission. Turbulence is sustained via a large-scale stochastic forcing that creates a non-uniform shear in addition to pure turbulent fluctuations. This effect manifests in the formation of vertically sheared structures of ice crystals.more » When radiative transfer is activated, ice tends to redistribute more uniformly along the vertical direction forming spotty vertical structures. For the conditions analyzed in this study, atmospheric turbulence, inclusive of non-uniform turbulent shear and turbulent fluctuations, affects primarily the contrail width whereas the microphysical properties such ice water path and ice mass are controlled by radiative transfer and relative humidity.« less

  18. The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, B.; Wood, K.

    2018-04-01

    We present the public Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE, which can be used to simulate the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given type, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code, but also as a moving-mesh code.

  19. Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolution of caffeine content in its species: GBS coffee phylogeny and the evolution of caffeine content.

    PubMed

    Hamon, Perla; Grover, Corrinne E; Davis, Aaron P; Rakotomalala, Jean-Jacques; Raharimalala, Nathalie E; Albert, Victor A; Sreenath, Hosahalli L; Stoffelen, Piet; Mitchell, Sharon E; Couturon, Emmanuel; Hamon, Serge; de Kochko, Alexandre; Crouzillat, Dominique; Rigoreau, Michel; Sumirat, Ucu; Akaffou, Sélastique; Guyot, Romain

    2017-04-01

    A comprehensive and meaningful phylogenetic hypothesis for the commercially important coffee genus (Coffea) has long been a key objective for coffee researchers. For molecular studies, progress has been limited by low levels of sequence divergence, leading to insufficient topological resolution and statistical support in phylogenetic trees, particularly for the major lineages and for the numerous species occurring in Madagascar. We report here the first almost fully resolved, broadly sampled phylogenetic hypothesis for coffee, the result of combining genotyping-by-sequencing (GBS) technology with a newly developed, lab-based workflow to integrate short read next-generation sequencing for low numbers of additional samples. Biogeographic patterns indicate either Africa or Asia (or possibly the Arabian Peninsula) as the most likely ancestral locality for the origin of the coffee genus, with independent radiations across Africa, Asia, and the Western Indian Ocean Islands (including Madagascar and Mauritius). The evolution of caffeine, an important trait for commerce and society, was evaluated in light of our phylogeny. High and consistent caffeine content is found only in species from the equatorial, fully humid environments of West and Central Africa, possibly as an adaptive response to increased levels of pest predation. Moderate caffeine production, however, evolved at least one additional time recently (between 2 and 4Mya) in a Madagascan lineage, which suggests that either the biosynthetic pathway was already in place during the early evolutionary history of coffee, or that caffeine synthesis within the genus is subject to convergent evolution, as is also the case for caffeine synthesis in coffee versus tea and chocolate. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Broad-Bandwidth FPGA-Based Digital Polyphase Spectrometer

    NASA Technical Reports Server (NTRS)

    Jamot, Robert F.; Monroe, Ryan M.

    2012-01-01

    With present concern for ecological sustainability ever increasing, it is desirable to model the composition of Earth s upper atmosphere accurately with regards to certain helpful and harmful chemicals, such as greenhouse gases and ozone. The microwave limb sounder (MLS) is an instrument designed to map the global day-to-day concentrations of key atmospheric constituents continuously. One important component in MLS is the spectrometer, which processes the raw data provided by the receivers into frequency-domain information that cannot only be transmitted more efficiently, but also processed directly once received. The present-generation spectrometer is fully analog. The goal is to include a fully digital spectrometer in the next-generation sensor. In a digital spectrometer, incoming analog data must be converted into a digital format, processed through a Fourier transform, and finally accumulated to reduce the impact of input noise. While the final design will be placed on an application specific integrated circuit (ASIC), the building of these chips is prohibitively expensive. To that end, this design was constructed on a field-programmable gate array (FPGA). A family of state-of-the-art digital Fourier transform spectrometers has been developed, with a combination of high bandwidth and fine resolution. Analog signals consisting of radiation emitted by constituents in planetary atmospheres or galactic sources are downconverted and subsequently digitized by a pair of interleaved analog-to-digital converters (ADCs). This 6-Gsps (gigasample per second) digital representation of the analog signal is then processed through an FPGA-based streaming fast Fourier transform (FFT). Digital spectrometers have many advantages over previously used analog spectrometers, especially in terms of accuracy and resolution, both of which are particularly important for the type of scientific questions to be addressed with next-generation radiometers.

  1. NOTE: An innovative phantom for quantitative and qualitative investigation of advanced x-ray imaging technologies

    NASA Astrophysics Data System (ADS)

    Chiarot, C. B.; Siewerdsen, J. H.; Haycocks, T.; Moseley, D. J.; Jaffray, D. A.

    2005-11-01

    Development, characterization, and quality assurance of advanced x-ray imaging technologies require phantoms that are quantitative and well suited to such modalities. This note reports on the design, construction, and use of an innovative phantom developed for advanced imaging technologies (e.g., multi-detector CT and the numerous applications of flat-panel detectors in dual-energy imaging, tomosynthesis, and cone-beam CT) in diagnostic and image-guided procedures. The design addresses shortcomings of existing phantoms by incorporating criteria satisfied by no other single phantom: (1) inserts are fully 3D—spherically symmetric rather than cylindrical; (2) modules are quantitative, presenting objects of known size and contrast for quality assurance and image quality investigation; (3) features are incorporated in ideal and semi-realistic (anthropomorphic) contexts; and (4) the phantom allows devices to be inserted and manipulated in an accessible module (right lung). The phantom consists of five primary modules: (1) head, featuring contrast-detail spheres approximate to brain lesions; (2) left lung, featuring contrast-detail spheres approximate to lung modules; (3) right lung, an accessible hull in which devices may be placed and manipulated; (4) liver, featuring conrast-detail spheres approximate to metastases; and (5) abdomen/pelvis, featuring simulated kidneys, colon, rectum, bladder, and prostate. The phantom represents a two-fold evolution in design philosophy—from 2D (cylindrically symmetric) to fully 3D, and from exclusively qualitative or quantitative to a design accommodating quantitative study within an anatomical context. It has proven a valuable tool in investigations throughout our institution, including low-dose CT, dual-energy radiography, and cone-beam CT for image-guided radiation therapy and surgery.

  2. Stereotactic radiation treatment planning and follow-up studies involving fused multimodality imaging.

    PubMed

    Hamm, Klaus D; Surber, Gunnar; Schmücking, Michael; Wurm, Reinhard E; Aschenbach, Rene; Kleinert, Gabriele; Niesen, A; Baum, Richard P

    2004-11-01

    Innovative new software solutions may enable image fusion to produce the desired data superposition for precise target definition and follow-up studies in radiosurgery/stereotactic radiotherapy in patients with intracranial lesions. The aim is to integrate the anatomical and functional information completely into the radiation treatment planning and to achieve an exact comparison for follow-up examinations. Special conditions and advantages of BrainLAB's fully automatic image fusion system are evaluated and described for this purpose. In 458 patients, the radiation treatment planning and some follow-up studies were performed using an automatic image fusion technique involving the use of different imaging modalities. Each fusion was visually checked and corrected as necessary. The computerized tomography (CT) scans for radiation treatment planning (slice thickness 1.25 mm), as well as stereotactic angiography for arteriovenous malformations, were acquired using head fixation with stereotactic arc or, in the case of stereotactic radiotherapy, with a relocatable stereotactic mask. Different magnetic resonance (MR) imaging sequences (T1, T2, and fluid-attenuated inversion-recovery images) and positron emission tomography (PET) scans were obtained without head fixation. Fusion results and the effects on radiation treatment planning and follow-up studies were analyzed. The precision level of the results of the automatic fusion depended primarily on the image quality, especially the slice thickness and the field homogeneity when using MR images, as well as on patient movement during data acquisition. Fully automated image fusion of different MR, CT, and PET studies was performed for each patient. Only in a few cases was it necessary to correct the fusion manually after visual evaluation. These corrections were minor and did not materially affect treatment planning. High-quality fusion of thin slices of a region of interest with a complete head data set could be performed easily. The target volume for radiation treatment planning could be accurately delineated using multimodal information provided by CT, MR, angiography, and PET studies. The fusion of follow-up image data sets yielded results that could be successfully compared and quantitatively evaluated. Depending on the quality of the originally acquired image, automated image fusion can be a very valuable tool, allowing for fast (approximately 1-2 minute) and precise fusion of all relevant data sets. Fused multimodality imaging improves the target volume definition for radiation treatment planning. High-quality follow-up image data sets should be acquired for image fusion to provide exactly comparable slices and volumetric results that will contribute to quality contol.

  3. GRB 081029: A Gamma-Ray Burst with a Multi-Component Afterglow

    NASA Technical Reports Server (NTRS)

    Holland, Stephen T.; De Pasquale, Massimiliano; Mao, Jirong; Sakamoto, Takanori; Schady, Patricia; Covino, Stefano; Fan, Yi-Zhong; Jin, Zhi-Ping; D'Avanzo, Paolo; Antonelli, Angelo; hide

    2012-01-01

    We present an analysis of the unusual optical light curve of the gamma-ray burst GRB 081029, a long-soft burst with a redshift of z = 3.8479. We combine X-ray and optical observations from the Swift X-Ray Telescope and the Swift Ultra Violet/Optical Telescope with ground-based optical and infrared data obtained using the REM, ROTSE, and CTIO 1.3-m telescopes to construct a detailed data set extending from 86 s to approx.100,000 s after the BAT trigger. Our data covers a wide energy range, from 10 keV to 0.77 eV (1.24 A to 16000 A). The X-ray afterglow shows a shallow initial decay followed by a rapid decay starting at about 18,000 s. The optical and infrared afterglow, however, shows an uncharacteristic rise at about 3000 s that does not correspond to any feature in the X-ray light curve. Our data are not consistent with synchrotron radiation from a jet interacting with an external medium, a two-component jet, or continuous energy injection from the central engine. We find that the optical light curves can be broadly explained by a collision between two ejecta shells within a two-component jet. A growing number of gamma-ray burst afterglows are consistent with complex jets, which suggests that some (or all) gamma-ray burst jets are complex and will require detailed modelling to fully understand them.injection

  4. Characterizing regional-scale temporal evolution of air dose rates after the Fukushima Daiichi Nuclear Power Plant accident.

    PubMed

    Wainwright, Haruko M; Seki, Akiyuki; Mikami, Satoshi; Saito, Kimiaki

    2018-09-01

    In this study, we quantify the temporal changes of air dose rates in the regional scale around the Fukushima Dai-ichi Nuclear Power Plant in Japan, and predict the spatial distribution of air dose rates in the future. We first apply the Bayesian geostatistical method developed by Wainwright et al. (2017) to integrate multiscale datasets including ground-based walk and car surveys, and airborne surveys, all of which have different scales, resolutions, spatial coverage, and accuracy. This method is based on geostatistics to represent spatial heterogeneous structures, and also on Bayesian hierarchical models to integrate multiscale, multi-type datasets in a consistent manner. We apply this method to the datasets from three years: 2014 to 2016. The temporal changes among the three integrated maps enables us to characterize the spatiotemporal dynamics of radiation air dose rates. The data-driven ecological decay model is then coupled with the integrated map to predict future dose rates. Results show that the air dose rates are decreasing consistently across the region. While slower in the forested region, the decrease is particularly significant in the town area. The decontamination has contributed to significant reduction of air dose rates. By 2026, the air dose rates will continue to decrease, and the area above 3.8 μSv/h will be almost fully contained within the non-residential forested zone. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Radioprotectors and Radiomitigators for Improving Radiation Therapy: The Small Business Innovation Research (SBIR) Gateway for Accelerating Clinical Translation

    PubMed Central

    Prasanna, Pataje G. S.; Narayanan, Deepa; Hallett, Kory; Bernhard, Eric J.; Ahmed, Mansoor M.; Evans, Gregory; Vikram, Bhadrasain; Weingarten, Michael; Coleman, C. Norman

    2015-01-01

    Although radiation therapy is an important cancer treatment modality, patients may experience adverse effects. The use of a radiation-effect modulator may help improve the outcome and health-related quality of life (HRQOL) of patients undergoing radiation therapy either by enhancing tumor cell killing or by protecting normal tissues. Historically, the successful translation of radiation-effect modulators to the clinic has been hindered due to the lack of focused collaboration between academia, pharmaceutical companies and the clinic, along with limited availability of support for such ventures. The U.S. Government has been developing medical countermeasures against accidental and intentional radiation exposures to mitigate the risk and/or severity of acute radiation syndrome (ARS) and the delayed effects of acute radiation exposures (DEARE), and there is now a drug development pipeline established. Some of these medical countermeasures could potentially be repurposed for improving the outcome of radiation therapy and HRQOL of cancer patients. With the objective of developing radiation-effect modulators to improve radiotherapy, the Small Business Innovation Research (SBIR) Development Center at the National Cancer Institute (NCI), supported by the Radiation Research Program (RRP), provided funding to companies from 2011 to 2014 through the SBIR contracts mechanism. Although radiation-effect modulators collectively refer to radioprotectors, radiomitigators and radiosensitizers, the focus of this article is on radioprotection and mitigation of radiation injury. This specific SBIR contract opportunity strengthened existing partnerships and facilitated new collaborations between academia and industry. In this commentary, we assess the impact of this funding opportunity, outline the review process, highlight the organ/site-specific disease needs in the clinic for the development of radiation-effect modulators, provide a general understanding of a framework for gathering preclinical and clinical evidence to obtain regulatory approval and provide a basis for broader venture capital needs and support from pharmaceutical companies to fully capitalize on the advances made thus far in this field. PMID:26284423

  6. Radioprotectors and Radiomitigators for Improving Radiation Therapy: The Small Business Innovation Research (SBIR) Gateway for Accelerating Clinical Translation.

    PubMed

    Prasanna, Pataje G S; Narayanan, Deepa; Hallett, Kory; Bernhard, Eric J; Ahmed, Mansoor M; Evans, Gregory; Vikram, Bhadrasain; Weingarten, Michael; Coleman, C Norman

    2015-09-01

    Although radiation therapy is an important cancer treatment modality, patients may experience adverse effects. The use of a radiation-effect modulator may help improve the outcome and health-related quality of life (HRQOL) of patients undergoing radiation therapy either by enhancing tumor cell killing or by protecting normal tissues. Historically, the successful translation of radiation-effect modulators to the clinic has been hindered due to the lack of focused collaboration between academia, pharmaceutical companies and the clinic, along with limited availability of support for such ventures. The U.S. Government has been developing medical countermeasures against accidental and intentional radiation exposures to mitigate the risk and/or severity of acute radiation syndrome (ARS) and the delayed effects of acute radiation exposures (DEARE), and there is now a drug development pipeline established. Some of these medical countermeasures could potentially be repurposed for improving the outcome of radiation therapy and HRQOL of cancer patients. With the objective of developing radiation-effect modulators to improve radiotherapy, the Small Business Innovation Research (SBIR) Development Center at the National Cancer Institute (NCI), supported by the Radiation Research Program (RRP), provided funding to companies from 2011 to 2014 through the SBIR contracts mechanism. Although radiation-effect modulators collectively refer to radioprotectors, radiomitigators and radiosensitizers, the focus of this article is on radioprotection and mitigation of radiation injury. This specific SBIR contract opportunity strengthened existing partnerships and facilitated new collaborations between academia and industry. In this commentary, we assess the impact of this funding opportunity, outline the review process, highlight the organ/site-specific disease needs in the clinic for the development of radiation-effect modulators, provide a general understanding of a framework for gathering preclinical and clinical evidence to obtain regulatory approval and provide a basis for broader venture capital needs and support from pharmaceutical companies to fully capitalize on the advances made thus far in this field.

  7. Particle swarm optimizer for weighting factor selection in intensity-modulated radiation therapy optimization algorithms.

    PubMed

    Yang, Jie; Zhang, Pengcheng; Zhang, Liyuan; Shu, Huazhong; Li, Baosheng; Gui, Zhiguo

    2017-01-01

    In inverse treatment planning of intensity-modulated radiation therapy (IMRT), the objective function is typically the sum of the weighted sub-scores, where the weights indicate the importance of the sub-scores. To obtain a high-quality treatment plan, the planner manually adjusts the objective weights using a trial-and-error procedure until an acceptable plan is reached. In this work, a new particle swarm optimization (PSO) method which can adjust the weighting factors automatically was investigated to overcome the requirement of manual adjustment, thereby reducing the workload of the human planner and contributing to the development of a fully automated planning process. The proposed optimization method consists of three steps. (i) First, a swarm of weighting factors (i.e., particles) is initialized randomly in the search space, where each particle corresponds to a global objective function. (ii) Then, a plan optimization solver is employed to obtain the optimal solution for each particle, and the values of the evaluation functions used to determine the particle's location and the population global location for the PSO are calculated based on these results. (iii) Next, the weighting factors are updated based on the particle's location and the population global location. Step (ii) is performed alternately with step (iii) until the termination condition is reached. In this method, the evaluation function is a combination of several key points on the dose volume histograms. Furthermore, a perturbation strategy - the crossover and mutation operator hybrid approach - is employed to enhance the population diversity, and two arguments are applied to the evaluation function to improve the flexibility of the algorithm. In this study, the proposed method was used to develop IMRT treatment plans involving five unequally spaced 6MV photon beams for 10 prostate cancer cases. The proposed optimization algorithm yielded high-quality plans for all of the cases, without human planner intervention. A comparison of the results with the optimized solution obtained using a similar optimization model but with human planner intervention revealed that the proposed algorithm produced optimized plans superior to that developed using the manual plan. The proposed algorithm can generate admissible solutions within reasonable computational times and can be used to develop fully automated IMRT treatment planning methods, thus reducing human planners' workloads during iterative processes. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  8. Radiation in the universe

    NASA Technical Reports Server (NTRS)

    Stuhlinger, Ernst; Truemper, Joachim; Weisskopf, Martin

    1992-01-01

    When Wilhelm Conrad Roentgen discovered radiation one hundred years ago, it seemed that what was discovered was one of the rarest and most volatile members of the family of the basic modules of our natural world. Today cosmologists report that a substantial part of the universe's radiation energy consists of X-rays, which travel through cosmic space with the speed of light.

  9. Inclusion of Radiation Environment Variability in Total Dose Hardness Assurance Methodology

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; LaBel, K. A.

    2016-01-01

    Variability of the space radiation environment is investigated with regard to parts categorization for total dose hardness assurance methods. It is shown that it can have a significant impact. A modified approach is developed that uses current environment models more consistently and replaces the radiation design margin concept with one of failure probability during a mission.

  10. Neutron and gamma radiation shielding material, structure, and process of making structure

    DOEpatents

    Hondorp, Hugh L.

    1984-01-01

    The present invention is directed to a novel neutron and gamma radiation elding material consisting of 95 to 97 percent by weight SiO.sub.2 and 5 to 3 percent by weight sodium silicate. In addition, the method of using this composition to provide a continuous neutron and gamma radiation shielding structure is disclosed.

  11. Lidar Cloud Detection with Fully Convolutional Networks

    NASA Astrophysics Data System (ADS)

    Cromwell, E.; Flynn, D.

    2017-12-01

    The vertical distribution of clouds from active remote sensing instrumentation is a widely used data product from global atmospheric measuring sites. The presence of clouds can be expressed as a binary cloud mask and is a primary input for climate modeling efforts and cloud formation studies. Current cloud detection algorithms producing these masks do not accurately identify the cloud boundaries and tend to oversample or over-represent the cloud. This translates as uncertainty for assessing the radiative impact of clouds and tracking changes in cloud climatologies. The Atmospheric Radiation Measurement (ARM) program has over 20 years of micro-pulse lidar (MPL) and High Spectral Resolution Lidar (HSRL) instrument data and companion automated cloud mask product at the mid-latitude Southern Great Plains (SGP) and the polar North Slope of Alaska (NSA) atmospheric observatory. Using this data, we train a fully convolutional network (FCN) with semi-supervised learning to segment lidar imagery into geometric time-height cloud locations for the SGP site and MPL instrument. We then use transfer learning to train a FCN for (1) the MPL instrument at the NSA site and (2) for the HSRL. In our semi-supervised approach, we pre-train the classification layers of the FCN with weakly labeled lidar data. Then, we facilitate end-to-end unsupervised pre-training and transition to fully supervised learning with ground truth labeled data. Our goal is to improve the cloud mask accuracy and precision for the MPL instrument to 95% and 80%, respectively, compared to the current cloud mask algorithms of 89% and 50%. For the transfer learning based FCN for the HSRL instrument, our goal is to achieve a cloud mask accuracy of 90% and a precision of 80%.

  12. Status of radiation protection in various interventional cardiology procedures in the Asia Pacific region

    PubMed Central

    Tsapaki, Virginia; Faruque Ghulam, Mohammed; Lim, Soo Teik; Ngo Minh, Hung; Nwe, Nwe; Sharma, Anil; Sim, Kui-Hian; Srimahachota, Suphot; Rehani, Madan Mohan

    2011-01-01

    Objective Increasing use of interventional procedures in cardiology with unknown levels of radiation protection in many countries of Asia-Pacific region necessitates the need for status assessment. The study was part of an International Atomic Energy Agency (IAEA) project for achieving improved radiation protection in interventional cardiology (IC) in developing countries. Design The survey covers 18 cardiac catheterisation laboratories in seven countries (Bangladesh, India, Malaysia, Myanmar, Singapore, Thailand and Vietnam). An important step was the creation of the ‘Asian network of Cardiologists in Radiation Protection’ and a newsletter. Data were collected on: radiation protection tools, number of IC laboratories, and annual number of various IC paediatric and adult procedures in the hospital and in the country. Patient radiation dose data were collected in terms of Kerma Area Product (KAP) and cumulative dose (CD). Results It is encouraging that protection devices for staff are largely used in the routine practice. Only 39% of the angiographic machines were equipped with a KAP meter. Operators' initial lack of awareness on radiation-protection optimisation improved significantly after participation in IAEA radiation-protection training. Only two out of five countries reporting patient percutaneous coronary intervention radiation-dose data were fully within the international guidance levels. Data from 51 patients who underwent multiple therapeutic procedures (median 2–3) indicated a total KAP reaching 995 Gy.cm2 (range 10.1–995) and CD 15.1 Gy (range 0.4–15.1), stressing the importance of dose monitoring and optimisation. Conclusions There is a need for interventional cardiology societies to play an active role in training actions and implementation of radiation protection. PMID:27325974

  13. Investigation of stability, consistency, and oil oxidation of emulsion filled gel prepared by inulin and rice bran oil using ultrasonic radiation.

    PubMed

    Nourbehesht, Newsha; Shekarchizadeh, Hajar; Soltanizadeh, Nafiseh

    2018-04-01

    Inulin, rice bran oil and rosemary essential oil were used to produce high quality emulsion filled gel (EFG) using ultrasonic radiation. Response surface methodology was used to investigate the effects of oil content, inulin content and power of ultrasound on the stability and consistency of prepared EFG. The process conditions were optimized by conducting experiments at five different levels. Second order polynomial response surface equations were developed indicating the effect of variables on EFG stability and consistency. The oil content of 18%; inulin content of 44.6%; and power of ultrasound of 256 W were found to be the optimum conditions to achieve the best EFG stability and consistency. Microstructure and rheological properties of prepared EFG were investigated. Oil oxidation as a result of using ultrasonic radiation was also investigated. The increase of oxidation products and the decrease of total phenolic compounds as well as radical scavenging activity of antioxidant compounds showed the damaging effect of ultrasound on the oil quality of EFG. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Effects of clouds on the Earth radiation budget; Seasonal and inter-annual patterns

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.

    1992-01-01

    Seasonal and regional variations of clouds and their effects on the climatological parameters were studied. The climatological parameters surface temperature, solar insulation, short-wave absorbed, long wave emitted, and net radiation were considered. The data of climatological parameters consisted of about 20 parameters of Earth radiation budget and clouds of 2070 target areas which covered the globe. It consisted of daily and monthly averages of each parameter for each target area for the period, Jun. 1979 - May 1980. Cloud forcing and black body temperature at the top of the atmosphere were calculated. Interactions of clouds, cloud forcing, black body temperature, and the climatological parameters were investigated and analyzed.

  15. Design and R&D of RICH detectors for EIC experiments

    NASA Astrophysics Data System (ADS)

    Del Dotto, A.; Wong, C.-P.; Allison, L.; Awadi, M.; Azmoun, B.; Barbosa, F.; Brooks, W.; Cao, T.; Chiu, M.; Cisbani, E.; Contalbrigo, M.; Datta, A.; Demarteau, M.; Durham, J. M.; Dzhygadlo, R.; Fields, D.; Furletova, Y.; Gleason, C.; Grosse-Perdekamp, M.; Harris, J.; He, X.; van Hecke, H.; Horn, T.; Huang, J.; Hyde, C.; Ilieva, Y.; Kalicy, G.; Kimball, M.; Kistenev, E.; Kulinich, Y.; Liu, M.; Majka, R.; McKisson, J.; Mendez, R.; Nadel-Turonski, P.; Park, K.; Peters, K.; Rao, T.; Pisani, R.; Qiang, Y.; Rescia, S.; Rossi, P.; Sarsour, M.; Schwarz, C.; Schwiening, J.; da Silva, C. L.; Smirnov, N.; Stein, H.; Stevens, J.; Sukhanov, A.; Syed, S.; Tate, A.; Toh, J.; Towell, C.; Towell, R.; Tsang, T.; Wagner, R.; Wang, J.; Woody, C.; Xi, W.; Xie, J.; Zhao, Z. W.; Zihlmann, B.; Zorn, C.

    2017-12-01

    An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C2F6 gas in a mirror-focused configuration. We present the simulations of the two detectors and their estimated performance.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del Dotto, A.; Wong, C. -P.; Allison, L.

    An Electron-Ion Collider (EIC) has been proposed to further explore the strong force and QCD, focusing on the structure and the interaction of gluon-dominated matter. A generic detector R&D program (EIC PID consortium) for the particle identification in EIC experiments was formed to explore technologically advanced solutions in this scope. In this context two Ring Imaging Cherenkov (RICH) counters have been proposed: a modular RICH detector which consists of an aerogel radiator, a Fresnel lens, a mirrored box, and pixelated photon sensor; a dual-radiator RICH, consisting of an aerogel radiator and C 2F 6 gas in a mirror-focused configuration. Asmore » a result, we present the simulations of the two detectors and their estimated performance.« less

  17. VLF Wave Local Acceleration & ULF Wave Radial Diffusion: The Importance of K-Dependent PSD Analysis for Diagnosing the cause of Radiation Belt Acceleration.

    NASA Astrophysics Data System (ADS)

    Ozeke, L.; Mann, I. R.; Claudepierre, S. G.; Morley, S.; Henderson, M. G.; Baker, D. N.; Kletzing, C.; Spence, H. E.

    2017-12-01

    We present results showing the temporal evolution of electron Phase Space Density (PSD) in the outer radiation belt during the most intense geomagnetic storm of the last decade which occurred on March 17th 2015. Based on observations of growing local PSD peaks at fixed first and second adiabatic invariants of M=1000 MeV/G and K=0.18 G1/2Re respectively, previous studies argued that the outer radiation belt flux enhancement that occurred during this storm resulted from local acceleration driven by VLF waves. Here we show that the vast majority of the outer radiation belt consisted of electrons with much lower K-values than 0.18 G1/2Re, and that at these lower K-values there is no clear evidence of growing local PSD peaks consistent with that expected from local acceleration. Contrary to prior studies we show that the outer radiation belt flux enhancement is consistent with inward radial diffusion driven by ULF waves and present evidence that the growing local PSD peaks at K=0.18 G1/2Re and M=1000 MeV/G result from pitch-angle scattering of lower-K electrons to K=0.18 G1/2Re. In addition, we also show that the observed outer radiation belt flux enhancement during this geomagnetic storm can be reproduced using a radial diffusion model driven by measured ULF waves without including any local acceleration. These results highlight the importance of careful analysis of the electron PSD profiles as a function of L* over a range of fixed first, M and second K, adiabatic invariants to correctly determine the mechanism responsible for the electron flux enhancements observed in the outer radiation belt.

  18. Photoionization of Ne8+

    NASA Astrophysics Data System (ADS)

    Pindzola, M. S.; Abdel-Naby, Sh. A.; Robicheaux, F.; Colgan, J.

    2014-05-01

    Single and double photoionization cross sections for Ne8+ are calculated using a non-perturbative fully relativistic time-dependent close-coupling method. A Bessel function expansion is used to include both dipole and quadrupole effects in the radiation field interaction and the repulsive interaction between electrons includes both the Coulomb and Gaunt interactions. The fully correlated ground state of Ne8+ is obtained by solving a time-independent inhomogeneous set of close-coupled equations. Propagation of the time-dependent close-coupled equations yields single and double photoionization cross sections for Ne8+ at energies easily accessible at advanced free electron laser facilities. This work was supported in part by grants from NSF and US DoE. Computational work was carried out at NERSC in Oakland, California, NICS in Knoxville, Tennessee, and OLCF in Oak Ridge, Tennessee.

  19. High quality factor, fully switchable terahertz superconducting metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scalari, G., E-mail: scalari@phys.ethz.ch; Maissen, C.; Faist, J.

    2014-12-29

    We present a complementary THz metasurface realised with Niobium thin film which displays a quality factor Q = 54 and a fully switchable behaviour as a function of the temperature. The switching behaviour and the high quality factor are due to a careful design of the metasurface aimed at maximising the ohmic losses when the Nb is above the critical temperature and minimising the radiative coupling. The superconductor allows the operation of the cavity with high Q and the use of inductive elements with a high aspect ratio. Comparison with three dimensional finite element simulations highlights the crucial role of the inductivemore » elements and of the kinetic inductance of the Cooper pairs in achieving the high quality factor and the high field enhancement.« less

  20. Knowledge of Radiation Hazards, Radiation Protection Practices and Clinical Profile of Health Workers in a Teaching Hospital in Northern Nigeria.

    PubMed

    Awosan, K J; Ibrahim, Mto; Saidu, S A; Ma'aji, S M; Danfulani, M; Yunusa, E U; Ikhuenbor, D B; Ige, T A

    2016-08-01

    Use of ionizing radiation in medical imaging for diagnostic and interventional purposes has risen dramatically in recent years with a concomitant increase in exposure of patients and health workers to radiation hazards. To assess the knowledge of radiation hazards, radiation protection practices and clinical profile of health workers in UDUTH, Sokoto, Nigeria. A cross-sectional study was conducted among 110 Radiology, Radiotherapy and Dentistry staff selected by universal sampling technique. The study comprised of administration of standardized semi-structured pre-tested questionnaire (to obtain information on socio-demographic characteristics, knowledge of radiation hazards, and radiation protection practices of participants), clinical assessment (comprising of chest X-ray, abdominal ultrasound and laboratory investigation on hematological parameters), and evaluation of radiation exposure of participants (extracted from existing hospital records on their radiation exposure status). The participants were aged 20 to 65 years (mean = 34.04 ± 8.83), most of them were males (67.3%) and married (65.7%). Sixty five (59.1%) had good knowledge of radiation hazards, 58 (52.7%) had good knowledge of Personal Protective Devices (PPDs), less than a third, 30 (27.3%) consistently wore dosimeter, and very few (10.9% and below) consistently wore the various PPDs at work. The average annual radiation exposure over a 4 year period ranged from 0.0475mSv to 1.8725mSv. Only 1 (1.2%) of 86 participants had abnormal chest X-ray findings, 8 (9.4%) of 85 participants had abnormal abdominal ultrasound findings; while 17 (15.5%) and 11 (10.0%) of 110 participants had anemia and leucopenia respectively. This study demonstrated poor radiation protection practices despite good knowledge of radiation hazards among the participants, but radiation exposure and prevalence of abnormal clinical conditions were found to be low. Periodic in-service training and monitoring on radiation safety was suggested.

Top