Huang, Yuan; Teng, Zhongzhao; Sadat, Umar; Graves, Martin J; Bennett, Martin R; Gillard, Jonathan H
2014-04-11
Compositional and morphological features of carotid atherosclerotic plaques provide complementary information to luminal stenosis in predicting clinical presentations. However, they alone cannot predict cerebrovascular risk. Mechanical stress within the plaque induced by cyclical changes in blood pressure has potential to assess plaque vulnerability. Various modeling strategies have been employed to predict stress, including 2D and 3D structure-only, 3D one-way and fully coupled fluid-structure interaction (FSI) simulations. However, differences in stress predictions using different strategies have not been assessed. Maximum principal stress (Stress-P1) within 8 human carotid atherosclerotic plaques was calculated based on geometry reconstructed from in vivo computerized tomography and high resolution, multi-sequence magnetic resonance images. Stress-P1 within the diseased region predicted by 2D and 3D structure-only, and 3D one-way FSI simulations were compared to 3D fully coupled FSI analysis. Compared to 3D fully coupled FSI, 2D structure-only simulation significantly overestimated stress level (94.1 kPa [65.2, 117.3] vs. 85.5 kPa [64.4, 113.6]; median [inter-quartile range], p=0.0004). However, when slices around the bifurcation region were excluded, stresses predicted by 2D structure-only simulations showed a good correlation (R(2)=0.69) with values obtained from 3D fully coupled FSI analysis. 3D structure-only model produced a small yet statistically significant stress overestimation compared to 3D fully coupled FSI (86.8 kPa [66.3, 115.8] vs. 85.5 kPa [64.4, 113.6]; p<0.0001). In contrast, one-way FSI underestimated stress compared to 3D fully coupled FSI (78.8 kPa [61.1, 100.4] vs. 85.5 kPa [64.4, 113.7]; p<0.0001). A 3D structure-only model seems to be a computationally inexpensive yet reasonably accurate approximation for stress within carotid atherosclerotic plaques with mild to moderate luminal stenosis as compared to fully coupled FSI analysis. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.; Fox, D. T.; Fujita, Y.
2010-12-01
Inducing mineral precipitation in the subsurface is one potential strategy for immobilizing trace metal and radionuclide contaminants. Generating mineral precipitates in situ can be achieved by manipulating chemical conditions, typically through injection or in situ generation of reactants. How these reactants transport, mix and react within the medium controls the spatial distribution and composition of the resulting mineral phases. Multiple processes, including fluid flow, dispersive/diffusive transport of reactants, biogeochemical reactions and changes in porosity-permeability, are tightly coupled over a number of scales. Numerical modeling can be used to investigate the nonlinear coupling effects of these processes which are quite challenging to explore experimentally. Many subsurface reactive transport simulators employ a de-coupled or operator-splitting approach where transport equations and batch chemistry reactions are solved sequentially. However, such an approach has limited applicability for biogeochemical systems with fast kinetics and strong coupling between chemical reactions and medium properties. A massively parallel, fully coupled, fully implicit Reactive Transport simulator (referred to as “RAT”) based on a parallel multi-physics object-oriented simulation framework (MOOSE) has been developed at the Idaho National Laboratory. Within this simulator, systems of transport and reaction equations can be solved simultaneously in a fully coupled, fully implicit manner using the Jacobian Free Newton-Krylov (JFNK) method with additional advanced computing capabilities such as (1) physics-based preconditioning for solution convergence acceleration, (2) massively parallel computing and scalability, and (3) adaptive mesh refinements for 2D and 3D structured and unstructured mesh. The simulator was first tested against analytical solutions, then applied to simulating induced calcium carbonate mineral precipitation in 1D columns and 2D flow cells as analogs to homogeneous and heterogeneous porous media, respectively. In 1D columns, calcium carbonate mineral precipitation was driven by urea hydrolysis catalyzed by urease enzyme, and in 2D flow cells, calcium carbonate mineral forming reactants were injected sequentially, forming migrating reaction fronts that are typically highly nonuniform. The RAT simulation results for the spatial and temporal distributions of precipitates, reaction rates and major species in the system, and also for changes in porosity and permeability, were compared to both laboratory experimental data and computational results obtained using other reactive transport simulators. The comparisons demonstrate the ability of RAT to simulate complex nonlinear systems and the advantages of fully coupled approaches, over de-coupled methods, for accurate simulation of complex, dynamic processes such as engineered mineral precipitation in subsurface environments.
Settgast, Randolph R.; Fu, Pengcheng; Walsh, Stuart D. C.; ...
2016-09-18
This study describes a fully coupled finite element/finite volume approach for simulating field-scale hydraulically driven fractures in three dimensions, using massively parallel computing platforms. The proposed method is capable of capturing realistic representations of local heterogeneities, layering and natural fracture networks in a reservoir. A detailed description of the numerical implementation is provided, along with numerical studies comparing the model with both analytical solutions and experimental results. The results demonstrate the effectiveness of the proposed method for modeling large-scale problems involving hydraulically driven fractures in three dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settgast, Randolph R.; Fu, Pengcheng; Walsh, Stuart D. C.
This study describes a fully coupled finite element/finite volume approach for simulating field-scale hydraulically driven fractures in three dimensions, using massively parallel computing platforms. The proposed method is capable of capturing realistic representations of local heterogeneities, layering and natural fracture networks in a reservoir. A detailed description of the numerical implementation is provided, along with numerical studies comparing the model with both analytical solutions and experimental results. The results demonstrate the effectiveness of the proposed method for modeling large-scale problems involving hydraulically driven fractures in three dimensions.
Efficient spot size converter for higher-order mode fiber-chip coupling.
Lai, Yaxiao; Yu, Yu; Fu, Songnian; Xu, Jing; Shum, Perry Ping; Zhang, Xinliang
2017-09-15
We propose and demonstrate a silicon-based spot size converter (SSC), composed of two identical tapered channel waveguides and a Y-junction. The SSC is designed for first-order mode fiber-to-chip coupling on the basis of mode petal separation and the recombination method. Compared with a traditional on-chip SSC, this method is superior with reduced coupling loss when dealing with a higher-order mode. To the best of our knowledge, we present the first experimental observations of a higher-order SSC which is fully compatible with a standard fabrication process. Average coupling losses of 3 and 5.5 dB are predicted by simulation and demonstrated experimentally. A fully covered 3 dB bandwidth over a 1515-1585 nm wavelength range is experimentally observed.
NASA Astrophysics Data System (ADS)
Dabos, G.; Pleros, N.; Tsiokos, D.
2016-03-01
Hybrid integration of VCSELs onto silicon-on-insulator (SOI) substrates has emerged as an attractive approach for bridging the gap between cost-effective and energy-efficient directly modulated laser sources and silicon-based PICs by leveraging flip-chip (FC) bonding techniques and silicon grating couplers (GCs). In this context, silicon GCs, should comply with the process requirements imposed by the complimentary-metal-oxide-semiconductor manufacturing tools addressing in parallel the challenges originating from the perfectly vertical incidence. Firstly, fully etched GCs compatible with deep-ultraviolet lithography tools offering high coupling efficiencies are imperatively needed to maintain low fabrication cost. Secondly, GC's tolerance to VCSEL bonding misalignment errors is a prerequisite for practical deployment. Finally, a major challenge originating from the perfectly vertical coupling scheme is the minimization of the direct back-reflection to the VCSEL's outgoing facet which may destabilize its operation. Motivated from the above challenges, we used numerical simulation tools to design an ultra-low loss, bidirectional VCSEL-to-SOI optical coupling scheme for either TE or TM polarization, based on low-cost fully etched GCs with a Si-layer of 340 nm without employing bottom reflectors or optimizing the buried-oxide layer. Comprehensive 2D Finite-Difference-Time- Domain simulations have been performed. The reported GC layout remains fully compatible with the back-end-of-line (BEOL) stack associated with the 3D integration technology exploiting all the inter-metal-dielectric (IMD) layers of the CMOS fab. Simulation results predicted for the first time in fully etched structures a coupling efficiency of as low as -0.87 dB at 1548 nm and -1.47 dB at 1560 nm with a minimum direct back-reflection of -27.4 dB and -14.2 dB for TE and TM polarization, respectively.
A 3D network of helicates fully assembled by pi-stacking interactions.
Vázquez, Miguel; Taglietti, Angelo; Gatteschi, Dante; Sorace, Lorenzo; Sangregorio, Claudio; González, Ana M; Maneiro, Marcelino; Pedrido, Rosa M; Bermejo, Manuel R
2003-08-07
The neutral dinuclear dihelicate [Cu2(L)2] x 2CH3CN (1) forms a unique 3D network in the solid state due to pi-stacking interactions, which are responsible for intermolecular antiferromagnetic coupling between Cu(II) ions.
Computation of Coupled Thermal-Fluid Problems in Distributed Memory Environment
NASA Technical Reports Server (NTRS)
Wei, H.; Shang, H. M.; Chen, Y. S.
2001-01-01
The thermal-fluid coupling problems are very important to aerospace and engineering applications. Instead of analyzing heat transfer and fluid flow separately, this study merged two well-accepted engineering solution methods, SINDA for thermal analysis and FDNS for fluid flow simulation, into a unified multi-disciplinary thermal fluid prediction method. A fully conservative patched grid interface algorithm for arbitrary two-dimensional and three-dimensional geometry has been developed. The state-of-the-art parallel computing concept was used to couple SINDA and FDNS for the communication of boundary conditions through PVM (Parallel Virtual Machine) libraries. Therefore, the thermal analysis performed by SINDA and the fluid flow calculated by FDNS are fully coupled to obtain steady state or transient solutions. The natural convection between two thick-walled eccentric tubes was calculated and the predicted results match the experiment data perfectly. A 3-D rocket engine model and a real 3-D SSME geometry were used to test the current model, and the reasonable temperature field was obtained.
Electro-mechanical response of a 3D nerve bundle model to mechanical loads leading to axonal injury.
Cinelli, I; Destrade, M; Duffy, M; McHugh, P
2018-03-01
Traumatic brain injuries and damage are major causes of death and disability. We propose a 3D fully coupled electro-mechanical model of a nerve bundle to investigate the electrophysiological impairments due to trauma at the cellular level. The coupling is based on a thermal analogy of the neural electrical activity by using the finite element software Abaqus CAE 6.13-3. The model includes a real-time coupling, modulated threshold for spiking activation, and independent alteration of the electrical properties for each 3-layer fibre within a nerve bundle as a function of strain. Results of the coupled electro-mechanical model are validated with previously published experimental results of damaged axons. Here, the cases of compression and tension are simulated to induce (mild, moderate, and severe) damage at the nerve membrane of a nerve bundle, made of 4 fibres. Changes in strain, stress distribution, and neural activity are investigated for myelinated and unmyelinated nerve fibres, by considering the cases of an intact and of a traumatised nerve membrane. A fully coupled electro-mechanical modelling approach is established to provide insights into crucial aspects of neural activity at the cellular level due to traumatic brain injury. One of the key findings is the 3D distribution of residual stresses and strains at the membrane of each fibre due to mechanically induced electrophysiological impairments, and its impact on signal transmission. Copyright © 2017 John Wiley & Sons, Ltd.
Nucleon-nucleon scattering from fully dynamical lattice QCD.
Beane, S R; Bedaque, P F; Orginos, K; Savage, M J
2006-07-07
We present results of the first fully dynamical lattice QCD determination of nucleon-nucleon scattering lengths in the 1S0 channel and 3S1 - 3D1 coupled channels. The calculations are performed with domain-wall valence quarks on the MILC staggered configurations with a lattice spacing of b = 0.125 fm in the isospin-symmetric limit, and in the absence of electromagnetic interactions.
NASA Astrophysics Data System (ADS)
Yuan, F.; Wang, G.; Painter, S. L.; Tang, G.; Xu, X.; Kumar, J.; Bisht, G.; Hammond, G. E.; Mills, R. T.; Thornton, P. E.; Wullschleger, S. D.
2017-12-01
In Arctic tundra ecosystem soil freezing-thawing is one of dominant physical processes through which biogeochemical (e.g., carbon and nitrogen) cycles are tightly coupled. Besides hydraulic transport, freezing-thawing can cause pore water movement and aqueous species gradients, which are additional mechanisms for soil nitrogen (N) reactive-transport in Tundra ecosystem. In this study, we have fully coupled an in-development ESM(i.e., Advanced Climate Model for Energy, ACME)'s Land Model (ALM) aboveground processes with a state-of-the-art massively parallel 3-D subsurface thermal-hydrology and reactive transport code, PFLOTRAN. The resulting coupled ALM-PFLOTRAN model is a Land Surface Model (LSM) capable of resolving 3-D soil thermal-hydrological-biogeochemical cycles. This specific version of PFLOTRAN has incorporated CLM-CN Converging Trophic Cascade (CTC) model and a full and simple but robust soil N cycle. It includes absorption-desorption for soil NH4+ and gas dissolving-degasing process as well. It also implements thermal-hydrology mode codes with three newly-modified freezing-thawing algorithms which can greatly improve computing performance in regarding to numerical stiffness at freezing-point. Here we tested the model in fully 3-D coupled mode at the Next Generation Ecosystem Experiment-Arctic (NGEE-Arctic) field intensive study site at the Barrow Environmental Observatory (BEO), AK. The simulations show that: (1) synchronous coupling of soil thermal-hydrology and biogeochemistry in 3-D can greatly impact ecosystem dynamics across polygonal tundra landscape; and (2) freezing-thawing cycles can add more complexity to the system, resulting in greater mobility of soil N vertically and laterally, depending upon local micro-topography. As a preliminary experiment, the model is also implemented for Pan-Arctic region in 1-D column mode (i.e. no lateral connection), showing significant differences compared to stand-alone ALM. The developed ALM-PFLOTRAN coupling codes embeded within ESM will be used for Pan-Arctic regional evaluation of climate change-caused ecosystem responses and their feedbacks to climate system at various scales.
Magnetosphere - Ionosphere - Thermosphere (MIT) Coupling at Jupiter
NASA Astrophysics Data System (ADS)
Yates, J. N.; Ray, L. C.; Achilleos, N.
2017-12-01
Jupiter's upper atmospheric temperature is considerably higher than that predicted by Solar Extreme Ultraviolet (EUV) heating alone. Simulations incorporating magnetosphere-ionosphere coupling effects into general circulation models have, to date, struggled to reproduce the observed atmospheric temperatures under simplifying assumptions such as azimuthal symmetry and a spin-aligned dipole magnetic field. Here we present the development of a full three-dimensional thermosphere model coupled in both hemispheres to an axisymmetric magnetosphere model. This new coupled model is based on the two-dimensional MIT model presented in Yates et al., 2014. This coupled model is a critical step towards to the development of a fully coupled 3D MIT model. We discuss and compare the resulting thermospheric flows, energy balance and MI coupling currents to those presented in previous 2D MIT models.
Nonlinear interaction between underwater explosion bubble and structure based on fully coupled model
NASA Astrophysics Data System (ADS)
Zhang, A. M.; Wu, W. B.; Liu, Y. L.; Wang, Q. X.
2017-08-01
The interaction between an underwater explosion bubble and an elastic-plastic structure is a complex transient process, accompanying violent bubble collapsing, jet impact, penetration through the bubble, and large structural deformation. In the present study, the bubble dynamics are modeled using the boundary element method and the nonlinear transient structural response is modeled using the explicit finite element method. A new fully coupled 3D model is established through coupling the equations for the state variables of the fluid and structure and solving them as a set of coupled linear algebra equations. Based on the acceleration potential theory, the mutual dependence between the hydrodynamic load and the structural motion is decoupled. The pressure distribution in the flow field is calculated with the Bernoulli equation, where the partial derivative of the velocity potential in time is calculated using the boundary integral method to avoid numerical instabilities. To validate the present fully coupled model, the experiments of small-scale underwater explosion near a stiffened plate are carried out. High-speed imaging is used to capture the bubble behaviors and strain gauges are used to measure the strain response. The numerical results correspond well with the experimental data, in terms of bubble shapes and structural strain response. By both the loosely coupled model and the fully coupled model, the interaction between a bubble and a hollow spherical shell is studied. The bubble patterns vary with different parameters. When the fully coupled model and the loosely coupled model are advanced with the same time step, the error caused by the loosely coupled model becomes larger with the coupling effect becoming stronger. The fully coupled model is more stable than the loosely coupled model. Besides, the influences of the internal fluid on the dynamic response of the spherical shell are studied. At last, the case that the bubble interacts with an air-backed stiffened plate is simulated. The associated interesting physical phenomenon is obtained and expounded.
2006-06-01
response (time domain) structural vibration model for mistuned rotor bladed disk based on the efficient SNM model has been developed. The vi- bration...airfoil and 3D wing, unsteady vortex shedding of a stationary cylinder, induced vibration of a cylinder, forced vibration of a pitching airfoil, induced... vibration and flutter boundary of 2D NACA 64A010 transonic airfoil, 3D plate wing structural response. The predicted results agree well with benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manley, M. E.; Abernathy, D. L.; Sahul, R.
A long-standing controversy for relaxor ferroelectrics has been the origin of the waterfall effect in the phonon dispersion curves, in which low-energy transverse phonons cascade into vertical columns. Originally interpreted as phonons interacting with polar nanoregions (PNRs), it was later explained as an interference effect of coupling damped optic and acoustic phonons. In light of a recently discovered PNR vibrational mode near the waterfall wavevector [M. E. Manley, J. W. Lynn, D. L. Abernathy, E. D. Specht, O. Delaire, A. R. Bishop, R. Sahul, and J. D. Budai, Nat. Commun. 5, 3683 (2014)] we have reexamined this feature using neutronmore » scattering on [100]-poled PMN-30%PT (0.6Pb(Mg 1/3Nb 2/3)O 3 0.3PbTiO 3). In addition, we find that the PNR mode couples to both optic and acoustic phonons, and that this results in complex patterns in the dynamic structure factor, including intensity pockets and peaks localized in momentum-energy space. These features are fully explained by extending the mode-coupling model to include three coupled damped harmonic oscillators representing the transverse optic, acoustic, and PNR modes.« less
Three-mode coupling interference patterns in the dynamic structure factor of a relaxor ferroelectric
Manley, M. E.; Abernathy, D. L.; Sahul, R.; ...
2016-09-22
A long-standing controversy for relaxor ferroelectrics has been the origin of the waterfall effect in the phonon dispersion curves, in which low-energy transverse phonons cascade into vertical columns. Originally interpreted as phonons interacting with polar nanoregions (PNRs), it was later explained as an interference effect of coupling damped optic and acoustic phonons. In light of a recently discovered PNR vibrational mode near the waterfall wavevector [M. E. Manley, J. W. Lynn, D. L. Abernathy, E. D. Specht, O. Delaire, A. R. Bishop, R. Sahul, and J. D. Budai, Nat. Commun. 5, 3683 (2014)] we have reexamined this feature using neutronmore » scattering on [100]-poled PMN-30%PT (0.6Pb(Mg 1/3Nb 2/3)O 3 0.3PbTiO 3). In addition, we find that the PNR mode couples to both optic and acoustic phonons, and that this results in complex patterns in the dynamic structure factor, including intensity pockets and peaks localized in momentum-energy space. These features are fully explained by extending the mode-coupling model to include three coupled damped harmonic oscillators representing the transverse optic, acoustic, and PNR modes.« less
Three-mode coupling interference patterns in the dynamic structure factor of a relaxor ferroelectric
NASA Astrophysics Data System (ADS)
Manley, M. E.; Abernathy, D. L.; Sahul, R.; Stonaha, P. J.; Budai, J. D.
2016-09-01
A longstanding controversy for relaxor ferroelectrics has been the origin of the "waterfall" effect in the phonon dispersion curves, in which low-energy transverse phonons cascade into vertical columns. Originally interpreted as phonons interacting with polar nanoregions (PNRs), it was later explained as an interference effect of coupling damped optic and acoustic phonons. In light of a recently discovered PNR vibrational mode near the "waterfall" wave vector [M. E. Manley, J. W. Lynn, D. L. Abernathy, E. D. Specht, O. Delaire, A. R. Bishop, R. Sahul, and J. D. Budai, Nat. Commun. 5, 3683 (2014), 10.1038/ncomms4683], we have reexamined this feature using neutron scattering on [100]-poled PMN-30%PT [0.6 Pb (M g1 /3N b2 /3 ) O3-0.3 PbTi O3] . We find that the PNR mode couples to both optic and acoustic phonons and that this results in complex patterns in the dynamic structure factor, including intensity pockets and peaks localized in momentum-energy space. These features are fully explained by extending the mode-coupling model to include three coupled damped harmonic oscillators representing the transverse optic, acoustic, and PNR modes.
A fully coupled 3D transport model in SPH for multi-species reaction-diffusion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adami, Stefan; Hu, X. Y.; Adams, N. A.
2011-08-23
Abstract—In this paper we present a fully generalized transport model for multiple species in complex two and threedimensional geometries. Based on previous work [1] we have extended our interfacial reaction-diffusion model to handle arbitrary numbers of species allowing for coupled reaction models. Each species is tracked independently and we consider different physics of a species with respect to the bulk phases in contact. We use our SPH model to simulate the reaction-diffusion problem on a pore-scale level of a solid oxide fuel cell (SOFC) with special emphasize on the effect of surface diffusion.
Simulating Afterburn with LLNL Hydrocodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, L D
2004-06-11
Presented here is a working methodology for adapting a Lawrence Livermore National Laboratory (LLNL) developed hydrocode, ALE3D, to simulate weapon damage effects when afterburn is a consideration in the blast propagation. Experiments have shown that afterburn is of great consequence in enclosed environments (i.e. bomb in tunnel scenario, penetrating conventional munition in a bunker, or satchel charge placed in a deep underground facility). This empirical energy deposition methodology simulates the anticipated addition of kinetic energy that has been demonstrated by experiment (Kuhl, et. al. 1998), without explicitly solving the chemistry, or resolving the mesh to capture small-scale vorticity. This effortmore » is intended to complement the existing capability of either coupling ALE3D blast simulations with DYNA3D or performing fully coupled ALE3D simulations to predict building or component failure, for applications in National Security offensive strike planning as well as Homeland Defense infrastructure protection.« less
Numerical study of the 3-D effect on FEL performance and its application to the APS LEUTL FEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chae, Y.C.
A Low-Energy Undulator Test Line (LEUTL) is under construction at the Advanced Photon Source (APS). In LEUTL periodic focusing is provided by external quadrupoles. This results in an elliptical beam with its betatron oscillation envelope varying along the undulators. The free-electron laser (FEL) interaction with such a beam will exhibit truly 3-D effects. Thus the investigation of 3-D effects is important in optimizing the FEL performance. The programs GINGER and TDA3D, coupled with theoretically known facts, have been used for this purpose. Both programs are fully 3-D in moving the particle, but model the interaction between particles and axially symmetricmore » electromagnetic waves. Even though TDA3D can include a few azimuthal modes in the interaction, it is still not a fully 3-D FEL code. However, they show that these 2-D programs can still be used for an elliptical beam whose aspect ratio is within certain limits. The author presents numerical results of FEL performance for the circular beam, the elliptical beam, and finally for the beam in the realistic LEUTL lattice.« less
The role of 3-D interactive visualization in blind surveys of H I in galaxies
NASA Astrophysics Data System (ADS)
Punzo, D.; van der Hulst, J. M.; Roerdink, J. B. T. M.; Oosterloo, T. A.; Ramatsoku, M.; Verheijen, M. A. W.
2015-09-01
Upcoming H I surveys will deliver large datasets, and automated processing using the full 3-D information (two positional dimensions and one spectral dimension) to find and characterize H I objects is imperative. In this context, visualization is an essential tool for enabling qualitative and quantitative human control on an automated source finding and analysis pipeline. We discuss how Visual Analytics, the combination of automated data processing and human reasoning, creativity and intuition, supported by interactive visualization, enables flexible and fast interaction with the 3-D data, helping the astronomer to deal with the analysis of complex sources. 3-D visualization, coupled to modeling, provides additional capabilities helping the discovery and analysis of subtle structures in the 3-D domain. The requirements for a fully interactive visualization tool are: coupled 1-D/2-D/3-D visualization, quantitative and comparative capabilities, combined with supervised semi-automated analysis. Moreover, the source code must have the following characteristics for enabling collaborative work: open, modular, well documented, and well maintained. We review four state of-the-art, 3-D visualization packages assessing their capabilities and feasibility for use in the case of 3-D astronomical data.
Radiation Coupling with the FUN3D Unstructured-Grid CFD Code
NASA Technical Reports Server (NTRS)
Wood, William A.
2012-01-01
The HARA radiation code is fully-coupled to the FUN3D unstructured-grid CFD code for the purpose of simulating high-energy hypersonic flows. The radiation energy source terms and surface heat transfer, under the tangent slab approximation, are included within the fluid dynamic ow solver. The Fire II flight test, at the Mach-31 1643-second trajectory point, is used as a demonstration case. Comparisons are made with an existing structured-grid capability, the LAURA/HARA coupling. The radiative surface heat transfer rates from the present approach match the benchmark values within 6%. Although radiation coupling is the focus of the present work, convective surface heat transfer rates are also reported, and are seen to vary depending upon the choice of mesh connectivity and FUN3D ux reconstruction algorithm. On a tetrahedral-element mesh the convective heating matches the benchmark at the stagnation point, but under-predicts by 15% on the Fire II shoulder. Conversely, on a mixed-element mesh the convective heating over-predicts at the stagnation point by 20%, but matches the benchmark away from the stagnation region.
1D-3D hybrid modeling-from multi-compartment models to full resolution models in space and time.
Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M; Queisser, Gillian
2014-01-01
Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator-which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved, highly detailed 3D-modeling approaches. We present the developed general framework for 1D/3D hybrid modeling and apply it to investigate electrically active neurons and their intracellular spatio-temporal calcium dynamics.
1D-3D hybrid modeling—from multi-compartment models to full resolution models in space and time
Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M.; Queisser, Gillian
2014-01-01
Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator—which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved, highly detailed 3D-modeling approaches. We present the developed general framework for 1D/3D hybrid modeling and apply it to investigate electrically active neurons and their intracellular spatio-temporal calcium dynamics. PMID:25120463
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xin; Arbabi, Ehsan; Goddard, Lynford L.
2015-07-20
We demonstrate a self-rolled-up microtube-based vertical photonic coupler monolithically integrated on top of a ridge waveguide to achieve three-dimensional (3D) photonic integration. The fabrication process is fully compatible with standard planar silicon processing technology. Strong light coupling between the vertical coupler and the ridge waveguide was observed experimentally, which may provide an alternative route for 3D heterogeneous photonic integration. The highest extinction ratio observed in the transmission spectrum passing through the ridge waveguide was 23 dB.
Multigrid Method for Modeling Multi-Dimensional Combustion with Detailed Chemistry
NASA Technical Reports Server (NTRS)
Zheng, Xiaoqing; Liu, Chaoqun; Liao, Changming; Liu, Zhining; McCormick, Steve
1996-01-01
A highly accurate and efficient numerical method is developed for modeling 3-D reacting flows with detailed chemistry. A contravariant velocity-based governing system is developed for general curvilinear coordinates to maintain simplicity of the continuity equation and compactness of the discretization stencil. A fully-implicit backward Euler technique and a third-order monotone upwind-biased scheme on a staggered grid are used for the respective temporal and spatial terms. An efficient semi-coarsening multigrid method based on line-distributive relaxation is used as the flow solver. The species equations are solved in a fully coupled way and the chemical reaction source terms are treated implicitly. Example results are shown for a 3-D gas turbine combustor with strong swirling inflows.
NASA Technical Reports Server (NTRS)
Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.
2016-01-01
An immersed boundary method for the compressible Navier-Stokes equation and the additional infrastructure that is needed to solve moving boundary problems and fully coupled fluid-structure interaction is described. All the methods described in this paper were implemented in NASA's LAVA solver framework. The underlying immersed boundary method is based on the locally stabilized immersed boundary method that was previously introduced by the authors. In the present paper this method is extended to account for all aspects that are involved for fluid structure interaction simulations, such as fast geometry queries and stencil computations, the treatment of freshly cleared cells, and the coupling of the computational fluid dynamics solver with a linear structural finite element method. The current approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems in 2D and 3D. As part of the validation procedure, results from the second AIAA aeroelastic prediction workshop are also presented. The current paper is regarded as a proof of concept study, while more advanced methods for fluid structure interaction are currently being investigated, such as geometric and material nonlinearities, and advanced coupling approaches.
Shadid, J. N.; Pawlowski, R. P.; Cyr, E. C.; ...
2016-02-10
Here, we discuss that the computational solution of the governing balance equations for mass, momentum, heat transfer and magnetic induction for resistive magnetohydrodynamics (MHD) systems can be extremely challenging. These difficulties arise from both the strong nonlinear, nonsymmetric coupling of fluid and electromagnetic phenomena, as well as the significant range of time- and length-scales that the interactions of these physical mechanisms produce. This paper explores the development of a scalable, fully-implicit stabilized unstructured finite element (FE) capability for 3D incompressible resistive MHD. The discussion considers the development of a stabilized FE formulation in context of the variational multiscale (VMS) method,more » and describes the scalable implicit time integration and direct-to-steady-state solution capability. The nonlinear solver strategy employs Newton–Krylov methods, which are preconditioned using fully-coupled algebraic multilevel preconditioners. These preconditioners are shown to enable a robust, scalable and efficient solution approach for the large-scale sparse linear systems generated by the Newton linearization. Verification results demonstrate the expected order-of-accuracy for the stabilized FE discretization. The approach is tested on a variety of prototype problems, that include MHD duct flows, an unstable hydromagnetic Kelvin–Helmholtz shear layer, and a 3D island coalescence problem used to model magnetic reconnection. Initial results that explore the scaling of the solution methods are also presented on up to 128K processors for problems with up to 1.8B unknowns on a CrayXK7.« less
Pinske, Constanze; Sargent, Frank; Sawers, R Gary
2015-04-01
Fermentatively growing Escherichia coli cells have three active [NiFe]-hydrogenases (Hyd), two of which, Hyd-1 and Hyd-2, contribute to H2 oxidation while Hyd-3 couples formate oxidation to H2 evolution. Biosynthesis of all Hyd involves the insertion of a Fe(CN)2CO group and a subsequent insertion of nickel ions through the HypA/HybF, HypB and SlyD proteins. With high nickel concentrations the presence of none of these proteins is required, but under normal growth conditions and during late stationary growth SlyD is important for hydrogenase activities. The slyD mutation reduced H2 production during exponential phase growth by about 50%. Assaying stationary phase grown cells for the coupling of Hyd activity to the respiratory chain or formate-dependent H2 evolution showed that SlyD is essential for both H2 evolution and H2 oxidation. Although introduction of plasmid-coded slyD resulted in an overall decrease of Hyd-2 polypeptides in slyD and hypA slyD mutants, processing and dye-reducing activity of the Hyd-2 enzyme was nevertheless restored. Similarly, introduction of the slyD plasmid restored only some H2 evolution in the slyD mutant while Hyd-3 polypeptides and dye-reducing activity were fully restored. Taken together, these results indicate an essential role for SlyD in the generation of the fully cofactor-equipped hydrogenase large subunits in the stationary phase where the level of each Hyd enzyme is finely tuned by SlyD for optimal enzyme activity.
Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides.
Papes, Martin; Cheben, Pavel; Benedikovic, Daniel; Schmid, Jens H; Pond, James; Halir, Robert; Ortega-Moñux, Alejandro; Wangüemert-Pérez, Gonzalo; Ye, Winnie N; Xu, Dan-Xia; Janz, Siegfried; Dado, Milan; Vašinek, Vladimír
2016-03-07
Fiber-chip edge couplers are extensively used in integrated optics for coupling of light between planar waveguide circuits and optical fibers. In this work, we report on a new fiber-chip edge coupler concept with large mode size for silicon photonic wire waveguides. The coupler allows direct coupling with conventional cleaved optical fibers with large mode size while circumventing the need for lensed fibers. The coupler is designed for 220 nm silicon-on-insulator (SOI) platform. It exhibits an overall coupling efficiency exceeding 90%, as independently confirmed by 3D Finite-Difference Time-Domain (FDTD) and fully vectorial 3D Eigenmode Expansion (EME) calculations. We present two specific coupler designs, namely for a high numerical aperture single mode optical fiber with 6 µm mode field diameter (MFD) and a standard SMF-28 fiber with 10.4 µm MFD. An important advantage of our coupler concept is the ability to expand the mode at the chip edge without leading to high substrate leakage losses through buried oxide (BOX), which in our design is set to 3 µm. This remarkable feature is achieved by implementing in the SiO 2 upper cladding thin high-index Si 3 N 4 layers. The Si 3 N 4 layers increase the effective refractive index of the upper cladding near the facet. The index is controlled along the taper by subwavelength refractive index engineering to facilitate adiabatic mode transformation to the silicon wire waveguide while the Si-wire waveguide is inversely tapered along the coupler. The mode overlap optimization at the chip facet is carried out with a full vectorial mode solver. The mode transformation along the coupler is studied using 3D-FDTD simulations and with fully-vectorial 3D-EME calculations. The couplers are optimized for operating with transverse electric (TE) polarization and the operating wavelength is centered at 1.55 µm.
Electro-mechanical response of a 3D nerve bundle model to mechanical loads leading to axonal injury.
Cinelli, I; Destrade, M; Duffy, M; McHugh, P
2017-07-01
Axonal damage is one of the most common pathological features of traumatic brain injury, leading to abnormalities in signal propagation for nervous systems. We present a 3D fully coupled electro-mechanical model of a nerve bundle, made with the finite element software Abaqus 6.13-3. The model includes a real-time coupling, modulated threshold for spiking activation and independent alteration of the electrical properties for each 3-layer fibre within the bundle. Compression and tension are simulated to induce damage at the nerve membrane. Changes in strain, stress distribution and neural activity are investigated for myelinated and unmyelinated nerve fibres, by considering the cases of an intact and of a traumatized nerve membrane. Results show greater changes in transmitting action potential in the myelinated fibre.
Exploring the Inner Edge of the Habitable Zone with Fully Coupled Oceans
NASA Technical Reports Server (NTRS)
Way, M.J; Del Genio, A.D.; Kelley, M.; Aleinov, I.; Clune, T.
2015-01-01
The role of rotation in planetary atmospheres plays an important role in regulating atmospheric and oceanic heat flow, cloud formation and precipitation. Using the Goddard Institute for Space Studies (GISS) three dimension General Circulation Model (3D-GCM) we demonstrate how varying rotation rate and increasing the incident solar flux on a planet are related to each other and may allow the inner edge of the habitable zone to be much closer than many previous habitable zone studies have indicated. This is shown in particular for fully coupled ocean runs -- some of the first that have been utilized in this context. Results with a 100m mixed layer depth and our fully coupled ocean runs are compared with those of Yang et al. 2014, which demonstrates consistency across models. However, there are clear differences for rotations rates of 1-16x present earth day lengths between the mixed layer and fully couple ocean models, which points to the necessity of using fully coupled oceans whenever possible. The latter was recently demonstrated quite clearly by Hu & Yang 2014 in their aquaworld study with a fully coupled ocean when compared with similar mixed layer ocean studies and by Cullum et al. 2014. Atmospheric constituent amounts were also varied alongside adjustments to cloud parameterizations (results not shown here). While the latter have an effect on what a planet's global mean temperature is once the oceans reach equilibrium they do not qualitatively change the overall relationship between the globally averaged surface temperature and incident solar flux for rotation rates ranging from 1 to 256 times the present Earth day length. At the same time this study demonstrates that given the lack of knowledge about the atmospheric constituents and clouds on exoplanets there is still a large uncertainty as to where a planet will sit in a given star's habitable zone.
Fully Coupled Simulation of Lithium Ion Battery Cell Performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan
Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulatedmore » and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.« less
NASA Astrophysics Data System (ADS)
De Lucia, Marco; Kempka, Thomas; Kühn, Michael
2014-05-01
Fully-coupled reactive transport simulations involving multiphase hydrodynamics and chemical reactions in heterogeneous settings are extremely challenging from a computational point of view. This often leads to oversimplification of the investigated system: coarse spatial discretization, to keep the number of elements in the order of few thousands; simplified chemistry, disregarding many potentially important reactions. A novel approach for coupling non-reactive hydrodynamic simulations with the outcome of single batch geochemical simulations was therefore introduced to assess the potential long-term mineral trapping at the Ketzin pilot site for underground CO2 storage in Germany [1],[2]. The advantage of the coupling is the ability to use multi-million grid non-reactive hydrodynamics simulations on one side and few batch 0D geochemical simulations on the other, so that the complexity of both systems does not need to be reduced. This contribution shows the approach which was taken to validate this simplified coupling scheme. The procedure involved batch simulations of the reference geochemical model, then performing both non-reactive and fully coupled 1D and 3D reactive transport simulations and finally applying the simplified coupling scheme based on the non-reactive and geochemical batch model. The TOUGHREACT/ECO2N [3] simulator was adopted for the validation. The degree of refinement of the spatial grid and the complexity and velocity of the mineral reactions, along with a cut-off value for the minimum concentration of dissolved CO2 allowed to originate precipitates in the simplified approach were found out to be the governing parameters for the convergence of the two schemes. Systematic discrepancies between the approaches are not reducible, simply because there is no feedback between chemistry and hydrodynamics, and can reach 20 % - 30 % in unfavourable cases. However, even such discrepancy is completely acceptable, in our opinion, given the amount of uncertainty underlying the geochemical models. References [1] Klein, E., De Lucia, M., Kempka, T. Kühn, M. 2013. Evaluation of longterm mineral trapping at the Ketzin pilot site for CO2 storage: an integrative approach using geochemical modelling and reservoir simulation. International Journal of Greenhouse Gas Control 19: 720-730, doi:10.1016/j.ijggc.2013.05.014 [2] Kempka, T., Klein, E., De Lucia, M., Tillner, E. Kühn, M. 2013. Assessment of Long-term CO2 Trapping Mechanisms at the Ketzin Pilot Site (Germany) by Coupled Numerical Modelling. Energy Procedia 37: 5419-5426, doi:10.1016/j.egypro.2013.06.460 [3] Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L., Pruess, K. 2010. TOUGHREACT Version 2.0: A simulator for subsurface reactive transport under non-isothermal multiphase flow conditions, Computers & Geosciences 37(6), doi:10.1016/j.cageo.2010.10.007
An Inviscid Decoupled Method for the Roe FDS Scheme in the Reacting Gas Path of FUN3D
NASA Technical Reports Server (NTRS)
Thompson, Kyle B.; Gnoffo, Peter A.
2016-01-01
An approach is described to decouple the species continuity equations from the mixture continuity, momentum, and total energy equations for the Roe flux difference splitting scheme. This decoupling simplifies the implicit system, so that the flow solver can be made significantly more efficient, with very little penalty on overall scheme robustness. Most importantly, the computational cost of the point implicit relaxation is shown to scale linearly with the number of species for the decoupled system, whereas the fully coupled approach scales quadratically. Also, the decoupled method significantly reduces the cost in wall time and memory in comparison to the fully coupled approach. This work lays the foundation for development of an efficient adjoint solution procedure for high speed reacting flow.
FG Width Scalability of the 3-D Vertical FG NAND Using the Sidewall Control Gate (SCG)
NASA Astrophysics Data System (ADS)
Seo, Moon-Sik; Endoh, Tetsuo
Recently, the 3-D vertical Floating Gate (FG) type NAND cell arrays with the Sidewall Control Gate (SCG), such as ESCG, DC-SF and S-SCG, are receiving attention to overcome the reliability issues of Charge Trap (CT) type device. Using this novel cell structure, highly reliable flash cell operations were successfully implemented without interference effect on the FG type cell. However, the 3-D vertical FG type cell has large cell size by about 60% for the cylindrical FG structure. In this point of view, we intensively investigate the scalability of the FG width of the 3-D vertical FG NAND cells. In case of the planar FG type NAND cell, the FG height cannot be scaled down due to the necessity of obtaining sufficient coupling ratio and high program speed. In contrast, for the 3-D vertical FG NAND with SCG, the FG is formed cylindrically, which is fully covered with surrounded CG, and very high CG coupling ratio can be achieved. As results, the scaling of FG width of the 3-D vertical FG NAND cell with S-SCG can be successfully demonstrated at 10nm regime, which is almost the same as the CT layer of recent BE-SONOS NAND.
Towards a Fine-Resolution Global Coupled Climate System for Prediction on Decadal/Centennial Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClean, Julie L.
The over-arching goal of this project was to contribute to the realization of a fully coupled fine resolution Earth System Model simulation in which a weather-scale atmosphere is coupled to an ocean in which mesoscale eddies are largely resolved. Both a prototype fine-resolution fully coupled ESM simulation and a first-ever multi-decadal forced fine-resolution global coupled ocean/ice simulation were configured, tested, run, and analyzed as part of this grant. Science questions focused on the gains from the use of high horizontal resolution, particularly in the ocean and sea-ice, with respect to climatically important processes. Both these fine resolution coupled ocean/sea icemore » and fully-coupled simulations and precedent stand-alone eddy-resolving ocean and eddy-permitting coupled ocean/ice simulations were used to explore the high resolution regime. Overall, these studies showed that the presence of mesoscale eddies significantly impacted mixing processes and the global meridional overturning circulation in the ocean simulations. Fourteen refereed publications and a Ph.D. dissertation resulted from this grant.« less
A 37-mm Ceramic Gun Nozzle Stress Analysis
2006-05-01
Figures iv List of Tables iv 1 . Introduction 1 2. Ceramic Nozzle Structure and Materials 1 3. Sequentially-Coupled and Fully-Coupled Thermal Stress...FEM Analysis 1 4. Ceramic Nozzle Thermal Stress Response 4 5. Ceramic Nozzle Dynamic FEM 7 6. Ceramic Nozzle Dynamic Responses and Discussions 8 7...candidate ceramics and the test fixture model components are listed in table 1 . 3. Sequentially-Coupled and Fully-Coupled Thermal Stress FEM Analysis
2009-09-03
coefficients are set to a value of 0.3. The stick/slip critical shear stress level is defined using a modified Coulomb friction law. Within this law, there...Modified Johnson Cook Model Equivalent Plastic Strain a P M,htgnert S d lei Y 1 2 3 4 5 6 7 420 440 460 480 500 520 540 560 Original Johnson Cook Model...Lett., 2005, 59, 3315–3318. 7 Thomas, W. M. and Nicholas, E. D. Friction stir welding for the transportation industries. Mater. Des ., 1997, 18, 269
NASA Astrophysics Data System (ADS)
Xing, F.; Masson, R.; Lopez, S.
2017-09-01
This paper introduces a new discrete fracture model accounting for non-isothermal compositional multiphase Darcy flows and complex networks of fractures with intersecting, immersed and non-immersed fractures. The so called hybrid-dimensional model using a 2D model in the fractures coupled with a 3D model in the matrix is first derived rigorously starting from the equi-dimensional matrix fracture model. Then, it is discretized using a fully implicit time integration combined with the Vertex Approximate Gradient (VAG) finite volume scheme which is adapted to polyhedral meshes and anisotropic heterogeneous media. The fully coupled systems are assembled and solved in parallel using the Single Program Multiple Data (SPMD) paradigm with one layer of ghost cells. This strategy allows for a local assembly of the discrete systems. An efficient preconditioner is implemented to solve the linear systems at each time step and each Newton type iteration of the simulation. The numerical efficiency of our approach is assessed on different meshes, fracture networks, and physical settings in terms of parallel scalability, nonlinear convergence and linear convergence.
NASA Astrophysics Data System (ADS)
Lee, Min-Cheol; Lee, Sanghyun; Won, C. J.; Lee, K. D.; Hur, N.; Chen, Jeng-Lung; Cho, Deok-Yong; Noh, T. W.
2018-03-01
We investigated the orbital hybridization mechanism in 3 d -5 d double perovskites (DPs) of La2CoIrO6 and La2CoPtO6 using x-ray absorption spectroscopy. It is clearly evidenced by O K -edge and Co K -edge x-ray absorption spectra that the Co 3 d orbitals hybridize not only with the half-filled Ir/Pt jeff states but also with the fully empty (unpolarized) Ir/Pt eg states in both DPs. The Co 3 d eg-Ir 5 d eg hybridization cannot contribute to the ferrimagnetic long-range order in La2CoIrO6 established by spin-selective Co 3 d t2 g-Ir 5 d jeff hybridization through the intermediate oxygen p state but could serve as an origin of paramagnetism. The strengths of such orbital hybridizations were found to be almost invariant to temperature, even far above the Curie temperature, implying persistent paramagnetism against the antiferromagnetic ordering in the spin-orbit entangled 3 d -5 d DPs.
Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; ...
2015-09-08
In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill outmore » a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.« less
NASA Astrophysics Data System (ADS)
Carozzani, T.; Digonnet, H.; Gandin, Ch-A.
2012-01-01
A three-dimensional model is presented for the prediction of grain structures formed in casting. It is based on direct tracking of grain boundaries using a cellular automaton (CA) method. The model is fully coupled with a solution of the heat flow computed with a finite element (FE) method. Several unique capabilities are implemented including (i) the possibility to track the development of several types of grain structures, e.g. dendritic and eutectic grains, (ii) a coupling scheme that permits iterations between the FE method and the CA method, and (iii) tabulated enthalpy curves for the solid and liquid phases that offer the possibility to work with multicomponent alloys. The present CAFE model is also fully parallelized and runs on a cluster of computers. Demonstration is provided by direct comparison between simulated and recorded cooling curves for a directionally solidified aluminum-7 wt% silicon alloy.
Thörmer, Gregor; Garnov, Nikita; Moche, Michael; Haase, Jürgen; Kahn, Thomas; Busse, Harald
2012-04-01
To determine whether a greatly reduced spatial resolution of fully reconstructed projection MR images can be used for the simultaneous 3D localization of multiple MR-visible markers and to assess the feasibility of a subsecond position tracking for clinical purposes. Miniature, inductively coupled RF coils were imaged in three orthogonal planes with a balanced steady-state free precession (SSFP) sequence and automatically localized using a two-dimensional template fitting and a subsequent three-dimensional (3D) matching of the coordinates. Precision, accuracy, speed and robustness of 3D localization were assessed for decreasing in-plane resolutions (0.6-4.7 mm). The feasibility of marker tracking was evaluated at the lowest resolution by following a robotically driven needle on a complex 3D trajectory. Average 3D precision and accuracy, sensitivity and specificity of localization ranged between 0.1 and 0.4 mm, 0.5 and 1.0 mm, 100% and 95%, and 100% and 96%, respectively. At the lowest resolution, imaging and localization took ≈350 ms and provided an accuracy of ≈1.0 mm. In the tracking experiment, the needle was clearly depicted on the oblique scan planes defined by the markers. Image-based marker localization at a greatly reduced spatial resolution is considered a feasible approach to monitor reference points or rigid instruments at subsecond update rates. Copyright © 2012 Elsevier Inc. All rights reserved.
TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform
NASA Astrophysics Data System (ADS)
Dabos, G.; Manolis, A.; Giesecke, A. L.; Porschatis, C.; Chmielak, B.; Wahlbrink, T.; Pleros, N.; Tsiokos, D.
2017-12-01
We demonstrate, for the first time to our knowledge, a fully etched TM grating coupler for low-loss Low-Pressure-Chemical-Vapor-Deposition (LPCVD) based silicon nitride platform with a coupling loss of 6.5 dB at 1541 nm and a 1 dB bandwidth of 55 nm, addressing applications where TM polarization is a pre-requisite. The proposed GC and the 360 nm × 800 nm strip based Si3N4 waveguides have been fabricated by optical projection lithography using an i-line stepper tool enabling low-cost and mass manufacturing of photonic-integrated-circuits.
The effects of differential flow between rational surfaces on toroidal resistive MHD modes
NASA Astrophysics Data System (ADS)
Brennan, Dylan; Halfmoon, Michael; Rhodes, Dov; Cole, Andrew; Okabayashi, Michio; Paz-Soldan, Carlos; Finn, John
2016-10-01
Differential flow between resonant surfaces can strongly affect the coupling and penetration of resonant components of resistive modes, and yet this mechanism is not yet fully understood. This study focuses on the evolution of tearing instabilities and the penetration of imposed resonant magnetic perturbations (RMPs) in tokamak configurations relevant to DIII-D and ITER, including equilibrium flow shear. It has been observed on DIII-D that the onset of tearing instabilities leading to disruption is often coincident with a loss of differential rotation between a higher m/n tearing surface (normally the 4/3 or 3/2) and a lower m/n tearing surface (normally the 2/1). Imposing RMPs can strongly affect this coupling and the torques between the modes. We apply the nonlinear 3-D resistive magnetohydrodynamic (MHD) code NIMROD to study the mechanisms by which these couplings occur. Reduced MHD analyses are applied to study the effects of differential flow between resonant surfaces in the simulations. Interaction between resonant modes can cause significant energy transfer between them, effectively stabilizing one mode while the other grows. The flow mitigates this transfer, but also affects the individual modes. The combination of these effects determines the nonlinear outcome. Supported by US DOE Grants DE-SC0014005 and DE-SC0014119.
Fully Coupled Aero-Thermochemical-Elastic Simulations of an Eroding Graphite Nozzle
NASA Technical Reports Server (NTRS)
Blades, E. L.; Reveles, N. D.; Nucci, M.; Maclean, M.
2017-01-01
A multiphysics simulation capability has been developed that incorporates mutual interactions between aerodynamics, structural response from aero/thermal loading, ablation/pyrolysis, heating, and surface-to-surface radiation to perform high-fidelity, fully coupled aerothermoelastic ablation simulations, which to date had been unattainable. The multiphysics framework couples CHAR (a 3-D implicit charring ablator solver), Loci/CHEM (a computational fluid dynamics solver for high-speed chemically reacting flows), and Abaqus (a nonlinear structural dynamics solver) to create a fully coupled aerothermoelastic charring ablative solver. The solvers are tightly coupled in a fully integrated fashion to resolve the effects of the ablation pyrolysis and charring process and chemistry products upon the flow field, the changes in surface geometry due to recession upon the flow field, and thermal-structural analysis of the body from the induced aerodynamic heating from the flow field. The multiphysics framework was successfully demonstrated on a solid rocket motor graphite nozzle erosion application. Comparisons were made with available experimental data that measured the throat erosion during the motor firing. The erosion data is well characterized, as the test rig was equipped with a windowed nozzle section for real-time X-ray radiography diagnostics of the instantaneous throat variations for deducing the instantaneous erosion rates. The nozzle initially undergoes a nozzle contraction due to thermal expansion before ablation effects are able to widen the throat. A series of parameters studies were conducted using the coupled simulation capability to determine the sensitivity of the nozzle erosion to different parameters. The parameter studies included the shape of the nozzle throat (flat versus rounded), the material properties, the effect of the choice of turbulence model, and the inclusion or exclusion of the mechanical thermal expansion. Overall, the predicted results match the experiment very well, and the predictions were able to bound the data within acceptable limits.
Waveguide silicon nitride grating coupler
NASA Astrophysics Data System (ADS)
Litvik, Jan; Dolnak, Ivan; Dado, Milan
2016-12-01
Grating couplers are one of the most used elements for coupling of light between optical fibers and photonic integrated components. Silicon-on-insulator platform provides strong confinement of light and allows high integration. In this work, using simulations we have designed a broadband silicon nitride surface grating coupler. The Fourier-eigenmode expansion and finite difference time domain methods are utilized in design optimization of grating coupler structure. The fully, single etch step grating coupler is based on a standard silicon-on-insulator wafer with 0.55 μm waveguide Si3N4 layer. The optimized structure at 1550 nm wavelength yields a peak coupling efficiency -2.6635 dB (54.16%) with a 1-dB bandwidth up to 80 nm. It is promising way for low-cost fabrication using complementary metal-oxide- semiconductor fabrication process.
Resilient Nodeless d -Wave Superconductivity in Monolayer FeSe
NASA Astrophysics Data System (ADS)
Agterberg, D. F.; Shishidou, T.; O'Halloran, J.; Brydon, P. M. R.; Weinert, M.
2017-12-01
Monolayer FeSe exhibits the highest transition temperature among the iron based superconductors and appears to be fully gapped, seemingly consistent with s -wave superconductivity. Here, we develop a theory for the superconductivity based on coupling to fluctuations of checkerboard magnetic order (which has the same translation symmetry as the lattice). The electronic states are described by a symmetry based k .p -like theory and naturally account for the states observed by angle resolved photoemission spectroscopy. We show that a prediction of this theory is that the resultant superconducting state is a fully gapped, nodeless, d -wave state. This state, which would usually have nodes, stays nodeless because, as seen experimentally, the relevant spin-orbit coupling has an energy scale smaller than the superconducting gap.
NASA Astrophysics Data System (ADS)
Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi
2017-09-01
Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.
RELAP5-3D Results for Phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW Benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard Strydom
2012-06-01
The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2.« less
RELAP5-3D results for phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strydom, G.; Epiney, A. S.
2012-07-01
The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2. (authors)« less
Navier-Stokes simulation of plume/Vertical Launching System interaction flowfields
NASA Astrophysics Data System (ADS)
York, B. J.; Sinha, N.; Dash, S. M.; Anderson, L.; Gominho, L.
1992-01-01
The application of Navier-Stokes methodology to the analysis of Vertical Launching System/missile exhaust plume interactions is discussed. The complex 3D flowfields related to the Vertical Launching System are computed utilizing the PARCH/RNP Navier-Stokes code. PARCH/RNP solves the fully-coupled system of fluid, two-equation turbulence (k-epsilon) and chemical species equations via the implicit, approximately factored, Beam-Warming algorithm utilizing a block-tridiagonal inversion procedure.
Copper nanorod array assisted silicon waveguide polarization beam splitter.
Kim, Sangsik; Qi, Minghao
2014-04-21
We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology.
NASA Astrophysics Data System (ADS)
Arteta, J.; Cautenet, S.; Taghavi, M.; Audiffren, N.
Air quality models (AQM) consist of many modules (meteorology, emission, chemistry, deposition), and in some conditions such as: vicinity of clouds or aerosols plumes, complex local circulations (mountains, sea breezes), fully coupled models (online method) are necessary. In order to study the impact of lumped chemical mechanisms in AQM simulations, we examine the ability of both different chemical mechanisms: (i) simplified: Condensed Version of the MOdèle de Chimie Atmosphérique 2.2 (CV-MOCA2.2), and (ii) reference: Regional Atmospheric Chemistry Model (RACM), which are coupled online with the Regional Atmospheric Modeling Systems (RAMS) model, on the distribution of pollutants. During the ESCOMPTE experiment (Expérience sur Site pour COntraindre les Modèles de Pollution et de Transport d'Emissions) conducted over Southern France (including urban and industrial zones), Intensive observation periods (IOP) characterized by various meteorological and mixed chemical conditions are simulated. For both configurations of modeling, numerical results are compared with surface measurements (75 stations) for primary (NO x) and secondary (O 3) species. We point out the impact of the two different chemical mechanisms on the production of species involved in the oxidizing capacity such as ozone and radicals within urban and industrial areas. We highlight that both chemical mechanisms produce very similar results for the main pollutants (NO x and O 3) in three-dimensional (3D) distribution, despite large discrepancies in 0D modeling. For ozone concentration, we found sometimes small differences (5-10 ppb) between the mechanisms under study according to the cases (polluted or not). The relative difference between the two mechanisms over the whole domain is only -7% for ozone from CV-MOCA 2.2 versus RACM. When the order of magnitude is needed rather than an accurate estimate, a reduced mechanism is satisfactory. It has the advantage of running faster (four times less than CPU time on SGI 3800 with 30 processors). Simplified mechanisms are really important to study cases for which an online coupling is necessary between meso-scale and chemistry models (clouds or aerosols plumes impacts, highly variable meteorology).
Qi, Xinghao; Sun, Hongjian; Li, Xiaoyan; Fuhr, Olaf; Fenske, Dieter
2018-02-20
The electron-rich silylene Co(i) chloride 5 was obtained through the reaction of CoCl(PMe 3 ) 3 with chlorosilylene. Complex 5 reacted with 1,3-siladiazole HSiMe(NCH 2 PPh 2 ) 2 C 6 H 4 to give the silylene Co(iii) hydride 6 through chelate-assisted Si-H activation. To the best of our knowledge, complex 6 is the first example of Co(iii) hydride supported by N-heterocyclic silylene. Complexes 5 and 6 were fully characterized by spectroscopic methods and X-ray diffraction analysis. Complex 6 was used as an efficient precatalyst for Kumada cross-coupling reactions. Compared with the related complex 3 supported by only trimethylphosphine, complex 6 as a catalyst supported by both chlorosilylene and trimethylphosphine exhibits a more efficient performance for the Kumada cross-coupling reactions. A novel catalytic radical mechanism was suggested and experimentally verified. As an intermediate silylene cobalt(ii) chloride 6d was isolated and structurally characterized.
Numerical simulation of evolutionary erodible bedforms using the particle finite element method
NASA Astrophysics Data System (ADS)
Bravo, Rafael; Becker, Pablo; Ortiz, Pablo
2017-07-01
This paper presents a numerical strategy for the simulation of flows with evolutionary erodible boundaries. The fluid equations are fully resolved in 3D, while the sediment transport is modelled using the Exner equation and solved with an explicit Lagrangian procedure based on a fixed 2D mesh. Flow and sediment are coupled in geometry by deforming the fluid mesh in the vertical direction and in velocities with the experimental sediment flux computed using the Meyer Peter Müller model. A comparison with real experiments on channels is performed, giving good agreement.
Fully automated MR liver volumetry using watershed segmentation coupled with active contouring.
Huynh, Hieu Trung; Le-Trong, Ngoc; Bao, Pham The; Oto, Aytek; Suzuki, Kenji
2017-02-01
Our purpose is to develop a fully automated scheme for liver volume measurement in abdominal MR images, without requiring any user input or interaction. The proposed scheme is fully automatic for liver volumetry from 3D abdominal MR images, and it consists of three main stages: preprocessing, rough liver shape generation, and liver extraction. The preprocessing stage reduced noise and enhanced the liver boundaries in 3D abdominal MR images. The rough liver shape was revealed fully automatically by using the watershed segmentation, thresholding transform, morphological operations, and statistical properties of the liver. An active contour model was applied to refine the rough liver shape to precisely obtain the liver boundaries. The liver volumes calculated by the proposed scheme were compared to the "gold standard" references which were estimated by an expert abdominal radiologist. The liver volumes computed by using our developed scheme excellently agreed (Intra-class correlation coefficient was 0.94) with the "gold standard" manual volumes by the radiologist in the evaluation with 27 cases from multiple medical centers. The running time was 8.4 min per case on average. We developed a fully automated liver volumetry scheme in MR, which does not require any interaction by users. It was evaluated with cases from multiple medical centers. The liver volumetry performance of our developed system was comparable to that of the gold standard manual volumetry, and it saved radiologists' time for manual liver volumetry of 24.7 min per case.
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.
2016-12-01
The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).
Bioprinting technologies for disease modeling.
Memic, Adnan; Navaei, Ali; Mirani, Bahram; Cordova, Julio Alvin Vacacela; Aldhahri, Musab; Dolatshahi-Pirouz, Alireza; Akbari, Mohsen; Nikkhah, Mehdi
2017-09-01
There is a great need for the development of biomimetic human tissue models that allow elucidation of the pathophysiological conditions involved in disease initiation and progression. Conventional two-dimensional (2D) in vitro assays and animal models have been unable to fully recapitulate the critical characteristics of human physiology. Alternatively, three-dimensional (3D) tissue models are often developed in a low-throughput manner and lack crucial native-like architecture. The recent emergence of bioprinting technologies has enabled creating 3D tissue models that address the critical challenges of conventional in vitro assays through the development of custom bioinks and patient derived cells coupled with well-defined arrangements of biomaterials. Here, we provide an overview on the technological aspects of 3D bioprinting technique and discuss how the development of bioprinted tissue models have propelled our understanding of diseases' characteristics (i.e. initiation and progression). The future perspectives on the use of bioprinted 3D tissue models for drug discovery application are also highlighted.
NASA Astrophysics Data System (ADS)
Hoch, J. M.; Bierkens, M. F.; Van Beek, R.; Winsemius, H.; Haag, A.
2015-12-01
Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World's population and the associated implications, sound knowledge of flood hazard and related risk is crucial. Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation. Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory. The present research constitutes a first step into a globally applicable approach to fully couple hydrologic with hydrodynamic computations while discriminating between 1D-channels and 2D-floodplains. Such a fully-fledged set-up would be able to provide higher-order flood hazard information, e.g. time to flooding and flood duration, ultimately leading to improved flood risk assessment and management at the large scale.
A Semi-implicit Treatment of Porous Media in Steady-State CFD.
Domaingo, Andreas; Langmayr, Daniel; Somogyi, Bence; Almbauer, Raimund
There are many situations in computational fluid dynamics which require the definition of source terms in the Navier-Stokes equations. These source terms not only allow to model the physics of interest but also have a strong impact on the reliability, stability, and convergence of the numerics involved. Therefore, sophisticated numerical approaches exist for the description of such source terms. In this paper, we focus on the source terms present in the Navier-Stokes or Euler equations due to porous media-in particular the Darcy-Forchheimer equation. We introduce a method for the numerical treatment of the source term which is independent of the spatial discretization and based on linearization. In this description, the source term is treated in a fully implicit way whereas the other flow variables can be computed in an implicit or explicit manner. This leads to a more robust description in comparison with a fully explicit approach. The method is well suited to be combined with coarse-grid-CFD on Cartesian grids, which makes it especially favorable for accelerated solution of coupled 1D-3D problems. To demonstrate the applicability and robustness of the proposed method, a proof-of-concept example in 1D, as well as more complex examples in 2D and 3D, is presented.
Multidimensional Fuel Performance Code: BISON
DOE Office of Scientific and Technical Information (OSTI.GOV)
BISON is a finite element based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO fuel particles, and metallic rod and plate fuel (Refs. [a, b, c]). It solves the fully-coupled equations of thermomechanics and species diffusion and includes important fuel physics such as fission gas release and material property degradation with burnup. BISON is based on the MOOSE framework (Ref. [d]) and can therefore efficiently solve problems on 1-, 2- or 3-D meshes using standard workstations or large high performance computers. BISON is also coupled to a MOOSE-based mesoscale phasemore » field material property simulation capability (Refs. [e, f]). As described here, BISON includes the code library named FOX, which was developed concurrent with BISON. FOX contains material and behavioral models that are specific to oxide fuels.« less
Sensitivity analysis for the coupling of a subglacial hydrology model with a 3D ice-sheet model.
NASA Astrophysics Data System (ADS)
Bertagna, L.; Perego, M.; Gunzburger, M.; Hoffman, M. J.; Price, S. F.
2017-12-01
When studying the movement of ice sheets, one of the most important factors that influence the velocity of the ice is the amount of friction against the bedrock. Usually, this is modeled by a friction coefficient that may depend on the bed geometry and other quantities, such as the temperature and/or water pressure at the ice-bedrock interface. These quantities are often assumed to be known (either by indirect measurements or by means of parameter estimation) and constant in time. Here, we present a 3D computational model for the simulation of the ice dynamics which incorporates a 2D model proposed by Hewitt (2011) for the subglacial water pressure. The hydrology model is fully coupled with the Blatter-Pattyn model for the ice sheet flow, as the subglacial water pressure appears in the expression for the ice friction coefficient, and the ice velocity appears as a source term in the hydrology model. We will present results on real geometries, and perform a sensitivity analysis with respect to the hydrology model parameters.
NASA Astrophysics Data System (ADS)
Fellers, R. S.; Braly, L. B.; Saykally, R. J.; Leforestier, C.
1999-04-01
The SWPS method is improved by the addition of H.E.G. contractions for generating a more compact basis. An error in the definition of the internal fragment axis system used in our previous calculation is described and corrected. Fully coupled 6D (rigid monomers) VRT states are computed for several new water dimer potential surfaces and compared with experiment and our earlier SWPS results. This work sets the stage for refinement of such potential surfaces via regression analysis of VRT spectroscopic data.
A three-dimensional semianalytical model of hydraulic fracture growth through weak barriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luiskutty, C.T.; Tomutes, L.; Palmer, I.D.
1989-08-01
The goal of this research was to develop a fracture model for length/height ratio {le}4 that includes 2D flow (and a line source corresponding to the perforated interval) but makes approximations that allow a semianalytical solution, with large computer-time savings over the fully numerical mode. The height, maximum width, and pressure at the wellbore in this semianalytical model are calculated and compared with the results of the fully three-dimensional (3D) model. There is reasonable agreement in all parameters, the maximum discrepancy being 24%. Comparisons of fracture volume and leakoff volume also show reasonable agreement in volume and fluid efficiencies. Themore » values of length/height ratio, in the four cases in which agreement is found, vary from 1.5 to 3.7. The model offers a useful first-order (or screening) calculation of fracture-height growth through weak barriers (e.g., low stress contrasts). When coupled with the model developed for highly elongated fractures of length/height ratio {ge}4, which are also found to be in basic agreement with the fully numerical model, this new model provides the capability for approximating fracture-height growth through barriers for vertical fracture shapes that vary from penny to highly elongated. The computer time required is estimated to be less than the time required for the fully numerical model by a factor of 10 or more.« less
Fully-coupled analysis of jet mixing problems. Three-dimensional PNS model, SCIP3D
NASA Technical Reports Server (NTRS)
Wolf, D. E.; Sinha, N.; Dash, S. M.
1988-01-01
Numerical procedures formulated for the analysis of 3D jet mixing problems, as incorporated in the computer model, SCIP3D, are described. The overall methodology closely parallels that developed in the earlier 2D axisymmetric jet mixing model, SCIPVIS. SCIP3D integrates the 3D parabolized Navier-Stokes (PNS) jet mixing equations, cast in mapped cartesian or cylindrical coordinates, employing the explicit MacCormack Algorithm. A pressure split variant of this algorithm is employed in subsonic regions with a sublayer approximation utilized for treating the streamwise pressure component. SCIP3D contains both the ks and kW turbulence models, and employs a two component mixture approach to treat jet exhausts of arbitrary composition. Specialized grid procedures are used to adjust the grid growth in accordance with the growth of the jet, including a hybrid cartesian/cylindrical grid procedure for rectangular jets which moves the hybrid coordinate origin towards the flow origin as the jet transitions from a rectangular to circular shape. Numerous calculations are presented for rectangular mixing problems, as well as for a variety of basic unit problems exhibiting overall capabilities of SCIP3D.
Synthetic Superconductivity in Single-Layer Crystals
NASA Astrophysics Data System (ADS)
Levitov, Leonid; Borgnia, Dan; Lee, Patrick
2015-03-01
Electronic states in atomically thin 2D crystals are fully exposed and can couple to extrinsic degrees of freedom via long-range Coulomb interactions. Novel many-body effects in such systems can be engineered by embedding them in a polar environment. Superconducting pairing interaction induced in this way can enhance the intrinsic electron-phonon pairing mechanism. We take on this notion, which was around since the 60's (''excitonic superconductivity''), and consider synthetic superconductivity (SSC) induced in 2D crystals by a polar environment. One interesting aspect of this scenario is that Coulomb repulsion acts as superconductivity friend rather than a foe. Such repulsion-to-attraction transmutation allows to access strong-coupling superconductivity regime even when intrinsic pairing interaction is weak. We analyze pairing interaction in 2D crystals placed atop a highly polarizable dielectric with dispersive permittivity ɛ (ω) and predict that by optimizing system parameters a substantial enhancement can be achieved. We also argue that the SSC mechanism can be responsible, at least in part, for 100 K superconductivity recently observed in FeSe monolayers grown on SrTiO3 substrate, with Tc more than 10 times larger than in bulk 3D FeSe crystals, arxiv:1406.3435.
NASA Astrophysics Data System (ADS)
Fortin, Vincent; Durnford, Dorothy; Smith, Gregory; Dyck, Sarah; Martinez, Yosvany; Mackay, Murray; Winter, Barbara
2017-04-01
Environment and Climate Change Canada (ECCC) is implementing new numerical guidance products based on fully coupled numerical models to better inform the public as well as specialized users on the current and future state of various components of the water cycle, including stream flow and water levels. Outputs from this new system, named the Water Cycle Prediction System (WCPS), have been available for the Great Lakes and St. Lawrence River watershed since June 2016. WCPS links together ECCC's weather forecasting model, GEM, the 2-D ice model C-ICE, the 3-D lake and ocean model NEMO, and a 2-D hydrological model, WATROUTE. Information concerning the water cycle is passed between the models at intervals varying from a few minutes to one hour. It currently produces two forecasts per day for the next three days of the complete water cycle in the Great Lakes region, the largest freshwater lake system in the world. Products include spatially-varying precipitation, evaporation, river discharge, water level anomalies, surface water temperatures, ice coverage, and surface currents. These new products are of interest to water resources and management authority, flood forecasters, hydroelectricity producers, navigation, environmental disaster managers, search and rescue teams, agriculture, and the general public. This presentation focuses on the evaluation of various elements forecasted by the system, and weighs the advantages and disadvantages of running the system fully coupled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Jing; Huang, Hai; Mattson, Earl
Aimed at supporting the design of hydraulic fracturing experiments at the kISMET site, ~1500 m below ground in a deep mine, we performed pre-experimental hydraulic fracturing simulations in order to estimate the breakdown pressure, propagation pressure, fracture geometry, and the magnitude of induced seismicity using a newly developed fully coupled three-dimensional (3D) network flow and quasi-static discrete element model (DEM). The quasi-static DEM model, which is constructed by Delaunay tessellation of the rock volume, considers rock fabric heterogeneities by using the “disordered” DEM mesh and adding random perturbations to the stiffness and tensile/shear strengths of individual DEM elements and themore » elastic beams between them. A conjugate 3D flow network based on the DEM lattice is constructed to calculate the fluid flow in both the fracture and porous matrix. One distinctive advantage of the model is that fracturing is naturally described by the breakage of elastic beams between DEM elements. It is also extremely convenient to introduce mechanical anisotropy into the model by simply assigning orientation-dependent tensile/shear strengths to the elastic beams. In this paper, the 3D hydraulic fracturing model was verified against the analytic solution for a penny-shaped crack model. We applied the model to simulate fracture propagation from a vertical open borehole based on initial estimates of rock mechanical properties and in-situ stress conditions. The breakdown pressure and propagation pressure are directly obtained from the simulation. In addition, the released elastic strain energies of individual fracturing events were calculated and used as a conservative estimate for the magnitudes of the potential induced seismic activities associated with fracturing. The comparisons between model predictions and experimental results are still ongoing.« less
Saxena, Saurabh; Stanek, Jan; Cevec, Mirko; Plavec, Janez; Koźmiński, Wiktor
2014-11-01
A through bond, C4'/H4' selective, "out and stay" type 4D HC(P)CH experiment is introduced which provides sequential connectivity via H4'(i)-C4'(i)-C4'(i-1)-H4'(i-1) correlations. The (31)P dimension (used in the conventional 3D HCP experiment) is replaced with evolution of better dispersed C4' dimension. The experiment fully utilizes (13)C-labeling of RNA by inclusion of two C4' evolution periods. An additional evolution of H4' is included to further enhance peak resolution. Band selective (13)C inversion pulses are used to achieve selectivity and prevent signal dephasing due to the of C4'-C3' and C4'-C5' homonuclear couplings. For reasonable resolution, non-uniform sampling is employed in all indirect dimensions. To reduce sensitivity losses, multiple quantum coherences are preserved during shared-time evolution and coherence transfer delays. In the experiment the intra-nucleotide peaks are suppressed whereas inter-nucleotide peaks are enhanced to reduce the ambiguities. The performance of the experiment is verified on a fully (13)C, (15)N-labeled 34-nt hairpin RNA comprising typical structure elements.
Copper nanorod array assisted silicon waveguide polarization beam splitter
Kim, Sangsik; Qi, Minghao
2014-01-01
We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology. PMID:24787839
Superconducting Properties of CeIr3 Single Crystal
NASA Astrophysics Data System (ADS)
Sato, Yoshiki J.; Nakamura, Ai; Shimizu, Yusei; Maurya, Arvind; Homma, Yoshiya; Li, Dexin; Honda, Fuminori; Aoki, Dai
2018-05-01
Superconducting properties of CeIr3 single crystal with rhombohedral structure were examined for the first time using DC magnetization, specific heat, and electrical resistivity measurements. A bulk type-II superconductivity was clearly detected at Tc = 3.4 K, which is the second highest Tc among Ce-based intermetallic compounds. The thermodynamic properties as well as an upper critical field Hc2(0) ˜ 46.5 kOe for the H || c-axis are fully consistent with the weak-coupling BCS regime. The observed √{H} variation of C(H)/T becomes less pronounced upon cooling, possibly suggesting a suppression of low-energy quasiparticle excitations in an anisotropic s-wave gap in CeIr3, as observed in CeRu2. The origin of superconductivity is discussed from the viewpoints of the valence of Ce atom and Ir 5d-electron with a strong spin-orbit coupling.
Molecular Packing of Amphiphilic Nanosheets Resolved by X-ray Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harutyunyan, Boris; Dannenhoffer, Adam; Kewalramani, Sumit
2016-12-29
Molecular packing in light harvesting 2D assemblies of photocatalytic materials is a critical factor for solar-to-fuel conversion efficiency. However, structure–function correlations have yet to be fully established. This is partly due to the difficulties in extracting the molecular arrangements from the complex 3D powder averaged diffraction patterns of 2D lattices, obtained via in situ wide-angle X-ray scattering. Here, we develop a scattering theory formalism and couple it with a simple geometrical model for the molecular shape of chromophore 9-methoxy-N-(sodium hexanoate)perylene-3,4-dicarboximide (MeO-PMI) used in our study. This generally applicable method fully reproduces the measured diffraction pattern including the asymmetric line shapesmore » for the Bragg reflections and yields the molecular packing arrangement within a 2D crystal structure with a remarkable degree of detail. We find an approximate edge-centered herringbone structure for the PMI fused aromatic rings and ordering of the carboxypentyl chains above and below the nanosheets. Such a packing arrangement differs from the more symmetric face-to-face orientation of the unsubstituted PMI rings. This structural difference is correlated to our measurement of the reduced catalytic performance of MeO-PMI nanosheets as compared to the mesoscopically similar unsubstituted PMI assemblies.« less
Partitioned coupling of advection-diffusion-reaction systems and Brinkman flows
NASA Astrophysics Data System (ADS)
Lenarda, Pietro; Paggi, Marco; Ruiz Baier, Ricardo
2017-09-01
We present a partitioned algorithm aimed at extending the capabilities of existing solvers for the simulation of coupled advection-diffusion-reaction systems and incompressible, viscous flow. The space discretisation of the governing equations is based on mixed finite element methods defined on unstructured meshes, whereas the time integration hinges on an operator splitting strategy that exploits the differences in scales between the reaction, advection, and diffusion processes, considering the global system as a number of sequentially linked sets of partial differential, and algebraic equations. The flow solver presents the advantage that all unknowns in the system (here vorticity, velocity, and pressure) can be fully decoupled and thus turn the overall scheme very attractive from the computational perspective. The robustness of the proposed method is illustrated with a series of numerical tests in 2D and 3D, relevant in the modelling of bacterial bioconvection and Boussinesq systems.
Engineering Nano-Structured Multiferroic Thin Films
NASA Astrophysics Data System (ADS)
Cheung, Pui Lam
Multiferroics exhibit remarkable tunabilities in their ferromagnetic, ferroelectric and magnetoelectric properties that provide the potential in enabling the control of magnetizations by electric field for the next generation non-volatile memories, antennas and motors. In recent research and developments in integrating single-phase ferroelectric and ferromagnetic materials, multiferroic composite demonstrated a promising magnetoelectric (ME) coupling for future applications. Atomic layer deposition (ALD) technique, on the other hand, allows fabrications of complex multiferroic nanostructures to investigate interfacial coupling between the two materials. In this work, radical-enhanced ALD of cobalt ferrite (CFO) and thermal ALD of lead zirconate titanate (PZT) were combined in fabricating complex multiferroic architectures in investigating the effect of nanostructuring and magnetic shape anisotropy on improving ME coupling. In particular, 1D CFO nanotubes and nanowires; 0D-3D CFO/PZT mesoporous composite; and 1D-1D CFO/PZT core-shell nanowire composite were studied. The potential implementation of nanostructured multiferroic composites into functioning devices was assessed by quantifying the converse ME coupling coefficient. The synthesis of 1D CFO nanostructures was realized by ALD of CFO in anodic aluminum oxide (AAO) membranes. This work provided a simple and inexpensive route to create parallel and high aspect ratio ( 55) magnetic nanostructures. The change in magnetic easy axis of (partially filled) CFO nanotubes from perpendicular to parallel in (fully-filled) nanowires indicated the significance of the geometric factor in controlling magnetizations and ME coupling. The 0D-3D CFO/PZT mesoporous composite demonstrated the optimizations of the strain transfer could be achieved by precise thickness control. 100 nm of mesoporous PZT was synthesized on Pt/TiOx/SiO2/Si using amphiphilic diblock copolymers as a porous ferroelectric template (10 nm pore diameter) for ALD CFO growth. The increased filling of CFO decreased the mechanical flexibility of the composite for electric field induced strain, hence the converse ME coupling was mitigated. The highest converse ME coefficient of 1.2 10-5 Oe-cm/mV was achieved with a 33% pore filling of CFO, in compare to 1 x 10-5 Oe-cm/mV from mesoporous CFO filled with 3 nm of PZT in literature (Chien 2016). Highly directional 1D-1D PZT-core CFO-shell composite in AAO demonstrated the magnetic shape anisotropy could be modulated. The CFO shell thickness allowed the tuning of magnetic easy axis and saturation magnetizations; whereas the PZT volume allowed the optimization of electric field induced strain of the composite. Enhanced converse ME coupling of 1.3 x 10-4 Oe-cm/mV was realized by 5 nm CFO shell on 30 nm of PZT core. In summary, the work has demonstrated nanostructuring of multiferroic composite is an effective pathway to engineer converse ME coupling through optimizations of magnetic shape anisotropy and interfacial strain transfer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fellers, R.S.; Braly, L.B.; Saykally, R.J.
The SWPS method is improved by the addition of H.E.G. contractions for generating a more compact basis. An error in the definition of the internal fragment axis system used in our previous calculation is described and corrected. Fully coupled 6D (rigid monomers) VRT states are computed for several new water dimer potential surfaces and compared with experiment and our earlier SWPS results. This work sets the stage for refinement of such potential surfaces via regression analysis of VRT spectroscopic data. {copyright} {ital 1999 American Institute of Physics.}
Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Y., E-mail: ybao@sjtu.edu.cn; Department of Aeronautics, Imperial College London, South Kensington Campus, London; Palacios, R., E-mail: r.palacios@imperial.ac.uk
2016-09-15
We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural modelmore » of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip–structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.« less
NASA Astrophysics Data System (ADS)
Wan, Tian
This work is motivated by the lack of fully coupled computational tool that solves successfully the turbulent chemically reacting Navier-Stokes equation, the electron energy conservation equation and the electric current Poisson equation. In the present work, the abovementioned equations are solved in a fully coupled manner using fully implicit parallel GMRES methods. The system of Navier-Stokes equations are solved using a GMRES method with combined Schwarz and ILU(0) preconditioners. The electron energy equation and the electric current Poisson equation are solved using a GMRES method with combined SOR and Jacobi preconditioners. The fully coupled method has also been implemented successfully in an unstructured solver, US3D, and convergence test results were presented. This new method is shown two to five times faster than the original DPLR method. The Poisson solver is validated with analytic test problems. Then, four problems are selected; two of them are computed to explore the possibility of onboard MHD control and power generation, and the other two are simulation of experiments. First, the possibility of onboard reentry shock control by a magnetic field is explored. As part of a previous project, MHD power generation onboard a re-entry vehicle is also simulated. Then, the MHD acceleration experiments conducted at NASA Ames research center are simulated. Lastly, the MHD power generation experiments known as the HVEPS project are simulated. For code validation, the scramjet experiments at University of Queensland are simulated first. The generator section of the HVEPS test facility is computed then. The main conclusion is that the computational tool is accurate for different types of problems and flow conditions, and its accuracy and efficiency are necessary when the flow complexity increases.
Isotope Induced Proton Ordering in Partially Deuterated Aspirin
NASA Astrophysics Data System (ADS)
Schiebel, P.; Papoular, R. J.; Paulus, W.; Zimmermann, H.; Detken, A.; Haeberlen, U.; Prandl, W.
1999-08-01
We report the nuclear density distribution of partially deuterated aspirin, C8H5O4-CH2D, at 300 and 15 K, as determined by neutron diffraction coupled with maximum entropy method image reconstruction. While fully protonated and fully deuterated methyl groups in aspirin are delocalized at low temperatures due to quantum mechanical tunneling, we provide here direct evidence that in aspirin- CH2D at 15 K the methyl hydrogens are localized, while randomly distributed over three sites at 300 K. This is the first observation by diffraction methods of low-temperature isotopic ordering in condensed matter.
Effects of Variable Eccentricity on the Climate of an Earth-like World
NASA Astrophysics Data System (ADS)
Way, M. J.; Georgakarakos, Nikolaos
2017-01-01
The Kepler era of exoplanetary discovery has presented the astronomical community with a cornucopia of planetary systems that are very different from the one that we inhabit. It has long been known that Jupiter plays a major role in the orbital parameters of Mars and its climate, but there is also a long-standing belief that Jupiter would play a similar role for Earth if not for the Moon. Using a three-dimensional general circulation model (3D GCM) with a fully coupled ocean, we simulate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earth’s orbit. We investigate two scenarios that involve the evolution of the Earth-like planet’s orbital eccentricity from 0 to 0.283 over 6500 years, and from 0 to 0.066 on a timescale of 4500 years. In both cases we discover that they would maintain relatively temperate climates over the timescales simulated. More Earth-like planets in multi-planet systems will be discovered as we continue to survey the skies and the results herein show that the proximity of large gas giant planets may play an important role in the habitability of these worlds. These are the first such 3D GCM simulations using a fully coupled ocean with a planetary orbit that evolves over time due to the presence of a giant planet.
NASA Astrophysics Data System (ADS)
Tsuji, Takeshi; Minato, Shohei; Kamei, Rie; Tsuru, Tetsuro; Kimura, Gaku
2017-11-01
We used recent seismic data and advanced techniques to investigate 3D fault geometry over the transition from the partially coupled to the fully coupled plate interface inboard of the Nankai Trough off the Kii Peninsula, Japan. We found that a gently dipping plate boundary décollement with a thick underthrust layer extends beneath the entire Kumano forearc basin. The 1 April 2016 Off-Mie earthquake (Mw6.0) and its aftershocks occurred, where the plate boundary décollement steps down close to the oceanic crust surface. This location also lies beneath the trenchward edge of an older accretionary prism (∼14 Ma) developed along the coast of the Kii peninsula. The strike of the 2016 rupture plane was similar to that of a formerly active splay fault system in the accretionary prism. Thus, the fault planes of the 2016 earthquake and its aftershocks were influenced by the geometry of the plate interface as well as splay faulting. The 2016 earthquake occurred within the rupture area of large interplate earthquakes such as the 1944 Tonankai earthquake (Mw8.1), although the 2016 rupture area was much smaller than that of the 1944 event. Whereas the hypocenter of the 2016 earthquake was around the underplating sequence beneath the younger accretionary prism (∼6 Ma), the 1944 great earthquake hypocenter was close to oceanic crust surface beneath the older accretionary prism. The variation of fault geometry and lithology may influence the degree of coupling along the plate interface, and such coupling variation could hinder slip propagation toward the deeper plate interface in the 2016 event.
NASA Astrophysics Data System (ADS)
Lin, Y.; Wang, X.; Fok, M. C. H.; Buzulukova, N.; Perez, J. D.; Chen, L. J.
2017-12-01
The interaction between the Earth's inner and outer magnetospheric regions associated with the tail fast flows is calculated by coupling the Auburn 3-D global hybrid simulation code (ANGIE3D) to the Comprehensive Inner Magnetosphere/Ionosphere (CIMI) model. The global hybrid code solves fully kinetic equations governing the ions and a fluid model for electrons in the self-consistent electromagnetic field of the dayside and night side outer magnetosphere. In the integrated computation model, the hybrid simulation provides the CIMI model with field data in the CIMI 3-D domain and particle data at its boundary, and the transport in the inner magnetosphere is calculated by the CIMI model. By joining the two existing codes, effects of the solar wind on particle transport through the outer magnetosphere into the inner magnetosphere are investigated. Our simulation shows that fast flows and flux ropes are localized transients in the magnetotail plasma sheet and their overall structures have a dawn-dusk asymmetry. Strong perpendicular ion heating is found at the fast flow braking, which affects the earthward transport of entropy-depleted bubbles. We report on the impacts from the temperature anisotropy and non-Maxwellian ion distributions associated with the fast flows on the ring current and the convection electric field.
Exploring the Inner Edge of the Habitable Zone with Fully Coupled Oceans
NASA Astrophysics Data System (ADS)
Way, M.; Del Genio, A. D.; Kiang, N. Y.; Kelley, M.; Aleinov, I. D.; Clune, T.; Puma, M. J.
2015-12-01
Rotation in planetary atmospheres plays an important role inregulating atmospheric and oceanic heat flow, cloud formation and precipitation.Using the Goddard Institute for Space Studies (GISS) three dimensional GeneralCirculation Model (3D-GCM) we demonstrate how varying rotation rate andincreasing the incident solar flux on a planet are related to each other and mayallow the inner edge of the habitable zone to be much closer than many previoushabitable zone studies have indicated. This is shown in particular for fullycoupled ocean runs over a large range of insolation and rotation rates.Results with a 100m mixed layer depth and our fully coupled ocean runs arecompared with those of Yang et al. 2014, which demonstrates consistencyacross models. However, there are clear differences for rotations rates of 1-16xpresent earth day lengths between the mixed layer and fully coupled ocean models,which points to the necessity of using fully coupled oceans whenever possible.The latter was recently demonstrated quite clearly by Hu & Yang 2014 in theiraquaplanet study with a fully coupled ocean when compared with similar mixedlayer ocean studies and by Cullum et al. 2014. Atmospheric constituent amounts were also varied alongside adjustments to cloudparameterizations. While the latter have an effect on what a planet's global meantemperature is once the oceans reach equilibrium they donot qualitatively change the overall relationship between the globally averagedsurface temperature and incident solar flux for rotation rates ranging from 1to 256 times the present Earth day length. At the same time this studydemonstrates that given the lack of knowledge about the atmospheric constituentsand clouds on exoplanets there is still a large uncertainty as to where a planetwill sit in a given star's habitable zone. We also explore options for understanding the possibility for regional habitabilityvia an aridity index and a separate moisture index. The former is related to the competitionbetween precipitation and the potential evapotranpiration of the soil (via a modifiedPenman-Monteith equation) while the latter is a measure of the amount of liquid water foundon land. Cullum, Stevens & Joshi 2014, Astrobiology, vol 14, No. 8, pg 645 Hu & Yang 2014, PNAS, 111, 629 Yang, Cowan & Abbot 2013, ApJL, 771, 45 Yang et al. 2014, ApJL, 787, 2
Charge Exchange in Slow Collisions of O+ with He
NASA Astrophysics Data System (ADS)
Zhao, L. B.; Joseph, D. C.; Saha, B. C.; Lebermann, H. P.; Funke, P.; Buenker, R. J.
2009-03-01
A comparative study is reported for the charge transfer in collisions of O^+ with He using the fully quantal and semiclassical molecular-orbital close-coupling (MOCC) approaches in the adiabatic representation. The electron capture processes O^+(^4S^o, ^2D^o, ^2P^o) + He -> O(^3P) + He^+ are recalculated. The semiclassical MOCC approach was examined by a detailed comparision of cross sections and transition probabilities from both the fully quantal and semiclassical MOCC approaches. The discrepancies reported previously between the semiclassical and the quantal MOCC cross sections may be attributed due to the insufficient step-size resolution of the semiclassical calculations. Our results are also compared with the experimental cross sections and found good agreements. This work is supported by NSF, CREST program (Grant#0630370).
Yang, Min; Sun, Peide; Wang, Ruyi; Han, Jingyi; Wang, Jianqiao; Song, Yingqi; Cai, Jing; Tang, Xiudi
2013-09-01
An optimal operating condition for ammonia removal at low temperature, based on fully coupled activated sludge model (FCASM), was determined in a full-scale oxidation ditch process wastewater treatment plant (WWTP). The FCASM-based mechanisms model was calibrated and validated with the data measured on site. Several important kinetic parameters of the modified model were tested through respirometry experiment. Validated model was used to evaluate the relationship between ammonia removal and operating parameters, such as temperature (T), dissolved oxygen (DO), solid retention time (SRT) and hydraulic retention time of oxidation ditch (HRT). The simulated results showed that low temperature have a negative effect on the ammonia removal. Through orthogonal simulation tests of the last three factors and combination with the analysis of variance, the optimal operating mode acquired of DO, SRT, HRT for the WWTP at low temperature were 3.5 mg L(-1), 15 d and 14 h, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
A model for helicopter guidance on spiral trajectories
NASA Technical Reports Server (NTRS)
Mendenhall, S.; Slater, G. L.
1980-01-01
A point mass model is developed for helicopter guidance on spiral trajectories. A fully coupled set of state equations is developed and perturbation equations suitable for 3-D and 4-D guidance are derived and shown to be amenable to conventional state variable feedback methods. Control variables are chosen to be the magnitude and orientation of the net rotor thrust. Using these variables reference controls for nonlevel accelerating trajectories are easily determined. The effects of constant wind are shown to require significant feedforward correction to some of the reference controls and to the time. Although not easily measured themselves, the controls variables chosen are shown to be easily related to the physical variables available in the cockpit.
NASA Astrophysics Data System (ADS)
Destefano, Anthony; Heerikhuisen, Jacob
2015-04-01
Fully 3D particle simulations can be a computationally and memory expensive task, especially when high resolution grid cells are required. The problem becomes further complicated when parallelization is needed. In this work we focus on computational methods to solve these difficulties. Hilbert curves are used to map the 3D particle space to the 1D contiguous memory space. This method of organization allows for minimized cache misses on the GPU as well as a sorted structure that is equivalent to an octal tree data structure. This type of sorted structure is attractive for uses in adaptive mesh implementations due to the logarithm search time. Implementations using the Message Passing Interface (MPI) library and NVIDIA's parallel computing platform CUDA will be compared, as MPI is commonly used on server nodes with many CPU's. We will also compare static grid structures with those of adaptive mesh structures. The physical test bed will be simulating heavy interstellar atoms interacting with a background plasma, the heliosphere, simulated from fully consistent coupled MHD/kinetic particle code. It is known that charge exchange is an important factor in space plasmas, specifically it modifies the structure of the heliosphere itself. We would like to thank the Alabama Supercomputer Authority for the use of their computational resources.
Scalar transport in inline mixers with spatially periodic flows
NASA Astrophysics Data System (ADS)
Baskan, Ozge; Rajaei, Hadi; Speetjens, Michel F. M.; Clercx, Herman J. H.
2017-01-01
Spatially persisting patterns form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of stretching and folding mechanisms of the flow field. This has been investigated in many computational and theoretical studies of 2D time-periodic and 3D spatially periodic flow fields. However, experimental studies, to date, have mainly focused on flow visualization with streaks of dye rather than fully 3D scalar field measurements. Our study employs 3D particle tracking velocimetry and 3D laser-induced fluorescence to analyze the evolution of 3D flow and scalar fields and the correlation between the coherent flow/scalar field structures in a representative inline mixer, the Quatro static mixer. For this purpose an experimental setup that consists of an optically accessible test section with transparent internal elements accommodating a pressure-driven pipe flow has been built. The flow and scalar fields clearly underline the complementarity of the experimental results with numerical simulations and provide validation of the periodicity assumption needed in numerical studies. The experimental procedure employed in this investigation, which allows studying the scalar transport in the advective limit, demonstrates the suitability of the present method for exploratory mixing studies of a variety of mixing devices, beyond the Quatro static mixer.
Novel spot size converter for coupling standard single mode fibers to SOI waveguides
NASA Astrophysics Data System (ADS)
Sisto, Marco Michele; Fisette, Bruno; Paultre, Jacques-Edmond; Paquet, Alex; Desroches, Yan
2016-03-01
We have designed and numerically simulated a novel spot size converter for coupling standard single mode fibers with 10.4μm mode field diameter to 500nm × 220nm SOI waveguides. Simulations based on the eigenmode expansion method show a coupling loss of 0.4dB at 1550nm for the TE mode at perfect alignment. The alignment tolerance on the plane normal to the fiber axis is evaluated at +/-2.2μm for <=1dB excess loss, which is comparable to the alignment tolerance between two butt-coupled standard single mode fibers. The converter is based on a cross-like arrangement of SiOxNy waveguides immersed in a 12μm-thick SiO2 cladding region deposited on top of the SOI chip. The waveguides are designed to collectively support a single degenerate mode for TE and TM polarizations. This guided mode features a large overlap to the LP01 mode of standard telecom fibers. Along the spot size converter length (450μm), the mode is first gradually confined in a single SiOxNy waveguide by tapering its width. Then, the mode is adiabatically coupled to a SOI waveguide underneath the structure through a SOI inverted taper. The shapes of SiOxNy and SOI tapers are optimized to minimize coupling loss and structure length, and to ensure adiabatic mode evolution along the structure, thus improving the design robustness to fabrication process errors. A tolerance analysis based on conservative microfabrication capabilities suggests that coupling loss penalty from fabrication errors can be maintained below 0.3dB. The proposed spot size converter is fully compliant to industry standard microfabrication processes available at INO.
NASA Astrophysics Data System (ADS)
Hu, Jianbo; Igarashi, Kyushiro; Sasagawa, Takao; Nakamura, Kazutaka G.; Misochko, Oleg V.
2018-01-01
Fully symmetric A1g phonons are expected to play a dominant role in electron scattering in strong topological insulators (TIs), thus limiting the ballistic transport of future electronic devices. Here, we report on femtosecond time-resolved observation of a pair of A1g coherent phonons and their optical control in two strong 3D TIs, Bi2Te3 and Bi2Se3, by using a second pump pulse in ultrafast spectroscopy measurements. Along with well-defined phonon properties such as frequency and lifetime, an obvious phonon chirp has been observed, implying a strong coupling between photo-carriers and lattices. The coherent phonon manipulation, on the other hand, allows us to change the phonon amplitude selectively but does not affect either the frequency or coherence lifetime of the chosen mode.
The Sedimentation of Particles under Orthogonal Shear in Viscoelastic Fluids
NASA Astrophysics Data System (ADS)
Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.
2016-11-01
Many engineering applications, including oil and gas recovery, require the suspension of particles in viscoelastic fluids during fluid transport and processing. A topic of specific importance involves such particle suspensions experiencing an applied shear flow in a direction perpendicular to gravity (referred to as orthogonal shear). Previously, it has been shown that particle sedimentation coupled with an orthogonal shear flow can reduce the particle settling rate in elastic fluids. The underlying mechanism of this enhanced coupling drag is not fully understood, particularly at finite Weissenberg numbers. This talk examines the role of fluid elasticity on a single, non-Brownian, rigid sphere settling in orthogonal shear using experiments and numerical simulations. New experiments were performed in a Taylor-Couette flow cell using Boger fluids to study the coupling drag as a function of the shear and sedimentation Weissenberg numbers as well as particle confinement. The elastic effect was also studied with fully 3D simulations of flow past a rigid sphere, using the FENE-P constitutive model to describe the polymeric fluid rheology. These simulations show good agreement with the experiments and allow for further insight into the mechanism of elasticity-enhanced drag. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship.
NASA Astrophysics Data System (ADS)
Drummond, B.; Mayne, N. J.; Manners, J.; Carter, A. L.; Boutle, I. A.; Baraffe, I.; Hébrard, É.; Tremblin, P.; Sing, D. K.; Amundsen, D. S.; Acreman, D.
2018-03-01
We present a study of the effect of wind-driven advection on the chemical composition of hot-Jupiter atmospheres using a fully consistent 3D hydrodynamics, chemistry, and radiative transfer code, the Met Office Unified Model (UM). Chemical modeling of exoplanet atmospheres has primarily been restricted to 1D models that cannot account for 3D dynamical processes. In this work, we couple a chemical relaxation scheme to the UM to account for the chemical interconversion of methane and carbon monoxide. This is done consistently with the radiative transfer meaning that departures from chemical equilibrium are included in the heating rates (and emission) and hence complete the feedback between the dynamics, thermal structure, and chemical composition. In this Letter, we simulate the well studied atmosphere of HD 209458b. We find that the combined effect of horizontal and vertical advection leads to an increase in the methane abundance by several orders of magnitude, which is directly opposite to the trend found in previous works. Our results demonstrate the need to include 3D effects when considering the chemistry of hot-Jupiter atmospheres. We calculate transmission and emission spectra, as well as the emission phase curve, from our simulations. We conclude that gas-phase nonequilibrium chemistry is unlikely to explain the model–observation discrepancy in the 4.5 μm Spitzer/IRAC channel. However, we highlight other spectral regions, observable with the James Webb Space Telescope, where signatures of wind-driven chemistry are more prominant.
Hajiri, T; Yoshida, T; Filianina, M; Jaiswal, S; Borie, B; Asano, H; Zabel, H; Kläui, M
2017-12-05
We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45° period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co 3 FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies.
NASA Astrophysics Data System (ADS)
Hajiri, T.; Yoshida, T.; Filianina, M.; Jaiswal, S.; Borie, B.; Asano, H.; Zabel, H.; Kläui, M.
2018-01-01
We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45° period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co3FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies.
Using a 3D profiler and infrared camera to monitor oven loading in fully cooked meat operations
NASA Astrophysics Data System (ADS)
Stewart, John; Giorges, Aklilu
2009-05-01
Ensuring meat is fully cooked is an important food safety issue for operations that produce "ready to eat" products. In order to kill harmful pathogens like Salmonella, all of the product must reach a minimum threshold temperature. Producers typically overcook the majority of the product to ensure meat in the most difficult scenario reaches the desired temperature. A difficult scenario can be caused by an especially thick piece of meat or by a surge of product into the process. Overcooking wastes energy, degrades product quality, lowers the maximum throughput rate of the production line and decreases product yield. At typical production rates of 6000lbs/hour, these losses from overcooking can have a significant cost impact on producers. A wide area 3D camera coupled with a thermal camera was used to measure the thermal mass variability of chicken breasts in a cooking process. Several types of variability are considered including time varying thermal mass (mass x temperature / time), variation in individual product geometry and variation in product temperature. The automatic identification of product arrangement issues that affect cooking such as overlapping product and folded products is also addressed. A thermal model is used along with individual product geometry and oven cook profiles to predict the percentage of product that will be overcooked and to identify products that may not fully cook in a given process.
3D Simulation of Multiple Simultaneous Hydraulic Fractures with Different Initial Lengths in Rock
NASA Astrophysics Data System (ADS)
Tang, X.; Rayudu, N. M.; Singh, G.
2017-12-01
Hydraulic fracturing is widely used technique for extracting shale gas. During this process, fractures with various initial lengths are induced in rock mass with hydraulic pressure. Understanding the mechanism of propagation and interaction between these induced hydraulic cracks is critical for optimizing the fracking process. In this work, numerical results are presented for investigating the effect of in-situ parameters and fluid properties on growth and interaction of multi simultaneous hydraulic fractures. A fully coupled 3D fracture simulator, TOUGH- GFEM is used for simulating the effect of different vital parameters, including in-situ stress, initial fracture length, fracture spacing, fluid viscosity and flow rate on induced hydraulic fractures growth. This TOUGH-GFEM simulator is based on 3D finite volume method (FVM) and partition of unity element method (PUM). Displacement correlation method (DCM) is used for calculating multi - mode (Mode I, II, III) stress intensity factors. Maximum principal stress criteria is used for crack propagation. Key words: hydraulic fracturing, TOUGH, partition of unity element method , displacement correlation method, 3D fracturing simulator
NASA Astrophysics Data System (ADS)
Hajiri, T.; Yoshida, T.; Jaiswal, S.; Filianina, M.; Borie, B.; Ando, H.; Asano, H.; Zabel, H.; Kläui, M.
2016-11-01
We report unusual magnetization switching processes and angular-dependent exchange bias effects in fully epitaxial Co3FeN /MnN bilayers, where magnetocrystalline anisotropy and exchange coupling compete, probed by longitudinal and transverse magneto-optic Kerr effect (MOKE) magnetometry. The MOKE loops show multistep jumps corresponding to the nucleation and propagation of 90∘ domain walls in as-grown bilayers. By inducing exchange coupling, we confirm changes of the magnetization switching process due to the unidirectional anisotropy field of the exchange coupling. Taking into account the experimentally obtained values of the fourfold magnetocrystalline anisotropy, the unidirectional anisotropy field, the exchange-coupling constant, and the uniaxial anisotropy including its direction, the calculated angular-dependent exchange bias reproduces the experimental results. These results demonstrate the essential role of the competition between magnetocrystalline anisotropy and exchange coupling for understanding and tailoring exchange-coupling phenomena usable for engineering switching in fully epitaxial bilayers made of tailored materials.
Qi, Lian-Wen; Yu, Qing-Tao; Li, Ping; Li, Song-Lin; Wang, Yu-Xia; Sheng, Liang-Hong; Yi, Ling
2006-11-17
A method, high-performance liquid chromatography coupled with diode array and evaporative light scattering detectors (HPLC-DAD-ELSD), was developed to evaluate the quality of Radix Astragali through a simultaneous determination of six major active isoflavonoids and four main saponins. The wavelength at 280 nm was chosen to determine six isoflavonoids: calycosin-7-O-beta-D-glucoside (1), ononin (2), (6alphaR, 11alphaR)-9,10-dimethoxypterocarpan-3-O-beta-D-glucoside (3), (3R)-2'-hydroxy-3',4'-dimethoxyisoflavan-7-O-beta-D-glucoside (4), calycosin (5), and formononetin (6); and ELSD connected after DAD was employed to determine four saponins: astragaloside IV (7), astragaloside II (8), astragaloside I (9), and acetylastragaloside I (10). This assay was fully validated with respect to precision, repeatability and accuracy. The proposed method was successfully applied to quantify the ten components in eleven samples from different localities in China; significant variations were demonstrated in the content of these compounds in the samples from different areas. This simple, rapid, low-cost and reliable HPLC-DAD-ELSD method is suitable for routine quantitative analysis and quality control of traditional Chinese medicines (TCMs) consisting of bioactive multi-components with different structures such as Radix Astragali.
Helical core reconstruction of a DIII-D hybrid scenario tokamak discharge
Cianciosa, Mark; Wingen, Andreas; Hirshman, Steven P.; ...
2017-05-18
Our paper presents the first fully 3-dimensional (3D) equilibrium reconstruction of a helical core in a tokamak device. Using a new parallel implementation of the Variational Moments Equilibrium Code (PARVMEC) coupled to V3FIT, 3D reconstructions can be performed at resolutions necessary to produce helical states in nominally axisymmetric tokamak equilibria. In a flux pumping experiment performed on DIII-D, an external n=1 field was applied while a 3/2 neoclassical tearing mode was suppressed using ECCD. The externally applied field was rotated past a set of fixed diagnostics at a 20 Hz frequency. Furthermore, the modulation, were found to be strongest in the core SXR and MSE channels, indicates a localized rotating 3D structure locked in phase with the applied field. Signals from multiple time slices are converted to a virtual rotation of modeled diagnostics adding 3D signal information. In starting from an axisymmetric equilibrium reconstruction solution, the reconstructed broader current profile flattens the q-profile, resulting in an m=1, n=1 perturbation of the magnetic axis that ismore » $$\\sim 50\\times $$ larger than the applied n=1 deformation of the edge. Error propagation confirms that the displacement of the axis is much larger than the uncertainty in the axis position validating the helical equilibrium.« less
Helical core reconstruction of a DIII-D hybrid scenario tokamak discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cianciosa, Mark; Wingen, Andreas; Hirshman, Steven P.
Our paper presents the first fully 3-dimensional (3D) equilibrium reconstruction of a helical core in a tokamak device. Using a new parallel implementation of the Variational Moments Equilibrium Code (PARVMEC) coupled to V3FIT, 3D reconstructions can be performed at resolutions necessary to produce helical states in nominally axisymmetric tokamak equilibria. In a flux pumping experiment performed on DIII-D, an external n=1 field was applied while a 3/2 neoclassical tearing mode was suppressed using ECCD. The externally applied field was rotated past a set of fixed diagnostics at a 20 Hz frequency. Furthermore, the modulation, were found to be strongest in the core SXR and MSE channels, indicates a localized rotating 3D structure locked in phase with the applied field. Signals from multiple time slices are converted to a virtual rotation of modeled diagnostics adding 3D signal information. In starting from an axisymmetric equilibrium reconstruction solution, the reconstructed broader current profile flattens the q-profile, resulting in an m=1, n=1 perturbation of the magnetic axis that ismore » $$\\sim 50\\times $$ larger than the applied n=1 deformation of the edge. Error propagation confirms that the displacement of the axis is much larger than the uncertainty in the axis position validating the helical equilibrium.« less
Verification and Validation of COAMPS: Results from a Fully-Coupled Air/Sea/Wave Modeling System
NASA Astrophysics Data System (ADS)
Smith, T.; Allard, R. A.; Campbell, T. J.; Chu, Y. P.; Dykes, J.; Zamudio, L.; Chen, S.; Gabersek, S.
2016-02-01
The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) is a state-of-the art, fully-coupled air/sea/wave modeling system that is currently being validated for operational transition to both the Naval Oceanographic Office (NAVO) and to the Fleet Numerical Meteorology and Oceanography Center (FNMOC). COAMPS is run at the Department of Defense Supercomputing Resource Center (DSRC) operated by the DoD High Performance Computing Modernization Program (HPCMP). A total of four models including the Naval Coastal Ocean Model (NCOM), Simulating Waves Nearshore (SWAN), WaveWatch III, and the COAMPS atmospheric model are coupled through both the Earth System Modeling Framework (ESMF). Results from regions of naval operational interests, including the Western Atlantic (U.S. East Coast), RIMPAC (Hawaii), and DYNAMO (Indian Ocean), will show the advantages of utilizing a coupled modeling system versus an uncoupled or stand alone model. Statistical analyses, which include model/observation comparisons, will be presented in the form of operationally approved scorecards for both the atmospheric and oceanic output. Also, computational logistics involving the HPC resources for the COAMPS simulations will be shown.
Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon
Burckel, D. Bruce; Resnick, Paul J.; Finnegan, Patrick S.; ...
2015-01-01
A complementary metal oxide semiconductor (CMOS) compatible version of membrane projection lithography (MPL) for fabrication of micrometer-scale three-dimensional structures is presented. The approach uses all inorganic materials and standard CMOS processing equipment. In a single layer, MPL is capable of creating all 5 2D-Bravais lattices. Furthermore, standard semiconductor processing steps can be used in a layer-by-layer approach to create fully three dimensional structures with any of the 14 3D-Bravais lattices. The unit cell basis is determined by the projection of the membrane pattern, with many degrees of freedom for defining functional inclusions. Here we demonstrate several unique structural motifs, andmore » characterize 2D arrays of unit cells with split ring resonators in a silicon matrix. The structures exhibit strong polarization dependent resonances and, for properly oriented split ring resonators (SRRs), coupling to the magnetic field of a normally incident transverse electromagnetic wave, a response unique to 3D inclusions.« less
A Computer Code for Fully-Coupled Rocket Nozzle Flows (FULLNOZ)
1975-04-01
surface (i.e. each integration It would be useful to incorporate an "initializing" scheme which utilizes comb tstion chamber properties as initial...density is greater than the critical electron density. (During the initial stages of the expansion process , where particle tempera- tures are very high it...34iW to19Cs*4909too xs *d99$900 wool ?* 0. SeFC16, .t) .6?900 1, 3x *,30?%I0 to 41,171 0I. 9"CI ,."v *?’o.9 A3 qhbs99r.oo, v.U118 0.1 ,t It Od Cs Sol-C
Real-time synthetic vision cockpit display for general aviation
NASA Astrophysics Data System (ADS)
Hansen, Andrew J.; Smith, W. Garth; Rybacki, Richard M.
1999-07-01
Low cost, high performance graphics solutions based on PC hardware platforms are now capable of rendering synthetic vision of a pilot's out-the-window view during all phases of flight. When coupled to a GPS navigation payload the virtual image can be fully correlated to the physical world. In particular, differential GPS services such as the Wide Area Augmentation System WAAS will provide all aviation users with highly accurate 3D navigation. As well, short baseline GPS attitude systems are becoming a viable and inexpensive solution. A glass cockpit display rendering geographically specific imagery draped terrain in real-time can be coupled with high accuracy (7m 95% positioning, sub degree pointing), high integrity (99.99999% position error bound) differential GPS navigation/attitude solutions to provide both situational awareness and 3D guidance to (auto) pilots throughout en route, terminal area, and precision approach phases of flight. This paper describes the technical issues addressed when coupling GPS and glass cockpit displays including the navigation/display interface, real-time 60 Hz rendering of terrain with multiple levels of detail under demand paging, and construction of verified terrain databases draped with geographically specific satellite imagery. Further, on-board recordings of the navigation solution and the cockpit display provide a replay facility for post-flight simulation based on live landings as well as synchronized multiple display channels with different views from the same flight. PC-based solutions which integrate GPS navigation and attitude determination with 3D visualization provide the aviation community, and general aviation in particular, with low cost high performance guidance and situational awareness in all phases of flight.
NASA Technical Reports Server (NTRS)
Hasanyan, Davresh; Librescu, Liviu; Qin, Zhanming; Ambur, Damodar R.
2006-01-01
A fully coupled magneto-thermo-elastokinetic model of laminated composite, finitely electroconductive plates incorporating geometrical nonlinearities and subjected to a combination of magnetic and thermal fields, as well as carrying an electrical current is developed, In this context. the first-order transversely shearable plate theory in conjunction with von-Karman geometrically nonlinear strain concept is adopted. Related to the distribution of electric and magnetic field disturbances within the plate, the assumptions proposed by Ambartsumyan and his collaborators are adopted. Based on the electromagnetic equations (i.e. the ones by Faraday, Ampere, Ohm, Maxwell and Lorentz), the modified Fourier's law of heat conduction and on the elastokinetic field equations, the 3-D coupled problem is reduced to an equivalent 2- D one. The theory developed herein provides a foundation for the investigation, both analytical and numerical, of the interacting effects among the magnetic, thermal and elastic fields in multi-layered thin plates made of anisotropic materials.
NASA Astrophysics Data System (ADS)
Sacher, Wesley David
Photonic integrated circuits implemented on silicon (Si) hold the potential for densely integrated electro-optic and passive devices manufactured by the high-volume fabrication and sophisticated assembly processes used for complementary metal-oxide-semiconductor (CMOS) electronics. However, high index contrast Si photonics has a number of functional limitations. In this thesis, several devices are proposed, designed, and experimentally demonstrated to overcome challenges in the areas of resonant modulation, waveguide loss, fiber-to-chip coupling, and polarization control. The devices were fabricated using foundry services at IBM and A*STAR Institute of Microelectronics (IME). First, we describe coupling modulated microrings, in which the coupler between a microring and the bus waveguide is modulated. The device circumvents the modulation bandwidth vs. resonator linewidth trade-off of conventional intracavity modulated microrings. We demonstrate a Si coupling modulated microring with a small-signal modulation response free of the parasitic resonator linewidth limitations at frequencies up to about 6x the linewidth. Comparisons of eye diagrams show that coupling modulation achieved data rates > 2x the rate attainable with intracavity modulation. Second, we demonstrate a silicon nitride (Si3N4)-on-Si photonic platform with independent Si3N4 and Si waveguides and taper transitions to couple light between the layers. The platform combines the excellent passive waveguide properties of Si3N4 and the compatibility of Si waveguides with electro-optic devices. Within the platform, we propose and demonstrate dual-level, Si3N 4-on-Si, fiber-to-chip grating couplers that simultaneously have wide bandwidths and high coupling efficiencies. Conventional Si and Si3N 4 grating couplers suffer from a trade-off between bandwidth and coupling efficiency. The dual-level grating coupler achieved a peak coupling efficiency of -1.3 dB and a 1-dB bandwidth of 80 nm, a record for the coupling efficiency-bandwidth product. Finally, we describe polarization rotator-splitters and controllers based on mode conversion between the fundamental transverse magnetic polarized mode and a high order transverse electric polarized mode in vertically asymmetric waveguides. We demonstrate the first polarization rotator-splitters and controllers that are fully compatible with standard active Si photonic platforms and extend the concept to our Si3N4-on-Si photonic platform.
Aaland, Kristian
1983-01-01
A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.
Effects of Variable Eccentricity on the Climate of an Earth-Like World
NASA Technical Reports Server (NTRS)
Way, M. J.; Georgakarakos, Nikolaos
2017-01-01
The Kepler era of exoplanetary discovery has presented the Astronomical community with a cornucopia of planetary systems very different from the one which we inhabit. It has long been known that Jupiter plays a major role in the orbital parameters of Mars and its climate, but there is also a long-standing belief that Jupiter would play a similar role for Earth if not for its large moon. Using a three dimensional general circulation model (3-D GCM) with a fully-coupled ocean we simulate what would happen to the climate of an Earth-like world if Mars did not exist, but a Jupiter-like planet was much closer to Earths orbit. We investigate two scenarios that involve evolution of the Earth-like planets orbital eccentricity from 0 to 0.066 on a time scale of 4500 years, and from 0 to 0.283 over 6500 years. We discover that during most of the 6500 year scenario the planet would experience a moist greenhouse effect when near periastron. This could have implications for the ability of such a world to retain an ocean on time scales of 109 years. More Earth-like planets in multi-planet systems will be discovered as we continue to survey the skies and the results herein show that the proximity of large gas giant planets may play an important role in the habitabilty of these worlds. These are the first such 3-D GCM simulations using a fully-coupled ocean with a planetary orbit that evolves over time due to the presence of a giant planet.
Finite element modeling of a 3D coupled foot-boot model.
Qiu, Tian-Xia; Teo, Ee-Chon; Yan, Ya-Bo; Lei, Wei
2011-12-01
Increasingly, musculoskeletal models of the human body are used as powerful tools to study biological structures. The lower limb, and in particular the foot, is of interest because it is the primary physical interaction between the body and the environment during locomotion. The goal of this paper is to adopt the finite element (FE) modeling and analysis approaches to create a state-of-the-art 3D coupled foot-boot model for future studies on biomechanical investigation of stress injury mechanism, foot wear design and parachute landing fall simulation. In the modeling process, the foot-ankle model with lower leg was developed based on Computed Tomography (CT) images using ScanIP, Surfacer and ANSYS. Then, the boot was represented by assembling the FE models of upper, insole, midsole and outsole built based on the FE model of the foot-ankle, and finally the coupled foot-boot model was generated by putting together the models of the lower limb and boot. In this study, the FE model of foot and ankle was validated during balance standing. There was a good agreement in the overall patterns of predicted and measured plantar pressure distribution published in literature. The coupled foot-boot model will be fully validated in the subsequent works under both static and dynamic loading conditions for further studies on injuries investigation in military and sports, foot wear design and characteristics of parachute landing impact in military. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Garofalo, Andrea M.; Gong, Xianzu; Grierson, Brian A.; ...
2015-11-16
Recent EAST/DIII-D joint experiments on the high poloidal beta tokamak regime in DIII-D have demonstrated fully noninductive operation with an internal transport barrier (ITB) at large minor radius, at normalized fusion performance increased by ≥30% relative to earlier work. The advancement was enabled by improved understanding of the “relaxation oscillations”, previously attributed to repetitive ITB collapses, and of the fast ion behavior in this regime. It was found that the “relaxation oscillations” are coupled core-edge modes 2 amenable to wall-stabilization, and that fast ion losses which previously dictated a large plasma-wall separation to avoid wall over-heating, can be reduced tomore » classical levels with sufficient plasma density. By using optimized waveforms of the plasma-wall separation and plasma density, fully noninductive plasmas have been sustained for long durations with excellent energy confinement quality, bootstrap fraction ≥ 80%, β N ≤ 4 , β P ≥ 3 , and β T ≥ 2%. Finally, these results bolster the applicability of the high poloidal beta tokamak regime toward the realization of a steady-state fusion reactor.« less
Interface requirements to couple thermal-hydraulic codes to 3D neutronic codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langenbuch, S.; Austregesilo, H.; Velkov, K.
1997-07-01
The present situation of thermalhydraulics codes and 3D neutronics codes is briefly described and general considerations for coupling of these codes are discussed. Two different basic approaches of coupling are identified and their relative advantages and disadvantages are discussed. The implementation of the coupling for 3D neutronics codes in the system ATHLET is presented. Meanwhile, this interface is used for coupling three different 3D neutronics codes.
Exploring coupled 4D-Var data assimilation using an idealised atmosphere-ocean model
NASA Astrophysics Data System (ADS)
Smith, Polly; Fowler, Alison; Lawless, Amos; Haines, Keith
2014-05-01
The successful application of data assimilation techniques to operational numerical weather prediction and ocean forecasting systems has led to an increased interest in their use for the initialisation of coupled atmosphere-ocean models in prediction on seasonal to decadal timescales. Coupled data assimilation presents a significant challenge but offers a long list of potential benefits including improved use of near-surface observations, reduction of initialisation shocks in coupled forecasts, and generation of a consistent system state for the initialisation of coupled forecasts across all timescales. In this work we explore some of the fundamental questions in the design of coupled data assimilation systems within the context of an idealised one-dimensional coupled atmosphere-ocean model. The system is based on the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS) atmosphere model and a K-Profile Parameterisation (KKP) mixed layer ocean model developed by the National Centre for Atmospheric Science (NCAS) climate group at the University of Reading. It employs a strong constraint incremental 4D-Var scheme and is designed to enable the effective exploration of various approaches to performing coupled model data assimilation whilst avoiding many of the issues associated with more complex models. Working with this simple framework enables a greater range and quantity of experiments to be performed. Here, we will describe the development of our simplified single-column coupled atmosphere-ocean 4D-Var assimilation system and present preliminary results from a series of identical twin experiments devised to investigate and compare the behaviour and sensitivities of different coupled data assimilation methodologies. This includes comparing fully and weakly coupled assimilations with uncoupled assimilation, investigating whether coupled assimilation can eliminate or lessen initialisation shock in coupled model forecasts, and exploring the effect of the assimilation window length in coupled assimilations. These experiments will facilitate a greater theoretical understanding of the coupled atmosphere-ocean data assimilation problem and thus help guide the design and implementation of different coupling strategies within operational systems. This research is funded by the European Space Agency (ESA) and the UK Natural Environment Research Council (NERC). The ESA funded component is part of the Data Assimilation Projects - Coupled Model Data Assimilation initiative whose goal is to advance data assimilation techniques in fully coupled atmosphere-ocean models (see http://www.esa-da.org/). It is being conducted in parallel to the development of prototype weakly coupled data assimilation systems at both the UK Met Office and ECMWF.
A Numerical Multiscale Framework for Modeling Patient-Specific Coronary Artery Bypass Surgeries
NASA Astrophysics Data System (ADS)
Ramachandra, Abhay B.; Kahn, Andrew; Marsden, Alison
2014-11-01
Coronary artery bypass graft (CABG) surgery is performed to revascularize diseased coronary arteries, using arterial, venous or synthetic grafts. Vein grafts, used in more than 70% of procedures, have failure rates as high as 50% in less than 10 years. Hemodynamics is known to play a key role in the mechano-biological response of vein grafts, but current non-invasive imaging techniques cannot fully characterize the hemodynamic and biomechanical environment. We numerically compute hemodynamics and wall mechanics in patient-specific 3D CABG geometries using stabilized finite element methods. The 3D patient-specific domain is coupled to a 0D lumped parameter circulatory model and parameters are tuned to match patient-specific blood pressures, stroke volumes, heart rates and heuristic flow-split values. We quantify differences in hemodynamics between arterial and venous grafts and discuss possible correlations to graft failure. Extension to a deformable wall approximation will also be discussed. The quantification of wall mechanics and hemodynamics is a necessary step towards coupling continuum models in solid and fluid mechanics with the cellular and sub-cellular responses of grafts, which in turn, should lead to a more accurate prediction of the long term outcome of CABG surgeries, including predictions of growth and remodeling.
Reflectively Coupled Waveguide Photodetector for High Speed Optical Interconnection
Hsu*, Shih-Hsiang
2010-01-01
To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector’s planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520–1,550 nm wavelength range and the pass band was 1 nm at the −1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 27-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation. PMID:22163502
Analysis of Fully Polarimetric Laboratory Measurements Performed with the WISDOM Radar
NASA Astrophysics Data System (ADS)
Plettemeier, D.; Ciarletti, V.; Cais, P.; Benedix, W.-S.; Zhang, H.; Hamran, S.-E.; Clifford, S.
2012-04-01
The Ground Penetrating Radar WISDOM (Water Ice Subsurface Deposit Observation on Mars) is one of the instruments selected to be part of the Pasteur payload of ESA's ExoMars Rover mission. The main scientific objectives of the Pasteur payload are to search for evidence of past and present life on Mars and to characterize the nature of the shallow subsurface. WISDOM is capable to obtain subsurface information along the rover path and to explore the first 3 meters of the soil with a vertical resolution of a few centimeters. WISDOM will help identify the location of sedimentary layers, where organic molecules are most likely to be found. By investigating geometry, location and properties of buried reflectors, WISDOM will contribute to the understanding of the 3D geological structure, electromagnetic nature, and, possibly, the state of water and ice in the shallow subsurface. WISDOM measurements will be performed 1) by conducting periodic soundings along the Rover traverse, which will provide a coarse, non-uniform, but positionally well-determined investigation of the landing site and 2) by selected high-resolution surveys of areas of strong scientific interest, which are identified for potential investigation and sampling by the Rover's drill. Such surveys will generally be conducted by acquiring a number of closely spaced parallel profiles. Supported by specific hardware features, like the arrangement of the fully polarimetric antenna system, an interpolated 3-D subsurface map of the local stratigraphy can be constructed from these radar measurements. Laboratory measurements are performed on a planar scanner in the anechoic chamber to simulate the closely spaced parallel profiles of selected high-resolution surveys. To characterize the performance of the radar and to be able to analyze the influence of radiation coupling effects between the rover and the antennas, the fully polarimetric WISDOM antenna system was mounted on a simple rover-like mockup. Calibration algorithms were applied to reduce the interference from radiation coupling and cross-talk between transmitting and receiving antenna. The analysis of the laboratory measurement will show features of the fully polarimetric radar system and quantify most of the important performance parameters. Synthetic aperture processing is implemented to increase the azimuth resolution of radar. The three dimensional reconstruction of the positioning of an arrangement of discrete objects will be shown.
Liu, Yang; Shao, Shuguang; Song, Hanlin; Yao, Xueting; Liu, Jie; Liu, Hongzhong; Song, Ling; Jiang, Ji; Liu, Dongyang; Hu, Pei
2018-03-20
A specific and sensitive method was firstly developed using high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) to simultaneously quantify TPN729 and its metabolites (TPN729-D1, TPN729-D2, TPN729M15-3 and TPN729M3) in human plasma and (TPN729-D1, TPN729-D2, TPN729M15-3 and TPN729M14) in human urine. Protein precipitation and direct dilution were used to extract TPN729 and its metabolites from plasma and urine, respectively. Ionization of TPN729, TPN729-D1, TPN729-D2, TPN729M15-3, TPN729M3, TPN729M14 and sildenafil (internal standard, IS) was performed using an electrospray ionization (ESI) source in positive mode and detection was carried out with multiple reaction monitoring (MRM) mode. This assay method for TPN729 and its five metabolites has been fully validated in terms of sensitivity, linearity, lower limit of quantification (LLOQ), precision, accuracy, stability, matrix effect and recovery. The LLOQ of TPN729/TPN729-D1/TPN729-D2/TPN729M15-3/TPN729M3 in human plasma and TPN729/TPN729-D1/TPN729-D2/TPN729M15-3/TPN729M14 in human urine were 0.200/0.500/2.00/0.500/1.00 ng/mL and 4.00/2.50/10.0/2.50/1.00 ng/mL, respectively. Inter- and intra-batch precision of TPN729 and its metabolites were less than 15% and the accuracy was within ±15% for both plasma and urine. The extraction recoveries of all analytes at three concentration levels were consistent. In conclusion, the validation results showed that this method was robust, specific, and sensitive and it can successfully fulfill the requirement of clinical pharmacokinetic study of TPN729 in Chinese healthy subjects. Copyright © 2018 Elsevier B.V. All rights reserved.
Fully implicit moving mesh adaptive algorithm
NASA Astrophysics Data System (ADS)
Chacon, Luis
2005-10-01
In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. A crucial element is the development of an effective multilevel treatment of the grid equation.ootnotetextL. Chac'on, G. Lapenta, A fully implicit, nonlinear adaptive grid strategy, J. Comput. Phys., accepted (2005) We will show that such an approach is competitive vs. uniform grids both from the accuracy (due to adaptivity) and the efficiency standpoints. Results for a variety of models 1D and 2D geometries, including nonlinear diffusion, radiation-diffusion, Burgers equation, and gas dynamics will be presented.
Hajiri, Tetsuya; Yoshida, Takuya; Filianina, Mariia; Jaiswal, Samridh; Borie, Benjamin; Asano, H; Zabel, Hartmut; Klaui, Mathias
2017-11-20
We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45$^\\circ$ period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co$_3$FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies. © 2017 IOP Publishing Ltd.
First Test Of A New High Resolution Positron Camera With Four Area Detectors
NASA Astrophysics Data System (ADS)
van Laethem, E.; Kuijk, M.; Deconinck, Frank; van Miert, M.; Defrise, Michel; Townsend, D.; Wensveen, M.
1989-10-01
A PET camera consisting of two pairs of parallel area detectors has been installed at the cyclotron unit of VUB. The detectors are High Density Avalanche Chambers (HIDAC) wire-chambers with a stack of 4 or 6 lead gamma-electron converters, the sensitive area being 30 by 30 cm. The detectors are mounted on a commercial gantry allowing a 180 degree rotation during acquisition, as needed for a fully 3D image reconstruction. The camera has been interfaced to a token-ring computer network consisting of 5 workstations among which the various tasks (acquisition, reconstruction, display) can be distributed. Each coincident event is coded in 48 bits and is transmitted to the computer bus via a 512 kbytes dual ported buffer memory allowing data rates of up to 50 kHz. Fully 3D image reconstruction software has been developed, and includes new reconstruction algorithms allowing a better utilization of the available projection data. Preliminary measurements and imaging of phantoms and small animals (with 18FDG) have been performed with two of the four detectors mounted on the gantry. They indicate the expected 3D isotropic spatial resolution of 3.5 mm (FWHM, line source in air) and a sensitivity of 4 cps/μCi for a centred point source in air, corresponding to typical data rates of a few kHz. This latter figure is expected to improve by a factor of 4 after coupling of the second detector pair, since the coincidence sensitivity of this second detector pair is a factor 3 higher than that of the first one.
Vertically-Integrated Dual-Continuum Models for CO2 Injection in Fractured Aquifers
NASA Astrophysics Data System (ADS)
Tao, Y.; Guo, B.; Bandilla, K.; Celia, M. A.
2017-12-01
Injection of CO2 into a saline aquifer leads to a two-phase flow system, with supercritical CO2 and brine being the two fluid phases. Various modeling approaches, including fully three-dimensional (3D) models and vertical-equilibrium (VE) models, have been used to study the system. Almost all of that work has focused on unfractured formations. 3D models solve the governing equations in three dimensions and are applicable to generic geological formations. VE models assume rapid and complete buoyant segregation of the two fluid phases, resulting in vertical pressure equilibrium and allowing integration of the governing equations in the vertical dimension. This reduction in dimensionality makes VE models computationally more efficient, but the associated assumptions restrict the applicability of VE model to formations with moderate to high permeability. In this presentation, we extend the VE and 3D models for CO2 injection in fractured aquifers. This is done in the context of dual-continuum modeling, where the fractured formation is modeled as an overlap of two continuous domains, one representing the fractures and the other representing the rock matrix. Both domains are treated as porous media continua and can be modeled by either a VE or a 3D formulation. The transfer of fluid mass between rock matrix and fractures is represented by a mass transfer function connecting the two domains. We have developed a computational model that combines the VE and 3D models, where we use the VE model in the fractures, which typically have high permeability, and the 3D model in the less permeable rock matrix. A new mass transfer function is derived, which couples the VE and 3D models. The coupled VE-3D model can simulate CO2 injection and migration in fractured aquifers. Results from this model compare well with a full-3D model in which both the fractures and rock matrix are modeled with 3D models, with the hybrid VE-3D model having significantly reduced computational cost. In addition to the VE-3D model, we explore simplifications of the rock matrix domain by using sugar-cube and matchstick conceptualizations and develop VE-dual porosity and VE-matchstick models. These vertically-integrated dual-permeability and dual-porosity models provide a range of computationally efficient tools to model CO2 storage in fractured saline aquifers.
The thermochemical, two-phase dynamics of subduction zones: results from new, fully coupled models
NASA Astrophysics Data System (ADS)
Rees Jones, D. W.; Katz, R. F.; May, D.; Tian, M.; Rudge, J. F.
2017-12-01
Subduction zones are responsible for most of Earth's subaerial volcanism. However, previous geodynamic modelling of subduction zones has largely neglected magmatism. We previously showed that magmatism has a significant thermal impact, by advecting sensible heat into the lithosphere beneath arc volcanos [1]. Inclusion of this effect helps reconcile subduction zone models with petrological and heat flow observations. Many important questions remain, including how magma-mantle dynamics of subduction zones affects the position of arc volcanos and the character of their lavas. In this presentation, we employ a fully coupled, thermochemical, two-phase flow theory to investigate the dynamics of subduction zones. We present the first results from our new software (SubFUSc), which solves the coupled equations governing conservation of mass, momentum, energy and chemical species. The presence and migration of partial melts affect permeability and mantle viscosity (both directly and through their thermal impact); these, in turn, feed back on the magma-mantle flow. Thus our fully coupled modelling improves upon previous two-phase models that decoupled the governing equations and fixed the thermal structure [2]. To capture phase change, we use a novel, simplified model of the mantle melting in the presence of volatile species. As in the natural system, volatiles are associated with low-degree melting at temperatures beneath the anhydrous solidus; dehydration reactions in the slab supply volatiles into the wedge, triggering silicic melting. We simulate the migration of melts under buoyancy forces and dynamic pressure gradients. We thereby demonstrate the dynamical controls on the pattern of subduction-zone volcanism (particularly its location, magnitude, and chemical composition). We build on our previous study of the thermal consequences of magma genesis and segregation. We address the question of what controls the location of arc volcanoes themselves [3]. [1] Rees Jones, D. W., Katz, R. F., Tian, M and Rudge, J. F. (2017). Thermal impact of magmatism in subduction zones. arxiv.org/abs/1701.02550 [2] Wilson, C. R., Spiegelman, M., van Keken, P. E., & Hacker, B. R. (2014). EPSL, doi:10.1016/j.epsl.2014.05.052 [3] England, P. C., Katz, Richard F. (2010). Nature, doi:10.1038/nature09417
3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langenbuch, S.; Velkov, K.; Lizorkin, M.
1997-07-01
This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.
Viscous wing theory development. Volume 1: Analysis, method and results
NASA Technical Reports Server (NTRS)
Chow, R. R.; Melnik, R. E.; Marconi, F.; Steinhoff, J.
1986-01-01
Viscous transonic flows at large Reynolds numbers over 3-D wings were analyzed using a zonal viscid-inviscid interaction approach. A new numerical AFZ scheme was developed in conjunction with the finite volume formulation for the solution of the inviscid full-potential equation. A special far-field asymptotic boundary condition was developed and a second-order artificial viscosity included for an improved inviscid solution methodology. The integral method was used for the laminar/turbulent boundary layer and 3-D viscous wake calculation. The interaction calculation included the coupling conditions of the source flux due to the wing surface boundary layer, the flux jump due to the viscous wake, and the wake curvature effect. A method was also devised incorporating the 2-D trailing edge strong interaction solution for the normal pressure correction near the trailing edge region. A fully automated computer program was developed to perform the proposed method with one scalar version to be used on an IBM-3081 and two vectorized versions on Cray-1 and Cyber-205 computers.
A framework for discrete stochastic simulation on 3D moving boundary domains
Drawert, Brian; Hellander, Stefan; Trogdon, Michael; ...
2016-11-14
We have developed a method for modeling spatial stochastic biochemical reactions in complex, three-dimensional, and time-dependent domains using the reaction-diffusion master equation formalism. In particular, we look to address the fully coupled problems that arise in systems biology where the shape and mechanical properties of a cell are determined by the state of the biochemistry and vice versa. To validate our method and characterize the error involved, we compare our results for a carefully constructed test problem to those of a microscale implementation. Finally, we demonstrate the effectiveness of our method by simulating a model of polarization and shmoo formationmore » during the mating of yeast. The method is generally applicable to problems in systems biology where biochemistry and mechanics are coupled, and spatial stochastic effects are critical.« less
Approach to Modeling Boundary Layer Ingestion Using a Fully Coupled Propulsion-RANS Model
NASA Technical Reports Server (NTRS)
Gray, Justin S.; Mader, Charles A.; Kenway, Gaetan K. W.; Martins, Joaquim R. R. A.
2017-01-01
Airframe-propulsion integration concepts that use boundary layer ingestion have the potential to reduce aircraft fuel burn. One concept that has been recently explored is NASA's Starc-ABL aircraft configuration, which offers the potential for 12% mission fuel burn reduction by using a turbo-electric propulsion system with an aft-mounted electrically driven boundary layer ingestion propulsor. This large potential for improved performance motivates a more detailed study of the boundary layer ingestion propulsor design, but to date, analyses of boundary layer ingestion have used uncoupled methods. These methods account for only aerodynamic effects on the propulsion system or propulsion system effects on the aerodynamics, but not both simultaneously. This work presents a new approach for building fully coupled propulsive-aerodynamic models of boundary layer ingestion propulsion systems. A 1D thermodynamic cycle analysis is coupled to a RANS simulation to model the Starc-ABL aft propulsor at a cruise condition and the effects variation in propulsor design on performance are examined. The results indicates that both propulsion and aerodynamic effects contribute equally toward the overall performance and that the fully coupled model yields substantially different results compared to uncoupled. The most significant finding is that boundary layer ingestion, while offering substantial fuel burn savings, introduces throttle dependent aerodynamics effects that need to be accounted for. This work represents a first step toward the multidisciplinary design optimization of boundary layer ingestion propulsion systems.
Dynamic coupling of three hydrodynamic models
NASA Astrophysics Data System (ADS)
Hartnack, J. N.; Philip, G. T.; Rungoe, M.; Smith, G.; Johann, G.; Larsen, O.; Gregersen, J.; Butts, M. B.
2008-12-01
The need for integrated modelling is evidently present within the field of flood management and flood forecasting. Engineers, modellers and managers are faced with flood problems which transcend the classical hydrodynamic fields of urban, river and coastal flooding. Historically the modeller has been faced with having to select one hydrodynamic model to cover all the aspects of the potentially complex dynamics occurring in a flooding situation. Such a single hydrodynamic model does not cover all dynamics of flood modelling equally well. Thus the ideal choice may in fact be a combination of models. Models combining two numerical/hydrodynamic models are becoming more standard, typically these models combine a 1D river model with a 2D overland flow model or alternatively a 1D sewer/collection system model with a 2D overland solver. In complex coastal/urban areas the flood dynamics may include rivers/streams, collection/storm water systems along with the overland flow. The dynamics within all three areas is of the same time scale and there is feedback in the system across the couplings. These two aspects dictate a fully dynamic three way coupling as opposed to running the models sequentially. It will be shown that the main challenges of the three way coupling are time step issues related to the difference in numerical schemes used in the three model components and numerical instabilities caused by the linking of the model components. MIKE FLOOD combines the models MIKE 11, MIKE 21 and MOUSE into one modelling framework which makes it possible to couple any combination of river, urban and overland flow fully dynamically. The MIKE FLOOD framework will be presented with an overview of the coupling possibilities. The flood modelling concept will be illustrated through real life cases in Australia and in Germany. The real life cases reflect dynamics and interactions across all three model components which are not possible to reproduce using a two-way coupling alone. The models comprise 2D inundation modelling, river networks with multiple structures (pumps, weirs, culverts), urban drainage networks as well as dam break modelling. The models were used to quantify the results of storm events or failures (dam break, pumping failures etc) coinciding with high discharge in river system and heavy rainfall. The detailed representation of the flow path through the city allowed a direct assessment of flood risk Thus it is found that the three-way coupled model is a practical and useful tool for integrated flood management.
NASA Astrophysics Data System (ADS)
Raymond, Samuel J.; Jones, Bruce; Williams, John R.
2018-01-01
A strategy is introduced to allow coupling of the material point method (MPM) and smoothed particle hydrodynamics (SPH) for numerical simulations. This new strategy partitions the domain into SPH and MPM regions, particles carry all state variables and as such no special treatment is required for the transition between regions. The aim of this work is to derive and validate the coupling methodology between MPM and SPH. Such coupling allows for general boundary conditions to be used in an SPH simulation without further augmentation. Additionally, as SPH is a purely particle method, and MPM is a combination of particles and a mesh. This coupling also permits a smooth transition from particle methods to mesh methods, where further coupling to mesh methods could in future provide an effective farfield boundary treatment for the SPH method. The coupling technique is introduced and described alongside a number of simulations in 1D and 2D to validate and contextualize the potential of using these two methods in a single simulation. The strategy shown here is capable of fully coupling the two methods without any complicated algorithms to transform information from one method to another.
NASA Astrophysics Data System (ADS)
Cheng, H.; Zhang, H.; Pang, Y. J.; Shi, Y.
2017-12-01
With the quick urban development, over-exploitation of groundwater resources becomes more and more intense, which leads to not only widespread groundwater depression cones but also a series of harsh environmental and geological hazards. Among which, the most intuitive phenomenon is the ground subsidence in loose sediments. However, another direct consequence triggered by the groundwater depletion is the substantial crustal deformation and potential modulation of crustal stress underneath the groundwater over-pumping zones. In our previous 3-D viscoelastic finite element model, we found that continuous over-exploitation of groundwater resources in North China Plain during the past 60 years give rise to crustal-scale uplift reaching 4.9cm, with the Coulomb failure stress decreasing by up to 12 kPa, which may inhibit the nucleation of possible big earthquake events. Furthermore, according to the effective pressure principle and lab experiments, the pore pressure may also have changed due to the reduced water level. In order to quantitatively analyze the stress changes due to the regional groundwater exploitation in North China Plain, a three-dimensional fully coupled poroelastic finite element model is developed in this study. The high resolution topography, grounwater level fluctuation, fault parameters and etc, are taken into consideration. Further, the changes of Coulomb Failure Stress, in correspondence to elastic stress and pore pressure changes induced by fluid diffusion are calculated. Meanwhile, the elastic strain energy accumulation in region due to the regional groundwater exploitation is obtained. Finally, we try to analyze the seismic risk of major faults within North China Plain to further discuss the regional seismic activities.
Hu, Rui; Yu, Yiqi
2016-09-08
For efficient and accurate temperature predictions of sodium fast reactor structures, a 3-D full-core conjugate heat transfer modeling capability is developed for an advanced system analysis tool, SAM. The hexagon lattice core is modeled with 1-D parallel channels representing the subassembly flow, and 2-D duct walls and inter-assembly gaps. The six sides of the hexagon duct wall and near-wall coolant region are modeled separately to account for different temperatures and heat transfer between coolant flow and each side of the duct wall. The Jacobian Free Newton Krylov (JFNK) solution method is applied to solve the fluid and solid field simultaneouslymore » in a fully coupled fashion. The 3-D full-core conjugate heat transfer modeling capability in SAM has been demonstrated by a verification test problem with 7 fuel assemblies in a hexagon lattice layout. In addition, the SAM simulation results are compared with RANS-based CFD simulations. Very good agreements have been achieved between the results of the two approaches.« less
Fully 3D-Printed Preconcentrator for Selective Extraction of Trace Elements in Seawater.
Su, Cheng-Kuan; Peng, Pei-Jin; Sun, Yuh-Chang
2015-07-07
In this study, we used a stereolithographic 3D printing technique and polyacrylate polymers to manufacture a solid phase extraction preconcentrator for the selective extraction of trace elements and the removal of unwanted salt matrices, enabling accurate and rapid analyses of trace elements in seawater samples when combined with a quadrupole-based inductively coupled plasma mass spectrometer. To maximize the extraction efficiency, we evaluated the effect of filling the extraction channel with ordered cuboids to improve liquid mixing. Upon automation of the system and optimization of the method, the device allowed highly sensitive and interference-free determination of Mn, Ni, Zn, Cu, Cd, and Pb, with detection limits comparable with those of most conventional methods. The system's analytical reliability was further confirmed through analyses of reference materials and spike analyses of real seawater samples. This study suggests that 3D printing can be a powerful tool for building multilayer fluidic manipulation devices, simplifying the construction of complex experimental components, and facilitating the operation of sophisticated analytical procedures for most sample pretreatment applications.
Zhang, Rongchun; Duong, Nghia Tuan; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy
2017-06-22
Solid-state 1 H NMR spectroscopy has attracted much attention in the recent years due to the remarkable spectral resolution improvement by ultrafast magic-angle-spinning (MAS) as well as due to the sensitivity enhancement rendered by proton detection. Although these developments have enabled the investigation of a variety of challenging chemical and biological solids, the proton spectral resolution is still poor for many rigid solid systems owing to the presence of conformational heterogeneity and the unsuppressed residual proton-proton dipolar couplings even with the use of the highest currently feasible sample spinning speed of ∼130 kHz. Although a further increase in the spinning speed of the sample could be beneficial to some extent, there is a need for alternate approaches to enhance the spectral resolution. Herein, by fully utilizing the benefits of double-quantum (DQ) coherences, we propose a single radio frequency channel proton-based 3D pulse sequence that correlates double-quantum (DQ), DQ, and single-quantum (SQ) chemical shifts of protons. In addition to the two-spin homonuclear proximity information, the proposed 3D DQ/DQ/SQ experiment also enables the extraction of three-spin and four-spin proximities, which could be beneficial for revealing the dipolar coupled proton network in the solid state. Besides, the 2D DQ/DQ spectrum sliced at different isotropic SQ chemical shift values of the 3D DQ/DQ/SQ spectrum will also facilitate the identification of DQ correlation peaks and improve the spectral resolution, as it only provides the local homonuclear correlation information associated with the specific protons selected by the SQ chemical shift frequency. The 3D pulse sequence and its efficiency are demonstrated experimentally on small molecular compounds in the solid state. We expect that this approach would create avenues for further developments by suitably combining the benefits of partial deuteration of samples, selective excitation/decoupling pulses, heteronuclear spins for spectral editing, and nonuniform sampling.
Bedez, Mathieu; Belhachmi, Zakaria; Haeberlé, Olivier; Greget, Renaud; Moussaoui, Saliha; Bouteiller, Jean-Marie; Bischoff, Serge
2016-01-15
The resolution of a model describing the electrical activity of neural tissue and its propagation within this tissue is highly consuming in term of computing time and requires strong computing power to achieve good results. In this study, we present a method to solve a model describing the electrical propagation in neuronal tissue, using parareal algorithm, coupling with parallelization space using CUDA in graphical processing unit (GPU). We applied the method of resolution to different dimensions of the geometry of our model (1-D, 2-D and 3-D). The GPU results are compared with simulations from a multi-core processor cluster, using message-passing interface (MPI), where the spatial scale was parallelized in order to reach a comparable calculation time than that of the presented method using GPU. A gain of a factor 100 in term of computational time between sequential results and those obtained using the GPU has been obtained, in the case of 3-D geometry. Given the structure of the GPU, this factor increases according to the fineness of the geometry used in the computation. To the best of our knowledge, it is the first time such a method is used, even in the case of neuroscience. Parallelization time coupled with GPU parallelization space allows for drastically reducing computational time with a fine resolution of the model describing the propagation of the electrical signal in a neuronal tissue. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Bo; Li, Hao; Dong, Li; Huang, Guofu
2017-11-01
In this study, we sought to investigate the feasibility of fast carotid artery MR angiography (MRA) by combining three-dimensional time-of-flight (3D TOF) with compressed sensing method (CS-3D TOF). A pseudo-sequential phase encoding order was developed for CS-3D TOF to generate hyper-intense vessel and suppress background tissues in under-sampled 3D k-space. Seven healthy volunteers and one patient with carotid artery stenosis were recruited for this study. Five sequential CS-3D TOF scans were implemented at 1, 2, 3, 4 and 5-fold acceleration factors for carotid artery MRA. Blood signal-to-tissue ratio (BTR) values for fully-sampled and under-sampled acquisitions were calculated and compared in seven subjects. Blood area (BA) was measured and compared between fully sampled acquisition and each under-sampled one. There were no significant differences between the fully-sampled dataset and each under-sampled in BTR comparisons (P>0.05 for all comparisons). The carotid vessel BAs measured from the images of CS-3D TOF sequences with 2, 3, 4 and 5-fold acceleration scans were all highly correlated with that of the fully-sampled acquisition. The contrast between blood vessels and background tissues of the images at 2 to 5-fold acceleration is comparable to that of fully sampled images. The images at 2× to 5× exhibit the comparable lumen definition to the corresponding images at 1×. By combining the pseudo-sequential phase encoding order, CS reconstruction, and 3D TOF sequence, this technique provides excellent visualizations for carotid vessel and calcifications in a short scan time. It has the potential to be integrated into current multiple blood contrast imaging protocol. Copyright © 2017. Published by Elsevier Inc.
Coupling effects in 3D plasmonic structures templated by Morpho butterfly wings.
He, Jiaqing; Shen, Qingchen; Yang, Shuai; He, Gufeng; Tao, Peng; Song, Chengyi; Wu, Jianbo; Deng, Tao; Shang, Wen
2018-01-03
This paper presents the study of the coupling effects of three dimensional (3D) plasmonic nanostructures templated by Morpho butterfly wings. Different from the random deposition of metallic nanoparticles (NPs) or conformal coating of metallic layers on butterfly wings reported previously, the 3D plasmonic nanostructures studied in this work consist of gold (Au) nanostrips quasi-periodically arranged in 3D, which allows us to investigate the plasmonic coupling effects. Through refractive index (RI) matching, the plasmonic coupling can be differentiated from the optical contribution of butterfly wings. By tuning the deposition thickness of Au from 30 to 90 nm, the plasmonic coupling effects between the 3D Au nanostrips are gradually enhanced. In particular, the near-field coupling results in two resonant modes and enhances the surface-enhanced Raman scattering (SERS) signals.
NASA Astrophysics Data System (ADS)
Larios, Adam; Pei, Yuan
2017-07-01
We prove a Prodi-Serrin-type global regularity condition for the three-dimensional Magnetohydrodynamic-Boussinesq system (3D MHD-Boussinesq) without thermal diffusion, in terms of only two velocity and two magnetic components. To the best of our knowledge, this is the first Prodi-Serrin-type criterion for such a 3D hydrodynamic system which is not fully dissipative, and indicates that such an approach may be successful on other systems. In addition, we provide a constructive proof of the local well-posedness of solutions to the fully dissipative 3D MHD-Boussinesq system, and also the fully inviscid, irresistive, non-diffusive MHD-Boussinesq equations. We note that, as a special case, these results include the 3D non-diffusive Boussinesq system and the 3D MHD equations. Moreover, they can be extended without difficulty to include the case of a Coriolis rotational term.
NASA Astrophysics Data System (ADS)
Imperiale, Alexandre; Chatillon, Sylvain; Darmon, Michel; Leymarie, Nicolas; Demaldent, Edouard
2018-04-01
The high frequency models gathered in the CIVA software allow fast computations and provide satisfactory quantitative predictions in a wide range of situations. However, the domain of validity of these models is limited since they do not accurately predict the ultrasound response in configurations involving subwavelength complex phenomena. In addition, when modelling backwall breaking defects inspection, an important challenge remains to capture the propagation of the creeping waves that are generated at the critical angle. Hybrid models combining numerical and asymptotic methods have already been shown to be an effective strategy to overcome these limitations in 2D [1]. However, 3D simulations remain a crucial issue for industrial applications because of the computational cost of the numerical solver. A dedicated three dimensional high order finite element model combined with a domain decomposition method has been recently proposed to tackle 3D limitations [2]. In this communication, we will focus on the specific case of planar backwall breaking defects, with an adapted coupling strategy in order to efficiently model the propagation of creeping waves. Numerical and experimental validations will be proposed on various configurations.
Ling, Biyun; Peng, Chunrong; Ren, Ren; Chu, Zhaozhi; Zhang, Zhouwei; Lei, Hucheng; Xia, Shanhong
2018-01-01
One of the major concerns in the development of three-dimensional (3D) electric field sensors (EFSs) is their susceptibility to cross-axis coupling interference. The output signal for each sensing axis of a 3D EFS is often coupled by electric field components from the two other orthogonal sensing axes. In this paper, a one-dimensional (1D) electric field sensor chip (EFSC) with low cross-axis coupling interference is presented. It is designed to be symmetrical, forming a pair of in-plane symmetrically-located sensing structures. Using a difference circuit, the 1D EFSC is capable of sensing parallel electric fields along symmetrical structures and eliminating cross-axis coupling interference, which is contrast to previously reported 1D EFSCs designed for perpendicular electric field component measurement. Thus, a 3D EFS with low cross-axis coupling interference can be realized using three proposed 1D EFSCs. This 3D EFS has the advantages of low cross-axis coupling interference, small size, and high integration. The testing and calibration systems of the proposed 3D EFS were developed. Experimental results show that in the range of 0–120 kV/m, cross-axis sensitivities are within 5.48%, and the total measurement errors of this 3D EFS are within 6.16%. PMID:29543744
Chazin, Eliza de Lucas; Sanches, Paola de Souza; Lindgren, Eric Brazil; Vellasco Júnior, Walcimar Trindade; Pinto, Laine Celestino; Burbano, Rommel Mario Rodríguez; Yoneda, Julliane Diniz; Leal, Kátia Zaccur; Gomes, Claudia Regina Brandão; Wardell, James Lewis; Wardell, Solange Maria Silva Veloso; Montenegro, Raquel Carvalho; Vasconcelos, Thatyana Rocha Alves
2015-01-27
With the aim of discovering new anticancer agents, we have designed and synthesized novel 6-hydroxy-benzo[d][1,3]oxathiol-2-one Schiff bases. The synthesis started with the selective nitration at 5-position of 6-hydroxybenzo[d][1,3]oxathiol-2-one (1) leading to the nitro derivative 2. The nitro group of 2 was reduced to give the amino intermediate 3. Schiff bases 4a-r were obtained from coupling reactions between 3 and various benzaldehydes and heteroaromatic aldehydes. All the new compounds were fully identified and characterized by NMR (1H and 13C) and specifically for 4q by X-ray crystallography. The in vitro cytotoxicity of the compounds was evaluated against cancer cell lines (ACP-03, SKMEL-19 and HCT-116) by using MTT assay. Schiff bases 4b and 4o exhibited promising cytotoxicity against ACP-03 and SKMEL-19, respectively, with IC50 values lower than 5 μM. This class of compounds can be considered as a good starting point for the development of new lead molecules in the fight against cancer.
2009-10-01
molecular breast imaging, with the ability to dynamically contour any sized breast, will improve detection and potentially in vivo characterization of...Having flexible 3D positioning about the breast yielded minimal RMSD differences, which is important for high resolution molecular emission imaging. This...TITLE: Automation and Preclinical Evaluation of a Dedicated Emission Mammotomography System for Fully 3-D Molecular Breast Imaging PRINCIPAL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weston, Brian T.
This dissertation focuses on the development of a fully-implicit, high-order compressible ow solver with phase change. The work is motivated by laser-induced phase change applications, particularly by the need to develop large-scale multi-physics simulations of the selective laser melting (SLM) process in metal additive manufacturing (3D printing). Simulations of the SLM process require precise tracking of multi-material solid-liquid-gas interfaces, due to laser-induced melting/ solidi cation and evaporation/condensation of metal powder in an ambient gas. These rapid density variations and phase change processes tightly couple the governing equations, requiring a fully compressible framework to robustly capture the rapid density variations ofmore » the ambient gas and the melting/evaporation of the metal powder. For non-isothermal phase change, the velocity is gradually suppressed through the mushy region by a variable viscosity and Darcy source term model. The governing equations are discretized up to 4th-order accuracy with our reconstructed Discontinuous Galerkin spatial discretization scheme and up to 5th-order accuracy with L-stable fully implicit time discretization schemes (BDF2 and ESDIRK3-5). The resulting set of non-linear equations is solved using a robust Newton-Krylov method, with the Jacobian-free version of the GMRES solver for linear iterations. Due to the sti nes associated with the acoustic waves and thermal and viscous/material strength e ects, preconditioning the GMRES solver is essential. A robust and scalable approximate block factorization preconditioner was developed, which utilizes the velocity-pressure (vP) and velocity-temperature (vT) Schur complement systems. This multigrid block reduction preconditioning technique converges for high CFL/Fourier numbers and exhibits excellent parallel and algorithmic scalability on classic benchmark problems in uid dynamics (lid-driven cavity ow and natural convection heat transfer) as well as for laser-induced phase change problems in 2D and 3D.« less
Jeong, Eun Sook; Cha, Eunju; Cha, Sangwon; Kim, Sunghwan; Oh, Han Bin; Kwon, Oh-Seung; Lee, Jaeick
2017-11-21
In this study, a hydrogen/deuterium (H/D) exchange method using gas chromatography-electrospray ionization/mass spectrometry (GC-ESI/MS) was first investigated as a novel tool for online H/D exchange of multitarget analytes. The GC and ESI source were combined with a homemade heated column transfer line. GC-ESI/MS-based H/D exchange occurs in an atmospheric pressure ion source as a result of reacting the gas-phase analyte eluted from GC with charged droplets of deuterium oxide infused as the ESI spray solvent. The consumption of the deuterated solvent at a flow rate of 2 μL min -1 was more economical than that in online H/D exchange methods reported to date. In-ESI-source H/D exchange by GC-ESI/MS was applied to 11 stimulants with secondary amino or hydroxyl groups. After H/D exchange, the spectra of the stimulants showed unexchanged, partially exchanged, and fully exchanged ions showing various degrees of exchange. The relative abundances corrected for naturally occurring isotopes of the fully exchanged ions of stimulants, except for etamivan, were in the range 24.3-85.5%. Methylephedrine and cyclazodone showed low H/D exchange efficiency under acidic, neutral, and basic spray solvent conditions and nonexchange for etamivan with an acidic phenolic OH group. The in-ESI-source H/D exchange efficiency by GC-ESI/MS was sufficient to determine the number of hydrogen by elucidation of fragmentation from the spectrum. Therefore, this online H/D exchange technique using GC-ESI/MS has potential as an alternative method for simultaneous H/D exchange of multitarget analytes.
Xia, Xiaodong; Wang, Yang; Zhong, Zheng
2016-01-01
Unlike mechanical creep with inelastic deformation, electric creep with domain evolution is a rarely studied subject. In this paper, we present a theory of electric creep and related electromechanical coupling for both non-poled and fully poled ferroelectric ceramics. We consider electric creep to be a time-dependent process, with an initial condition lying on the D (electric displacement) versus E (electric field) hysteresis loop. Both processes are shown to share the same Gibbs free energy and thermodynamic driving force, but relative to creep, the hysteresis loop is just a field-dependent process. With this view, we develop a theory with a single thermodynamic driving force but with two separate kinetic equations, one for the field-dependent loops in terms of a Lorentzian-like function and the other for the time-dependent D in terms of a dissipation potential. We use the 0°–90° and then 90°–180° switches to attain these goals. It is demonstrated that the calculated results are in broad agreement with two sets of experiments, one for a non-poled PIC-151 and the other for a fully poled PZT-5A. The theory also shows that creep polarization tends to reach a saturation state with time and that the saturated polarization has its maximum at the coercive field. PMID:27843406
NASA Astrophysics Data System (ADS)
Könning, Tobias; Bayer, Andreas; Plappert, Nora; Faßbender, Wilhelm; Dürsch, Sascha; Küster, Matthias; Hubrich, Ralf; Wolf, Paul; Köhler, Bernd; Biesenbach, Jens
2018-02-01
A novel 3-dimensional arrangement of mirrors is used to re-arrange beams from 1-D and 2-D high power diode laser arrays. The approach allows for a variety of stacking geometries, depending on individual requirements. While basic building blocks, including collimating optics, always remain the same, most adaptations can be realized by simple rearrangement of a few optical components. Due to fully automated alignment processes, the required changes can be realized in software by changing coordinates, rather than requiring customized mechanical components. This approach minimizes development costs due to its flexibility, while reducing overall product cost by using similar building blocks for a variety of products and utilizing a high grade of automation. The modules can be operated with industrial grade water, lowering overall system and maintenance cost. Stackable macro coolers are used as the smallest building block of the system. Each cooler can hold up to five diode laser bars. Micro optical components, collimating the beam, are mounted directly to the cooler. All optical assembly steps are fully automated. Initially, the beams from all laser bars propagate in the same direction. Key to the concept is an arrangement of deflectors, which re-arrange the beams into a 2-D array of the desired shape and high fill factor. Standard multiplexing techniques like polarization- or wavelengths-multiplexing have been implemented as well. A variety of fiber coupled modules ranging from a few hundred watts of optical output power to multiple kilowatts of power, as well as customized laser spot geometries like uniform line sources, have been realized.
NASA Astrophysics Data System (ADS)
Oruc, Ilker
This thesis presents the development of computationally efficient coupling of Navier-Stokes CFD with a helicopter flight dynamics model, with the ultimate goal of real-time simulation of fully coupled aerodynamic interactions between rotor flow and the surrounding terrain. A particular focus of the research is on coupled airwake effects in the helicopter / ship dynamic interface. A computationally efficient coupling interface was developed between the helicopter flight dynamics model, GENHEL-PSU and the Navier-Stokes solvers, CRUNCH/CRAFT-CFD using both FORTRAN and C/C++ programming languages. In order to achieve real-time execution speeds, the main rotor was modeled with a simplified actuator disk using unsteady momentum sources, instead of resolving the full blade geometry in the CFD. All the airframe components, including the fuselage are represented by single aerodynamic control points in the CFD calculations. The rotor downwash influence on the fuselage and empennage are calculated by using the CFD predicted local flow velocities at these aerodynamic control points defined on the helicopter airframe. In the coupled simulations, the flight dynamics model is free to move within a computational domain, where the main rotor forces are translated into source terms in the momentum equations of the Navier-Stokes equations. Simultaneously, the CFD calculates induced velocities those are fed back to the simulation and affect the aerodynamic loads in the flight dynamics. The CFD solver models the inflow, ground effect, and interactional aerodynamics in the flight dynamics simulation, and these calculations can be coupled with solution of the external flow (e.g. ship airwake effects). The developed framework was utilized for various investigations of hovering, forward flight and helicopter/terrain interaction simulations including standard ground effect, partial ground effect, sloped terrain, and acceleration in ground effect; and results compared with different flight and experimental data. In near ground cases, the fully-coupled flight dynamics and CFD simulations predicted roll oscillations due to interactions of the rotor downwash, ground plane, and the feedback controller, which are not predicted by the conventional simulation models. Fully coupled simulations of a helicopter accelerating near ground predicted flow formations similar to the recirculation and ground vortex flow regimes observed in experiments. The predictions of hover power reductions due to ground effect compared well to a recent experimental data and the results showed 22% power reduction for a hover flight z/R=0.55 above ground level. Fully coupled simulations performed for a helicopter hovering over and approaching to a ship flight deck and results compared with the standalone GENHEL-PSU simulations without ship airwake and one-way coupled simulations. The fully-coupled simulations showed higher pilot workload compared to the other two cases. In order to increase the execution speeds of the CFD calculations, several improvements were made on the CFD solver. First, the initial coupling approach File I/O was replaced with a more efficient method called Multiple Program Multiple Data MPI framework, where the two executables communicate with each other by MPI calls. Next, the unstructured solver (CRUNCH CFD), which is 2nd-order accurate in space, was replaced with the faster running structured solver (CRAFT CFD) that is 5th-order accurate in space. Other improvements including a more efficient k-d tree search algorithm and the bounding of the source term search space within a small region of the grid surrounding the rotor were made on the CFD solver. The final improvement was to parallelize the search task with the CFD solver tasks within the solver. To quantify the speed-up of the improvements to the coupling interface described above, a study was performed to demonstrate the speedup achieved from each of the interface improvements. The improvements made on the CFD solver showed more than 40 times speedup from the baseline file I/O and unstructured solver CRUNCH CFD. Using a structured CFD solver with 5th-order spacial accuracy provided the largest reductions in execution times. Disregarding the solver numeric, the total speedup of all of the interface improvements including the MPMD rotor point exchange, k-d tree search algorithm, bounded search space, and paralleled search task, was approximately 231%, more than a factor of 2. All these improvements provided the necessary speedup for approach real-time CFD. (Abstract shortened by ProQuest.).
The chemical behavior of acidified chromium (3) solutions. B.S. Thesis
NASA Technical Reports Server (NTRS)
Terman, D. K.
1981-01-01
A unique energy-storage system has been developed at NASA's Lewis Research Center called REDOX. This NASA-REDOX system is an electrochemical storage device that utilized the oxidation and reduction of two fully soluble redox couples for charging and discharging. The redox couples now being investigated are acidified chloride solutions of chromium (Cr(+2)/Cr(+3)) and iron (Fe(+2)/Fe(+3)).
Klewe, Ib V.; Nielsen, Søren M.; Tarpø, Louise; Urizar, Eneko; Dipace, Concetta; Javitch, Jonathan A.; Gether, Ulrik; Egebjerg, Jan; Christensen, Kenneth V.
2013-01-01
Drugs acting at dopamine D2-like receptors play a pivotal role in the treatment of both schizophrenia and Parkinson’s disease. Recent studies have demonstrated a role for G-protein independent D2 receptor signaling pathways acting through β-arrestin. In this study we describe the establishment of a Bioluminescence Resonance Energy Transfer (BRET) assay for measuring dopamine induced recruitment of human β-arrestin2 to the human dopamine D2 receptor. Dopamine, as well as the dopamine receptor agonists pramipexole and quinpirole, acted as full agonists in the assay as reflected by their ability to elicit marked concentration dependent increases in the BRET signal signifying β-arrestin2 recruitment to the D2 receptor. As expected from their effect on G-protein coupling and cAMP levels mediated through the D2 receptor RNPA, pergolide, apomorphine, ropinirole, bromocriptine, 3PPP, terguride, aripiprazole, SNPA all acted as partial agonists with decreasing efficacy in the BRET assay. In contrast, a wide selection of typical and atypical anti-psychotics was incapable of stimulating β-arrestin2 recruitment to the D2 receptor. Moreover, we observed that haloperidol, sertindole, olanzapine, clozapine and ziprasidone all fully inhibited the dopamine induced β-arrestin2 recruitment to D2 receptor (short variant) in a concentration dependent manner. We conclude that most anti-psychotics are incapable of stimulating β-arrestin2 recruitment to the dopamine D2 receptor, in accordance with their antagonistic properties at the level of G-protein coupling. PMID:18455202
Multiple receptors coupled to phospholipase C gate long-term depression in visual cortex.
Choi, Se-Young; Chang, Jeff; Jiang, Bin; Seol, Geun-Hee; Min, Sun-Seek; Han, Jung-Soo; Shin, Hee-Sup; Gallagher, Michela; Kirkwood, Alfredo
2005-12-07
Long-term depression (LTD) in sensory cortices depends on the activation of NMDA receptors. Here, we report that in visual cortical slices, the induction of LTD (but not long-term potentiation) also requires the activation of receptors coupled to the phospholipase C (PLC) pathway. Using immunolesions in combination with agonists and antagonists, we selectively manipulated the activation of alpha1 adrenergic, M1 muscarinic, and mGluR5 glutamatergic receptors. Inactivation of these PLC-coupled receptors prevents the induction of LTD, but only when the three receptors were inactivated together. LTD is fully restored by activating any one of them or by supplying intracellular D-myo-inositol-1,4,5-triphosphate (IP3). LTD was also impaired by intracellular application of PLC or IP3 receptor blockers, and it was absent in mice lacking PLCbeta1, the predominant PLC isoform in the forebrain. We propose that visual cortical LTD requires a minimum of PLC activity that can be supplied independently by at least three neurotransmitter systems. This essential requirement places PLC-linked receptors in a unique position to control the induction of LTD and provides a mechanism for gating visual cortical plasticity via extra-retinal inputs in the intact organism.
A constitutive theory for shape memory polymers: coupling of small and large deformation
NASA Astrophysics Data System (ADS)
Tan, Qiao; Liu, Liwu; Liu, Yanju; Leng, Jinsong; Yan, Xiangqiao; Wang, Haifang
2013-04-01
At high temperatures, SMPs share attributes like rubber and exhibit long-range reversibility. In contrast, at low temperatures they become very rigid and are susceptible to plastic, only small strains are allowable. But there relatively little literature has considered the unique small stain (rubber phase) and large stain (glass phase) coupling in SMPs when developing the constitutive modeling. In this work, we present a 3D constitutive model for shape memory polymers in both low temperature small strain regime and high temperature large strain regime. The theory is based on the work of Liu et al. [15]. Four steps of SMP's thermomechanical loadings cycle are considered in the constitutive model completely. The linear elastic and hyperelastic effects of SMP in different temperatures are also fully accounted for in the proposed model by adopt the neo-Hookean model and the Generalized Hooke's laws.
Chávez-Moreno, Carmín; Ferrer, Laura; Hinojosa-Reyes, Laura; Hernández-Ramírez, Aracely; Cerdà, Víctor; Guzmán-Mar, Jorge
2013-11-15
A fully automated on-line system for monitoring the photocatalytic degradation of herbicides was developed using multisyringe flow injection analysis (MSFIA) coupled to a solid phase extraction (SPE) unit with UV detection. The calibration curves were linear in the concentration range of 100-1000 μg L(-1) for 3,6-dichloro-2-methoxybenzoic acid (dicamba) and 500-3000 μg L(-1) for 2,4-dichlorophenoxyacetic acid (2,4-D), while the detection limits were 30 and 135 μg L(-1) for dicamba and 2,4-D, respectively. The monitoring of the photocatalytic degradation (TiO2 anatase/UV 254 nm) of these two herbicides was performed by MSFIA-SPE system using a small sample volume (2 mL) in a fully automated approach. The degradation was assessed in ultrapure and drinking water with initial concentrations of 1000 and 2000 μg L(-1) for dicamba and 2,4-D, respectively. Degradation percentages of approximately 85% were obtained for both herbicides in ultrapure water after 45 min of photocatalytic treatment. A similar degradation efficiency in drinking water was observed for 2,4-D, whereas dicamba exhibited a lower degradation percentage (75%), which could be attributed to the presence of inorganic species in this kind of water. Copyright © 2013 Elsevier Ltd. All rights reserved.
A computational approach for coupled 1D and 2D/3D CFD modelling of pulse Tube cryocoolers
NASA Astrophysics Data System (ADS)
Fang, T.; Spoor, P. S.; Ghiaasiaan, S. M.
2017-12-01
The physics behind Stirling-type cryocoolers are complicated. One dimensional (1D) simulation tools offer limited details and accuracy, in particular for cryocoolers that have non-linear configurations. Multi-dimensional Computational Fluid Dynamic (CFD) methods are useful but are computationally expensive in simulating cyrocooler systems in their entirety. In view of the fact that some components of a cryocooler, e.g., inertance tubes and compliance tanks, can be modelled as 1D components with little loss of critical information, a 1D-2D/3D coupled model was developed. Accordingly, one-dimensional - like components are represented by specifically developed routines. These routines can be coupled to CFD codes and provide boundary conditions for 2D/3D CFD simulations. The developed coupled model, while preserving sufficient flow field details, is two orders of magnitude faster than equivalent 2D/3D CFD models. The predictions show good agreement with experimental data and 2D/3D CFD model.
Investigation of Fully Three-Dimensional Helical RF Field Effects on TWT Beam/Circuit Interaction
NASA Technical Reports Server (NTRS)
Kory, Carol L.
2000-01-01
A fully three-dimensional (3D), time-dependent, helical traveling wave-tube (TWT) interaction model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA. The model includes a short section of helical slow-wave circuit with excitation fed by RF input/output couplers, and electron beam contained by periodic permanent magnet (PPM) focusing. All components of the model are simulated in three dimensions allowing the effects of the fully 3D helical fields on RF circuit/beam interaction to be investigated for the first time. The development of the interaction model is presented, and predicted TWT performance using 2.5D and 3D models is compared to investigate the effect of conventional approximations used in TWT analyses.
NASA Astrophysics Data System (ADS)
Maschio, Lorenzo; Kirtman, Bernard; Rérat, Michel; Orlando, Roberto; Dovesi, Roberto
2013-10-01
In this work, we validate a new, fully analytical method for calculating Raman intensities of periodic systems, developed and presented in Paper I [L. Maschio, B. Kirtman, M. Rérat, R. Orlando, and R. Dovesi, J. Chem. Phys. 139, 164101 (2013)]. Our validation of this method and its implementation in the CRYSTAL code is done through several internal checks as well as comparison with experiment. The internal checks include consistency of results when increasing the number of periodic directions (from 0D to 1D, 2D, 3D), comparison with numerical differentiation, and a test of the sum rule for derivatives of the polarizability tensor. The choice of basis set as well as the Hamiltonian is also studied. Simulated Raman spectra of α-quartz and of the UiO-66 Metal-Organic Framework are compared with the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veneziani, Carmela
Two sets of simulations were performed within this allocation: 1) a 12-year fully-coupled experiment in preindustrial conditions, using the CICE4 version of the sea-ice model; 2) a set of multi-decadal ocean-ice-only experiments, forced with CORE-I atmospheric fields and using the CICE5 version of the sea-ice model. Results from simulation 1) are presented in Figures 1-3, and specific results from a simulation in 2) with tracer releases are presented in Figure 4.
NASA Astrophysics Data System (ADS)
Viparelli, E.; Eke, E. C.; Lauer, J. W.
2017-12-01
Sediment exchange between the channel and floodplain can occur via meander migration, overbank deposition or erosion, and changes in channel geometry. Depending on channel and floodplain history, floodplains can act either as sources or sinks of bed material and/or wash load. Here we present preliminary modeling results that explicitly account for the feedbacks between the changes in floodplain geometry and sediment size distribution and the changes in channel geometry and migration. These results are obtained by coupling the Morphodynamics And Sediment Tracers in 1D (MAST-1D) program with the results of meander migration studies linking the bankfull flow depth and mean velocity to channel migration, sinuosity and channel geometry. MAST-1D is a numerical model built to describe grain size specific transport of sediment and tracers and the long-term - i.e. decadal and longer - evolution of channel floodplain complexes. MAST-1D differs from other 1D numerical models because it allows for 1) uneven exchange of sediment and tracers between the river channel and the floodplain, 2) temporal changes in channel geometry, bed elevation and floodplain thickness, which result in changes in the channel hydraulic capacity, and 3) temporal changes of size distribution and tracer content in the floodplain, in the load and in the underlying substrate. Under conditions of constant base level, water and sediment supply, the system evolves toward a steady state wherein the amount of sediment deposited through point bar deposition and overbank sedimentation is balanced by the erosion of sediment from the floodplain through lateral migration. The current formulation couples MAST-1D with empirical channel migration relationships that link bankfull flow depth and mean velocity to channel migration, sinuosity and channel geometry. Future development of this preliminary work will involve a fully coupled MAST-1D model with a standard meander migration model that will allow for the building of floodplain stratigraphy and tracking of the position of the meandering channel in space and time.
Impurity bound states in d-wave superconductors with subdominant order parameters
NASA Astrophysics Data System (ADS)
Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica
Single magnetic impurity induces intra-gap bound states in conventional s-wave superconductors (SCs) but, in d-wave SCs only virtual bound states can be induced. However, in small cuprate islands a fully gapped spectrum has recently been discovered. In this work, we investigate the real bound states due to potential and magnetic impurities in the two candidate fully gapped states for this system: the topologically trivial d + is -wave state and the topologically non-trivial d + id' -wave (chiral d-wave state). Using the analytic T-matrix formalism and self-consistent numerical tight-binding lattice calculations, we show that potential and magnetic impurities create entirely different intra-gap bound states in d + is -wave and chiral d-wave SCs. Therefore, our results suggest that the bound states mainly depend on the subdominant order parameter. Considering that recent experiments have demonstrated an access to adjustable coupling J, impurities thus offer an intriguing way to clearly distinguish between the chiral d-wave and topologically trivial d + is -wave state. This work was supported by Swedish Research Council, Swedish Foundation for Strategic Research, the Wallenberg Academy Fellows program and the Göran Gustafsson Foundation. The computations were performed on resources provided by SNIC at LUNARC.
NASA Astrophysics Data System (ADS)
Martin, D. F.; Asay-Davis, X.; Price, S. F.; Cornford, S. L.; Maltrud, M. E.; Ng, E. G.; Collins, W.
2014-12-01
We present the response of the continental Antarctic ice sheet to sub-shelf-melt forcing derived from POPSICLES simulation results covering the full Antarctic Ice Sheet and the Southern Ocean spanning the period 1990 to 2010. Simulations are performed at 0.1 degree (~5 km) ocean resolution and ice sheet resolution as fine as 500 m using adaptive mesh refinement. A comparison of fully-coupled and comparable standalone ice-sheet model results demonstrates the importance of two-way coupling between the ice sheet and the ocean. The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), and the BISICLES ice-sheet model (Cornford et al., 2012). BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). A companion presentation, "Present-day circum-Antarctic simulations using the POPSICLES coupled land ice-ocean model" in session C027 describes the ocean-model perspective of this work, while we focus on the response of the ice sheet and on details of the model. The figure shows the BISICLES-computed vertically-integrated ice velocity field about 1 month into a 20-year coupled Antarctic run. Groundling lines are shown in green.
Karabach, Yauhen Y; Guedes da Silva, M Fátima C; Kopylovich, Maximilian N; Gil-Hernández, Beatriz; Sanchiz, Joaquin; Kirillov, Alexander M; Pombeiro, Armando J L
2010-12-06
The new three-dimensional (3D) heterometallic Cu(II)/Fe(II) coordination polymers [Cu(6)(H(2)tea)(6)Fe(CN)(6)](n)(NO(3))(2n)·6nH(2)O (1) and [Cu(6)(Hmdea)(6)Fe(CN)(6)](n)(NO(3))(2n)·7nH(2)O (2) have been easily generated by aqueous-medium self-assembly reactions of copper(II) nitrate with triethanolamine or N-methyldiethanolamine (H(3)tea or H(2)mdea, respectively), in the presence of potassium ferricyanide and sodium hydroxide. They have been isolated as air-stable crystalline solids and fully characterized including by single-crystal X-ray diffraction analyses. The latter reveal the formation of 3D metal-organic frameworks that are constructed from the [Cu(2)(μ-H(2)tea)(2)](2+) or [Cu(2)(μ-Hmdea)(2)](2+) nodes and the octahedral [Fe(CN)(6)](4-) linkers, featuring regular (1) or distorted (2) octahedral net skeletons. Upon dehydration, both compounds show reversible escape and binding processes toward water or methanol molecules. Magnetic susceptibility measurements of 1 and 2 reveal strong antiferromagnetic [J = -199(1) cm(-1)] or strong ferromagnetic [J = +153(1) cm(-1)] couplings between the copper(II) ions through the μ-O-alkoxo atoms in 1 or 2, respectively. The differences in magnetic behavior are explained in terms of the dependence of the magnetic coupling constant on the Cu-O-Cu bridging angle. Compounds 1 and 2 also act as efficient catalyst precursors for the mild oxidation of cyclohexane by aqueous hydrogen peroxide to cyclohexanol and cyclohexanone (homogeneous catalytic system), leading to maximum total yields (based on cyclohexane) and turnover numbers (TONs) up to about 22% and 470, respectively.
Galerkin CFD solvers for use in a multi-disciplinary suite for modeling advanced flight vehicles
NASA Astrophysics Data System (ADS)
Moffitt, Nicholas J.
This work extends existing Galerkin CFD solvers for use in a multi-disciplinary suite. The suite is proposed as a means of modeling advanced flight vehicles, which exhibit strong coupling between aerodynamics, structural dynamics, controls, rigid body motion, propulsion, and heat transfer. Such applications include aeroelastics, aeroacoustics, stability and control, and other highly coupled applications. The suite uses NASA STARS for modeling structural dynamics and heat transfer. Aerodynamics, propulsion, and rigid body dynamics are modeled in one of the five CFD solvers below. Euler2D and Euler3D are Galerkin CFD solvers created at OSU by Cowan (2003). These solvers are capable of modeling compressible inviscid aerodynamics with modal elastics and rigid body motion. This work reorganized these solvers to improve efficiency during editing and at run time. Simple and efficient propulsion models were added, including rocket, turbojet, and scramjet engines. Viscous terms were added to the previous solvers to create NS2D and NS3D. The viscous contributions were demonstrated in the inertial and non-inertial frames. Variable viscosity (Sutherland's equation) and heat transfer boundary conditions were added to both solvers but not verified in this work. Two turbulence models were implemented in NS2D and NS3D: Spalart-Allmarus (SA) model of Deck, et al. (2002) and Menter's SST model (1994). A rotation correction term (Shur, et al., 2000) was added to the production of turbulence. Local time stepping and artificial dissipation were adapted to each model. CFDsol is a Taylor-Galerkin solver with an SA turbulence model. This work improved the time accuracy, far field stability, viscous terms, Sutherland?s equation, and SA model with NS3D as a guideline and added the propulsion models from Euler3D to CFDsol. Simple geometries were demonstrated to utilize current meshing and processing capabilities. Air-breathing hypersonic flight vehicles (AHFVs) represent the ultimate application of the suite. The current models are accurate at low supersonic speed and reasonable for engineering approximation at hypersonic speeds. Improvements to extend the models fully into the hypersonic regime are given in the Recommendations section.
On the performance of a high head Francis turbine at design and off-design conditions
NASA Astrophysics Data System (ADS)
Aakti, B.; Amstutz, O.; Casartelli, E.; Romanelli, G.; Mangani, L.
2015-01-01
In the present paper, fully 360 degrees transient and steady-state simulations of a Francis turbine were performed at three operating conditions, namely at part load (PL), best efficiency point (BEP), and high load (HL), using different numerical approaches for the pressure-velocity coupling. The simulation domain includes the spiral casing with stay and guide vanes, the runner and the draft tube. The main target of the investigations is the numerical prediction of the overall performance of the high head Francis turbine model as well as local and integral quantities of the complete machine in different operating conditions. All results were compared with experimental data published by the workshop organization. All CFD simulations were performed at model scale with a new in-house, 3D, unstructured, object-oriented finite volume code within the framework of the open source OpenFOAM library. The novel fully coupled pressure-based solver is designed to solve the incompressible RANS- Equations and is capable of handling multiple references of frame (MRF). The obtained results show that the overall performance is well captured by the simulations. Regarding the local flow distributions within the inlet section of the draft-tube, the axial velocity is better estimated than the circumferential component.
Castañar, Laura; Pérez-Trujillo, Míriam; Nolis, Pau; Monteagudo, Eva; Virgili, Albert; Parella, Teodor
2014-04-04
A frequency-selective 1D (1) H nuclear magnetic resonance (NMR) experiment for the fast and sensitive determination of chemical-shift differences between overlapped resonances is proposed. The resulting fully homodecoupled (1) H NMR resonances appear as resolved 1D singlets without their typical J(HH) coupling constant multiplet structures. The high signal dispersion that is achieved is then exploited in enantiodiscrimination studies by using chiral solvating agents. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markidis, S.; Rizwan, U.
The use of virtual nuclear control room can be an effective and powerful tool for training personnel working in the nuclear power plants. Operators could experience and simulate the functioning of the plant, even in critical situations, without being in a real power plant or running any risk. 3D models can be exported to Virtual Reality formats and then displayed in the Virtual Reality environment providing an immersive 3D experience. However, two major limitations of this approach are that 3D models exhibit static textures, and they are not fully interactive and therefore cannot be used effectively in training personnel. Inmore » this paper we first describe a possible solution for embedding the output of a computer application in a 3D virtual scene, coupling real-world applications and VR systems. The VR system reported here grabs the output of an application running on an X server; creates a texture with the output and then displays it on a screen or a wall in the virtual reality environment. We then propose a simple model for providing interaction between the user in the VR system and the running simulator. This approach is based on the use of internet-based application that can be commanded by a laptop or tablet-pc added to the virtual environment. (authors)« less
NASA Astrophysics Data System (ADS)
Drummond, B.; Mayne, N. J.; Baraffe, I.; Tremblin, P.; Manners, J.; Amundsen, D. S.; Goyal, J.; Acreman, D.
2018-05-01
In this work, we have performed a series of simulations of the atmosphere of GJ 1214b assuming different metallicities using the Met Office Unified Model (UM). The UM is a general circulation model (GCM) that solves the deep, non-hydrostatic equations of motion and uses a flexible and accurate radiative transfer scheme, based on the two-stream and correlated-k approximations, to calculate the heating rates. In this work we consistently couple a well-tested Gibbs energy minimisation scheme to solve for the chemical equilibrium abundances locally in each grid cell for a general set of elemental abundances, further improving the flexibility and accuracy of the model. As the metallicity of the atmosphere is increased we find significant changes in the dynamical and thermal structure, with subsequent implications for the simulated phase curve. The trends that we find are qualitatively consistent with previous works, though with quantitative differences. We investigate in detail the effect of increasing the metallicity by splitting the mechanism into constituents, involving the mean molecular weight, the heat capacity and the opacities. We find the opacity effect to be the dominant mechanism in altering the circulation and thermal structure. This result highlights the importance of accurately computing the opacities and radiative transfer in 3D GCMs.
NASA Astrophysics Data System (ADS)
Hamlet, C. L.; Hoffman, K.; Fauci, L.; Tytell, E.
2016-02-01
The lamprey is a model organism for both neurophysiology and locomotion studies. To study the role of sensory feedback as an organism moves through its environment, a 2D, integrative, multi-scale model of an anguilliform swimmer driven by neural activation from a central pattern generator (CPG) is constructed. The CPG in turn drives muscle kinematics and is fully coupled to the surrounding fluid. The system is numerically evolved in time using an immersed boundary framework producing an emergent swimming mode. Proprioceptive feedback to the CPG based on experimental observations adjust the activation signal as the organism interacts with its environment. Effects on the speed, stability and cost (metabolic work) of swimming due to nonlinear dependencies associated with muscle force development combined with proprioceptive feedback to neural activation are estimated and examined.
3D lens-free time-lapse microscopy for 3D cell culture
NASA Astrophysics Data System (ADS)
Berdeu, Anthony; Momey, Fabien; Laperrousaz, Bastien; Bordy, Thomas; Gidrol, Xavier; Dinten, Jean-Marc; Picollet-D'hahan, Nathalie; Allier, Cédric
2017-07-01
We propose a new imaging platform based on lens-free time-lapse microscopy for 3D cell culture and its dedicated algorithm lying on a fully 3D regularized inverse problem approach. First 3D+t results are presented
Strobel, Klaus; Rüdy, Matthias; Treyer, Valerie; Veit-Haibach, Patrick; Burger, Cyrill; Hany, Thomas F
2007-07-01
The relative advantage of fully 3-D versus 2-D mode for whole-body imaging is currently the focus of considerable expert debate. The nature of 3-D PET acquisition for FDG PET/CT theoretically allows a shorter scan time and improved efficiency of FDG use than in the standard 2-D acquisition. We therefore objectively and subjectively compared standard 2-D and fully 3-D reconstructed data for FDG PET/CT on a research PET/CT system. In a total of 36 patients (mean 58.9 years, range 17.3-78.9 years; 21 male, 15 female) referred for known or suspected malignancy, FDG PET/CT was performed using a research PET/CT system with advanced detector technology with improved sensitivity and spatial resolution. After 45 min uptake, a low-dose CT (40 mAs) from head to thigh was performed followed by 2-D PET (emission 3 min per field) and 3-D PET (emission 1.5 min per field) with both seven slices overlap to cover the identical anatomical region. Acquisition time was therefore 50% less (seven fields; 21 min vs. 10.5 min). PET data was acquired in a randomized fashion, so in 50% of the cases 2-D data was acquired first. CT data was used for attenuation correction. 2-D (OSEM) and 3-D PET images were iteratively reconstructed. Subjective analysis of 2-D and 3-D images was performed by two readers in a blinded, randomized fashion evaluating the following criteria: sharpness of organs (liver, chest wall/lung), overall image quality and detectability and dignity of each identified lesion. Objective analysis of PET data was investigated measuring maximum standard uptake value with lean body mass (SUV(max,LBM)) of identified lesions. On average, per patient, the SUV(max) was 7.86 (SD 7.79) for 2-D and 6.96 (SD 5.19) for 3-D. On a lesion basis, the average SUV(max) was 7.65 (SD 7.79) for 2-D and 6.75 (SD 5.89) for 3-D. The absolute difference on a paired t-test of SUV 3-D-2-D based on each measured lesion was significant with an average of -0.956 (P=0.002) and an average of -0.884 on a patient base (P<0.05). With 3-D the SUV(max) decreased by an average of 5.2% for each lesion, and an average of 6.0% for each patient. Subjective analysis showed fair inter-observer agreement regarding detectability (kappa=0.24 for 3-D; 0.36 for 3-D) and dignity (kappa=0.44 for 3-D and 0.4 for 2-D) of the lesions. There was no significant diagnostic difference between 3-D and 2-D. Only in one patient, a satellite liver metastasis of a colon cancer was missed in 3-D and detected only in 2-D. On average, the overall image quality for 3-D images was equal (in 24%) or inferior (in 76%) compared to 2-D. A possible major advantage of 3-D data acquisition is the faster patient throughput with a 50% reduction in scan time. The fully 3-D reconstruction technique has overcome the technical drawbacks of current 3-D imaging technique. In our limited number of patients there was no significant diagnostic difference between 2-D and fully 3-D.
Suárez-Boomgaard, Diana; Gago, Belén; Valderrama-Carvajal, Alejandra; Roales-Buján, Ruth; Van Craenenbroeck, Kathleen; Duchou, Jolien; Borroto-Escuela, Dasiel O.; Medina-Luque, José; de la Calle, Adelaida; Fuxe, Kjell; Rivera, Alicia
2014-01-01
The mu opioid receptor (MOR) is critical in mediating morphine analgesia. However, prolonged exposure to morphine induces adaptive changes in this receptor leading to the development of tolerance and addiction. In the present work we have studied whether the continuous administration of morphine induces changes in MOR protein levels, its pharmacological profile, and MOR-mediated G-protein activation in the striosomal compartment of the rat CPu, by using immunohistochemistry and receptor and DAMGO-stimulated [35S]GTPγS autoradiography. MOR immunoreactivity, agonist binding density and its coupling to G proteins are up-regulated in the striosomes by continuous morphine treatment in the absence of changes in enkephalin and dynorphin mRNA levels. In addition, co-treatment of morphine with the dopamine D4 receptor (D4R) agonist PD168,077 fully counteracts these adaptive changes in MOR, in spite of the fact that continuous PD168,077 treatment increases the [3H]DAMGO Bmax values to the same degree as seen after continuous morphine treatment. Thus, in spite of the fact that both receptors can be coupled to Gi/0 protein, the present results give support for the existence of antagonistic functional D4R-MOR receptor-receptor interactions in the adaptive changes occurring in MOR of striosomes on continuous administration of morphine. PMID:24451133
NASA Astrophysics Data System (ADS)
Priti, Gangwar, Reetesh Kumar; Srivastava, Rajesh
2018-04-01
A collisional radiative (C-R) model has been developed to diagnose the rf generated Ar-O2 (0%-5%) mixture plasma at low temperatures. Since in such plasmas the most dominant process is an electron impact excitation process, we considered several electron impact fine structure transitions in an argon atom from its ground as well as excited states. The cross-sections for these transitions have been obtained using the reliable fully relativistic distorted wave theory. Processes which account for the coupling of argon with the oxygen molecules have been further added to the model. We couple our model to the optical spectroscopic measurements reported by Jogi et al. [J. Phys. D: Appl. Phys. 47, 335206 (2014)]. The plasma parameters, viz. the electron density (ne) and the electron temperature (Te) as a function of O2 concentration have been obtained using thirteen intense emission lines out of 3p54p → 3p54s transitions observed in their spectroscopic measurements. It is found that as the content of O2 in Ar increases from 0%-5%, Te increases in the range 0.85-1.7 eV, while the electron density decreases from 2.76 × 1012-2.34 × 1011 cm-3. The Ar-3p54s (1si) fine-structure level populations at our extracted plasma parameters are found to be in very good agreement with those obtained from the measurements. Furthermore, we have estimated the individual contributions coming from the ground state, 1si manifolds and cascade contributions to the population of the radiating Ar-3p54p (2pi) states as a function of a trace amount of O2. Such information is very useful to understand the importance of various processes occurring in the plasma.
Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study.
Slobounov, Semyon M; Ray, William; Johnson, Brian; Slobounov, Elena; Newell, Karl M
2015-03-01
There is a growing empirical evidence that virtual reality (VR) is valuable for education, training, entertaining and medical rehabilitation due to its capacity to represent real-life events and situations. However, the neural mechanisms underlying behavioral confounds in VR environments are still poorly understood. In two experiments, we examined the effect of fully immersive 3D stereoscopic presentations and less immersive 2D VR environments on brain functions and behavioral outcomes. In Experiment 1 we examined behavioral and neural underpinnings of spatial navigation tasks using electroencephalography (EEG). In Experiment 2, we examined EEG correlates of postural stability and balance. Our major findings showed that fully immersive 3D VR induced a higher subjective sense of presence along with enhanced success rate of spatial navigation compared to 2D. In Experiment 1 power of frontal midline EEG (FM-theta) was significantly higher during the encoding phase of route presentation in the 3D VR. In Experiment 2, the 3D VR resulted in greater postural instability and modulation of EEG patterns as a function of 3D versus 2D environments. The findings support the inference that the fully immersive 3D enriched-environment requires allocation of more brain and sensory resources for cognitive/motor control during both tasks than 2D presentations. This is further evidence that 3D VR tasks using EEG may be a promising approach for performance enhancement and potential applications in clinical/rehabilitation settings. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Meyer, Harold D.
1999-01-01
This report provides a study of rotor and stator scattering using the SOURCE3D Rotor Wake/Stator Interaction Code. SOURCE3D is a quasi-three-dimensional computer program that uses three-dimensional acoustics and two-dimensional cascade load response theory to calculate rotor and stator modal reflection and transmission (scattering) coefficients. SOURCE3D is at the core of the TFaNS (Theoretical Fan Noise Design/Prediction System), developed for NASA, which provides complete fully coupled (inlet, rotor, stator, exit) noise solutions for turbofan engines. The reason for studying scattering is that we must first understand the behavior of the individual scattering coefficients provided by SOURCE3D, before eventually understanding the more complicated predictions from TFaNS. To study scattering, we have derived a large number of scattering curves for vane and blade rows. The curves are plots of output wave power divided by input wave power (in dB units) versus vane/blade ratio. Some of these plots are shown in this report. All of the plots are provided in a separate volume. To assist in understanding the plots, formulas have been derived for special vane/blade ratios for which wavefronts are either parallel or normal to rotor or stator chords. From the plots, we have found that, for the most part, there was strong transmission and weak reflection over most of the vane/blade ratio range for the stator. For the rotor, there was little transmission loss.
Infante, Ivan; Eliav, Ephraim; Vilkas, Marius J; Ishikawa, Yasuyuki; Kaldor, Uzi; Visscher, Lucas
2007-09-28
The ground and excited states of the UO(2) molecule have been studied using a Dirac-Coulomb intermediate Hamiltonian Fock-space coupled cluster approach (DC-IHFSCC). This method is unique in describing dynamic and nondynamic correlation energies at relatively low computational cost. Spin-orbit coupling effects have been fully included by utilizing the four-component Dirac-Coulomb Hamiltonian from the outset. Complementary calculations on the ionized systems UO(2) (+) and UO(2) (2+) as well as on the ions U(4+) and U(5+) were performed to assess the accuracy of this method. The latter calculations improve upon previously published theoretical work. Our calculations confirm the assignment of the ground state of the UO(2) molecule as a (3)Phi(2u) state that arises from the 5f(1)7s(1) configuration. The first state from the 5f(2) configuration is found above 10,000 cm(-1), whereas the first state from the 5f(1)6d(1) configuration is found at 5,047 cm(-1).
NASA Astrophysics Data System (ADS)
Weston, Brian; Nourgaliev, Robert; Delplanque, Jean-Pierre
2017-11-01
We present a new block-based Schur complement preconditioner for simulating all-speed compressible flow with phase change. The conservation equations are discretized with a reconstructed Discontinuous Galerkin method and integrated in time with fully implicit time discretization schemes. The resulting set of non-linear equations is converged using a robust Newton-Krylov framework. Due to the stiffness of the underlying physics associated with stiff acoustic waves and viscous material strength effects, we solve for the primitive-variables (pressure, velocity, and temperature). To enable convergence of the highly ill-conditioned linearized systems, we develop a physics-based preconditioner, utilizing approximate block factorization techniques to reduce the fully-coupled 3×3 system to a pair of reduced 2×2 systems. We demonstrate that our preconditioned Newton-Krylov framework converges on very stiff multi-physics problems, corresponding to large CFL and Fourier numbers, with excellent algorithmic and parallel scalability. Results are shown for the classic lid-driven cavity flow problem as well as for 3D laser-induced phase change. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Direct numerical simulation of human phonation
NASA Astrophysics Data System (ADS)
Saurabh, Shakti; Bodony, Daniel
2016-11-01
A direct numerical simulation study of the generation and propagation of the human voice in a full-body domain is conducted. A fully compressible fluid flow model, anatomically representative vocal tract geometry, finite deformation model for vocal fold (VF) motion and a fully coupled fluid-structure interaction model are employed. The dynamics of the multi-layered VF tissue with varying stiffness are solved using a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A new inflow boundary condition, based upon a quasi-1D formulation with constant sub-glottal volume velocity, linked to the VF movement, has been adopted. Simulations for both child and adult phonation were performed. Acoustic characteristics obtained from these simulation are consistent with expected values. A sensitivity analysis based on VF stiffness variation is undertaken and sound pressure level/fundamental frequency trends are established. An evaluation of the data against the commonly-used quasi-1D equations suggest that the latter are not sufficient to model phonation. Phonation threshold pressures are measured for several VF stiffness variations and comparisons to clinical data are carried out. Supported by the National Science Foundation (CAREER Award Number 1150439).
Whole lung morphometry with 3D multiple b-value hyperpolarized gas MRI and compressed sensing.
Chan, Ho-Fung; Stewart, Neil J; Parra-Robles, Juan; Collier, Guilhem J; Wild, Jim M
2017-05-01
To demonstrate three-dimensional (3D) multiple b-value diffusion-weighted (DW) MRI of hyperpolarized 3 He gas for whole lung morphometry with compressed sensing (CS). A fully-sampled, two b-value, 3D hyperpolarized 3 He DW-MRI dataset was acquired from the lungs of a healthy volunteer and retrospectively undersampled in the k y and k z phase-encoding directions for CS simulations. Optimal k-space undersampling patterns were determined by minimizing the mean absolute error between reconstructed and fully-sampled 3 He apparent diffusion coefficient (ADC) maps. Prospective three-fold, undersampled, 3D multiple b-value 3 He DW-MRI datasets were acquired from five healthy volunteers and one chronic obstructive pulmonary disease (COPD) patient, and the mean values of maps of ADC and mean alveolar dimension (Lm D ) were validated against two-dimensional (2D) and 3D fully-sampled 3 He DW-MRI experiments. Reconstructed undersampled datasets showed no visual artifacts and good preservation of the main image features and quantitative information. A good agreement between fully-sampled and prospective undersampled datasets was found, with a mean difference of +3.4% and +5.1% observed in mean global ADC and Lm D values, respectively. These differences were within the standard deviation range and consistent with values reported from healthy and COPD lungs. Accelerated CS acquisition has facilitated 3D multiple b-value 3 He DW-MRI scans in a single breath-hold, enabling whole lung morphometry mapping. Magn Reson Med 77:1916-1925, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Coupled Dictionary Learning for the Detail-Enhanced Synthesis of 3-D Facial Expressions.
Liang, Haoran; Liang, Ronghua; Song, Mingli; He, Xiaofei
2016-04-01
The desire to reconstruct 3-D face models with expressions from 2-D face images fosters increasing interest in addressing the problem of face modeling. This task is important and challenging in the field of computer animation. Facial contours and wrinkles are essential to generate a face with a certain expression; however, these details are generally ignored or are not seriously considered in previous studies on face model reconstruction. Thus, we employ coupled radius basis function networks to derive an intermediate 3-D face model from a single 2-D face image. To optimize the 3-D face model further through landmarks, a coupled dictionary that is related to 3-D face models and their corresponding 3-D landmarks is learned from the given training set through local coordinate coding. Another coupled dictionary is then constructed to bridge the 2-D and 3-D landmarks for the transfer of vertices on the face model. As a result, the final 3-D face can be generated with the appropriate expression. In the testing phase, the 2-D input faces are converted into 3-D models that display different expressions. Experimental results indicate that the proposed approach to facial expression synthesis can obtain model details more effectively than previous methods can.
Template assisted strain tuning and phase stabilization in epitaxial BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Saj Mohan M., M.; Ramadurai, Ranjith
2018-04-01
Strain engineering is a key to develop novel properties in functional materials. We report a strain mediated phase stabilization and epitaxial growth of bismuth ferrite(BiFeO3) thin films on LaAlO3 (LAO) substrates. The strain in the epitaxial layer is controlled by controlling the thickness of bottom electrode where the thickness of the BFO is kept constant. The thickness of La0.7Sr0.3MnO3(LSMO) template layer was optimized to grow completely strained tetragonal, tetragonal/rhombohedral mixed phase and fully relaxed rhombohedral phase of BFO layers. The results were confirmed with coupled-θ-2θ scan, and small area reciprocal space mapping. The piezoelectric d33 (˜ 45-48 pm/V) coefficient of the mixed phase was relatively larger than the strained tetragonal and relaxed rhombohedral phase for a given thickness.
NASA Astrophysics Data System (ADS)
Yang, Xiaohua; Hu, Haiquan; Chen, Zhida
The effect of magnetic exchange, double exchange, vibronic coupling, and asymmetry on magnetic properties of d2-d3 systems is discussed. The temperature-dependent magnetic moment was calculated with the semiclassical adiabatic approach. The results show that the vibronic coupling from the out-of-phase breathing vibration on the metal sites (Piepho, Krausz, and Schatz [PKS] model) and the vibronic coupling from the stretching vibration between the metal sites (P model) favor the localization and delocalization of the "extra" electron in mixed-valence dimers, respectively. The magnetic properties are determined by the interplay among magnetic exchange, double exchange, and vibronic coupling. The results obtained by analyzing d2-d3 systems can be generalized to other full delocalized dinuclear mixed valence systems with a unique transferable electron.
Fully resolved simulations of expansion waves propagating into particle beds
NASA Astrophysics Data System (ADS)
Marjanovic, Goran; Hackl, Jason; Annamalai, Subramanian; Jackson, Thomas; Balachandar, S.
2017-11-01
There is a tremendous amount of research that has been done on compression waves and shock waves moving over particles but very little concerning expansion waves. Using 3-D direct numerical simulations, this study will explore expansion waves propagating into fully resolved particle beds of varying volume fractions and geometric arrangements. The objectives of these simulations are as follows: 1) To fully resolve all (1-way coupled) forces on the particles in a time varying flow and 2) to verify state-of-the-art drag models for such complex flows. We will explore a range of volume fractions, from very low ones that are similar to single particle flows, to higher ones where nozzling effects are observed between neighboring particles. Further, we will explore two geometric arrangements: body centered cubic and face centered cubic. We will quantify the effects that volume fraction and geometric arrangement plays on the drag forces and flow fields experienced by the particles. These results will then be compared to theoretical predictions from a model based on the generalized Faxen's theorem. This work was supported in part by the U.S. Department of Energy under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
4.3 μm quantum cascade detector in pixel configuration.
Harrer, A; Schwarz, B; Schuler, S; Reininger, P; Wirthmüller, A; Detz, H; MacFarland, D; Zederbauer, T; Andrews, A M; Rothermund, M; Oppermann, H; Schrenk, W; Strasser, G
2016-07-25
We present the design simulation and characterization of a quantum cascade detector operating at 4.3μm wavelength. Array integration and packaging processes were investigated. The device operates in the 4.3μm CO2 absorption region and consists of 64 pixels. The detector is designed fully compatible to standard processing and material growth methods for scalability to large pixel counts. The detector design is optimized for a high device resistance at elevated temperatures. A QCD simulation model was enhanced for resistance and responsivity optimization. The substrate illuminated pixels utilize a two dimensional Au diffraction grating to couple the light to the active region. A single pixel responsivity of 16mA/W at room temperature with a specific detectivity D* of 5⋅107 cmHz/W was measured.
Vorticity and helicity decompositions and dynamics with real Schur form of the velocity gradient
NASA Astrophysics Data System (ADS)
Zhu, Jian-Zhou
2018-03-01
The real Schur form (RSF) of a generic velocity gradient field ∇u is exploited to expose the structures of flows, in particular, our field decomposition resulting in two vorticities with only mutual linkage as the topological content of the global helicity (accordingly decomposed into two equal parts). The local transformation to the RSF may indicate alternative (co)rotating frame(s) for specifying the objective argument(s) of the constitutive equation. When ∇u is uniformly of RSF in a fixed Cartesian coordinate frame, i.e., ux = ux(x, y) and uy = uy(x, y), but uz = uz(x, y, z), the model, with the decomposed vorticities both frozen-in to u, is for two-component-two-dimensional-coupled-with-one-component-three-dimensional flows in between two-dimensional-three-component (2D3C) and fully three-dimensional-three-component ones and may help curing the pathology in the helical 2D3C absolute equilibrium, making the latter effectively work in more realistic situations.
Full 3D opto-electronic simulation tool for nanotextured solar cells (Conference Presentation)
NASA Astrophysics Data System (ADS)
Michallon, Jérôme; Collin, Stéphane
2017-04-01
Increasing efforts on the photovoltaics research have recently been devoted to material savings, leading to the emergence of new designs based on nanotextured and nanowire-based solar cells. The use of small absorber volumes, light-trapping nanostructures and unconventional carrier collection schemes (radial nanowire junctions, point contacts in planar structures,…) increases the impact of surfaces recombination and induces homogeneity in the photogenerated carrier concentrations. The investigation of their impacts on the device performances need to be addressed using full 3D coupled opto-electrical modeling. In this context, we have developed a new tool for full 3D opto-electrical simulation using the most advanced optical and electrical simulation techniques. We will present an overview of its simulation capabilities and the key issues that have been solved to make it fully operational and reliable. We will provide various examples of opto-electronic simulation of (i) nanostructured solar cells with localized contacts and (ii) nanowire solar cells. We will also show how opto-electronic simulation can be used to simulate light- and electron-beam induced current (LBIC/EBIC) experiments, targeting quantitative analysis of the passivation properties of surfaces.
Fully implicit moving mesh adaptive algorithm
NASA Astrophysics Data System (ADS)
Serazio, C.; Chacon, L.; Lapenta, G.
2006-10-01
In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. Crucial elements are the development of an effective multilevel treatment of the grid equation, and a robust, rigorous error estimator. For the latter, we explore the effectiveness of a coarse grid correction error estimator, which faithfully reproduces spatial truncation errors for conservative equations. We will show that the moving mesh approach is competitive vs. uniform grids both in accuracy (due to adaptivity) and efficiency. Results for a variety of models 1D and 2D geometries will be presented. L. Chac'on, G. Lapenta, J. Comput. Phys., 212 (2), 703 (2006) G. Lapenta, L. Chac'on, J. Comput. Phys., accepted (2006)
PIXIE3D: A Parallel, Implicit, eXtended MHD 3D Code
NASA Astrophysics Data System (ADS)
Chacon, Luis
2006-10-01
We report on the development of PIXIE3D, a 3D parallel, fully implicit Newton-Krylov extended MHD code in general curvilinear geometry. PIXIE3D employs a second-order, finite-volume-based spatial discretization that satisfies remarkable properties such as being conservative, solenoidal in the magnetic field to machine precision, non-dissipative, and linearly and nonlinearly stable in the absence of physical dissipation. PIXIE3D employs fully-implicit Newton-Krylov methods for the time advance. Currently, second-order implicit schemes such as Crank-Nicolson and BDF2 (2^nd order backward differentiation formula) are available. PIXIE3D is fully parallel (employs PETSc for parallelism), and exhibits excellent parallel scalability. A parallel, scalable, MG preconditioning strategy, based on physics-based preconditioning ideas, has been developed for resistive MHD, and is currently being extended to Hall MHD. In this poster, we will report on progress in the algorithmic formulation for extended MHD, as well as the the serial and parallel performance of PIXIE3D in a variety of problems and geometries. L. Chac'on, Comput. Phys. Comm., 163 (3), 143-171 (2004) L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002); J. Comput. Phys., 188 (2), 573-592 (2003) L. Chac'on, 32nd EPS Conf. Plasma Physics, Tarragona, Spain, 2005 L. Chac'on et al., 33rd EPS Conf. Plasma Physics, Rome, Italy, 2006
EBM regeneration and changes in EBM component mRNA expression in stromal cells after corneal injury
Santhanam, Abirami; Marino, Gustavo K.; Torricelli, Andre A. M.
2017-01-01
Purpose To investigate the production of the epithelial basement membrane (EBM) component mRNAs at time points before lamina lucida and lamina densa regeneration in anterior stromal cells after corneal injury that would heal with and without fibrosis. Methods Rabbit corneas were removed from 2 to 19 days after −4.5D or −9.0D photorefractive keratectomy (PRK) with the VISX S4 IR laser. Corneas were evaluated with transmission electron microscopy (TEM) for full regeneration of the lamina lucida and the lamina densa. Laser capture microdissection (LCM) based quantitative real-time (RT)–PCR was used to quantitate the expression of mRNAs for laminin α-3 (LAMA3), perlecan, nidogen-1, and nidogen-2 in the anterior stroma. Results After −4.5D PRK, EBM was found to be fully regenerated at 8 to 10 days after surgery. At 4 days after PRK, the nidogen-2 and LAMA3 mRNAs levels were detected at statistically significantly lower levels in the anterior stroma of the −9.0D PRK corneas (where the EBM would not fully regenerate) compared to the −4.5D PRK corneas (where the EBM was destined to fully regenerate). At 7 days after PRK, nidogen-2 and LAMA3 mRNAs continued to be statistically significantly lower in the anterior stroma of the −9.0D PRK corneas compared to their expression in the anterior stroma of the −4.5D PRK corneas. Conclusions Key EBM components LAMA3 and nidogen-2 mRNAs are expressed at higher levels in the anterior stroma during EBM regeneration in the −4.5D PRK corneas where the EBM is destined to fully regenerate and no haze developed compared to the −9.0D PRK corneas where the EBM will not fully regenerate and myofibroblast-related stromal fibrosis (haze) will develop. PMID:28275314
Comparative study of quantal and semiclassical treatments of charge transfer between O+ and He
NASA Astrophysics Data System (ADS)
Zhao, L. B.; Joseph, D. C.; Saha, B. C.; Liebermann, H. P.; Funke, P.; Buenker, R. J.
2009-03-01
A comparative study for the electron capture process O+(S40,D20,P20)+He→O(P3)+He+ is reported. The cross sections are calculated using fully quantal and semiclassical molecular-orbital close-coupling (MOCC) approaches in the adiabatic representation. Detailed comparison of transition probabilities and cross sections is made from both MOCC approaches and displays close agreement above ˜125eV/u . The remarkable discrepancies between the earlier semiclassical and quantal MOCC approaches may be attributed to the insufficient step-size resolution in their semiclassical calculation [M. Kimura , Phys. Rev. A 50, 4854 (1994)]. Our results have also been compared with experiment and found to be in good agreement.
Graphene-based topological insulator with an intrinsic bulk band gap above room temperature.
Kou, Liangzhi; Yan, Binghai; Hu, Feiming; Wu, Shu-Chun; Wehling, Tim O; Felser, Claudia; Chen, Changfeng; Frauenheim, Thomas
2013-01-01
Topological insulators (TIs) represent a new quantum state of matter characterized by robust gapless states inside the insulating bulk gap. The metallic edge states of a two-dimensional (2D) TI, known as the quantum spin Hall (QSH) effect, are immune to backscattering and carry fully spin-polarized dissipationless currents. However, existing 2D TIs realized in HgTe and InAs/GaSb suffer from small bulk gaps (<10 meV) well below room temperature, thus limiting their application in electronic and spintronic devices. Here, we report a new 2D TI comprising a graphene layer sandwiched between two Bi2Se3 slabs that exhibits a large intrinsic bulk band gap of 30-50 meV, making it viable for room-temperature applications. Distinct from previous strategies for enhancing the intrinsic spin-orbit coupling effect of the graphene lattice, the present graphene-based TI operates on a new mechanism of strong inversion between graphene Dirac bands and Bi2Se3 conduction bands. Strain engineering leads to effective control and substantial enhancement of the bulk gap. Recently reported synthesis of smooth graphene/Bi2Se3 interfaces demonstrates the feasibility of experimental realization of this new 2D TI structure, which holds great promise for nanoscale device applications.
NASA Astrophysics Data System (ADS)
Leng, K.; Nissen-Meyer, T.; van Driel, M.; Al-Attar, D.
2016-12-01
We present a new, computationally efficient numerical method to simulate global seismic wave propagation in realistic 3-D Earth models with laterally heterogeneous media and finite boundary perturbations. Our method is a hybrid of pseudo-spectral and spectral element methods (SEM). We characterize the azimuthal dependence of 3-D wavefields in terms of Fourier series, such that the 3-D equations of motion reduce to an algebraic system of coupled 2-D meridional equations, which can be solved by a 2-D spectral element method (based on www.axisem.info). Computational efficiency of our method stems from lateral smoothness of global Earth models (with respect to wavelength) as well as axial singularity of seismic point sources, which jointly confine the Fourier modes of wavefields to a few lower orders. All boundary perturbations that violate geometric spherical symmetry, including Earth's ellipticity, topography and bathymetry, undulations of internal discontinuities such as Moho and CMB, are uniformly considered by means of a Particle Relabeling Transformation.The MPI-based high performance C++ code AxiSEM3D, is now available for forward simulations upon 3-D Earth models with fluid outer core, ellipticity, and both mantle and crustal structures. We show novel benchmarks for global wave solutions in 3-D mantle structures between our method and an independent, fully discretized 3-D SEM with remarkable agreement. Performance comparisons are carried out on three state-of-the-art tomography models, with seismic period going down to 5s. It is shown that our method runs up to two orders of magnitude faster than the 3-D SEM for such settings, and such computational advantage scales favourably with seismic frequency. By examining wavefields passing through hypothetical Gaussian plumes of varying sharpness, we identify in model-wavelength space the limits where our method may lose its advantage.
FULLY COUPLED "ONLINE" CHEMISTRY WITHIN THE WRF MODEL
A fully coupled "online" Weather Research and Forecasting/Chemistry (WRF/Chem) model has been developed. The air quality component of the model is fully consistent with the meteorological component; both components use the same transport scheme (mass and scalar preserving), the s...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besbas, Jean; Loong, Li Ming; Wu, Yang
2016-06-06
We investigate the role of Pt on the magnetization dynamics of Pt/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}/MgO with perpendicular magnetic anisotropy using the time resolved magneto-optic Kerr effect. Pt/Co{sub 2}FeAl{sub 0.5}Si{sub 0.5}/MgO shows ultrafast magnetization dynamics comparable to 3d ferromagnets and can be fully demagnetized. The demagnetization time τ{sub d} ∼ 0.27 ps and magnetic heat capacity are independent of the Pt underlayer, whereas the value of the electron-phonon coupling time τ{sub e} ∼ 0.77 ps depends on the presence of the Pt layer. We further measure the effective damping α{sub eff} ∼ 1 that does not scale as the inverse demagnetizationmore » time (1/τ{sub d}), but is strongly affected by the Pt layer.« less
NASA Astrophysics Data System (ADS)
Grunloh, Timothy P.
The objective of this dissertation is to develop a 3-D domain-overlapping coupling method that leverages the superior flow field resolution of the Computational Fluid Dynamics (CFD) code STAR-CCM+ and the fast execution of the System Thermal Hydraulic (STH) code TRACE to efficiently and accurately model thermal hydraulic transport properties in nuclear power plants under complex conditions of regulatory and economic importance. The primary contribution is the novel Stabilized Inertial Domain Overlapping (SIDO) coupling method, which allows for on-the-fly correction of TRACE solutions for local pressures and velocity profiles inside multi-dimensional regions based on the results of the CFD simulation. The method is found to outperform the more frequently-used domain decomposition coupling methods. An STH code such as TRACE is designed to simulate large, diverse component networks, requiring simplifications to the fluid flow equations for reasonable execution times. Empirical correlations are therefore required for many sub-grid processes. The coarse grids used by TRACE diminish sensitivity to small scale geometric details such as Reactor Pressure Vessel (RPV) internals. A CFD code such as STAR-CCM+ uses much finer computational meshes that are sensitive to the geometric details of reactor internals. In turbulent flows, it is infeasible to fully resolve the flow solution, but the correlations used to model turbulence are at a low level. The CFD code can therefore resolve smaller scale flow processes. The development of a 3-D coupling method was carried out with the intention of improving predictive capabilities of transport properties in the downcomer and lower plenum regions of an RPV in reactor safety calculations. These regions are responsible for the multi-dimensional mixing effects that determine the distribution at the core inlet of quantities with reactivity implications, such as fluid temperature and dissolved neutron absorber concentration.
Efficient coupling between Si3N4 photonic and hybrid slot-based CMOS plasmonic waveguide
NASA Astrophysics Data System (ADS)
Chatzianagnostou, E.; Ketzaki, D.; Manolis, A.; Dabos, G.; Pleros, N.; Markey, L.; Weeber, J.-C.; Dereux, A.; Giesecke, A. L.; Porschatis, C.; Tsiokos, D.
2018-02-01
Bringing photonics and electronics into a common integration platform can unleash unprecedented performance capabilities in data communication and sensing applications. Plasmonics were proposed as the key technology that can merge ultra-fast photonics and low-dimension electronics due to their metallic nature and their unique ability to guide light at sub-wavelength scales. However, inherent high losses of plasmonics in conjunction with the use of CMOS incompatible metals like gold and silver which are broadly utilized in plasmonic applications impede their broad utilization in Photonic Integrated Circuits (PICs). To overcome those limitations and fully exploit the profound benefits of plasmonics, they have to be developed along two technology directives. 1) Selectively co-integrate nanoscale plasmonics with low-loss photonics and 2) replace noble metals with alternative CMOS-compatible counterparts accelerating volume manufacturing of plasmo-photonic ICs. In this context, a hybrid plasmo-photonic structure utilizing the CMOS-compatible metals Aluminum (Al) and Copper (Cu) is proposed to efficiently transfer light between a low-loss Si3N4 photonic waveguide and a hybrid plasmonic slot waveguide. Specifically, a Si3N4 strip waveguide (photonic part) is located below a metallic slot (plasmonic part) forming a hybrid structure. This configuration, if properly designed, can support modes that exhibit quasi even or odd symmetry allowing power exchange between the two parts. According to 3D FDTD simulations, the proposed directional coupling scheme can achieve coupling efficiencies at 1550nm up to 60% and 74% in the case of Al and Cu respectively within a coupling length of just several microns.
NASA Astrophysics Data System (ADS)
Grenier, Christophe; Roux, Nicolas; Anbergen, Hauke; Collier, Nathaniel; Costard, Francois; Ferrry, Michel; Frampton, Andrew; Frederick, Jennifer; Holmen, Johan; Jost, Anne; Kokh, Samuel; Kurylyk, Barret; McKenzie, Jeffrey; Molson, John; Orgogozo, Laurent; Rivière, Agnès; Rühaak, Wolfram; Selroos, Jan-Olof; Therrien, René; Vidstrand, Patrik
2015-04-01
The impacts of climate change in boreal regions has received considerable attention recently due to the warming trends that have been experienced in recent decades and are expected to intensify in the future. Large portions of these regions, corresponding to permafrost areas, are covered by water bodies (lakes, rivers) that interact with the surrounding permafrost. For example, the thermal state of the surrounding soil influences the energy and water budget of the surface water bodies. Also, these water bodies generate taliks (unfrozen zones below) that disturb the thermal regimes of permafrost and may play a key role in the context of climate change. Recent field studies and modeling exercises indicate that a fully coupled 2D or 3D Thermo-Hydraulic (TH) approach is required to understand and model the past and future evolution of landscapes, rivers, lakes and associated groundwater systems in a changing climate. However, there is presently a paucity of 3D numerical studies of permafrost thaw and associated hydrological changes, and the lack of study can be partly attributed to the difficulty in verifying multi-dimensional results produced by numerical models. Numerical approaches can only be validated against analytical solutions for a purely thermic 1D equation with phase change (e.g. Neumann, Lunardini). When it comes to the coupled TH system (coupling two highly non-linear equations), the only possible approach is to compare the results from different codes to provided test cases and/or to have controlled experiments for validation. Such inter-code comparisons can propel discussions to try to improve code performances. A benchmark exercise was initialized in 2014 with a kick-off meeting in Paris in November. Participants from USA, Canada, Germany, Sweden and France convened, representing altogether 13 simulation codes. The benchmark exercises consist of several test cases inspired by existing literature (e.g. McKenzie et al., 2007) as well as new ones. They range from simpler, purely thermal cases (benchmark T1) to more complex, coupled 2D TH cases (benchmarks TH1, TH2, and TH3). Some experimental cases conducted in cold room complement the validation approach. A web site hosted by LSCE (Laboratoire des Sciences du Climat et de l'Environnement) is an interaction platform for the participants and hosts the test cases database at the following address: https://wiki.lsce.ipsl.fr/interfrost. The results of the first stage of the benchmark exercise will be presented. We will mainly focus on the inter-comparison of participant results for the coupled cases (TH1, TH2 & TH3). Further perspectives of the exercise will also be presented. Extensions to more complex physical conditions (e.g. unsaturated conditions and geometrical deformations) are contemplated. In addition, 1D vertical cases of interest to the Climate Modeling community will be proposed. Keywords: Permafrost; Numerical modeling; River-soil interaction; Arctic systems; soil freeze-thaw
Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation
Liu, Jinlong; Szybist, James; Dumitrescu, Cosmin
2018-04-03
3D CFD spark-ignition IC engine simulations are extremely complex for the regular user. Truly-predictive CFD simulations for the turbulent flame combustion that solve fully coupled transport/chemistry equations may require large computational capabilities unavailable to regular CFD users. A solution is to use a simpler phenomenological model such as the G-equation that decouples transport/chemistry result. Such simulation can still provide acceptable and faster results at the expense of predictive capabilities. While the G-equation is well understood within the experienced modeling community, the goal of this paper is to document some of them for a novice or less experienced CFD user whomore » may not be aware that phenomenological models of turbulent flame combustion usually require heavy tuning and calibration from the user to mimic experimental observations. This study used ANSYS® Forte, Version 17.2, and the built-in G-equation model, to investigate two tuning constants that influence flame propagation in 3D CFD SI engine simulations: the stretch factor coefficient, Cms and the flame development coefficient, Cm2. After identifying several Cm2-Cms pairs that matched experimental data at one operating conditions, simulation results showed that engine models that used different Cm2-Cms sets predicted similar combustion performance, when the spark timing, engine load, and engine speed were changed from the operating condition used to validate the CFD simulation. A dramatic shift was observed when engine speed was doubled, which suggested that the flame stretch coefficient, Cms, had a much larger influence at higher engine speeds compared to the flame development coefficient, Cm2. Therefore, the Cm2-Cms sets that predicted a higher turbulent flame under higher in-cylinder pressure and temperature increased the peak pressure and efficiency. This suggest that the choice of the Cm2-Cms will affect the G-equation-based simulation accuracy when engine speed increases from the one used to validate the model. As a result, for the less-experienced CFD user and in the absence of enough experimental data that would help retune the tuning parameters at various operating conditions, the purpose of a good G-equation-based 3D engine simulation is to guide and/or complement experimental investigations, not the other way around. Only a truly-predictive simulation that fully couples the turbulence/chemistry equations can help reduce the amount of experimental work.« less
Choice of Tuning Parameters on 3D IC Engine Simulations Using G-Equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jinlong; Szybist, James; Dumitrescu, Cosmin
3D CFD spark-ignition IC engine simulations are extremely complex for the regular user. Truly-predictive CFD simulations for the turbulent flame combustion that solve fully coupled transport/chemistry equations may require large computational capabilities unavailable to regular CFD users. A solution is to use a simpler phenomenological model such as the G-equation that decouples transport/chemistry result. Such simulation can still provide acceptable and faster results at the expense of predictive capabilities. While the G-equation is well understood within the experienced modeling community, the goal of this paper is to document some of them for a novice or less experienced CFD user whomore » may not be aware that phenomenological models of turbulent flame combustion usually require heavy tuning and calibration from the user to mimic experimental observations. This study used ANSYS® Forte, Version 17.2, and the built-in G-equation model, to investigate two tuning constants that influence flame propagation in 3D CFD SI engine simulations: the stretch factor coefficient, Cms and the flame development coefficient, Cm2. After identifying several Cm2-Cms pairs that matched experimental data at one operating conditions, simulation results showed that engine models that used different Cm2-Cms sets predicted similar combustion performance, when the spark timing, engine load, and engine speed were changed from the operating condition used to validate the CFD simulation. A dramatic shift was observed when engine speed was doubled, which suggested that the flame stretch coefficient, Cms, had a much larger influence at higher engine speeds compared to the flame development coefficient, Cm2. Therefore, the Cm2-Cms sets that predicted a higher turbulent flame under higher in-cylinder pressure and temperature increased the peak pressure and efficiency. This suggest that the choice of the Cm2-Cms will affect the G-equation-based simulation accuracy when engine speed increases from the one used to validate the model. As a result, for the less-experienced CFD user and in the absence of enough experimental data that would help retune the tuning parameters at various operating conditions, the purpose of a good G-equation-based 3D engine simulation is to guide and/or complement experimental investigations, not the other way around. Only a truly-predictive simulation that fully couples the turbulence/chemistry equations can help reduce the amount of experimental work.« less
NASA Astrophysics Data System (ADS)
Malka, Elad; Shvarts, Dov
2017-10-01
We re-examine the way 2/3D effects on scaling laws for ignition metrics, such as the generalized Lawson Criterion (GLC) and the Ignition Threshold Factor (ITF). These scaling laws were derived for 1D symmetrical case and 2/3D perturbations [Hann et al. PoP 2010; Lindl et al., PoP 2014; Betti et al., PoP 2010]. The main cause for the difference between the 1D and the 2/3D scaling laws in those works, is heat conduction losses from the hot-spot bubbles to the cold shell [Kishony and Shvarts, PoP 2001]. This ``dry out'' of the bubbles is the dominant mechanism for intermediate mode number perturbations (6
Baryon bags in strong coupling QCD
NASA Astrophysics Data System (ADS)
Gattringer, Christof
2018-04-01
We discuss lattice QCD with one flavor of staggered fermions and show that in the path integral the baryon contributions can be fully separated from quark and diquark contributions. The baryonic degrees of freedom (d.o.f.) are independent of the gauge field, and the corresponding free fermion action describes the baryons through the joint propagation of three quarks. The nonbaryonic dynamics is described by quark and diquark terms that couple to the gauge field. When evaluating the quark and diquark contributions in the strong coupling limit, the partition function completely factorizes into baryon bags and a complementary domain. Baryon bags are regions in space-time where the dynamics is described by a single free fermion made out of three quarks propagating coherently as a baryon. Outside the baryon bags, the relevant d.o.f. are monomers and dimers for quarks and diquarks. The partition sum is a sum over all baryon bag configurations, and for each bag, a free fermion determinant appears as a weight factor.
Wiens, Curtis N.; Artz, Nathan S.; Jang, Hyungseok; McMillan, Alan B.; Reeder, Scott B.
2017-01-01
Purpose To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. Theory and Methods A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Results Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. Conclusion A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. PMID:27403613
Saneyoshi, Hisao; Deschamps, Jeffrey R; Marquez, Victor E
2010-11-19
Two conformationally locked versions of l-deoxythreosyl phosphonate nucleosides (2 and 3) were synthesized to investigate the preference of HIV reverse transcriptase for a conformation displaying either a fully diaxial or fully diequatorial disposition of substituents. Synthesis of the enantiomeric 4-(6-amino-9H-purin-9-yl)bicyclo[3.1.0]hexan-2-ol carbocyclic nucleoside precursors (diaxially disposed) proceeded straightforwardly from commercially available (1R,4S)-4-hydroxy-2-cyclopent-2-enyl-1-yl acetate employing a hydroxyl-directed Simmons-Smith cyclopropanation that culminated with a Mitsunobu coupling of the purine base. For the more complicated 1-(6-amino-9H-purin-9-yl)bicyclo[3.1.0]hexan-3-ol carbocyclic nucleoside precursors (diequatorially disposed), the obligatory linear approach required the syntheses of key 1-aminobicyclo[3.1.0.]hexan-3-yl benzoate precursors that were assembled via the amide variant of the Kulinkovich reaction involving the intramolecular cyclopropanation of a substituted δ-vinylamide. Completion of the purine ring was achieved by conventional approaches but with much improved yields through the use of a microwave reactor. The syntheses of the phosphonates and the corresponding diphosphates were achieved by conventional means. None of the diphosphates, which were supposed to act as nucleoside triphosphate mimics, could compete with dATP even when present in a 10-fold excess.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, William W., E-mail: dai@lanl.gov; Scannapieco, Anthony J.
2015-11-01
A set of numerical schemes is developed for two- and three-dimensional time-dependent 3-T radiation diffusion equations in systems involving multi-materials. To resolve sub-cell structure, interface reconstruction is implemented within any cell that has more than one material. Therefore, the system of 3-T radiation diffusion equations is solved on two- and three-dimensional polyhedral meshes. The focus of the development is on the fully coupling between radiation and material, the treatment of nonlinearity in the equations, i.e., in the diffusion terms and source terms, treatment of the discontinuity across cell interfaces in material properties, the formulations for both transient and steady states,more » the property for large time steps, and second order accuracy in both space and time. The discontinuity of material properties between different materials is correctly treated based on the governing physics principle for general polyhedral meshes and full nonlinearity. The treatment is exact for arbitrarily strong discontinuity. The scheme is fully nonlinear for the full nonlinearity in the 3-T diffusion equations. Three temperatures are fully coupled and are updated simultaneously. The scheme is general in two and three dimensions on general polyhedral meshes. The features of the scheme are demonstrated through numerical examples for transient problems and steady states. The effects of some simplifications of numerical schemes are also shown through numerical examples, such as linearization, simple average of diffusion coefficient, and approximate treatment for the coupling between radiation and material.« less
NASA Astrophysics Data System (ADS)
Bortel, Emely L.; Langer, Max; Rack, Alexander; Forien, Jean-Baptiste; Duda, Georg N.; Fratzl, Peter; Zaslansky, Paul
2017-11-01
Holotomography, a phase sensitive synchrotron-based μCT modality, is a quantitative 3D imaging method. By exploiting partial spatial X-ray coherence, bones can be imaged volumetrically with high resolution coupled with impressive density sensitivity. This tomographic method reveals the main characteristics of the important tissue compartments in forming bones, including the rapidly-changing soft tissue and the partially or fully mineralized bone regions, while revealing subtle density differences in 3D. Here we show typical results observed within the growing femur bone midshafts of healthy mice that are 1, 3, 7, 10 and 14 days old (postpartum). Our results make use of partially-coherent synchrotron radiation employing inline Fresnel-propagation in multiple tomographic datasets obtained in the imaging beamline ID19 of the ESRF. The exquisite detail creates maps of the juxtaposed soft, partially mineralized and highly mineralized bone revealing the environment in which bone cells create and shape the matrix. This high resolution 3D data is a step towards creating realistic computational models that may be used to study the dynamic processes involved in bone tissue formation and adaptation. Such data will enhance our understanding of the important biomechanical interactions directing maturation and shaping of the bone micro- and macro-geometries.
A continuous mixing model for pdf simulations and its applications to combusting shear flows
NASA Technical Reports Server (NTRS)
Hsu, A. T.; Chen, J.-Y.
1991-01-01
The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in this work. A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models.
The Consequences of Spin-Orbit Coupling on the 5d3 Electronic Configuration
NASA Astrophysics Data System (ADS)
Christianson, A. D.
The impact of spin-orbit coupling on collective properties of matter is of considerable interest. The most intensively investigated materials in this regard are Iridium-based transition metal oxides which exhibit a host of interesting ground states that originate from a 5d5 Jeff = 1/2 electronic configuration. Moving beyond the Jeff = 1/2 paradigm to other electronic configurations where spin-orbit coupling plays a prominent role is a key objective of ongoing research. Here we focus on several Osmium-based transition metal oxides such as NaOsO3, Cd2Os2O7, Ca3LiOsO6, Sr2ScOsO6, Ba2YOsO6, and Sr2FeOsO6, which are nominally in the 5d3 electronic configuration. Within the LS coupling picture and a strong octahedral crystal field, the 5d3 configuration is expected to be an orbital singlet and spin-orbit effects should be minimal. Nevertheless, our neutron and x-ray scattering investigations of these materials as well as investigations by other groups show dramatic effects of spin-orbit coupling including reduced moment magnetic order, enhanced spin-phonon coupling, and large spin gaps. In particular, the anisotropy induced by spin-orbit coupling tips the balance of the frustrated interactions and drives the selection of particular magnetic ground states. To understand the mechanism driving the spin-orbit effects, we have explored the ground state t2g manifold with resonant inelastic x-ray scattering and observe a spectrum inexplicable by an LS coupling picture. On the other hand, an intermediate coupling approach reveals that the ground state wave function is a J =3/2 configuration which answers the question of how strong spin-orbit coupling effects arise in 5d3 systems.
NASA Astrophysics Data System (ADS)
Park, Joonhan; Choi, Yunkyoung; Lee, Myungjae; Jeon, Heonsu; Kim, Sunghwan
2014-12-01
A fully biocompatible plasmonic quasi-3D nanostructure is demonstrated by a simple and reliable fabrication method using strong adhesion between gold and silk fibroin. The quasi-3D nature gives rise to complex photonic responses in reflectance that are prospectively useful in bio/chemical sensing applications. Laser interference lithography is utilized to fabricate large-area plasmonic nanostructures.A fully biocompatible plasmonic quasi-3D nanostructure is demonstrated by a simple and reliable fabrication method using strong adhesion between gold and silk fibroin. The quasi-3D nature gives rise to complex photonic responses in reflectance that are prospectively useful in bio/chemical sensing applications. Laser interference lithography is utilized to fabricate large-area plasmonic nanostructures. Electronic supplementary information (ESI) available: The incident angle dependence of reflectance spectra and the atomic force microscopy image of the Au nanoparticle array on a silk film after 1 hour of ultrasonication. See DOI: 10.1039/c4nr05172f
NASA Astrophysics Data System (ADS)
Delile, Julien; Herrmann, Matthieu; Peyriéras, Nadine; Doursat, René
2017-01-01
The study of multicellular development is grounded in two complementary domains: cell biomechanics, which examines how physical forces shape the embryo, and genetic regulation and molecular signalling, which concern how cells determine their states and behaviours. Integrating both sides into a unified framework is crucial to fully understand the self-organized dynamics of morphogenesis. Here we introduce MecaGen, an integrative modelling platform enabling the hypothesis-driven simulation of these dual processes via the coupling between mechanical and chemical variables. Our approach relies upon a minimal `cell behaviour ontology' comprising mesenchymal and epithelial cells and their associated behaviours. MecaGen enables the specification and control of complex collective movements in 3D space through a biologically relevant gene regulatory network and parameter space exploration. Three case studies investigating pattern formation, epithelial differentiation and tissue tectonics in zebrafish early embryogenesis, the latter with quantitative comparison to live imaging data, demonstrate the validity and usefulness of our framework.
Improper magnetic ferroelectricity of nearly pure electronic nature in helicoidal spiral CaMn7O12
NASA Astrophysics Data System (ADS)
Lim, Jin Soo; Saldana-Greco, Diomedes; Rappe, Andrew M.
2018-01-01
Helicoidal magnetic order breaks inversion symmetry in quadruple perovskite CaMn7O12 , generating one of the largest spin-induced ferroelectric polarizations measured to date. Here, the microscopic origin of the polarization, including exchange interactions, coupling to the spin helicity, and charge density redistribution, is explored via first-principles calculations. The B -site Mn4 + (Mn3) spin adopts a noncentrosymmetric configuration, stabilized not only by spin-orbit coupling (SOC), but also by the fully anisotropic Hubbard J parameter in the absence of SOC, to break inversion symmetry and generate polarization. Berry phase computed polarization (Pelec=2169 μ C /m2 ) exhibits nearly pure electronic behavior, with negligible Mn displacements (≈0.7 m Å ). Orbital-resolved density of states shows that p -d orbital mixing is microscopically driven by nonrelativistic exchange striction within the commensurate ionic structure. Persistent electronic polarization induced by helical spin order in the nearly inversion-symmetric ionic crystal lattice suggests opportunities for ultrafast magnetoelectric response.
Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S V
2014-04-01
Design and development of a high power ultra-wideband, 3 dB tandem hybrid coupler is presented and its application in ICRF heating of the tokamak is discussed. In order to achieve the desired frequency band of 38-112 MHz and 200 kW power handling capability, the 3 dB hybrid coupler is developed using two 3-element 8.34 ± 0.2 dB coupled lines sections in tandem. In multi-element coupled lines, junctions are employed for the joining of coupled elements that produce the undesirable reactance called junction discontinuity effect. The effect becomes prominent in the high power multi-element coupled lines for high frequency (HF) and very high frequency(VHF) applications because of larger structural dimensions. Junction discontinuity effect significantly deteriorates coupling and output performance from the theoretical predictions. For the analysis of junction discontinuity effect and its compensation, a theoretical approach has been developed and generalized for n-element coupled lines section. The theory has been applied in the development of the 3 dB hybrid coupler. The fabricated hybrid coupler has been experimentally characterized using vector network analyzer and obtained results are found in good agreement with developed theory.
3D analysis of eddy current loss in the permanent magnet coupling.
Zhu, Zina; Meng, Zhuo
2016-07-01
This paper first presents a 3D analytical model for analyzing the radial air-gap magnetic field between the inner and outer magnetic rotors of the permanent magnet couplings by using the Amperian current model. Based on the air-gap field analysis, the eddy current loss in the isolation cover is predicted according to the Maxwell's equations. A 3D finite element analysis model is constructed to analyze the magnetic field spatial distributions and vector eddy currents, and then the simulation results obtained are analyzed and compared with the analytical method. Finally, the current losses of two types of practical magnet couplings are measured in the experiment to compare with the theoretical results. It is concluded that the 3D analytical method of eddy current loss in the magnet coupling is viable and could be used for the eddy current loss prediction of magnet couplings.
NASA Astrophysics Data System (ADS)
Yakushev, Evgeniy V.; Protsenko, Elizaveta A.; Bruggeman, Jorn; Wallhead, Philip; Pakhomova, Svetlana V.; Yakubov, Shamil Kh.; Bellerby, Richard G. J.; Couture, Raoul-Marie
2017-02-01
Interactions between seawater and benthic systems play an important role in global biogeochemical cycling. Benthic fluxes of some chemical elements (e.g., C, N, P, O, Si, Fe, Mn, S) alter the redox state and marine carbonate system (i.e., pH and carbonate saturation state), which in turn modulate the functioning of benthic and pelagic ecosystems. The redox state of the near-bottom layer in many regions can change with time, responding to the supply of organic matter, physical regime, and coastal discharge. We developed a model (BROM) to represent key biogeochemical processes in the water and sediments and to simulate changes occurring in the bottom boundary layer. BROM consists of a transport module (BROM-transport) and several biogeochemical modules that are fully compatible with the Framework for the Aquatic Biogeochemical Models, allowing independent coupling to hydrophysical models in 1-D, 2-D, or 3-D. We demonstrate that BROM is capable of simulating the seasonality in production and mineralization of organic matter as well as the mixing that leads to variations in redox conditions. BROM can be used for analyzing and interpreting data on sediment-water exchange, and for simulating the consequences of forcings such as climate change, external nutrient loading, ocean acidification, carbon storage leakage, and point-source metal pollution.
Park, Joonhan; Choi, Yunkyoung; Lee, Myungjae; Jeon, Heonsu; Kim, Sunghwan
2015-01-14
A fully biocompatible plasmonic quasi-3D nanostructure is demonstrated by a simple and reliable fabrication method using strong adhesion between gold and silk fibroin. The quasi-3D nature gives rise to complex photonic responses in reflectance that are prospectively useful in bio/chemical sensing applications. Laser interference lithography is utilized to fabricate large-area plasmonic nanostructures.
NASA Astrophysics Data System (ADS)
Pianezze, J.; Barthe, C.; Bielli, S.; Tulet, P.; Jullien, S.; Cambon, G.; Bousquet, O.; Claeys, M.; Cordier, E.
2018-03-01
Ocean-Waves-Atmosphere (OWA) exchanges are not well represented in current Numerical Weather Prediction (NWP) systems, which can lead to large uncertainties in tropical cyclone track and intensity forecasts. In order to explore and better understand the impact of OWA interactions on tropical cyclone modeling, a fully coupled OWA system based on the atmospheric model Meso-NH, the oceanic model CROCO, and the wave model WW3 and called MSWC was designed and applied to the case of tropical cyclone Bejisa (2013-2014). The fully coupled OWA simulation shows good agreement with the literature and available observations. In particular, simulated significant wave height is within 30 cm of measurements made with buoys and altimeters. Short-term (< 2 days) sensitivity experiments used to highlight the effect of oceanic waves coupling show limited impact on the track, the intensity evolution, and the turbulent surface fluxes of the tropical cyclone. However, it is also shown that using a fully coupled OWA system is essential to obtain consistent sea salt emissions. Spatial and temporal coherence of the sea state with the 10 m wind speed are necessary to produce sea salt aerosol emissions in the right place (in the eyewall of the tropical cyclone) and with the right size distribution, which is critical for cloud microphysics.
Laboratory Measurements for H3+ Deuteration Reactions
NASA Astrophysics Data System (ADS)
Bowen, Kyle; Hillenbrand, Pierre-Michel; Urbain, Xavier; Savin, Daniel Wolf
2018-06-01
Deuterated molecules are important chemical tracers of protostellar cores. At the ~106 cm-3 particle densities and ~20 K temperatures typical for protostellar cores, most molecules freeze onto dust grains. A notable exception is H3+ and its isotopologues. These become important carriers of positive charge in the gas, can couple to any ambient magnetic field, and can thereby alter the cloud dynamics. Knowing the total abundance of H3+ and its isotopologues is important for studying the evolution of protostellar cores. However, H3+ and D3+ have no dipole moment. They lack a pure rotational spectrum and are not observable at protostellar core temperatures. Fortunately H2D+ and D2H+ have dipole moments and a pure rotational spectrum that can be excited in protostellar cores. Observations of these two molecules, combined with astrochemical models, provide information about the total abundance of H3+ and all its isotopologues. The inferred abundances, though, rely on accurate astrochemical data for the deuteration of H3+ and its isotopologues.Here we present laboratory measurements of the rate coefficients for three important deuterating reactions, namely D + H3+/H2D+/D2H+ → H + H2D+/ D2H+/D3+. Astrochemical models currently rely on rate coefficients from classical (Langevin) or semi-classical methods for these reactions, as fully quantum-mechanical calculations are beyond current computational capabilities. Laboratory studies are the most tractable means of providing the needed data. For our studies we used our novel dual-source, merged fast-beams apparatus, which enables us to study reactions of neutral atoms and molecular ions. Co-propagating beams allow us to measure experimental rate coefficients as a function of collision energy. We extract cross section data from these results, which we then convolve with a Maxwell-Boltzmann distribution to generate thermal rate coefficients. Here we present our results for these three reactions and discuss some implications.
Slope instability in complex 3D topography promoted by convergent 3D groundwater flow
NASA Astrophysics Data System (ADS)
Reid, M. E.; Brien, D. L.
2012-12-01
Slope instability in complex topography is generally controlled by the interaction between gravitationally induced stresses, 3D strengths, and 3D pore-fluid pressure fields produced by flowing groundwater. As an example of this complexity, coastal bluffs sculpted by landsliding commonly exhibit a progression of undulating headlands and re-entrants. In this landscape, stresses differ between headlands and re-entrants and 3D groundwater flow varies from vertical rainfall infiltration to lateral groundwater flow on lower permeability layers with subsequent discharge at the curved bluff faces. In plan view, groundwater flow converges in the re-entrant regions. To investigate relative slope instability induced by undulating topography, we couple the USGS 3D limit-equilibrium slope-stability model, SCOOPS, with the USGS 3D groundwater flow model, MODFLOW. By rapidly analyzing the stability of millions of potential failures, the SCOOPS model can determine relative slope stability throughout the 3D domain underlying a digital elevation model (DEM), and it can utilize both fully 3D distributions of pore-water pressure and material strength. The two models are linked by first computing a groundwater-flow field in MODFLOW, and then computing stability in SCOOPS using the pore-pressure field derived from groundwater flow. Using these two models, our analyses of 60m high coastal bluffs in Seattle, Washington showed augmented instability in topographic re-entrants given recharge from a rainy season. Here, increased recharge led to elevated perched water tables with enhanced effects in the re-entrants owing to convergence of groundwater flow. Stability in these areas was reduced about 80% compared to equivalent dry conditions. To further isolate these effects, we examined groundwater flow and stability in hypothetical landscapes composed of uniform and equally spaced, oscillating headlands and re-entrants with differing amplitudes. The landscapes had a constant slope for both headlands and re-entrants to minimize slope effects on stability. Despite these equal slopes, our analyses, given dry conditions, illustrated that the headlands can be 5-7% less stable than the re-entrants, owing to the geometry of the 3D failure mass with the lowest stability. We then simulated groundwater flow in these landscapes; flow was caused by recharge perching on a horizontal low permeability layer with discharge at the bluff faces. By systematically varying recharge, hydraulic conductivity of the material, and conductance at the bluffs, we created different 3D pore-pressure fields. Recharge rates and hydraulic conductivities controlled the height of the water table, whereas bluff conductance influenced the gradient of the water table near the bluff face. Given elevated water tables with steep gradients, bluffs in the re-entrants became unstable where flow converged. Thus, with progressively stronger effects from water flow, overall instability evolved from relatively unstable headlands to more uniform stability to relatively unstable re-entrants. Larger re-entrants led to more 3D flow convergence and greater localized instability. One- or two-dimensional models cannot fully characterize slope instability in complex topography.
Mediterranea Forecasting System: a focus on wave-current coupling
NASA Astrophysics Data System (ADS)
Clementi, Emanuela; Delrosso, Damiano; Pistoia, Jenny; Drudi, Massimiliano; Fratianni, Claudia; Grandi, Alessandro; Pinardi, Nadia; Oddo, Paolo; Tonani, Marina
2016-04-01
The Mediterranean Forecasting System (MFS) is a numerical ocean prediction system that produces analyses, reanalyses and short term forecasts for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. MFS became operational in the late 90's and has been developed and continuously improved in the framework of a series of EU and National funded programs and is now part of the Copernicus Marine Service. The MFS is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third generation wave model WW3 (WaveWatchIII) implemented in the Mediterranean Sea with 1/16 horizontal resolution and forced by ECMWF atmospheric fields. The model solutions are corrected by the data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle, using a background error correlation matrix varying seasonally and in different sub-regions of the Mediterranean Sea. The focus of this work is to present the latest modelling system upgrades and the related achieved improvements. In order to evaluate the performance of the coupled system a set of experiments has been built by coupling the wave and circulation models that hourly exchange the following fields: the sea surface currents and air-sea temperature difference are transferred from NEMO model to WW3 model modifying respectively the mean momentum transfer of waves and the wind speed stability parameter; while the neutral drag coefficient computed by WW3 model is passed to NEMO that computes the turbulent component. In order to validate the modelling system, numerical results have been compared with in-situ and remote sensing data. This work suggests that a coupled model might be capable of a better description of wave-current interactions, in particular feedback from the ocean to the waves might assess an improvement on the prediction capability of wave characteristics, while suggests to proceed toward a fully coupled modelling system in order to achieve stronger enhancements of the hydrodynamic fields.
Sensitivity Analysis of Multidisciplinary Rotorcraft Simulations
NASA Technical Reports Server (NTRS)
Wang, Li; Diskin, Boris; Biedron, Robert T.; Nielsen, Eric J.; Bauchau, Olivier A.
2017-01-01
A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. An unstructured sensitivity-enabled Navier-Stokes solver, FUN3D, and a nonlinear flexible multibody dynamics solver, DYMORE, are coupled to predict the aerodynamic loads and structural responses of helicopter rotor blades. A discretely-consistent adjoint-based sensitivity analysis available in FUN3D provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute DYMORE structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Numerical results verify accuracy of the FUN3D/DYMORE system by conducting simulations for a benchmark rotorcraft test model and comparing solutions with established analyses and experimental data. Complex-variable implementation of sensitivity analysis of DYMORE and the coupled FUN3D/DYMORE system is verified by comparing with real-valued analysis and sensitivities. Correctness of adjoint formulations for FUN3D/DYMORE interfaces is verified by comparing adjoint-based and complex-variable sensitivities. Finally, sensitivities of the lift and drag functions obtained by complex-variable FUN3D/DYMORE simulations are compared with sensitivities computed by the multidisciplinary sensitivity analysis, which couples adjoint-based flow and grid sensitivities of FUN3D and FUN3D/DYMORE interfaces with complex-variable sensitivities of DYMORE structural responses.
NASA Astrophysics Data System (ADS)
Wu, Hong; Li, Peng; Li, Yulong
2016-02-01
This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.
A 2D-3D strategy for resolving tsunami-generated debris flow in urban environments
NASA Astrophysics Data System (ADS)
Birjukovs Canelas, Ricardo; Conde, Daniel; Garcia-Feal, Orlando; João Telhado, Maria; Ferreira, Rui M. L.
2017-04-01
The incorporation of solids, either sediment from the natural environment or remains from buildings or infrastructures is a relevant feature of tsunami run-up in urban environments, greatly increasing the destructive potential of tsunami propagation. Two-dimensional (2D) models have been used to assess the propagation of the bore, even in dense urban fronts. Computational advances are introduced in this work, namely a fully lagrangian, 3D description of the fluid-solid flow, coupled with a high performance meshless implementation capable of dealing with large domains and fine discretizations. A Smoothed Particle Hydrodynamics (SPH) Navier-Stokes discretization and a Distributed Contact Discrete Element Method (DCDEM) description of solid-solid interactions provide a state-of the-art fluid-solid flow description. Together with support for arbitrary geometries, centimetre scale resolution simulations of a city section in Lisbon downtown are presented. 2D results are used as boundary conditions for the 3D model, characterizing the incoming wave as it approaches the coast. It is shown that the incoming bore is able to mobilize and incorporate standing vehicles and other urban hardware. Such fully featured simulation provides explicit description of the interactions among fluid, floating debris (vehicles and urban furniture), the buildings and the pavement. The proposed model presents both an innovative research tool for the study of these flows and a powerful and robust approach to study, design and test mitigation solutions at the local scale. At the same time, due to the high time and space resolution of these methodologies, new questions are raised: scenario-building and initial configurations play a crucial role but they do not univocally determine the final configuration of the simulation, as the solution of the Navier-Stokes equations for high Reynolds numbers possesses a high number of degrees of freedom. This calls for conducting the simulations in a statistical framework, involving both initial conditions generation and interpretation of results, which is only attainable under very high standards of computational efficiency. This research as partially supported by Portuguese and European funds, within programs COMPETE2020 and PORL-FEDER, through project PTDC/ECM-HID/6387/2014 granted by the National Foundation for Science and Technology (FCT).
Liu, Fang; Zhou, Zhaoye; Jang, Hyungseok; Samsonov, Alexey; Zhao, Gengyan; Kijowski, Richard
2018-04-01
To describe and evaluate a new fully automated musculoskeletal tissue segmentation method using deep convolutional neural network (CNN) and three-dimensional (3D) simplex deformable modeling to improve the accuracy and efficiency of cartilage and bone segmentation within the knee joint. A fully automated segmentation pipeline was built by combining a semantic segmentation CNN and 3D simplex deformable modeling. A CNN technique called SegNet was applied as the core of the segmentation method to perform high resolution pixel-wise multi-class tissue classification. The 3D simplex deformable modeling refined the output from SegNet to preserve the overall shape and maintain a desirable smooth surface for musculoskeletal structure. The fully automated segmentation method was tested using a publicly available knee image data set to compare with currently used state-of-the-art segmentation methods. The fully automated method was also evaluated on two different data sets, which include morphological and quantitative MR images with different tissue contrasts. The proposed fully automated segmentation method provided good segmentation performance with segmentation accuracy superior to most of state-of-the-art methods in the publicly available knee image data set. The method also demonstrated versatile segmentation performance on both morphological and quantitative musculoskeletal MR images with different tissue contrasts and spatial resolutions. The study demonstrates that the combined CNN and 3D deformable modeling approach is useful for performing rapid and accurate cartilage and bone segmentation within the knee joint. The CNN has promising potential applications in musculoskeletal imaging. Magn Reson Med 79:2379-2391, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Asay-Davis, Xylar; Martin, Daniel; Price, Stephen; Maltrud, Mathew
2014-05-01
We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and ice-sheet evolution models. This presentation focuses on the ocean model, POP2x, which is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). A companion presentation, 'Fully resolved whole-continent Antarctica simulations using the BISICLES AMR ice sheet model coupled with the POP2x Ocean Model', concentrates more on the ice-sheet model, BISICLES (Cornford et al., 2012), which includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (Southern Ocean) simulations using POP2x at 0.1 degree resolution with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to sequentially update the sub-shelf cavity geometry seen by POP2x.
NASA Astrophysics Data System (ADS)
Moucha, R.; Ruetenik, G.; de Boer, B.
2017-12-01
Reconciling elevations of paleoshorelines along the US Atlantic passive margin with estimates of eustatic sea level have long posed to be a challenge. Discrepancies between shoreline elevation and sea level have been attributed to combinations of tectonics, glacial isostatic adjustment, mantle convection, gravitation and/or errors, for example, in the inference of eustatic sea level from the marine 18O record. Herein we present a numerical model of landscape evolution combined with sea level change and solid Earth deformations to demonstrate the importance of flexural effects in response to erosion and sedimentation along the US Atlantic passive margin. We quantify these effects using two different temporal models. One reconciles the Orangeburg scarp, a well-documented 3.5 million-year-old mid-Pliocene shoreline, with a 15 m mid-Pliocene sea level above present-day (Moucha and Ruetenik, 2017). The other model focuses on the evolution of the South Carolina and northern Georgia margin since MIS 11 ( 400 Ka) using a fully coupled ice sheet, sea level and solid Earth model (de Boer et al, 2014) while relating our results to a series of enigmatic sea level high stand markers. de Boer, B., Stocci, P., and van de Wal, R. (2014). A fully coupled 3-d ice-sheet-sea-level model: algorithm and applications. Geoscientific Model Development, 7:2141-2156. Moucha, R. and Ruetenik, G. A. (2017). Interplay between dynamic topography and flexure along the US Atlantic passive margin: Insights from landscape evolution modeling. Global and Planetary Change, 149: 72-78
A Fully Integrated Global Strategic Supply Network - A Critical Enabler of DoD Transformation
2004-01-01
deliver these critical capabilities more efficiently. Increasing US budget deficits coupled with growing health care and social security demands are...forming alliances which are mutually beneficial for industry and our international partners. 10 Recommendations Our analysis concludes that the...on SAP investments”, Chemical Week, 23 Apr 2003, Vol. 165, No. 15. Tarnowski, J. “Data to Dollars: Progressive Grocer.” VNU Business Media Inc
NASA Astrophysics Data System (ADS)
Adams, T. E.
2016-12-01
Accurate and timely predictions of the lateral exent of floodwaters and water level depth in floodplain areas are critical globally. This paper demonstrates the coupling of hydrologic ensembles, derived from the use of numerical weather prediction (NWP) model forcings as input to a fully distributed hydrologic model. Resulting ensemble output from the distributed hydrologic model are used as upstream flow boundaries and lateral inflows to a 1-D hydrodynamic model. An example is presented for the Potomac River in the vicinity of Washington, DC (USA). The approach taken falls within the broader goals of the Hydrologic Ensemble Prediction EXperiment (HEPEX).
Spin-Orbit Coupling Controlled J = 3 / 2 Electronic Ground State in 5 d 3 Oxides
Taylor, A. E.; Calder, S.; Morrow, R.; ...
2017-05-16
Spin-orbit entanglement in 5d-based transition metal oxides (TMOs) has been identified as a route to a host of unconventional physical states including quantum spin liquids, Weyl semimetals, and axion insulators. Yet despite intense interest, no clear rules have emerged for the treatment of spin-orbit coupling (SOC) in 5d TMOs outside of idealised LS or jj coupling paradigms. This is exemplified in 5d 3 oxides in which an orbitally-quenched singlet ground state is anticipated, yet SOC is manifest in the observed magnetic properties. Here we solve this long-outstanding puzzle by revealing that the electronic ground state of Os5+ 5d 3 ionsmore » is an unquenched J = 3/2 state. Resonant inelastic x-ray scattering (RIXS) in Ca3LiOsO6 and Ba 2YOsO 6 exposes a SOC-controlled splitting of the t 2g manifold. The results are successfully described using an intermediate-coupling framework in which oxygen hybridisation promotes the breakdown of the orbital singlet. This framework opens the door to realistic treatment of SOC across a range of 5d TMOs beyond the 5d 3 case.« less
Spin-Orbit Coupling Controlled J = 3 / 2 Electronic Ground State in 5 d 3 Oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, A. E.; Calder, S.; Morrow, R.
Spin-orbit entanglement in 5d-based transition metal oxides (TMOs) has been identified as a route to a host of unconventional physical states including quantum spin liquids, Weyl semimetals, and axion insulators. Yet despite intense interest, no clear rules have emerged for the treatment of spin-orbit coupling (SOC) in 5d TMOs outside of idealised LS or jj coupling paradigms. This is exemplified in 5d 3 oxides in which an orbitally-quenched singlet ground state is anticipated, yet SOC is manifest in the observed magnetic properties. Here we solve this long-outstanding puzzle by revealing that the electronic ground state of Os5+ 5d 3 ionsmore » is an unquenched J = 3/2 state. Resonant inelastic x-ray scattering (RIXS) in Ca3LiOsO6 and Ba 2YOsO 6 exposes a SOC-controlled splitting of the t 2g manifold. The results are successfully described using an intermediate-coupling framework in which oxygen hybridisation promotes the breakdown of the orbital singlet. This framework opens the door to realistic treatment of SOC across a range of 5d TMOs beyond the 5d 3 case.« less
Digitally Controlled Slot Coupled Patch Array
NASA Technical Reports Server (NTRS)
D'Arista, Thomas; Pauly, Jerry
2010-01-01
A four-element array conformed to a singly curved conducting surface has been demonstrated to provide 2 dB axial ratio of 14 percent, while maintaining VSWR (voltage standing wave ratio) of 2:1 and gain of 13 dBiC. The array is digitally controlled and can be scanned with the LMS Adaptive Algorithm using the power spectrum as the objective, as well as the Direction of Arrival (DoA) of the beam to set the amplitude of the power spectrum. The total height of the array above the conducting surface is 1.5 inches (3.8 cm). A uniquely configured microstrip-coupled aperture over a conducting surface produced supergain characteristics, achieving 12.5 dBiC across the 2-to-2.13- GHz and 2.2-to-2.3-GHz frequency bands. This design is optimized to retain VSWR and axial ratio across the band as well. The four elements are uniquely configured with respect to one another for performance enhancement, and the appropriate phase excitation to each element for scan can be found either by analytical beam synthesis using the genetic algorithm with the measured or simulated far field radiation pattern, or an adaptive algorithm implemented with the digitized signal. The commercially available tuners and field-programmable gate array (FPGA) boards utilized required precise phase coherent configuration control, and with custom code developed by Nokomis, Inc., were shown to be fully functional in a two-channel configuration controlled by FPGA boards. A four-channel tuner configuration and oscilloscope configuration were also demonstrated although algorithm post-processing was required.
NASA Astrophysics Data System (ADS)
Grenier, Christophe; Rühaak, Wolfram
2016-04-01
Climate change impacts in permafrost regions have received considerable attention recently due to the pronounced warming trends experienced in recent decades and which have been projected into the future. Large portions of these permafrost regions are characterized by surface water bodies (lakes, rivers) that interact with the surrounding permafrost often generating taliks (unfrozen zones) within the permafrost that allow for hydrologic interactions between the surface water bodies and underlying aquifers and thus influence the hydrologic response of a landscape to climate change. Recent field studies and modeling exercises indicate that a fully coupled 2D or 3D Thermo-Hydraulic (TH) approach is required to understand and model past and future evolution such units (Kurylyk et al. 2014). However, there is presently a paucity of 3D numerical studies of permafrost thaw and associated hydrological changes, which can be partly attributed to the difficulty in verifying multi-dimensional results produced by numerical models. A benchmark exercise was initialized at the end of 2014. Participants convened from USA, Canada, Europe, representing 13 simulation codes. The benchmark exercises consist of several test cases inspired by existing literature (e.g. McKenzie et al., 2007) as well as new ones (Kurylyk et al. 2014; Grenier et al. in prep.; Rühaak et al. 2015). They range from simpler, purely thermal 1D cases to more complex, coupled 2D TH cases (benchmarks TH1, TH2, and TH3). Some experimental cases conducted in a cold room complement the validation approach. A web site hosted by LSCE (Laboratoire des Sciences du Climat et de l'Environnement) is an interaction platform for the participants and hosts the test case databases at the following address: https://wiki.lsce.ipsl.fr/interfrost. The results of the first stage of the benchmark exercise will be presented. We will mainly focus on the inter-comparison of participant results for the coupled cases TH2 & TH3. Both cases are essentially theoretical but include the full complexity of the coupled non-linear set of equations (heat transfer with conduction, advection, phase change and Darcian flow). The complete set of inter-comparison results shows that the participating codes all produce simulations which are quantitatively similar and correspond to physical intuition. From a quantitative perspective, they agree well over the whole set of performance measures. The differences among the simulation results will be discussed in more depth throughout the test cases especially for the identification of the threshold times for each system as these exhibited the least agreement. However, the results suggest that in spite of the difficulties associated with the resolution of the set of TH equations (coupled and non-linear structure with phase change providing steep slopes), the developed codes provide robust results with a qualitatively reasonable representation of the processes and offer a quantitatively realistic basis. Further perspectives of the exercise will also be presented.
Developing of operational hydro-meteorological simulating and displaying system
NASA Astrophysics Data System (ADS)
Wang, Y.; Shih, D.; Chen, C.
2010-12-01
Hydrological hazards, which often occur in conjunction with extreme precipitation events, are the most frequent type of natural disaster in Taiwan. Hence, the researchers at the Taiwan Typhoon and Flood Research Institute (TTFRI) are devoted to analyzing and gaining a better understanding of the causes and effects of natural disasters, and in particular, typhoons and floods. The long-term goal of the TTFRI is to develop a unified weather-hydrological-oceanic model suitable for simulations with local parameterizations in Taiwan. The development of a fully coupled weather-hydrology interaction model is not yet completed but some operational hydro-meteorological simulations are presented as a step in the direction of completing a full model. The predicted rainfall data from Weather Research Forecasting (WRF) are used as our meteorological forcing on watershed modeling. The hydrology and hydraulic modeling are conducted by WASH123D numerical model. And the WRF/WASH123D coupled system is applied to simulate floods during the typhoon landfall periods. The daily operational runs start at 04UTC, 10UTC, 16UTC and 22UTC, about 4 hours after data downloaded from NCEP GFS. This system will execute 72-hr weather forecasts. The simulation of WASH123D will sequentially trigger after receiving WRF rainfall data. This study presents the preliminary framework of establishing this system, and our goal is to build this earlier warning system to alert the public form dangerous. The simulation results are further display by a 3D GIS web service system. This system is established following the Open Geospatial Consortium (OGC) standardization process for GIS web service, such as Web Map Service (WMS) and Web Feature Service (WFS). The traditional 2D GIS data, such as high resolution aerial photomaps and satellite images are integrated into 3D landscape model. The simulated flooding and inundation area can be dynamically mapped on Wed 3D world. The final goal of this system is to real-time forecast flood and the results can be visually displayed on the virtual catchment. The policymaker can easily and real-time gain visual information for decision making at any site through internet.
Advances in Ice Penetrating Radar
NASA Astrophysics Data System (ADS)
Paden, J. D.
2016-12-01
Radars have been employed for ice remote sensing since the mid-twentieth century. The original application in radioglaciology was to obtain ice thickness: an essential parameter in ice flux calculations and boundary condition in ice flow models. Later, radars were used to estimate basal conditions and track laterally persistent features in the ice. The Center for Remote Sensing of Ice Sheet's recent hardware advances include multichannel systems and radar suites covering the usable frequency spectrum. These advances coupled with increased interest in the polar regions result in a concomitant exponential growth in data. We focus on a few results that have come from these changes. Multichannel radar systems improved clutter rejection and enabled 3D imaging. Using computer vision algorithms, we have automated the process of extracting the ice bottom surface in 3D imagery for complex topographies including narrow glacier channels where the ice surface and ice bottom merge together within the 3D images. We present results of wide swath imaging which have enabled narrow, 2-3 km wide, glacier channels to be fully imaged in a single pass. When radar data are available across the frequency spectrum, we have the ability to enhance target detection and measure frequency dependent properties. For example, we can couple HF sounder measurements in warmer ice where scattering attenuates and hides the signal of interest with VHF sounder measurements in cooler ice which have much improved resolution from a single flight line. We present examples of improved bed detection with coupled HF and VHF imagery in a temperate to cold ice transition that show the strong frequency dependence of englacial scattering. To handle the increased data rate, we developed a standard processing chain and data product for CReSIS radar systems, including legacy systems. Application specific GIS tools are an essential part and enable us to merge other data products during data analysis. By using imagery, gravity, mass conservation, etc., we improve the accuracy of ice bottom tracking. We present examples of the integration of these information sources to produce improved ice thickness estimates and show examples of data products which span more than two decades.
MOD3D: a model for incorporating MODTRAN radiative transfer into 3D simulations
NASA Astrophysics Data System (ADS)
Berk, Alexander; Anderson, Gail P.; Gossage, Brett N.
2001-08-01
MOD3D, a rapid and accurate radiative transport algorithm, is being developed for application to 3D simulations. MOD3D couples to optical property databases generated by the MODTRAN4 Correlated-k (CK) band model algorithm. The Beer's Law dependence of the CK algorithm provides for proper coupling of illumination and line-of-sight paths. Full 3D spatial effects are modeled by scaling and interpolating optical data to local conditions. A C++ version of MOD3D has been integrated into JMASS for calculation of path transmittances, thermal emission and single scatter solar radiation. Results from initial validation efforts are presented.
Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Reeder, Scott B
2017-06-01
To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. Magn Reson Med 77:2303-2309, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Looney, Pádraig; Stevenson, Gordon N; Nicolaides, Kypros H; Plasencia, Walter; Molloholli, Malid; Natsis, Stavros; Collins, Sally L
2018-06-07
We present a new technique to fully automate the segmentation of an organ from 3D ultrasound (3D-US) volumes, using the placenta as the target organ. Image analysis tools to estimate organ volume do exist but are too time consuming and operator dependant. Fully automating the segmentation process would potentially allow the use of placental volume to screen for increased risk of pregnancy complications. The placenta was segmented from 2,393 first trimester 3D-US volumes using a semiautomated technique. This was quality controlled by three operators to produce the "ground-truth" data set. A fully convolutional neural network (OxNNet) was trained using this ground-truth data set to automatically segment the placenta. OxNNet delivered state-of-the-art automatic segmentation. The effect of training set size on the performance of OxNNet demonstrated the need for large data sets. The clinical utility of placental volume was tested by looking at predictions of small-for-gestational-age babies at term. The receiver-operating characteristics curves demonstrated almost identical results between OxNNet and the ground-truth). Our results demonstrated good similarity to the ground-truth and almost identical clinical results for the prediction of SGA.
Lattice Boltzmann Method for 3-D Flows with Curved Boundary
NASA Technical Reports Server (NTRS)
Mei, Renwei; Shyy, Wei; Yu, Dazhi; Luo, Li-Shi
2002-01-01
In this work, we investigate two issues that are important to computational efficiency and reliability in fluid dynamics applications of the lattice, Boltzmann equation (LBE): (1) Computational stability and accuracy of different lattice Boltzmann models and (2) the treatment of the boundary conditions on curved solid boundaries and their 3-D implementations. Three athermal 3-D LBE models (D3QI5, D3Ql9, and D3Q27) are studied and compared in terms of efficiency, accuracy, and robustness. The boundary treatment recently developed by Filippova and Hanel and Met et al. in 2-D is extended to and implemented for 3-D. The convergence, stability, and computational efficiency of the 3-D LBE models with the boundary treatment for curved boundaries were tested in simulations of four 3-D flows: (1) Fully developed flows in a square duct, (2) flow in a 3-D lid-driven cavity, (3) fully developed flows in a circular pipe, and (4) a uniform flow over a sphere. We found that while the fifteen-velocity 3-D (D3Ql5) model is more prone to numerical instability and the D3Q27 is more computationally intensive, the 63Q19 model provides a balance between computational reliability and efficiency. Through numerical simulations, we demonstrated that the boundary treatment for 3-D arbitrary curved geometry has second-order accuracy and possesses satisfactory stability characteristics.
3D image processing architecture for camera phones
NASA Astrophysics Data System (ADS)
Atanassov, Kalin; Ramachandra, Vikas; Goma, Sergio R.; Aleksic, Milivoje
2011-03-01
Putting high quality and easy-to-use 3D technology into the hands of regular consumers has become a recent challenge as interest in 3D technology has grown. Making 3D technology appealing to the average user requires that it be made fully automatic and foolproof. Designing a fully automatic 3D capture and display system requires: 1) identifying critical 3D technology issues like camera positioning, disparity control rationale, and screen geometry dependency, 2) designing methodology to automatically control them. Implementing 3D capture functionality on phone cameras necessitates designing algorithms to fit within the processing capabilities of the device. Various constraints like sensor position tolerances, sensor 3A tolerances, post-processing, 3D video resolution and frame rate should be carefully considered for their influence on 3D experience. Issues with migrating functions such as zoom and pan from the 2D usage model (both during capture and display) to 3D needs to be resolved to insure the highest level of user experience. It is also very important that the 3D usage scenario (including interactions between the user and the capture/display device) is carefully considered. Finally, both the processing power of the device and the practicality of the scheme needs to be taken into account while designing the calibration and processing methodology.
Intervertebral disc segmentation in MR images with 3D convolutional networks
NASA Astrophysics Data System (ADS)
Korez, Robert; Ibragimov, Bulat; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž
2017-02-01
The vertebral column is a complex anatomical construct, composed of vertebrae and intervertebral discs (IVDs) supported by ligaments and muscles. During life, all components undergo degenerative changes, which may in some cases cause severe, chronic and debilitating low back pain. The main diagnostic challenge is to locate the pain generator, and degenerated IVDs have been identified to act as such. Accurate and robust segmentation of IVDs is therefore a prerequisite for computer-aided diagnosis and quantification of IVD degeneration, and can be also used for computer-assisted planning and simulation in spinal surgery. In this paper, we present a novel fully automated framework for supervised segmentation of IVDs from three-dimensional (3D) magnetic resonance (MR) spine images. By considering global intensity appearance and local shape information, a landmark-based approach is first used for the detection of IVDs in the observed image, which then initializes the segmentation of IVDs by coupling deformable models with convolutional networks (ConvNets). For this purpose, a 3D ConvNet architecture was designed that learns rich high-level appearance representations from a training repository of IVDs, and then generates spatial IVD probability maps that guide deformable models towards IVD boundaries. By applying the proposed framework to 15 3D MR spine images containing 105 IVDs, quantitative comparison of the obtained against reference IVD segmentations yielded an overall mean Dice coefficient of 92.8%, mean symmetric surface distance of 0.4 mm and Hausdorff surface distance of 3.7 mm.
Reproducible Hydrogeophysical Inversions through the Open-Source Library pyGIMLi
NASA Astrophysics Data System (ADS)
Wagner, F. M.; Rücker, C.; Günther, T.
2017-12-01
Many tasks in applied geosciences cannot be solved by a single measurement method and require the integration of geophysical, geotechnical and hydrological methods. In the emerging field of hydrogeophysics, researchers strive to gain quantitative information on process-relevant subsurface parameters by means of multi-physical models, which simulate the dynamic process of interest as well as its geophysical response. However, such endeavors are associated with considerable technical challenges, since they require coupling of different numerical models. This represents an obstacle for many practitioners and students. Even technically versatile users tend to build individually tailored solutions by coupling different (and potentially proprietary) forward simulators at the cost of scientific reproducibility. We argue that the reproducibility of studies in computational hydrogeophysics, and therefore the advancement of the field itself, requires versatile open-source software. To this end, we present pyGIMLi - a flexible and computationally efficient framework for modeling and inversion in geophysics. The object-oriented library provides management for structured and unstructured meshes in 2D and 3D, finite-element and finite-volume solvers, various geophysical forward operators, as well as Gauss-Newton based frameworks for constrained, joint and fully-coupled inversions with flexible regularization. In a step-by-step demonstration, it is shown how the hydrogeophysical response of a saline tracer migration can be simulated. Tracer concentration data from boreholes and measured voltages at the surface are subsequently used to estimate the hydraulic conductivity distribution of the aquifer within a single reproducible Python script.
Aeroacoustic features of coupled twin jets with spanwise oblique shock-cells
NASA Astrophysics Data System (ADS)
Panickar, Praveen; Srinivasan, K.; Raman, Ganesh
2004-11-01
This paper experimentally investigates the aeroacoustics of coupled twin jets of complex geometry. The study was motivated by the fact that twin jet configurations that are commonly used in aircraft propulsion systems can undergo unpredictable resonant coupling resulting in structural damage. Further, nozzles with spanwise oblique exits are increasingly being considered for their aerodynamic and acoustic advantages, as well as stealth benefits. Although several studies have examined aspects of twin jet coupling, very little data is available on the coupling of jets from nozzles of complex geometry. Our study focuses on twin convergent nozzles with an aspect ratio of 7 with spanwise oblique exits operated over the fully expanded Mach number range from 1.3 to 1.6. The inter-nozzle spacing ( s/ h) was varied from 7.4 to 13.5. However, the focus remained on the lower spacing that is more representative of aircraft applications. Several interesting results have emerged from this study: (1) Coupling of twin nozzles with a beveled exit was observed only when the beveled edges faced each other and the nozzles formed a 'V' shape in the inter-nozzle region. Specifically, if the two beveled edges were oriented away from each other to form an arrowhead ('A') shape no coupling was observed. (2) Despite the presence of spanwise antisymmetric, spanwise symmetric and spanwise oblique modes for the single nozzles, only the first two modes were evident in the coupling. (3) The symmetric coupling produced unsteady pressures in the inter-nozzle region that were up to 7.5 dB higher than the antisymmetrically coupled case. (4) Dynamic tests conducted by moving the nozzles apart while they were operating or by continuously changing the stagnation pressure at fixed inter-nozzle spacing revealed that coupling modes could co-exist at non-harmonically related frequencies. These dynamic tests reproduced the static test data. (5) The frequency of both coupling modes agrees with the higher order waveguide modes based on Tam's theory. (6) Differences in broadband shock noise between the 'V' and 'A' configurations were also documented. Our results provide an understanding of complex twin jet coupling and will serve as benchmark data for validating computational models.
HIFI-C: a robust and fast method for determining NMR couplings from adaptive 3D to 2D projections.
Cornilescu, Gabriel; Bahrami, Arash; Tonelli, Marco; Markley, John L; Eghbalnia, Hamid R
2007-08-01
We describe a novel method for the robust, rapid, and reliable determination of J couplings in multi-dimensional NMR coupling data, including small couplings from larger proteins. The method, "High-resolution Iterative Frequency Identification of Couplings" (HIFI-C) is an extension of the adaptive and intelligent data collection approach introduced earlier in HIFI-NMR. HIFI-C collects one or more optimally tilted two-dimensional (2D) planes of a 3D experiment, identifies peaks, and determines couplings with high resolution and precision. The HIFI-C approach, demonstrated here for the 3D quantitative J method, offers vital features that advance the goal of rapid and robust collection of NMR coupling data. (1) Tilted plane residual dipolar couplings (RDC) data are collected adaptively in order to offer an intelligent trade off between data collection time and accuracy. (2) Data from independent planes can provide a statistical measure of reliability for each measured coupling. (3) Fast data collection enables measurements in cases where sample stability is a limiting factor (for example in the presence of an orienting medium required for residual dipolar coupling measurements). (4) For samples that are stable, or in experiments involving relatively stronger couplings, robust data collection enables more reliable determinations of couplings in shorter time, particularly for larger biomolecules. As a proof of principle, we have applied the HIFI-C approach to the 3D quantitative J experiment to determine N-C' RDC values for three proteins ranging from 56 to 159 residues (including a homodimer with 111 residues in each subunit). A number of factors influence the robustness and speed of data collection. These factors include the size of the protein, the experimental set up, and the coupling being measured, among others. To exhibit a lower bound on robustness and the potential for time saving, the measurement of dipolar couplings for the N-C' vector represents a realistic "worst case analysis". These couplings are among the smallest currently measured, and their determination in both isotropic and anisotropic media demands the highest measurement precision. The new approach yielded excellent quantitative agreement with values determined independently by the conventional 3D quantitative J NMR method (in cases where sample stability in oriented media permitted these measurements) but with a factor of 2-5 in time savings. The statistical measure of reliability, measuring the quality of each RDC value, offers valuable adjunct information even in cases where modest time savings may be realized.
NASA Astrophysics Data System (ADS)
Torres-Verdin, C.
2007-05-01
This paper describes the successful implementation of a new 3D AVA stochastic inversion algorithm to quantitatively integrate pre-stack seismic amplitude data and well logs. The stochastic inversion algorithm is used to characterize flow units of a deepwater reservoir located in the central Gulf of Mexico. Conventional fluid/lithology sensitivity analysis indicates that the shale/sand interface represented by the top of the hydrocarbon-bearing turbidite deposits generates typical Class III AVA responses. On the other hand, layer- dependent Biot-Gassmann analysis shows significant sensitivity of the P-wave velocity and density to fluid substitution. Accordingly, AVA stochastic inversion, which combines the advantages of AVA analysis with those of geostatistical inversion, provided quantitative information about the lateral continuity of the turbidite reservoirs based on the interpretation of inverted acoustic properties (P-velocity, S-velocity, density), and lithotype (sand- shale) distributions. The quantitative use of rock/fluid information through AVA seismic amplitude data, coupled with the implementation of co-simulation via lithotype-dependent multidimensional joint probability distributions of acoustic/petrophysical properties, yields accurate 3D models of petrophysical properties such as porosity and permeability. Finally, by fully integrating pre-stack seismic amplitude data and well logs, the vertical resolution of inverted products is higher than that of deterministic inversions methods.
Generation of helical magnetic field in a viable scenario of inflationary magnetogenesis
NASA Astrophysics Data System (ADS)
Sharma, Ramkishor; Subramanian, Kandaswamy; Seshadri, T. R.
2018-04-01
We study the generation of helical magnetic fields in a model of inflationary magnetogenesis which is free from the strong coupling and backreaction problems. To generate helical magnetic fields, we add an f2F˜μ νFμ ν term to the Lagrangian of the Ratra model. The strong coupling and backreaction problems are avoided if we take a particular behavior of coupling function f , in which f increases during inflation and decreases postinflation to reheating. The generated magnetic field is fully helical and has a blue spectrum, d ρB/d ln k ∝k4. This spectrum is obtained when coupling function f ∝a2 during inflation. The scale of reheating in our model has to be lower than 4000 GeV to avoid backreaction postinflation. The generated magnetic field spectrum satisfies the γ -ray bound for all the possible scales of reheating. The comoving magnetic field strength and its correlation length are ˜4 ×10-11 G and 70 kpc respectively, if reheating takes place at 100 GeV. For reheating at the QCD scales of 150 MeV, the field strength increases to ˜ nano gauss, with coherence scale of 0.6 Mpc.
New physics in the visible final states of B → D(*) τν
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ligeti, Zoltan; Papucci, Michele; Robinson, Dean J.
We derive compact expressions for the helicity amplitudes of the many-body B → D (*) (→ DY)τ(→ Xν)ν decays, specifically for X = ℓν or π and Y = π or γ. We include contributions from all ten possible new physics four-Fermi operators with arbitrary couplings. Our results capture interference effects in the full phase space of the visible τ and D * decay products which are missed in analyses that treat the τ or D * or both as stable. The τ interference effects are sizable, formally of order m τ/m B for the standard model, and may bemore » of order unity in the presence of new physics. Treating interference correctly is essential when considering kinematic distributions of the τ or D * decay products, and when including experimentally unavoidable phase space cuts. Our amplitude-level results also allow for efficient exploration of new physics effects in the fully differential phase space, by enabling experiments to perform such studies on fully simulated Monte Carlo datasets via efficient event reweighing. As an example, we explore a class of new physics interactions that can fit the observed R(D (*) ) ratios, and show that analyses including more differential kinematic information can provide greater discriminating power for new physics, than single kinematic variables alone.« less
New physics in the visible final states of B → D(*) τν
Ligeti, Zoltan; Papucci, Michele; Robinson, Dean J.
2017-01-18
We derive compact expressions for the helicity amplitudes of the many-body B → D (*) (→ DY)τ(→ Xν)ν decays, specifically for X = ℓν or π and Y = π or γ. We include contributions from all ten possible new physics four-Fermi operators with arbitrary couplings. Our results capture interference effects in the full phase space of the visible τ and D * decay products which are missed in analyses that treat the τ or D * or both as stable. The τ interference effects are sizable, formally of order m τ/m B for the standard model, and may bemore » of order unity in the presence of new physics. Treating interference correctly is essential when considering kinematic distributions of the τ or D * decay products, and when including experimentally unavoidable phase space cuts. Our amplitude-level results also allow for efficient exploration of new physics effects in the fully differential phase space, by enabling experiments to perform such studies on fully simulated Monte Carlo datasets via efficient event reweighing. As an example, we explore a class of new physics interactions that can fit the observed R(D (*) ) ratios, and show that analyses including more differential kinematic information can provide greater discriminating power for new physics, than single kinematic variables alone.« less
Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations
NASA Astrophysics Data System (ADS)
Loseille, A.; Dervieux, A.; Alauzet, F.
2010-04-01
This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a full and strong coupling between both is hard to achieve due to this apparent incompatibility. This paper shows how to achieve this coupling in three steps. First, a new a priori error estimate is proved in a formal framework adapted to goal-oriented mesh adaptation for output functionals. This estimate is based on a careful analysis of the contributions of the implicit error and of the interpolation error. Second, the error estimate is applied to the set of steady compressible Euler equations which are solved by a stabilized Galerkin finite element discretization. A goal-oriented error estimation is derived. It involves the interpolation error of the Euler fluxes weighted by the gradient of the adjoint state associated with the observed functional. Third, rewritten in the continuous mesh framework, the previous estimate is minimized on the set of continuous meshes thanks to a calculus of variations. The optimal continuous mesh is then derived analytically. Thus, it can be used as a metric tensor field to drive the mesh adaptation. From a numerical point of view, this method is completely automatic, intrinsically anisotropic, and does not depend on any a priori choice of variables to perform the adaptation. 3D examples of steady flows around supersonic and transsonic jets are presented to validate the current approach and to demonstrate its efficiency.
pyGIMLi: An open-source library for modelling and inversion in geophysics
NASA Astrophysics Data System (ADS)
Rücker, Carsten; Günther, Thomas; Wagner, Florian M.
2017-12-01
Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion of various geophysical but also hydrological methods. The modelling component supplies discretization management and the numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies, time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used. The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential applications of the presented framework are manifold and include time-lapse, constrained, joint, and coupled inversions of various geophysical and hydrological data sets.
Easy access to fully functionalized chiral tetrahydro-β-carboline alkaloids.
Arai, Takayoshi; Wasai, Makiko; Yokoyama, Naota
2011-04-15
A four-step synthetic route to fully substituted chiral tetrahydro-β-carbolines (THBCs) is described. Starting from the (R,S,S)-Friedel-Crafts/Henry adduct obtained from three-component coupling of an indole, nitroalkene, and aldehyde catalyzed by imidazoline-aminophenol-CuOTf, the (1S,3S,4R)-THBCs were readily synthesized in a three-step operation including reduction of the nitro-functionality and Pictet-Spengler cyclization.
NASA Astrophysics Data System (ADS)
Spanoudaki, Katerina; Kampanis, Nikolaos A.
2014-05-01
Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. In these numerical models surface water flow is usually described by the 1-D Saint Venant equations (e.g. Swain and Wexler, 1996) or the 2D shallow water equations (e.g. Liang et al., 2007). Further simplified equations, such as the diffusion and kinematic wave approximations to the Saint Venant equations, are also employed for the description of 2D overland flow and 1D stream flow (e.g. Gunduz and Aral, 2005). However, for coastal bays, estuaries and wetlands it is often desirable to solve the 3D shallow water equations to simulate surface water flow. This is the case e.g. for wind-driven flows or density-stratified flows. Furthermore, most integrated models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D, non-steady state Navier-Stokes equations, after Reynolds averaging and with the assumption of hydrostatic pressure distribution, to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. The model has been further developed to include the effects of density variations on surface water and groundwater flow, while the already built-in solute transport capabilities are used to simulate salinity interactions. Initial results show that IRENE can accurately predict surface water-groundwater flow and salinity interactions in coastal areas. Important research issues that can be investigated using IRENE include: (a) sea level rise and tidal effects on aquifer salinisation and the configuration of the saltwater wedge, (b) the effects of surface water-groundwater interaction on salinity increase of coastal wetlands and (c) the estimation of the location and magnitude of groundwater discharge to coasts. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). References Gunduz, O. and Aral, M.M. (2005). River networks and groundwater flow: a simultaneous solution of a coupled system. Journal of Hydrology 301 (1-4), 216-234. Liang, D., Falconer, R.A. and Lin, B. (2007). Coupling surface and subsurface flows in a depth-averaged flood wave model. Journal of Hydrology 337, 147-158. Spanoudaki, K., Stamou, A.I. and Nanou-Giannarou, A. (2009). Development and verification of a 3-D integrated surface water-groundwater model. Journal of Hydrology, 375 (3-4), 410-427. Spanoudaki, K. (2010). Integrated numerical modelling of surface water groundwater systems (in Greek). Ph.D. Thesis, National Technical University of Athens, Greece. Swain, E.D. and Wexler, E.J. (1996). A coupled surface water and groundwater flow model (Modbranch) for simulation of stream-aquifer interaction. United States Geological Survey, Techniques of Water Resources Investigations (Book 6, Chapter A6).
A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrov, Yu V.; Harvey, R. W.
The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less
A fully-neoclassical finite-orbit-width version of the CQL3D Fokker–Planck code
Petrov, Yu V.; Harvey, R. W.
2016-09-08
The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker–Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit tomore » the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for ‘full’ orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented.« less
Nonlinear Diamagnetic Stabilization of Double Tearing Modes in Cylindrical MHD Simulations
NASA Astrophysics Data System (ADS)
Abbott, Stephen; Germaschewski, Kai
2014-10-01
Double tearing modes (DTMs) may occur in reversed-shear tokamak configurations if two nearby rational surfaces couple and begin reconnecting. During the DTM's nonlinear evolution it can enter an ``explosive'' growth phase leading to complete reconnection, making it a possible driver for off-axis sawtooth crashes. Motivated by similarities between this behavior and that of the m = 1 kink-tearing mode in conventional tokamaks we investigate diamagnetic drifts as a possible DTM stabilization mechanism. We extend our previous linear studies of an m = 2 , n = 1 DTM in cylindrical geometry to the fully nonlinear regime using the MHD code MRC-3D. A pressure gradient similar to observed ITB profiles is used, together with Hall physics, to introduce ω* effects. We find the diamagnetic drifts can have a stabilizing effect on the nonlinear DTM through a combination of large scale differential rotation and mechanisms local to the reconnection layer. MRC-3D is an extended MHD code based on the libMRC computational framework. It supports nonuniform grids in curvilinear coordinates with parallel implicit and explicit time integration.
Data Assimilation and Propagation of Uncertainty in Multiscale Cardiovascular Simulation
NASA Astrophysics Data System (ADS)
Schiavazzi, Daniele; Marsden, Alison
2015-11-01
Cardiovascular modeling is the application of computational tools to predict hemodynamics. State-of-the-art techniques couple a 3D incompressible Navier-Stokes solver with a boundary circulation model and can predict local and peripheral hemodynamics, analyze the post-operative performance of surgical designs and complement clinical data collection minimizing invasive and risky measurement practices. The ability of these tools to make useful predictions is directly related to their accuracy in representing measured physiologies. Tuning of model parameters is therefore a topic of paramount importance and should include clinical data uncertainty, revealing how this uncertainty will affect the predictions. We propose a fully Bayesian, multi-level approach to data assimilation of uncertain clinical data in multiscale circulation models. To reduce the computational cost, we use a stable, condensed approximation of the 3D model build by linear sparse regression of the pressure/flow rate relationship at the outlets. Finally, we consider the problem of non-invasively propagating the uncertainty in model parameters to the resulting hemodynamics and compare Monte Carlo simulation with Stochastic Collocation approaches based on Polynomial or Multi-resolution Chaos expansions.
Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Williamson; D. A. Knoll
2009-09-01
A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth , gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importancemore » of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhiying; Heller, Eric J.; Krems, Roman V.
We explore the collision dynamics of complex hydrocarbon molecules (benzene, coronene, adamantane, and anthracene) containing carbon rings in a cold buffer gas of {sup 3}He. For benzene, we present a comparative analysis of the fully classical and fully quantum calculations of elastic and inelastic scattering cross sections at collision energies between 1 and 10 cm{sup −1}. The quantum calculations are performed using the time-independent coupled channel approach and the coupled-states approximation. We show that the coupled-states approximation is accurate at collision energies between 1 and 20 cm{sup −1}. For the classical dynamics calculations, we develop an approach exploiting the rigiditymore » of the carbon rings and including low-energy vibrational modes without holonomic constraints. Our results illustrate the effect of the molecular shape and the vibrational degrees of freedom on the formation of long-lived resonance states that lead to low-temperature clustering.« less
Fediai, Artem; Ryndyk, Dmitry A; Cuniberti, Gianaurelio
2016-10-05
Up to now, the electrical properties of the contacts between 3D metals and 2D materials have never been computed at a fully ab initio level due to the huge number of atomic orbitals involved in a current path from an electrode to a pristine 2D material. As a result, there are still numerous open questions and controversial theories on the electrical properties of systems with 3D/2D interfaces-for example, the current path and the contact length scalability. Our work provides a first-principles solution to this long-standing problem with the use of the modular approach, a method which rigorously combines a Green function formalism with the density functional theory (DFT) for this particular contact type. The modular approach is a general approach valid for any 3D/2D contact. As an example, we apply it to the most investigated among 3D/2D contacts-metal/graphene contacts-and show its abilities and consistency by comparison with existing experimental data. As it is applicable to any 3D/2D interface, the modular approach allows the engineering of 3D/2D contacts with the pre-defined electrical properties.
A coupled analytical model for hydrostatic response of 1-3 piezocomposites.
Rajapakse, Nimal; Chen, Yue
2008-08-01
This study presents a fully coupled analysis of a unit cell of a 1-3 piezocomposite under hydrostatic loading. The governing equations for coupled axisymmetric electroelastic field of a transversely isotropic piezoelectric medium and a transversely isotropic elastic medium are used. A reduced form of the analytical general solutions expressed in terms of series of modified Bessel functions of the first and second kind are used. The solution of the boundary-value problem corresponding to a unit cell is presented. The effective properties of a 1-3 piezocomposite are obtained for different fiber volume fractions, polymer and piezoceramic properties, and fiber aspect ratios. Comparisons with previously reported simplified and uncoupled models are made.
Verification of real sensor motion for a high-dynamic 3D measurement inspection system
NASA Astrophysics Data System (ADS)
Breitbarth, Andreas; Correns, Martin; Zimmermann, Manuel; Zhang, Chen; Rosenberger, Maik; Schambach, Jörg; Notni, Gunther
2017-06-01
Inline three-dimensional measurements are a growing part of optical inspection. Considering increasing production capacities and economic aspects, dynamic measurements under motion are inescapable. Using a sequence of different pattern, like it is generally done in fringe projection systems, relative movements of the measurement object with respect to the 3d sensor between the images of one pattern sequence have to be compensated. Based on the application of fully automated optical inspection of circuit boards at an assembly line, the knowledge of the relative speed of movement between the measurement object and the 3d sensor system should be used inside the algorithms of motion compensation. Optimally, this relative speed is constant over the whole measurement process and consists of only one motion direction to avoid sensor vibrations. The quantified evaluation of this two assumptions and the error impact on the 3d accuracy are content of the research project described by this paper. For our experiments we use a glass etalon with non-transparent circles and transmitted light. Focused on the circle borders, this is one of the most reliable methods to determine subpixel positions using a couple of searching rays. The intersection point of all rays characterize the center of each circle. Based on these circle centers determined with a precision of approximately 1=50 pixel, the motion vector between two images could be calculated and compared with the input motion vector. Overall, the results are used to optimize the weight distribution of the 3d sensor head and reduce non-uniformly vibrations. Finally, there exists a dynamic 3d measurement system with an error of motion vectors about 4 micrometer. Based on this outcome, simulations result in a 3d standard deviation at planar object regions of 6 micrometers. The same system yields a 3d standard deviation of 9 µm without the optimization of weight distribution.
NASA Astrophysics Data System (ADS)
Shustikova, Iuliia; Domeneghetti, Alessio; Neal, Jeffrey; Bates, Paul; Castellarin, Attilio
2017-04-01
Hydrodynamic modeling of inundation events still brings a large array of uncertainties. This effect is especially evident in the models run for geographically large areas. Recent studies suggest using fully two-dimensional (2D) models with high resolution in order to avoid uncertainties and limitations coming from the incorrect interpretation of flood dynamics and an unrealistic reproduction of the terrain topography. This, however, affects the computational efficiency increasing the running time and hardware demands. Concerning this point, our study evaluates and compares numerical models of different complexity by testing them on a flood event that occurred in the basin of the Secchia River, Northern Italy, on 19th January, 2014. The event was characterized by a levee breach and consequent flooding of over 75 km2 of the plain behind the dike within 48 hours causing population displacement, one death and economic losses in excess of 400 million Euro. We test the well-established TELEMAC 2D, and LISFLOOD-FP codes, together with the recently launched HEC-RAS 5.0.3 (2D model), all models are implemented using different grid size (2-200 m) based on the 1 m digital elevation model resolution. TELEMAC is a fully 2D hydrodynamic model which is based on the finite-element or finite-volume approach. Whereas HEC-RAS 5.0.3 and LISFLOOD-FP are both coupled 1D-2D models. All models are calibrated against observed inundation extent and maximum water depths, which are retrieved from remotely sensed data and field survey reports. Our study quantitatively compares the three modeling strategies highlighting differences in terms of the ease of implementation, accuracy of representation of hydraulic processes within floodplains and computational efficiency. Additionally, we look into the different grid resolutions in terms of the results accuracy and computation time. Our study is a preliminary assessment that focuses on smaller areas in order to identify potential modeling schemes that would be efficient for simulating flooding scenarios for large and very large floodplains. This research aims at contributing to the reduction of uncertainties and limitations in hazard and risk assessment.
Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
NASA Astrophysics Data System (ADS)
Lanctot, Matthew J.
2016-10-01
In several tokamaks, non-axisymmetric magnetic field studies show applied n=2 fields can lead to disruptive n=1 locked modes, suggesting nonlinear mode coupling. A multimode plasma response to n=2 fields can be observed in H-mode plasmas, in contrast to the single-mode response found in Ohmic plasmas. These effects highlight a role for n >1 error field correction in disruption avoidance, and identify additional degrees of freedom for 3D field optimization at high plasma pressure. In COMPASS, EAST, and DIII-D Ohmic plasmas, n=2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q 3 and low density. Similar to previous studies, the thresholds are correlated with the ``overlap'' field for the dominant linear ideal MHD plasma mode calculated with the IPEC code. The overlap field measures the plasma-mediated coupling of the external field to the resonant field. Remarkably, the critical overlap fields are similar for n=1 and 2 fields with m >nq fields dominating the drive for resonant fields. Complementary experiments in RFX-Mod show fields with m
Large-eddy simulation of sand dune morphodynamics
NASA Astrophysics Data System (ADS)
Khosronejad, Ali; Sotiropoulos, Fotis; St. Anthony Falls Laboratory, University of Minnesota Team
2015-11-01
Sand dunes are natural features that form under complex interaction between turbulent flow and bed morphodynamics. We employ a fully-coupled 3D numerical model (Khosronejad and Sotiropoulos, 2014, Journal of Fluid Mechanics, 753:150-216) to perform high-resolution large-eddy simulations of turbulence and bed morphodynamics in a laboratory scale mobile-bed channel to investigate initiation, evolution and quasi-equilibrium of sand dunes (Venditti and Church, 2005, J. Geophysical Research, 110:F01009). We employ a curvilinear immersed boundary method along with convection-diffusion and bed-morphodynamics modules to simulate the suspended sediment and the bed-load transports respectively. The coupled simulation were carried out on a grid with more than 100 million grid nodes and simulated about 3 hours of physical time of dune evolution. The simulations provide the first complete description of sand dune formation and long-term evolution. The geometric characteristics of the simulated dunes are shown to be in excellent agreement with observed data obtained across a broad range of scales. This work was supported by NSF Grants EAR-0120914 (as part of the National Center for Earth-Surface Dynamics). Computational resources were provided by the University of Minnesota Supercomputing Institute.
NASA Astrophysics Data System (ADS)
Hosseinzadeh-Nik, Zahra; Regele, Jonathan D.
2015-11-01
Dense compressible particle-laden flow, which has a complex nature, exists in various engineering applications. Shock waves impacting a particle cloud is a canonical problem to investigate this type of flow. It has been demonstrated that large flow unsteadiness is generated inside the particle cloud from the flow induced by the shock passage. It is desirable to develop models for the Reynolds stress to capture the energy contained in vortical structures so that volume-averaged models with point particles can be simulated accurately. However, the previous work used Euler equations, which makes the prediction of vorticity generation and propagation innacurate. In this work, a fully resolved two dimensional (2D) simulation using the compressible Navier-Stokes equations with a volume penalization method to model the particles has been performed with the parallel adaptive wavelet-collocation method. The results still show large unsteadiness inside and downstream of the particle cloud. A 1D model is created for the unclosed terms based upon these 2D results. The 1D model uses a two-phase simple low dissipation AUSM scheme (TSLAU) developed by coupled with the compressible two phase kinetic energy equation.
Siletsky, Sergey A; Belevich, Ilya; Soulimane, Tewfik; Verkhovsky, Michael I; Wikström, Mårten
2013-01-01
The time-resolved kinetics of membrane potential generation coupled to oxidation of the fully reduced (five-electron) caa(3) cytochrome oxidase from Thermus thermophilus by oxygen was studied in a single-turnover regime. In order to calibrate the number of charges that move across the vesicle membrane in the different reaction steps, the reverse electron transfer from heme a(3) to heme a and further to the cytochrome c/Cu(A) has been resolved upon photodissociation of CO from the mixed valence enzyme in the absence of oxygen. The reverse electron transfer from heme a(3) to heme a and further to the cytochrome c/Cu(A) pair is resolved as a single transition with τ~40 μs. In the reaction of the fully reduced cytochrome caa(3) with oxygen, the first electrogenic phase (τ~30 μs) is linked to OO bond cleavage and generation of the P(R) state. The next electrogenic component (τ~50 μs) is associated with the P(R)→F transition and together with the previous reaction step it is coupled to translocation of about two charges across the membrane. The three subsequent electrogenic phases, with time constants of ~0.25 ms, ~1.4 ms and ~4 ms, are linked to the conversion of the binuclear center through the F→O(H)→E(H) transitions, and result in additional transfer of four charges through the membrane dielectric. This indicates that the delivery of the fifth electron from heme c to the binuclear center is coupled to pumping of an additional proton across the membrane. Copyright © 2012 Elsevier B.V. All rights reserved.
Enhanced spin-phonon-electronic coupling in a 5d oxide
Calder, Stuart A.; Yamaura, K.; Tsujimoto, Y.; ...
2015-11-26
Enhanced coupling of material properties offers new fundamental insights and routes to multifunctional devices. In this context 5d oxides provide new paradigms of cooperative interactions that drive novel emergent behaviour. This is exemplified in osmates that host metal insulator transitions where magnetic order appears intimately entwined. Here we consider such a material, the 5d perovskite NaOsO 3, and observe a coupling between spin and phonon manifested in a frequency shift of 40 cm 1, the largest measured in any material. The anomalous modes are shown to involve solely Os O interactions and magnetism is revealed as the driving microscopic mechanismmore » for the phonon renormalization. The magnitude of the coupling in NaOsO 3 is primarily due to a property common to all 5d materials: the large spatial extent of the ion. This allows magnetism to couple to phonons on an unprecedented scale and in general offers multiple new routes to enhanced coupled phenomena in 5d materials.« less
NASA Astrophysics Data System (ADS)
Hülse, D.; Arndt, S.; Ridgwell, A.
2016-12-01
Oceanic Anoxic Events (OAEs) represent severe disturbances of the global carbon, oxygen and nutrient cycles of the ocean. The archetypal example is OAE2 ( 93.5 Ma), which is characterized by widespread bottom water anoxia and photic zone euxinia. One way to explain these conditions is via increased oxygen demand in the water column resulting from enhanced primary productivity (PP), itself fuelled by increased nutrient availability for instance from the sediments as the burial efficiency of phosphorus declines when bottom waters become anoxic. The recovery from OAE like conditions is thought to involve the permanent removal of excess CO2 from the atmosphere and ocean by burying carbon in the form of organic matter (OM) in marine sediments, which is consistent with the geological record of widespread black shale formation. A number of possible controls on enhanced OM burial have previously been proposed and assessed, such as elevated depositional fluxes, higher clay mineral availability, or reduced oxygenation. Here we explore a 4th possible mechanism - organic matter sulfurization. During sulfurization, reduced inorganic sulfur species (e.g. H2S) react with OM, resulting in the formation of organic sulfur compounds which are less prone to bacterial degradation. Although studies indicate the global significance of this process for OAE2, its implications on Cretaceous benthic-pelagic coupling and thus OAE2 evolution and recovery has not yet been quantified and tested with a 3D Earth system model. The major hurdle is the high computational cost of simulating the essential redox reactions in marine sediments, which are critical to quantify the burial of OM and benthic recycling fluxes of chemical compounds. In order to close this knowledge gap, we developed a new, mechanistic representation of OM preservation in marine sediments (OMEN-SED) and coupled it to a 3D Earth system model (cGENIE). Using this new model we explore the impact of organic matter sulfurization on benthic nutrient fluxes, ocean oxygenation and PP during OAE2 for the first time in a fully coupled 3D-ocean-sediment model. We investigate the role of sulfurization in Earth's recovery dynamics from OAE2 by comparing our results with multiple geochemical proxies for seafloor anoxia and photic zone euxinia.
CALIBRATION OF THE MIXING-LENGTH THEORY FOR CONVECTIVE WHITE DWARF ENVELOPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremblay, P.-E.; Ludwig, H.-G.; Freytag, B.
2015-02-01
A calibration of the mixing-length parameter in the local mixing-length theory (MLT) is presented for the lower part of the convection zone in pure-hydrogen-atmosphere white dwarfs. The parameterization is performed from a comparison of three-dimensional (3D) CO5BOLD simulations with a grid of one-dimensional (1D) envelopes with a varying mixing-length parameter. In many instances, the 3D simulations are restricted to the upper part of the convection zone. The hydrodynamical calculations suggest, in those cases, that the entropy of the upflows does not change significantly from the bottom of the convection zone to regions immediately below the photosphere. We rely on thismore » asymptotic entropy value, characteristic of the deep and adiabatically stratified layers, to calibrate 1D envelopes. The calibration encompasses the convective hydrogen-line (DA) white dwarfs in the effective temperature range 6000 ≤ T {sub eff} (K) ≤15, 000 and the surface gravity range 7.0 ≤ log g ≤ 9.0. It is established that the local MLT is unable to reproduce simultaneously the thermodynamical, flux, and dynamical properties of the 3D simulations. We therefore propose three different parameterizations for these quantities. The resulting calibration can be applied to structure and envelope calculations, in particular for pulsation, chemical diffusion, and convective mixing studies. On the other hand, convection has no effect on the white dwarf cooling rates until there is a convective coupling with the degenerate core below T {sub eff} ∼ 5000 K. In this regime, the 1D structures are insensitive to the MLT parameterization and converge to the mean 3D results, hence they remain fully appropriate for age determinations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weon, Chijun; Hyun Nam, Woo; Lee, Duhgoon
Purpose: Registration between 2D ultrasound (US) and 3D preoperative magnetic resonance (MR) (or computed tomography, CT) images has been studied recently for US-guided intervention. However, the existing techniques have some limits, either in the registration speed or the performance. The purpose of this work is to develop a real-time and fully automatic registration system between two intermodal images of the liver, and subsequently an indirect lesion positioning/tracking algorithm based on the registration result, for image-guided interventions. Methods: The proposed position tracking system consists of three stages. In the preoperative stage, the authors acquire several 3D preoperative MR (or CT) imagesmore » at different respiratory phases. Based on the transformations obtained from nonrigid registration of the acquired 3D images, they then generate a 4D preoperative image along the respiratory phase. In the intraoperative preparatory stage, they properly attach a 3D US transducer to the patient’s body and fix its pose using a holding mechanism. They then acquire a couple of respiratory-controlled 3D US images. Via the rigid registration of these US images to the 3D preoperative images in the 4D image, the pose information of the fixed-pose 3D US transducer is determined with respect to the preoperative image coordinates. As feature(s) to use for the rigid registration, they may choose either internal liver vessels or the inferior vena cava. Since the latter is especially useful in patients with a diffuse liver disease, the authors newly propose using it. In the intraoperative real-time stage, they acquire 2D US images in real-time from the fixed-pose transducer. For each US image, they select candidates for its corresponding 2D preoperative slice from the 4D preoperative MR (or CT) image, based on the predetermined pose information of the transducer. The correct corresponding image is then found among those candidates via real-time 2D registration based on a gradient-based similarity measure. Finally, if needed, they obtain the position information of the liver lesion using the 3D preoperative image to which the registered 2D preoperative slice belongs. Results: The proposed method was applied to 23 clinical datasets and quantitative evaluations were conducted. With the exception of one clinical dataset that included US images of extremely low quality, 22 datasets of various liver status were successfully applied in the evaluation. Experimental results showed that the registration error between the anatomical features of US and preoperative MR images is less than 3 mm on average. The lesion tracking error was also found to be less than 5 mm at maximum. Conclusions: A new system has been proposed for real-time registration between 2D US and successive multiple 3D preoperative MR/CT images of the liver and was applied for indirect lesion tracking for image-guided intervention. The system is fully automatic and robust even with images that had low quality due to patient status. Through visual examinations and quantitative evaluations, it was verified that the proposed system can provide high lesion tracking accuracy as well as high registration accuracy, at performance levels which were acceptable for various clinical applications.« less
Experimental Measurement of Self-Diffusion in a Strongly Coupled Plasma
2016-08-04
Killian1 1Department of Physics and Astronomy , Rice University, Houston, Texas 77005, USA 2Theoretical Division, Los Alamos National Laboratory, Los...2] L. Spitzer, Physics of Fully Ionized Gases, Interscience Tracts on Physics and Astronomy (Interscience Publishers, New York, 1962), Vol. 3. [3] L
Spin coating and plasma process for 2.5D and hybrid 3D micro-resonators on multilayer polymers
NASA Astrophysics Data System (ADS)
Bêche, B.; Gaviot, E.; Godet, C.; Zebda, A.; Potel, A.; Barbe, J.; Camberlein, L.; Vié, V.; Panizza, P.; Loas, G.; Hamel, C.; Zyss, J.; Huby, N.
2009-05-01
We have designed and realized three integrated photonic families of micro-resonators (MR) on multilayer organic materials. Such so-called 2.5D-MR and 3D-MR structures show off radius values ranging from 40 to 200μm. Both first and second families are especially designed on organic multilayer materials and shaped as ring- and disk-MR organics structures arranged upon (and coupled with) a pair of SU8-organic waveguides. The third family is related to hybrid 3D-MR structures composed of spherical glass-MR coupled to organic waveguides by a Langmuir-Blodgett lipid film about three nanometers in thickness. At first, polymer spin coating, surface plasma treatment and selective UV-lithography processes have been developed to realize 2.5D photonic micro-resonators. Secondly, we have designed and characterized photonic-quadripoles made of 3D-glass-MR arranged upon a pair of SU8 waveguides. Such structures are defined by a 4-ports or 4-waveguides coupled by the spherical glass-MR. We have achieved an evanescent photonic coupling between the 3D-MR and the 4-ports structure. Spectral resonances have been measured for 4-whispering gallery-modes (WGM) into such 3D-structures respectively characterized by a 0.97 nm free spectral range (FSR) and a high quality Q-factor up to 4.104.
Optical clock signal distribution and packaging optimization
NASA Astrophysics Data System (ADS)
Wu, Linghui
Polymer-based waveguides for optoelectronic interconnects and packagings were fabricated by a fabrication process that is compatible with the Si CMOS packaging process. An optoelectronic interconnection layer (OIL) for the high-speed massive clock signal distribution for the Cray T-90 supercomputer board employing optical multimode channel waveguides in conjunction with surface-normal waveguide grating couplers and a 1-to-2 3 dB splitter was constructed. Equalized optical paths were realized using an optical H-tree structure having 48 optical fanouts. This device could be increased to 64 without introducing any additional complications. A 1-to-48 fanout H-tree structure using Ultradel 9000D series polyimide was fabricated. The propagation loss and splitting loss have been measured as 0.21 dB/cm and 0.4 dB/splitter at 850 nm. The power budget was discussed, and the H-tree waveguide fully satisfies the power budget requirement. A tapered waveguide coupler was employed to match the mode profile between the single-mode fiber and the multimode channel waveguides of the OIL. A thermo-optical based multimode switch was designed, fabricated, and tested. The finite difference method was used to simulate the thermal distribution in the polymer waveguide. Both stable and transient conditions have been calculated. The thermo-optical switch was fabricated and tested. The switching speed of 1 ms was experimentally confirmed, fitting well with the simulation results. Thermo-optic switching for randomly polarized light at wavelengths of 850 nm was experimental confirmed, as was a stable attenuation of 25 dB. The details of tapered waveguide fabrication were investigated. Compression-molded 3-D tapered waveguides were demonstrated for the first time. Not only the vertical depth variation but also the linear dimensions of the molded waveguides were well beyond the limits of what any other conventional waveguide fabrication method is capable of providing. Molded waveguides with vertical depths of 100 mum at one end and 5 mum at the other end and lengths of 1.0 cm were fabricated using a photolime gel polymer. A propagation loss of 0.5 dB/cm was achieved when light was coupled from the 5 mum x 5 mum end to the 100 mum x 100 mum end and that of 1.1 dB/cm was observed when light was coupled from the 100 mum x 100 mum end to the 5 mum x 5 mum. By confining the energy to the fundamental mode when coupling from the large end to the small end, low-loss packaging can be achieved bi-directionally. 3-D compression-molded polymeric waveguides present a promising solution to bridging the huge dynamic range of different optoelectronic device-depths varying from a few microns to several hundred microns.
Absence of quantum anomalous Hall state in 4 d transition-metal-doped B i2S e3 : An ab initio study
NASA Astrophysics Data System (ADS)
Deng, Bei; Liu, Feng; Zhu, Junyi
2017-11-01
The realization of insulating ferromagnetic states in topological insulator (TI) systems, with sufficiently high Curie temperatures (TC) and large magnetically induced gaps, has been the key bottleneck towards the realization of the quantum anomalous Hall effect (QAHE). Despite the limited reports on 3 d or 4 f transition-metal (TM)-doped B i2S e3 , there remains a lack of systematic studies on 4 d TMs, which may be potential candidates since the atomic sizes of 4 d TMs and that of Bi are similar. Here, we report a theoretical work that probes the magnetic behaviors of the 4 d TM-doped B i2S e3 system. We discovered that among the 4 d TMs, Nb and Mo can create magnetic moments of 1.76 and 2.96 μ B in B i2S e3 , respectively. While Mo yields a stable gapless antiferromagnetic ground state, Nb favors a strong ferromagnetic order, with the magnetic coupling strength (TC) ˜6 times of that induced by the traditional Cr impurity. Yet, we found that Nb is still unfavorable to support the QAH state in B i2S e3 because of the reduced correlation in the t2 g band that gives a gapless character. This rationale is not only successful in interpreting why Nb, the strongest candidate among 4 d TMs for achieving ferromagnetism in B i2S e3 , actually cannot lead to QAHE in the B i2S e3 system even with the assistance of codoping but also is particularly important to fully understand the mechanism of acquisition of insulating ferromagnetic states inside TI. On the other hand, we discovered that Mo-doped B i2S e3 favors strong antiferromagnetic states and may lead to superconducting states.
Peng, Bo; Wang, Yuqi; Hall, Timothy J; Jiang, Jingfeng
2017-04-01
Our primary objective of this paper was to extend a previously published 2-D coupled subsample tracking algorithm for 3-D speckle tracking in the framework of ultrasound breast strain elastography. In order to overcome heavy computational cost, we investigated the use of a graphic processing unit (GPU) to accelerate the 3-D coupled subsample speckle tracking method. The performance of the proposed GPU implementation was tested using a tissue-mimicking phantom and in vivo breast ultrasound data. The performance of this 3-D subsample tracking algorithm was compared with the conventional 3-D quadratic subsample estimation algorithm. On the basis of these evaluations, we concluded that the GPU implementation of this 3-D subsample estimation algorithm can provide high-quality strain data (i.e., high correlation between the predeformation and the motion-compensated postdeformation radio frequency echo data and high contrast-to-noise ratio strain images), as compared with the conventional 3-D quadratic subsample algorithm. Using the GPU implementation of the 3-D speckle tracking algorithm, volumetric strain data can be achieved relatively fast (approximately 20 s per volume [2.5 cm ×2.5 cm ×2.5 cm]).
van Dam, Herman T; Borghi, Giacomo; Seifert, Stefan; Schaart, Dennis R
2013-05-21
Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods. Timing measurements were performed with monolithic scintillator detectors based on novel dSiPM arrays and LSO:Ce,0.2%Ca crystals of 16 × 16 × 10 mm(3), 16 × 16 × 20 mm(3), 24 × 24 × 10 mm(3), and 24 × 24 × 20 mm(3). The best coincidence resolving times (CRTs) for pairs of identical detectors were obtained with MLITE and measured 157 ps, 185 ps, 161 ps, and 184 ps full-width-at-half-maximum (FWHM), respectively. For comparison, a small reference detector, consisting of a 3 × 3 × 5 mm(3) LSO:Ce,0.2%Ca crystal coupled to a single pixel of a dSiPM array, was measured to have a CRT as low as 120 ps FWHM. The results of this work indicate that the influence of the optical transport of the scintillation photons on the timing performance of monolithic scintillator detectors can at least partially be corrected for by utilizing the information contained in the spatio-temporal distribution of the collection of time stamps registered per scintillation event.
NASA Astrophysics Data System (ADS)
van Dam, Herman T.; Borghi, Giacomo; Seifert, Stefan; Schaart, Dennis R.
2013-05-01
Digital silicon photomultiplier (dSiPM) arrays have favorable characteristics for application in monolithic scintillator detectors for time-of-flight positron emission tomography (PET). To fully exploit these benefits, a maximum likelihood interaction time estimation (MLITE) method was developed to derive the time of interaction from the multiple time stamps obtained per scintillation event. MLITE was compared to several deterministic methods. Timing measurements were performed with monolithic scintillator detectors based on novel dSiPM arrays and LSO:Ce,0.2%Ca crystals of 16 × 16 × 10 mm3, 16 × 16 × 20 mm3, 24 × 24 × 10 mm3, and 24 × 24 × 20 mm3. The best coincidence resolving times (CRTs) for pairs of identical detectors were obtained with MLITE and measured 157 ps, 185 ps, 161 ps, and 184 ps full-width-at-half-maximum (FWHM), respectively. For comparison, a small reference detector, consisting of a 3 × 3 × 5 mm3 LSO:Ce,0.2%Ca crystal coupled to a single pixel of a dSiPM array, was measured to have a CRT as low as 120 ps FWHM. The results of this work indicate that the influence of the optical transport of the scintillation photons on the timing performance of monolithic scintillator detectors can at least partially be corrected for by utilizing the information contained in the spatio-temporal distribution of the collection of time stamps registered per scintillation event.
NASA Astrophysics Data System (ADS)
Angerer, Andreas; Astner, Thomas; Wirtitsch, Daniel; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Putz, Stefan; Majer, Johannes
2016-07-01
We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 1017 nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.
A novel potential/viscous flow coupling technique for computing helicopter flow fields
NASA Technical Reports Server (NTRS)
Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul
1993-01-01
The primary objective of this work was to demonstrate the feasibility of a new potential/viscous flow coupling procedure for reducing computational effort while maintaining solution accuracy. This closed-loop, overlapped velocity-coupling concept has been developed in a new two-dimensional code, ZAP2D (Zonal Aerodynamics Program - 2D), a three-dimensional code for wing analysis, ZAP3D (Zonal Aerodynamics Program - 3D), and a three-dimensional code for isolated helicopter rotors in hover, ZAPR3D (Zonal Aerodynamics Program for Rotors - 3D). Comparisons with large domain ARC3D solutions and with experimental data for a NACA 0012 airfoil have shown that the required domain size can be reduced to a few tenths of a percent chord for the low Mach and low angle of attack cases and to less than 2-5 chords for the high Mach and high angle of attack cases while maintaining solution accuracies to within a few percent. This represents CPU time reductions by a factor of 2-4 compared with ARC2D. The current ZAP3D calculation for a rectangular plan-form wing of aspect ratio 5 with an outer domain radius of about 1.2 chords represents a speed-up in CPU time over the ARC3D large domain calculation by about a factor of 2.5 while maintaining solution accuracies to within a few percent. A ZAPR3D simulation for a two-bladed rotor in hover with a reduced grid domain of about two chord lengths was able to capture the wake effects and compared accurately with the experimental pressure data. Further development is required in order to substantiate the promise of computational improvements due to the ZAPR3D coupling concept.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griebel, M., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de; Rüttgers, A., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de
The multiscale FENE model is applied to a 3D square-square contraction flow problem. For this purpose, the stochastic Brownian configuration field method (BCF) has been coupled with our fully parallelized three-dimensional Navier-Stokes solver NaSt3DGPF. The robustness of the BCF method enables the numerical simulation of high Deborah number flows for which most macroscopic methods suffer from stability issues. The results of our simulations are compared with that of experimental measurements from literature and show a very good agreement. In particular, flow phenomena such as a strong vortex enhancement, streamline divergence and a flow inversion for highly elastic flows are reproduced.more » Due to their computational complexity, our simulations require massively parallel computations. Using a domain decomposition approach with MPI, the implementation achieves excellent scale-up results for up to 128 processors.« less
A simulation-optimization model for effective water resources management in the coastal zone
NASA Astrophysics Data System (ADS)
Spanoudaki, Katerina; Kampanis, Nikolaos
2015-04-01
Coastal areas are the most densely-populated areas in the world. Consequently water demand is high, posing great pressure on fresh water resources. Climatic change and its direct impacts on meteorological variables (e.g. precipitation) and indirect impact on sea level rise, as well as anthropogenic pressures (e.g. groundwater abstraction), are strong drivers causing groundwater salinisation and subsequently affecting coastal wetlands salinity with adverse effects on the corresponding ecosystems. Coastal zones are a difficult hydrologic environment to represent with a mathematical model due to the large number of contributing hydrologic processes and variable-density flow conditions. Simulation of sea level rise and tidal effects on aquifer salinisation and accurate prediction of interactions between coastal waters, groundwater and neighbouring wetlands requires the use of integrated surface water-groundwater mathematical models. In the past few decades several computer codes have been developed to simulate coupled surface and groundwater flow. However, most integrated surface water-groundwater models are based on the assumption of constant fluid density and therefore their applicability to coastal regions is questionable. Thus, most of the existing codes are not well-suited to represent surface water-groundwater interactions in coastal areas. To this end, the 3D integrated surface water-groundwater model IRENE (Spanoudaki et al., 2009; Spanoudaki, 2010) has been modified in order to simulate surface water-groundwater flow and salinity interactions in the coastal zone. IRENE, in its original form, couples the 3D shallow water equations to the equations describing 3D saturated groundwater flow of constant density. A semi-implicit finite difference scheme is used to solve the surface water flow equations, while a fully implicit finite difference scheme is used for the groundwater equations. Pollution interactions are simulated by coupling the advection-diffusion equation describing the fate and transport of contaminants introduced in a 3D turbulent flow field to the partial differential equation describing the fate and transport of contaminants in 3D transient groundwater flow systems. The model has been further developed to include the effects of density variations on surface water and groundwater flow, while the already built-in solute transport capabilities are used to simulate salinity interactions. The refined model is based on the finite volume method using a cell-centred structured grid, providing thus flexibility and accuracy in simulating irregular boundary geometries. For addressing water resources management problems, simulation models are usually externally coupled with optimisation-based management models. However this usually requires a very large number of iterations between the optimisation and simulation models in order to obtain the optimal management solution. As an alternative approach, for improved computational efficiency, an Artificial Neural Network (ANN) is trained as an approximate simulator of IRENE. The trained ANN is then linked to a Genetic Algorithm (GA) based optimisation model for managing salinisation problems in the coastal zone. The linked simulation-optimisation model is applied to a hypothetical study area for performance evaluation. Acknowledgement The work presented in this paper has been funded by the Greek State Scholarships Foundation (IKY), Fellowships of Excellence for Postdoctoral Studies (Siemens Program), 'A simulation-optimization model for assessing the best practices for the protection of surface water and groundwater in the coastal zone', (2013 - 2015). References Spanoudaki, K., Stamou, A.I. and Nanou-Giannarou, A. (2009). Development and verification of a 3-D integrated surface water-groundwater model. Journal of Hydrology, 375 (3-4), 410-427. Spanoudaki, K. (2010). Integrated numerical modelling of surface water groundwater systems (in Greek). Ph.D. Thesis, National Technical University of Athens, Greece.
Initial Coupling of the RELAP-7 and PRONGHORN Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ortensi; D. Andrs; A.A. Bingham
2012-10-01
Modern nuclear reactor safety codes require the ability to solve detailed coupled neutronic- thermal fluids problems. For larger cores, this implies fully coupled higher dimensionality spatial dynamics with appropriate feedback models that can provide enough resolution to accurately compute core heat generation and removal during steady and unsteady conditions. The reactor analysis code PRONGHORN is being coupled to RELAP-7 as a first step to extend RELAP’s current capabilities. This report details the mathematical models, the type of coupling, and the testing results from the integrated system. RELAP-7 is a MOOSE-based application that solves the continuity, momentum, and energy equations inmore » 1-D for a compressible fluid. The pipe and joint capabilities enable it to model parts of the power conversion unit. The PRONGHORN application, also developed on the MOOSE infrastructure, solves the coupled equations that define the neutron diffusion, fluid flow, and heat transfer in a full core model. The two systems are loosely coupled to simplify the transition towards a more complex infrastructure. The integration is tested on a simplified version of the OECD/NEA MHTGR-350 Coupled Neutronics-Thermal Fluids benchmark model.« less
Landslide Spreading, Impulse Water Waves and Modelling of the Vajont Rockslide
NASA Astrophysics Data System (ADS)
Crosta, Giovanni B.; Imposimato, Silvia; Roddeman, Dennis
2016-06-01
Landslides can occur in different environments and can interact with or fall into water reservoirs or open sea with different characteristics. The subaerial evolution and the transition from subaerial to subaqueous conditions can strongly control the landslide evolution and the generated impulse waves, and consequently the final hazard zonation. We intend to model the landslide spreading, the impact with the water surface and the generation of the impulse wave under different 2D and 3D conditions and settings. We verify the capabilities of a fully 2D and 3D FEM ALE approach to model and analyse near-field evolution. To this aim we validate the code against 2D laboratory experiments for different Froude number conditions (Fr = 1.4, 3.2). Then the Vajont rockslide (Fr = 0.26-0.75) and the consequent impulse wave are simulated in 2D and 3D. The sliding mass is simulated as an elasto-plastic Mohr-Coulomb material and the lake water as a fully inviscid low compressibility fluid. The rockslide model is validated against field observations, including the total duration, the profile and internal geometry of the final deposit, the maximum water run-up on the opposite valley flank and on the rockslide mass. 2D models are presented for both the case of a dry valley and that of the impounded lake. The set of fully 3D simulations are the first ones available and considering the rockslide evolution, propagation and interaction with the water reservoir. Advantages and disadvantages of the modelling approach are discussed.
Hortolà, Policarp
2010-01-01
When dealing with microscopic still images of some kinds of samples, the out-of-focus problem represents a particularly serious limiting factor for the subsequent generation of fully sharp 3D animations. In order to produce fully-focused 3D animations of strongly uneven surface microareas, a vertical stack of six digital secondary-electron SEM micrographs of a human bloodstain microarea was acquired. Afterwards, single combined images were generated using a macrophotography and light microscope image post-processing software. Subsequently, 3D animations of texture and topography were obtained in different formats using a combination of software tools. Finally, a 3D-like animation of a texture-topography composite was obtained in different formats using another combination of software tools. By one hand, results indicate that the use of image post-processing software not concerned primarily with electron micrographs allows to obtain, in an easy way, fully-focused images of strongly uneven surface microareas of bloodstains from small series of partially out-of-focus digital SEM micrographs. On the other hand, results also indicate that such small series of electron micrographs can be utilized for generating 3D and 3D-like animations that can subsequently be converted into different formats, by using certain user-friendly software facilities not originally designed for use in SEM, that are easily available from Internet. Although the focus of this study was on bloodstains, the methods used in it well probably are also of relevance for studying the surface microstructures of other organic or inorganic materials whose sharp displaying is difficult of obtaining from a single SEM micrograph.
Co-simulation coupling spectral/finite elements for 3D soil/structure interaction problems
NASA Astrophysics Data System (ADS)
Zuchowski, Loïc; Brun, Michael; De Martin, Florent
2018-05-01
The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.
1D-3D coupling for hydraulic system transient simulations
NASA Astrophysics Data System (ADS)
Wang, Chao; Nilsson, Håkan; Yang, Jiandong; Petit, Olivier
2017-01-01
This work describes a coupling between the 1D method of characteristics (MOC) and the 3D finite volume method of computational fluid dynamics (CFD). The coupling method is applied to compressible flow in hydraulic systems. The MOC code is implemented as a set of boundary conditions in the OpenFOAM open source CFD software. The coupling is realized by two linear equations originating from the characteristics equation and the Riemann constant equation, respectively. The coupling method is validated using three simple water hammer cases and several coupling configurations. The accuracy and robustness are investigated with respect to the mesh size ratio across the interface, and 3D flow features close to the interface. The method is finally applied to the transient flow caused by the closing and opening of a knife valve (gate) in a pipe, where the flow is driven by the difference in free surface elevation between two tanks. A small region surrounding the moving gate is resolved by CFD, using a dynamic mesh library, while the rest of the system is modeled by MOC. Minor losses are included in the 1D region, corresponding to the contraction of the flow from the upstream tank into the pipe, a separate stationary flow regulation valve, and a pipe bend. The results are validated with experimental data. A 1D solution is provided for comparison, using the static gate characteristics obtained from steady-state CFD simulations.
3D modeling based on CityEngine
NASA Astrophysics Data System (ADS)
Jia, Guangyin; Liao, Kaiju
2017-03-01
Currently, there are many 3D modeling softwares, like 3DMAX, AUTOCAD, and more populous BIM softwares represented by REVIT. CityEngine modeling software introduced in this paper can fully utilize the existing GIS data and combine other built models to make 3D modeling on internal and external part of buildings in a rapid and batch manner, so as to improve the 3D modeling efficiency.
Tang, Jinghua; McGrath, Michael; Laszczak, Piotr; Jiang, Liudi; Bader, Dan L; Moser, David; Zahedi, Saeed
2015-12-01
Design and fitting of artificial limbs to lower limb amputees are largely based on the subjective judgement of the prosthetist. Understanding the science of three-dimensional (3D) dynamic coupling at the residuum/socket interface could potentially aid the design and fitting of the socket. A new method has been developed to characterise the 3D dynamic coupling at the residuum/socket interface using 3D motion capture based on a single case study of a trans-femoral amputee. The new model incorporated a Virtual Residuum Segment (VRS) and a Socket Segment (SS) which combined to form the residuum/socket interface. Angular and axial couplings between the two segments were subsequently determined. Results indicated a non-rigid angular coupling in excess of 10° in the quasi-sagittal plane and an axial coupling of between 21 and 35 mm. The corresponding angular couplings of less than 4° and 2° were estimated in the quasi-coronal and quasi-transverse plane, respectively. We propose that the combined experimental and analytical approach adopted in this case study could aid the iterative socket fitting process and could potentially lead to a new socket design. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Fan, Xing; Chang, Jie; Ren, Yuan; Wu, Xu; Du, Yuanyuan; Xu, Ronghua; Liu, Dong; Chang, Scott X; Meyerson, Laura A; Peng, Changhui; Ge, Ying
2018-04-03
Dairy production is becoming more industrialized globally, especially in developing countries. The large amount of animal wastes from industrial feedlots cannot be fully used on nearby farmlands, leading to severe environmental problems. Using China as a case study, we found that most dairy feedlots employ a semicoupled mode that only recycles solid manure to farmlands, and only a few dairy feedlots employ a fully coupled mode that recycles both solid and liquid animal manure. To produce 1 ton of milk, the fully coupled mode could reduce greenhouse gas (including carbon dioxide, methane, and nitrous oxide in this paper) emissions by 24%, ammonia emissions by 14%, and N discharge into water by 29%, compared with the semicoupled systems. Coupling feedlots with constructed wetlands can further result in greater mitigation of N leaching into groundwater. However, the fully coupled system has not been widely used due to the low benefit to farmers and the institutional barrier that the feedlot owners have no right to use adjacent farmlands. Since a fully coupled system improves net ecosystem services that favor the public, a policy that supports removing the economic and institutional barriers is necessary. Our approach provides a template for mitigating environmental impacts from livestock production without sacrificing milk production.
NASA Astrophysics Data System (ADS)
Fan, Qimeng; Chen, Chaoyin; Huang, Zaiqiang; Zhang, Chunmei; Liang, Pengjuan; Zhao, Shenglan
2015-02-01
Rhizoma Gastrodiae (Tianma) of different variants and different geographical origins has vital difference in quality and physiological efficacy. This paper focused on the classification and identification of Tianma of six types (two variants from three different geographical origins) using three dimensional synchronous fluorescence spectroscopy (3D-SFS) coupled with principal component analysis (PCA). 3D-SF spectra of aqueous extracts, which were obtained from Tianma of the six types, were measured by a LS-50B luminescence spectrofluorometer. The experimental results showed that the characteristic fluorescent spectral regions of the 3D-SF spectra were similar, while the intensities of characteristic regions are different significantly. Coupled these differences in peak intensities with PCA, Tianma of six types could be discriminated successfully. In conclusion, 3D-SFS coupled with PCA, which has such advantages as effective, specific, rapid, non-polluting, has an edge for discrimination of the similar Chinese herbal medicine. And the proposed methodology is a useful tool to classify and identify Tianma of different variants and different geographical origins.
NASA Astrophysics Data System (ADS)
Zhao, Jiaye; Wen, Huihui; Liu, Zhanwei; Rong, Jili; Xie, Huimin
2018-05-01
Three-dimensional (3D) deformation measurements are a key issue in experimental mechanics. In this paper, a displacement field correlation (DFC) method to measure centrosymmetric 3D dynamic deformation using a single camera is proposed for the first time. When 3D deformation information is collected by a camera at a tilted angle, the measured displacement fields are coupling fields of both the in-plane and out-of-plane displacements. The features of the coupling field are analysed in detail, and a decoupling algorithm based on DFC is proposed. The 3D deformation to be measured can be inverted and reconstructed using only one coupling field. The accuracy of this method was validated by a high-speed impact experiment that simulated an underwater explosion. The experimental results show that the approach proposed in this paper can be used in 3D deformation measurements with higher sensitivity and accuracy, and is especially suitable for high-speed centrosymmetric deformation. In addition, this method avoids the non-synchronisation problem associated with using a pair of high-speed cameras, as is common in 3D dynamic measurements.
BISON Theory Manual The Equations behind Nuclear Fuel Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hales, J. D.; Williamson, R. L.; Novascone, S. R.
2016-09-01
BISON is a finite element-based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO particle fuel, and metallic rod and plate fuel. It solves the fully-coupled equations of thermomechanics and species diffusion, for either 2D axisymmetric or 3D geometries. Fuel models are included to describe temperature and burnup dependent thermal properties, fission product swelling, densification, thermal and irradiation creep, fracture, and fission gas production and release. Plasticity, irradiation growth, and thermal and irradiation creep models are implemented for clad materials. Models are also available to simulate gap heat transfer, mechanical contact,more » and the evolution of the gap/plenum pressure with plenum volume, gas temperature, and fission gas addition. BISON is based on the MOOSE framework and can therefore efficiently solve problems using standard workstations or very large high-performance computers. This document describes the theoretical and numerical foundations of BISON.« less
NASA Astrophysics Data System (ADS)
Ayad, G.; Song, J.; Barriere, T.; Liu, B.; Gelin, J. C.
2007-05-01
The paper is concerned with optimization and parametric identification of Powder Injection Molding process that consists first in injection of powder mixture with polymer binder and then to the sintering of the resulting powders parts by solid state diffusion. In the first part, one describes an original methodology to optimize the injection stage based on the combination of Design Of Experiments and an adaptive Response Surface Modeling. Then the second part of the paper describes the identification strategy that one proposes for the sintering stage, using the identification of sintering parameters from dilatometer curves followed by the optimization of the sintering process. The proposed approaches are applied to the optimization for manufacturing of a ceramic femoral implant. One demonstrates that the proposed approach give satisfactory results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yidong Xia; Mitch Plummer; Robert Podgorney
2016-02-01
Performance of heat production process over a 30-year period is assessed in a conceptual EGS model with a geothermal gradient of 65K per km depth in the reservoir. Water is circulated through a pair of parallel wells connected by a set of single large wing fractures. The results indicate that the desirable output electric power rate and lifespan could be obtained under suitable material properties and system parameters. A sensitivity analysis on some design constraints and operation parameters indicates that 1) the fracture horizontal spacing has profound effect on the long-term performance of heat production, 2) the downward deviation anglemore » for the parallel doublet wells may help overcome the difficulty of vertical drilling to reach a favorable production temperature, and 3) the thermal energy production rate and lifespan has close dependence on water mass flow rate. The results also indicate that the heat production can be improved when the horizontal fracture spacing, well deviation angle, and production flow rate are under reasonable conditions. To conduct the reservoir modeling and simulations, an open-source, finite element based, fully implicit, fully coupled hydrothermal code, namely FALCON, has been developed and used in this work. Compared with most other existing codes that are either closed-source or commercially available in this area, this new open-source code has demonstrated a code development strategy that aims to provide an unparalleled easiness for user-customization and multi-physics coupling. Test results have shown that the FALCON code is able to complete the long-term tests efficiently and accurately, thanks to the state-of-the-art nonlinear and linear solver algorithms implemented in the code.« less
SIERRA Multimechanics Module: Aria User Manual Version 4.44
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal /Fluid Team
2017-04-01
Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of eithermore » arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal/Fluid Team
Aria is a Galerkin fnite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process fows via the incompressible Navier-Stokes equations specialized to a low Reynolds number ( %3C 1 ) regime. Enhanced modeling support of manufacturing processing is made possible through use of eithermore » arbitrary Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h -adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra Thermal /Fluid Team
Aria is a Galerkin finite element based program for solving coupled-physics problems described by systems of PDEs and is capable of solving nonlinear, implicit, transient and direct-to-steady state problems in two and three dimensions on parallel architectures. The suite of physics currently supported by Aria includes thermal energy transport, species transport, and electrostatics as well as generalized scalar, vector and tensor transport equations. Additionally, Aria includes support for manufacturing process flows via the incompressible Navier-Stokes equations specialized to a low Reynolds number (Re %3C 1) regime. Enhanced modeling support of manufacturing processing is made possible through use of either arbitrarymore » Lagrangian- Eulerian (ALE) and level set based free and moving boundary tracking in conjunction with quasi-static nonlinear elastic solid mechanics for mesh control. Coupled physics problems are solved in several ways including fully-coupled Newton's method with analytic or numerical sensitivities, fully-coupled Newton- Krylov methods and a loosely-coupled nonlinear iteration about subsets of the system that are solved using combinations of the aforementioned methods. Error estimation, uniform and dynamic h-adaptivity and dynamic load balancing are some of Aria's more advanced capabilities. Aria is based upon the Sierra Framework.« less
Quantum Optimization of Fully Connected Spin Glasses
NASA Astrophysics Data System (ADS)
Venturelli, Davide; Mandrà, Salvatore; Knysh, Sergey; O'Gorman, Bryan; Biswas, Rupak; Smelyanskiy, Vadim
2015-07-01
Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer's hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave TwoTM annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors) optimized simulated annealing algorithms.
2008-04-01
Hot Working of Titanium 5a. CONTRACT NUMBER F33615-03-D-5801-0043 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61202F 6 . AUTHOR(S) A.A...micrographs and thus to correlate microstructural features and texture data [3- 6 ]. For instance, Germain, et al. [3, 4 ] linked local orientations...microstructures can be developed in alpha/beta titanium alloys by TMP [2- 4 ], namely, fully lamellar, fully equiaxed, and duplex (bi-modal). A mixture
Long-Lived Triplet Excited States of Bent-Shaped Pentacene Dimers by Intramolecular Singlet Fission.
Sakuma, Takao; Sakai, Hayato; Araki, Yasuyuki; Mori, Tadashi; Wada, Takehiko; Tkachenko, Nikolai V; Hasobe, Taku
2016-03-24
Intramolecular singlet fission (ISF) is a promising photophysical process to construct more efficient light energy conversion systems as one excited singlet state converts into two excited triplet states. Herein we synthesized and evaluated bent-shaped pentacene dimers as a prototype of ISF to reveal intrinsic characters of triplet states (e.g., lifetimes of triplet excited states). In this study, meta-phenylene-bridged TIPS-pentacene dimer (PcD-3Ph) and 2,2'-bipheynyl bridged TIPS-pentacene dimer (PcD-Biph) were newly synthesized as bent-shaped dimers. In the steady-state spectroscopy, absorption and emission bands of these dimers were fully characterized, suggesting the appropriate degree of electronic coupling between pentacene moieties in these dimers. In addition, the electrochemical measurements were also performed to check the electronic interaction between two pentacene moieties. Whereas the successive two oxidation peaks owing to the delocalization were observed in a directly linked-pentacene dimer (PcD) by a single bond, the cyclic voltammograms in PcD-Biph and PcD-3Ph implied the weaker interaction compared to that of p-phenylene-bridged TIPS-pentacene dimer (PcD-4Ph) and PcD. The femtosecond and nanosecond transient absorption spectra clearly revealed the slower ISF process in bent-shaped pentacene dimers (PcD-Biph and PcD-3Ph), more notably, the slower relaxation of the excited triplet states in PcD-Biph and PcD-3Ph. Namely, the quantum yields of triplet states (ΦT) by ISF approximately remain constant (ca. 180-200%) in all dimer systems, whereas the lifetimes of the triplet excited states became much longer (up to 360 ns) in PcD-Biph as compared to PcD-4Ph (15 ns). Additionally, the lifetimes of the corresponding triplet states in PcD-Biph and PcD-3Ph were sufficiently affected by solvent viscosity. In particular, the lifetimes of PcD-Biph triplet state in THF/paraffin (1.0 μs) increased up to approximately three times as compared to that in THF (360 ns), whereas those of PcD-4Ph were quite similar in both solvent.
Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks
NASA Astrophysics Data System (ADS)
Roth, Holger; Oda, Masahiro; Shimizu, Natsuki; Oda, Hirohisa; Hayashi, Yuichiro; Kitasaka, Takayuki; Fujiwara, Michitaka; Misawa, Kazunari; Mori, Kensaku
2018-03-01
Pancreas segmentation in computed tomography imaging has been historically difficult for automated methods because of the large shape and size variations between patients. In this work, we describe a custom-build 3D fully convolutional network (FCN) that can process a 3D image including the whole pancreas and produce an automatic segmentation. We investigate two variations of the 3D FCN architecture; one with concatenation and one with summation skip connections to the decoder part of the network. We evaluate our methods on a dataset from a clinical trial with gastric cancer patients, including 147 contrast enhanced abdominal CT scans acquired in the portal venous phase. Using the summation architecture, we achieve an average Dice score of 89.7 +/- 3.8 (range [79.8, 94.8])% in testing, achieving the new state-of-the-art performance in pancreas segmentation on this dataset.
3D model assisted fully automated scanning laser Doppler vibrometer measurements
NASA Astrophysics Data System (ADS)
Sels, Seppe; Ribbens, Bart; Bogaerts, Boris; Peeters, Jeroen; Vanlanduit, Steve
2017-12-01
In this paper, a new fully automated scanning laser Doppler vibrometer (LDV) measurement technique is presented. In contrast to existing scanning LDV techniques which use a 2D camera for the manual selection of sample points, we use a 3D Time-of-Flight camera in combination with a CAD file of the test object to automatically obtain measurements at pre-defined locations. The proposed procedure allows users to test prototypes in a shorter time because physical measurement locations are determined without user interaction. Another benefit from this methodology is that it incorporates automatic mapping between a CAD model and the vibration measurements. This mapping can be used to visualize measurements directly on a 3D CAD model. The proposed method is illustrated with vibration measurements of an unmanned aerial vehicle
NASA Astrophysics Data System (ADS)
Kim, Jongchan; Archer, Rosalind
2017-04-01
In terms of energy development (oil, gas and geothermal field) and environmental improvement (carbon dioxide sequestration), fluid injection into subsurface has been dramatically increased. As a side effect of these operations, a number of injection-induced seismic activities have also significantly risen. It is known that the main causes of induced seismicity are changes in local shear and normal stresses and pore pressure as well. This mechanism leads to increase in the probability of earthquake occurrence on permeable pre-existing fault zones predominantly. In this 2D fully coupled THM geothermal reservoir numerical simulation of injection-induced seismicity, we investigate the thermal, hydraulic and mechanical behavior of the fracture zone, considering a variety of 1) fault permeability, 2) injection rate and 3) injection temperature to identify major contributing parameters to induced seismic activity. We also calculate spatiotemporal variation of the Coulomb stress which is a combination of shear stress, normal stress and pore pressure and lastly forecast the seismicity rate on the fault zone by computing the seismic prediction model of Dieterich (1994).
Peng, Bo; Wang, Yuqi; Hall, Timothy J; Jiang, Jingfeng
2017-01-01
Our primary objective of this work was to extend a previously published 2D coupled sub-sample tracking algorithm for 3D speckle tracking in the framework of ultrasound breast strain elastography. In order to overcome heavy computational cost, we investigated the use of a graphic processing unit (GPU) to accelerate the 3D coupled sub-sample speckle tracking method. The performance of the proposed GPU implementation was tested using a tissue-mimicking (TM) phantom and in vivo breast ultrasound data. The performance of this 3D sub-sample tracking algorithm was compared with the conventional 3D quadratic sub-sample estimation algorithm. On the basis of these evaluations, we concluded that the GPU implementation of this 3D sub-sample estimation algorithm can provide high-quality strain data (i.e. high correlation between the pre- and the motion-compensated post-deformation RF echo data and high contrast-to-noise ratio strain images), as compared to the conventional 3D quadratic sub-sample algorithm. Using the GPU implementation of the 3D speckle tracking algorithm, volumetric strain data can be achieved relatively fast (approximately 20 seconds per volume [2.5 cm × 2.5 cm × 2.5 cm]). PMID:28166493
NASA Astrophysics Data System (ADS)
Kadrmas, Dan J.; Frey, Eric C.; Karimi, Seemeen S.; Tsui, Benjamin M. W.
1998-04-01
Accurate scatter compensation in SPECT can be performed by modelling the scatter response function during the reconstruction process. This method is called reconstruction-based scatter compensation (RBSC). It has been shown that RBSC has a number of advantages over other methods of compensating for scatter, but using RBSC for fully 3D compensation has resulted in prohibitively long reconstruction times. In this work we propose two new methods that can be used in conjunction with existing methods to achieve marked reductions in RBSC reconstruction times. The first method, coarse-grid scatter modelling, significantly accelerates the scatter model by exploiting the fact that scatter is dominated by low-frequency information. The second method, intermittent RBSC, further accelerates the reconstruction process by limiting the number of iterations during which scatter is modelled. The fast implementations were evaluated using a Monte Carlo simulated experiment of the 3D MCAT phantom with
tracer, and also using experimentally acquired data with
tracer. Results indicated that these fast methods can reconstruct, with fully 3D compensation, images very similar to those obtained using standard RBSC methods, and in reconstruction times that are an order of magnitude shorter. Using these methods, fully 3D iterative reconstruction with RBSC can be performed well within the realm of clinically realistic times (under 10 minutes for
image reconstruction).
EPE analysis of sub-N10 BEoL flow with and without fully self-aligned via using Coventor SEMulator3D
NASA Astrophysics Data System (ADS)
Franke, Joern-Holger; Gallagher, Matt; Murdoch, Gayle; Halder, Sandip; Juncker, Aurelie; Clark, William
2017-03-01
During the last few decades, the semiconductor industry has been able to scale device performance up while driving costs down. What started off as simple geometrical scaling, driven mostly by advances in lithography, has recently been accompanied by advances in processing techniques and in device architectures. The trend to combine efforts using process technology and lithography is expected to intensify, as further scaling becomes ever more difficult. One promising component of future nodes are "scaling boosters", i.e. processing techniques that enable further scaling. An indispensable component in developing these ever more complex processing techniques is semiconductor process modeling software. Visualization of complex 3D structures in SEMulator3D, along with budget analysis on film thicknesses, CD and etch budgets, allow process integrators to compare flows before any physical wafers are run. Hundreds of "virtual" wafers allow comparison of different processing approaches, along with EUV or DUV patterning options for defined layers and different overlay schemes. This "virtual fabrication" technology produces massively parallel process variation studies that would be highly time-consuming or expensive in experiment. Here, we focus on one particular scaling booster, the fully self-aligned via (FSAV). We compare metal-via-metal (mevia-me) chains with self-aligned and fully-self-aligned via's using a calibrated model for imec's N7 BEoL flow. To model overall variability, 3D Monte Carlo modeling of as many variability sources as possible is critical. We use Coventor SEMulator3D to extract minimum me-me distances and contact areas and show how fully self-aligned vias allow a better me-via distance control and tighter via-me contact area variability compared with the standard self-aligned via (SAV) approach.
A novel fully-humanised 3D skin equivalent to model early melanoma invasion
Hill, David S; Robinson, Neil D P; Caley, Matthew P; Chen, Mei; O’Toole, Edel A; Armstrong, Jane L; Przyborski, Stefan; Lovat, Penny E
2015-01-01
Metastatic melanoma remains incurable, emphasising the acute need for improved research models to investigate the underlying biological mechanisms mediating tumour invasion and metastasis, and to develop more effective targeted therapies to improve clinical outcome. Available animal models of melanoma do not accurately reflect human disease and current in vitro human skin equivalent models incorporating melanoma cells are not fully representative of the human skin microenvironment. We have developed a robust and reproducible, fully-humanised 3D skin equivalent comprising a stratified, terminally differentiated epidermis and a dermal compartment consisting of fibroblast-generated extracellular matrix. Melanoma cells incorporated into the epidermis were able to invade through the basement membrane and into the dermis, mirroring early tumour invasion in vivo. Comparison of our novel 3D melanoma skin equivalent with melanoma in situ and metastatic melanoma indicates this model accurately recreates features of disease pathology, making it a physiologically representative model of early radial and vertical growth phase melanoma invasion. PMID:26330548
Effect of transverse magnetic fields on a simulated in-line 6 MV linac
NASA Astrophysics Data System (ADS)
St. Aubin, J.; Steciw, S.; Fallone, B. G.
2010-08-01
The effects of a transverse magnetic field on an in-line side-coupled 6 MV linear accelerator are given. The results are directly applicable to a linac-MR system used for real-time image guided adaptive radiotherapy. Our previously designed end-to-end linac simulation incorporated the results from the axisymmetric 2D electron gun program EGN2w. However, since the magnetic fields being investigated are non-axisymmetric in nature for the work presented here, the electron gun simulation was performed using OPERA-3d/SCALA. The simulation results from OPERA-3d/SCALA showed excellent agreement with previous results. Upon the addition of external magnetic fields to our fully 3D linac simulation, it was found that a transverse magnetic field of 6 G resulted in a 45 ± 1% beam loss, and by 14 G, no electrons were incident on the target. Transverse magnetic fields on the linac simulation produced a highly asymmetric focal spot at the target, which translated into a 13% profile asymmetry at 6 G. Upon translating the focal spot with respect to the target coordinates, profile symmetry was regained at the expense of a lateral shift in the dose profiles. It was found that all points in the penumbra failed a 1%/1 mm acceptance criterion for fields between 4 and 6 G. However, it was also found that the lateral profile shifts were corrected by adjusting the jaw positions asymmetrically.
Hocquelet, Arnaud; Cornelis, François; Jirot, Anna; Castaings, Laurent; de Sèze, Mathieu; Hauger, Olivier
2016-10-01
The aim of this study is to compare the accuracy and reliability of spinal curvatures and vertebral rotation data based on patient-specific 3D models created by 3D imaging system or by bi-planar imaging coupled with Moiré-Fringe projections. Sixty-two consecutive patients from a single institution were prospectively included. For each patient, frontal and sagittal calibrated low-dose bi-planar X-rays were performed and coupled simultaneously with an optical Moiré back surface-based technology. The 3D reconstructions of spine and pelvis were performed independently by one radiologist and one technician in radiology using two different semi-automatic methods using 3D radio-imaging system (method 1) or bi-planar imaging coupled with Moiré projections (method 2). Both methods were compared using Bland-Altman analysis, and reliability using intraclass correlation coefficient (ICC). ICC showed good to very good agreement. Between the two techniques, the maximum 95 % prediction limits was -4.9° degrees for the measurements of spinal coronal curves and less than 5° for other parameters. Inter-rater reliability was excellent for all parameters across both methods, except for axial rotation with method 2 for which ICC was fair. Method 1 was faster for reconstruction time than method 2 for both readers (13.4 vs. 20.7 min and 10.6 vs. 13.9 min; p = 0.0001). While a lower accuracy was observed for the evaluation of the axial rotation, bi-planar imaging coupled with Moiré-Fringe projections may be an accurate and reliable tool to perform 3D reconstructions of the spine and pelvis.
Probing α -RuCl3 Beyond Magnetic Order: Effects of Temperature and Magnetic Field
NASA Astrophysics Data System (ADS)
Winter, Stephen M.; Riedl, Kira; Kaib, David; Coldea, Radu; Valentí, Roser
2018-02-01
Recent studies have brought α -RuCl3 to the forefront of experimental searches for materials realizing Kitaev spin-liquid physics. This material exhibits strongly anisotropic exchange interactions afforded by the spin-orbit coupling of the 4 d Ru centers. We investigate the dynamical response at finite temperature and magnetic field for a realistic model of the magnetic interactions in α -RuCl3 . These regimes are thought to host unconventional paramagnetic states that emerge from the suppression of magnetic order. Using exact diagonalization calculations of the quantum model complemented by semiclassical analysis, we find a very rich evolution of the spin dynamics as the applied field suppresses the zigzag order and stabilizes a quantum paramagnetic state that is adiabatically connected to the fully polarized state at high fields. At finite temperature, we observe large redistributions of spectral weight that can be attributed to the anisotropic frustration of the model. These results are compared to recent experiments and provide a road map for further studies of these regimes.
Modeling and design of Galfenol unimorph energy harvesters
NASA Astrophysics Data System (ADS)
Deng, Zhangxian; Dapino, Marcelo J.
2015-12-01
This article investigates the modeling and design of vibration energy harvesters that utilize iron-gallium (Galfenol) as a magnetoelastic transducer. Galfenol unimorphs are of particular interest; however, advanced models and design tools are lacking for these devices. Experimental measurements are presented for various unimorph beam geometries. A maximum average power density of 24.4 {mW} {{cm}}-3 and peak power density of 63.6 {mW} {{cm}}-3 are observed. A modeling framework with fully coupled magnetoelastic dynamics, formulated as a 2D finite element model, and lumped-parameter electrical dynamics is presented and validated. A comprehensive parametric study considering pickup coil dimensions, beam thickness ratio, tip mass, bias magnet location, and remanent flux density (supplied by bias magnets) is developed for a 200 Hz, 9.8 {{m}} {{{s}}}-2 amplitude harmonic base excitation. For the set of optimal parameters, the maximum average power density and peak power density computed by the model are 28.1 and 97.6 {mW} {{cm}}-3, respectively.
High-order Spatio-temporal Schemes for Coupled, Multi-physics Reactor Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mr. Vijay S. Mahadevan; Dr. Jean C. Ragusa
2008-09-01
This report summarizes the work done in the summer of 08 by the Ph.D. student Vijay Mahadevan. The main focus of the work was to coupled 3-D neutron difusion to 3-D heat conduction in parallel with accuracy greater than or equal to 2nd order in space and time. Results show that the goal was attained.
Diagrammatic Monte Carlo study of Fröhlich polaron dispersion in two and three dimensions
NASA Astrophysics Data System (ADS)
Hahn, Thomas; Klimin, Sergei; Tempere, Jacques; Devreese, Jozef T.; Franchini, Cesare
2018-04-01
We present results for the solution of the large polaron Fröhlich Hamiltonian in 3 dimensions (3D) and 2 dimensions (2D) obtained via the diagrammatic Monte Carlo (DMC) method. Our implementation is based on the approach by Mishchenko [A. S. Mishchenko et al., Phys. Rev. B 62, 6317 (2000), 10.1103/PhysRevB.62.6317]. Polaron ground state energies and effective polaron masses are successfully benchmarked with data obtained using Feynman's path integral formalism. By comparing 3D and 2D data, we verify the analytically exact scaling relations for energies and effective masses from 3 D →2 D , which provides a stringent test for the quality of DMC predictions. The accuracy of our results is further proven by providing values for the exactly known coefficients in weak- and strong-coupling expansions. Moreover, we compute polaron dispersion curves which are validated with analytically known lower and upper limits in the small-coupling regime and verify the first-order expansion results for larger couplings, thus disproving previous critiques on the apparent incompatibility of DMC with analytical results and furnishing useful reference for a wide range of coupling strengths.
NASA Astrophysics Data System (ADS)
Pietropolli Charmet, Andrea; Stoppa, Paolo; Tasinato, Nicola; Giorgianni, Santi
2017-05-01
This work presents a benchmark study on the calculation of the sextic centrifugal distortion constants employing cubic force fields computed by means of density functional theory (DFT). For a set of semi-rigid halogenated organic compounds several functionals (B2PLYP, B3LYP, B3PW91, M06, M06-2X, O3LYP, X3LYP, ωB97XD, CAM-B3LYP, LC-ωPBE, PBE0, B97-1 and B97-D) were used for computing the sextic centrifugal distortion constants. The effects related to the size of basis sets and the performances of hybrid approaches, where the harmonic data obtained at higher level of electronic correlation are coupled with cubic force constants yielded by DFT functionals, are presented and discussed. The predicted values were compared to both the available data published in the literature and those obtained by calculations carried out at increasing level of electronic correlation: Hartree-Fock Self Consistent Field (HF-SCF), second order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double (CCSD) level of theory. Different hybrid approaches, having the cubic force field computed at DFT level of theory coupled to harmonic data computed at increasing level of electronic correlation (up to CCSD level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T)) were considered. The obtained results demonstrate that they can represent reliable and computationally affordable methods to predict sextic centrifugal terms with an accuracy almost comparable to that yielded by the more expensive anharmonic force fields fully computed at MP2 and CCSD levels of theory. In view of their reduced computational cost, these hybrid approaches pave the route to the study of more complex systems.
NASA Astrophysics Data System (ADS)
Illangasekare, T. H.; Trautz, A. C.; Howington, S. E.; Cihan, A.
2017-12-01
It is a well-established fact that the land and atmosphere form a continuum in which the individual domains are coupled by heat and mass transfer processes such as bare-soil evaporation. Soil moisture dynamics can be simulated at the representative elementary volume (REV) scale using decoupled and fully coupled Darcy/Navier-Stokes models. Decoupled modeling is an asynchronous approach in which flow and transport in the soil and atmosphere is simulated independently; the two domains are coupled out of time-step via prescribed flux parameterizations. Fully coupled modeling in contrast, solves the governing equations for flow and transport in both domains simultaneously with the use of coupling interface boundary conditions. This latter approach, while being able to provide real-time two-dimensional feedbacks, is considerably more complex and computationally intensive. In this study, we investigate whether fully coupled models are necessary, or if the simpler decoupled models can sufficiently capture soil moisture dynamics under varying land preparations. A series of intermediate-scale physical and numerical experiments were conducted in which soil moisture distributions and evaporation estimates were monitored at high spatiotemporal resolutions for different heterogeneous packing and soil roughness scenarios. All experimentation was conducted at the newly developed Center for Experimental Study of Subsurface Environmental Processes (CESEP) wind tunnel-porous media user test-facility at the Colorado School of. Near-surface atmospheric measurements made during the experiments demonstrate that the land-atmosphere coupling was relatively weak and insensitive to the applied edaphic and surface conditions. Simulations with a decoupled multiphase heat and mass transfer model similarly show little sensitivity to local variations in atmospheric forcing; a single, simple flux parameterization can sufficiently capture the soil moisture dynamics (evaporation and redistribution) as long as the subsurface conditions (i.e., heterogeneity) are properly described. These findings suggest that significant improvements to simulations results should not be expected if fully coupled modeling were adopted in scenarios of weak land-atmosphere coupling in the context of bare soil evaporation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angerer, Andreas, E-mail: andreas.angerer@tuwien.ac.at; Astner, Thomas; Wirtitsch, Daniel
We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10{sup 17} nitrogen vacancy electron spins, we achieve amore » collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.« less
NASA Astrophysics Data System (ADS)
Ding, Keyang; Gronenborn, Angela M.
2004-04-01
Sensitivity-enhanced 2D IPAP experiments using the accordion principle for measuring one-bond 13C '- 13C α and 1H α- 13C α dipolar couplings in proteins are presented. The resolution of the resulting spectra is identical to that of the decoupled HSQC spectra and the sensitivity of the corresponding 1D acquisitions are only slightly lower than those obtained with 3D HNCO and 3D HN(COCA)HA pulse sequences due to an additional delay 2 Δ. For cases of limited resolution in the 2D 15N- 1H N HSQC spectrum the current pulse sequences can easily be modified into 3D versions by introducing a poorly digitized third dimension, if so desired. The experiments described here are a valuable addition to the suites available for determination of residual dipolar couplings in biological systems.
Aircraft Measurements for Understanding Air-Sea Coupling and Improving Coupled Model Predictions
2013-09-30
physical parameterizations of the coupled model in various large-scale forcing conditions. OBJECTIVES The NOAA WP-3D efforts of DYNAMO /LASP intend...various phases of the MJO; 3) to extend point measurements on island and ships to a broader area near the DYNAMO region; and 4) To obtain a suite of...upper ocean characteristics from a large number of AXBT/AXCTD data. In addition, as one of the unique measurement strategy of LASP/ DYNAMO WP-3D project
NASA Technical Reports Server (NTRS)
Garrett, L. B.
1971-01-01
An implicit finite difference scheme is developed for the fully coupled solution of the viscous radiating stagnation line equations, including strong blowing. Solutions are presented for both air injection and carbon phenolic ablation products injection into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized.
NASA Astrophysics Data System (ADS)
Schultz, A.; Imamura, N.; Bonner, L. R., IV; Cosgrove, R. B.
2016-12-01
Ground-based magnetometer and electrometer arrays provide the means to probe the structure of the Earth's interior, the interactions of space weather with the ionosphere, and to anticipate the intensity of geomagnetically induced currents (GICs) in power grids. We present a local-to-continental scale view of a heterogeneous 3-D crust and mantle as determined from magnetotelluric (MT) observations across arrays of ground-based electric and magnetic field sensors. MT impedance tensors describe the relationship between electric and magnetic fields at a given site, thus implicitly they contain all known information on the 3-D electrical resistivity structure beneath and surrounding that site. By using multivariate transfer functions to project real-time magnetic observatory network data to areas surrounding electric power grids, and by projecting those magnetic fields through MT impedance tensors, the projected magnetic field can be transformed into predictions of electric fields along the path of the transmission lines, an essential element of predicting the intensity of GICs in the grid. Finally, we explore GICs, i.e. Earth-ionosphere coupling directly in the time-domain. We consider the fully coupled EM system, where we allow for a non-stationary ionospheric source field of arbitrary complexity above a 3-D Earth. We solve the simultaneous inverse problem for 3-D Earth conductivity and source field structure directly in the time domain. In the present work, we apply this method to magnetotelluric data obtained from a synchronously operating array of 25 MT stations that collected continuous MT waveform data in the interior of Alaska during the autumn and winter of 2015 under the footprint of the Poker Flat (Alaska) Incoherent Scattering Radar (PFISR). PFISR data yield functionals of the ionospheric electric field and ionospheric conductivity that constrain the MT source field. We show that in this region conventional robust MT processing methods struggle to produce reliable MT response functions at periods much greater than about 2,000 s, a consequence, we believe, of the complexity of the ionospheric source fields in this high latitude setting. This provides impetus for direct waveform inversion methods that dispense with typical parametric assumptions made about the MT source fields.
Influence de l'effet de peau sur la rotation d'un rotor fluide
NASA Astrophysics Data System (ADS)
Witkowski, L. Martin; Marty, Ph.
1998-01-01
A rotating magnetic field creates forces in a liquid metal column which therefore rotates. In the case of an infinitely long column, we solve the induction and Navier-Stokes equations. The results are described for the fully coupled case which arises when the Hartmann number Ha and the shield parameter R_{ω} are larger than unity. In this case, we distinguish between two velocity regimes upon the value of R_{ω} with respect to frac{Ha}{sqrt{2}}. Un champ magnétique tournant autour d'une colonne de métal liquide crée des forces qui la mettent en rotation. Dans le cas d'une colonne de hauteur infinie, il est proposé une méthode de résolution des équations couplées régissant la distribution du champ magnétique et du champ de vitesse. Les résultats sont détaillés quand le couplage est fort ce qui correspond à un nombre de Hartmann Ha et un paramètre d'écran R_{ω} grands devant l'unité. Dans ce cas, pour Ha donné, deux régimes apparaissent pour le champ de vitesse suivant que R_{ω} est supérieur ou inférieur à frac{Ha}{sqrt{2}}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Paul T.; Shadid, John N.; Sala, Marzio
In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system ismore » obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 10{sup 8} unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.« less
NASA Astrophysics Data System (ADS)
Haddag, B.; Kagnaya, T.; Nouari, M.; Cutard, T.
2013-01-01
Modelling machining operations allows estimating cutting parameters which are difficult to obtain experimentally and in particular, include quantities characterizing the tool-workpiece interface. Temperature is one of these quantities which has an impact on the tool wear, thus its estimation is important. This study deals with a new modelling strategy, based on two steps of calculation, for analysis of the heat transfer into the cutting tool. Unlike the classical methods, considering only the cutting tool with application of an approximate heat flux at the cutting face, estimated from experimental data (e.g. measured cutting force, cutting power), the proposed approach consists of two successive 3D Finite Element calculations and fully independent on the experimental measurements; only the definition of the behaviour of the tool-workpiece couple is necessary. The first one is a 3D thermomechanical modelling of the chip formation process, which allows estimating cutting forces, chip morphology and its flow direction. The second calculation is a 3D thermal modelling of the heat diffusion into the cutting tool, by using an adequate thermal loading (applied uniform or non-uniform heat flux). This loading is estimated using some quantities obtained from the first step calculation, such as contact pressure, sliding velocity distributions and contact area. Comparisons in one hand between experimental data and the first calculation and at the other hand between measured temperatures with embedded thermocouples and the second calculation show a good agreement in terms of cutting forces, chip morphology and cutting temperature.
PIXIE3D: A Parallel, Implicit, eXtended MHD 3D Code.
NASA Astrophysics Data System (ADS)
Chacon, L.; Knoll, D. A.
2004-11-01
We report on the development of PIXIE3D, a 3D parallel, fully implicit Newton-Krylov extended primitive-variable MHD code in general curvilinear geometry. PIXIE3D employs a second-order, finite-volume-based spatial discretization that satisfies remarkable properties such as being conservative, solenoidal in the magnetic field, non-dissipative, and stable in the absence of physical dissipation.(L. Chacón , phComput. Phys. Comm.) submitted (2004) PIXIE3D employs fully-implicit Newton-Krylov methods for the time advance. Currently, first and second-order implicit schemes are available, although higher-order temporal implicit schemes can be effortlessly implemented within the Newton-Krylov framework. A successful, scalable, MG physics-based preconditioning strategy, similar in concept to previous 2D MHD efforts,(L. Chacón et al., phJ. Comput. Phys). 178 (1), 15- 36 (2002); phJ. Comput. Phys., 188 (2), 573-592 (2003) has been developed. We are currently in the process of parallelizing the code using the PETSc library, and a Newton-Krylov-Schwarz approach for the parallel treatment of the preconditioner. In this poster, we will report on both the serial and parallel performance of PIXIE3D, focusing primarily on scalability and CPU speedup vs. an explicit approach.
NASA Astrophysics Data System (ADS)
Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.; Colas, L.
2013-01-01
To achieve steady-state operation on future fusion devices, in particular on ITER, the coupling of the lower hybrid wave must be optimized on a wide range of edge conditions. However, under some specific conditions, deleterious effects on the lower hybrid current drive (LHCD) coupling are sometimes observed on Tore Supra. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the fully active multi-junction (FAM) and the new passive active multi-junction (PAM) antennas. A non-linear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient (RC) with the LHCD power is not predicted by the standard linear theory of the LH wave coupling. A theoretical model is suggested to describe the non-linear wave-plasma interaction induced by the ponderomotive effect and implemented in a new full wave LHCD code, PICCOLO-2D (ponderomotive effect in a coupling code of lower hybrid wave-2D). The code self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density. The simulation reproduces very well the occurrence of a non-linear behaviour in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modelling for the first time on the FAM and PAM antennas on Tore Supra.
Data Assimilation on a Quantum Annealing Computer: Feasibility and Scalability
NASA Astrophysics Data System (ADS)
Nearing, G. S.; Halem, M.; Chapman, D. R.; Pelissier, C. S.
2014-12-01
Data assimilation is one of the ubiquitous and computationally hard problems in the Earth Sciences. In particular, ensemble-based methods require a large number of model evaluations to estimate the prior probability density over system states, and variational methods require adjoint calculations and iteration to locate the maximum a posteriori solution in the presence of nonlinear models and observation operators. Quantum annealing computers (QAC) like the new D-Wave housed at the NASA Ames Research Center can be used for optimization and sampling, and therefore offers a new possibility for efficiently solving hard data assimilation problems. Coding on the QAC is not straightforward: a problem must be posed as a Quadratic Unconstrained Binary Optimization (QUBO) and mapped to a spherical Chimera graph. We have developed a method for compiling nonlinear 4D-Var problems on the D-Wave that consists of five steps: Emulating the nonlinear model and/or observation function using radial basis functions (RBF) or Chebyshev polynomials. Truncating a Taylor series around each RBF kernel. Reducing the Taylor polynomial to a quadratic using ancilla gadgets. Mapping the real-valued quadratic to a fixed-precision binary quadratic. Mapping the fully coupled binary quadratic to a partially coupled spherical Chimera graph using ancilla gadgets. At present the D-Wave contains 512 qbits (with 1024 and 2048 qbit machines due in the next two years); this machine size allows us to estimate only 3 state variables at each satellite overpass. However, QAC's solve optimization problems using a physical (quantum) system, and therefore do not require iterations or calculation of model adjoints. This has the potential to revolutionize our ability to efficiently perform variational data assimilation, as the size of these computers grows in the coming years.
The importance of matched poloidal spectra to error field correction in DIII-D
Paz-Soldan, Carlos; Lanctot, Matthew J.; Logan, Nikolas C.; ...
2014-07-09
Optimal error field correction (EFC) is thought to be achieved when coupling to the least-stable "dominant" mode of the plasma is nulled at each toroidal mode number ( n). The limit of this picture is tested in the DIII-D tokamak by applying superpositions of in- and ex-vessel coil set n = 1 fields calculated to be fully orthogonal to the n = 1 dominant mode. In co-rotating H-mode and low-density Ohmic scenarios the plasma is found to be respectively 7x and 20x less sensitive to the orthogonal field as compared to the in-vessel coil set field. For the scenarios investigated,more » any geometry of EFC coil can thus recover a strong majority of the detrimental effect introduced by the n = 1 error field. Furthermore, despite low sensitivity to the orthogonal field, its optimization in H-mode is shown to be consistent with minimizing the neoclassical toroidal viscosity torque and not the higher-order n = 1 mode coupling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
R. L. Williamson
A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete andmore » smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less
Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, P. T.; Shadid, J. N.; Hu, J. J.
Here, we explore the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. Our study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of themore » original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.« less
Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD
Lin, P. T.; Shadid, J. N.; Hu, J. J.; ...
2017-11-06
Here, we explore the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. Our study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of themore » original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.« less
The role of interactions between accommodation and vergence in human visual development
NASA Astrophysics Data System (ADS)
Teel, Danielle F. W.
Even in early infancy accommodation and vergence interact through neural coupling such that accommodation drives vergence (AC/A ratio) and vergence drives accommodation (CA/C ratio), to assist coordination and development of clear and single binocular vision. Infants have narrow inter-pupillary distances (IPD) requiring less vergence in angular units (degrees or prism diopters), and are typically hyperopic, requiring larger accommodative responses (diopters) than adults. The relative demands also change with emmetropization (decreasing hyperopia) and head growth (increasing IPD) over time. Therefore, adult-like couplings may not be optimal during development and the couplings may play a role in abnormality such as esotropia. A range of cues can drive accommodation and vergence. In addition to blur and disparity, proximity in the form of looming, size and perceived distance has been shown to influence the interactions between accommodation and vergence in adults. The role of this cue in measures of coupling is also poorly understood and may impact key clinical AC/A estimates in young children. Utilizing principles of eccentric photorefraction and Purkinje image eye tracking, this research examines the AC/A and CA/C ratios in infants, preschoolers and adults as a function of age, refractive error and interpupillary distance, plus the role proximity, specifically looming and size cues, plays in estimating the AC/A ratio in three year olds and adults. The AC/A (PD/D) was significantly higher in adults than three-year-olds or infants but similar across age groups in MA/D units. The CA/C was higher in infants than adults or three-year-olds (D/MA and D/PD). Although, not fully reciprocally related, a significant negative relationship was found between the response AC/A and CA/C. Similarly, higher AC/As (PD/D) and lower CA/Cs (D/PD) were associated with larger IPDs and less hyperopia. Although, not statistically significant the absence of proximity resulted in a trend toward a lower AC/A than in it's presence for children. These results provide insight into methods of measuring the AC/A ratio in children and determining whether the couplings are optimized to prevent over-convergence or under-accommodation during development and growth.
NASA Astrophysics Data System (ADS)
Gaffet, S.
2008-12-01
Located in the Provence-Alpes--Côte d'Azur region (Southern France), LSBB is an underground facility that is dedicated since 10 years ago, to interdisciplinary fundamental and applied R&D activities in a low level anthropogenic area that secures the site with one of the lowest environmental noise in the world. LSBB is both a host-laboratory for private and academic experiments and a unique access-laboratory to study near- surface multi-physics environmental processes. This site offers operational facilities characterized by a fully connected fiber-optics network managed by a team of 3 permanent engineers and the collaboration with more than 30 research units in Europe. Initially designed for the French nuclear defence and converted in 1997 into an academic laboratory, LSBB is a hardened facility made of 3.7~km of horizontal galleries and vaults buried 500~m deep within the unsaturated zone of a carbonate platform which is a typical analogue of the currently exploited water and oil reservoirs of the Middle--East. Another major attraction of the LSBB is that it hosts a unique--in--the--world broad low-pass filter magnetic shielded zone (1500~m3 with electromagnetic noise level below 2~fT/√Hz for frequencies above 50~Hz). Thanks to such an exceptional environmental and technological context, LSBB provides one of the best european opportunities for the development of research projects related to near-surface imaging and multiscale and multiphysics coupled processes in natural porous media; magnetic field perturbations coupled to seismic wave excitations; thermo--hydromechanical and chemical fluid--rock interaction in heterogeneous carbonates; dark matter research; reliability and sensitivity to the natural radioactive environment of nano-- electronic and nano--structures. Projects interact through co--sharing of the multi--parametric and at--the-- leading--edge measurements and results, that are centralised in a dedicated internet plateform.
Bisschop, Suzanne; Guille, Antoine; Van Thourhout, Dries; Hens, Zeger; Brainis, Edouard
2015-06-01
Single-photon (SP) sources are important for a number of optical quantum information processing applications. We study the possibility to integrate triggered solid-state SP emitters directly on a photonic chip. A major challenge consists in efficiently extracting their emission into a single guided mode. Using 3D finite-difference time-domain simulations, we investigate the SP emission from dipole-like nanometer-sized inclusions embedded into different silicon nitride (SiNx) photonic nanowire waveguide designs. We elucidate the effect of the geometry on the emission lifetime and the polarization of the emitted SP. The results show that highly efficient and polarized SP sources can be realized using suspended SiNx slot-waveguides. Combining this with the well-established CMOS-compatible processing technology, fully integrated and complex optical circuits for quantum optics experiments can be developed.
NASA Astrophysics Data System (ADS)
Kong, Fande; Cai, Xiao-Chuan
2017-07-01
Nonlinear fluid-structure interaction (FSI) problems on unstructured meshes in 3D appear in many applications in science and engineering, such as vibration analysis of aircrafts and patient-specific diagnosis of cardiovascular diseases. In this work, we develop a highly scalable, parallel algorithmic and software framework for FSI problems consisting of a nonlinear fluid system and a nonlinear solid system, that are coupled monolithically. The FSI system is discretized by a stabilized finite element method in space and a fully implicit backward difference scheme in time. To solve the large, sparse system of nonlinear algebraic equations at each time step, we propose an inexact Newton-Krylov method together with a multilevel, smoothed Schwarz preconditioner with isogeometric coarse meshes generated by a geometry preserving coarsening algorithm. Here "geometry" includes the boundary of the computational domain and the wet interface between the fluid and the solid. We show numerically that the proposed algorithm and implementation are highly scalable in terms of the number of linear and nonlinear iterations and the total compute time on a supercomputer with more than 10,000 processor cores for several problems with hundreds of millions of unknowns.
Kong, Fande; Cai, Xiao-Chuan
2017-03-24
Nonlinear fluid-structure interaction (FSI) problems on unstructured meshes in 3D appear many applications in science and engineering, such as vibration analysis of aircrafts and patient-specific diagnosis of cardiovascular diseases. In this work, we develop a highly scalable, parallel algorithmic and software framework for FSI problems consisting of a nonlinear fluid system and a nonlinear solid system, that are coupled monolithically. The FSI system is discretized by a stabilized finite element method in space and a fully implicit backward difference scheme in time. To solve the large, sparse system of nonlinear algebraic equations at each time step, we propose an inexactmore » Newton-Krylov method together with a multilevel, smoothed Schwarz preconditioner with isogeometric coarse meshes generated by a geometry preserving coarsening algorithm. Here ''geometry'' includes the boundary of the computational domain and the wet interface between the fluid and the solid. We show numerically that the proposed algorithm and implementation are highly scalable in terms of the number of linear and nonlinear iterations and the total compute time on a supercomputer with more than 10,000 processor cores for several problems with hundreds of millions of unknowns.« less
Probing the universality of synchronised hair around rotating black holes with Q-clouds
NASA Astrophysics Data System (ADS)
Herdeiro, Carlos; Kunz, Jutta; Radu, Eugen; Subagyo, Bintoro
2018-04-01
Recently, various families of black holes (BHs) with synchronised hair have been constructed. These are rotating BHs surrounded, as fully non-linear solutions of the appropriate Einstein-matter model, by a non-trivial bosonic field in synchronised rotation with the BH horizon. Some families bifurcate globally from a bald BH (e.g. the Kerr BH), whereas others bifurcate only locally from a bald BH (e.g. the D = 5 Myers-Perry BH). It would be desirable to understand how generically synchronisation allows hairy BHs to bifurcate from bald ones. However, the construction and scanning of the domain of existence of the former families of BHs can be a difficult and time consuming (numerical) task. Here, we first provide a simple perturbative argument to understand the generality of the synchronisation condition. Then, we observe that the study of Q-clouds is a generic tool to establish the existence of BHs with synchronised hair bifurcating (globally or locally) from a given bald BH without having to solve the fully non-linear coupled system of Einstein-matter equations. As examples, we apply this tool to establish the existence of synchronised hair around D = 6 Myers-Perry BHs, D = 5 black rings and D = 4 Kerr-AdS BHs, where D is the spacetime dimension. The black rings case provides an example of BHs with synchronised hair beyond spherical horizon topology, further establishing the generality of the mechanism.
Fully 3D modeling of tokamak vertical displacement events with realistic parameters
NASA Astrophysics Data System (ADS)
Pfefferle, David; Ferraro, Nathaniel; Jardin, Stephen; Bhattacharjee, Amitava
2016-10-01
In this work, we model the complex multi-domain and highly non-linear physics of Vertical Displacement Events (VDEs), one of the most damaging off-normal events in tokamaks, with the implicit 3D extended MHD code M3D-C1. The code has recently acquired the capability to include finite thickness conducting structures within the computational domain. By exploiting the possibility of running a linear 3D calculation on top of a non-linear 2D simulation, we monitor the non-axisymmetric stability and assess the eigen-structure of kink modes as the simulation proceeds. Once a stability boundary is crossed, a fully 3D non-linear calculation is launched for the remainder of the simulation, starting from an earlier time of the 2D run. This procedure, along with adaptive zoning, greatly increases the efficiency of the calculation, and allows to perform VDE simulations with realistic parameters and high resolution. Simulations are being validated with NSTX data where both axisymmetric (toroidally averaged) and non-axisymmetric induced and conductive (halo) currents have been measured. This work is supported by US DOE Grant DE-AC02-09CH11466.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, J.; Ijiri, Y.; Yamamoto, H.
This paper presents the implementation of the Barcelona Basic Model (BBM) into the TOUGH-FLAC simulator analyzing the geomechanical behavior of unsaturated soils. We implemented the BBM into TOUGH-FLAC by (1) extending an existing FLAC{sup 3D} module for the Modified Cam-Clay (MCC) model in FLAC{sup 3D} and (2) adding computational routines for suction-dependent strain and net stress (i.e., total stress minus gas pressure) for unsaturated soils. We implemented a thermo-elasto-plastic version of the BBM, wherein the soil strength depends on both suction and temperature. The implementation of the BBM into TOUGH-FLAC was verified and tested against several published numerical model simulationsmore » and laboratory experiments involving the coupled thermal-hydrological-mechanical (THM) behavior of unsaturated soils. The simulation tests included modeling the mechanical behavior of bentonite-sand mixtures, which are being considered as back-fill and buffer materials for geological disposal of spent nuclear fuel. We also tested and demonstrated the use of the BBM and TOUGH-FLAC for a problem involving the coupled THM processes within a bentonite-backfilled nuclear waste emplacement tunnel. The simulation results indicated complex geomechanical behavior of the bentonite backfill, including a nonuniform distribution of buffer porosity and density that could not be captured in an alternative, simplified, linear-elastic swelling model. As a result of the work presented in this paper, TOUGH-FLAC with BBM is now fully operational and ready to be applied to problems associated with nuclear waste disposal in bentonite-backfilled tunnels, as well as other scientific and engineering problems related to the mechanical behavior of unsaturated soils.« less
High-resolution coupled ice sheet-ocean modeling using the POPSICLES model
NASA Astrophysics Data System (ADS)
Ng, E. G.; Martin, D. F.; Asay-Davis, X.; Price, S. F.; Collins, W.
2014-12-01
It is expected that a primary driver of future change of the Antarctic ice sheet will be changes in submarine melting driven by incursions of warm ocean water into sub-ice shelf cavities. Correctly modeling this response on a continental scale will require high-resolution modeling of the coupled ice-ocean system. We describe the computational and modeling challenges in our simulations of the full Southern Ocean coupled to a continental-scale Antarctic ice sheet model at unprecedented spatial resolutions (0.1 degree for the ocean model and adaptive mesh refinement down to 500m in the ice sheet model). The POPSICLES model couples the POP2x ocean model, a modified version of the Parallel Ocean Program (Smith and Gent, 2002), with the BISICLES ice-sheet model (Cornford et al., 2012) using a synchronous offline-coupling scheme. Part of the PISCEES SciDAC project and built on the Chombo framework, BISICLES makes use of adaptive mesh refinement to fully resolve dynamically-important regions like grounding lines and employs a momentum balance similar to the vertically-integrated formulation of Schoof and Hindmarsh (2009). Results of BISICLES simulations have compared favorably to comparable simulations with a Stokes momentum balance in both idealized tests like MISMIP3D (Pattyn et al., 2013) and realistic configurations (Favier et al. 2014). POP2x includes sub-ice-shelf circulation using partial top cells (Losch, 2008) and boundary layer physics following Holland and Jenkins (1999), Jenkins (2001), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008) and other continental-scale simulations and melt-rate observations (Kimura et al., 2013; Rignot et al., 2013). For the POPSICLES Antarctic-Southern Ocean simulations, ice sheet and ocean models communicate at one-month coupling intervals.
The choice of speed and clearance for RAS on 3D method
NASA Astrophysics Data System (ADS)
Wang, Jian-Fang; Li, Ji-De; Cai, Xin-Gong
2003-12-01
In this paper, a 3D source distribution technique is used to calculate the coupled motions between two ships which advance in the wave with the same speed. The numerical results of coupled motions for a frigate and a supply ship have a good agreement with the experimental results. Based on the 3D coupled motions of two ships, a spectral analysis is employed to clearly observe the effect of speed, clearance and wave heading on the significant relative motion amplitude (SRMA) of two ships. The method presented in this paper will be helpful to select suitable clearance, speed and wave heading for underway replenishment at sea(RAS).
3D Numerical Simulation on the Rockslide Generated Tsunamis
NASA Astrophysics Data System (ADS)
Chuang, M.; Wu, T.; Wang, C.; Chu, C.
2013-12-01
The rockslide generated tsunami is one of the most devastating nature hazards. However, the involvement of the moving obstacle and dynamic free-surface movement makes the numerical simulation a difficult task. To describe both the fluid motion and solid movement at the same time, we newly developed a two-way fully-coupled moving solid algorithm with 3D LES turbulent model. The free-surface movement is tracked by volume of fluid (VOF) method. The two-step projection method is adopted to solve the Navier-Stokes type government equations. In the new moving solid algorithm, a fictitious body force is implicitly prescribed in MAC correction step to make the cell-center velocity satisfied with the obstacle velocity. We called this method the implicit velocity method (IVM). Because no extra terms are added to the pressure Poission correction, the pressure field of the fluid part is stable, which is the key of the two-way fluid-solid coupling. Because no real solid material is presented in the IVM, the time marching step is not restricted to the smallest effective grid size. Also, because the fictitious force is implicitly added to the correction step, the resulting velocity is accurate and fully coupled with the resulting pressure field. We validated the IVM by simulating a floating box moving up and down on the free-surface. We presented the time-history obstacle trajectory and compared it with the experimental data. Very accurate result can be seen in terms of the oscillating amplitude and the period (Fig. 1). We also presented the free-surface comparison with the high-speed snapshots. At the end, the IVM was used to study the rock-slide generated tsunamis (Liu et al., 2005). Good validations on the slide trajectory and the free-surface movement will be presented in the full paper. From the simulation results (Fig. 2), we observed that the rockslide generated waves are manly caused by the rebounding waves from two sides of the sliding rock after the water is dragging down by the solid downward motion. We also found that the turbulence has minor effect to the main flow field. The rock size, rock density, and the steepness of the slope were analyzed to understand their effects to the maximum runup height. The detailed algorithm of IVM, the validation, the simulation and analysis of rockslide tsunami will be presented in the full paper. Figure 1. Time-history trajectory of obstacle for the floating obstacle simulation. Figure 2. Snapshots of the free-surface elevation with streamlines for the rockslide tsunami simulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruzan, J.D.; Loeser, J.G.; Bitten, E.R.
The authors have measured the far-infrared vibration-rotation-tunneling (VRT) spectrum of an intermolecular vibration of (D{sub 2}O){sub 2} near 68 cm{sup -1}. In addition, further transitions of the VRT band of (D{sub 2}O){sub 2} previously reported by Pugliano et al. have been observed. By considering symmetry restraints on the selection rules, these bands have been assigned to the out-of-plane H-bond torsional and in-plane acceptor wagging modes predicted by many theoretical calculations. The experimental-theoretical discrepancy in the measured frequencies of these bands indicates the importance of a fully coupled six-dimensional calculation of the dynamics for the water dimer.
Time-lapse 3D electrical resistivity tomography to monitor soil-plant interactions
NASA Astrophysics Data System (ADS)
Boaga, Jacopo; Rossi, Matteo; Cassiani, Giorgio; Putti, Mario
2013-04-01
In this work we present the application of time-lapse non-invasive 3D micro- electrical tomography (ERT) to monitor soil-plant interactions in the root zone in the framework of the FP7 Project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins). The goal of the study is to gain a better understanding of the soil-vegetation interactions by the use of non-invasive techniques. We designed, built and installed a 3D electrical tomography apparatus for the monitoring of the root zone of a single apple tree in an orchard located in the Trentino region, Northern Italy. The micro-ERT apparatus consists of 48 buried electrodes on 4 instrumented micro boreholes plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. We collected repeated ERT and TDR soil moisture measurements for one year and performed two different controlled irrigation tests: one during a very dry Summer and one during a very wet and highly dynamic plant growing Spring period. We also ran laboratory analyses on soil specimens, in order to evaluate the electrical response at different saturation steps. The results demonstrate that 3D micro-ERT is capable of characterizing subsoil conditions and monitoring root zone activities, especially in terms of root zone suction regions. In particular, we note that in very dry conditions, 3D micro ERT can image water plumes in the shallow subsoil produced by a drip irrigation system. In the very dynamic growing season, under abundant irrigation, micro 3D ERT can detect the main suction zones caused by the tree root activity. Even though the quantitative use of this technique for moisture content balance suffers from well-known inversion difficulties, even the pure imaging of the active root zone is a valuable contribution. However the integration of the measurements in a fully coupled hydrogeophysical inversion is the way forward for a better understanding of subsoil interactions between biomass, hydrosphere and atmosphere.
Deformation of N = 4 SYM with varying couplings via fluxes and intersecting branes
NASA Astrophysics Data System (ADS)
Choi, Jaewang; Fernández-Melgarejo, José J.; Sugimoto, Shigeki
2018-03-01
We study deformations of N = 4 supersymmetric Yang-Mills theory with space-time dependent couplings by embedding probe D3-branes in supergravity backgrounds with non-trivial fluxes. The effective action on the world-volume of the D3-branes is analyzed and a map between the deformation parameters and the fluxes is obtained. As an explicit example, we consider D3-branes in a background corresponding to ( p, q) 5-branes intersecting them and show that the effective theory on the D3-branes precisely agrees with the supersymmetric Janus configuration found by Gaiotto and Witten in [1]. D3-branes in an intersecting D3-brane background is also analyzed and the D3-brane effective action reproduces one of the supersymmetric configurations with ISO(1 , 1) × SO(2) × SO(4) symmetry found in our previous paper [2].
NASA Astrophysics Data System (ADS)
Will, Andreas; Akhtar, Naveed; Brauch, Jennifer; Breil, Marcus; Davin, Edouard; Ho-Hagemann, Ha T. M.; Maisonnave, Eric; Thürkow, Markus; Weiher, Stefan
2017-04-01
We developed a coupled regional climate system model based on the CCLM regional climate model. Within this model system, using OASIS3-MCT as a coupler, CCLM can be coupled to two land surface models (the Community Land Model (CLM) and VEG3D), the NEMO-MED12 regional ocean model for the Mediterranean Sea, two ocean models for the North and Baltic seas (NEMO-NORDIC and TRIMNP+CICE) and the MPI-ESM Earth system model.We first present the different model components and the unified OASIS3-MCT interface which handles all couplings in a consistent way, minimising the model source code modifications and defining the physical and numerical aspects of the couplings. We also address specific coupling issues like the handling of different domains, multiple usage of the MCT library and exchange of 3-D fields.We analyse and compare the computational performance of the different couplings based on real-case simulations over Europe. The usage of the LUCIA tool implemented in OASIS3-MCT enables the quantification of the contributions of the coupled components to the overall coupling cost. These individual contributions are (1) cost of the model(s) coupled, (2) direct cost of coupling including horizontal interpolation and communication between the components, (3) load imbalance, (4) cost of different usage of processors by CCLM in coupled and stand-alone mode and (5) residual cost including i.a. CCLM additional computations.Finally a procedure for finding an optimum processor configuration for each of the couplings was developed considering the time to solution, computing cost and parallel efficiency of the simulation. The optimum configurations are presented for sequential, concurrent and mixed (sequential+concurrent) coupling layouts. The procedure applied can be regarded as independent of the specific coupling layout and coupling details.We found that the direct cost of coupling, i.e. communications and horizontal interpolation, in OASIS3-MCT remains below 7 % of the CCLM stand-alone cost for all couplings investigated. This is in particular true for the exchange of 450 2-D fields between CCLM and MPI-ESM. We identified remaining limitations in the coupling strategies and discuss possible future improvements of the computational efficiency.
NASA Astrophysics Data System (ADS)
Klatt, Steffen; Haas, Edwin; Kraus, David; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Plesca, Ina; Breuer, Lutz; Zhu, Bo; Zhou, Minghua; Zhang, Wei; Zheng, Xunhua; Wlotzka, Martin; Heuveline, Vincent
2014-05-01
The use of mineral nitrogen fertilizer sustains the global food production and therefore the livelihood of human kind. The rise in world population will put pressure on the global agricultural system to increase its productivity leading most likely to an intensification of mineral nitrogen fertilizer use. The fate of excess nitrogen and its distribution within landscapes is manifold. Process knowledge on the site scale has rapidly grown in recent years and models have been developed to simulate carbon and nitrogen cycling in managed ecosystems on the site scale. Despite first regional studies, the carbon and nitrogen cycling on the landscape or catchment scale is not fully understood. In this study we present a newly developed modelling approach by coupling the fully distributed hydrology model CMF (catchment modelling framework) to the process based regional ecosystem model LandscapeDNDC for the investigation of hydrological processes and carbon and nitrogen transport and cycling, with a focus on nutrient displacement and resulting greenhouse gas emissions in a small catchment at the Yanting Agro-ecological Experimental Station of Purple Soil, Sichuan province, China. The catchment hosts cypress forests on the outer regions, arable fields on the sloping croplands cultivated with wheat-maize rotations and paddy rice fields in the lowland. The catchment consists of 300 polygons vertically stratified into 10 soil layers. Ecosystem states (soil water content and nutrients) and fluxes (evapotranspiration) are exchanged between the models at high temporal scales (hourly to daily) forming a 3-dimensional model application. The water flux and nutrients transport in the soil is modelled using a 3D Richards/Darcy approach for subsurface fluxes with a kinematic wave approach for surface water runoff and the evapotranspiration is based on Penman-Monteith. Biogeochemical processes are modelled by LandscapeDNDC, including soil microclimate, plant growth and biomass allocation, organic matter mineralisation, nitrification, denitrification, chemodenitrification and methanogenesis producing and consuming soil based greenhouse gases. The model application will present first validation results of the coupled model to simulate soil based greenhouse gas emissions as well as nitrate discharge from the Yanting catchment. The model application will also present the effects of different management practices (fertilization rates and timings, tilling, residues management) on the redistribution of N surplus within the catchment causing biomass productivity gradients and different levels of indirect N2O emissions along topographical gradients.
NASA Astrophysics Data System (ADS)
Haas, Edwin; Klatt, Steffen; Kiese, Ralf; Butterbach-Bahl, Klaus; Kraft, Philipp; Breuer, Lutz
2015-04-01
The use of mineral nitrogen fertilizer sustains the global food production and therefore the livelihood of human kind. The rise in world population will put pressure on the global agricultural system to increase its productivity leading most likely to an intensification of mineral nitrogen fertilizer use. The fate of excess nitrogen and its distribution within landscapes is manifold. Process knowledge on the site scale has rapidly grown in recent years and models have been developed to simulate carbon and nitrogen cycling in managed ecosystems on the site scale. Despite first regional studies, the carbon and nitrogen cycling on the landscape or catchment scale is not fully understood. In this study we present a newly developed modelling approach by coupling the fully distributed hydrology model CMF (catchment modelling framework) to the process based regional ecosystem model LandscapeDNDC for the investigation of hydrological processes and carbon and nitrogen transport and cycling, with a focus on nutrient displacement and resulting greenhouse gas emissions in various virtual landscapes / catchment to demonstrate the capabilities of the modelling system. The modelling system was applied to simulate water and nutrient transport at the at the Yanting Agro-ecological Experimental Station of Purple Soil, Sichuan province, China. The catchment hosts cypress forests on the outer regions, arable fields on the sloping croplands cultivated with wheat-maize rotations and paddy rice fields in the lowland. The catchment consists of 300 polygons vertically stratified into 10 soil layers. Ecosystem states (soil water content and nutrients) and fluxes (evapotranspiration) are exchanged between the models at high temporal scales (hourly to daily) forming a 3-dimensional model application. The water flux and nutrients transport in the soil is modelled using a 3D Richards/Darcy approach for subsurface fluxes with a kinematic wave approach for surface water runoff and the evapotranspiration is based on Penman-Monteith. Biogeochemical processes are modelled by LandscapeDNDC, including soil microclimate, plant growth and biomass allocation, organic matter mineralisation, nitrification, denitrification, chemodenitrification and methanogenesis producing and consuming soil based greenhouse gases. The model application will present first results of the coupled model to simulate soil based greenhouse gas emissions as well as nitrate discharge from the Yanting catchment. The model application will also present the effects of different management practices (fertilization rates and timings, tilling, residues management) on the redistribution of N surplus within the catchment causing biomass productivity gradients and different levels of indirect N2O emissions along topographical gradients.
NASA Astrophysics Data System (ADS)
Gould, C. A.; Shammas, N. Y. A.; Grainger, S.; Taylor, I.; Simpson, K.
2012-06-01
This paper documents the 3D modeling and simulation of a three couple thermoelectric module using the Synopsys Technology Computer Aided Design (TCAD) semiconductor simulation software. Simulation results are presented for thermoelectric power generation, cooling and heating, and successfully demonstrate the basic thermoelectric principles. The 3D TCAD simulation model of a three couple thermoelectric module can be used in the future to evaluate different thermoelectric materials, device structures, and improve the efficiency and performance of thermoelectric modules.
NASA Astrophysics Data System (ADS)
Wang, Bao-Zong; Lu, Yue-Hui; Sun, Wei; Chen, Shuai; Deng, Youjin; Liu, Xiong-Jun
2018-01-01
We propose a hierarchy set of minimal optical Raman lattice schemes to pave the way for experimental realization of high-dimensional spin-orbit (SO) couplings for ultracold atoms, including two-dimensional (2D) Dirac type, 2D Rashba type, and three-dimensional (3D) Weyl type. The proposed Dirac-type SO coupling exhibits precisely controllable high symmetry, for which a large topological phase region is predicted. The generation of 2D Rashba and 3D Weyl types requires that two sources of laser beams have distinct frequencies of factor 2 difference. Surprisingly, we find that 133Cs atoms provide an ideal candidate for the realization. A common and essential feature is of high controllability and absent of any fine-tuning in the realization, and the resulting SO coupled ultracold atoms have a long lifetime. In particular, a long-lived topological Bose gas of 2D Dirac SO coupling has been proved in the follow-up experiment. These schemes essentially improve over the current experimental accessibility and controllability, and open a realistic way to explore novel high-dimensional SO physics, particularly quantum many-body physics and quantum far-from-equilibrium dynamics with novel topology for ultracold atoms.
NASA Astrophysics Data System (ADS)
Park, Y.-J.; Sudicky, E. A.; Brookfield, A. E.; Jones, J. P.
2011-12-01
Precipitation-induced overland and groundwater flow and mixing processes are quantified to analyze the temporal (event and pre-event water) and spatial (groundwater discharge and overland runoff) origins of water entering a stream. Using a distributed-parameter control volume finite-element simulator that can simultaneously solve the fully coupled partial differential equations describing 2-D Manning and 3-D Darcian flow and advective-dispersive transport, mechanical flow (driven by hydraulic potential) and tracer-based hydrograph separation (driven by dispersive mixing as well as mechanical flow) are simulated in response to precipitation events in two cross sections oriented parallel and perpendicular to a stream. The results indicate that as precipitation becomes more intense, the subsurface mechanical flow contributions tend to become less significant relative to the total pre-event stream discharge. Hydrodynamic mixing can play an important role in enhancing pre-event tracer signals in the stream. This implies that temporally tagged chemical signals introduced into surface-subsurface flow systems from precipitation may not be strong enough to detect the changes in the subsurface flow system. It is concluded that diffusive/dispersive mixing, capillary fringe groundwater ridging, and macropore flow can influence the temporal sources of water in the stream, but any sole mechanism may not fully explain the strong pre-event water discharge. Further investigations of the influence of heterogeneity, residence time, geomorphology, and root zone processes are required to confirm the conclusions of this study.
Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrani, Kurt A; Kiggans Jr, James O; McMurray, Jake W
2016-01-01
Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhancemore » heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.« less
Park, Y.-J.; Sudicky, E.A.; Brookfield, A.E.; Jones, J.P.
2011-01-01
Precipitation-induced overland and groundwater flow and mixing processes are quantified to analyze the temporal (event and pre-event water) and spatial (groundwater discharge and overland runoff) origins of water entering a stream. Using a distributed-parameter control volume finite-element simulator that can simultaneously solve the fully coupled partial differential equations describing 2-D Manning and 3-D Darcian flow and advective-dispersive transport, mechanical flow (driven by hydraulic potential) and tracer-based hydrograph separation (driven by dispersive mixing as well as mechanical flow) are simulated in response to precipitation events in two cross sections oriented parallel and perpendicular to a stream. The results indicate that as precipitation becomes more intense, the subsurface mechanical flow contributions tend to become less significant relative to the total pre-event stream discharge. Hydrodynamic mixing can play an important role in enhancing pre-event tracer signals in the stream. This implies that temporally tagged chemical signals introduced into surface-subsurface flow systems from precipitation may not be strong enough to detect the changes in the subsurface flow system. It is concluded that diffusive/dispersive mixing, capillary fringe groundwater ridging, and macropore flow can influence the temporal sources of water in the stream, but any sole mechanism may not fully explain the strong pre-event water discharge. Further investigations of the influence of heterogeneity, residence time, geomorphology, and root zone processes are required to confirm the conclusions of this study. Copyright 2011 by the American Geophysical Union.
Conradi, Henk Jan; Dingemanse, Pieter; Noordhof, Arjen; Finkenauer, Catrin; Kamphuis, Jan H
2017-09-04
While evidence-based couple therapies are available, only a minority of troubled couples seek help and they often do this too late. To reach more couples earlier, the couple relationship education (CRE) group program "Hold me Tight" (HmT) based on Emotionally Focused Couples Therapy (EFCT) was developed. This study is the first to examine the effectiveness of HmT. Using a three-wave (waiting period, treatment, and follow-up) within-subject design, HmT was delivered to 79 self-referred couples and 50 clinician-referred couples. We applied a comprehensive outcome measure battery. Our main findings were that (1) self-referred couples significantly improved during HmT on all measures, that is relationship satisfaction, security of partner-bond, forgiveness, daily coordination, maintenance behavior, and psychological complaints, with a moderate-to-large mean effect size (d = .63), which was maintained (d = .57) during the 3.5 month follow-up; (2) in clinician-referred couples, who were vulnerable in terms of insecure attachment status and psychopathology, the improvement during HmT was moderate (d = .42), but this was reduced during the 3.5-month follow-up to a small effect (d = .22); (3) emotional functioning (typical HmT target) as well as behavioral functioning (typical Behavioral Couples Therapy-based CRE target) improved during HmT; and (4) individual psychological complaints, although not specifically targeted, were reduced during HmT. These findings suggest that HmT is a promising intervention for enhancement of relationship functioning. Clinical implications are discussed. © 2017 Family Process Institute.
NASA Astrophysics Data System (ADS)
Bêche, Bruno; Potel, Arnaud; Barbe, Jérémy; Vié, Véronique; Zyss, Joseph; Godet, Christian; Huby, Nolwenn; Pluchon, David; Gaviot, Etienne
2010-01-01
We have designed and realized an integrated photonic family of micro-resonators (MR) on multilayer SU8/lipidic film/glass materials. Such a family involves hybrid 3D-MR structures composed of spherical glass-MR arranged upon organic pair-SU8-waveguides, an efficient coupling being ensured with a Langmuir-Blodgett Dipalmitoylphosphatidylcholine (DPPC-lipid from Avanti Polar ®) film whose thickness is ranging from 12 to 48 nm. We have characterized such add/drop filters, respectively, in intensity and spectral measurements, and experimentally achieved an evanescent resonant-photonic-coupling between the 3D-MR and the 4-ports structure through the DPPC-gap. Spectral resonances have been measured for 4-whispering gallery-modes (WGM) into such 3D-structures, respectively, characterized with a 0.97 nm free spectral range (FSR) and a high quality Q-factor up to 4.10 4.
NASA Astrophysics Data System (ADS)
Podgorney, Robert; Coleman, Justin; Wilkins, Amdrew; Huang, Hai; Veeraraghavan, Swetha; Xia, Yidong; Permann, Cody
2017-04-01
Numerical modeling has played an important role in understanding the behavior of coupled subsurface thermal-hydro-mechanical (THM) processes associated with a number of energy and environmental applications since as early as the 1970s. While the ability to rigorously describe all key tightly coupled controlling physics still remains a challenge, there have been significant advances in recent decades. These advances are related primarily to the exponential growth of computational power, the development of more accurate equations of state, improvements in the ability to represent heterogeneity and reservoir geometry, and more robust nonlinear solution schemes. The work described in this paper documents the development and linkage of several fully-coupled and fully-implicit modeling tools. These tools simulate: (1) the dynamics of fluid flow, heat transport, and quasi-static rock mechanics; (2) seismic wave propagation from the sources of energy release through heterogeneous material; and (3) the soil-structural damage resulting from ground acceleration. These tools are developed in Idaho National Laboratory's parallel Multiphysics Object Oriented Simulation Environment, and are integrated together using a global implicit approach. The governing equations are presented, the numerical approach for simultaneously solving and coupling the three coupling physics tools is discussed, and the data input and output methodology is outlined. An example is presented to demonstrate the capabilities of the coupled multiphysics approach. The example involves simulating a system conceptually similar to the geothermal development in Basel Switzerland, and the resultant induced seismicity, ground motion and structural damage is predicted.
Ampt, Kirsten A M; Aspers, Ruud L E G; Dvortsak, Peter; van der Werf, Ramon M; Wijmenga, Sybren S; Jaeger, Martin
2012-02-01
Fluorinated organic compounds have become increasingly important within the polymer and the pharmaceutical industry as well as for clinical applications. For the structural elucidation of such compounds, NMR experiments with fluorine detection are of great value due to the favorable NMR properties of the fluorine nucleus. For the investigation of three fluorinated compounds, triple resonance 2D HSQC and HMBC experiments were adopted to fluorine detection with carbon and/or proton decoupling to yield F-C, F-C{H}, F-C{C(acq)} and F-C{H,C(acq)} variants. Analysis of E.COSY type cross-peak patterns in the F-C correlation spectra led, apart from the chemical shift assignments, to determination of size and signs of the J(CH), J(CF), and J(HF) coupling constants. In addition, the fully coupled F-C HMQC spectrum of steroid 1 was interpreted in terms of E.COSY type patterns. This example shows how coupling constants due to different nuclei can be determined together with their relative signs from a single spectrum. The analysis of cross-peak patterns, as presented here, not only provides relatively straightforward routes to the determination of size and sign of hetero-nuclear J-couplings in fluorinated compounds, it also provides new and easy ways for the determination of residual dipolar couplings and thus for structure elucidation. The examples and results presented in this study may contribute to a better interpretation and understanding of various F-C correlation experiments and thereby stimulate their utilization. Copyright © 2011 Elsevier Inc. All rights reserved.
Fully vs. Sequentially Coupled Loads Analysis of Offshore Wind Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiani, Rick; Wendt, Fabian; Musial, Walter
The design and analysis methods for offshore wind turbines must consider the aerodynamic and hydrodynamic loads and response of the entire system (turbine, tower, substructure, and foundation) coupled to the turbine control system dynamics. Whereas a fully coupled (turbine and support structure) modeling approach is more rigorous, intellectual property concerns can preclude this approach. In fact, turbine control system algorithms and turbine properties are strictly guarded and often not shared. In many cases, a partially coupled analysis using separate tools and an exchange of reduced sets of data via sequential coupling may be necessary. In the sequentially coupled approach, themore » turbine and substructure designers will independently determine and exchange an abridged model of their respective subsystems to be used in their partners' dynamic simulations. Although the ability to achieve design optimization is sacrificed to some degree with a sequentially coupled analysis method, the central question here is whether this approach can deliver the required safety and how the differences in the results from the fully coupled method could affect the design. This work summarizes the scope and preliminary results of a study conducted for the Bureau of Safety and Environmental Enforcement aimed at quantifying differences between these approaches through aero-hydro-servo-elastic simulations of two offshore wind turbines on a monopile and jacket substructure.« less
Damu, Amooru G; Kuo, Ping-Chung; Su, Chung-Ren; Kuo, Tsung-Hsiao; Chen, Tzu-Hsuan; Bastow, Kenneth F; Lee, Kuo-Hsiung; Wu, Tian-Shung
2007-07-01
Phytochemical investigation of Physalis angulata was initiated following primary biological screening. Fractionation of CHCl3 and n-BuOH solubles of the MeOH extract from the whole plant was guided by in vitro cytotoxic activity assay using cultured HONE-1 and NUGC cells and led to the isolation of seven new withanolides, withangulatins B-H (1-7), and a new minor physalin, physalin W (8), along with 14 known compounds, including physaprun A, withaphysanolide, dihydrowithanolide E, physanolide A, withaphysalin A, and physalins B, D, F, G, I, J, T, U, and V. New compounds (1-8) were fully characterized by a combination of spectroscopic methods (1D and 2D NMR and MS) and the relative stereochemical assignments based on NOESY correlations and analysis of coupling constants. Biological evaluation of these compounds against a panel of human cancer cell lines showed broad cytotoxic activity. Withangulatin B (1) and physalins D (10) and F (11) displayed potent cytotoxic activity against a panel of human cancer cell lines with EC50 values ranging from 0.2 to 1.6 microg/mL. Structure-activity relationship analysis indicated that withanolides and physalins with 4beta-hydroxy-2-en-1-one and 5beta,6beta-epoxy moieties are potential cytotoxic agents.
A fully integrated direct-conversion digital satellite tuner in 0.18 μm CMOS
NASA Astrophysics Data System (ADS)
Si, Chen; Zengwang, Yang; Mingliang, Gu
2011-04-01
A fully integrated direct-conversion digital satellite tuner for DVB-S/S2 and ABS-S applications is presented. A broadband noise-canceling Balun-LNA and passive quadrature mixers provided a high-linearity low noise RF front-end, while the synthesizer integrated the loop filter to reduce the solution cost and system debug time. Fabricated in 0.18 μm CMOS, the chip achieves a less than 7.6 dB noise figure over a 900-2150 MHz L-band, while the measured sensitivity for 4.42 MS/s QPSK-3/4 mode is -91 dBm at the PCB connector. The fully integrated integer-N synthesizer operating from 2150 to 4350 MHz achieves less than 1 °C integrated phase error. The chip consumes about 145 mA at a 3.3 V supply with internal integrated LDOs.
Efficient full wave code for the coupling of large multirow multijunction LH grills
NASA Astrophysics Data System (ADS)
Preinhaelter, Josef; Hillairet, Julien; Milanesio, Daniele; Maggiora, Riccardo; Urban, Jakub; Vahala, Linda; Vahala, George
2017-11-01
The full wave code OLGA, for determining the coupling of a single row lower hybrid launcher (waveguide grills) to the plasma, is extended to handle multirow multijunction active passive structures (like the C3 and C4 launchers on TORE SUPRA) by implementing the scattering matrix formalism. The extended code is still computationally fast because of the use of (i) 2D splines of the plasma surface admittance in the accessibility region of the k-space, (ii) high order Gaussian quadrature rules for the integration of the coupling elements and (iii) utilizing the symmetries of the coupling elements in the multiperiodic structures. The extended OLGA code is benchmarked against the ALOHA-1D, ALOHA-2D and TOPLHA codes for the coupling of the C3 and C4 TORE SUPRA launchers for several plasma configurations derived from reflectometry and interferometery. Unlike nearly all codes (except the ALOHA-1D code), OLGA does not require large computational resources and can be used for everyday usage in planning experimental runs. In particular, it is shown that the OLGA code correctly handles the coupling of the C3 and C4 launchers over a very wide range of plasma densities in front of the grill.
Tapered waveguides for guided wave optics.
Campbell, J C
1979-03-15
Strip waveguides having half-paraboloid shaped tapers that permit efficient fiber to waveguide coupling have been fabricated by Ag ion exchange in soda-lime glass. A reduction in the input coupling loss has been accomplished by tailoring the diffusion to provide a gradual transition from a single-mode waveguide to a multimode waveguide having cross-sectional dimensions comparable to the core diameter of a single-mode fiber. Waveguides without tapers exhibit an attenuation of 1.0 dB/cm and an input coupling loss of 0.6 dB. The additional loss introduced by the tapered region is 0.5 dB. By way of contrast, an input coupling loss of 2.4 dB is obtained by coupling directly to a single-mode waveguide, indicating a net improvement of 1.3 dB for the tapered waveguides.
The design of a simulated in-line side-coupled 6 MV linear accelerator waveguide.
St Aubin, Joel; Steciw, Stephen; Fallone, B G
2010-02-01
The design of a 3D in-line side-coupled 6 MV linac waveguide for medical use is given, and the effect of the side-coupling and port irises on the radio frequency (RF), beam dynamics, and dosimetric solutions is examined. This work was motivated by our research on a linac-MR hybrid system, where accurate electron trajectory information for a clinical medical waveguide in the presence of an external magnetic field was needed. For this work, the design of the linac waveguide was generated using the finite element method. The design outlined here incorporates the necessary geometric changes needed to incorporate a full-end accelerating cavity with a single-coupling iris, a waveguide-cavity coupling port iris that allows power transfer into the waveguide from the magnetron, as well as a method to control the RF field magnitude within the first half accelerating cavity into which the electrons from the gun are injected. With the full waveguide designed to resonate at 2998.5 +/- 0.1 MHz, a full 3D RF field solution was obtained. The accuracy of the 3D RF field solution was estimated through a comparison of important linac parameters (Q factor, shunt impedance, transit time factor, and resonant frequency) calculated for one accelerating cavity with the benchmarked program SUPERFISH. It was found that the maximum difference between the 3D solution and SUPERFISH was less than 0.03%. The eigenvalue solver, which determines the resonant frequencies of the 3D side-coupled waveguide simulation, was shown to be highly accurate through a comparison with lumped circuit theory. Two different waveguide geometries were examined, one incorporating a 0.5 mm first side cavity shift and another with a 1.5 mm first side cavity shift. The asymmetrically placed side-coupling irises and the port iris for both models were shown to introduce asymmetries in the RF field large enough to cause a peak shift and skewing (center of gravity minus peak shift) of an initially cylindrically uniform electron beam accelerating within the waveguide. The shifting and skewing of the electron beam were found to be greatest due to the effects of the side-coupling irises on the RF field. A further Monte Carlo study showed that this effect translated into a 1% asymmetry in a 40 x 40 cm2 field dose profile. A full 3D design for an in-line side-coupled 6 MV linear accelerator that emulates a common commercial waveguide has been given. The effect of the side coupling on the dose distribution has been shown to create a slight asymmetry, but overall does not affect the clinical applicability of the linac. The 3D in-line side-coupled linac model further provides a tool for the investigation of linac performance within an external magnetic field, which exists in an integrated linac-MR system.
D 6ℛ4 amplitudes in various dimensions
NASA Astrophysics Data System (ADS)
Pioline, Boris
2015-04-01
Four-graviton couplings in the low energy effective action of type II string vacua compactified on tori are strongly constrained by supersymmetry and U-duality. While the ℛ4 and D 4ℛ4 couplings are known exactly in terms of Langlands-Eisenstein series of the U-duality group, the D 6ℛ4 couplings are not nearly as well understood. Exploiting the coincidence of the U-duality group in D = 6 with the T-duality group in D = 5, we propose an exact formula for the D 6ℛ4 couplings in type II string theory compactified on T 4, in terms of a genus-two modular integral plus a suitable Eisenstein series. The same modular integral computes the two-loop correction to D 6ℛ4 in 5 dimensions, but here provides the non-perturbative completion of the known perturbative terms in D = 6. This proposal hinges on a systematic re-analysis of the weak coupling and large radius of the D 6ℛ4 in all dimensions D ≥ 3, which fills in some gaps and resolves some inconsistencies in earlier studies.
Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine
NASA Technical Reports Server (NTRS)
Anderson, O. L.
1984-01-01
Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.
Towards driving mantle convection by mineral physics
NASA Astrophysics Data System (ADS)
Piazzoni, A. S.; Bunge, H.; Steinle-Neumann, G.
2005-12-01
Models of mantle convection have become increasingly sophisticated over the past decade, accounting, for example, for 3 D spherical geometry, and changes in mantle rheology due to variations in temperature and stress. In light of such advances it is surprising that growing constraints on mantle structure derived from mineral physics have not yet been fully brought to bear on mantle convection models. In fact, despite much progress in our understanding of mantle mineralogy a partial description of the equation of state is often used to relate density changes to pressure and temperature alone, without taking into account compositional and mineralogical models of the mantle. Similarly, for phase transitions an incomplete description of thermodynamic constraints is often used, resulting in significant uncertainties in model behavior. While a number of thermodynamic models (some with limited scope) have been constructed recently, some lack the rigor in thermodynamics - for example with respect to the treatment of solid solution - that is needed to make predictions about mantle structure. Here we have constructed a new thermodynamic database for the mantle and have coupled the resulting density dynamically with mantle convection models. The database is build on a self-consistent Gibb's free energy minimization of the system MgO-FeO-SiO2-CaO-Al2O3 that is appropriate for standard (dry) chemical models of the Earth's mantle for relevant high pressure and temperature phases. We have interfaced the database with a high-resolution 2-D convection code (2DTERRA), dynamically coupling the thermodynamic model (density) with the conservation equations of mantle flow. The coupled model is run for different parameterizations of viscosity, initial temperature conditions, and varying the internal vs. external heating. We compare the resulting flow and temperature fields to cases with the Boussinesq approximation and other classical descriptions of the equation of state in mantle dynamics to assess the influence of realistic mineralogical density on mantle convection.
Towards coupled earthquake dynamic rupture and tsunami simulations: The 2011 Tohoku earthquake.
NASA Astrophysics Data System (ADS)
Galvez, Percy; van Dinther, Ylona
2016-04-01
The 2011 Mw9 Tohoku earthquake has been recorded with a vast GPS and seismic network given an unprecedented chance to seismologists to unveil complex rupture processes in a mega-thrust event. The seismic stations surrounding the Miyagi regions (MYGH013) show two clear distinct waveforms separated by 40 seconds suggesting two rupture fronts, possibly due to slip reactivation caused by frictional melting and thermal fluid pressurization effects. We created a 3D dynamic rupture model to reproduce this rupture reactivation pattern using SPECFEM3D (Galvez et al, 2014) based on a slip-weakening friction with sudden two sequential stress drops (Galvez et al, 2015) . Our model starts like a M7-8 earthquake breaking dimly the trench, then after 40 seconds a second rupture emerges close to the trench producing additional slip capable to fully break the trench and transforming the earthquake into a megathrust event. The seismograms agree roughly with seismic records along the coast of Japan. The resulting sea floor displacements are in agreement with 1Hz GPS displacements (GEONET). The simulated sea floor displacement reaches 8-10 meters of uplift close to the trench, which may be the cause of such a devastating tsunami followed by the Tohoku earthquake. To investigate the impact of such a huge uplift, we ran tsunami simulations with the slip reactivation model and plug the sea floor displacements into GeoClaw (Finite element code for tsunami simulations, George and LeVeque, 2006). Our recent results compare well with the water height at the tsunami DART buoys 21401, 21413, 21418 and 21419 and show the potential using fully dynamic rupture results for tsunami studies for earthquake-tsunami scenarios.
NASA Technical Reports Server (NTRS)
Durig, J. R.; Griffin, M. G.; Groner, P.
1977-01-01
The Raman spectra of gaseous dimethylamine-d0, -d3, and -d6 have been recorded between 0 and 4000/cm. The far-infrared spectra have been recorded between 300 and 100/cm. Considerable torsional data are reported and used to characterize the torsional potential function based on a semi-rigid model. The average effective V3 for the dimethylamines was found to be 1052 plus or minus 12/cm. The cos-cos coupling term was approximately 15% of the effective V3, whereas the sine-sine coupling term was of an order of magnitude smaller for (CH3)2NH and (CD3)2NH. However, for the mixed isotope the sine-sine term was found to be negligible and the cos-cos about one-half the value obtained for the other two isotopes.
NASA Technical Reports Server (NTRS)
Stremel, Paul M.
1995-01-01
A method has been developed to accurately compute the viscous flow in three-dimensional (3-D) enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body fitted computational mesh incorporating a staggered grid methodology. In the staggered grid method, the three components of vorticity are defined at the centers of the computational cell sides, while the velocity components are defined as normal vectors at the centers of the computational cell faces. The staggered grid orientation provides for the accurate definition of the vorticity components at the vorticity locations, the divergence of vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is obtained by utilizing a fractional step solution technique in the three coordinate directions. The boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution. The method provides for the non-iterative solution of the flow field and satisfies the conservation of mass and divergence of vorticity to machine zero at each time step. To test the method, the calculation of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability of the method to predict the flow in arbitrary cavities, results will he shown for both cubic and curved cavities.
Additive Manufacturing in the Marine Corps
2015-06-01
commonly referred to as 3D printing. This thesis answers the question of how additive manufacturing can improve the effectiveness of Marine Corps...analysis of current and future 3D -printing processes, examination of several civilian and military examples, and examination of the impact across...fully integrating 3D printers, such as the lack of certification and qualification standards, unreliable end product results, and determining ownership
Motion compensation for fully 4D PET reconstruction using PET superset data
NASA Astrophysics Data System (ADS)
Verhaeghe, J.; Gravel, P.; Mio, R.; Fukasawa, R.; Rosa-Neto, P.; Soucy, J.-P.; Thompson, C. J.; Reader, A. J.
2010-07-01
Fully 4D PET image reconstruction is receiving increasing research interest due to its ability to significantly reduce spatiotemporal noise in dynamic PET imaging. However, thus far in the literature, the important issue of correcting for subject head motion has not been considered. Specifically, as a direct consequence of using temporally extensive basis functions, a single instance of movement propagates to impair the reconstruction of multiple time frames, even if no further movement occurs in those frames. Existing 3D motion compensation strategies have not yet been adapted to 4D reconstruction, and as such the benefits of 4D algorithms have not yet been reaped in a clinical setting where head movement undoubtedly occurs. This work addresses this need, developing a motion compensation method suitable for fully 4D reconstruction methods which exploits an optical tracking system to measure the head motion along with PET superset data to store the motion compensated data. List-mode events are histogrammed as PET superset data according to the measured motion, and a specially devised normalization scheme for motion compensated reconstruction from the superset data is required. This work proceeds to propose the corresponding time-dependent normalization modifications which are required for a major class of fully 4D image reconstruction algorithms (those which use linear combinations of temporal basis functions). Using realistically simulated as well as real high-resolution PET data from the HRRT, we demonstrate both the detrimental impact of subject head motion in fully 4D PET reconstruction and the efficacy of our proposed modifications to 4D algorithms. Benefits are shown both for the individual PET image frames as well as for parametric images of tracer uptake and volume of distribution for 18F-FDG obtained from Patlak analysis.
Motion compensation for fully 4D PET reconstruction using PET superset data.
Verhaeghe, J; Gravel, P; Mio, R; Fukasawa, R; Rosa-Neto, P; Soucy, J-P; Thompson, C J; Reader, A J
2010-07-21
Fully 4D PET image reconstruction is receiving increasing research interest due to its ability to significantly reduce spatiotemporal noise in dynamic PET imaging. However, thus far in the literature, the important issue of correcting for subject head motion has not been considered. Specifically, as a direct consequence of using temporally extensive basis functions, a single instance of movement propagates to impair the reconstruction of multiple time frames, even if no further movement occurs in those frames. Existing 3D motion compensation strategies have not yet been adapted to 4D reconstruction, and as such the benefits of 4D algorithms have not yet been reaped in a clinical setting where head movement undoubtedly occurs. This work addresses this need, developing a motion compensation method suitable for fully 4D reconstruction methods which exploits an optical tracking system to measure the head motion along with PET superset data to store the motion compensated data. List-mode events are histogrammed as PET superset data according to the measured motion, and a specially devised normalization scheme for motion compensated reconstruction from the superset data is required. This work proceeds to propose the corresponding time-dependent normalization modifications which are required for a major class of fully 4D image reconstruction algorithms (those which use linear combinations of temporal basis functions). Using realistically simulated as well as real high-resolution PET data from the HRRT, we demonstrate both the detrimental impact of subject head motion in fully 4D PET reconstruction and the efficacy of our proposed modifications to 4D algorithms. Benefits are shown both for the individual PET image frames as well as for parametric images of tracer uptake and volume of distribution for (18)F-FDG obtained from Patlak analysis.
Ai, Jing; Min, Xue; Gao, Chao-Ying; Tian, Hong-Rui; Dang, Song; Sun, Zhong-Ming
2017-05-23
A novel 3D copper-phosphonate network, with the general formula Cu 7 (H 1 L) 2 (TPT) 3 (H 2 O) 6 , namely compound 1, has been synthesized using a rigid tetrahedral linker tetraphenylsilane tetrakis-4-phosphonic acid (H 8 L) and a nitrogen-containing ancillary ligand (TPT: [5-(4-(1H-1,2,4-triazol-1-yl)phenyl)-1H-tetrazole]) under hydrothermal conditions. The compound was fully characterized using PXRD, ICP, IR, TGA and elemental analysis. Compound 1 can be used as an efficient catalyst for the CO 2 coupling reaction that is greatly superior to many conventional MOF-based catalysts, where porosity is always mentioned and used. In addition, it shows excellent catalytic performance for ring-opening reactions with epoxides under ambient conditions. Additionally, compound 1 can be recycled at least three times without a significant compromise in the activity in the two catalytic reactions.
NASA Astrophysics Data System (ADS)
Keen, David A.; Keeble, Dean S.; Bennett, Thomas D.
2018-04-01
The structure of fully hydrated grossular, or katoite, contains an unusual arrangement of four O-H bonds within each O4 tetrahedra. Neutron and X-ray total scattering from a powdered deuterated sample have been measured to investigate the local arrangement of this O4D4 cluster. The O-D bond length determined directly from the pair distribution function is 0.954 Å, although the Rietveld-refined distance between average O and D positions was slightly smaller. Reverse Monte Carlo refinement of supercell models to the total scattering data show that other than the consequences of this correctly determined O-D bond length, there is little to suggest that the O4D4 structure is locally significantly different from that expected based on the average structure determined solely from Bragg diffraction.
Gloger, Oliver; Kühn, Jens; Stanski, Adam; Völzke, Henry; Puls, Ralf
2010-07-01
Automatic 3D liver segmentation in magnetic resonance (MR) data sets has proven to be a very challenging task in the domain of medical image analysis. There exist numerous approaches for automatic 3D liver segmentation on computer tomography data sets that have influenced the segmentation of MR images. In contrast to previous approaches to liver segmentation in MR data sets, we use all available MR channel information of different weightings and formulate liver tissue and position probabilities in a probabilistic framework. We apply multiclass linear discriminant analysis as a fast and efficient dimensionality reduction technique and generate probability maps then used for segmentation. We develop a fully automatic three-step 3D segmentation approach based upon a modified region growing approach and a further threshold technique. Finally, we incorporate characteristic prior knowledge to improve the segmentation results. This novel 3D segmentation approach is modularized and can be applied for normal and fat accumulated liver tissue properties. Copyright 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Flakus, Henryk T.; Śmiszek-Lindert, Wioleta; Stadnicka, Katarzyna
2007-06-01
This paper presents the investigation results of the polarized IR spectra of the hydrogen bond in crystals of N-methylthioacetamide. The spectral studies were preceded by the determination of the crystal X-ray structure. The spectra were measured at 283 K and at 77 K by a transmission method, using polarized light. Theoretical analysis of the results concerned the linear dichroic effects, the H/D isotopic and temperature effects, observed in the solid-state IR spectra of the hydrogen and of the deuterium bond at the frequency ranges of the νN-H and the νN-D bands, respectively. The main spectral properties of the crystals can be interpreted satisfactorily in terms of the simple quantitative theory of the IR spectra of the hydrogen bond, i.e., the " strong-coupling" theory on the basis of the hydrogen bond centrosymmetric dimer model. The spectra revealed that the strongest vibrational exciton coupling involved the closely spaced hydrogen bonds, each belonging to a different chain of associated N-methylthioacetamide molecules. The crystal spectral properties, along with an abnormal H/D isotopic effect in the spectra, were found to be strongly influenced by vibronic coupling mechanisms in these dimers. These mechanisms were considered as responsible for the activation in IR of the totally symmetric proton stretching vibrations in the dimers. On analyzing the spectra of isotopically diluted crystalline samples of N-methylthioacetamide, it was proved that a non-random distribution of the protons and deuterons took place in the hydrogen bond lattices. In an individual hydrogen-bonded chain in the crystals distribution of the hydrogen isotope atoms H and D was fully random. The H/D isotopic " self-organization" mechanism, of a vibronic nature, involved a pair of hydrogen bonds from a unit cell, where each hydrogen bond belonged to a different chain of the associated molecules.
Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.
Xu, Xuanang; Zhou, Fugen; Liu, Bo
2018-03-19
Automatic approach for bladder segmentation from computed tomography (CT) images is highly desirable in clinical practice. It is a challenging task since the bladder usually suffers large variations of appearance and low soft-tissue contrast in CT images. In this study, we present a deep learning-based approach which involves a convolutional neural network (CNN) and a 3D fully connected conditional random fields recurrent neural network (CRF-RNN) to perform accurate bladder segmentation. We also propose a novel preprocessing method, called dual-channel preprocessing, to further advance the segmentation performance of our approach. The presented approach works as following: first, we apply our proposed preprocessing method on the input CT image and obtain a dual-channel image which consists of the CT image and an enhanced bladder density map. Second, we exploit a CNN to predict a coarse voxel-wise bladder score map on this dual-channel image. Finally, a 3D fully connected CRF-RNN refines the coarse bladder score map and produce final fine-localized segmentation result. We compare our approach to the state-of-the-art V-net on a clinical dataset. Results show that our approach achieves superior segmentation accuracy, outperforming the V-net by a significant margin. The Dice Similarity Coefficient of our approach (92.24%) is 8.12% higher than that of the V-net. Moreover, the bladder probability maps performed by our approach present sharper boundaries and more accurate localizations compared with that of the V-net. Our approach achieves higher segmentation accuracy than the state-of-the-art method on clinical data. Both the dual-channel processing and the 3D fully connected CRF-RNN contribute to this improvement. The united deep network composed of the CNN and 3D CRF-RNN also outperforms a system where the CRF model acts as a post-processing method disconnected from the CNN.
Fornarelli, Francesco; Dadduzio, Ruggiero; Torresi, Marco; Camporeale, Sergio Mario; Fortunato, Bernardo
2018-02-01
A fully 3D unsteady Computational Fluid Dynamics (CFD) approach coupled with heterogeneous reaction chemistry is presented in order to study the behavior of a single square channel as part of a Lean [Formula: see text] Traps. The reliability of the numerical tool has been validated against literature data considering only active BaO site. Even though the input/output performance of such catalyst has been well known, here the spatial distribution within a single channel is investigated in details. The square channel geometry influences the flow field and the catalyst performance being the flow velocity distribution on the cross section non homogeneous. The mutual interaction between the flow and the active catalyst walls influences the spatial distribution of the volumetric species. Low velocity regions near the square corners and transversal secondary flows are shown in several cross-sections along the streamwise direction at different instants. The results shed light on the three-dimensional characteristic of both the flow field and species distribution within a single square channel of the catalyst with respect to 0-1D approaches.
Drift-Scale Coupled Processes (DST and THC Seepage) Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Gonnenthal; N. Spyoher
The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THCmore » Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are required to fully document and address the requirements of the TWPs.« less
Celver, Jeremy; Sharma, Meenakshi; Thanawala, Vaidehi; Octeau, J. Christopher; Kovoor, Abraham
2016-01-01
We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G-protein gated inwardly rectifying potassium channels (Kir3) and directly compared the effects of co-expression of G-protein coupled receptor kinase (GRK) and arrestin on agonist-dependent desensitization of the receptor response. We found, as described previously, that co-expression of a GRK and an arrestin synergistically increased the rate of agonist-dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin-dependent GRK-independent desensitization of D2R-Kir3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin-dependent GRK-independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist-dependent desensitization even after GRK co-expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor. PMID:23815307
Celver, Jeremy; Sharma, Meenakshi; Thanawala, Vaidehi; Christopher Octeau, J; Kovoor, Abraham
2013-10-01
We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G-protein gated inwardly rectifying potassium channels (K(ir)3) and directly compared the effects of co-expression of G-protein coupled receptor kinase (GRK) and arrestin on agonist-dependent desensitization of the receptor response. We found, as described previously, that co-expression of a GRK and an arrestin synergistically increased the rate of agonist-dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin-dependent GRK-independent desensitization of D2R-K(ir)3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin-dependent GRK-independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist-dependent desensitization even after GRK co-expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor. © 2013 International Society for Neurochemistry.
Amphetamine Self-Administration Attenuates Dopamine D2 Autoreceptor Function
Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong
2014-01-01
Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [35S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction. PMID:24513972
Amphetamine self-administration attenuates dopamine D2 autoreceptor function.
Calipari, Erin S; Sun, Haiguo; Eldeeb, Khalil; Luessen, Deborah J; Feng, Xin; Howlett, Allyn C; Jones, Sara R; Chen, Rong
2014-07-01
Dopamine D2 autoreceptors located on the midbrain dopaminergic neurons modulate dopamine (DA) neuron firing, DA release, and DA synthesis through a negative-feedback mechanism. Dysfunctional D2 autoreceptors following repeated drug exposure could lead to aberrant DA activity in the ventral tegmental area (VTA) and projection areas such as nucleus accumbens (NAcc), promoting drug-seeking and -taking behavior. Therefore, it is important to understand molecular mechanisms underlying drug-induced changes in D2 autoreceptors. Here, we reported that 5 days of amphetamine (AMPH) self-administration reduced the ability of D2 autoreceptors to inhibit DA release in the NAcc as determined by voltammetry. Using the antibody-capture [(35)S]GTPγS scintillation proximity assay, we demonstrated for the first time that midbrain D2/D3 receptors were preferentially coupled to Gαi2, whereas striatal D2/D3 receptors were coupled equally to Gαi2 and Gαo for signaling. Importantly, AMPH abolished the interaction between Gαi2 and D2/D3 receptors in the midbrain while leaving striatal D2/D3 receptors unchanged. The disruption of the coupling between D2/D3 receptors and Gαi2 by AMPH is at least partially explained by the enhanced RGS2 (regulator of G-protein signaling 2) activity resulting from an increased RGS2 trafficking to the membrane. AMPH had no effects on the midbrain expression and trafficking of other RGS proteins such as RGS4 and RGS8. Our data suggest that midbrain D2/D3 receptors are more susceptible to AMPH-induced alterations. Reduced D2 autoreceptor function could lead to enhanced DA signaling and ultimately addiction-related behavior. RGS2 may be a potential non-dopaminergic target for pharmacological intervention of dysfunctional DA transmission and drug addiction.
NASA Astrophysics Data System (ADS)
Yamaguchi, Yasuhiro; Santopinto, Elena
2017-07-01
The recent observation of two hidden-charm pentaquark states by LHCb collaborations prompted us to investigate the exotic states close to the D ¯Λc, D¯ *Λc , D ¯ Σc , D ¯ Σc* , D¯ *Σc and D¯ *Σc* thresholds. We therefore studied the hadronic molecules that form the coupled-channel system of D¯ (*)Λc and D¯(*)Σc(*). As the heavy quark spin symmetry manifests the mass degenerations of D ¯ and D¯* mesons, and of Σc and Σc* baryons, the coupled channels of D¯(*)Σc(*) are important in these molecules. In addition, we consider the coupling to the D¯(*)Λc channel whose thresholds are near the D¯(*)Σc(*) thresholds, and the coupling to the state with nonzero orbital angular momentum mixed by the tensor force. This full coupled-channel analysis of D¯(*)Λc-D¯(*)Σc(*) with larger orbital angular momentum has never been performed before. By solving the coupled-channel Schrödinger equations with the one meson exchange potentials with respect to the heavy quark spin and chiral symmetries, we studied the hidden-charm hadronic molecules with I (JP)=1 /2 (3 /2±) and 1 /2 (5 /2±) . We conclude that the JP assignment of the observed pentaquarks is 3 /2+ for Pc+(4380 ) and 5 /2- for Pc+(4450 ), which is in agreement with the results of the LHCb analysis. In addition, we give predictions for other JP=3 /2± states at 4136.0, 4307.9 and 4348.7 MeV in JP=3 /2-, and 4206.7 MeV in JP=3 /2+, which can be further investigated by means of experiment.
Mata-Granados, J M; Quesada Gómez, J M; Luque de Castro, M D
2009-05-01
Fat soluble vitamins and vitamin D metabolites are key compounds in bone metabolism. Unfortunately, variability among 25(OH)D assays limits clinician ability to monitor vitamin D status, supplementation, and toxicity. 0.5 ml serum was mixed with 0.5 ml 60% acetonitrile 150 mM sodium dodecyl sulfate, vortexed for 30 s and injected into an automatic solid-phase extraction (SPE) system for cleanup-preconcentration, then on-line transferred to a reversed-phase analytical column by a 15% methanol-acetonitrile mobile phase at 1.0 ml/min for individual separation of the target analytes. Ultraviolet detection was performed at 265 nm, 325 nm and 292 for vitamin D metabolites, vitamin A and alpha- and delta-tocopherols, respectively. Detection limits were between 0.0015 and 0.26 microg/ml for the target compounds, the precision (expressed as relative standard deviation) between 0.83 and 3.6% for repeatability and between 1.8 and 4.62% for within laboratory reproducibility. Recoveries between 97-100.2% and 95-99% were obtained for low and high concentrations of the target analytes in serum. The total analysis time was 20 min. The on-line coupling of SPE-HPLC endows the proposed method with reliability, robustness, and user unattendance, making it a useful tool for high-throughput analysis in clinical and research laboratories.
Fully kinetic particle simulations of high pressure streamer propagation
NASA Astrophysics Data System (ADS)
Rose, David; Welch, Dale; Thoma, Carsten; Clark, Robert
2012-10-01
Streamer and leader formation in high pressure devices is a dynamic process involving a hierarchy of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. We have performed 2D and 3D fully EM implicit particle-in-cell simulation model of gas breakdown leading to streamer formation under DC and RF fields. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm [D. R. Welch, et al., J. Comp. Phys. 227, 143 (2007)] that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge. These models are being applied to the analysis of high-pressure gas switches [D. V. Rose, et al., Phys. Plasmas 18, 093501 (2011)] and gas-filled RF accelerator cavities [D. V. Rose, et al. Proc. IPAC12, to appear].
3D Cryo-Imaging: A Very High-Resolution View of the Whole Mouse
Roy, Debashish; Steyer, Grant J.; Gargesha, Madhusudhana; Stone, Meredith E.; Wilson, David L.
2009-01-01
We developed the Case Cryo-imaging system that provides information rich, very high-resolution, color brightfield, and molecular fluorescence images of a whole mouse using a section-and-image block-face imaging technology. The system consists of a mouse-sized, motorized cryo-microtome with special features for imaging, a modified, brightfield/ fluorescence microscope, and a robotic xyz imaging system positioner, all of which is fully automated by a control system. Using the robotic system, we acquired microscopic tiled images at a pixel size of 15.6 µm over the block face of a whole mouse sectioned at 40 µm, with a total data volume of 55 GB. Viewing 2D images at multiple resolutions, we identified small structures such as cardiac vessels, muscle layers, villi of the small intestine, the optic nerve, and layers of the eye. Cryo-imaging was also suitable for imaging embryo mutants in 3D. A mouse, in which enhanced green fluorescent protein was expressed under gamma actin promoter in smooth muscle cells, gave clear 3D views of smooth muscle in the urogenital and gastrointestinal tracts. With cryo-imaging, we could obtain 3D vasculature down to 10 µm, over very large regions of mouse brain. Software is fully automated with fully programmable imaging/sectioning protocols, email notifications, and automatic volume visualization. With a unique combination of field-of-view, depth of field, contrast, and resolution, the Case Cryo-imaging system fills the gap between whole animal in vivo imaging and histology. PMID:19248166
Emerging magnetism and anomalous Hall effect in iridate–manganite heterostructures
Nichols, John; Gao, Xiang; Lee, Shinbuhm; Meyer, Tricia L.; Freeland, John W.; Lauter, Valeria; Yi, Di; Liu, Jian; Haskel, Daniel; Petrie, Jonathan R.; Guo, Er-Jia; Herklotz, Andreas; Lee, Dongkyu; Ward, Thomas Z.; Eres, Gyula; Fitzsimmons, Michael R.; Lee, Ho Nyung
2016-01-01
Strong Coulomb repulsion and spin–orbit coupling are known to give rise to exotic physical phenomena in transition metal oxides. Initial attempts to investigate systems, where both of these fundamental interactions are comparably strong, such as 3d and 5d complex oxide superlattices, have revealed properties that only slightly differ from the bulk ones of the constituent materials. Here we observe that the interfacial coupling between the 3d antiferromagnetic insulator SrMnO3 and the 5d paramagnetic metal SrIrO3 is enormously strong, yielding an anomalous Hall response as the result of charge transfer driven interfacial ferromagnetism. These findings show that low dimensional spin–orbit entangled 3d–5d interfaces provide an avenue to uncover technologically relevant physical phenomena unattainable in bulk materials. PMID:27596572
NASA Astrophysics Data System (ADS)
Jin, L.; Zoback, M. D.
2017-10-01
We formulate the problem of fully coupled transient fluid flow and quasi-static poroelasticity in arbitrarily fractured, deformable porous media saturated with a single-phase compressible fluid. The fractures we consider are hydraulically highly conductive, allowing discontinuous fluid flux across them; mechanically, they act as finite-thickness shear deformation zones prior to failure (i.e., nonslipping and nonpropagating), leading to "apparent discontinuity" in strain and stress across them. Local nonlinearity arising from pressure-dependent permeability of fractures is also included. Taking advantage of typically high aspect ratio of a fracture, we do not resolve transversal variations and instead assume uniform flow velocity and simple shear strain within each fracture, rendering the coupled problem numerically more tractable. Fractures are discretized as lower dimensional zero-thickness elements tangentially conforming to unstructured matrix elements. A hybrid-dimensional, equal-low-order, two-field mixed finite element method is developed, which is free from stability issues for a drained coupled system. The fully implicit backward Euler scheme is employed for advancing the fully coupled solution in time, and the Newton-Raphson scheme is implemented for linearization. We show that the fully discretized system retains a canonical form of a fracture-free poromechanical problem; the effect of fractures is translated to the modification of some existing terms as well as the addition of several terms to the capacity, conductivity, and stiffness matrices therefore allowing the development of independent subroutines for treating fractures within a standard computational framework. Our computational model provides more realistic inputs for some fracture-dominated poromechanical problems like fluid-induced seismicity.
NASA Astrophysics Data System (ADS)
Fersch, Benjamin; Senatore, Alfonso; Kunstmann, Harald
2017-04-01
Fully-coupled hydrometeorological modeling enables investigations about the complex and often non-linear exchange mechanisms among subsurface, land, and atmosphere with respect to water and energy fluxes. The consideration of lateral redistribution of surface and subsurface water in such modeling systems is a crucial enhancement, allowing for a better representation of surface spatial patterns and providing also channel discharge predictions. However, the evaluation of fully-coupled simulations is difficult since the amount of physical detail along with feedback mechanisms leads to high degrees of freedom. Therefore, comprehensive observation data is required to obtain meaningful model configurations. We present a case study for a medium-sized river catchment in southern Germany that includes the calibration of the stand-alone and the evaluation of the fully-coupled WRF-Hydro modeling system with a horizontal resolution of 1 x 1 km2, for the period June to August 2015. ECMWF ERA-Interim reanalysis is used for model driving. Land-surface processes are represented by the Noah-MP land surface model. Land-cover is described by the EU CORINE data set. Observations for model evaluation are obtained from the TERENO Pre-Alpine observatory (http://www.imk-ifu.kit.edu/tereno.php) and are complemented by further measurements from the ScaleX campaign (http://scalex.imk-ifu.kit.edu) such as atmospheric profiles obtained from radiometer sounding and airborne systems as well as soil moisture and -temperature networks. We show how well water budgets and heat-fluxes are being reproduced by the stand-alone WRF, the stand-alone WRF-Hydro and the fully-coupled WRF-Hydro model.
Effect of Coriolis coupling in chemical reaction dynamics.
Chu, Tian-Shu; Han, Ke-Li
2008-05-14
It is essential to evaluate the role of Coriolis coupling effect in molecular reaction dynamics. Here we consider Coriolis coupling effect in quantum reactive scattering calculations in the context of both adiabaticity and nonadiabaticity, with particular emphasis on examining the role of Coriolis coupling effect in reaction dynamics of triatomic molecular systems. We present the results of our own calculations by the time-dependent quantum wave packet approach for H + D2 and F(2P3/2,2P1/2) + H2 as well as for the ion-molecule collisions of He + H2 +, D(-) + H2, H(-) + D2, and D+ + H2, after reviewing in detail other related research efforts on this issue.
A Novel Method for Dynamic Short-Beam Shear Testing of 3D Woven Composites
2011-08-11
specimen was homogenized as an orthotropic elastic material with properties given in Table 1 [38]. The use of fully elastic model removes any material...impact event however after approximately 0.5 mm of deflection, equilibrium is reached. It is observed from Fig. 4(d) that equilibrium is never fully ...The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
Polarimetric Calibration and Assessment of GF-3 Images in Steppe
NASA Astrophysics Data System (ADS)
Chang, Y.; Yang, J.; Li, P.; Shi, L.; Zhao, L.
2018-04-01
The GaoFen-3 (GF-3) satellite is the first fully polarimetric synthetic aperture radar (PolSAR) satellite in China. It has three fully polarimetric imaging modes and is available for many applications. The system has been taken on several calibration experiments after the launch in Inner Mongolia by the Institute of Electronics, Chinese Academy of Sciences (IECAS), and the polarimetric calibration (PolCAL) strategy of GF-3 are also improved. Therefore, it is necessary to assess the image quality before any further applications. In this paper, we evaluated the polarimetric residual errors of GF-3 images that acquired in July 2017 in a steppe site. The results shows that the crosstalk of these images varies from -36 dB to -46 dB, and the channel imbalance varies from -0.43 dB to 0.55 dB with angle varying from -1.6 to 3.6 degree. We also made a PolCAL experiment to restrain the polarimetric distortion afterwards, and the polarimetric quality of the image got better after the PolCAL processing.
Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine
NASA Astrophysics Data System (ADS)
Fiereder, R.; Riemann, S.; Schilling, R.
2010-08-01
This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.
Geographic Video 3d Data Model And Retrieval
NASA Astrophysics Data System (ADS)
Han, Z.; Cui, C.; Kong, Y.; Wu, H.
2014-04-01
Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.
Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S V
2016-01-01
Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper.
NASA Astrophysics Data System (ADS)
Yadav, Rana Pratap; Kumar, Sunil; Kulkarni, S. V.
2016-01-01
Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. In designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper.
2015-06-04
that involve physics coupling with phase change in the simulation of 3D deep convection. We show that the VMS+DC approach is a robust technique that can...of 3D deep convection. We show that the VMS+DC approach is a robust technique that can damp the high order modes characterizing the spectral element...of Spectral Elements, Deep Convection, Kessler Microphysics Preprint J. Comput. Phys. 283 (2015) 360-373 June 4, 2015 1. Introduction In the field of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi
2012-10-01
PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICSmore » (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.« less
Validation of the Fully-Coupled Air-Sea-Wave COAMPS System
NASA Astrophysics Data System (ADS)
Smith, T.; Campbell, T. J.; Chen, S.; Gabersek, S.; Tsu, J.; Allard, R. A.
2017-12-01
A fully-coupled, air-sea-wave numerical model, COAMPS®, has been developed by the Naval Research Laboratory to further enhance understanding of oceanic, atmospheric, and wave interactions. The fully-coupled air-sea-wave system consists of an atmospheric component with full physics parameterizations, an ocean model, NCOM (Navy Coastal Ocean Model), and two wave components, SWAN (Simulating Waves Nearshore) and WaveWatch III. Air-sea interactions between the atmosphere and ocean components are accomplished through bulk flux formulations of wind stress and sensible and latent heat fluxes. Wave interactions with the ocean include the Stokes' drift, surface radiation stresses, and enhancement of the bottom drag coefficient in shallow water due to the wave orbital velocities at the bottom. In addition, NCOM surface currents are provided to SWAN and WaveWatch III to simulate wave-current interaction. The fully-coupled COAMPS system was executed for several regions at both regional and coastal scales for the entire year of 2015, including the U.S. East Coast, Western Pacific, and Hawaii. Validation of COAMPS® includes observational data comparisons and evaluating operational performance on the High Performance Computing (HPC) system for each of these regions.
NASA Astrophysics Data System (ADS)
Zhong, Xiao; Sun, Peide; Song, Yingqi; Wang, Ruyi; Fang, Zhiguo
2010-11-01
Based on the fully coupled activated sludge model (FCASM), the novel model Tubificidae -Fully Coupled Activated Sludge Model-hydraulic (T-FCASM-Hydro), has been developed in our previous work. T-FCASM-Hydro not only describe the interactive system between Tubificidae and functional microorganisms for the sludge reduction and nutrient removal simultaneously, but also considere the interaction between biological and hydraulic field, After calibration and validation of T-FCASM-Hydro at Zhuji Feida-hongyu Wastewater treatment plant (WWTP) in Zhejiang province, T-FCASM-Hydro was applied for determining optimal operating condition in the WWTP. Simulation results showed that nitrogen and phosphorus could be removed efficiently, and the efficiency of NH4+-N removal enhanced with increase of DO concentration. At a certain low level of DO concentration in the aerobic stage, shortcut nitrification-denitrification dominated in the process of denitrification in the novel system. However, overhigh agitation (>6 mgṡL-1) could result in the unfavorable feeding behavior of Tubificidae because of the strong flow disturbance, which might lead to low rate of sludge reduction. High sludge reduction rate and high removal rate of nitrogen and phosphorus could be obtained in the new-style oxidation ditch when DO concentration at the aerobic stage with Tubificidae was maintained at 3.6 gṡm-3.
European vegetation during Marine Oxygen Isotope Stage-3
NASA Astrophysics Data System (ADS)
Huntley, Brian; Alfano, Mary J. o.; Allen, Judy R. M.; Pollard, Dave; Tzedakis, Polychronis C.; de Beaulieu, Jacques-Louis; Grüger, Eberhard; Watts, Bill
2003-03-01
European vegetation during representative "warm" and "cold" intervals of stage-3 was inferred from pollen analytical data. The inferred vegetation differs in character and spatial pattern from that of both fully glacial and fully interglacial conditions and exhibits contrasts between warm and cold intervals, consistent with other evidence for stage-3 palaeoenvironmental fluctuations. European vegetation thus appears to have been an integral component of millennial environmental fluctuations during stage-3; vegetation responded to this scale of environmental change and through feedback mechanisms may have had effects upon the environment. The pollen-inferred vegetation was compared with vegetation simulated using the BIOME 3.5 vegetation model for climatic conditions simulated using a regional climate model (RegCM2) nested within a coupled global climate and vegetation model (GENESIS-BIOME). Despite some discrepancies in detail, both approaches capture the principal features of the present vegetation of Europe. The simulated vegetation for stage-3 differs markedly from that inferred from pollen analytical data, implying substantial discrepancy between the simulated climate and that actually prevailing. Sensitivity analyses indicate that the simulated climate is too warm and probably has too short a winter season. These discrepancies may reflect incorrect specification of sea surface temperature or sea-ice conditions and may be exacerbated by vegetation-climate feedback in the coupled global model.
Separation of Evans and Hiro currents in VDE of tokamak plasma
NASA Astrophysics Data System (ADS)
Galkin, Sergei A.; Svidzinski, V. A.; Zakharov, L. E.
2014-10-01
Progress on the Disruption Simulation Code (DSC-3D) development and benchmarking will be presented. The DSC-3D is one-fluid nonlinear time-dependent MHD code, which utilizes fully 3D toroidal geometry for the first wall, pure vacuum and plasma itself, with adaptation to the moving plasma boundary and accurate resolution of the plasma surface current. Suppression of fast magnetosonic scale by the plasma inertia neglecting will be demonstrated. Due to code adaptive nature, self-consistent plasma surface current modeling during non-linear dynamics of the Vertical Displacement Event (VDE) is accurately provided. Separation of the plasma surface current on Evans and Hiro currents during simulation of fully developed VDE, then the plasma touches in-vessel tiles, will be discussed. Work is supported by the US DOE SBIR Grant # DE-SC0004487.
8D likelihood effective Higgs couplings extraction framework in h → 4ℓ
Chen, Yi; Di Marco, Emanuele; Lykken, Joe; ...
2015-01-23
We present an overview of a comprehensive analysis framework aimed at performing direct extraction of all possible effective Higgs couplings to neutral electroweak gauge bosons in the decay to electrons and muons, the so called ‘golden channel’. Our framework is based primarily on a maximum likelihood method constructed from analytic expressions of the fully differential cross sections for h → 4l and for the dominant irreduciblemore » $$ q\\overline{q} $$ → 4l background, where 4l = 2e2μ, 4e, 4μ. Detector effects are included by an explicit convolution of these analytic expressions with the appropriate transfer function over all center of mass variables. Utilizing the full set of observables, we construct an unbinned detector-level likelihood which is continuous in the effective couplings. We consider possible ZZ, Zγ, and γγ couplings simultaneously, allowing for general CP odd/even admixtures. A broad overview is given of how the convolution is performed and we discuss the principles and theoretical basis of the framework. This framework can be used in a variety of ways to study Higgs couplings in the golden channel using data obtained at the LHC and other future colliders.« less
Anibamine and its Analogues as Novel Anti Prostate Cancer Agents
2010-06-01
PC- 3, and DU-145 has been conducted continuously to evaluate the efficacy of more ligands. A molecular modeling study (3D QSAR ) protocol has been... Toxicology at Virginia Commonwealth University. Both the PI’s lab and Dr. 10 Selley’s lab have fully functional binding assay facility. The assays is...pursue the docking study and 3D QSAR study. 5.3 3D QSAR (Quantitative Structure-Activity Relationships) Study As proposed in our proposal, we will
Coupled 0D-1D CFD Modeling of Right Heart and Pulmonary Artery Morphometry Tree
NASA Astrophysics Data System (ADS)
Dong, Melody; Yang, Weiguang; Feinstein, Jeffrey A.; Marsden, Alison
2017-11-01
Pulmonary arterial hypertension (PAH) is characterized by elevated pulmonary artery (PA) pressure and remodeling of the distal PAs resulting in right ventricular (RV) dysfunction and failure. It is hypothesized that patients with untreated ventricular septal defects (VSD) may develop PAH due to elevated flows and pressures in the PAs. Wall shear stress (WSS), due to elevated flows, and circumferential stress, due to elevated pressures, are known to play a role in vascular mechanobiology. Thus, simulating VSD hemodynamics and wall mechanics may facilitate our understanding of mechanical stimuli leading to PAH initiation and progression. Although 3D CFD models can capture detailed hemodynamics in the proximal PAs, they cannot easily model hemodynamics and wave propagation in the distal PAs, where remodeling occurs. To improve current PA models, we will present a new method that couples distal PA hemodynamics with RV function. Our model couples a 0D lumped parameter model of the RV to a 1D model of the PA tree, based on human PA morphometry data, to characterize RV performance and WSS changes in the PA tree. We will compare a VSD 0D-1D model and a 0D-3D model coupled to a mathematical morphometry tree model to quantify WSS in the entire PA vascular tree.
Ughi, Giovanni J; Adriaenssens, Tom; Desmet, Walter; D’hooge, Jan
2012-01-01
Intravascular optical coherence tomography (IV-OCT) is an imaging modality that can be used for the assessment of intracoronary stents. Recent publications pointed to the fact that 3D visualizations have potential advantages compared to conventional 2D representations. However, 3D imaging still requires a time consuming manual procedure not suitable for on-line application during coronary interventions. We propose an algorithm for a rapid and fully automatic 3D visualization of IV-OCT pullbacks. IV-OCT images are first processed for the segmentation of the different structures. This also allows for automatic pullback calibration. Then, according to the segmentation results, different structures are depicted with different colors to visualize the vessel wall, the stent and the guide-wire in details. Final 3D rendering results are obtained through the use of a commercial 3D DICOM viewer. Manual analysis was used as ground-truth for the validation of the segmentation algorithms. A correlation value of 0.99 and good limits of agreement (Bland Altman statistics) were found over 250 images randomly extracted from 25 in vivo pullbacks. Moreover, 3D rendering was compared to angiography, pictures of deployed stents made available by the manufacturers and to conventional 2D imaging corroborating visualization results. Computational time for the visualization of an entire data sets resulted to be ~74 sec. The proposed method allows for the on-line use of 3D IV-OCT during percutaneous coronary interventions, potentially allowing treatments optimization. PMID:23243578
Omelyan, Igor; Kovalenko, Andriy
2015-04-14
We developed a generalized solvation force extrapolation (GSFE) approach to speed up multiple time step molecular dynamics (MTS-MD) of biomolecules steered with mean solvation forces obtained from the 3D-RISM-KH molecular theory of solvation (three-dimensional reference interaction site model with the Kovalenko-Hirata closure). GSFE is based on a set of techniques including the non-Eckart-like transformation of coordinate space separately for each solute atom, extension of the force-coordinate pair basis set followed by selection of the best subset, balancing the normal equations by modified least-squares minimization of deviations, and incremental increase of outer time step in motion integration. Mean solvation forces acting on the biomolecule atoms in conformations at successive inner time steps are extrapolated using a relatively small number of best (closest) solute atomic coordinates and corresponding mean solvation forces obtained at previous outer time steps by converging the 3D-RISM-KH integral equations. The MTS-MD evolution steered with GSFE of 3D-RISM-KH mean solvation forces is efficiently stabilized with our optimized isokinetic Nosé-Hoover chain (OIN) thermostat. We validated the hybrid MTS-MD/OIN/GSFE/3D-RISM-KH integrator on solvated organic and biomolecules of different stiffness and complexity: asphaltene dimer in toluene solvent, hydrated alanine dipeptide, miniprotein 1L2Y, and protein G. The GSFE accuracy and the OIN efficiency allowed us to enlarge outer time steps up to huge values of 1-4 ps while accurately reproducing conformational properties. Quasidynamics steered with 3D-RISM-KH mean solvation forces achieves time scale compression of conformational changes coupled with solvent exchange, resulting in further significant acceleration of protein conformational sampling with respect to real time dynamics. Overall, this provided a 50- to 1000-fold effective speedup of conformational sampling for these systems, compared to conventional MD with explicit solvent. We have been able to fold the miniprotein from a fully denatured, extended state in about 60 ns of quasidynamics steered with 3D-RISM-KH mean solvation forces, compared to the average physical folding time of 4-9 μs observed in experiment.
NASA Astrophysics Data System (ADS)
Gilmore, Mark; Hsu, Scott
2015-11-01
The goal of the Plasma Liner eXperiment PLX-alpha at Los Alamos National Laboratory is to establish the viability of creating a spherically imploding plasma liner for MIF and HED applications, using a spherical array of supersonic plasma jets launched by innovative contoured-gap coaxial plasma guns. PLX- α experiments will focus in particular on establishing the ram pressure and uniformity scalings of partial and fully spherical plasma liners. In order to characterize these parameters experimentally, a suite of diagnostics is planned, including multi-camera fast imaging, a 16-channel visible interferometer (upgraded from 8 channels) with reconfigurable, fiber-coupled front end, and visible and VUV high-resolution and survey spectroscopy. Tomographic reconstruction and data fusion techniques will be used in conjunction with interferometry, imaging, and synthetic diagnostics from modeling to characterize liner uniformity in 3D. Diagnostic and data analysis design, implementation, and status will be presented. Supported by the Advanced Research Projects Agency - Energy - U.S. Department of Energy.
Airway reopening: Steadily propagating bubbles in buckled elastic tubes
NASA Astrophysics Data System (ADS)
Heil, Matthias; Hazel, Andrew L.
2001-11-01
Many pulmonary diseases result in the collapse and occlusion of parts of the lung by viscous fluid. The subsequent airway reopening is generally assumed to occur via the propagation of an air finger into the collapsed, fluid-filled part of the airway. The problem has some similarity to the scenario of the `first breath' when air has to enter the fluid-filled lungs of a newborn baby for the first time. We have developed the first three-dimensional computational model of airway reopening, based on a finite-element solution of the free-surface Stokes equations, fully coupled to the equations of large-displacement shell theory. Following a brief discussion of the numerical method, we will present results that illustrate the 3D flow field by which the steadily propagating air finger reopens the non-axisymmetrically collapsed airway. Finally, we will contrast the system's behaviour to predictions from earlier two-dimensional models.
Water Dimers in the Atmosphere II: Results from the VRT(ASP-W)III Potential Surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldman, N; Saykally, R J; Leforestier, C
We report refined results for the equilibrium constant for water dimerization (K{sub P}), computed as a function of temperature via fully-coupled 6-D calculation of the canonical (H{sub 2}O){sub 2} partition function on VRT(ASP-W)III, the most accurate water dimer potential energy surface currently available. Partial pressure isotherms calculated for a range of temperatures and relative humidities indicate that water dimers can exist in sufficient concentrations (e.g., 10{sup 18}m{sup -3} at 30 C and 100% relative humidity) to affect physical and chemical processes in the atmosphere. The determinations of additional thermodynamic properties ({Delta}G, {Delta}H, {Delta}S, C{sub P}, C{sub V}) for (H{sub 2}O){submore » 2} are presented, and the role of quasi-bound states in the calculation of K{sub P} is discussed at length.« less
NASA Astrophysics Data System (ADS)
Mosumgaard, Jakob Rørsted; Ball, Warrick H.; Aguirre, Víctor Silva; Weiss, Achim; Christensen-Dalsgaard, Jørgen
2018-06-01
Stellar evolution codes play a major role in present-day astrophysics, yet they share common simplifications related to the outer layers of stars. We seek to improve on this by the use of results from realistic and highly detailed 3D hydrodynamics simulations of stellar convection. We implement a temperature stratification extracted directly from the 3D simulations into two stellar evolution codes to replace the simplified atmosphere normally used. Our implementation also contains a non-constant mixing-length parameter, which varies as a function of the stellar surface gravity and temperature - also derived from the 3D simulations. We give a detailed account of our fully consistent implementation and compare to earlier works, and also provide a freely available MESA-module. The evolution of low-mass stars with different masses is investigated, and we present for the first time an asteroseismic analysis of a standard solar model utilising calibrated convection and temperature stratification from 3D simulations. We show that the inclusion of 3D results have an almost insignificant impact on the evolution and structure of stellar models - the largest effect are changes in effective temperature of order 30 K seen in the pre-main sequence and in the red-giant branch. However, this work provides the first step for producing self-consistent evolutionary calculations using fully incorporated 3D atmospheres from on-the-fly interpolation in grids of simulations.
Course Design and Student Responses to an Online PBL Course in 3D Modelling for Mining Engineers
ERIC Educational Resources Information Center
McAlpine, Iain; Stothard, Phillip
2005-01-01
To enhance a course in 3D Virtual Reality (3D VR) modelling for mining engineers, and to create the potential for off campus students to fully engage with the course, a problem based learning (PBL) approach was applied to the course design and all materials and learning activities were provided online. This paper outlines some of the theoretical…
Air-Sea Interaction in the Somali Current Region
NASA Astrophysics Data System (ADS)
Jensen, T. G.; Rydbeck, A.
2017-12-01
The western Indian Ocean is an area of high eddy-kinetic energy generated by local wind-stress curl, instability of boundary currents as well as Rossby waves from the west coast of India and the equatorial wave guide as they reflect off the African coast. The presence of meso-scale eddies and coastal upwelling during the Southwest Monsoon affects the air-sea interaction on those scales. The U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is used to understand and quantify the surface flux, effects on surface waves and the role of Sea Surface Temperature anomalies on ocean-atmosphere coupling in that area. The COAMPS atmosphere model component with 9 km resolution is fully coupled to the Navy Coastal Ocean Model (NCOM) with 3.5 km resolution and the Simulating WAves Nearshore (SWAN) wave model with 10 km resolution. Data assimilation using a 3D-variational approach is included in hindcast runs performed daily since June 1, 2015. An interesting result is that a westward jet associated with downwelling equatorial Rossy waves initiated the reversal from the southward Somali Current found during the northeast monsoon to a northward flow in March 2016 more than a month before the beginning of the southwest monsoon. It is also found that warm SST anomalies in the Somali Current eddies, locally increase surface wind speed due to an increase in the atmospheric boundary layer height. This results in an increase in significant wave height and also an increase in heat flux to the atmosphere. Cold SST anomalies over upwelling filaments have the opposite impacts on air-sea fluxes.
NASA Astrophysics Data System (ADS)
Deffenbaugh, Paul Issac
3D printing has garnered immense attention from many fields including in-office rapid prototyping of mechanical parts, outer-space satellite replication, garage functional firearm manufacture, and NASA rocket engine component fabrication. 3D printing allows increased design flexibility in the fabrication of electronics, microwave circuits and wireless antennas and has reached a level of maturity which allows functional parts to be printed. Much more work is necessary in order to perfect the processes of 3D printed electronics especially in the area of automation. Chapter 1 shows several finished prototypes of 3D printed electronics as well as newly developed techniques in fabrication. Little is known about the RF and microwave properties and applications of the standard materials which have been developed for 3D printing. Measurement of a wide variety of materials over a broad spectrum of frequencies up to 10 GHz using a variety of well-established measurement methods is performed throughout chapter 2. Several types of high frequency RF transmission lines are fabricated and valuable model-matched data is gathered and provided in chapter 3 for future designers' use. Of particular note is a fully 3D printed stripline which was automatically fabricated in one process on one machine. Some core advantages of 3D printing RF/microwave components include rapid manufacturing of complex, dimensionally sensitive circuits (such as antennas and filters which are often iteratively tuned) and the ability to create new devices that cannot be made using standard fabrication techniques. Chapter 4 describes an exemplary fully 3D printed curved inverted-F antenna.
Physically-Based Assessment of Intrinsic Groundwater Resource Vulnerability in AN Urban Catchment
NASA Astrophysics Data System (ADS)
Graf, T.; Therrien, R.; Lemieux, J.; Molson, J. W.
2013-12-01
Several methods exist to assess intrinsic groundwater (re)source vulnerability for the purpose of sustainable groundwater management and protection. However, several methods are empirical and limited in their application to specific types of hydrogeological systems. Recent studies suggest that a physically-based approach could be better suited to provide a general, conceptual and operational basis for groundwater vulnerability assessment. A novel method for physically-based assessment of intrinsic aquifer vulnerability is currently under development and tested to explore the potential of an integrated modelling approach, combining groundwater travel time probability and future scenario modelling in conjunction with the fully integrated HydroGeoSphere model. To determine the intrinsic groundwater resource vulnerability, a fully coupled 2D surface water and 3D variably-saturated groundwater flow model in conjunction with a 3D geological model (GoCAD) has been developed for a case study of the Rivière Saint-Charles (Québec/Canada) regional scale, urban watershed. The model has been calibrated under transient flow conditions for the hydrogeological, variably-saturated subsurface system, coupled with the overland flow zone by taking into account monthly recharge variation and evapotranspiration. To better determine the intrinsic groundwater vulnerability, two independent approaches are considered and subsequently combined in a simple, holistic multi-criteria-decision analyse. Most data for the model comes from an extensive hydrogeological database for the watershed, whereas data gaps have been complemented via field tests and literature review. The subsurface is composed of nine hydrofacies, ranging from unconsolidated fluvioglacial sediments to low permeability bedrock. The overland flow zone is divided into five major zones (Urban, Rural, Forest, River and Lake) to simulate the differences in landuse, whereas the unsaturated zone is represented via the model integrated Van-Genuchten function. The model setup and optimisation turn out to be the most challenging part because of the non-trivial nature (due to the highly non-linear PDEs) of the coupling procedure between the surface and subsurface domain, while keeping realistic parameter ranges and obtaining realistic simulation results in both domains. The model calibration is based on water level monitoring as well as daily mean river discharge measurement at different gauge stations within the catchment. It is intended to create multiple model outcomes for the numerical modelling of the groundwater vulnerability to take into account uncertainty due to the model input data. The next step of the overall vulnerability assessment consists in modelling future vulnerability scenario(s), applying realistic changes to the model by using PEST with SENSAN for subsequent sensitivity analysis. The PEST model could also potentially be used for a model recalibration as a function of the model parameters sensitivity (simple perturbation method). Preliminary results showing a good fit between the observed and simulated water levels and hydrographs. However the simulated water depth at the overland flow domain as well as the simulated saturation distribution in the porous media domain are still showing room for improvement of the numerical model.
An online-coupled NWP/ACT model with conserved Lagrangian levels
NASA Astrophysics Data System (ADS)
Sørensen, B.; Kaas, E.; Lauritzen, P. H.
2012-04-01
Numerical weather and climate modelling is under constant development. Semi-implicit semi-Lagrangian (SISL) models have proven to be numerically efficient in both short-range weather forecasts and climate models, due to the ability to use long time steps. Chemical/aerosol feedback mechanism are becoming more and more relevant in NWP as well as climate models, since the biogenic and anthropogenic emissions can have a direct effect on the dynamics and radiative properties of the atmosphere. To include chemical feedback mechanisms in the NWP models, on-line coupling is crucial. In 3D semi-Lagrangian schemes with quasi-Lagrangian vertical coordinates the Lagrangian levels are remapped to Eulerian model levels each time step. This remapping introduces an undesirable tendency to smooth sharp gradients and creates unphysical numerical diffusion in the vertical distribution. A semi-Lagrangian advection method is introduced, it combines an inherently mass conserving 2D semi-Lagrangian scheme, with a SISL scheme employing both hybrid vertical coordinates and a fully Lagrangian vertical coordinate. This minimizes the vertical diffusion and thus potentially improves the simulation of the vertical profiles of moisture, clouds, and chemical constituents. Since the Lagrangian levels suffer from traditional Lagrangian limitations caused by the convergence and divergence of the flow, remappings to the Eulerian model levels are generally still required - but this need only be applied after a number of time steps - unless dynamic remapping methods are used. For this several different remapping methods has been implemented. The combined scheme is mass conserving, consistent, and multi-tracer efficient.
NASA Astrophysics Data System (ADS)
Le Hardy, D.; Favennec, Y.; Rousseau, B.
2016-08-01
The 2D radiative transfer equation coupled with specular reflection boundary conditions is solved using finite element schemes. Both Discontinuous Galerkin and Streamline-Upwind Petrov-Galerkin variational formulations are fully developed. These two schemes are validated step-by-step for all involved operators (transport, scattering, reflection) using analytical formulations. Numerical comparisons of the two schemes, in terms of convergence rate, reveal that the quadratic SUPG scheme proves efficient for solving such problems. This comparison constitutes the main issue of the paper. Moreover, the solution process is accelerated using block SOR-type iterative methods, for which the determination of the optimal parameter is found in a very cheap way.
NASA Astrophysics Data System (ADS)
Xie, Edwar; Deppe, Frank; Renger, Michael; Repp, Daniel; Eder, Peter; Fischer, Michael; Goetz, Jan; Pogorzalek, Stefan; Fedorov, Kirill G.; Marx, Achim; Gross, Rudolf
2018-05-01
Superconducting 3D microwave cavities offer state-of-the-art coherence times and a well-controlled environment for superconducting qubits. In order to realize at the same time fast readout and long-lived quantum information storage, one can couple the qubit to both a low-quality readout and a high-quality storage cavity. However, such systems are bulky compared to their less coherent 2D counterparts. A more compact and scalable approach is achieved by making use of the multimode structure of a 3D cavity. In our work, we investigate such a device where a transmon qubit is capacitively coupled to two modes of a single 3D cavity. External coupling is engineered so that the memory mode has an about 100 times larger quality factor than the readout mode. Using an all-microwave second-order protocol, we realize a lifetime enhancement of the stored state over the qubit lifetime by a factor of 6 with a fidelity of approximately 80% determined via quantum process tomography. We also find that this enhancement is not limited by fundamental constraints.
Simulations of coupled, Antarctic ice-ocean evolution using POP2x and BISICLES (Invited)
NASA Astrophysics Data System (ADS)
Price, S. F.; Asay-Davis, X.; Martin, D. F.; Maltrud, M. E.; Hoffman, M. J.
2013-12-01
We present initial results from Antarctic, ice-ocean coupled simulations using large-scale ocean circulation and land ice evolution models. The ocean model, POP2x is a modified version of POP, a fully eddying, global-scale ocean model (Smith and Gent, 2002). POP2x allows for circulation beneath ice shelf cavities using the method of partial top cells (Losch, 2008). Boundary layer physics, which control fresh water and salt exchange at the ice-ocean interface, are implemented following Holland and Jenkins (1999), Jenkins (1999), and Jenkins et al. (2010). Standalone POP2x output compares well with standard ice-ocean test cases (e.g., ISOMIP; Losch, 2008; Kimura et al., 2013) and with results from other idealized ice-ocean coupling test cases (e.g., Goldberg et al., 2012). The land ice model, BISICLES (Cornford et al., 2012), includes a 1st-order accurate momentum balance (L1L2) and uses block structured, adaptive-mesh refinement to more accurately model regions of dynamic complexity, such as ice streams, outlet glaciers, and grounding lines. For idealized test cases focused on marine-ice sheet dynamics, BISICLES output compares very favorably relative to simulations based on the full, nonlinear Stokes momentum balance (MISMIP-3d; Pattyn et al., 2013). Here, we present large-scale (southern ocean) simulations using POP2x with fixed ice shelf geometries, which are used to obtain and validate modeled submarine melt rates against observations. These melt rates are, in turn, used to force evolution of the BISICLES model. An offline-coupling scheme, which we compare with the ice-ocean coupling work of Goldberg et al. (2012), is then used to sequentially update the sub-shelf cavity geometry seen by POP2x.
Wang, Han; Zhen, Honglou; Li, Shilong; Jing, Youliang; Huang, Gaoshan; Mei, Yongfeng; Lu, Wei
2016-01-01
Three-dimensional (3D) design and manufacturing enable flexible nanomembranes to deliver unique properties and applications in flexible electronics, photovoltaics, and photonics. We demonstrate that a quantum well (QW)–embedded nanomembrane in a rolled-up geometry facilitates a 3D QW infrared photodetector (QWIP) device with enhanced responsivity and detectivity. Circular geometry of nanomembrane rolls provides the light coupling route; thus, there are no external light coupling structures, which are normally necessary for QWIPs. This 3D QWIP device under tube-based light-trapping mode presents broadband enhancement of coupling efficiency and omnidirectional detection under a wide incident angle (±70°), offering a unique solution to high-performance focal plane array. The winding number of these rolled-up QWIPs provides well-tunable blackbody photocurrents and responsivity. 3D self-assembly of functional nanomembranes offers a new path for high conversion efficiency between light and electricity in photodetectors, solar cells, and light-emitting diodes. PMID:27536723
3D RNA and functional interactions from evolutionary couplings
Weinreb, Caleb; Riesselman, Adam; Ingraham, John B.; Gross, Torsten; Sander, Chris; Marks, Debora S.
2016-01-01
Summary Non-coding RNAs are ubiquitous, but the discovery of new RNA gene sequences far outpaces research on their structure and functional interactions. We mine the evolutionary sequence record to derive precise information about function and structure of RNAs and RNA-protein complexes. As in protein structure prediction, we use maximum entropy global probability models of sequence co-variation to infer evolutionarily constrained nucleotide-nucleotide interactions within RNA molecules, and nucleotide-amino acid interactions in RNA-protein complexes. The predicted contacts allow all-atom blinded 3D structure prediction at good accuracy for several known RNA structures and RNA-protein complexes. For unknown structures, we predict contacts in 160 non-coding RNA families. Beyond 3D structure prediction, evolutionary couplings help identify important functional interactions, e.g., at switch points in riboswitches and at a complex nucleation site in HIV. Aided by accelerating sequence accumulation, evolutionary coupling analysis can accelerate the discovery of functional interactions and 3D structures involving RNA. PMID:27087444
NASA Astrophysics Data System (ADS)
Sayed, Ahmed Z.; Aboul-Fetouh, Mahmoud S.; Nassar, Hesham S.
2012-02-01
Several novel pyrazolopyrimidine azo compounds were achieved from diazotization of 4-aminoacetanilide and coupling with malononitrile and then refluxed with hydrazine hydrate to furnish 3,5-diamino-4-(4-acetamidophenylazo)-1H-pyrazole. The later compound was diazotized and coupled with substituted α-cyanocinnamate, α-cyanocinnamonitrile, 2-cyano-3-ethoxyacrylic acid ethyl ester, chalcones and ethylacetoacetate to produce novel dyestuffs. Structures of the dyes were fully characterized by using FT-IR, 1H NMR, mass spectroscopy and elemental analysis. The dyes were applied to polyester fiber, affording satisfactory results and showed biological activity towards various microorganisms.
NASA Astrophysics Data System (ADS)
Fatale, S.; Moser, S.; Miyawaki, J.; Harada, Y.; Grioni, M.
2016-11-01
We investigated the ferroelectric perovskite material BaTiO3 by resonant inelastic x-ray scattering (RIXS) at the Ti L3 edge. We observe with decreasing temperature a transfer of spectral weight from the elastic to the charge-transfer spectral features, indicative of increasing Ti 3 d -O 2 p hybridization. When the incident photon energy selects transitions to the Ti 3 d eg manifold, the quasielastic RIXS response exhibits a tail indicative of phonon excitations. A fit of the spectral line shape by a theoretical model allows us to estimate the electron-phonon coupling strength M ˜0.25 eV, which places BaTiO3 in the intermediate coupling regime.
Friedländer, Stefan; Liu, Jinxuan; Addicoat, Matt; Petkov, Petko; Vankova, Nina; Rüger, Robert; Kuc, Agnieszka; Guo, Wei; Zhou, Wencai; Lukose, Binit; Wang, Zhengbang; Weidler, Peter G; Pöppl, Andreas; Ziese, Michael; Heine, Thomas; Wöll, Christof
2016-10-04
We have studied the magnetic properties of the SURMOF-2 series of metal-organic frameworks (MOFs). Contrary to bulk MOF-2 crystals, where Cu(2+) ions form paddlewheels and are antiferromagnetically coupled, in this case the Cu(2+) ions are connected via carboxylate groups in a zipper-like fashion. This unusual coupling of the spin 1/2 ions within the resulting one-dimensional chains is found to stabilize a low-temperature, ferromagnetic (FM) phase. In contrast to other ordered 1D systems, no strong magnetic fields are needed to induce the ferromagnetism. The magnetic coupling constants describing the interaction between the individual metal ions have been determined in SQUID experiments. They are fully consistent with the results of ab initio DFT electronic structure calculations. The theoretical results allow the unusual magnetic behavior of this exotic, yet easy-to-fabricate, material to be described in a detailed fashion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xie, Fuqian; Wu, Colin G.; Weiland, Elizabeth; Lohman, Timothy M.
2013-01-01
Repair of double-stranded DNA breaks in Escherichia coli is initiated by the RecBCD helicase that possesses two superfamily-1 motors, RecB (3′ to 5′ translocase) and RecD (5′ to 3′ translocase), that operate on the complementary DNA strands to unwind duplex DNA. However, it is not known whether the RecB and RecD motors act independently or are functionally coupled. Here we show by directly monitoring ATP-driven single-stranded DNA translocation of RecBCD that the 5′ to 3′ rate is always faster than the 3′ to 5′ rate on DNA without a crossover hotspot instigator site and that the translocation rates are coupled asymmetrically. That is, RecB regulates both 3′ to 5′ and 5′ to 3′ translocation, whereas RecD only regulates 5′ to 3′ translocation. We show that the recently identified RecBC secondary translocase activity functions within RecBCD and that this contributes to the coupling. This coupling has implications for how RecBCD activity is regulated after it recognizes a crossover hotspot instigator sequence during DNA unwinding. PMID:23192341
Study of gain-coupled distributed feedback laser based on high order surface gain-coupled gratings
NASA Astrophysics Data System (ADS)
Gao, Feng; Qin, Li; Chen, Yongyi; Jia, Peng; Chen, Chao; Cheng, LiWen; Chen, Hong; Liang, Lei; Zeng, Yugang; Zhang, Xing; Wu, Hao; Ning, Yongqiang; Wang, Lijun
2018-03-01
Single-longitudinal-mode, gain-coupled distributed feedback (DFB) lasers based on high order surface gain-coupled gratings are achieved. Periodic surface metal p-contacts with insulated grooves realize gain-coupled mechanism. To enhance gain contrast in the quantum wells without the introduction of effective index-coupled effect, groove length and depth were well designed. Our devices provided a single longitudinal mode with the maximum CW output power up to 48.8 mW/facet at 971.31 nm at 250 mA without facet coating, 3dB linewidth (<3.2 pm) and SMSR (>39 dB). Optical bistable characteristic was observed with a threshold current difference. Experimentally, devices with different cavity lengths were contrasted on power-current and spectrum characteristics. Due to easy fabrication technique and stable performance, it provides a method of fabricating practical gain-coupled distributed feedback lasers for commercial applications.
Characteristics of 3-D transport simulations of the stratosphere and mesosphere
NASA Technical Reports Server (NTRS)
Fairlie, T. D. A.; Siskind, D. E.; Turner, R. E.; Fisher, M.
1992-01-01
A 3D mechanistic, primitive-equation model of the stratosphere and mesosphere is coupled to an offline spectral transport model. The dynamics model is initialized with and forced by observations so that the coupled models may be used to study specific episodes. Results are compared with those obtained by transport online in the dynamics model. Although some differences are apparent, the results suggest that coupling of the models to a comprehensive photochemical package will provide a useful tool for studying the evolution of constituents in the middle atmosphere during specific episodes.
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Chun, Donghoon; Katehi, Linda P. B.; Yook, Jong-Gwan
1999-01-01
Coupling between microstrip lines in dense RF packages is a common problem that degrades circuit performance. Prior 3D-FEM electromagnetic simulations have shown that metal filled via hole fences between two adjacent microstrip lines actually increases coupling between the lines; however, if the top of the via posts are connected by a metal Strip, coupling is reduced. In this paper, experimental verification of the 3D-FEM simulations Is demonstrated for commercially fabricated LTCC packages.
NASA Astrophysics Data System (ADS)
Gong, Yuanhao; Liu, Lei; Chang, Limin; Li, Zhiyong; Tan, Manqing; Yu, Yude
2017-10-01
We propose and numerically simulate a polarization-independent 1×3 broadband beam splitter based on silicon-on-insulator (SOI) technology with adiabatic coupling. The designed structure is simulated by beam-propagation-method (BPM) and gets simulated transmission uniformity of three outputs better than 0.3dB for TE-polarization and 0.8dB for TM-polarization in a broadband of 180nm.
NASA Astrophysics Data System (ADS)
Chen, Guangye; Chacon, Luis
2015-11-01
We discuss a new, conservative, fully implicit 2D3V Vlasov-Darwin particle-in-cell algorithm in curvilinear geometry for non-radiative, electromagnetic kinetic plasma simulations. Unlike standard explicit PIC schemes, fully implicit PIC algorithms are unconditionally stable and allow exact discrete energy and charge conservation. Here, we extend these algorithms to curvilinear geometry. The algorithm retains its exact conservation properties in curvilinear grids. The nonlinear iteration is effectively accelerated with a fluid preconditioner for weakly to modestly magnetized plasmas, which allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. In this presentation, we will introduce the main algorithmic components of the approach, and demonstrate the accuracy and efficiency properties of the algorithm with various numerical experiments in 1D (slow shock) and 2D (island coalescense).
3D critical layers in fully-developed turbulent flows
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; McKeon, Beverley
2016-11-01
Recent work has shown that 3D critical layers drive self-sustaining behavior of exact coherent solutions of the Navier-Stokes equations (Wang et al. 2007; Hall and Sherwin 2010; Park and Graham 2015). This study investigates the role of 3D critical layers in fully-developed turbulent flows. 3D critical layer effects are identified in instantaneous snapshots of turbulent boundary layers in both experimental and DNS data (Wu et al. 2014). Additionally, a 3D critical layer effect is demonstrated to appear using only a few resolvent response modes from the resolvent analysis of McKeon and Sharma 2010, with phase relationships appropriately chosen. Connections are sought to the thin shear layers observed in turbulent boundary layers (Klewicki and Hirschi 2004; Eisma et al. 2015) and to amplitude modulation observations (Mathis et al. 2009; Duvvuri and McKeon 2014). This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060. The support of the Center for Turbulence Research (CTR) summer program at Stanford is gratefully acknowledged.
The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity
Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; ...
2017-11-30
Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less
The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity
NASA Astrophysics Data System (ADS)
Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai; Singh, Hansi A.
2018-01-01
The temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity and weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.
The Active Role of the Ocean in the Temporal Evolution of Climate Sensitivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garuba, Oluwayemi A.; Lu, Jian; Liu, Fukai
Here, the temporal evolution of the effective climate sensitivity is shown to be influenced by the changing pattern of sea surface temperature (SST) and ocean heat uptake (OHU), which in turn have been attributed to ocean circulation changes. A set of novel experiments are performed to isolate the active role of the ocean by comparing a fully coupled CO 2 quadrupling community Earth System Model (CESM) simulation against a partially coupled one, where the effect of the ocean circulation change and its impact on surface fluxes are disabled. The active OHU is responsible for the reduced effective climate sensitivity andmore » weaker surface warming response in the fully coupled simulation. The passive OHU excites qualitatively similar feedbacks to CO 2 quadrupling in a slab ocean model configuration due to the similar SST spatial pattern response in both experiments. Additionally, the nonunitary forcing efficacy of the active OHU (1.7) explains the very different net feedback parameters in the fully and partially coupled responses.« less
Emerging magnetism and anomalous Hall effect in iridate–manganite heterostructures
Nichols, John; Gao, Xiang; Lee, Shinbuhm; ...
2016-09-06
We know strong Coulomb repulsion and spin–orbit coupling to give rise to exotic physical phenomena in transition metal oxides. Initial attempts to investigate systems, where both of these fundamental interactions are comparably strong, such as 3d and 5d complex oxide superlattices, have revealed properties that only slightly differ from the bulk ones of the constituent materials. Furthermore, we observe that the interfacial coupling between the 3d antiferromagnetic insulator SrMnO 3 and the 5d paramagnetic metal SrIrO 3 is enormously strong, yielding an anomalous Hall response as the result of charge transfer driven interfacial ferromagnetism. Our findings show that low dimensionalmore » spin–orbit entangled 3d–5d interfaces provide an avenue to uncover technologically relevant physical phenomena unattainable in bulk materials.« less
Brahlek, Matthew J.; Koirala, Nikesh; Liu, Jianpeng; ...
2016-03-10
In typical topological insulator (TI) systems the TI is bordered by a non-TI insulator, and the surrounding conventional insulators, including vacuum, are not generally treated as part of the TI system. Here, we implement a material system where the roles are reversed, and the topological surface states form around the non-TI (instead of the TI) layers. This is realized by growing a layer of the tunable non-TI (Bi 1-xIn x) 2Se 3 in between two layers of the TI Bi 2Se 3 using the atomically precise molecular beam epitaxy technique. On this tunable inverse topological platform, we systematically vary themore » thickness and the composition of the (Bi 1-xIn x) 2Se 3 layer and show that this tunes the coupling between the TI layers from strongly coupled metallic to weakly coupled, and finally to a fully decoupled insulating regime. This system can be used to probe the fundamental nature of coupling in TI materials and provides a tunable insulating layer for TI devices.« less
Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, L.; Im, J.; DeGottardi, W.
Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less
Large spin-orbit coupling and helical spin textures in 2D heterostructure [Pb 2BiS 3][AuTe 2
Fang, L.; Im, J.; DeGottardi, W.; ...
2016-10-12
Two-dimensional heterostructures with strong spin-orbit coupling have direct relevance to topological quantum materials and potential applications in spin-orbitronics. In this work, we report on novel quantum phenomena in [Pb 2BiS 3][AuTe 2], a new 2D strong spin-orbit coupling heterostructure system. Transport measurements reveal the spin-related carrier scattering is at odds with the Abrikosov-Gorkov model due to strong spin-orbit coupling. This is consistent with our band structure calculations which reveal a large spin-orbit coupling gap of ε so = 0.21 eV. Furthermore, the band structure is also characterized by helical-like spin textures which are mainly induced by strong spin-orbit coupling andmore » the inversion symmetry breaking in the heterostructure system.« less
NASA Technical Reports Server (NTRS)
Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.
2005-01-01
A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.
Hydrological Modelling of The Guadiana Basin
NASA Astrophysics Data System (ADS)
Conan, C.; Bouraoui, F.; de Marsily, G.; Bidoglio, G.
Increased anthropogenic activities such as agriculture, irrigation, industry, mining, ur- ban water supply and sewage treatment, have created significant environmental prob- lems. To ensure sustainable development of water resources, water managers need new strategies and suitable tools. In particular it is often compulsory that surface wa- ter and groundwater be managed simultaneously both in terms of quantity and quality at catchment scales. To this purpose, a model coupling SWAT (Soil and Water As- sessment Tool) and MODFLOW (Modular 3-D Flow model) was developed. SWAT is a quasi-distributed watershed model with a GIS interface that outlines the sub-basins and stream networks from a Digital Elevation Model (DEM) and calculates daily wa- ter balances from meteorological data, soil and land-use characteristics. The particular advantage of this model, compared to other fully distributed physically based mod- els, is that it requires a small amount of readily available input data. MODFLOW is a fully distributed model that calculates groundwater flow from aquifer characteris- tics. We have adapted this new coupled model SWAT-MODFLOW to a Mediterranean catchment, the Guadiana basin, and present the first results of this work. Only wa- ter quantity results are available at this stage. The validation consisted in comparing measured and predicted daily flow at the catchment and sub-catchment outlets for the period 1970-1995. The model accurately reproduced the decrease of the piezometric level, due to increased water abstraction, and the exchanges between surface water and ground-water. The sensitivity of the model to irrigation practices was evaluated. The usefulness of this model as a management tool has been illustrated through the analysis of alternative scenarios of agricultural practices and climate change.
SmaggIce 2D Version 1.8: Software Toolkit Developed for Aerodynamic Simulation Over Iced Airfoils
NASA Technical Reports Server (NTRS)
Choo, Yung K.; Vickerman, Mary B.
2005-01-01
SmaggIce 2D version 1.8 is a software toolkit developed at the NASA Glenn Research Center that consists of tools for modeling the geometry of and generating the grids for clean and iced airfoils. Plans call for the completed SmaggIce 2D version 2.0 to streamline the entire aerodynamic simulation process--the characterization and modeling of ice shapes, grid generation, and flow simulation--and to be closely coupled with the public-domain application flow solver, WIND. Grid generated using version 1.8, however, can be used by other flow solvers. SmaggIce 2D will help researchers and engineers study the effects of ice accretion on airfoil performance, which is difficult to do with existing software tools because of complex ice shapes. Using SmaggIce 2D, when fully developed, to simulate flow over an iced airfoil will help to reduce the cost of performing flight and wind-tunnel tests for certifying aircraft in natural and simulated icing conditions.
NASA Astrophysics Data System (ADS)
Zhao, Z. Y.; Wang, Y. L.; Lin, L.; Liu, M. F.; Li, X.; Yan, Z. B.; Liu, J.-M.
2015-11-01
DyMn2O5 is an extraordinary example in the family of multiferroic manganites and it accommodates both the 4f and 3d magnetic ions with strong Dy-Mn (4f-3d) coupling. The electric polarization origin is believed to arise not only from the Mn spin interactions but also from the Dy-Mn coupling. Starting from proposed scenario on ferrielectricity in DyMn2O5 where the exchange-strictions associated with the Mn3+-Mn4+-Mn3+ blocks and Dy3+-Mn4+-Dy3+ blocks generate the two ferroelectric sublattices, we perform a set of characterizations on the structure, magnetism, and electric polarization of Dy1-xYxMn2O5 in order to investigate the roles of Dy-Mn coupling in manipulating the ferrielectricity. It is revealed that the non-magnetic Y substitution of Dy suppresses gradually the Dy3+ spin ordering and the Dy-Mn coupling. Consequently, the ferroelectric sublattice generated by the exchange striction associated with the Dy3+-Mn4+-Dy3+ blocks is destabilized, but the ferroelectric sublattice generated by the exchange striction associated with the Mn3+-Mn4+-Mn3+ blocks remains less perturbed, enabling the ferrielectricity-ferroelectricity transitions with the Y substitution. A phenomenological ferrielectric domain model is suggested to explain the polarization reversal induced by the Y substitution. The present work presents a possible scenario of the multiferroic mechanism in not only DyMn2O5 but probably also other RMn2O5 members with strong 4f-3d coupling.
3D deeply supervised network for automated segmentation of volumetric medical images.
Dou, Qi; Yu, Lequan; Chen, Hao; Jin, Yueming; Yang, Xin; Qin, Jing; Heng, Pheng-Ann
2017-10-01
While deep convolutional neural networks (CNNs) have achieved remarkable success in 2D medical image segmentation, it is still a difficult task for CNNs to segment important organs or structures from 3D medical images owing to several mutually affected challenges, including the complicated anatomical environments in volumetric images, optimization difficulties of 3D networks and inadequacy of training samples. In this paper, we present a novel and efficient 3D fully convolutional network equipped with a 3D deep supervision mechanism to comprehensively address these challenges; we call it 3D DSN. Our proposed 3D DSN is capable of conducting volume-to-volume learning and inference, which can eliminate redundant computations and alleviate the risk of over-fitting on limited training data. More importantly, the 3D deep supervision mechanism can effectively cope with the optimization problem of gradients vanishing or exploding when training a 3D deep model, accelerating the convergence speed and simultaneously improving the discrimination capability. Such a mechanism is developed by deriving an objective function that directly guides the training of both lower and upper layers in the network, so that the adverse effects of unstable gradient changes can be counteracted during the training procedure. We also employ a fully connected conditional random field model as a post-processing step to refine the segmentation results. We have extensively validated the proposed 3D DSN on two typical yet challenging volumetric medical image segmentation tasks: (i) liver segmentation from 3D CT scans and (ii) whole heart and great vessels segmentation from 3D MR images, by participating two grand challenges held in conjunction with MICCAI. We have achieved competitive segmentation results to state-of-the-art approaches in both challenges with a much faster speed, corroborating the effectiveness of our proposed 3D DSN. Copyright © 2017 Elsevier B.V. All rights reserved.
Development and Application of Agglomerated Multigrid Methods for Complex Geometries
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.
2010-01-01
We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.
Fully Coupled 3D Finite Element Model of Hydraulic Fracturing in a Permeable Rock Formation
NASA Astrophysics Data System (ADS)
Salimzadeh, S.; Paluszny, A.; Zimmerman, R. W.
2015-12-01
Hydraulic fracturing in permeable rock formations is a complex three-dimensional multi-physics phenomenon. Numerous analytical models of hydraulic fracturing processes have been proposed that typically simplify the physical processes, or somehow reduce the problem from three dimensions to two dimensions. Moreover, although such simplified models are able to model the growth of a single hydraulic fracture into an initially intact, homogeneous rock mass, they are generally not able to model fracturing of heterogeneous rock formations, or to account for interactions between multiple induced fractures, or between an induced fracture and pre-existing natural fractures. We have developed a numerical finite-element model for hydraulic fracturing that does not suffer from any of the limitations mentioned above. The model accounts for fluid flow within a fracture, the propagation of the fracture, and the leak-off of fluid from the fracture into the host rock. Fluid flow through the permeable rock matrix is modelled using Darcy's law, and is coupled with the laminar flow within the fracture. Fractures are discretely modelled in the three-dimensional mesh. Growth of a fracture is modelled using the concepts of linear elastic fracture mechanics (LEFM), with the onset and direction of growth based on stress intensity factors that are computed for arbitrary tetrahedral meshes. The model has been verified against several analytical solutions available in the literature for plane-strain (2D) and penny-shaped (3D) fractures, for various regimes of domination: viscosity, toughness, storage and leak-off. The interaction of the hydraulically driven fracture with pre-existing fractures and other fluid-driven fractures in terms of fluid leak-off, stress interaction and fracture arrest is investigated and the results are presented. Finally, some preliminary results are presented regarding the interaction of a hydraulically-induced fracture with a set of pre-existing natural fractures.
NASA Astrophysics Data System (ADS)
Thomas, Robert; Williams, Gwilym I.; Ladak, Sam; Smowton, Peter M.
2017-02-01
The integration of multiple optical elements on a common substrate to create photonic integrated circuits (PIC) has been successfully applied in: fibre-optic communications, photonic computing and optical sensing. The push towards III-Vs on silicon promises a new generation of integrated devices that combine the advantages of both integrated electronics and optics in a single substrate. III-V edge emitting laser diodes offer high efficiency and low threshold currents making them ideal candidates for the optically active elements of the next generation of PICs. Nevertheless, the highly divergent and asymmetric beam shapes intrinsic to these devices limits the efficiency with which optical elements can be free space coupled intra-chip; a capability particularly desirable for optical sensing applications e.g. [1]. Furthermore, the monolithic nature of the integrated approach prohibits the use of macroscopic lenses to improve coupling. However, with the advent of 3D direct laser writing, three dimensional lenses can now be manufactured on a microscopic-scale [2], making the use of micro-lens technology for enhanced free space coupling of integrated optical elements feasible. Here we demonstrate the first use of 3D micro-lenses to improve the coupling efficiency of monolithically integrated lasers. Fabricated from IP-dip photoresist using a Nanoscribe GmbH 3D lithography tool, the lenses are embedded directly onto a structured GaInP/AlGaInP substrate containing arrays of ridge lasers free space coupled to one another via a 200 μm air gap. We compare the coupling efficiency of these lasers with and without micro-lenses through photo-voltage and beam profile measurements and discuss optimisation of lens design.
Kelly, Patrick; Mapes, Brian; Hu, I-Kuan; ...
2017-04-03
This study describes a new intermediate global atmosphere model in which synoptic and planetary dynamics including the advection of water vapor are explicit, the time mean flow is centered near a realistic state through the calibration of time-independent 3D forcings, and temporal anomalies of convective tendencies of heat and moisture in each column are represented as a linear matrix acting on the anomalous temperature and moisture profiles in the GCM. This matrix was devised from Kuang’s [2010] linear response function (LRF) of a cooled cyclic convection-permitting model (CCPM) with 256 km periodic domain and 1km mesh, measured around an equilibriummore » state with a mean rainrate of 3.5 mm/d. The goal of this effort was to cleanly test the role of convection’s free-tropospheric moisture sensitivity in tropical waves, without incurring large changes of mean climate that confuse the interpretation of experiments with entrainment rates in the convection schemes of full-physics GCMs. As the sensitivity to free tropospheric moisture (columns 12-20 of the matrix, representing sensitivity to humidity above 900 hPa altitude) is multiplied by a factor ranging from 0 to 2, the model’s variability ranges from: (1) moderately strong convectively coupled waves with speeds near 20 m s -1; to (0) weak waves, but still slowed by convective coupling; to (2) wave variability that is greater in amplitude as the water vapor field plays an increasingly important role. Longitudinal structure in the model’s time-mean tropical flow is not fully realistic, and does change significantly with matrix edits, disappointing initial hopes that the Madden-Julian oscillation would be well simulated in the control and could be convincingly decomposed, but further work could improve this class of models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Patrick; Mapes, Brian; Hu, I-Kuan
This study describes a new intermediate global atmosphere model in which synoptic and planetary dynamics including the advection of water vapor are explicit, the time mean flow is centered near a realistic state through the calibration of time-independent 3D forcings, and temporal anomalies of convective tendencies of heat and moisture in each column are represented as a linear matrix acting on the anomalous temperature and moisture profiles in the GCM. This matrix was devised from Kuang’s [2010] linear response function (LRF) of a cooled cyclic convection-permitting model (CCPM) with 256 km periodic domain and 1km mesh, measured around an equilibriummore » state with a mean rainrate of 3.5 mm/d. The goal of this effort was to cleanly test the role of convection’s free-tropospheric moisture sensitivity in tropical waves, without incurring large changes of mean climate that confuse the interpretation of experiments with entrainment rates in the convection schemes of full-physics GCMs. As the sensitivity to free tropospheric moisture (columns 12-20 of the matrix, representing sensitivity to humidity above 900 hPa altitude) is multiplied by a factor ranging from 0 to 2, the model’s variability ranges from: (1) moderately strong convectively coupled waves with speeds near 20 m s -1; to (0) weak waves, but still slowed by convective coupling; to (2) wave variability that is greater in amplitude as the water vapor field plays an increasingly important role. Longitudinal structure in the model’s time-mean tropical flow is not fully realistic, and does change significantly with matrix edits, disappointing initial hopes that the Madden-Julian oscillation would be well simulated in the control and could be convincingly decomposed, but further work could improve this class of models.« less
NASA Astrophysics Data System (ADS)
Lanzano, Alexander
2016-10-01
Given recent discoveries there is a very real potential for tidally-locked Earth-like planets to exist orbiting M stars. To determine whether these planets may be habitable it is necessary to understand the nature of their atmospheres. In our investigation we simulate the evolution of present-day Earth while placed in tidally-locked orbit (meaning the same side of the planet always faces the star) around an M dwarf star. We are particularly interested in the evolution of the planet's ozone layer and whether it will shield the planet, and therefore life, from harmful radiation.To accomplish the above objectives we use a state-of-the-art 3-D terrestrial model, the Whole Atmosphere Community Climate Model (WACCM), which fully couples chemistry and climate, and therefore allows self-consistent simulations of atmospheric constituents and their effects on a planet's climate, surface radiation and thus habitability. Preliminary results show that this model is stable and that a tidally-locked Earth is protected from harmful UV radiation produced by G stars. The next step shall be to adapt this model for an M star by including its UV and visible spectrum.This investigation will both provide an insight into the potential for habitable exoplanets and further define the nature of the habitable zones for M class stars. We will also be able to narrow the definition of the habitable zones around distant stars, which will help us identify these planets in the future. Furthermore, this project will allow for a more thorough analysis of data from past and future exoplanet observing missions by defining the atmospheric composition of Earth-like planets around a variety of types of stars.
3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering
ERIC Educational Resources Information Center
Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai
2015-01-01
Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…
Integrated simulation of continuous-scale and discrete-scale radiative transfer in metal foams
NASA Astrophysics Data System (ADS)
Xia, Xin-Lin; Li, Yang; Sun, Chuang; Ai, Qing; Tan, He-Ping
2018-06-01
A novel integrated simulation of radiative transfer in metal foams is presented. It integrates the continuous-scale simulation with the direct discrete-scale simulation in a single computational domain. It relies on the coupling of the real discrete-scale foam geometry with the equivalent continuous-scale medium through a specially defined scale-coupled zone. This zone holds continuous but nonhomogeneous volumetric radiative properties. The scale-coupled approach is compared to the traditional continuous-scale approach using volumetric radiative properties in the equivalent participating medium and to the direct discrete-scale approach employing the real 3D foam geometry obtained by computed tomography. All the analyses are based on geometrical optics. The Monte Carlo ray-tracing procedure is used for computations of the absorbed radiative fluxes and the apparent radiative behaviors of metal foams. The results obtained by the three approaches are in tenable agreement. The scale-coupled approach is fully validated in calculating the apparent radiative behaviors of metal foams composed of very absorbing to very reflective struts and that composed of very rough to very smooth struts. This new approach leads to a reduction in computational time by approximately one order of magnitude compared to the direct discrete-scale approach. Meanwhile, it can offer information on the local geometry-dependent feature and at the same time the equivalent feature in an integrated simulation. This new approach is promising to combine the advantages of the continuous-scale approach (rapid calculations) and direct discrete-scale approach (accurate prediction of local radiative quantities).
Sung, W L
1981-01-01
5'-0-Dimethoxytritylthymidine (2) was phosphorylated and base-modified simultaneously to yield the 4-triazolopyrimidinone nucleotide (3). Coupling between (3) and other common deoxyribonucleotides gave a fully protected nonamer (4). Deblocking under different conditions yielded the nonamer as phosphodiester with concomitant conversion of 4-triazolopyrimidinone to 5-methylcytosine (aqueous ammonia) or thymine (N1,N1,N3,N3-tetramethyl-guanidinium syn-4-nitrobenzaldoximate solution). Images PMID:7312633
Evaluation of a Fully 3-D Bpf Method for Small Animal PET Images on Mimd Architectures
NASA Astrophysics Data System (ADS)
Bevilacqua, A.
Positron Emission Tomography (PET) images can be reconstructed using Fourier transform methods. This paper describes the performance of a fully 3-D Backprojection-Then-Filter (BPF) algorithm on the Cray T3E machine and on a cluster of workstations. PET reconstruction of small animals is a class of problems characterized by poor counting statistics. The low-count nature of these studies necessitates 3-D reconstruction in order to improve the sensitivity of the PET system: by including axially oblique Lines Of Response (LORs), the sensitivity of the system can be significantly improved by the 3-D acquisition and reconstruction. The BPF method is widely used in clinical studies because of its speed and easy implementation. Moreover, the BPF method is suitable for on-time 3-D reconstruction as it does not need any sinogram or rearranged data. In order to investigate the possibility of on-line processing, we reconstruct a phantom using the data stored in the list-mode format by the data acquisition system. We show how the intrinsically parallel nature of the BPF method makes it suitable for on-line reconstruction on a MIMD system such as the Cray T3E. Lastly, we analyze the performance of this algorithm on a cluster of workstations.
Nanocellulosic materials as bioinks for 3D bioprinting.
Piras, Carmen C; Fernández-Prieto, Susana; De Borggraeve, Wim M
2017-09-26
3D bioprinting is a new developing technology with lots of promise in tissue engineering and regenerative medicine. Being biocompatible, biodegradable, renewable and cost-effective, cellulosic nanomaterials have recently captured the attention of researchers due to their applicability as inks for 3D bioprinting. Although a number of cellulose-based bioinks have been reported, the potential of cellulose nanofibrils and nanocrystals has not been fully explored yet. This minireview aims at highlighting the use of nanocellulosic materials for 3D bioprinting as an emerging, promising, new research field.
Sun, Chang; Taguchi, Alexander T; Vermaas, Josh V; Beal, Nathan J; O'Malley, Patrick J; Tajkhorshid, Emad; Gennis, Robert B; Dikanov, Sergei A
2016-10-11
The respiratory cytochrome bo 3 ubiquinol oxidase from Escherichia coli has a high-affinity ubiquinone binding site that stabilizes the one-electron reduced ubisemiquinone (SQ H ), which is a transient intermediate during the electron-mediated reduction of O 2 to water. It is known that SQ H is stabilized by two strong hydrogen bonds from R71 and D75 to ubiquinone carbonyl oxygen O1 and weak hydrogen bonds from H98 and Q101 to O4. In this work, SQ H was investigated with orientation-selective Q-band (∼34 GHz) pulsed 1 H electron-nuclear double resonance (ENDOR) spectroscopy on fully deuterated cytochrome (cyt) bo 3 in a H 2 O solvent so that only exchangeable protons contribute to the observed ENDOR spectra. Simulations of the experimental ENDOR spectra provided the principal values and directions of the hyperfine (hfi) tensors for the two strongly coupled H-bond protons (H1 and H2). For H1, the largest principal component of the proton anisotropic hfi tensor T z' = 11.8 MHz, whereas for H2, T z' = 8.6 MHz. Remarkably, the data show that the direction of the H1 H-bond is nearly perpendicular to the quinone plane (∼70° out of plane). The orientation of the second strong hydrogen bond, H2, is out of plane by ∼25°. Equilibrium molecular dynamics simulations on a membrane-embedded model of the cyt bo 3 Q H site show that these H-bond orientations are plausible but do not distinguish which H-bond, from R71 or D75, is nearly perpendicular to the quinone ring. Density functional theory calculations support the idea that the distances and geometries of the H-bonds to the ubiquinone carbonyl oxygens, along with the measured proton anisotropic hfi couplings, are most compatible with an anionic (deprotonated) ubisemiquinone.
Role of orbital filling on nonlinear ionic Raman scattering in perovskite titanates
NASA Astrophysics Data System (ADS)
Gu, Mingqiang; Rondinelli, James M.
2017-01-01
The linear and nonlinear phononic interactions between an optically excited infrared (IR) or hyper-Raman mode and a driven Raman mode are computed for the d0 (CaTiO3) and d1 (LaTiO3) titanates within a first-principles density functional framework. We calculate the potential energy surface expanded in terms of the Ag or B1 g mode amplitudes coupled to the Au or the B3 u mode and determine the coupling coefficients for these multimode interactions. We find that the linear-quadratic coupling dominates the anharmonicities over the quadratic-quadratic interaction in the perovskite titanates. The IR and Raman modes both modify the electronic structure with the former being more significant but occurring on a different time scale; furthermore, the coupled-mode interactions lead to sizable perturbations to the valence bandwidth (˜100 meV ) and band gap (˜50 meV). By comparing the coupling coefficients of undoped CaTiO3 and LaTiO3 to those for electron-doped (CaTiO3) and hole-doped (LaTiO3) titanates, we isolate the role of orbital filling in the nonlinear coupling process. We find that with increasing occupancy of the d manifold, the linear-quadratic interaction decreases by approximately 30% with minor changes induced by the cation chemistry (that mainly affect the phonon mode frequencies) or by electron correlation. We identify the importance of the Ti-O bond stiffness, which depends on the orbital filling, in governing the lattice anharmonicitiy. This microscopic understanding can be used to increase the nonlinear coupling coefficient to facilitate more facile access of nonequilibrium structures and properties through ionic Raman scattering processes.
Wu, Dan; Tang, Xiaohong; Wang, Kai; Li, Xianqiang
2016-10-31
We present a novel coupled design method that both optimizes light absorption and predicts electrical performance of fully infiltrated inorganic semiconductor nanowires (NWs) based hybrid solar cells (HSC). This method provides a thorough insight of hybrid photovoltaic process as a function of geometrical parameters of NWs. An active layer consisting of GaAs NWs as acceptor and poly(3-hexylthiophene-2,5-diyl) (P3HT) as donor were used as a design example. Absorption spectra features were studied by the evolution of the leaky modes and Fabry-Perot resonance with wavelength focusing firstly on the GaAs/air layer before extending to GaAs/P3HT hybrid active layer. The highest absorption efficiency reached 39% for the hybrid active layer of 2 μm thickness under AM 1.5G illumination. Combined with the optical absorption analysis, our method further codesigns the energy harvesting to predict electrical performance of HSC considering exciton dissociation efficiencies within both inorganic NWs and a polymeric shell of 20 nm thickness. The validity of the simulation model was also proved by the well agreement of the simulation results with the published experimental work indicating an effective guidance for future high performance HSC design.
Droplet impact on superhydrophobic surfaces fully decorated with cylindrical macrotextures.
Abolghasemibizaki, Mehran; Mohammadi, Reza
2018-01-01
Impacting on a superhydrophobic surface, water droplet spreads to a pancake shape and then retracts and bounces off. Although the collision time is mostly in the order of couple of 10ms for millimetric droplets, researchers have shown recently that decorating the superhydrophobic surface with a single macrotexture or intersecting ridge reduces this contact time if the droplet hits the texture or the intersection exactly in the center. Hence, covering the surface with ridges should address this hitting point restriction. Using an extruder-type 3D printer, we fabricated a superhydrophobic surface fully decorated with cylindrical ridges. The dynamic of water droplet impact on this surface at different impact velocities has been studied for varied droplet volumes and ridge sizes. Our data show that regardless of the location of the contact point, when the kinetic energy of the drop is sufficient to completely wet the ridges, the contact time reduces ∼13% as the consequence of ∼20% faster retraction. For higher impact velocity, the contact becomes shorter since the flattened drop splashes from the periphery. Moreover, the simplified, time-efficient and inexpensive method of fabricating the surfaces presented in this paper can be implemented in fabricating many versatile superhydrophobic surfaces with complex geometries. Copyright © 2017 Elsevier Inc. All rights reserved.
An Update on Improvements to NiCE Support for RELAP-7
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaskey, Alex; Wojtowicz, Anna; Deyton, Jordan H.
The Multiphysics Object-Oriented Simulation Environment (MOOSE) is a framework that facilitates the development of applications that rely on finite-element analysis to solve a coupled, nonlinear system of partial differential equations. RELAP-7 represents an update to the venerable RELAP-5 simulator that is built upon this framework and attempts to model the balance-of-plant concerns in a full nuclear plant. This report details the continued support and integration of RELAP-7 and the NEAMS Integrated Computational Environment (NiCE). RELAP-7 is fully supported by the NiCE due to on-going work to tightly integrate NiCE with the MOOSE framework, and subsequently the applications built upon it.more » NiCE development throughout the first quarter of FY15 has focused on improvements, bug fixes, and feature additions to existing MOOSE-based application support. Specifically, this report will focus on improvements to the NiCE MOOSE Model Builder, the MOOSE application job launcher, and the 3D Nuclear Plant Viewer. This report also includes a comprehensive tutorial that guides RELAP-7 users through the basic NiCE workflow: from input generation and 3D Plant modeling, to massively parallel job launch and post-simulation data visualization.« less
NASA Astrophysics Data System (ADS)
Magri, F.; Inbar, N.; Raggad, M.; Möller, S.; Siebert, C.; Möller, P.; Kuehn, M.
2014-12-01
Lake Kinneret (Lake Tiberias or Sea of Galilee) is the most important freshwater reservoir in the Northern Jordan Valley. Simulations that couple fluid flow, heat and mass transport are built to understand the mechanisms responsible for the salinization of this important resource. Here the effects of permeability distribution on 2D and 3D convective patterns are compared. 2D simulations indicate that thermal brine in Haon and some springs in the Yamourk Gorge (YG) are the result of mixed convection, i.e. the interaction between the regional flow from the bordering heights and thermally-driven flow (Magri et al., 2014). Calibration of the calculated temperature profiles suggests that the faults in Haon and the YG provides paths for ascending hot waters, whereas the fault in the Golan recirculates water between 1 and 2 km depths. At higher depths, faults induce 2D layered convection in the surrounding units. The 2D assumption for a faulted basin can oversimplify the system, and the conclusions might not be fully correct. The 3D results also point to mixed convection as the main mechanism for the thermal anomalies. However, in 3D the convective structures are more complex allowing for longer flow paths and residence times. In the fault planes, hydrothermal convection develops in a finger regime enhancing inflow and outflow of heat in the system. Hot springs can form locally at the surface along the fault trace. By contrast, the layered cells extending from the faults into the surrounding sediments are preserved and are similar to those simulated in 2D. The results are consistent with the theory from Zhao et al. (2003), which predicts that 2D and 3D patterns have the same probability to develop given the permeability and temperature ranges encountered in geothermal fields. The 3D approach has to be preferred to the 2D in order to capture all patterns of convective flow, particularly in the case of planar high permeability regions such as faults. Magri, F., et al., 2014. Potential salinization mechanisms of drinking water due to large-scale flow of brines across faults in the Tiberias Basin. Geophysical Research Abstracts, Vol. 16, Abstract No: EGU2014-8236-1, Wien, AustriaZhao, C., et al., 2003. Convective instability of 3-D fluid-saturated geological fault zones heated from below. Geophysical Journal International, 155, 213-220
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Rana Pratap, E-mail: ranayadav97@gmail.com; Kumar, Sunil; Kulkarni, S. V.
2016-01-15
Design and developmental procedure of strip-line based 1.5 MW, 30-96 MHz, ultra-wideband high power 3 dB hybrid coupler has been presented and its applicability in ion cyclotron resonance heating (ICRH) in tokamak is discussed. For the high power handling capability, spacing between conductors and ground need to very high. Hence other structural parameters like strip-width, strip thickness coupling gap, and junction also become large which can be gone upto optimum limit where various constrains like fabrication tolerance, discontinuities, and excitation of higher TE and TM modes become prominent and significantly deteriorates the desired parameters of the coupled lines system. Inmore » designed hybrid coupler, two 8.34 dB coupled lines are connected in tandem to get desired coupling of 3 dB and air is used as dielectric. The spacing between ground and conductors are taken as 0.164 m for 1.5 MW power handling capability. To have the desired spacing, each of 8.34 dB segments are designed with inner dimension of 3.6 × 1.0 × 40 cm where constraints have been significantly realized, compensated, and applied in designing of 1.5 MW hybrid coupler and presented in paper.« less
Discovery of Peptidomimetic Ligands of EED as Allosteric Inhibitors of PRC2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnash, Kimberly D.; The, Juliana; Norris-Drouin, Jacqueline L.
The function of EED within polycomb repressive complex 2 (PRC2) is mediated by a complex network of protein–protein interactions. Allosteric activation of PRC2 by binding of methylated proteins to the embryonic ectoderm development (EED) aromatic cage is essential for full catalytic activity, but details of this regulation are not fully understood. EED’s recognition of the product of PRC2 activity, histone H3 lysine 27 trimethylation (H3K27me3), stimulates PRC2 methyltransferase activity at adjacent nucleosomes leading to H3K27me3 propagation and, ultimately, gene repression. By coupling combinatorial chemistry and structure-based design, we optimized a low-affinity methylated jumonji, AT-rich interactive domain 2 (Jarid2) peptide tomore » a smaller, more potent peptidomimetic ligand (K d = 1.14 ± 0.14 μM) of the aromatic cage of EED. Our strategy illustrates the effectiveness of applying combinatorial chemistry to achieve both ligand potency and property optimization. Furthermore, the resulting ligands, UNC5114 and UNC5115, demonstrate that targeted disruption of EED’s reader function can lead to allosteric inhibition of PRC2 catalytic activity.« less
NASA Astrophysics Data System (ADS)
Nesvold, E.; Mukerji, T.
2017-12-01
River deltas display complex channel networks that can be characterized through the framework of graph theory, as shown by Tejedor et al. (2015). Deltaic patterns may also be useful in a Bayesian approach to uncertainty quantification of the subsurface, but this requires a prior distribution of the networks of ancient deltas. By considering subaerial deltas, one can at least obtain a snapshot in time of the channel network spectrum across deltas. In this study, the directed graph structure is semi-automatically extracted from satellite imagery using techniques from statistical processing and machine learning. Once the network is labeled with vertices and edges, spatial trends and width and sinuosity distributions can also be found easily. Since imagery is inherently 2D, computational sediment transport models can serve as a link between 2D network structure and 3D depositional elements; the numerous empirical rules and parameters built into such models makes it necessary to validate the output with field data. For this purpose we have used a set of 110 modern deltas, with average water discharge ranging from 10 - 200,000 m3/s, as a benchmark for natural variability. Both graph theoretic and more general distributions are established. A key question is whether it is possible to reproduce this deltaic network spectrum with computational models. Delft3D was used to solve the shallow water equations coupled with sediment transport. The experimental setup was relatively simple; incoming channelized flow onto a tilted plane, with varying wave and tidal energy, sediment types and grain size distributions, river discharge and a few other input parameters. Each realization was run until a delta had fully developed: between 50 and 500 years (with a morphology acceleration factor). It is shown that input parameters should not be sampled independently from the natural ranges, since this may result in deltaic output that falls well outside the natural spectrum. Since we are interested in studying the patterns occurring in nature, ideas are proposed for how to sample computer realizations that match this distribution. By establishing a link between surface based patterns from the field with the associated subsurface structure from physics-based models, this is a step towards a fully Bayesian workflow in subsurface simulation.
3D Printing and Digital Rock Physics for Geomaterials
NASA Astrophysics Data System (ADS)
Martinez, M. J.; Yoon, H.; Dewers, T. A.
2015-12-01
Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. Digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts with complex internal geometries. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that these technologies can bring to geosciences and present early experiences with coupled multiscale experimental and numerical analysis using 3D printed fractured rock specimens. In particular, we discuss the processes of selection and printing of transparent fractured specimens based on 3D reconstruction of micro-fractured rock to study fluid flow characterization and manipulation. Micro-particle image velocimetry is used to directly visualize 3D single and multiphase flow velocity in 3D fracture networks. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Liu, Ya-Ming; Lin, Yi-Chun; Chen, Wen-Ching; Cheng, Jen-Hao; Chen, Yi-Lin; Yap, Glenn P A; Sun, Shih-Sheng; Ong, Tiow-Gan
2012-06-28
This paper describes the synthesis of 1-(pyridine-4-ylmethyl) NHC and their Pd(II) and Ag(I) complexes, which are fully characterized. Interestingly, we have also synthesized a Pd complex 3a-CO(3) using a more direct treatment of K(2)CO(3) with PdCl(2). 3a-CO(3) represents the first reported solid structure of a Pd η(2)-carbonato complex stabilized by an NHC framework. 3a-CO(3) can be easily converted to a PdCl(2) derivative by treating it with chloroform. We have found these palladium complexes mediate the Heck-Mizoroki coupling with a low catalyst loading. Furthermore, we also expand such catalytic manifold toward constructing fused polyaromatic substrates, a highly useful class of compounds in optoelectronic chemistry.
Takeuchi, Koh; Gal, Maayan; Takahashi, Hideo; Shimada, Ichio
2011-01-01
Described here is a set of three-dimensional (3D) NMR experiments that rely on CACA-TOCSY magnetization transfer via the weak 3JCαCα coupling. These pulse sequences, which resemble recently described 13C detected CACA-TOCSY (Takeuchi et al. 2010) experiments, are recorded in 1H2O, and use 1H excitation and detection. These experiments require alternate 13C-12C labeling together with perdeuteration, which allows utilizing the small 3JCαCα scalar coupling that is otherwise masked by the stronger 1JCC couplings in uniformly 13C labeled samples. These new experiments provide a unique assignment ladder-mark that yields bidirectional supra-sequential information and can readily straddle proline residues. Unlike the conventional HNCA experiment, which contains only sequential information to the 13Cα of the preceding residue, the 3D hnCA-TOCSY-caNH experiment can yield sequential correlations to alpha carbons in positions i−1, i + 1 and i−2. Furthermore, the 3D hNca-TOCSY-caNH and Hnca-TOC-SY-caNH experiments, which share the same magnetization pathway but use a different chemical shift encoding, directly couple the 15N-1H spin pair of residue i to adjacent amide protons and nitrogens at positions i−2, i−1, i + 1 and i + 2, respectively. These new experimental features make protein backbone assignments more robust by reducing the degeneracy problem associated with the conventional 3D NMR experiments. PMID:21110064
Zörner, S.; Kaltenbacher, M.; Döllinger, M.
2013-01-01
In a partitioned approach for computational fluid–structure interaction (FSI) the coupling between fluid and structure causes substantial computational resources. Therefore, a convenient alternative is to reduce the problem to a pure flow simulation with preset movement and applying appropriate boundary conditions. This work investigates the impact of replacing the fully-coupled interface condition with a one-way coupling. To continue to capture structural movement and its effect onto the flow field, prescribed wall movements from separate simulations and/or measurements are used. As an appropriate test case, we apply the different coupling strategies to the human phonation process, which is a highly complex interaction of airflow through the larynx and structural vibration of the vocal folds (VF). We obtain vocal fold vibrations from a fully-coupled simulation and use them as input data for the simplified simulation, i.e. just solving the fluid flow. All computations are performed with our research code CFS++, which is based on the finite element (FE) method. The presented results show that a pure fluid simulation with prescribed structural movement can substitute the fully-coupled approach. However, caution must be used to ensure accurate boundary conditions on the interface, and we found that only a pressure driven flow correctly responds to the physical effects when using specified motion. PMID:24204083
Stochastically-forced Decadal Variability in Australian Rainfall
NASA Astrophysics Data System (ADS)
Taschetto, A.
2015-12-01
Iconic Australian dry and wet periods were driven by anomalous conditions in the tropical oceans, such as the worst short-term drought in the southeast in 1982 associated with the strong El Niño and the widespread "Big Wet" in 1974 linked with a La Niña event. The association with oceanic conditions makes droughts predictable to some extent. However, prediction can be difficult when there is no clear external forcing such as El Niños. Can dry spells be triggered and maintained with no ocean memory? In this study, we investigate the potential role of internal multi-century atmospheric variability in controlling the frequency, duration and intensity of long-term dry and wet spells over Australia. Two multi-century-scale simulations were performed with the NCAR CESM: (1) a fully-coupled simulation (CPLD) and (2) an atmospheric simulation forced by a seasonal SST climatology derived from the coupled experiment (ACGM). Results reveal that droughts and wet spells can indeed be generated by internal variability of the atmosphere. Those internally generated events are less severe than those forced by oceanic variability, however the duration of dry and wet spells longer than 3 years is comparable with and without the ocean memory. Large-scale ocean modes of variability seem to play an important role in producing continental-scale rainfall impacts over Australia. While the Pacific Decadal Oscillation plays an important role in generating droughts in the fully coupled model, perturbations of monsoonal winds seem to be the main trigger of dry spells in the AGCM case. Droughts in the mid-latitude regions such as Tasmania can be driven by perturbations in the Southern Annular Mode, not necessarily linked to oceanic conditions even in the fully-coupled model. The mechanisms behind internally-driven mega-droughts and mega-wets will be discussed.
NASA Astrophysics Data System (ADS)
Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.
2011-09-01
Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF6.
Sidelobe suppression in all-fiber acousto-optic tunable filter using torsional acoustic wave.
Lee, Kwang Jo; Hwang, In-Kag; Park, Hyun Chul; Kim, Byoung Yoon
2010-06-07
We propose two techniques to suppress intrinsic sidelobe spectra in all-fiber acousto-optic tunable filter using torsional acoustic wave. The techniques are based on either double-pass filter configuration or axial tailoring of mode coupling strength along an acousto-optic interaction region in a highly birefringent optical fiber. The sidelobe peak in the filter spectrum is experimentally suppressed from -8.3 dB to -16.4 dB by employing double-pass configuration. Axial modulation of acousto-optic coupling strength is proposed using axial variation of the fiber diameter, and the simulation results show that the maximum side peak of -9.3 dB can be reduced to -22.2dB. We also discuss the possibility of further spectral shaping of the filter based on the axial tailoring of acousto-optic coupling strength.
DYNA3D: A computer code for crashworthiness engineering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallquist, J.O.; Benson, D.J.
1986-09-01
A finite element program with crashworthiness applications has been developed at LLNL. DYNA3D, an explicit, fully vectorized, finite deformation structural dynamics program, has four capabilities that are critical for the efficient and realistic modeling crash phenomena: (1) fully optimized nonlinear solid, shell, and beam elements for representing a structure; (2) a broad range of constitutive models for simulating material behavior; (3) sophisticated contact algorithms for impact interactions; (4) a rigid body capability to represent the bodies away from the impact region at a greatly reduced cost without sacrificing accuracy in the momentum calculations. Basic methodologies of the program are brieflymore » presented along with several crashworthiness calculations. Efficiencies of the Hughes-Liu and Belytschko-Tsay shell formulations are considered.« less
Heat transfer in damaged material
NASA Astrophysics Data System (ADS)
Kruis, J.
2013-10-01
Fully coupled thermo-mechanical analysis of civil engineering problems is studied. The mechanical analysis is based on damage mechanics which is useful for modeling of behaviour of quasi-brittle materials, especially in tension. The damage is assumed to be isotropic. The heat transfer is assumed in the form of heat conduction governed by the Fourier law and heat radiation governed by the Stefan-Boltzmann law. Fully coupled thermo-mechanical problem is formulated.
NASA Astrophysics Data System (ADS)
Hachuła, Barbara; Jabłońska-Czapla, Magdalena; Flakus, Henryk T.; Nowak, Maria; Kusz, Joachim
2015-01-01
In the present work, the experimental and theoretical study of the nature of the inter-hydrogen bond interactions in two different carboxylic acids, 3-methylcinnamic acid (3MCA) and 4-phenylbutyric acid (4PBA), were reported. The polarized IR spectra of 3MCA and 4PBA crystals were recorded at the frequency ranges of the νOsbnd H and νOsbnd D bands. The spectral properties of 3MCA and 4PBA interpreted with the aid of the calculations based on the "strong-coupling" model. The differences in the spectral properties of the two different dimeric systems in the crystals provide a valuable information about the existence of a direct relationship between the crystal spectral properties in IR and the electronic structure of the molecular systems. In 3MCA crystals strong vibrational exciton interactions favor a "tail-to-head" (TH)-type Davydov coupling widespread via the π-electrons, whereas in 4PBA crystals a weak "through-space" (SS) exciton coupling is responsible for a "side-to-side"-type coupling. The relative contribution of each individual exciton coupling mechanism in IR spectra generation strongly depends on temperature and molecular electronic structure. The H/D isotopic recognition effect, depending on a non-random distribution of protons and deuterons in the crystal hydrogen bridges, was also analyzed.
Hachuła, Barbara; Jabłońska-Czapla, Magdalena; Flakus, Henryk T; Nowak, Maria; Kusz, Joachim
2015-01-05
In the present work, the experimental and theoretical study of the nature of the inter-hydrogen bond interactions in two different carboxylic acids, 3-methylcinnamic acid (3MCA) and 4-phenylbutyric acid (4PBA), were reported. The polarized IR spectra of 3MCA and 4PBA crystals were recorded at the frequency ranges of the νO-H and νO-D bands. The spectral properties of 3MCA and 4PBA interpreted with the aid of the calculations based on the "strong-coupling" model. The differences in the spectral properties of the two different dimeric systems in the crystals provide a valuable information about the existence of a direct relationship between the crystal spectral properties in IR and the electronic structure of the molecular systems. In 3MCA crystals strong vibrational exciton interactions favor a "tail-to-head" (TH)-type Davydov coupling widespread via the π-electrons, whereas in 4PBA crystals a weak "through-space" (SS) exciton coupling is responsible for a "side-to-side"-type coupling. The relative contribution of each individual exciton coupling mechanism in IR spectra generation strongly depends on temperature and molecular electronic structure. The H/D isotopic recognition effect, depending on a non-random distribution of protons and deuterons in the crystal hydrogen bridges, was also analyzed. Copyright © 2014 Elsevier B.V. All rights reserved.
Spin-orbit coupling controlled ground state in Sr 2 ScOsO 6
Taylor, A. E.; Morrow, R.; Fishman, R. S.; ...
2016-06-27
In this paper, we report neutron scattering experiments which reveal a large spin gap in the magnetic excitation spectrum of weakly-monoclinic double perovskite Sr 2ScOsO 6. The spin gap is demonstrative of appreciable spin-orbit-induced anisotropy, despite nominally orbitally-quenched 5d 3Os 5+ ions. The system is successfully modeled including nearest neighbor interactions in a Heisenberg Hamiltonian with exchange anisotropy. We find that the presence of the spin-orbit-induced anisotropy is essential for the realization of the type I antiferromagnetic ground state. Finally, this demonstrates that physics beyond the LS or JJ coupling limits plays an active role in determining the collective propertiesmore » of 4d 3 and 5d 3 systems and that theoretical treatments must include spin-orbit coupling.« less
Spin-orbit coupling controlled ground state in Sr 2 ScOsO 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, A. E.; Morrow, R.; Fishman, R. S.
In this paper, we report neutron scattering experiments which reveal a large spin gap in the magnetic excitation spectrum of weakly-monoclinic double perovskite Sr 2ScOsO 6. The spin gap is demonstrative of appreciable spin-orbit-induced anisotropy, despite nominally orbitally-quenched 5d 3Os 5+ ions. The system is successfully modeled including nearest neighbor interactions in a Heisenberg Hamiltonian with exchange anisotropy. We find that the presence of the spin-orbit-induced anisotropy is essential for the realization of the type I antiferromagnetic ground state. Finally, this demonstrates that physics beyond the LS or JJ coupling limits plays an active role in determining the collective propertiesmore » of 4d 3 and 5d 3 systems and that theoretical treatments must include spin-orbit coupling.« less
Joint Inversion of 3d Mt/gravity/magnetic at Pisagua Fault.
NASA Astrophysics Data System (ADS)
Bascur, J.; Saez, P.; Tapia, R.; Humpire, M.
2017-12-01
This work shows the results of a joint inversion at Pisagua Fault using 3D Magnetotellurics (MT), gravity and regional magnetic data. The MT survey has a poor coverage of study area with only 21 stations; however, it allows to detect a low resistivity zone aligned with the Pisagua Fault trace that it is interpreted as a damage zone. The integration of gravity and magnetic data, which have more dense sampling and coverage, adds more detail and resolution to the detected low resistivity structure and helps to improve the structure interpretation using the resulted models (density, magnetic-susceptibility and electrical resistivity). The joint inversion process minimizes a multiple target function which includes the data misfit, model roughness and coupling norms (crossgradient and direct relations) for all geophysical methods considered (MT, gravity and magnetic). This process is solved iteratively using the Gauss-Newton method which updates the model of each geophysical method improving its individual data misfit, model roughness and the coupling with the other geophysical models. For solving the model updates of magnetic and gravity methods were developed dedicated 3D inversion software codes which include the coupling norms with additionals geophysical parameters. The model update of the 3D MT is calculated using an iterative method which sequentially filters the priority model and the output model of a single 3D MT inversion process for obtaining the resistivity model coupled solution with the gravity and magnetic methods.
NASA Astrophysics Data System (ADS)
Deng, Zhangxian
The Villari effect, through which mechanical energy is transferred to magnetic energy in magnetostrictive materials can be utilized in energy harvester and damper designs. Significant research has been conducted on two magnetostrictive materials, Terfenol-D (TbxDy1-xFe2.0, x ≈ 0.3) and Galfenol (Fe1-xGax, 0.15 ≤ x ≤ 0.3), due to their high magnetomechanical coupling. Both materials have strengths and weaknesses. Terfenol-D exhibits low eddy current loss, but it is brittle and difficult to machine. Terfenol-D also provides higher magnetostriction while requiring a large magnetic field. On the other hand, Galfenol is mechanically robust, and thus can be machined, welded, and formed into complex geometries. However, due to its severe eddy current effect, lamination is necessary in high frequency applications. This work first characterized the Villari effect of Galfenol in terms of the piezo-magnetic constant d33* and hysteresis loss. The stress-flux density loops of oriented, polycrystalline Fe18.4Ga81.6 Galfenol were measured at quasi-static and dynamic regimes (up to 800 Hz). Advanced modeling tools are necessary for magnetostrictive device development. On the material level, this work proposed a dynamic, discrete energy-averaged (DEA) model incorporating time-dependent volume fractions into the static DEA framework. This dynamic DEA model took eddy current loss, mechanical loss, and pinning site loss into account and accurately simulated the measured Villari effect up to 600 Hz. On the system level, this work integrated a hysteresis static DEA model with a 3D finite element (FE) framework, and accurately modeled stress-flux density minor loops in a quasi-static state. Based on the assumption that the magnetostriction and magnetization are uniaxial, this work also proposed an efficient 2D FE framework describing nonlinear magnetostrictive responses via interpolation functions. This enhanced knowledge of the Villari effect facilitates magnetostrictive vibration energy harvester designs. A Galfenol unimorph, bonding passive stainless steel on a Galfenol beam, was investigated. The performance of the proposed unimorph harvesters, subjected to impulsive and periodic excitations, was evaluated for different types of electrical loads. The maximum average output power density P¯ and the maximum energy conversion efficiency were 24.4 mW/cm3 and 5.9%, respectively. The fully coupled 2D FE model, incorporating magnetic, mechanical, and electrical dynamics, was validated using impulsive responses. A simplified and more efficient FE approach, which decoupled the electrical dynamics from the magnetostrictive coupling and utilized a two-step procedure to eliminate transient responses, was also presented, as was a comprehensive parametric study targeting coil size, magnet location, magnet strength, thickness ratio, and tip mass. The maximum P&barbelow;P¯ was improved by 15.2% via optimization. Energy harvester's bandwidth is another essential parameter that often needs to be optimized. This work conducted preliminary experiments on a nonlinear buckled unimorph beam, and achieved a 300% bandwidth improvement. Besides its applications in energy harvesting, the Villari effect dissipates mechanical energy and thus can be implemented in dampers. This work conceptually proposed possible magnetostrictive dampers to attenuate noise in gearboxes. The loss factors eta of Terfenol-D and Galfenol damping units were first compared numerically in COMSOL Multiphysics. Based on the finite element results, the damping effect of Terfenol-D was then quantified experimentally. The maximum eta at 750 Hz was 0.2136 and 0.3679 for purely resistive and capacitive loads, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.
Lagrangian ice particle tracking is applied in both a 3-D time dependent velocity field produced by a Large Eddy Simulation cloud model and in a 2-D idealized field. It is found that more than 10% of ice particles have lifetimes longer than 1.5 hours, much longer than the large eddy turnover time or the time for a crystal to fall through the depth of a non-turbulent cloud. An analysis of trajectories in a 2-D idealized field shows that there are two types of long lifetime ice particles: quasi-steady and recycled growth. For quasi-steady growth, ice particles are suspended in themore » updraft velocity region for a long time. For recycled growth, ice particles are trapped in the large-eddy structures, and whether ice particles grow or evaporate depends on the ice relative humidity profile within the boundary layer. Some ice particles can grow after each cycle in the trapping region, until they are too large to be trapped, and thus have long lifetimes. The relative contribution of the recycled ice particles to the cloud mean ice water content depends on both the dynamic and thermodynamic properties of the mixing layer. In particular, the total ice water content of a mixed phase cloud in a decoupled boundary layer can be much larger than that in a fully coupled boundary layer.« less
The Wadden Sea in transition - consequences of sea level rise
NASA Astrophysics Data System (ADS)
Becherer, Johannes; Hofstede, Jacobus; Gräwe, Ulf; Purkiani, Kaveh; Schulz, Elisabeth; Burchard, Hans
2018-01-01
The impact of sea level rise (SLR) on the future morphological development of the Wadden Sea (North Sea) is investigated by means of extensive process-resolving numerical simulations. A new sediment and morphodynamic module was implemented in the well-established 3D circulation model GETM. A number of different validations are presented, ranging from an idealized 1D channel over a semi-idealized 2D Wadden Sea basin to a fully coupled realistic 40-year hindcast without morphological amplification of the Sylt-Rømøbight, a semi-enclosed subsystem of the Wadden Sea. Based on the results of the hindcast, four distinct future scenarios covering the period 2010-2100 are simulated. While these scenarios differ in the strength of SLR and wind forcing, they also account for an expected increase of tidal range over the coming century. The results of the future projections indicate a transition from a tidal-flat-dominated system toward a lagoon-like system, in which large fractions of the Sylt-Rømøbight will remain permanently covered by water. This has potentially dramatic implications for the unique ecosystem of the Wadden Sea. Although the simulations also predict an increased accumulation of sediment in the back-barrier basin, this accumulation is far too weak to compensate for the rise in mean sea level.
LIGHT WATER REACTOR ACCIDENT TOLERANT FUELS IRRADIATION TESTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, William Jonathan; Barrett, Kristine Eloise; Chichester, Heather Jean MacLean
2015-09-01
The purpose of Accident Tolerant Fuels (ATF) experiments is to test novel fuel and cladding concepts designed to replace the current zirconium alloy uranium dioxide (UO2) fuel system. The objective of this Research and Development (R&D) is to develop novel ATF concepts that will be able to withstand loss of active cooling in the reactor core for a considerably longer time period than the current fuel system while maintaining or improving the fuel performance during normal operations, operational transients, design basis, and beyond design basis events. It was necessary to design, analyze, and fabricate drop-in capsules to meet the requirementsmore » for testing under prototypic LWR temperatures in Idaho National Laboratory's Advanced Test Reactor (ATR). Three industry led teams and one DOE team from Oak Ridge National Laboratory provided fuel rodlet samples for their new concepts for ATR insertion in 2015. As-built projected temperature calculations were performed on the ATF capsules using the BISON fuel performance code. BISON is an application of INL’s Multi-physics Object Oriented Simulation Environment (MOOSE), which is a massively parallel finite element based framework used to solve systems of fully coupled nonlinear partial differential equations. Both 2D and 3D models were set up to examine cladding and fuel performance.« less
RF study and 3-D simulations of a side-coupling thermionic RF-gun
NASA Astrophysics Data System (ADS)
Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.
2014-02-01
A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.
Belaz, Kátia Roberta A; Pereira-Filho, Edenir Rodrigues; Oliveira, Regina V
2013-08-01
In this work, the development of two multidimensional liquid chromatography methods coupled to a fluorescence detector is described for direct analysis of microsomal fractions obtained from rat livers. The chiral multidimensional method was then applied for the optimization of the in vitro metabolism of albendazole by experimental design. Albendazole was selected as a model drug because of its anthelmintics properties and recent potential for cancer treatment. The development of two fully automated achiral-chiral and chiral-chiral high performance liquid chromatography (HPLC) methods for the determination of albendazole (ABZ) and its metabolites albendazole sulphoxide (ABZ-SO), albendazole sulphone (ABZ-SO2) and albendazole 2-aminosulphone (ABZ-SO2NH2) in microsomal fractions are described. These methods involve the use of a phenyl (RAM-phenyl-BSA) or octyl (RAM-C8-BSA) restricted access media bovine serum albumin column for the sample clean-up, followed by an achiral phenyl column (15.0×0.46cmI.D.) or a chiral amylose tris(3,5-dimethylphenylcarbamate) column (15.0×0.46cmI.D.). The chiral 2D HPLC method was applied to the development of a compromise condition for the in vitro metabolism of ABZ by means of experimental design involving multivariate analysis. Copyright © 2013 Elsevier B.V. All rights reserved.
Validation of a highly integrated SiPM readout system with a TOF-PET demonstrator
NASA Astrophysics Data System (ADS)
Niknejad, T.; Setayeshi, S.; Tavernier, S.; Bugalho, R.; Ferramacho, L.; Di Francesco, A.; Leong, C.; Rolo, M. D.; Shamshirsaz, M.; Silva, J. C.; Silva, R.; Silveira, M.; Zorraquino, C.; Varela, J.
2016-12-01
We have developed a highly integrated, fast and compact readout electronics for Silicon Photomultiplier (SiPM) based Time of Flight Positron Emission Tomography (TOF-PET) scanners. The readout is based on the use of TOP-PET Application Specific Integrated Circuit (PETsys TOFPET1 ASIC) with 64 channels, each with its amplifier, discriminator, Time to Digital Converter (TDC) and amplitude determination using Time Over Threshold (TOT). The ASIC has 25 ps r.m.s. intrinsic time resolution and fully digital output. The system is optimised for high rates, good timing, low power consumption and low cost. For validating the readout electronics, we have built a technical PET scanner, hereafter called ``demonstrator'', with 2'048 SiPM channels. The PET demonstrator has 16 compact Detector Modules (DM). Each DM has two ASICs reading 128 SiPM pixels in one-to-one coupling to 128 Lutetium Yttrium Orthosilicate (LYSO) crystals measuring 3.1 × 3.1 × 15 mm3 each. The data acquisition system for the demonstrator has two Front End Boards type D (FEB/D), each collecting the data of 1'024 channels (8 DMs), and transmitting assembled data frames through a serial link (4.8 Gbps), to a single Data Acquisition (DAQ) board plugged into the Peripheral Component Interconnect Express (PCIe) bus of the data acquisition PC. Results obtained with this PET demonstrator are presented.
[Production of sugar syrup containing rare sugar using dual-enzyme coupled reaction system].
Han, Wenjia; Zhu, Yueming; Bai, Wei; Izumori, Ken; Zhang, Tongcun; Sun, Yuanxia
2014-01-01
Enzymatic conversion is very important to produce functional rare sugars, but the conversion rate of single enzymes is generally low. To increase the conversion rate, a dual-enzyme coupled reaction system was developed. Dual-enzyme coupled reaction system was constructed using D-psicose-3-epimerase (DPE) and L-rhamnose isomerase (L-RhI), and used to convert D-fructose to D-psicose and D-allose. The ratio of DPE and L-RhI was 1:10 (W/W), and the concentration of DPE was 0.05 mg/mL. The optimum temperature was 60 degrees C and pH was 9.0. When the concentration of D-fructose was 2%, the reaction reached its equilibrium after 10 h, and the yield of D-psicose and D-allose was 5.12 and 2.04 g/L, respectively. Using the dual-enzymes coupled system developed in the current study, we could obtain sugar syrup containing functional rare sugar from fructose-rich raw material, such as high fructose corn syrup.
NASA Astrophysics Data System (ADS)
Riddick, Thomas; Brovkin, Victor; Hagemann, Stefan; Mikolajewicz, Uwe
2017-04-01
The continually evolving large ice sheets present in the Northern Hemisphere during the last glacial cycle caused significant changes to river pathways both through directly blocking rivers and through glacial isostatic adjustment. These river pathway changes are believed to of had a significant impact on the evolution of ocean circulation through changing the pattern of fresh water discharge into the oceans. A fully coupled ESM simulation of the last glacial cycle thus requires a hydrological discharge model that uses a set of river pathways that evolve with the earth's changing orography while being able to reproduce the known present-day river network given the present-day orography. Here we present a method for dynamically modelling hydrological discharge that meets such requirements by applying relative manual corrections to an evolving fine scale orography (accounting for the changing ice sheets and isostatic rebound) each time the river directions are recalculated. The corrected orography thus produced is then used to create a set of fine scale river pathways and these are then upscaled to a course scale. An existing present-day hydrological discharge model within the JSBACH3 land surface model is run using the course scale river pathways generated. This method will be used in fully coupled paleoclimate runs made using MPI-ESM1 as part of the PalMod project. Tests show this procedure reproduces the known present-day river network to a sufficient degree of accuracy.
Kuzhikandathil, Eldo V; Bartoszyk, Gerd D
2006-09-01
Sarizotan (EMD 128130) is a chromane derivative that exhibits affinity at serotonin and dopamine receptors. Sarizotan effectively suppresses levodopa-induced dyskinesia in primate and rodent models of Parkinson's disease, and tardive dyskinesia in a rodent model. Results from clinical trials suggest that sarizotan significantly alleviates levodopa-induced dyskinesia. The functional effects of sarizotan on individual dopamine receptor subtypes are not known. Here we report the functional effects of sarizotan on human D2-like dopamine receptors (D2S, D2L, D3, D4.2 and D4.4) individually expressed in the AtT-20 neuroendocrine cell line. Using the coupling of D2-like dopamine receptors to G-protein coupled inward rectifier potassium channels we determined that sarizotan is a full agonist at D3 and D4.4 receptors (EC50=5.6 and 5.4 nM, respectively) but a partial agonist at D2S, D2L and D4.2 receptors (EC50=29, 23 and 4.5 nM, respectively). Consistent with its partial agonist property, sarizotan is an antagonist at D2S and D2L receptors (IC50=52 and 121 nM, respectively). Using the coupling of D2-like dopamine receptors to adenylyl cyclase we determined that sarizotan is a full agonist at D2L, D3, D4.2 and D4.4 receptors (EC50=0.51, 0.47, 0.48 and 0.23 nM, respectively) but a partial agonist at D2S receptors (EC50=0.6 nM).
NASA Technical Reports Server (NTRS)
Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Shelton, Kevin J.; Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Norman, Robert M.
2007-01-01
Experiments and flight tests have shown that a Head-Up Display (HUD) and a head-down, electronic moving map (EMM) can be enhanced with Synthetic Vision for airport surface operations. While great success in ground operations was demonstrated with a HUD, the research noted that two major HUD limitations during ground operations were their monochrome form and limited, fixed field of regard. A potential solution to these limitations found with HUDs may be emerging Head Worn Displays (HWDs). HWDs are small, lightweight full color display devices that may be worn without significant encumbrance to the user. By coupling the HWD with a head tracker, unlimited field-of-regard may be realized for commercial aviation applications. In the proposed paper, the results of two ground simulation experiments conducted at NASA Langley are summarized. The experiments evaluated the efficacy of head-worn display applications of Synthetic Vision and Enhanced Vision technology to enhance transport aircraft surface operations. The two studies tested a combined six display concepts: (1) paper charts with existing cockpit displays, (2) baseline consisting of existing cockpit displays including a Class III electronic flight bag display of the airport surface; (3) an advanced baseline that also included displayed traffic and routing information, (4) a modified version of a HUD and EMM display demonstrated in previous research; (5) an unlimited field-of-regard, full color, head-tracked HWD with a conformal 3-D synthetic vision surface view; and (6) a fully integrated HWD concept. The fully integrated HWD concept is a head-tracked, color, unlimited field-of-regard concept that provides a 3-D conformal synthetic view of the airport surface integrated with advanced taxi route clearance, taxi precision guidance, and data-link capability. The results of the experiments showed that the fully integrated HWD provided greater path performance compared to using paper charts alone. Further, when comparing the HWD with the HUD concept, there were no differences in path performance. In addition, the HWD and HUD concepts were rated via paired-comparisons the same in terms of situational awareness and workload. However, there were over twice as many taxi incursion events with the HUD than the HWD.
Quantifying Stream-Aquifer Exchanges Over Scales: the Concept of Nested Interfaces
NASA Astrophysics Data System (ADS)
Flipo, N.; Mouhri, A.; Labarthe, B.; Saleh, F. S.
2013-12-01
Recent developments in hydrological modelling are based on a view of the interface being a single continuum through which water flows. These coupled hydrological-hydrogeological models, emphasizing the importance of the stream-aquifer interface (SAI), are more and more used in hydrological sciences for pluri-disciplinary studies aiming at questioning environmental issues. This notion of a single continuum comes from the historical modelling of hydrosystems based on the hypothesis of a homogeneous media that led to the Darcy law. Nowadays, there is a need to first bridge the gap between hydrological and eco-hydrological views of the SAIs, and, second, to rationalize the modelling of SAI within a consistent framework that fully takes into account the multi-dimensionality of the SAIs. We first define the concept of nested SAIs as a key transitional component of continental hydrosystem. We then demonstrate the usefulness of the concept for the multi-dimensional study of the SAI, with a special emphasis on the stream network which is identified as the key component for scaling hydrological processes occurring at the interface. Finally we focus on SAI modelling at various scales with up-to-date methodologies and give some guidance for the multi-dimensional modelling of the interface using the innovative methodology MIM (Measurements-Interpolation-Modelling), which is graphically developed. MIM scales in space three pools of methods needed to fully understand SAIs. The outcome of MIM is the localization in space of the type of SAI that can be studied by a given approach. The efficiency of the method is illustrated from the local (approx. 1m) to the regional scale (> 10 000 km2) with two examples from the Paris basin (France). The first one consists in the implementation of a sampling system of stream-aquifer exchanges, which is coupled with local 2D thermo-hydro models and a pseudo 3D hydro(geo)logical model at the watershed scale (40 km2). The quantification of monthly stream-aquifer exchanges over 14 000 km of river network in the Paris basin (74 000 km2) corresponds to a unique regional scale example.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Malbon, Christopher L., E-mail: clmalbon@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu
2016-03-28
In a recent work we constructed a quasi-diabatic representation, H{sup d}, of the 1, 2, 3{sup 1}A adiabatic states of phenol from high level multireference single and double excitation configuration interaction electronic structure data, energies, energy gradients, and derivative couplings. That H{sup d} accurately describes surface minima, saddle points, and also regions of strong nonadiabatic interactions, reproducing the locus of conical intersection seams and the coordinate dependence of the derivative couplings. The present work determines the accuracy of H{sup d} for describing phenol photodissociation. Additionally, we demonstrate that a modest energetic shift of two diabats yields a quantifiably more accuratemore » H{sup d} compared with experimental energetics. The analysis shows that in favorable circumstances it is possible to use single point energies obtained from the most reliable electronic structure methods available, including methods for which the energy gradients and derivative couplings are not available, to improve the quality of a global representation of several coupled potential energy surfaces. Our data suggest an alternative interpretation of kinetic energy release measurements near λ{sub phot} ∼ 248 nm.« less
Formation and Reconnection of Three-Dimensional Current Sheets in the Solar Corona
NASA Technical Reports Server (NTRS)
Edmondson, J. K.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.
2010-01-01
Current-sheet formation and magnetic reconnection are believed to be the basic physical processes responsible for much of the activity observed in astrophysical plasmas, such as the Sun s corona. We investigate these processes for a magnetic configuration consisting of a uniform background field and an embedded line dipole, a topology that is expected to be ubiquitous in the corona. This magnetic system is driven by a uniform horizontal flow applied at the line-tied photosphere. Although both the initial field and the driver are translationally symmetric, the resulting evolution is calculated using a fully three-dimensional magnetohydrodynamic (3D MHD) simulation with adaptive mesh refinement that resolves the current sheet and reconnection dynamics in detail. The advantage of our approach is that it allows us to apply directly the vast body of knowledge gained from the many studies of 2D reconnection to the fully 3D case. We find that a current sheet forms in close analogy to the classic Syrovatskii 2D mechanism, but the resulting evolution is different than expected. The current sheet is globally stable, showing no evidence for a disruption or a secondary instability even for aspect ratios as high as 80:1. The global evolution generally follows the standard Sweet- Parker 2D reconnection model except for an accelerated reconnection rate at a very thin current sheet, due to the tearing instability and the formation of magnetic islands. An interesting conclusion is that despite the formation of fully 3D structures at small scales, the system remains close to 2D at global scales. We discuss the implications of our results for observations of the solar corona. Subject Headings: Sun: corona Sun: magnetic fields Sun: reconnection
DREAM3D simulations of inner-belt dynamics
NASA Astrophysics Data System (ADS)
Cunningham, G.
2015-12-01
A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere due to pitch-angle scattering from Coulomb and VLF wave-particle interactions. In this paper, equilibrium solutions to a set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium structure. Each diffusion equation incorporated an L- and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This model is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering, and that there is no acceleration caused by the VLF wave-particle interactions. We have revisited this model using our DREAM3D 3D diffusion code, which allows the user to explicitly model the diffusion in pitch-angle and momentum rather than using a lifetime. We find that a) replacing the lifetimes with an explicit model of pitch-angle diffusion, thus allowing for coupling between radial and pitch-angle diffusion, affects the equilibrium structure, and b) over the long time scales needed to reach equilibrium, significant acceleration due to VLF wave particle interactions takes place due to the 'cross-terms' in pitch-angle and momentum and the sharp gradient in the equilibrium pitch-angle distributions. We also find that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to fully understand the equilibirum nature of the trapped electron radiation belts.
van den Hoven, Allard T; Mc-Ghie, Jackie S; Chelu, Raluca G; Duijnhouwer, Anthonie L; Baggen, Vivan J M; Coenen, Adriaan; Vletter, Wim B; Dijkshoorn, Marcel L; van den Bosch, Annemien E; Roos-Hesselink, Jolien W
2017-12-01
Integration of volumetric heart chamber quantification by 3D echocardiography into clinical practice has been hampered by several factors which a new fully automated algorithm (Left Heart Model, (LHM)) may help overcome. This study therefore aims to evaluate the feasibility and accuracy of the LHM software in quantifying left atrial and left ventricular volumes and left ventricular ejection fraction in a cohort of patients with a bicuspid aortic valve. Patients with a bicuspid aortic valve were prospectively included. All patients underwent 2D and 3D transthoracic echocardiography and computed tomography. Left atrial and ventricular volumes were obtained using the automated program, which did not require manual contour detection. For comparison manual and semi-automated measurements were performed using conventional 2D and 3D datasets. 53 patients were included, in four of those patients no 3D dataset could be acquired. Additionally, 12 patients were excluded based on poor imaging quality. Left ventricular end-diastolic and end-systolic volumes and ejection fraction calculated by the LHM correlated well with manual 2D and 3D measurements (Pearson's r between 0.43 and 0.97, p < 0.05). Left atrial volume (LAV) also correlated significantly although LHM did estimate larger LAV compared to both 2DE and 3DE (Pearson's r between 0.61 and 0.81, p < 0.01). The fully automated software works well in a real-world setting and helps to overcome some of the major hurdles in integrating 3D analysis into daily practice, as it is user-independent and highly reproducible in a group of patients with a clearly defined and well-studied valvular abnormality.
Three-Dimensional Simulations of Electron Beams Focused by Periodic Permanent Magnets
NASA Technical Reports Server (NTRS)
Kory, Carol L.
1999-01-01
A fully three-dimensional (3D) model of an electron beam focused by a periodic permanent magnet (PPM) stack has been developed. First, the simulation code MAFIA was used to model a PPM stack using the magnetostatic solver. The exact geometry of the magnetic focusing structure was modeled; thus, no approximations were made regarding the off-axis fields. The fields from the static solver were loaded into the 3D particle-in-cell (PIC) solver of MAFIA where fully 3D behavior of the beam was simulated in the magnetic focusing field. The PIC solver computes the time-integration of electromagnetic fields simultaneously with the time integration of the equations of motion of charged particles that move under the influence of those fields. Fields caused by those moving charges are also taken into account; thus, effects like space charge and magnetic forces between particles are fully simulated. The electron beam is simulated by a number of macro-particles. These macro-particles represent a given charge Q amounting to that of several million electrons in order to conserve computational time and memory. Particle motion is unrestricted, so particle trajectories can cross paths and move in three dimensions under the influence of 3D electric and magnetic fields. Correspondingly, there is no limit on the initial current density distribution of the electron beam, nor its density distribution at any time during the simulation. Simulation results including beam current density, percent ripple and percent transmission will be presented, and the effects current, magnetic focusing strength and thermal velocities have on beam behavior will be demonstrated using 3D movies showing the evolution of beam characteristics in time and space. Unlike typical beam optics models, this 3D model allows simulation of asymmetric designs such as non- circularly symmetric electrostatic or magnetic focusing as well as the inclusion of input/output couplers.
Intermittency, coherent structures and dissipation in plasma turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, M.; Matthaeus, W. H.; Parashar, T. N.
Collisionless dissipation in turbulent plasmas such as the solar wind and the solar corona has been an intensively studied subject recently, with new insights often emerging from numerical simulation. Here we report results from high resolution, fully kinetic simulations of plasma turbulence in both two (2D) and three (3D) dimensions, studying the relationship between intermittency and dissipation. The simulations show development of turbulent coherent structures, characterized by sheet-like current density structures spanning a range of scales. An approximate dissipation measure is employed, based on work done by the electromagnetic field in the local electron fluid frame. This surrogate dissipation measuremore » is highly concentrated in small subvolumes in both 2D and 3D simulations. Fully kinetic simulations are also compared with magnetohydrodynamics (MHD) simulations in terms of coherent structures and dissipation. The interesting result emerges that the conditional averages of dissipation measure scale very similarly with normalized current density J in 2D and 3D particle-in-cell and in MHD. To the extent that the surrogate dissipation measure is accurate, this result implies that on average dissipation scales as ∼J{sup 2} in turbulent kinetic plasma. Multifractal intermittency is seen in the inertial range in both 2D and 3D, but at scales ∼ion inertial length, the scaling is closer to monofractal.« less
Lossy to lossless object-based coding of 3-D MRI data.
Menegaz, Gloria; Thiran, Jean-Philippe
2002-01-01
We propose a fully three-dimensional (3-D) object-based coding system exploiting the diagnostic relevance of the different regions of the volumetric data for rate allocation. The data are first decorrelated via a 3-D discrete wavelet transform. The implementation via the lifting steps scheme allows to map integer-to-integer values, enabling lossless coding, and facilitates the definition of the object-based inverse transform. The coding process assigns disjoint segments of the bitstream to the different objects, which can be independently accessed and reconstructed at any up-to-lossless quality. Two fully 3-D coding strategies are considered: embedded zerotree coding (EZW-3D) and multidimensional layered zero coding (MLZC), both generalized for region of interest (ROI)-based processing. In order to avoid artifacts along region boundaries, some extra coefficients must be encoded for each object. This gives rise to an overheading of the bitstream with respect to the case where the volume is encoded as a whole. The amount of such extra information depends on both the filter length and the decomposition depth. The system is characterized on a set of head magnetic resonance images. Results show that MLZC and EZW-3D have competitive performances. In particular, the best MLZC mode outperforms the others state-of-the-art techniques on one of the datasets for which results are available in the literature.
Yu, Xinzhi; Lu, Bingan; Xu, Zhi
2014-02-01
Nanohoneycomb-like strongly coupled CoMoO4 -3D graphene hybird electrodes are synthesized for supercapacitors which exhibit excellent specific capacitance and superior long-term cycle stability. The supercapacitor device can power a 5 mm-diameter LED efficiently for more than 3 min with a charging time of only 2 s, and shows high energy densities and good cycle stability. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zambon, Joseph B.; He, Ruoying; Warner, John C.
2014-01-01
The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).
Higher Rank ABJM Wilson Loops from Matrix Models
NASA Astrophysics Data System (ADS)
Cookmeyer, Jonathan; Liu, James; Zayas, Leopoldo
2017-01-01
We compute the expectation values of 1/6 supersymmetric Wilson Loops in ABJM theory in higher rank representations. Using standard matrix model techniques, we calculate the expectation value in the rank m fully symmetric and fully antisymmetric representation where m is scaled with N. To leading order, we find agreement with the classical action of D6 and D2 branes in AdS4 ×CP3 respectively. Further, we compute the first subleading order term, which, on the AdS side, makes a prediction for the one-loop effective action of the corresponding D6 and D2 branes. Supported by the National Science Foundation under Grant No. PHY 1559988 and the US Department of Energy under Grant No. DE-SC0007859.
NASA Astrophysics Data System (ADS)
Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong
2017-09-01
Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.
Fiber-Coupled Cavity-QED Source of Identical Single Photons
NASA Astrophysics Data System (ADS)
Snijders, H.; Frey, J. A.; Norman, J.; Post, V. P.; Gossard, A. C.; Bowers, J. E.; van Exter, M. P.; Löffler, W.; Bouwmeester, D.
2018-03-01
We present a fully fiber-coupled source of high-fidelity single photons. An (In,Ga)As semiconductor quantum dot is embedded in an optical Fabry-Perot microcavity with a robust design and rigidly attached single-mode fibers, which enables through-fiber cross-polarized resonant laser excitation and photon extraction. Even without spectral filtering, we observe that the incident coherent light pulses are transformed into a stream of single photons with high purity (97%) and indistinguishability (90%), which is measured at an in-fiber brightness of 5% with an excellent cavity-mode-to-fiber coupling efficiency of 85%. Our results pave the way for fully fiber-integrated photonic quantum networks. Furthermore, our method is equally applicable to fiber-coupled solid-state cavity-QED-based photonic quantum gates.
Full thermomechanical coupling in modelling of micropolar thermoelasticity
NASA Astrophysics Data System (ADS)
Murashkin, E. V.; Radayev, Y. N.
2018-04-01
The present paper is devoted to plane harmonic waves of displacements and microrotations propagating in fully coupled thermoelastic continua. The analysis is carried out in the framework of linear conventional thermoelastic micropolar continuum model. The reduced energy balance equation and the special form of the Helmholtz free energy are discussed. The constitutive constants providing fully coupling of equations of motion and heat conduction are considered. The dispersion equation is derived and analysed in the form bi-cubic and bi-quadratic polynoms product. The equation are analyzed by the computer algebra system Mathematica. Algebraic forms expressed by complex multivalued square and cubic radicals are obtained for wavenumbers of transverse and longitudinal waves. The exact forms of wavenumbers of a plane harmonic coupled thermoelastic waves are computed.
Adil, Maroof M.; Rodrigues, Gonçalo M. C.; Kulkarni, Rishikesh U.; Rao, Antara T.; Chernavsky, Nicole E.; Miller, Evan W.; Schaffer, David V.
2017-01-01
Pluripotent stem cells (PSCs) have major potential as an unlimited source of functional cells for many biomedical applications; however, the development of cell manufacturing systems to enable this promise faces many challenges. For example, there have been major recent advances in the generation of midbrain dopaminergic (mDA) neurons from stem cells for Parkinson’s Disease (PD) therapy; however, production of these cells typically involves undefined components and difficult to scale 2D culture formats. Here, we used a fully defined, 3D, thermoresponsive biomaterial platform to rapidly generate large numbers of action-potential firing mDA neurons after 25 days of differentiation (~40% tyrosine hydroxylase (TH) positive, maturing into 25% cells exhibiting mDA neuron-like spiking behavior). Importantly, mDA neurons generated in 3D exhibited a 30-fold increase in viability upon implantation into rat striatum compared to neurons generated on 2D, consistent with the elevated expression of survival markers FOXA2 and EN1 in 3D. A defined, scalable, and resource-efficient cell culture platform can thus rapidly generate high quality differentiated cells, both neurons and potentially other cell types, with strong potential to accelerate both basic and translational research. PMID:28091566
Semantic Building FAÇADE Segmentation from Airborne Oblique Images
NASA Astrophysics Data System (ADS)
Lin, Y.; Nex, F.; Yang, M. Y.
2018-05-01
With the introduction of airborne oblique camera systems and the improvement of photogrammetric techniques, high-resolution 2D and 3D data can be acquired in urban areas. This high-resolution data allows us to perform detailed investigations on building roofs and façades which can contribute to LoD3 city modeling. Normally, façade segmentation is achieved from terrestrial views. In this paper, we address the problem from aerial views by using high resolution oblique aerial images as the data source in urban areas. In addition to traditional image features, such as RGB and SIFT, normal vector and planarity are also extracted from dense matching point clouds. Then, these 3D geometrical features are projected back to 2D space to assist façade interpretation. Random forest is trained and applied to label façade pixels. Fully connected conditional random field (CRF), capturing long-range spatial interactions, is used as a post-processing to refine our classification results. Its pairwise potential is defined by a linear combination of Gaussian kernels and the CRF model is efficiently solved by mean field approximation. Experiments show that 3D features can significantly improve classification results. Also, fully connected CRF performs well in correcting noisy pixels.
On the Oxidation State of Manganese Ions in Li-Ion Battery Electrolyte Solutions.
Banerjee, Anjan; Shilina, Yuliya; Ziv, Baruch; Ziegelbauer, Joseph M; Luski, Shalom; Aurbach, Doron; Halalay, Ion C
2017-02-08
We demonstrate herein that Mn 3+ and not Mn 2+ , as commonly accepted, is the dominant dissolved manganese cation in LiPF 6 -based electrolyte solutions of Li-ion batteries with lithium manganate spinel positive and graphite negative electrodes chemistry. The Mn 3+ fractions in solution, derived from a combined analysis of electron paramagnetic resonance and inductively coupled plasma spectroscopy data, are ∼80% for either fully discharged (3.0 V hold) or fully charged (4.2 V hold) cells, and ∼60% for galvanostatically cycled cells. These findings agree with the average oxidation state of dissolved Mn ions determined from X-ray absorption near-edge spectroscopy data, as verified through a speciation diagram analysis. We also show that the fractions of Mn 3+ in the aprotic nonaqueous electrolyte solution are constant over the duration of our experiments and that disproportionation of Mn 3+ occurs at a very slow rate.
Fan, Jingjing; Yang, Xiaoqi; Li, Jie; Shu, Ziyang; Dai, Jun; Liu, Xingran; Li, Biao; Jia, Shaohui; Kou, Xianjuan; Yang, Yi; Chen, Ning
2017-01-01
The quality control of skeletal muscle is a continuous requirement throughout the lifetime, although its functions and quality present as a declining trend during aging process. Dysfunctional or deficient autophagy and excessive apoptosis may contribute to the atrophy of senescent skeletal muscle. Spermidine, as a natural polyamine, can be involved in important cellular functions for lifespan extension and stress resistance in several model organisms through activating autophagy. Similarly, cellular autophagic responses to exercise have also been extensively investigated. In the present study, in order to confirm the mitigation or amelioration of skeletal muscle atrophy in aging rats through spermidine coupled with exercise intervention and explore corresponding mechanisms, the rat model with aging-related atrophy of skeletal muscle was established by intraperitoneal injection of D-galactose (D-gal) (200 mg/kgd), and model rats were subjected to the intervention with spermidine (5 mg/kgd) or swimming (60 min/d, 5 d/wk) or combination for 42 days. Spermidine coupled with exercise could attenuate D-gal-induced aging-related atrophy of skeletal muscle through induced autophagy and reduced apoptosis with characteristics of more autophagosomes, activated mitophagy, enhanced mitochondrial quality, alleviated cell shrinkage, and less swollen mitochondria under transmission scanning microscopic observation. Meanwhile, spermidine coupled with exercise could induce autophagy through activating AMPK-FOXO3a signal pathway with characterization of increased Beclin1 and LC3-II/LC3-I ratio, up-regulated anti-apoptotic Bcl-2, down-regulated pro-apoptotic Bax and caspase-3, as well as activated AMPK and FOXO3a. Therefore, spermidine combined with exercise can execute the prevention or treatment of D-gal-induced aging-related skeletal muscle atrophy through enhanced autophagy and reduced apoptosis mediated by AMPK-FOXO3a signal pathway. PMID:28407698
Continuous-Flow In-Line Solvent-Swap Crystallization of Vitamin D3
2017-01-01
A continuous tandem in-line evaporation–crystallization is presented. The process includes an in-line solvent-swap step, suitable to be coupled to a capillary based cooler. As a proof of concept, this setup is tested in a direct in-line acetonitrile mediated crystallization of Vitamin D3. This configuration is suitable to be coupled to a new end-to-end continuous microflow synthesis of Vitamin D3. By this procedure, vitamin particles can be crystallized in continuous flow and isolated using an in-line continuous filtration step. In one run in just 1 min of cooling time, ∼50% (w/w) crystals of Vitamin D3 are directly obtained. Furthermore, the polymorphic form as well as crystals shape and size properties are described in this paper.
3D equilibrium reconstruction with islands
NASA Astrophysics Data System (ADS)
Cianciosa, M.; Hirshman, S. P.; Seal, S. K.; Shafer, M. W.
2018-04-01
This paper presents the development of a 3D equilibrium reconstruction tool and the results of the first-ever reconstruction of an island equilibrium. The SIESTA non-nested equilibrium solver has been coupled to the V3FIT 3D equilibrium reconstruction code. Computed from a coupled VMEC and SIESTA model, synthetic signals are matched to measured signals by finding an optimal set of equilibrium parameters. By using the normalized pressure in place of normalized flux, non-equilibrium quantities needed by diagnostic signals can be efficiently mapped to the equilibrium. The effectiveness of this tool is demonstrated by reconstructing an island equilibrium of a DIII-D inner wall limited L-mode case with an n = 1 error field applied. Flat spots in Thomson and ECE temperature diagnostics show the reconstructed islands have the correct size and phase. ).