Sample records for fully dense composites

  1. Composite material and method of making

    DOEpatents

    Fryxell, Glen E.; Samuels, William D.; Simmons, Kevin L.

    2004-04-20

    The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.

  2. Functionally Graded Metal-Metal Composite Structures

    NASA Technical Reports Server (NTRS)

    Brice, Craig A. (Inventor)

    2017-01-01

    Methods and devices are disclosed for creating a multiple alloy composite structure by forming a three-dimensional arrangement of a first alloy composition in which the three-dimensional arrangement has a substantially open and continuous porosity. The three-dimensional arrangement of the first alloy composition is infused with at least a second alloy composition, where the second alloy composition comprises a shape memory alloy. The three-dimensional arrangement is consolidated into a fully dense solid structure, and the original shape of the second alloy composition is set for reversible transformation. Strain is applied to the fully dense solid structure, which is treated with heat so that the shape memory alloy composition becomes memory activated to recover the original shape. An interwoven composite of the first alloy composition and the memory-activated second alloy composition is thereby formed in the multiple alloy composite structure.

  3. Development of fully dense and high performance powder metallurgy HSLA steel using HIP method

    NASA Astrophysics Data System (ADS)

    Liu, Wensheng; Pang, Xinkuan; Ma, Yunzhu; Cai, Qingshan; Zhu, Wentan; Liang, Chaoping

    2018-05-01

    In order to solve the problem that the mechanical properties of powder metallurgy (P/M) steels are much lower than those of traditional cast steels with the same composition due to their porosity, a high–strength–low–alloy (HSLA) steel with fully dense and excellent mechanical properties was fabricated through hot isostatic pressing (HIP) using gas–atomized powders. The granular structure in the P/M HIPed steel composed of bainitic ferrite and martensite–austenite (M–A) islands is obtained without the need of any rapid cooling. The P/M HIPed steel exhibit a combination of tensile strength and ductility that surpasses that of conventional cast steel and P/M sintered steel, confirming the feasibility of fabricating high performance P/M steel through appropriate microstructural control and manufacture process.

  4. Microstructured Electrolyte Membranes to Improve Fuel Cell Performance

    NASA Astrophysics Data System (ADS)

    Wei, Xue

    Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as reactant type, reagent concentration, solution pH, and reaction time. Dense apatite films were formed on palladium substrates that can serve as intermediate temperature fuel cell anodes. The novel apatite membrane structure is promising for fuel cell applications, as well as in improving the biocompatibility of orthopedic implants when coated on stainless steel or titanium substrates.

  5. Diamond-silicon carbide composite

    DOEpatents

    Qian, Jiang; Zhao, Yusheng

    2006-06-13

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5–8 GPa, T=1400K–2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.dot.m1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  6. Diamond-Silicon Carbide Composite And Method For Preparation Thereof

    DOEpatents

    Qian, Jiang; Zhao, Yusheng

    2005-09-06

    Fully dense, diamond-silicon carbide composites are prepared from ball-milled microcrystalline diamond/amorphous silicon powder mixture. The ball-milled powder is sintered (P=5-8 GPa, T=1400K-2300K) to form composites having high fracture toughness. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPa.multidot.m.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness. X-ray diffraction patterns and Raman spectra indicate that amorphous silicon is partially transformed into nanocrystalline silicon at 5 GPa/873K, and nanocrystalline silicon carbide forms at higher temperatures.

  7. SIMULATING LOCAL DENSE AREAS USING PMMA TO ASSESS AUTOMATIC EXPOSURE CONTROL IN DIGITAL MAMMOGRAPHY.

    PubMed

    Bouwman, R W; Binst, J; Dance, D R; Young, K C; Broeders, M J M; den Heeten, G J; Veldkamp, W J H; Bosmans, H; van Engen, R E

    2016-06-01

    Current digital mammography (DM) X-ray systems are equipped with advanced automatic exposure control (AEC) systems, which determine the exposure factors depending on breast composition. In the supplement of the European guidelines for quality assurance in breast cancer screening and diagnosis, a phantom-based test is included to evaluate the AEC response to local dense areas in terms of signal-to-noise ratio (SNR). This study evaluates the proposed test in terms of SNR and dose for four DM systems. The glandular fraction represented by the local dense area was assessed by analytic calculations. It was found that the proposed test simulates adipose to fully glandular breast compositions in attenuation. The doses associated with the phantoms were found to match well with the patient dose distribution. In conclusion, after some small adaptations, the test is valuable for the assessment of the AEC performance in terms of both SNR and dose. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Boron-carbide-aluminum and boron-carbide-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.

    1986-01-01

    Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

  9. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    DOEpatents

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  10. Fast, Dense Low Cost Scintillator for Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woody, Craig

    2009-07-31

    We have studied the morphology, transparency, and optical properties of SrHfO{sub 3}:Ce ceramics. Ceramics can be made transparent by carefully controlling the stoichiometry of the precursor powders. When fully dense, transparent samples can be obtained. Ceramics with a composition close to stoichiometry (Sr:Hf ~ 1) appear to show good transparency and a reasonable light yield several times that of BGO. The contact and distance transparency of ceramics hot-pressed at about 1450ºC is very good, but deteriorates at increasingly higher hot-press temperatures. If these ceramics can be produced in large quantities and sizes, at low cost, they may be of considerablemore » interest for PET and CT.« less

  11. Strong and Tough Hi-Nicalon Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1997-01-01

    Strong, tough and almost fully dense Hi-Nicalon/BN/SiC fiber reinforced celsian matrix composites have been fabricated by impregnation of the fiber tows with the matrix slurry, winding on a drum, stacking the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from a mixed oxide precursor. The unidirectional composites having approx. 42 volume percent of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of first matrix cracking stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 %, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was 165 +/- 5 GPa.

  12. Composite oxygen transport membrane

    DOEpatents

    Lu, Zigui; Plonczak, Pawel J.; Lane, Jonathan A.

    2016-11-08

    A method is described of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. Preferred materials are (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.7Fe.sub.0.3O.sub.3-.delta. for the porous fuel oxidation layer, (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer, and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.3Fe.sub.0.7O.sub.3-.delta. for the porous surface exchange layer. Firing the said fuel activation and separation layers in nitrogen atmosphere unexpectedly allows the separation layer to sinter into a fully densified mass.

  13. Stability and cellular responses to fluorapatite-collagen composites.

    PubMed

    Yoon, Byung-Ho; Kim, Hae-Won; Lee, Su-Hee; Bae, Chang-Jun; Koh, Young-Hag; Kong, Young-Min; Kim, Hyoun-Ee

    2005-06-01

    Fluorapatite (FA)-collagen composites were synthesized via a biomimetic coprecipitation method in order to improve the structural stability and cellular responses. Different amounts of ammonium fluoride (NH4F), acting as a fluorine source for FA, were added to the precipitation of the composites. The precipitated composites were freeze-dried and isostatically pressed in a dense body. The added fluorine was incorporated nearly fully into the apatite structure (fluoridation), and a near stoichiometric FA-collagen composite was obtained with complete fluoridation. The freeze-dried composites had a typical biomimetic network, consisting of collagen fibers and precipitates of nano-sized apatite crystals. The human osteoblast-like cells on the FA-collagen composites exhibited significantly higher proliferation and differentiation (according to alkaline phosphatase activity) than those on the hydroxyapatite-collagen composite. These enhanced osteoblastic cell responses were attributed to the fluorine release and the reduced dissolution rate.

  14. Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets

    NASA Astrophysics Data System (ADS)

    Porwal, Harshit; Tatarko, Peter; Grasso, Salvatore; Hu, Chunfeng; Boccaccini, Aldo R.; Dlouhý, Ivo; Reece, Mike J.

    2013-10-01

    The processing conditions for preparing well dispersed silica-graphene nanoplatelets and silica-graphene oxide nanoplatelets (GONP) composites were optimized using powder and colloidal processing routes. Fully dense silica-GONP composites with up to 2.5 vol% loading were consolidated using spark plasma sintering. The GONP aligned perpendicularly to the applied pressure during sintering. The fracture toughness of the composites increased linearly with increasing concentration of GONP and reached a value of ˜0.9 MPa m1/2 for 2.5 vol% loading. Various toughening mechanisms including GONP necking, GONP pull-out, crack bridging, crack deflection and crack branching were observed. GONP decreased the hardness and brittleness index (BI) of the composites by ˜30 and ˜50% respectively. The decrease in BI makes silica-GONP composites machinable compared to pure silica. When compared to silica-Carbon nanotube composites, silica-GONP composites show better process-ability and enhanced mechanical properties.

  15. Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets

    PubMed Central

    Porwal, Harshit; Tatarko, Peter; Grasso, Salvatore; Hu, Chunfeng; Boccaccini, Aldo R; Dlouhý, Ivo; Reece, Mike J

    2013-01-01

    The processing conditions for preparing well dispersed silica–graphene nanoplatelets and silica–graphene oxide nanoplatelets (GONP) composites were optimized using powder and colloidal processing routes. Fully dense silica–GONP composites with up to 2.5 vol% loading were consolidated using spark plasma sintering. The GONP aligned perpendicularly to the applied pressure during sintering. The fracture toughness of the composites increased linearly with increasing concentration of GONP and reached a value of ∼0.9 MPa m1/2 for 2.5 vol% loading. Various toughening mechanisms including GONP necking, GONP pull-out, crack bridging, crack deflection and crack branching were observed. GONP decreased the hardness and brittleness index (BI) of the composites by ∼30 and ∼50% respectively. The decrease in BI makes silica–GONP composites machinable compared to pure silica. When compared to silica–Carbon nanotube composites, silica–GONP composites show better process-ability and enhanced mechanical properties. PMID:27877614

  16. Joining of Zirconium Diboride-Based Ceramic Composites to Metallic Systems for High-Temperature Applications

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Singh, M.

    2008-01-01

    Three types of hot-pressed zirconium diboride (ZrB2)-based ultra-high-temperature ceramic composites (UHTCC), ZrB2-SiC (ZS), ZrB2-SiC-C (ZSC), and ZrB2-SCS9-SiC (ZSS), were joined to Cu-clad-Mo using two Ag-Cu brazes (Cusil-ABA and Ticusil, T(sub L) approx.1073-1173 K) and two Pd-base brazes (Palco and Palni, T(sub L) approx.1493-1513 K). Scanning Electron Microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS) revealed greater chemical interaction in joints made using Pd-base brazes than in joints made using Ag-Cu based active brazes. The degree of densification achieved in hot pressed composites influenced the Knoop hardness of the UHTCC and the hardness distribution across the braze interlayer. The braze region in Pd-base system displayed higher hardness in joints made using fully-dense ZS composites than in joints made using partially-dense ZSS composites and the carbon-containing ZSC composites. Calculations indicate a small negative elastic strain energy and an increase in the UHTCC's fracture stress up to a critical clad layer thickness . Above this critical thickness, strain energy in the UHTCC is positive, and it increases with increasing clad layer thickness. Empirical projections show a reduction in the effective thermal resistance of the joints and highlight the potential benefits of joining the UHTCC to Cu-clad-Mo.

  17. Oxidation Resistance, Electrical and Thermal Conductivity, and Spectral Emittance of Fully Dense HfB2 and ZrB2 with SiC, TaSi2, and LaB6 Additives

    DTIC Science & Technology

    2012-01-26

    Resistance , Electrical and Thermal Conductivity, and Spectral Emittance of Fully Dense HfB2 and ZrB2 "With SiC, TaSi2, and LaB6 Additives Sb. GRANT NUMBER... RESISTANCE , ELECTRICAL AND THERMAL CONDUCTIVITY, AND SPECTRAL EMITTANCE OF FULLY DENSE HfB2 AND ZrB2 WITH SiC, TaSi2, AND LaB6 ADDITIVES Air Force Office...thickened regions with dry 220 grit SiC sandpaper so that a low- resistance electrical connection could be achieved. A handheld multimeter was used to measure

  18. Effect of Post-spray Shot Peening Treatment on the Corrosion Behavior of NiCr-Mo Coating by Plasma Spraying of the Shell-Core-Structured Powders

    NASA Astrophysics Data System (ADS)

    Tian, Jia-Jia; Wei, Ying-Kang; Li, Cheng-Xin; Yang, Guan-Jun; Li, Chang-Jiu

    2018-01-01

    Corrosion of metal plays a detrimental role in service lifetime of parts or systems. Therefore, coating a protective film which is fully dense and defects free on the base metal is an effective approach to protect the base metal from corrosion. In this study, a dense NiCr-20Mo coating with excellent lamellar interface bonding was deposited by plasma spraying of the novel shell-core-structured Mo-clad-NiCr powders, and then post-spray shot peening treatment by cold spraying of steel shots was applied to the plasma-sprayed NiCr-20Mo coating to obtain a fully dense coating through eliminating possibly existed pores and un-bonded interfaces within the NiCr-20Mo coating. Corrosion behaviors of the NiCr-20Mo coatings before and after shot peening were tested to investigate the effect of the post-spray shot peening on the corrosion behavior of the NiCr-20Mo coating. Results showed that a much dense and uniform plasma-sprayed NiCr-20Mo coating with perfect lamellar bonding at most of interfaces was deposited. However, the electrochemical tests revealed the existence of through-thickness pores in the as-plasma-sprayed NiCr-20Mo coating. Through the post-spray shot peening treatment, a completely dense top layer in the coating was formed, and with the increase in the shot peening intensity from one pass to three passes, the dense top layer became thicker from 100 μm to reach 300 μm of the whole coating thickness. Thus, a fully dense bulk-like coating was obtained. Corrosion test results showed that the dense coating layer resulting from densification of shot peening can act as an effective barrier coating to prevent the penetration of the corrosive medium and consequently protect the substrate from corrosion effectively. Therefore, a fully dense bulk-like NiCr-20Mo coating with excellent corrosion resistance can be achieved through the plasma spraying of Mo-clad-NiCr powders followed by appropriate post-spray shot peening treatment.

  19. Fabrication of Fiber-Reinforced Celsian Matrix Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Setlock, John A.

    2000-01-01

    A method has been developed for the fabrication of small diameter, multifilament tow fiber reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO-0.25SrO-Al2O3-2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having approx. 42 vol% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435 +/- 35 MPa and 0.27 +/- 0.01 percent, respectively, and ultimate strengths of 900 +/- 60 MPa were observed. The Young's modulus of the composites was measured to be 165 +/- 5 GPa.

  20. Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite

    NASA Astrophysics Data System (ADS)

    Famodimu, Omotoyosi H.; Stanford, Mark; Oduoza, Chike F.; Zhang, Lijuan

    2018-06-01

    Laser melting of aluminium alloy—AlSi10Mg has increasingly been used to create specialised products in various industrial applications, however, research on utilising laser melting of aluminium matrix composites in replacing specialised parts have been slow on the uptake. This has been attributed to the complexity of the laser melting process, metal/ceramic feedstock for the process and the reaction of the feedstock material to the laser. Thus, an understanding of the process, material microstructure and mechanical properties is important for its adoption as a manufacturing route of aluminium metal matrix composites. The effects of several parameters of the laser melting process on the mechanical blended composite were thus investigated in this research. This included single track formations of the matrix alloy and the composite alloyed with 5% and 10% respectively for their reaction to laser melting and the fabrication of density blocks to investigate the relative density and porosity over different scan speeds. The results from these experiments were utilised in determining a process window in fabricating near-fully dense parts.

  1. Mechanical strength and thermophysical properties of PM212: A high temperature self-lubricating powder metallurgy composite

    NASA Technical Reports Server (NTRS)

    Edwards, Phillip M.; Sliney, Harold E.; Dellacorte, Christopher; Whittenberger, J. Daniel; Martineau, Robert R.

    1990-01-01

    A powder metallurgy composite, PM212, composed of metal bonded chromium carbide and solid lubricants is shown to be self-lubricating to a maximum application temperature of 900 C. The high temperature compressive strength, tensile strength, thermal expansion and thermal conductivity data needed to design PM212 sliding contact bearings and seals are reported for sintered and isostatically pressed (HIPed) versions of PM212. Other properties presented are room temperature density, hardness, and elastic modulus. In general, both versions appear to have adequate strength to be considered as sliding contact bearing materials, but the HIPed version, which is fully dense, is much stronger than the sintered version which contains about 20 percent pore volume. The sintered material is less costly to make, but the HIPed version is better where high compressive strength is important.

  2. Massive shelf dense water flow influences plankton community structure and particle transport over long distance.

    PubMed

    Bernardi Aubry, Fabrizio; Falcieri, Francesco Marcello; Chiggiato, Jacopo; Boldrin, Alfredo; Luna, Gian Marco; Finotto, Stefania; Camatti, Elisa; Acri, Francesco; Sclavo, Mauro; Carniel, Sandro; Bongiorni, Lucia

    2018-03-14

    Dense waters (DW) formation in shelf areas and their cascading off the shelf break play a major role in ventilating deep waters, thus potentially affecting ecosystem functioning and biogeochemical cycles. However, whether DW flow across shelves may affect the composition and structure of plankton communities down to the seafloor and the particles transport over long distances has not been fully investigated. Following the 2012 north Adriatic Sea cold outbreak, DW masses were intercepted at ca. 460 km south the area of origin and compared to resident ones in term of plankton biomass partitioning (pico to micro size) and phytoplankton species composition. Results indicated a relatively higher contribution of heterotrophs in DW than in deep resident water masses, probably as result of DW-mediated advection of fresh organic matter available to consumers. DWs showed unusual high abundances of Skeletonema sp., a diatom that bloomed in the north Adriatic during DW formation. The Lagrangian numerical model set up on this diatom confirmed that DW flow could be an important mechanism for plankton/particles export to deep waters. We conclude that the predicted climate-induced variability in DW formation events could have the potential to affect the ecosystem functioning of the deeper part of the Mediterranean basin, even at significant distance from generation sites.

  3. The Devil in the Dark: A Fully Self-Consistent Seismic Model for Venus

    NASA Astrophysics Data System (ADS)

    Unterborn, C. T.; Schmerr, N. C.; Irving, J. C. E.

    2017-12-01

    The bulk composition and structure of Venus is unknown despite accounting for 40% of the mass of all the terrestrial planets in our Solar System. As we expand the scope of planetary science to include those planets around other stars, the lack of measurements of basic planetary properties such as moment of inertia, core-size and thermal profile for Venus hinders our ability to compare the potential uniqueness of the Earth and our Solar System to other planetary systems. Here we present fully self-consistent, whole-planet density and seismic velocity profiles calculated using the ExoPlex and BurnMan software packages for various potential Venusian compositions. Using these models, we explore the seismological implications of the different thermal and compositional initial conditions, taking into account phase transitions due to changes in pressure, temperature as well as composition. Using mass-radius constraints, we examine both the centre frequencies of normal mode oscillations and the waveforms and travel times of body waves. Seismic phases which interact with the core, phase transitions in the mantle, and shallower parts of Venus are considered. We also consider the detectability and transmission of these seismic waves from within the dense atmosphere of Venus. Our work provides coupled compositional-seismological reference models for the terrestrial planet in our Solar System of which we know the least. Furthermore, these results point to the potential wealth of fundamental scientific insights into Venus and Earth, as well as exoplanets, which could be gained by including a seismometer on future planetary exploration missions to Venus, the devil in the dark.

  4. Microstructural and Mechanical Characterization of Ti-12Mo-6Zr Biomaterials Fabricated by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Daoush, Walid Mohamed Rashad Mohamed; Park, Hee Sup; Inam, Fawad; Lim, Byung Kyu; Hong, Soon Hyung

    2015-03-01

    Ti-12Mo-6Zr/Al2O3 (titanium biomaterial) was prepared by a powder metallurgy route using Spark Plasma Sintering (SPS). Ti, Mo, and Zr powders were mixed by wet milling with different content of alumina nanoparticles (up to 5 wt pct) as an oxide dispersion strengthening phase. Composite powder mixtures were SPSed at 1273 K (1000 °C) followed by heat treatment and quenching. Composite powders, sintered materials, and heat-treated materials were examined using optical and high-resolution electronic microscopy (scanning and transmission) and X-ray diffraction to characterize particle size, surface morphology, and phase identifications for each composition. All sintered materials were evaluated by measuring density, Vickers hardness, and tensile properties. Fully dense sintered materials were produced by SPS and mechanical properties were found to be improved by subsequent heat treatment. The tensile properties as well as the hardness were increased by increasing the content of Al2O3 nanoparticles in the Ti-12Mo-6Zr matrix.

  5. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    NASA Astrophysics Data System (ADS)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  6. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B [Santa Fe, NM; Rubin, James B [Los Alamos, NM; Taylor, Craig M. V. [Jemez Springs, NM

    2008-06-03

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  7. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B.; Rubin, James B.; Taylor, Craig M.

    2005-01-25

    Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

  8. Research on laser direct metal deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yongzhong; Shi, Likai

    2003-03-01

    Laser direct deposition of metallic parts is a new manufacturing technology, which combines with computer-aided design, laser cladding and rapid prototyping. Fully dense metallic parts can be directly obtained through melting the coaxially fed powders with a high-power laser in a layer-by-layer manner. The process characteristics, system composition as well as some research and advancement on laser direct deposition are presented here. The microstructure and properties observation of laser direct formed 663 copper alloy, 316L stainless steel and Rene'95 nickel super alloy samples indicate that, the as-deposited microstructure is similar to rapidly solidified materials, with homogenous composition and free of defects. Under certain conditions, directionally solidified microstructure can be obtained. The as-formed mechanical properties are equal to or exceed those for casting and wrought annealed materials. At the same time, some sample parts with complicate shape are presented for technology demonstration. The formed parts show good surface quality and dimensional accuracy.

  9. Chemical Vapor Deposited SiC (SCS-0) Fiber-Reinforced Strontium Aluminosilicate Glass-Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1997-01-01

    Unidirectional SrO Al2O3 2SiO2 glass-ceramic matrix composites reinforced with uncoated Chemical Vapor Deposited (CVD) SiC (SCS-0) fibers have been fabricated by hot-pressing under appropriate conditions using the glass-ceramic approach. Almost fully dense composites having a fiber volume fraction of 0.24 have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix by x-ray diffraction. No chemical reaction was observed between the fiber and the matrix after high temperature processing. In three-point flexure, the composite exhibited a first matrix cracking stress of approx. 231 +/- 20 MPa and an ultimate strength of 265 +/- 17 MPa. Examination of fracture surfaces revealed limited short length fiber pull-out. From fiber push-out, the fiber/matrix interfacial debonding and frictional strengths were evaluated to be approx. 17.5 +/- 2.7 MPa and 11.3 +/- 1.6 MPa, respectively. Some fibers were strongly bonded to the matrix and could not be pushed out. The micromechanical models were not useful in predicting values of the first matrix cracking stress as well as the ultimate strength of the composites.

  10. Electron-ion temperature equilibration in warm dense tantalum

    DOE PAGES

    Doppner, T; LePape, S.; Ma, T.; ...

    2014-11-05

    We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. Furthermore, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood.

  11. Fully kinetic simulations of dense plasma focus Z-pinch devices.

    PubMed

    Schmidt, A; Tang, V; Welch, D

    2012-11-16

    Dense plasma focus Z-pinch devices are sources of copious high energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood. We now have, for the first time, demonstrated a capability to model these plasmas fully kinetically, allowing us to simulate the pinch process at the particle scale. We present here the results of the initial kinetic simulations, which reproduce experimental neutron yields (~10(7)) and high-energy (MeV) beams for the first time. We compare our fluid, hybrid (kinetic ions and fluid electrons), and fully kinetic simulations. Fluid simulations predict no neutrons and do not allow for nonthermal ions, while hybrid simulations underpredict neutron yield by ~100x and exhibit an ion tail that does not exceed 200 keV. Only fully kinetic simulations predict MeV-energy ions and experimental neutron yields. A frequency analysis in a fully kinetic simulation shows plasma fluctuations near the lower hybrid frequency, possibly implicating lower hybrid drift instability as a contributor to anomalous resistivity in the plasma.

  12. Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent

    DOEpatents

    Hedstrand, David M.; Tomalia, Donald A.

    1995-01-01

    A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.

  13. Small cell foams containing a modified dense star polymer or dendrimer as a nucleating agent

    DOEpatents

    Hedstrand, D.M.; Tomalia, D.A.

    1995-02-28

    A small cell foam having a modified dense star polymer or dendrimer is described. This modified dense star polymer or dendrimer has a highly branched interior of one monomeric composition and an exterior structure of a different monomeric composition capable of providing a hydrophobic outer shell and a particle diameter of from about 5 to about 1,000 nm with a matrix polymer.

  14. Influence of Powder Outgassing Conditions on the Chemical, Microstructural, and Mechanical Properties of a 14 wt% Cr Ferritic ODS Steel

    NASA Astrophysics Data System (ADS)

    Sornin, D.; Giroux, P.-F.; Rigal, E.; Fabregue, D.; Soulas, R.; Hamon, D.

    2017-11-01

    Oxide dispersion-strengthened ferritic stainless steels are foreseen as fuel cladding tube materials for the new generation of sodium fast nuclear reactors. Those materials, which exhibit remarkable creep properties at high temperature, are reinforced by a dense precipitation of nanometric oxides. This precipitation is obtained by mechanical alloying of a powder and subsequent consolidation. Before consolidation, to obtain a fully dense material, the powder is vacuumed to outgas trapped gases and species adsorbed at the surface of the powder particles. This operation is commonly done at moderate to high temperature to evacuate as much as possible volatile species. This paper focuses on the influence of outgassing conditions on some properties of the further consolidated materials. Chemical composition and microstructural characterization of different materials obtained from various outgassing cycles are compared. Finally, impact toughness of those materials is evaluated by using Charpy testing. This study shows a significant influence of the outgassing conditions on the mechanical properties of the consolidated material. However, microstructure and oxygen contents seem poorly impacted by the various outgassing conditions.

  15. Synthesis of Cu-Fe{sub 3}O{sub 4}@graphene composite: A magnetically separable and efficient catalyst for the reduction of 4-nitrophenol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ran; Bi, Huiping, E-mail: hpbi@njust.edu.cn; He, Guangyu

    2014-09-15

    Highlights: • The Cu-Fe{sub 3}O{sub 4}@GE composite was prepared by one-step solvent–thermal method. • The Cu-Fe{sub 3}O{sub 4}@GE composite exhibited the highest catalytic activity with excellent stability. • The Cu-Fe{sub 3}O{sub 4}@GE composite was magnetically separable. - Abstract: In this work, the Cu-Fe{sub 3}O{sub 4}@GE composite was prepared easily by a one-step solvent–thermal method, which achieved the formation of Cu nanoparticles (Cu NPs), Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4} NPs) and reduction of GO simultaneously. The morphology and structure of the composite was fully characterized by means of X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, transmission electron microscopymore » (TEM). The time-dependent adsorption spectra of the reaction mixture was measured by UV–vis absorption spectroscopy. The results demonstrated that the Cu NPs and Fe{sub 3}O{sub 4} NPs were densely and evenly deposited on the graphene (GE) sheets. It was found that the Cu-Fe{sub 3}O{sub 4}@GE composite exhibited high catalytic activities on the reduction of p-nitrophenol to p-aminophenol. Furthermore, the composite catalyst can be easily recovered due to its magnetic separability and high stability.« less

  16. Microstructure Evolution and Composition Control During the Processing of Thin-Gage Metallic Foil

    NASA Astrophysics Data System (ADS)

    Semiatin, S. L.; Gross, M. E.; Matson, D. W.; Bennett, W. D.; Bonham, C. C.; Ustinov, A. I.; Ballard, D. L.

    2012-12-01

    The manufacture of thin-gage superalloy and gamma-titanium-aluminide foil products via near-conventional thermomechanical processing and two different vapor-deposition methods was investigated. Thermomechanical processing was based on hot-pack rolling of plate and sheet. Foils of the superalloy LSHR and the near-gamma titanium aluminide Ti-45.5Al-2Cr-2Nb made by this approach exhibited excellent gage control and fine two-phase microstructures. The vapor-phase techniques used magnetron sputtering (MS) of a target of the desired product composition or electron-beam physical vapor deposition (EBPVD) of separate targets of the specific alloying elements. Thin deposits of LSHR and Ti-48Al-2Cr-2Nb made by MS showed uniform thickness/composition and an ultrafine microstructure. However, systematic deviations from the specific target composition were found. During subsequent heat treatment, the microstructure of the MS samples showed various degrees of grain growth and coarsening. Foils of Ti-43Al and Ti-51Al-1V fabricated by EBPVD were fully dense. The microstructures developed during EBPVD were interpreted in terms of measured phase equilibria and the dependence of evaporant flux on temperature.

  17. Comparisons of dense-plasma-focus kinetic simulations with experimental measurements.

    PubMed

    Schmidt, A; Link, A; Welch, D; Ellsworth, J; Falabella, S; Tang, V

    2014-06-01

    Dense-plasma-focus (DPF) Z-pinch devices are sources of copious high-energy electrons and ions, x rays, and neutrons. The mechanisms through which these physically simple devices generate such high-energy beams in a relatively short distance are not fully understood and past optimization efforts of these devices have been largely empirical. Previously we reported on fully kinetic simulations of a DPF and compared them with hybrid and fluid simulations of the same device. Here we present detailed comparisons between fully kinetic simulations and experimental data on a 1.2 kJ DPF with two electrode geometries, including neutron yield and ion beam energy distributions. A more intensive third calculation is presented which examines the effects of a fully detailed pulsed power driver model. We also compare simulated electromagnetic fluctuations with direct measurement of radiofrequency electromagnetic fluctuations in a DPF plasma. These comparisons indicate that the fully kinetic model captures the essential physics of these plasmas with high fidelity, and provide further evidence that anomalous resistivity in the plasma arises due to a kinetic instability near the lower hybrid frequency.

  18. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1998-01-01

    Preparation, structure, and properties of mixed metal oxide compositions and their uses are described. Mixed metal oxide compositions of the invention have stratified crystalline structure identifiable by means of powder X-ray diffraction patterns. In the form of dense ceramic membranes, the present compositions demonstrate an ability to separate oxygen selectively from a gaseous mixture containing oxygen and one or more other volatile components by means of ionic conductivities.

  19. Fused silicon-rich coatings for superalloys

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1974-01-01

    Various compositions of nickel-silicon and aluminum-silicon slurries were sprayed on IN 100 specimens and fusion-sintered to form fully dense coatings. Cyclic furnace oxidation tests in 1 atm air at 1100 C showed all the coatings to be protective for at least 600 hours, and one slurry, Al-60Si, was protective for 1000 hours. This coating also protected NASA TAZ 8A and NASA-TRW VIA for 1000 hours in the same furnace test. Alloys B 1900, TD-NiCr, and Mar-M200 were protected for lesser times, while NX 188 and NASA WAZ 20 were scarcely protected at all. Limited stress-rupture testing on 0.64-cm-diam IN 100 specimens detected no degradation of mechanical properties due to silicon diffusion.

  20. Aerothermal Testing of Woven TPS Ablative Materials

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead; Feldman, Jay; Olson, Michael; Venkatapathy, Ethiraj

    2012-01-01

    Woven Thermal Protection Systems (WTPS) is a new TPS concept that is funded by NASAs Office of the Chief Technologist (OCT) Game Changing Division. The WTPS project demonstrates the potential for manufacturing a variety of TPS materials capable of wide ranging performances demanded by a spectrum of solar system exploration missions. Currently, missions anticipated to encounter heat fluxes in the range of 1500 4000 Watts per square centimeter are limited to using one proven material fully dense Carbon Phenolic. However, fully dense carbon phenolic is only mass efficient at heat fluxes greater than 4000 Watts per square centimeter, and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This poster will summarize some recent arc jet testing to evaluate the performance of WTPS. Both mid density and fully dense WTPS test results will be presented and results compared to heritage carbon phenolic where applicable.

  1. Application of powder densification models to the consolidation processing of composites

    NASA Technical Reports Server (NTRS)

    Wadley, H. N. G.; Elzey, D. M.

    1991-01-01

    Unidirectional fiber reinforced metal matrix composite tapes (containing a single layer of parallel fibers) can now be produced by plasma deposition. These tapes can be stacked and subjected to a thermomechanical treatment that results in a fully dense near net shape component. The mechanisms by which this consolidation step occurs are explored, and models to predict the effect of different thermomechanical conditions (during consolidation) upon the kinetics of densification are developed. The approach is based upon a methodology developed by Ashby and others for the simpler problem of HIP of spherical powders. The complex problem is devided into six, much simpler, subproblems, and then their predicted contributions are added to densification. The initial problem decomposition is to treat the two extreme geometries encountered (contact deformation occurring between foils and shrinkage of isolated, internal pores). Deformation of these two geometries is modelled for plastic, power law creep and diffusional flow. The results are reported in the form of a densification map.

  2. The effect of hot isostatic pressing parameters on microstructure and mechanical properties of Eurofer powder HIPed material

    NASA Astrophysics Data System (ADS)

    Gentzbittel, J. M.; Chu, I.; Burlet, H.

    2002-12-01

    The production of reduced activation ferritic/martensitic (RAFM) steel by powder metallurgy and high isostatic pressing (HIP) offers numerous advantages for different nuclear applications. The objective of this work is to optimise the Eurofer powder HIP process in order to obtain RAFM solid HIPed steel with similar mechanical properties to those of a forged material. Starting from the forged solid Eurofer steel batch, the material is atomized and the Eurofer powder is characterized in terms of granulometry, chemical composition, surface oxides, etc. Different compaction HIP cycle parameters in the temperature range (950-1100 °C) are tested. The chemical composition of the HIPed material is comparable to the initial forged Eurofer. All the obtained materials are fully dense and the microstructure of the compacted material is well martensitic. The prior austenite grain size seems to be constant in this temperature range. The mechanical tests performed at room temperature reveal acceptable hardness, tensile and Charpy impact properties regarding the ITER specification.

  3. Photons in dense nuclear matter: Random-phase approximation

    NASA Astrophysics Data System (ADS)

    Stetina, Stephan; Rrapaj, Ermal; Reddy, Sanjay

    2018-04-01

    We present a comprehensive and pedagogic discussion of the properties of photons in cold and dense nuclear matter based on the resummed one-loop photon self-energy. Correlations among electrons, muons, protons, and neutrons in β equilibrium that arise as a result of electromagnetic and strong interactions are consistently taken into account within the random phase approximation. Screening effects, damping, and collective excitations are systematically studied in a fully relativistic setup. Our study is relevant to the linear response theory of dense nuclear matter, calculations of transport properties of cold dense matter, and investigations of the production and propagation of hypothetical vector bosons such as the dark photons.

  4. Dense Plasma Focus Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; Li, Shengtai; Jungman, Gerard

    2016-08-31

    The mechanisms for pinch formation in Dense Plasma Focus (DPF) devices, with the generation of high-energy ions beams and subsequent neutron production over a relatively short distance, are not fully understood. Here we report on high-fidelity 2D and 3D numerical magnetohydrodynamic (MHD) simulations using the LA-COMPASS code to study the pinch formation dynamics and its associated instabilities and neutron production.

  5. One step process for producing dense aluminum nitride and composites thereof

    DOEpatents

    Holt, J.B.; Kingman, D.D.; Bianchini, G.M.

    1989-10-31

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1,000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  6. One step process for producing dense aluminum nitride and composites thereof

    DOEpatents

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1989-01-01

    A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.

  7. Elaboration of Alumina-Zirconia Composites: Role of the Zirconia Content on the Microstructure and Mechanical Properties

    PubMed Central

    Naglieri, Valentina; Palmero, Paola; Montanaro, Laura; Chevalier, Jérôme

    2013-01-01

    Alumina-zirconia (AZ) composites are attractive structural materials, which combine the high hardness and Young’s modulus of the alumina matrix with additional toughening effects, due to the zirconia dispersion. In this study, AZ composites containing different amounts of zirconia (in the range 5–20 vol %) were prepared by a wet chemical method, consisting on the surface coating of alumina powders by mixing them with zirconium salt aqueous solutions. After spray-drying, powders were calcined at 600 °C for 1 h. Green bodies were then prepared by two methods: uniaxial pressing of spray-dried granules and slip casting of slurries, obtained by re-dispersing the spray dried granulates. After pressureless sintering at 1500 °C for 1 h, the slip cast samples gave rise to fully dense materials, characterized by a quite homogeneous distribution of ZrO2 grains in the alumina matrix. The microstructure, phase composition, tetragonal to monoclinic transformation behavior and mechanical properties were investigated and are here discussed as a function of the ZrO2 content. The material containing 10 vol % ZrO2 presented a relevant hardness and exhibited the maximum value of KI0, mainly imputable to the t → m transformation at the crack tip. PMID:28809262

  8. One-step Tape Casting of Composites via Slurry on Fiber

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III

    2001-01-01

    A process by which metal matrix composites can be made was presented. The process involves putting a powder slurry on fibers to make a precursor green tape. These green tapes are cut, stacked and hot pressed to form the fully dense composite. A computer program was presented which enables complete quantification and control of the process. Once some easily obtained properties of the slurry and its behavior are determined (such as the shrinkage from the wet to green state, and the density of the green tape) modification of the fiber spacing and blade height give the maker precise control of fiber volume fraction, and fiber architecture in the composite. The process was shown to be accurate and flexible through the production of a wide variety of volume fraction fiber composites made from a wide variety of fibers and powders. The most time consuming step of the tape casting process (other than hot pressing) was winding the fiber on the drum. The tape casting techniques developed resulted in high quality metal matrix composites, with ultimate tensile strength in the range of 215 ksi (1477 MPa), a strain at failure of 1.15 percent, and in fatigue at room temperature 0 to 120 ksi, n = 0.3 Hz, a 4-ply Ti-24Al-11Nb/SCS-6, 32 vol% fiber tape cast composite lasted 202,205 cycles with a maximum strain on the 100th cycle of 0.43 percent.

  9. Woven TPS Enabling Missions Beyond Heritage Carbon Phenolic

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead; Venkatapathy, Ethiraj; Feldman, Jay

    2013-01-01

    Woven Thermal Protection Systems (WTPS) is a new TPS concept that is funded by NASAs Office of the Chief Technologist (OCT) Game Changing Division. The WTPS project demonstrates the potential for manufacturing many TPS architectures capable of performances demanded by the many potential solar system exploration missions. Currently, missions that encounter heat fluxes in the range of 1500 4000 W/sq cm and pressures greater than 1.5 atm have very limited TPS options - only one proven material, fully dense Carbon Phenolic, is currently available for these missions. However, fully dense carbon phenolic is only mass efficient at heat fluxes greater than 4000 W/sq cm, and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this TPS gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This presentation will introduce some woven TPS architectures considered in this project and summarize some recent arc jet testing to evaluate the performance of fully dense and mid density WTPS. Performance comparisons to heritage carbon phenolic will be drawn where applicable.

  10. Optimization of In-Situ Shot-Peening-Assisted Cold Spraying Parameters for Full Corrosion Protection of Mg Alloy by Fully Dense Al-Based Alloy Coating

    NASA Astrophysics Data System (ADS)

    Wei, Ying-Kang; Luo, Xiao-Tao; Li, Cheng-Xin; Li, Chang-Jiu

    2017-01-01

    Magnesium-based alloys have excellent physical and mechanical properties for a lot of applications. However, due to high chemical reactivity, magnesium and its alloys are highly susceptible to corrosion. In this study, Al6061 coating was deposited on AZ31B magnesium by cold spray with a commercial Al6061 powder blended with large-sized stainless steel particles (in-situ shot-peening particles) using nitrogen gas. Microstructure and corrosion behavior of the sprayed coating was investigated as a function of shot-peening particle content in the feedstock. It is found that by introducing the in-situ tamping effect using shot-peening (SP) particles, the plastic deformation of deposited particles is significantly enhanced, thereby resulting in a fully dense Al6061 coating. SEM observations reveal that no SP particle is deposited into Al6061 coating at the optimization spraying parameters. Porosity of the coating significantly decreases from 10.7 to 0.4% as the SP particle content increases from 20 to 60 vol.%. The electrochemical corrosion experiments reveal that this novel in-situ SP-assisted cold spraying is effective to deposit fully dense Al6061 coating through which aqueous solution is not permeable and thus can provide exceptional protection of the magnesium-based materials from corrosion.

  11. Fabrication, Properties and Applications of Dense Hydroxyapatite: A Review

    PubMed Central

    Prakasam, Mythili; Locs, Janis; Salma-Ancane, Kristine; Loca, Dagnija; Largeteau, Alain; Berzina-Cimdina, Liga

    2015-01-01

    In the last five decades, there have been vast advances in the field of biomaterials, including ceramics, glasses, glass-ceramics and metal alloys. Dense and porous ceramics have been widely used for various biomedical applications. Current applications of bioceramics include bone grafts, spinal fusion, bone repairs, bone fillers, maxillofacial reconstruction, etc. Amongst the various calcium phosphate compositions, hydroxyapatite, which has a composition similar to human bone, has attracted wide interest. Much emphasis is given to tissue engineering, both in porous and dense ceramic forms. The current review focusses on the various applications of dense hydroxyapatite and other dense biomaterials on the aspects of transparency and the mechanical and electrical behavior. Prospective future applications, established along the aforesaid applications of hydroxyapatite, appear to be promising regarding bone bonding, advanced medical treatment methods, improvement of the mechanical strength of artificial bone grafts and better in vitro/in vivo methodologies to afford more particular outcomes. PMID:26703750

  12. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors

    PubMed Central

    Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung

    2018-01-01

    The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets. PMID:29748495

  13. IrisDenseNet: Robust Iris Segmentation Using Densely Connected Fully Convolutional Networks in the Images by Visible Light and Near-Infrared Light Camera Sensors.

    PubMed

    Arsalan, Muhammad; Naqvi, Rizwan Ali; Kim, Dong Seop; Nguyen, Phong Ha; Owais, Muhammad; Park, Kang Ryoung

    2018-05-10

    The recent advancements in computer vision have opened new horizons for deploying biometric recognition algorithms in mobile and handheld devices. Similarly, iris recognition is now much needed in unconstraint scenarios with accuracy. These environments make the acquired iris image exhibit occlusion, low resolution, blur, unusual glint, ghost effect, and off-angles. The prevailing segmentation algorithms cannot cope with these constraints. In addition, owing to the unavailability of near-infrared (NIR) light, iris recognition in visible light environment makes the iris segmentation challenging with the noise of visible light. Deep learning with convolutional neural networks (CNN) has brought a considerable breakthrough in various applications. To address the iris segmentation issues in challenging situations by visible light and near-infrared light camera sensors, this paper proposes a densely connected fully convolutional network (IrisDenseNet), which can determine the true iris boundary even with inferior-quality images by using better information gradient flow between the dense blocks. In the experiments conducted, five datasets of visible light and NIR environments were used. For visible light environment, noisy iris challenge evaluation part-II (NICE-II selected from UBIRIS.v2 database) and mobile iris challenge evaluation (MICHE-I) datasets were used. For NIR environment, the institute of automation, Chinese academy of sciences (CASIA) v4.0 interval, CASIA v4.0 distance, and IIT Delhi v1.0 iris datasets were used. Experimental results showed the optimal segmentation of the proposed IrisDenseNet and its excellent performance over existing algorithms for all five datasets.

  14. Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.

    Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.

  15. Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems

    DOE PAGES

    Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.; ...

    2018-06-25

    Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.

  16. Matrix density effects on the mechanical properties of SiC/RBSN composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Kiser, James D.

    1990-01-01

    The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.

  17. Tribological and microstructural comparison of HIPped PM212 and PM212/Au self-lubricating composites

    NASA Technical Reports Server (NTRS)

    Bogdanski, Michael S.; Sliney, Harold E.; Dellacorte, Christopher

    1992-01-01

    The feasibility of replacing the silver with the volumetric equivalent of gold in the chromium carbide-based self-lubricating composite PM212 (70 wt. percent NiCo-Cr3C2, 15 percent BaF2/CaF2 eutectic) was studied. The new composite, PM212/Au has the following composition: 62 wt. percent NiCo-Cr3C2, 25 percent Au, 13 percent BaF2/CaF2 eutectic. The silver was replaced with gold to minimize the potential reactivity of the composite with possible environmental contaminants such as sulfur. The composites were fabricated by hot isostatic pressing (HIPping) and machined into pin specimens. The pins were slid against nickel-based superalloy disks. Sliding velocities ranged from 0.27 to 10.0 m/s and temperatures from 25 to 900 C. Friction coefficients ranged from 0.25 to 0.40 and wear factors for the pin and disk were typically low 10(exp -5) cu mm/N-m. HIPped PM212 measured fully dense, whereas PM212/Au had 15 percent residual porosity. Examination of the microstructures with optical and scanning electron microscopy revealed the presence of pores in PM212/Au that were not present in PM212. Though the exact reason for the residual porosity in PM212/Au was not determined, it may be due to particle morphology differences between the gold and silver and their effect on powder metallurgy processing.

  18. O(minus 2) grain boundary diffusion and grain growth in pure dense MgO

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Grain growth behavior in fully dense compacts of MgO of very high purity was studied, and the results compared with other similar behaving materials. The activation energy for the intrinsic self-diffusion of Mg(2minus) is discussed along with the grain boundary diffusion of O(2minus). Grain boundary diffusion of O(2minus) is proposed as the controlling mechanism for grain growth.

  19. Matrix density effects on the mechanical properties of SiC fiber-reinforced silicon nitride matrix properties

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Kiser, Lames D.

    1990-01-01

    The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.

  20. Crystallization behavior and properties of BaO-Al2O3-2SiO2 glass matrices

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III; Bansal, Narottam P.

    1990-01-01

    Glass of stoichiometric celsian composition, BaO-Al2O3-2SiO2, is a potential glass-ceramic matrix for high-temperature composites. The glass has a density of 3.39 g/cu cm, thermal expansion coefficient of 6.6 x 10(exp -6)/deg C glass transition temperature of 910 C, and dilatometric softening point of 925 C. On heat treatment, only hexacelsian crystallized out on the surface, but both celsian and hexacelsian were present in the bulk. Effects of cold isostatic pressing (CIP), sintering, and hot pressing, in the presence and absence of an additive, on the formation of the celsian phase in the glass were studied. CIP'ed samples, after appropriate heat treatments, always crystallized out as celsian whereas the presence of 5 to 10 weight percent of an additive was necessary for formation of celsian in sintered as well as hot pressed specimens. Green density increased with CIP'ing pressure but had no effect on sintered density. Hot pressing resulted in fully dense samples.

  1. Characterization of structure and thermophysical properties of three ESR slags

    NASA Astrophysics Data System (ADS)

    Plotkowski, A.; deBarbadillo, J.; Krane, Matthew J. M.

    2016-07-01

    The structure and properties of electroslag remelting (ESR) slags were characterized. Slags samples of three compositions were obtained from industrial remelting processes at Special Metals Corporation and from casting in a laboratory vacuum induction melter. The structure of the slag samples was observed using optical and electron microscopy, and phases were identified and their relative amounts quantified using X-ray diffraction. Laser flash thermal diffusivity, density, and differential scanning calorimetry measurements for specific heat were performed to determine the bulk thermal conductivity of the samples. Sample porosity was measured as a function of depth using a serial sectioning technique, and a onedimensional computational model was developed to estimate the thermal conductivity of the fully dense slags. These results are discussed in context with previous studies, and opportunities for future research are identified. AFRL Case Number: 88ABW-2015-1871.

  2. Dense matter in strong gravitational field of neutron star

    NASA Astrophysics Data System (ADS)

    Bhat, Sajad A.; Bandyopadhyay, Debades

    2018-02-01

    Mass, radius and moment of inertia are direct probes of compositions and Equation of State (EoS) of dense matter in neutron star interior. These are computed for novel phases of dense matter involving hyperons and antikaon condensate and their observable consequences are discussed in this article. Furthermore, the relationship between moment of inertia and quadrupole moment is also explored.

  3. Spark plasma sintering of titanium aluminide intermetallics and its composites

    NASA Astrophysics Data System (ADS)

    Aldoshan, Abdelhakim Ahmed

    Titanium aluminide intermetallics are a distinct class of engineering materials having unique properties over conventional titanium alloys. gamma-TiAl compound possesses competitive physical and mechanical properties at elevated temperature applications compared to Ni-based superalloys. gamma-TiAl composite materials exhibit high melting point, low density, high strength and excellent corrosion resistance. Spark plasma sintering (SPS) is one of the powder metallurgy techniques where powder mixture undergoes simultaneous application of uniaxial pressure and pulsed direct current. Unlike other sintering techniques such as hot iso-static pressing and hot pressing, SPS compacts the materials in shorter time (< 10 min) with a lower temperature and leads to highly dense products. Reactive synthesis of titanium aluminide intermetallics is carried out using SPS. Reactive sintering takes place between liquid aluminum and solid titanium. In this work, reactive sintering through SPS was used to fabricate fully densified gamma-TiAl and titanium aluminide composites starting from elemental powders at different sintering temperatures. It was observed that sintering temperature played significant role in the densification of titanium aluminide composites. gamma-TiAl was the predominate phase at different temperatures. The effect of increasing sintering temperature on microhardness, microstructure, yield strength and wear behavior of titanium aluminide was studied. Addition of graphene nanoplatelets to titanium aluminide matrix resulted in change in microhardness. In Ti-Al-graphene composites, a noticeable decrease in coefficient of friction was observed due to the influence of self-lubrication caused by graphene.

  4. Method of forming a dense, high temperature electronically conductive composite layer on a porous ceramic substrate

    DOEpatents

    Isenberg, A.O.

    1992-04-21

    An electrochemical device, containing a solid oxide electrolyte material and an electrically conductive composite layer, has the composite layer attached by: (A) applying a layer of LaCrO[sub 3], YCrO[sub 3] or LaMnO[sub 3] particles, on a portion of a porous ceramic substrate, (B) heating to sinter bond the particles to the substrate, (C) depositing a dense filler structure between the doped particles, (D) shaving off the top of the particles, and (E) applying an electronically conductive layer over the particles as a contact. 7 figs.

  5. The Influence of Al2O3 Powder Morphology on the Properties of Cu-Al2O3 Composites Designed for Functionally Graded Materials (FGM)

    NASA Astrophysics Data System (ADS)

    Strojny-Nędza, Agata; Pietrzak, Katarzyna; Węglewski, Witold

    2016-08-01

    In order to meet the requirements of an increased efficiency applying to modern devices and in more general terms science and technology, it is necessary to develop new materials. Combining various types of materials (such as metals and ceramics) and developing composite materials seem to be suitable solutions. One of the most interesting materials includes Cu-Al2O3 composite and gradient materials (FGMs). Due to their potential properties, copper-alumina composites could be used in aerospace industry as rocket thrusters and components in aircraft engines. The main challenge posed by copper matrix composites reinforced by aluminum oxide particles is obtaining the uniform structure with no residual porosity (existing within the area of the ceramic phase). In the present paper, Cu-Al2O3 composites (also in a gradient form) with 1, 3, and 5 vol.% of aluminum oxide were fabricated by the hot pressing and spark plasma sintering methods. Two forms of aluminum oxide (αAl2O3 powder and electrocorundum) were used as a reinforcement. Microstructural investigations revealed that near fully dense materials with low porosity and a clear interface between the metal matrix and ceramics were obtained in the case of the SPS method. In this paper, the properties (mechanical, thermal, and tribological) of composite materials were also collected and compared. Technological tests were preceded by finite element method analyses of thermal stresses generated in the gradient structure, and additionally, the role of porosity in the formation process of composite properties was modeled. Based on the said modeling, technological conditions for obtaining FGMs were proposed.

  6. Effect of metallic coating on the properties of copper-silicon carbide composites

    NASA Astrophysics Data System (ADS)

    Chmielewski, M.; Pietrzak, K.; Teodorczyk, M.; Nosewicz, S.; Jarząbek, D.; Zybała, R.; Bazarnik, P.; Lewandowska, M.; Strojny-Nędza, A.

    2017-11-01

    In the presented paper a coating of SiC particles with a metallic layer was used to prepare copper matrix composite materials. The role of the layer was to protect the silicon carbide from decomposition and dissolution of silicon in the copper matrix during the sintering process. The SiC particles were covered by chromium, tungsten and titanium using Plasma Vapour Deposition method. After powder mixing of components, the final densification process via Spark Plasma Sintering (SPS) method at temperature 950 °C was provided. The almost fully dense materials were obtained (>97.5%). The microstructure of obtained composites was studied using scanning electron microscopy as well as transmission electron microscopy. The microstructural analysis of composites confirmed that regardless of the type of deposited material, there is no evidence for decomposition process of silicon carbide in copper. In order to measure the strength of the interface between ceramic particles and the metal matrix, the micro tensile tests have been performed. Furthermore, thermal diffusivity was measured with the use of the laser pulse technique. In the context of performed studies, the tungsten coating seems to be the most promising solution for heat sink application. Compared to pure composites without metallic layer, Cu-SiC with W coating indicate the higher tensile strength and thermal diffusitivy, irrespective of an amount of SiC reinforcement. The improvement of the composite properties is related to advantageous condition of Cu-SiC interface characterized by well homogenity and low porosity, as well as individual properties of the tungsten coating material.

  7. A new biodegradable sisal fiber-starch packing composite with nest structure.

    PubMed

    Xie, Qi; Li, Fangyi; Li, Jianfeng; Wang, Liming; Li, Yanle; Zhang, Chuanwei; Xu, Jie; Chen, Shuai

    2018-06-01

    A new completely biodegradable sisal fiber-starch packing composite was proposed. The effects of fiber content and alkaline treatment on the cushioning property of the composites were studied from energy absorption efficiency, cellular microstructure and compatibility between fiber and starch. With increasing fiber content, the nest structure of composites becomes dense first and then loosens, resulting in initial enhancement and subsequent weakening of the cushioning property of the composites. The composite with 4:13 mass ratio of fiber and thermoplastic starch (TPS) exhibit the optimal cushioning property. Alkaline treatment increases the compatibility between sisal fiber and TPS, promotes the formation of dense nest structure, thereby enhances the cushioning property of the composites. After biodegradability tests for 28 days, the weight loss of the composites was 62.36%. It's found that the composites are a promising replacement for expandable polystyrene (EPS) as packing material, especially under large compression load (0.7-6 MPa). Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Densification of oxide superconductors by hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Tien, J. K.; Borofka, J. C.; Hendrix, B. C.; Caulfield, T.; Reichman, S. H.

    1988-07-01

    Currently, consolidation of high Tc superconductor powders is done by sintering, which is not effective in the reduction of porosity. This work assesses the feasibility of hot isostatic pressing (HIP) to obtain fully dense bulk superconductor using HIP modeling and experimental verification. It is concluded that fully dense YBa2Cu3O7 can be obtained in reasonable times at temperatures down to around 650 °C. The trade-offs between temperature, time, and pressure are examined as well as the effects of powder particle size, powder grain size, and trapped gas pressure. The model has. been verified by experiment under three conditions: 100 MPa HIP at 900 °C for 2 hours, 100 MPa HIP at 750 °C for 2 hours, and sintering at 950 °C for 16 hours. The additional advantages of HIPing oxide superconductors are also discussed.

  9. Online measurement of bead geometry in GMAW-based additive manufacturing using passive vision

    NASA Astrophysics Data System (ADS)

    Xiong, Jun; Zhang, Guangjun

    2013-11-01

    Additive manufacturing based on gas metal arc welding is an advanced technique for depositing fully dense components with low cost. Despite this fact, techniques to achieve accurate control and automation of the process have not yet been perfectly developed. The online measurement of the deposited bead geometry is a key problem for reliable control. In this work a passive vision-sensing system, comprising two cameras and composite filtering techniques, was proposed for real-time detection of the bead height and width through deposition of thin walls. The nozzle to the top surface distance was monitored for eliminating accumulated height errors during the multi-layer deposition process. Various image processing algorithms were applied and discussed for extracting feature parameters. A calibration procedure was presented for the monitoring system. Validation experiments confirmed the effectiveness of the online measurement system for bead geometry in layered additive manufacturing.

  10. Processing and characterization of Al-Al3Nb prepared by mechanical alloying and equal channel angular pressing

    NASA Astrophysics Data System (ADS)

    Chandran, P.; Zafari, A.; Lui, E. W.; Xia, K.

    2017-05-01

    Mechanically alloyed Al with immiscible elements such as Nb can lead to a uniform distribution of nanoscaled precipitates which are highly stable compared to conventional alloying and with excellent interface, resulting in significant increase in strength without problems associated with nano ceramic particles in metal matrix composites. Although immiscible, Nb can be alloyed with Al through mechanical milling, forming trialuminide (Al3Nb), either directly or upon subsequent precipitation, which possesses high strength, stiffness and stability at elevated temperatures. In the present study, Al-5 at.% Nb supersaturated solid solution was achieved after prolonged ball milling and nano Al3Nb precipitates were formed during subsequent ageing at 530°C. The Al-Al3Nb powder was consolidated by equal channel angular pressing (ECAP) at 400°C, resulting in a fully dense material with a uniform distribution of nanoscaled Al3Nb precipitates in the Al matrix.

  11. Chemically Derived Dense Alumina-Zirconia Composites for Improved Mechanical and Wear Erosion Properties

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As a result of this funded project high purity Zirconia-Toughened Alumina (ZTA) ceramic powders with and without yttria were produced using metal alkoxide precursors. ZTA ceramic powders with varying volume percents of zirconia were prepared (7, 15, and 22%). Aluminum tri-sec butoxide, zirconium propoxide, and yttrium isopropoxide were the reagents used. Synthesis conditions were varied to control the hydrolysis and the aging conditions for the sol to gel transition. FTIR analysis and rheological characterization were used to follow the structural evolution during the sol to gel transition. The greater extent of hydrolysis and the build-up of structure measured from viscoelastic properties were consistent. Heat treatment was conducted to produce submicron grain fully crystalline ZTA ceramic powders. This improved materials should have enhanced properties such strength, toughness, and wear resistance for advanced structural applications, for example engine components in high technology aerospace applications.

  12. Dimensional and material characteristics of direct deposited tool steel by CO II laser

    NASA Astrophysics Data System (ADS)

    Choi, J.

    2006-01-01

    Laser aided direct metalimaterial deposition (DMD) process builds metallic parts layer-by-layer directly from the CAD representation. In general, the process uses powdered metaUmaterials fed into a melt pool, creating fully dense parts. Success of this technology in the die and tool industry depends on the parts quality to be achieved. To obtain designed geometric dimensions and material properties, delicate control of the parameters such as laser power, spot diameter, traverse speed and powder mass flow rate is critical. In this paper, the dimensional and material characteristics of directed deposited H13 tool steel by CO II laser are investigated for the DMD process with a feedback height control system. The relationships between DMD process variables and the product characteristics are analyzed using statistical techniques. The performance of the DMD process is examined with the material characteristics of hardness, porosity, microstructure, and composition.

  13. Self-Assembly of Nanoclusters into Mono-, Few-, and Multilayered Sheets via Dipole-Induced Asymmetric van der Waals Attraction.

    PubMed

    Wu, Zhennan; Liu, Jiale; Li, Yanchun; Cheng, Ziyi; Li, Tingting; Zhang, Hao; Lu, Zhongyuan; Yang, Bai

    2015-06-23

    Two-dimensional (2D) nanomaterials possessing regular layered structures and versatile chemical composition are highly expected in many applications. Despite the importance of van der Waals (vdW) attraction in constructing and maintaining layered structures, the origin of 2D anisotropy is not fully understood, yet. Here, we report the 2D self-assembly of ligand-capped Au15 nanoclusters into mono-, few-, and multilayered sheets in colloidal solution. Both the experimental results and computer simulation reveal that the 2D self-assembly is initiated by 1D dipolar attraction common in nanometer-sized objects. The dense 1D attachment of Au15 leads to a redistribution of the surface ligands, thus generating asymmetric vdW attraction. The deliberate control of the coordination of dipolar and vdW attraction further allows to manipulate the thickness and morphologies of 2D self-assembly architectures.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, M.A.; LaSalvia, J.C.; Hoke, D.

    The objectives of this research program were to apply combustion synthesis and dynamic forging in order to produce fully dense ceramics. The program was successfully carried out but was unfortunately terminated. TiC and TiB2 ceramics, TiC-Ni cermets, and A12O3-TiB2 an TiB2-SiC ceramic-ceramic composites were successfully produced and characterized. Th research effort carried out from October 1988 to the present yielded eleven technical publications, of which seven were (or will be) published in archival journals and four in conference proceedings. The work has been presented at eight technical meetings and has been very well received by the community. Three students weremore » supported by this research program. Three M.S. degrees were awarded and two Ph.D. theses are in progress, with projected completion in August 1992 and January 1993. Collaboration with BRL and CERACON was.« less

  15. Metal-polymer composites comprising nanostructures and applications thereof

    DOEpatents

    Wang, Hsing-Lin [Los Alamos, NM; Jeon, Sea Ho [Dracut, MA; Mack, Nathan H [Los Alamos, NM

    2011-08-02

    Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

  16. Metal-polymer composites comprising nanostructures and applications thereof

    DOEpatents

    Wang, Hsing-Lin [Los Alamos, NM; Jeon, Sea Ho [Dracut, MA; Mack, Nathan H [Los Alamos, NM

    2012-04-03

    Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

  17. Method of forming a dense, high temperature electronically conductive composite layer on a porous ceramic substrate

    DOEpatents

    Isenberg, Arnold O.

    1992-01-01

    An electrochemical device, containing a solid oxide electrolyte material and an electrically conductive composite layer, has the composite layer attached by: (A) applying a layer of LaCrO.sub.3, YCrO.sub.3 or LaMnO.sub.3 particles (32), on a portion of a porous ceramic substrate (30), (B) heating to sinter bond the particles to the substrate, (C) depositing a dense filler structure (34) between the doped particles (32), (D) shaving off the top of the particles, and (E) applying an electronically conductive layer over the particles (32) as a contact.

  18. Development and application of a statistical quality assessment method for dense-graded mixes.

    DOT National Transportation Integrated Search

    2004-08-01

    This report describes the development of the statistical quality assessment method and the procedure for mapping the measures obtained from the quality assessment method to a composite pay factor. The application to dense-graded mixes is demonstrated...

  19. Local Crystalline Structure in an Amorphous Protein Dense Phase

    PubMed Central

    Greene, Daniel G.; Modla, Shannon; Wagner, Norman J.; Sandler, Stanley I.; Lenhoff, Abraham M.

    2015-01-01

    Proteins exhibit a variety of dense phases ranging from gels, aggregates, and precipitates to crystalline phases and dense liquids. Although the structure of the crystalline phase is known in atomistic detail, little attention has been paid to noncrystalline protein dense phases, and in many cases the structures of these phases are assumed to be fully amorphous. In this work, we used small-angle neutron scattering, electron microscopy, and electron tomography to measure the structure of ovalbumin precipitate particles salted out with ammonium sulfate. We found that the ovalbumin phase-separates into core-shell particles with a core radius of ∼2 μm and shell thickness of ∼0.5 μm. Within this shell region, nanostructures comprised of crystallites of ovalbumin self-assemble into a well-defined bicontinuous network with branches ∼12 nm thick. These results demonstrate that the protein gel is comprised in part of nanocrystalline protein. PMID:26488663

  20. The Importance of the Initial State in Understanding Shocked Porous Materials

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas R.; Cochrane, Kyle R.; Lane, J. Matthew D.; Weck, Philippe F.; Vogler, Tracy J.; Shulenburger, Luke

    Modeling the response of porous materials to shock loading presents a variety of theoretical challenges, however if done well it can open a whole new area of phase space for probing the equation of state of materials. Shocked porous materials achieve significantly hotter temperatures for the same drive than fully dense ones. By combining ab initio calculations of fully dense material with a model of porosity we show the critical importance of an accurate treatment of the initial state in understanding these experiments. This approach is also directly applicable to present application of tabular equations of state to the modeling of porous material. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Dense high temperature ceramic oxide superconductors

    DOEpatents

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  2. Dense high temperature ceramic oxide superconductors

    DOEpatents

    Landingham, R.L.

    1993-10-12

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  3. Application of CFRP with High Hydrogen Gas Barrier Characteristics to Fuel Tanks of Space Transportation System

    NASA Astrophysics Data System (ADS)

    Yonemoto, Koichi; Yamamoto, Yuta; Okuyama, Keiichi; Ebina, Takeo

    In the future, carbon fiber reinforced plastics (CFRPs) with high hydrogen gas barrier performance will find wide applications in all industrial hydrogen tanks that aim at weight reduction; the use of such materials will be preferred to the use of conventional metallic materials such as stainless steel or aluminum. The hydrogen gas barrier performance of CFRP will become an important issue with the introduction of hydrogen-fuel aircraft. It will also play an important role in realizing fully reusable space transportation system that will have high specific tensile CFRP structures. Such materials are also required for the manufacture of high-pressure hydrogen gas vessels for use in the fuel cell systems of automobiles. This paper introduces a new composite concept that can be used to realize CFRPs with high hydrogen gas barrier performance for applications in the cryogenic tanks of fully reusable space transportation system by the incorporation of a nonmetallic crystal layer, which is actually a dense and highly oriented clay crystal laminate. The preliminary test results show that the hydrogen gas barrier characteristics of this material after cryogenic heat shocks and cyclic loads are still better than those of other polymer materials by approximately two orders of magnitude.

  4. Towards long lasting zirconia-based composites for dental implants. Part I: innovative synthesis, microstructural characterization and in vitro stability.

    PubMed

    Palmero, Paola; Fornabaio, Marta; Montanaro, Laura; Reveron, Helen; Esnouf, Claude; Chevalier, Jérôme

    2015-05-01

    In order to fulfill the clinical requirements for strong, tough and stable ceramics used in dental applications, we designed and developed innovative zirconia-based composites, in which equiaxial α-Al2O3 and elongated SrAl12O19 phases are dispersed in a ceria-stabilized zirconia matrix. The composite powders were prepared by an innovative surface coating route, in which commercial zirconia powders were coated by inorganic precursors of the second phases, which crystallize on the zirconia particles surface under proper thermal treatment. Samples containing four different ceria contents (in the range 10.0-11.5 mol%) were prepared by carefully tailoring the amount of the cerium precursor during the elaboration process. Slip cast green bodies were sintered at 1450 °C for 1 h, leading to fully dense materials. Characterization of composites by SEM and TEM analyses showed highly homogeneous microstructures with an even distribution of both equiaxial and elongated-shape grains inside a very fine zirconia matrix. Ce content plays a major role on aging kinetics, and should be carefully controlled: sample with 10 mol% of ceria were transformable, whereas above 10.5 mol% there is negligible or no transformation during autoclave treatment. Thus, in this paper we show the potential of the innovative surface coating route, which allows a perfect tailoring of the microstructural, morphological and compositional features of the composites; moreover, its processing costs and environmental impacts are limited, which is beneficial for further scale-up and real use in the biomedical field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Invited Article: Refractive index matched scanning of dense granular materials

    NASA Astrophysics Data System (ADS)

    Dijksman, Joshua A.; Rietz, Frank; Lőrincz, Kinga A.; van Hecke, Martin; Losert, Wolfgang

    2012-01-01

    We review an experimental method that allows to probe the time-dependent structure of fully three-dimensional densely packed granular materials and suspensions by means of particle recognition. The method relies on submersing a granular medium in a refractive index matched fluid. This makes the resulting suspension transparent. The granular medium is then visualized by exciting, layer by layer, the fluorescent dye in the fluid phase. We collect references and unreported experimental know-how to provide a solid background for future development of the technique, both for new and experienced users.

  6. Structure and transport properties of dense polycrystalline clathrate-II (K,Ba) 16(Ga,Sn) 136 synthesized by a new approach employing SPS

    DOE PAGES

    Wei, Kaya; Zeng, Xiaoyu; Tritt, Terry M.; ...

    2016-08-26

    Tin clathrate-II framework-substituted compositions are of current interest as potential thermoelectric materials for medium-temperature applications. A review of the literature reveals different compositions reported with varying physical properties, which depend strongly on the exact composition as well as the processing conditions. We therefore initiated an approach whereby single crystals of two different (K,Ba) 16(Ga,Sn) 136 compositions were first obtained, followed by grinding of the crystals into fine powder for low temperature spark plasma sintering consolidation into dense polycrystalline solids and subsequent high temperature transport measurements. Powder X-ray refinement results indicate that the hexakaidecahedra are empty, K and Ba occupying onlymore » the decahedra. Their electrical properties depend on composition and have very low thermal conductivities. As a result, the structural and transport properties of these materials are compared to that of other Sn clathrate-II compositions.« less

  7. Simplified Calculation Model and Experimental Study of Latticed Concrete-Gypsum Composite Panels

    PubMed Central

    Jiang, Nan; Ma, Shaochun

    2015-01-01

    In order to address the performance complexity of the various constituent materials of (dense-column) latticed concrete-gypsum composite panels and the difficulty in the determination of the various elastic constants, this paper presented a detailed structural analysis of the (dense-column) latticed concrete-gypsum composite panel and proposed a feasible technical solution to simplified calculation. In conformity with mechanical rules, a typical panel element was selected and divided into two homogenous composite sub-elements and a secondary homogenous element, respectively for solution, thus establishing an equivalence of the composite panel to a simple homogenous panel and obtaining the effective formulas for calculating the various elastic constants. Finally, the calculation results and the experimental results were compared, which revealed that the calculation method was correct and reliable and could meet the calculation needs of practical engineering and provide a theoretical basis for simplified calculation for studies on composite panel elements and structures as well as a reference for calculations of other panels. PMID:28793631

  8. Simplified Calculation Model and Experimental Study of Latticed Concrete-Gypsum Composite Panels.

    PubMed

    Jiang, Nan; Ma, Shaochun

    2015-10-27

    In order to address the performance complexity of the various constituent materials of (dense-column) latticed concrete-gypsum composite panels and the difficulty in the determination of the various elastic constants, this paper presented a detailed structural analysis of the (dense-column) latticed concrete-gypsum composite panel and proposed a feasible technical solution to simplified calculation. In conformity with mechanical rules, a typical panel element was selected and divided into two homogenous composite sub-elements and a secondary homogenous element, respectively for solution, thus establishing an equivalence of the composite panel to a simple homogenous panel and obtaining the effective formulas for calculating the various elastic constants. Finally, the calculation results and the experimental results were compared, which revealed that the calculation method was correct and reliable and could meet the calculation needs of practical engineering and provide a theoretical basis for simplified calculation for studies on composite panel elements and structures as well as a reference for calculations of other panels.

  9. Compositions for, solutions for, and methods of use of siloxane based aromatic trisureas as viscosifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doherty, Mark Daniel; O'Brien, Michael Joseph; Lee, Jason

    A compound represented by the following formula is provided: ##STR00001## Also provided is a solution including a compound disclosed herein, a volume of dense carbon dioxide (CO.sub.2), and a co-solvent, where the solution has an increased viscosity greater than the viscosity of dense CO.sub.2. Methods of increasing the viscosity of dense CO.sub.2 and natural gas liquids (NGLs) by, for example, dissolving a compound disclosed herein to form a solution, are also provided.

  10. Oligosaccharide composition is similar in drusen and dense deposits in membranoproliferative glomerulonephritis type II.

    PubMed

    D'souza, Yvonne B; Jones, Carolyn J P; Short, Colin D; Roberts, Ian S D; Bonshek, Richard E

    2009-04-01

    Drusen are a feature of age-related macular degeneration (AMD). Lesions similar in appearance to drusen are also found in the fundi of patients with membranoproliferative glomerulonephritis type II (dense deposit disease, DDD). The lamina densa of the glomerular basement membrane, in DDD, is transformed into an electron-dense structure by deposition of microscopically homogeneous material. Our study sought to compare the saccharide composition of drusen and dense deposits in the formalin-fixed, paraffin-embedded tissue from the eye and kidney. Six eye specimens were obtained from patients diagnosed with AMD but another eye was obtained from a patient with partial lipodystrophy, who died after renal failure presumably because of DDD. The kidney specimens were from three biopsy-proven cases of DDD. Glycosylation patterns were measured by the binding of 19 biotinylated lectins before and after neuraminidase pre-treatment. High mannose, bi/tri-antennary non-bisected and bisected complex N-glycan, N-acetyl glucosamine, galactose, and sialic acid residues were found in both drusen and dense deposits. Treatment with neuraminidase exposed subterminal galactose in both sites and sparse N-acetyl galactosamine residues in drusen alone. Our study found similar pathologic oligosaccharide structures in the eye and kidney, suggesting that drusen may be a common end result of retinal and glomerular disease.

  11. Demonstrating the self-healing behaviour of some selected ceramics under combustion chamber conditions

    NASA Astrophysics Data System (ADS)

    Farle, A.; Boatemaa, L.; Shen, L.; Gövert, S.; Kok, J. B. W.; Bosch, M.; Yoshioka, S.; van der Zwaag, S.; Sloof, W. G.

    2016-08-01

    Closure of surface cracks by self-healing of conventional and MAX phase ceramics under realistic turbulent combustion chamber conditions is presented. Three ceramics namely; Al2O3, Ti2AlC and Cr2AlC are investigated. Healing was achieved in Al2O3 by even dispersion of TiC particles throughout the matrix as the MAX phases, Ti2AlC and Cr2AlC exhibit intrinsic self-healing. Fully dense samples (>95%) were sintered by spark plasma sintering and damage was introduced by indentation, quenching and low perpendicular velocity impact methods. The samples were exposed to the oxidizing atmosphere in the post flame zone of a turbulent flame in a combustion chamber to heal at temperatures of approx. 1000 °C at low pO2 levels for 4 h. Full crack-gap closure was observed for cracks up to 20 mm in length and more than 10 μm in width. The reaction products (healing agents) were analysed by scanning electron microscope, x-ray microanalysis and XRD. A semi-quantification of the healing showed that cracks in Al2O3/TiC composite (width 1 μm and length 100 μm) were fully filled with TiO2. In Ti2AlC large cracks were fully filled with a mixture of TiO2 and Al2O3. And in the Cr2AlC, cracks of up to 1.0 μm in width and more than 100 μm in length were also completely filled with Al2O3.

  12. Processes for making dense, spherical active materials for lithium-ion cells

    DOEpatents

    Kang, Sun-Ho [Naperville, IL; Amine, Khalil [Downers Grove, IL

    2011-11-22

    Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.

  13. Lower sintering temperature of nanostructured dense ceramics compacted from dry nanopowders using powerful ultrasonic action

    NASA Astrophysics Data System (ADS)

    Khasanov, O.; Reichel, U.; Dvilis, E.; Khasanov, A.

    2011-10-01

    Nanostructured high dense zirconia ceramics have been sintered from dry nanopowders compacted by uniaxial pressing with simultaneous powerful ultrasonic action (PUA). Powerful ultrasound with frequency of 21 kHz was supplied from ultrasonic generator to the mold, which was the ultrasonic wave-guide. Previously the mold was filled by non-agglomerated zirconia nanopowder having average particle size of 40 nm. Any binders or plasticizers were excluded at nanopowder processing. Compaction pressure was 240 MPa, power of ultrasonic generator at PUA was 1 kW and 3 kW. The fully dense zirconia ceramics has been sintered at 1345°C and high-dense ceramics with a density of 99.1%, the most grains of which had the sizes Dgr <= 200 nm, has been sintered at low sintering temperature (1325°C). Applied approach prevents essential grain growth owing to uniform packing of nanoparticles under vibrating PU-action at pressing, which provides the friction forces control during dry nanopowder compaction without contaminating binders or plasticizers.

  14. METHOD OF PRODUCING DENSE CONSOLIDATED METALLIC REGULUS

    DOEpatents

    Magel, T.T.

    1959-08-11

    A methcd is presented for reducing dense metal compositions while simultaneously separating impurities from the reduced dense metal and casting the reduced parified dense metal, such as uranium, into well consolidated metal ingots. The reduction is accomplished by heating the dense metallic salt in the presence of a reducing agent, such as an alkali metal or alkaline earth metal in a bomb type reacting chamber, while applying centrifugal force on the reacting materials. Separation of the metal from the impurities is accomplished essentially by the incorporation of a constricted passageway at the vertex of a conical reacting chamber which is in direct communication with a collecting chamber. When a centrifugal force is applled to the molten metal and slag from the reduction in a direction collinear with the axis of the constricted passage, the dense molten metal is forced therethrough while the less dense slag is retained within the reaction chamber, resulting in a simultaneous separation of the reduced molten metal from the slag and a compacting of the reduced metal in a homogeneous mass.

  15. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.

    PubMed

    Barako, Michael T; Isaacson, Scott G; Lian, Feifei; Pop, Eric; Dauskardt, Reinhold H; Goodson, Kenneth E; Tice, Jesse

    2017-12-06

    Thermal interface materials (TIMs) are essential for managing heat in modern electronics, and nanocomposite TIMs can offer critical improvements. Here, we demonstrate thermally conductive, mechanically compliant TIMs based on dense, vertically aligned copper nanowires (CuNWs) embedded into polymer matrices. We evaluate the thermal and mechanical characteristics of 20-25% dense CuNW arrays with and without polydimethylsiloxane infiltration. The thermal resistance achieved is below 5 mm 2 K W -1 , over an order of magnitude lower than commercial heat sink compounds. Nanoindentation reveals that the nonlinear deformation mechanics of this TIM are influenced by both the CuNW morphology and the polymer matrix. We also implement a flip-chip bonding protocol to directly attach CuNW composites to copper surfaces, as required in many thermal architectures. Thus, we demonstrate a rational design strategy for nanocomposite TIMs that simultaneously retain the high thermal conductivity of aligned CuNWs and the mechanical compliance of a polymer.

  16. Crystallization behavior and properties of BaO-Al2O3-2SiO2 glass matrices

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III; Bansal, Narottam P.

    1990-01-01

    Glass of stoichiometric celsian composition, BaO-Al2O3-SiO2, has a density of 3.39 g/cu cm, a thermal expansion coefficient of 6.6 x 10 to the -6th/C, a glass-transition temperature of 910 C, and a dilatometric softening point of 925 C. On heat treatment, only hexacelsian crystallized out on the surface, but both celsian and hexacelsian were present in the bulk. Effects of cold isostatic pressing (CIP), sintering, and hot-pressing, in the presence and absence of an additive, on the formation of the celsian phase in the glass have been studied. CIP'd samples, after appropriate heat treatments, always crystallized out as celsian, whereas presence of 5-10 wt pct of an additive was necessary for formation of celsian in sintered as well as hot-pressed specimens. Green density increased with CIP'ing pressure but had no effect on sintered density. Hot-pressing resulted in fully dense samples.

  17. Ultrathin Composite Polymeric Membranes for CO2 /N2 Separation with Minimum Thickness and High CO2 Permeance.

    PubMed

    Benito, Javier; Sánchez-Laínez, Javier; Zornoza, Beatriz; Martín, Santiago; Carta, Mariolino; Malpass-Evans, Richard; Téllez, Carlos; McKeown, Neil B; Coronas, Joaquín; Gascón, Ignacio

    2017-10-23

    The use of ultrathin films as selective layers in composite membranes offers significant advantages in gas separation for increasing productivity while reducing the membrane size and energy costs. In this contribution, composite membranes have been obtained by the successive deposition of approximately 1 nm thick monolayers of a polymer of intrinsic microporosity (PIM) on top of dense membranes of the ultra-permeable poly[1-(trimethylsilyl)-1-propyne] (PTMSP). The ultrathin PIM films (30 nm in thickness) demonstrate CO 2 permeance up to seven times higher than dense PIM membranes using only 0.04 % of the mass of PIM without a significant decrease in CO 2 /N 2 selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Harding, E. C.; Knapp, P. F.; Gomez, M. R.; Nagayama, T.; Bailey, J. E.

    2018-05-01

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. We show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated by the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 1024 e/cm3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.

  19. Topological quantum distillation.

    PubMed

    Bombin, H; Martin-Delgado, M A

    2006-11-03

    We construct a class of topological quantum codes to perform quantum entanglement distillation. These codes implement the whole Clifford group of unitary operations in a fully topological manner and without selective addressing of qubits. This allows us to extend their application also to quantum teleportation, dense coding, and computation with magic states.

  20. Al2O3/ZrO2/Y3Al5O12 Composites: A High-Temperature Mechanical Characterization

    PubMed Central

    Palmero, Paola; Pulci, Giovanni; Marra, Francesco; Valente, Teodoro; Montanaro, Laura

    2015-01-01

    An Al2O3/5 vol%·ZrO2/5 vol%·Y3Al5O12 (YAG) tri-phase composite was manufactured by surface modification of an alumina powder with inorganic precursors of the second phases. The bulk materials were produced by die-pressing and pressureless sintering at 1500 °C, obtaining fully dense, homogenous samples, with ultra-fine ZrO2 and YAG grains dispersed in a sub-micronic alumina matrix. The high temperature mechanical properties were investigated by four-point bending tests up to 1500 °C, and the grain size stability was assessed by observing the microstructural evolution of the samples heat treated up to 1700 °C. Dynamic indentation measures were performed on as-sintered and heat-treated Al2O3/ZrO2/YAG samples in order to evaluate the micro-hardness and elastic modulus as a function of re-heating temperature. The high temperature bending tests highlighted a transition from brittle to plastic behavior comprised between 1350 and 1400 °C and a considerable flexural strength reduction at temperatures higher than 1400 °C; moreover, the microstructural investigations carried out on the re-heated samples showed a very limited grain growth up to 1650 °C. PMID:28787961

  1. Solid State Synthesis and Properties of Monoclinic Celsian

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1996-01-01

    Monoclinic celsian of Ba(0.75)Sr(0.25)Al2Si2O8 (BSAS-1) and B(0.85)Sr(O.15)Al2Si2O8 (BSAS-2) compositions have been synthesized from metal carbonates and oxides by solid state reaction. A mixture of BaCO3, SrCO3, Al2O3, and SiO2 powders was precalcined at approx. 900-940 C to decompose the carbonates followed by hot pressing at approx. 1300 C. The hot pressed BSAS-1 material was almost fully dense and contained the monoclinic celsian phase, with complete absence of the undesirable hexacelsian as indicated by x-ray diffraction. In contrast, a small fraction of hexacelsian was still present in hot pressed BSAS-2. However, on further heat treatment at 1200 C for 24 h, the hexacelsian phase was completely eliminated. The average linear thermal expansion coefficients of BSAS-1 and BSAS-2 compositions, having the monoclinic celsian phase, were measured to be 5.28 x 10(exp -6)/deg C and 5.15 x 10(exp -6)/deg C, respectively from room temperature to 1200 C. The hot pressed BSAS-1 celsian showed room temperature flexural strength of 131 MPa, elastic modulus of 96 GPa and was stable in air up to temperatures as high as approx. 1500 C.

  2. Development of Specifications for Engineered Cementitious Composites for Use in Bridge Deck Overlays

    DOT National Transportation Integrated Search

    2016-02-01

    Engineered cementitious composite (ECC) material is a high strength, fiber-reinforced, ductile mortar mixture that can exhibit tensile strains of up to 5%. ECC has a dense matrix, giving the material exceptional durability characteristics. The durabi...

  3. Health benefits of almonds beyond cholesterol reduction

    USDA-ARS?s Scientific Manuscript database

    Almonds are rich in monounsaturated fat, fiber, alpha-tocopherol, minerals such as magnesium copper, and phytonutrients, albeit being energy-dense. The favorable fat composition and fiber contribute to the hypocholesterolemic benefit of almond consumption. By virtue of their unique nutrient composit...

  4. A nutrient-dense, high fiber, fruit-based supplement bar increases HDL, particularly large HDL, lowers homocysteine, and raises glutathione in a 2-week trial

    USDA-ARS?s Scientific Manuscript database

    Dietary intake modulates disease risk, but little is known as to how components within food mixtures affect pathophysiology. Here, a low-calorie, high-fiber, fruit-based nutrient-dense bar of defined composition (e.g., vitamins/minerals, fruit polyphenolics, B-glucan, docosahexaenoic acid (DHA)) app...

  5. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1996-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  6. Oxygen ion-conducting dense ceramic

    DOEpatents

    Balachandran, Uthamalingam; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Morissette, Sherry L.; Pei, Shiyou

    1997-01-01

    Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

  7. Diamond-silicon carbide composite and method

    DOEpatents

    Zhao, Yusheng [Los Alamos, NM

    2011-06-14

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  8. Two-way coupled SPH and particle level set fluid simulation.

    PubMed

    Losasso, Frank; Talton, Jerry; Kwatra, Nipun; Fedkiw, Ronald

    2008-01-01

    Grid-based methods have difficulty resolving features on or below the scale of the underlying grid. Although adaptive methods (e.g. RLE, octrees) can alleviate this to some degree, separate techniques are still required for simulating small-scale phenomena such as spray and foam, especially since these more diffuse materials typically behave quite differently than their denser counterparts. In this paper, we propose a two-way coupled simulation framework that uses the particle level set method to efficiently model dense liquid volumes and a smoothed particle hydrodynamics (SPH) method to simulate diffuse regions such as sprays. Our novel SPH method allows us to simulate both dense and diffuse water volumes, fully incorporates the particles that are automatically generated by the particle level set method in under-resolved regions, and allows for two way mixing between dense SPH volumes and grid-based liquid representations.

  9. Production of glass-ceramics from sewage sludge and waste glass

    NASA Astrophysics Data System (ADS)

    Rozenstrauha, I.; Sosins, G.; Petersone, L.; Krage, L.; Drille, M.; Filipenkov, V.

    2011-12-01

    In the present study for recycling of sewage sludge and waste glass from JSC "Valmieras stikla skiedra" treatment of them to the dense glass-ceramic composite material using powder technology is estimated. The physical-chemical properties of composite materials were identified - density 2.19 g/cm3, lowest water absorption of 2.5% and lowest porosity of 5% for the samples obtained in the temperature range of sintering 1120 - 1140 °C. Regarding mineralogical composition of glass-ceramics the following crystalline phases were identified by XRD analysis: quartz (SiO2), anorthite (CaAl2Si2O8) and hematite (Fe2O3), which could ensure the high density of materials and improve the mechanical properties of material - compressive strength up to 60.31±5.09 - 52.67±19.18 MPa. The physical-chemical properties of novel materials corresponds to dense glass-ceramics composite which eventually could be used as a building material, e.g. for floor covering, road pavement, exterior tiles etc.

  10. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes.

    PubMed

    Liu, Libin; Yu, You; Yan, Casey; Li, Kan; Zheng, Zijian

    2015-06-11

    One-dimensional flexible supercapacitor yarns are of considerable interest for future wearable electronics. The bottleneck in this field is how to develop devices of high energy and power density, by using economically viable materials and scalable fabrication technologies. Here we report a hierarchical graphene-metallic textile composite electrode concept to address this challenge. The hierarchical composite electrodes consist of low-cost graphene sheets immobilized on the surface of Ni-coated cotton yarns, which are fabricated by highly scalable electroless deposition of Ni and electrochemical deposition of graphene on commercial cotton yarns. Remarkably, the volumetric energy density and power density of the all solid-state supercapacitor yarn made of one pair of these composite electrodes are 6.1 mWh cm(-3) and 1,400 mW cm(-3), respectively. In addition, this SC yarn is lightweight, highly flexible, strong, durable in life cycle and bending fatigue tests, and integratable into various wearable electronic devices.

  11. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes

    PubMed Central

    Liu, Libin; Yu, You; Yan, Casey; Li, Kan; Zheng, Zijian

    2015-01-01

    One-dimensional flexible supercapacitor yarns are of considerable interest for future wearable electronics. The bottleneck in this field is how to develop devices of high energy and power density, by using economically viable materials and scalable fabrication technologies. Here we report a hierarchical graphene–metallic textile composite electrode concept to address this challenge. The hierarchical composite electrodes consist of low-cost graphene sheets immobilized on the surface of Ni-coated cotton yarns, which are fabricated by highly scalable electroless deposition of Ni and electrochemical deposition of graphene on commercial cotton yarns. Remarkably, the volumetric energy density and power density of the all solid-state supercapacitor yarn made of one pair of these composite electrodes are 6.1 mWh cm−3 and 1,400 mW cm−3, respectively. In addition, this SC yarn is lightweight, highly flexible, strong, durable in life cycle and bending fatigue tests, and integratable into various wearable electronic devices. PMID:26068809

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul

    Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H 2 per litre inmore » the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. In conclusion, these multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.« less

  13. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage.

    PubMed

    Cho, Eun Seon; Ruminski, Anne M; Aloni, Shaul; Liu, Yi-Sheng; Guo, Jinghua; Urban, Jeffrey J

    2016-02-23

    Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.

  14. Erosion characteristics of ethylene propylene diene monomer composite insulation by high-temperature dense particles

    NASA Astrophysics Data System (ADS)

    Li, Jiang; Guo, Meng-fei; Lv, Xiang; Liu, Yang; Xi, Kun; Guan, Yi-wen

    2018-04-01

    In this study, a dense particles erosion test motor which can simulate the erosion state of a solid rocket motor under high acceleration was developed. Subsequently, erosion experiments were carried out for the ethylene propylene diene monomer composite insulation and the microstructure of the char layer analysed. A turning point effect was found from the influence of the particle impact velocity on the ablation rate, and three erosion modes were determined according to the micro-morphology of the char layer. A reasonable explanation for the different structures of the char layer in the three modes was presented based on the formation mechanism of the compact/loose structure of the char layer.

  15. Fluorescence and absorption spectroscopy for warm dense matter studies and ICF plasma diagnostics

    DOE PAGES

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.; ...

    2018-03-07

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  16. CVD silicon carbide monofilament reinforced SrO-Al2O3-2SiO2 (SAS) glass-ceramic composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1995-01-01

    Unidirectional CVD SiC fiber-reinforced SrO.Al2O3.2SiO2 (SAS) glass-ceramic matrix composites have been fabricated by hot pressing at various combinations of temperature, pressure and time. Both carbon-rich surface coated SCS-6 and uncoated SCS-0 fibers were used as reinforcements. Almost fully dense composites have been obtained. Monoclinic celsian, SrAl2Si2O8, was the only crystalline phase observed in the matrix from x-ray diffraction. During three point flexure testing of composites, a test span to thickness ratio of approximately 25 or greater was necessary to avoid sample delamination. Strong and tough SCS-6/SAS composites having a first matrix crack stress of approximately 300 MPa and an ultimate bend strength of approximately 825 MPa were fabricated. No chemical reaction between the SCS-6 fibers and the SAS matrix was observed after high temperature processing. The uncoated SCS-0 fiber-reinforced SAS composites showed only limited improvement in strength over SAS monolithic. The SCS-0/SAS composite having a fiber volume fraction of 0.24 and hot pressed at 1400 deg C exhibited a first matrix cracking stress of approximately 231 +/- 20 MPa and ultimate strength of 265 +/- 17 MPa. From fiber push-out tests, the fiber/matrix interfacial debonding strength (tau(sub debond)) and frictional sliding stress (tau(sub friction)) in the SCS-6/SAS system were evaluated to be approximately 6.7 +/- 2.3 MPa and 4.3 +/- 0.6 MPa, respectively, indicating a weak interface. However, for the SCS-0/SAS composite, much higher values of approximately 17.5 +/- 2.7 MPa for tau(sub debond) and 11.3 +/- 1.6 MPa for tau(sub friction) respectively, were observed; some of the fibers were so strongly bonded to the matrix that they could not be pushed out. Examination of fracture surfaces revealed limited short pull-out length of SCS-0 fibers. The applicability of various micromechanical models for predicting the values of first matrix cracking stress and ultimate strength of these composites were examined.

  17. Development of Laser Fabricated Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III

    2006-01-01

    Laser Engineered Net Shaping (LENS) depositions with Ti-6Al-4V gas-atomized powder were accomplished at five different temperatures, ranging from 30 to 400 C, imposed on the base plate. These base plate temperatures were employed in an effort to relieve stresses which develop during the deposition. Warpage of the base plate was monitored. Only a slight decline in warpage was observed as the base plate temperature was increased. Results indicate that substrate temperatures closer to the stress relief minimum of 480 C would relieve deposition stresses, though process parameters would likely need to be modified to compensate for the higher base plate temperature. The compositions of the as-received powder and the LENS deposited material were chemically analyzed. The oxygen content of the LENS material was 0.154 wt.% which is less than the maximum impurity limit of 0.2 percent for commercial Ti-6Al-4V alloys, but is over the limit allowed in ELI grade (0.13 percent). The level of oxygen in the commercial base plate used was only 0.0635 percent. Tensile specimens were machined from the LENS deposited material and tested in tension at room temperature. The ultimate and yield tensile stresses of the LENS material were about 1200 and 1150 MPa respectively, which is about 20 percent higher than the strengths of wrought Ti-6Al-4V. The higher strength of the LENS material was due to its fine structure and high oxygen content. The LENS deposits were not fully dense; voids were frequent at the interfaces between deposited layers. These dispersed sheets of voids were parallel to the longitudinal axis of the resulting tensile specimens. Apparently there was sufficient continuous, fully dense material longitudinally to enable the high strengths. Ductility was low in the LENS material. Percent elongation at failure in the LENS material was near 4 percent, which is less than half of what is usually expected from Ti-6Al-4V. The low ductility was caused by high oxygen levels, and the presence of voids. It is likely that the relatively high scan speeds used in our depositions contributed to the lack of full density in our LENS material.

  18. Fibromodulin deficiency reduces collagen structural network but not glycosaminoglycan content in a syngeneic model of colon carcinoma.

    PubMed

    Olsson, P Olof; Kalamajski, Sebastian; Maccarana, Marco; Oldberg, Åke; Rubin, Kristofer

    2017-01-01

    Tumor barrier function in carcinoma represents a major challenge to treatment and is therefore an attractive target for increasing drug delivery. Variables related to tumor barrier include aberrant blood vessels, high interstitial fluid pressure, and the composition and structure of the extracellular matrix. One of the proteins associated with dense extracellular matrices is fibromodulin, a collagen fibrillogenesis modulator expressed in tumor stroma but scarce in normal loose connective tissues. Here, we investigated the effects of fibromodulin on stroma ECM in a syngeneic murine colon carcinoma model. We show that fibromodulin deficiency decreased collagen fibril thickness but glycosaminoglycan content and composition were unchanged. Furthermore, vascular density, pericyte coverage and macrophage amount were unaffected. Fibromodulin can therefore be a unique effector of dense collagen matrix assembly in tumor stroma and, without affecting other major matrix components or the cellular composition, can function as a main agent in tumor barrier function.

  19. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2014-08-05

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  20. Composite oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Lane, Jonathan A.

    2016-11-15

    A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

  1. Mammographic Breast Density Evaluation in Korean Women Using Fully Automated Volumetric Assessment

    PubMed Central

    2016-01-01

    The purpose was to present mean breast density of Korean women according to age using fully automated volumetric assessment. This study included 5,967 screening normal or benign mammograms (mean age, 46.2 ± 9.7; range, 30–89 years), from cancer-screening program. We evaluated mean fibroglandular tissue volume, breast tissue volume, volumetric breast density (VBD), and the results were 53.7 ± 30.8 cm3, 383.8 ± 205.2 cm3, and 15.8% ± 7.3%. The frequency of dense breasts and mean VBD by age group were 94.3% and 19.1% ± 6.7% for the 30s (n = 1,484), 91.4% and 17.2% ± 6.8% for the 40s (n = 2,706), 72.2% and 12.4% ± 6.2% for the 50s (n = 1,138), 44.0% and 8.6% ± 4.3% for the 60s (n = 89), 39.1% and 8.0% ± 3.8% for the 70s (n = 138), and 39.1% and 8.0% ± 3.5% for the 80s (n = 12). The frequency of dense breasts was higher in younger women (n = 4,313, 92.3%) than older women (n = 1,654, 59.8%). Mean VBD decreased with aging or menopause, and was about 16% for 46-year-old-Korean women, much higher than in other countries. The proportion of dense breasts sharply decreases in Korean women between 40 and 69 years of age. PMID:26955249

  2. Zirconia-molybdenum disilicide composites

    DOEpatents

    Petrovic, John J.; Honnell, Richard E.

    1991-01-01

    Compositions of matter comprised of molybdenum disilicide and zirconium oxide in one of three forms: pure, partially stabilized, or fully stabilized and methods of making the compositions. The stabilized zirconia is crystallographically stabilized by mixing it with yttrium oxide, calcium oxide, cerium oxide, or magnesium oxide and it may be partially stabilized or fully stabilized depending on the amount of stabilizing agent in the mixture.

  3. Metallurgy and properties of plasma spray formed materials

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  4. Thermal method for fabricating a hydrogen separation membrane on a porous substrate

    DOEpatents

    Song, Sun-Ju [Orland Park, IL; Lee, Tae H [Naperville, IL; Chen, Ling [Woodridge, IL; Dorris, Stephen E [LaGrange Park, IL; Balachandran, Uthamalingam [Hinsdale, IL

    2009-10-20

    A thermal method of making a hydrogen permeable composition is disclosed. A mixture of metal oxide powder and ceramic oxide powder and optionally a pore former is formed and pressed to form an article. The article is dried at elevated temperatures and then sintered in a reducing atmosphere to provide a dense hydrogen permeable portion near the surface of the sintered mixture. The dense hydrogen permeable portion has a higher initial concentration of metal than the remainder of the sintered mixture and is present in the range of from about 20 to about 80 percent by volume of the dense hydrogen permeable portion.

  5. The relationships between breast volume, breast dense volume and volumetric breast density with body mass index, body fat mass and ethnicity

    NASA Astrophysics Data System (ADS)

    Zakariyah, N.; Pathy, N. B.; Taib, N. A. M.; Rahmat, K.; Judy, C. W.; Fadzil, F.; Lau, S.; Ng, K. H.

    2016-03-01

    It has been shown that breast density and obesity are related to breast cancer risk. The aim of this study is to investigate the relationships of breast volume, breast dense volume and volumetric breast density (VBD) with body mass index (BMI) and body fat mass (BFM) for the three ethnic groups (Chinese, Malay and Indian) in Malaysia. We collected raw digital mammograms from 2450 women acquired on three digital mammography systems. The mammograms were analysed using Volpara software to obtain breast volume, breast dense volume and VBD. Body weight, BMI and BFM of the women were measured using a body composition analyser. Multivariable logistic regression was used to determine the independent predictors of increased overall breast volume, breast dense volume and VBD. Indians have highest breast volume and breast dense volume followed by Malays and Chinese. While Chinese are highest in VBD, followed by Malay and Indian. Multivariable analysis showed that increasing BMI and BFM were independent predictors of increased overall breast volume and dense volume. Moreover, BMI and BFM were independently and inversely related to VBD.

  6. Automatic Building Abstraction from Aerial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Ley, A.; Hänsch, R.; Hellwich, O.

    2017-09-01

    Multi-view stereo has been shown to be a viable tool for the creation of realistic 3D city models. Nevertheless, it still states significant challenges since it results in dense, but noisy and incomplete point clouds when applied to aerial images. 3D city modelling usually requires a different representation of the 3D scene than these point clouds. This paper applies a fully-automatic pipeline to generate a simplified mesh from a given dense point cloud. The mesh provides a certain level of abstraction as it only consists of relatively large planar and textured surfaces. Thus, it is possible to remove noise, outlier, as well as clutter, while maintaining a high level of accuracy.

  7. From Interstellar Polycyclic Aromatic Hydrocarbons and Ice to the Origin of Life

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis

    2004-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. The first part of this talk will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, abundances, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the presolar nebula, the materials frozen into the interstellar/precometary ices are photoprocessed by ultraviolet light and produce more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the to the carbonaceous components of micrometeorites, they are likely to have been important sources of complex materials on the early Earth and their composition may be related to the origin of life.

  8. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, V.K.

    1991-07-30

    A process is disclosed for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900--1500 C and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  9. Process for the deposition of high temperature stress and oxidation resistant coatings on silicon-based substrates

    DOEpatents

    Sarin, Vinod K.

    1991-01-01

    A process for depositing a high temperature stress and oxidation resistant coating on a silicon nitride- or silicon carbide-based substrate body. A gas mixture is passed over the substrate at about 900.degree.-1500.degree. C. and about 1 torr to about ambient pressure. The gas mixture includes one or more halide vapors with other suitable reactant gases. The partial pressure ratios, flow rates, and process times are sufficient to deposit a continuous, fully dense, adherent coating. The halide and other reactant gases are gradually varied during deposition so that the coating is a graded coating of at least two layers. Each layer is a graded layer changing in composition from the material over which it is deposited to the material of the layer and further to the material, if any, deposited thereon, so that no clearly defined compositional interfaces exist. The gases and their partial pressures are varied according to a predetermined time schedule and the halide and other reactant gases are selected so that the layers include (a) an adherent, continuous intermediate layer about 0.5-20 microns thick of an aluminum nitride or an aluminum oxynitride material, over and chemically bonded to the substrate body, and (b) an adherent, continuous first outer layer about 0.5-900 microns thick including an oxide of aluminum or zirconium over and chemically bonded to the intermediate layer.

  10. Stress Administered Prior to Encoding Impairs Neutral but Enhances Emotional Long-Term Episodic Memories

    ERIC Educational Resources Information Center

    Payne, Jessica D.; Jackson, Eric D.; Hoscheidt, Siobhan; Ryan, Lee; Jacobs, W. Jake; Nadel, Lynn

    2007-01-01

    Stressful events frequently comprise both neutral and emotionally arousing information, yet the impact of stress on emotional and neutral events is still not fully understood. The hippocampus and frontal cortex have dense concentrations of receptors for stress hormones, such as cortisol, which at high levels can impair performance on hippocampally…

  11. Role of composition, bond covalency, and short-range order in the disordering of stannate pyrochlores by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Tracy, Cameron L.; Shamblin, Jacob; Park, Sulgiye; Zhang, Fuxiang; Trautmann, Christina; Lang, Maik; Ewing, Rodney C.

    2016-08-01

    A2S n2O7 (A =Nd ,Sm,Gd,Er,Yb,and Y) materials with the pyrochlore structure were irradiated with 2.2 GeV Au ions to systematically investigate disordering of this system in response to dense electronic excitation. Structural modifications were characterized, over multiple length scales, by transmission electron microscopy, x-ray diffraction, and Raman spectroscopy. Transformations to amorphous and disordered phases were observed, with disordering dominating the structural response of materials with small A -site cation ionic radii. Both the disordered and amorphous phases were found to possess weberite-type local ordering, differing only in that the disordered phase exhibits a long-range, modulated arrangement of weberite-type structural units into an average defect-fluorite structure, while the amorphous phase remains fully aperiodic. Comparison with the behavior of titanate and zirconate pyrochlores showed minimal influence of the high covalency of the Sn-O bond on this phase behavior. An analytical model of damage accumulation was developed to account for simultaneous amorphization and recrystallization of the disordered phase during irradiation.

  12. Influence of Sintering Temperature on Hardness and Wear Properties of TiN Nano Reinforced SAF 2205

    NASA Astrophysics Data System (ADS)

    Oke, S. R.; Ige, O. O.; E Falodun, O.; Obadele, B. A.; Mphalele, M. R.; Olubambi, P. A.

    2017-12-01

    Conventional duplex stainless steel degrade in wear and mechanical properties at high temperature. Attempts have been made by researchers to solve this problems leading to the dispersion of second phase particles into duplex matrix. Powder metallurgy methods have been used to fabricate dispersion strengthened steels with a challenge of obtaining fully dense composite and grain growth. This could be resolved by appropriate selection of sintering parameters especially temperature. In this research, spark plasma sintering was utilized to fabricate nanostructured duplex stainless steel grade SAF 2205 with 5 wt.% nano TiN addition at different temperatures ranging from 1000 °C to 1200 °C. The effect of sintering temperature on the microstructure, density, hardness and wear of the samples was investigated. The results showed that the densities and grain sizes of the sintered nanocomposites increased with increasing the sintering temperature. The microstructures reveal ferrite and austenite grains with fine precipitates within the ferrite grains. The study of the hardness and wear behaviors, of the samples indicated that the optimum properties were obtained for the sintering temperature of 1150 °C.

  13. THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dressing, Courtney D.; Charbonneau, David; Dumusque, Xavier

    Kepler-93b is a 1.478 ± 0.019 R {sub ⊕} planet with a 4.7 day period around a bright (V = 10.2), astroseismically characterized host star with a mass of 0.911 ± 0.033 M {sub ☉} and a radius of 0.919 ± 0.011 R {sub ☉}. Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02 ± 0.68 M {sub ⊕}. The corresponding high density of 6.88 ± 1.18 g cm{sup –3} is consistent with a rocky composition of primarily iron andmore » magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1 and 6 M {sub ⊕}, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses >6 M {sub ⊕}. All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1-6 M {sub ⊕} planets.« less

  14. Lattice thermal conductivity of silicate glasses at high pressures

    NASA Astrophysics Data System (ADS)

    Chang, Y. Y.; Hsieh, W. P.

    2016-12-01

    Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.

  15. Fully Printed Memristors from Cu-SiO2 Core-Shell Nanowire Composites

    NASA Astrophysics Data System (ADS)

    Catenacci, Matthew J.; Flowers, Patrick F.; Cao, Changyong; Andrews, Joseph B.; Franklin, Aaron D.; Wiley, Benjamin J.

    2017-07-01

    This article describes a fully printed memory in which a composite of Cu-SiO2 nanowires dispersed in ethylcellulose acts as a resistive switch between printed Cu and Au electrodes. A 16-cell crossbar array of these memristors was printed with an aerosol jet. The memristors exhibited moderate operating voltages (˜3 V), no degradation over 104 switching cycles, write speeds of 3 μs, and extrapolated retention times of 10 years. The low operating voltage enabled the programming of a fully printed 4-bit memristor array with an Arduino. The excellent performance of these fully printed memristors could help enable the creation of fully printed RFID tags and sensors with integrated data storage.

  16. Grained composite materials prepared by combustion synthesis under mechanical pressure

    DOEpatents

    Dunmead, Stephen D.; Holt, Joseph B.; Kingman, Donald D.; Munir, Zuhair A.

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  17. A dense and strong bonding collagen film for carbon/carbon composites

    NASA Astrophysics Data System (ADS)

    Cao, Sheng; Li, Hejun; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-01

    A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H2O2 solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  18. Growth Of Oriented Crystals At Polymerized Membranes

    DOEpatents

    Charych, Deborah H. , Berman, Amir

    2000-01-25

    The present invention relates to methods and compositions for the growth and alignment of crystals at biopolymeric films. The methods and compositions of the present invention provide means to generate a variety of dense crystalline ceramic films, with totally aligned crystals, at low temperatures and pressures, suitable for use with polymer and plastic substrates.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Stephanie B.; Harding, Eric C.; Knapp, Patrick F.

    The burning core of an inertial confinement fusion (ICF) plasma produces bright x-rays at stagnation that can directly diagnose core conditions essential for comparison to simulations and understanding fusion yields. These x-rays also backlight the surrounding shell of warm, dense matter, whose properties are critical to understanding the efficacy of the inertial confinement and global morphology. In this work, we show that the absorption and fluorescence spectra of mid-Z impurities or dopants in the warm dense shell can reveal the optical depth, temperature, and density of the shell and help constrain models of warm, dense matter. This is illustrated bymore » the example of a high-resolution spectrum collected from an ICF plasma with a beryllium shell containing native iron impurities. Lastly, analysis of the iron K-edge provides model-independent diagnostics of the shell density (2.3 × 10 24 e/cm 3) and temperature (10 eV), while a 12-eV red shift in Kβ and 5-eV blue shift in the K-edge discriminate among models of warm dense matter: Both shifts are well described by a self-consistent field model based on density functional theory but are not fully consistent with isolated-atom models using ad-hoc density effects.« less

  20. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage

    DOE PAGES

    Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul; ...

    2016-02-23

    Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H 2 per litre inmore » the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. In conclusion, these multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.« less

  1. Flexible composite radiation detector

    DOEpatents

    Cooke, D Wayne [Santa Fe, NM; Bennett, Bryan L [Los Alamos, NM; Muenchausen, Ross E [Los Alamos, NM; Wrobleski, Debra A [Los Alamos, NM; Orler, Edward B [Los Alamos, NM

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  2. Cloud photogrammetry with dense stereo for fisheye cameras

    NASA Astrophysics Data System (ADS)

    Beekmans, Christoph; Schneider, Johannes; Läbe, Thomas; Lennefer, Martin; Stachniss, Cyrill; Simmer, Clemens

    2016-11-01

    We present a novel approach for dense 3-D cloud reconstruction above an area of 10 × 10 km2 using two hemispheric sky imagers with fisheye lenses in a stereo setup. We examine an epipolar rectification model designed for fisheye cameras, which allows the use of efficient out-of-the-box dense matching algorithms designed for classical pinhole-type cameras to search for correspondence information at every pixel. The resulting dense point cloud allows to recover a detailed and more complete cloud morphology compared to previous approaches that employed sparse feature-based stereo or assumed geometric constraints on the cloud field. Our approach is very efficient and can be fully automated. From the obtained 3-D shapes, cloud dynamics, size, motion, type and spacing can be derived, and used for radiation closure under cloudy conditions, for example. Fisheye lenses follow a different projection function than classical pinhole-type cameras and provide a large field of view with a single image. However, the computation of dense 3-D information is more complicated and standard implementations for dense 3-D stereo reconstruction cannot be easily applied. Together with an appropriate camera calibration, which includes internal camera geometry, global position and orientation of the stereo camera pair, we use the correspondence information from the stereo matching for dense 3-D stereo reconstruction of clouds located around the cameras. We implement and evaluate the proposed approach using real world data and present two case studies. In the first case, we validate the quality and accuracy of the method by comparing the stereo reconstruction of a stratocumulus layer with reflectivity observations measured by a cloud radar and the cloud-base height estimated from a Lidar-ceilometer. The second case analyzes a rapid cumulus evolution in the presence of strong wind shear.

  3. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    NASA Astrophysics Data System (ADS)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.; Ali, Munazza Z.

    2016-06-01

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found which depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.

  4. Electrochemical properties of composite cathodes using Sm doped layered perovskite for intermediate temperature-operating solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Wook; Azad, Abul K.; Irvine, John T. S.; Choi, Won Seok; Kang, Hyunil; Kim, Jung Hyun

    2018-02-01

    SmBaCo2O5+d (SBCO) showed the lowest observed Area Specific Resistance (ASR) value in the LnBaCo2O5+d (Ln: Pr, Nd, Sm, and Gd) oxide system for the overall temperature ranges tested. The ASR of a composite cathode (mixture of SBCO and Ce0.9Gd0.1O2-d) on a Ce0.9Gd0.1O2-d (CGO91) electrolyte decreased with respect to the CGO91 content; the percolation limit was also achieved for a 50 wt% SBCO and 50 wt% CGO91 (SBCO50) composite cathode. The ASRs of SBCO50 on the dense CGO91 electrolyte in the overall temperature range of 500-750 °C were relatively lower than those of SBCO50 on the CGO91 coated dense 8 mol% yttria-stabilized zirconia (8YSZ) electrolyte for the same temperature range. From 750 °C and for all higher temperatures tested, however, the ASRs of SBCO50 on the CGO91 coated dense 8YSZ electrolyte were lower than those of the CGO91 electrolyte. The maximum power densities of SBCO50 on the Ni-8YSZ/8YSZ/CGO91 buffer layer were 1.034 W cm-2 and 0.611 W cm-2 at 800 °C and 700 °C.

  5. Reduction of unsaturated compounds under interstellar conditions: chemoselective reduction of C≡C and C=C bonds over C=O functional group

    NASA Astrophysics Data System (ADS)

    Jonusas, Mindaugas; Guillemin, Jean-Claude; Krim, Lahouari

    2017-07-01

    The knowledge of the H-addition reactions on unsaturated organic molecules bearing a triple or a double carbon-carbon bond such as propargyl or allyl alcohols and a CO functional group such as propynal, propenal or propanal may play an important role in the understanding of the chemical complexity of the interstellar medium. Why different aldehydes like methanal, ethanal, propynal and propanal are present in dense molecular clouds while the only alcohol detected in those cold regions is methanol? In addition, ethanol has only been detected in hot molecular cores. Are those saturated and unsaturated aldehyde and alcohol species chemically linked in molecular clouds through solid phase H-addition surface reactions or are they formed through different chemical routes? To answer such questions, we have investigated a hydrogenation study of saturated and unsaturated aldehydes and alcohols at 10 K. We prove through this experimental study that while pure unsaturated alcohol ices bombarded by H atoms lead to the formation of the corresponding fully or partially saturated alcohols, surface H-addition reactions on unsaturated aldehyde ices exclusively lead to the formation of fully saturated aldehyde. Such results show that in addition to a chemoselective reduction of C≡C and C=C bonds over the C=O group, there is no link between aldehydes and their corresponding alcohols in reactions involving H atoms in dense molecular clouds. Consequently, this could be one of the reasons why some aldehydes such as propanal are abundant in dense molecular clouds in contrast to the non-detection of alcohol species larger than methanol.

  6. Microstructure and Mechanical Property of SiCf/SiC and Cf/SiC Composites

    NASA Astrophysics Data System (ADS)

    Lee, S. P.; Cho, K. S.; Lee, H. U.; Lee, J. K.; Bae, D. S.; Byun, J. H.

    2011-10-01

    The mechanical properties of SiC based composites reinforced with different types of fabrics have been investigated, in conjunction with the detailed analyses of their microstructures. The thermal shock properties of SiCf/SiC composites were also examined. All composites showed a dense morphology in the matrix region. Carbon coated PW-SiCf/SiC composites had a good fracture energy, even if their strength was lower than that of PW-Cf/SiC composites. SiCf/SiC composites represented a great reduction of flexural strength at the thermal shock temperature difference of 300 °C.

  7. Thermoelctric Properties of Bi and Bismuth Telluride Composites

    NASA Astrophysics Data System (ADS)

    Huber, Tito E.; Calcao, Ricky

    1998-03-01

    It has been suggested that microengineering traditional thermoelectric materials into composites may leadto asignificant improvement in their thermoelectric performance. One approach for the fabrication of nanostructured materials is the utilization of nanochannel insulators as a matrix for the synthesis of dense composites using high pressure injection of the melt. We will discuss the synthesis and structural properties of oriented Bi and Bismuth Telluride wire arrays prepared with this technique. Funded by the Army Research Office.

  8. Process for fabrication of large titanium diboride ceramic bodies

    DOEpatents

    Moorhead, Arthur J.; Bomar, E. S.; Becher, Paul F.

    1989-01-01

    A process for manufacturing large, fully dense, high purity TiB.sub.2 articles by pressing powders with a sintering aid at relatively low temperatures to reduce grain growth. The process requires stringent temperature and pressure applications in the hot-pressing step to ensure maximum removal of sintering aid and to avoid damage to the fabricated article or the die.

  9. Thinning balsam fir thickets with soil sterilants

    Treesearch

    Arthur C. Hart

    1961-01-01

    Under certain conditions that we do not yet fully understand, balsam fir has a tendency to form dense thickets that cause stagnation of growth. This condition is common throughout the spruce-fir region, and it presents the landowner with one of his most perplexing management problems. A typical thicket averaging 15 feet tall may contain 5,000 to 10,000 stems per acre (...

  10. Spin-resolved band structure of a densely packed Pb monolayer on Si(111)

    NASA Astrophysics Data System (ADS)

    Brand, C.; Muff, S.; Fanciulli, M.; Pfnür, H.; Tringides, M. C.; Dil, J. H.; Tegenkamp, C.

    2017-07-01

    Monolayer structures of Pb on Si(111) attracted recently considerable interest as superconductivity was found in these truly two-dimensional (2D) structures. In this study, we analyzed the electronic surface band structure of the so-called striped incommensurate Pb phase with 4/3 ML coverage by means of spin-resolved photoemission spectroscopy. Our results fully agree with density functional theory calculations done by Ren et al. [Phys. Rev. B 94, 075436 (2016), 10.1103/PhysRevB.94.075436]. We observe a local Zeeman-type splitting of a fully occupied and spin-polarized surface band at the K¯√{3} points. The growth of this densely packed Pb structure results in the formation of imbalanced rotational domains, which triggered the detection of C3 v symmetry forbidden spin components for surface states around the Fermi energy. Moreover, the Fermi surface of the metallic surface state of this phase is Rashba spin split and revealed a pronounced warping. However, the 2D nesting vectors are incommensurate with the atomic structure, thus keeping this system rather immune against charge density wave formation and possibly enabling a superconducting behavior.

  11. Fabrication and Characterization of Functionally Graded Cathodes for Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Simonet, J.; Kapelski, G.; Bouvard, D.

    2008-02-01

    Solid oxide fuel cells are multi-layered designed. The most prevalent structure is an anode supported cell with a thick porous layer of nickel oxide NiO and yttrium stabilized zirconia (YSZ) composite acting as an anode, a thin dense layer of YSZ as an electrolyte, a composite thin porous layer of lanthanum strontium manganate LSM and YSZ and a current collector layer of porous LSM. Regular operating temperature is 1000 °C. The industrial development requires designing cathodes with acceptable electrochemical and mechanical properties at a lower temperature, typically between 700 and 800 °C. A solution consists in designing composite bulk cathodes with more numerous electro-chemical reaction sites. This requirement could be met by grading the composition of the cathode in increasing the YSZ volume fraction near the electrolyte and the LSM volume fraction near the current collector layer so that the repartition of reaction sites and the interfacial adhesion between the cathode and electrolyte layers are optimal. The fabrication of graded composite cathode has been investigated using a sedimentation process that consists of preparing a suspension containing the powder mixture and allowing the particles to fall by gravity upon a substrate. Different composite cathodes with continuous composition gradient have been obtained by sedimentation of LSM and YSZ powder mixture upon a dense YSZ substrate and subsequent firing. Their compositions and microstructures have been analysed with Scanning Electron Microscope (SEM) and Electron Dispersive Spectrometry (EDS).

  12. Composite oxygen ion transport element

    DOEpatents

    Chen, Jack C [Getzville, NY; Besecker, Charles J [Batavia, IL; Chen, Hancun [Williamsville, NY; Robinson, Earil T [Mentor, OH

    2007-06-12

    A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

  13. Mineralogy of Gas Hydrate Bearing Sediment in Green Canyon Block 955 Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Heber, R.; Kinash, N.; Cook, A.; Sawyer, D.; Sheets, J.; Johnson, J. E.

    2017-12-01

    Natural gas hydrates are of interest as a future hydrocarbon source, however, the formation and physical properties of such systems are not fully understood. In May 2017, the University of Texas drilled two holes in Green Canyon Block 955, northern Gulf of Mexico to collect pressurized core from a thick, 100 m accumulation of gas hydrate in a silt dominated submarine canyon levee system. The expedition, known as UT-GOM2-01, collected 21, 10-m pressure cores from Holes H002 and H005. Approximately half of the cores successfully pressurized and were fully recovered. Unsuccessful cores that did not pressurize generally had low core recovery. By analyzing the sediment composition in known gas hydrate reservoirs, we can construct a more detailed picture of how and why gas hydrates accumulate, as mineralogy can affect physical properties such as porosity and permeability as well as geophysical measurements such as resistivity. Using X-ray diffraction (XRD) on bulk sediment powders, we determined the bulk mineralogy of the samples. Moreover, we investigated drilling mud contamination using XRD and light optical analysis. In some cores, contamination was easily recognized visually as dense sludge between the core barrel and the recovered sediment core, however drilling mud is best observed both along the liner and interbedded within the sediment on X-ray computed tomography scans. To fully identify the presence and influence of drilling mud, we use XRD to analyze samples on cores collected both while drilling mud was used in hole and when only seawater was used in hole and consider the density anomalies observed on the XCT scans. The preliminary XRD light optical microscopy results show that the silt-dominated reservoir is primarily composed of quartz, with minor alkali feldspar, amphibole, muscovite, dolomite, and calcite. Samples from intervals with suspected drilling mud contamination show a similar composition, but with the addition of barite, a common component in drilling mud. Understanding why contamination occurs will improve the coring process and ensure maximum recovery in the future. The XRD data also show the presence of 7-angstrom clay minerals, most likely chlorite and serpentine, but more analysis is required in order to verify the identification and to establish relative abundances of each mineral.

  14. Method for forming fibrous silicon carbide insulating material

    DOEpatents

    Wei, G.C.

    1983-10-12

    A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

  15. Method for forming fibrous silicon carbide insulating material

    DOEpatents

    Wei, George C.

    1984-01-01

    A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

  16. Preliminary evaluation of the publicly available Laboratory for Breast Radiodensity Assessment (LIBRA) software tool: comparison of fully automated area and volumetric density measures in a case-control study with digital mammography.

    PubMed

    Keller, Brad M; Chen, Jinbo; Daye, Dania; Conant, Emily F; Kontos, Despina

    2015-08-25

    Breast density, commonly quantified as the percentage of mammographically dense tissue area, is a strong breast cancer risk factor. We investigated associations between breast cancer and fully automated measures of breast density made by a new publicly available software tool, the Laboratory for Individualized Breast Radiodensity Assessment (LIBRA). Digital mammograms from 106 invasive breast cancer cases and 318 age-matched controls were retrospectively analyzed. Density estimates acquired by LIBRA were compared with commercially available software and standard Breast Imaging-Reporting and Data System (BI-RADS) density estimates. Associations between the different density measures and breast cancer were evaluated by using logistic regression after adjustment for Gail risk factors and body mass index (BMI). Area under the curve (AUC) of the receiver operating characteristic (ROC) was used to assess discriminatory capacity, and odds ratios (ORs) for each density measure are provided. All automated density measures had a significant association with breast cancer (OR = 1.47-2.23, AUC = 0.59-0.71, P < 0.01) which was strengthened after adjustment for Gail risk factors and BMI (OR = 1.96-2.64, AUC = 0.82-0.85, P < 0.001). In multivariable analysis, absolute dense area (OR = 1.84, P < 0.001) and absolute dense volume (OR = 1.67, P = 0.003) were jointly associated with breast cancer (AUC = 0.77, P < 0.01), having a larger discriminatory capacity than models considering the Gail risk factors alone (AUC = 0.64, P < 0.001) or the Gail risk factors plus standard area percent density (AUC = 0.68, P = 0.01). After BMI was further adjusted for, absolute dense area retained significance (OR = 2.18, P < 0.001) and volume percent density approached significance (OR = 1.47, P = 0.06). This combined area-volume density model also had a significantly (P < 0.001) improved discriminatory capacity (AUC = 0.86) relative to a model considering the Gail risk factors plus BMI (AUC = 0.80). Our study suggests that new automated density measures may ultimately augment the current standard breast cancer risk factors. In addition, the ability to fully automate density estimation with digital mammography, particularly through the use of publically available breast density estimation software, could accelerate the translation of density reporting in routine breast cancer screening and surveillance protocols and facilitate broader research into the use of breast density as a risk factor for breast cancer.

  17. IMEC-9: The 9th Israel Materials Engineering Conference. Program & Abstracts

    DTIC Science & Technology

    1999-12-07

    non- toxic , magnetite (FesC^) nanoparticles of very narrow size distribution in sizes ranging from approximately 20 nm up to 0.1 urn. The process for...Israel 17 Composites I Hall G Chair: R. Albalak 13:30 -13:50 Synthesis of Dense Oxide -Based In Situ Composites via Thermal Explosion/SHS...Tsionsky, Israel 16:00 -16:20 The Effect of Composition and Microstructure on the Corrosion Behavior of Magnesium- Aluminium Alloys P. Uzan, D. Eliezer

  18. Method for joining carbon-carbon composites to metals

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Moorhead, Arthur J.

    1997-01-01

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to "wick" into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy.

  19. Method for joining carbon-carbon composites to metals

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Moorhead, A.J.

    1997-07-15

    A method for joining carbon-carbon composites to metals by brazing. Conventional brazing of recently developed carbon-bonded carbon fiber (CBCF) material to a metal substrate is limited by the tendency of the braze alloy to ``wick`` into the CBCF composite rather than to form a strong bond. The surface of the CBCF composite that is to be bonded is first sealed with a fairly dense carbonaceous layer achieved by any of several methods. The sealed surface is then brazed to the metal substrate by vacuum brazing with a Ti-Cu-Be alloy. 1 fig.

  20. Histological analysis of the structural composition of ankle ligaments.

    PubMed

    Rein, Susanne; Hagert, Elisabet; Schneiders, Wolfgang; Fieguth, Armin; Zwipp, Hans

    2015-02-01

    Various ankle ligaments have different structural composition. The aim of this study was to analyze the morphological structure of ankle ligaments to further understand their function in ankle stability. One hundred forty ligaments from 10 fresh-frozen cadaver ankle joints were dissected: the calcaneofibular, anterior, and posterior talofibular ligaments; the inferior extensor retinaculum, the talocalcaneal oblique ligament, the canalis tarsi ligament; the deltoid ligament; and the anterior tibiofibular ligament. Hematoxylin-eosin and Elastica van Gieson stains were used for determination of tissue morphology. Three different morphological compositions were identified: dense, mixed, and interlaced compositions. Densely packed ligaments, characterized by parallel bundles of collagen, were primarily seen in the lateral region, the canalis tarsi, and the anterior tibiofibular ligaments. Ligaments with mixed tight and loose parallel bundles of collagenous connective tissue were mainly found in the inferior extensor retinaculum and talocalcaneal oblique ligament. Densely packed and fiber-rich interlacing collagen was primarily seen in the areas of ligament insertion into bone of the deltoid ligament. Ligaments of the lateral region, the canalis tarsi, and the anterior tibiofibular ligaments have tightly packed, parallel collagen bundles and thus can resist high tensile forces. The mixed tight and loose, parallel oriented collagenous connective tissue of the inferior extensor retinaculum and the talocalcaneal oblique ligament support the dynamic positioning of the foot on the ground. The interlacing collagen bundles seen at the insertion of the deltoid ligament suggest that these insertion areas are susceptible to tension in a multitude of directions. The morphology and mechanical properties of ankle ligaments may provide an understanding of their response to the loads to which they are subjected. © The Author(s) 2015.

  1. Multiphase-Multifunctional Ceramic Coatings

    DTIC Science & Technology

    2013-06-30

    were conducted at 1200-1600° C from 10-24 h. Densification of powders in the pyrochlore-fuorite system was also performed by Spark Plasma Sintering ...capability with emphasis on improving toughness and phase stability. The primary goal was clearly accomplished by developing an instrumented air plasma ...composition. Coating compositions were synthesized by atmospheric plasma spray (APS) at CINVESTAV facilities, and dense monolithic counterparts were

  2. From dense monomer salt crystals to CO2 selective microporous polyimides via solid-state polymerization.

    PubMed

    Unterlass, Miriam M; Emmerling, Franziska; Antonietti, Markus; Weber, Jens

    2014-01-14

    Fully aromatic polyimides are synthesized via solid-state polymerization of the corresponding monomer salts. The crystal structure of salts shows strong hydrogen bonding of the reactive groups and thereby paves the way for solid-state transformations. The polycondensation yields copies of the initial salt crystallite habits, accompanied by the development of a porosity especially suited for CO2.

  3. Thermodynamics of Thomas-Fermi screened Coulomb systems

    NASA Technical Reports Server (NTRS)

    Firey, B.; Ashcroft, N. W.

    1977-01-01

    We obtain in closed analytic form, estimates for the thermodynamic properties of classical fluids with pair potentials of Yukawa type, with special reference to dense fully ionized plasmas with Thomas-Fermi or Debye-Hueckel screening. We further generalize the hard-sphere perturbative approach used for similarly screened two-component mixtures, and demonstrate phase separation in this simple model of a liquid mixture of metallic helium and hydrogen.

  4. Experimental sintering of ash at conduit conditions and implications for the longevity of tuffisites

    NASA Astrophysics Data System (ADS)

    Gardner, James E.; Wadsworth, Fabian B.; Llewellin, Edward W.; Watkins, James M.; Coumans, Jason P.

    2018-03-01

    Escape of gas from magma in the conduit plays a crucial role in mitigating explosivity. Tuffisite veins—ash-filled cracks that form in and around volcanic conduits—represent important gas escape pathways. Sintering of the ash infill decreases its porosity, eventually forming dense glass that is impermeable to gas. We present an experimental investigation of surface tension-driven sintering and associated densification of rhyolitic ash under shallow conduit conditions. Suites of isothermal (700-800 °C) and isobaric H2O pressure (20 and 40 MPa) experiments were run for durations of 5-90 min. Obsidian powders with two different size distributions were used: 1-1600 μm (mean size = 89 μm), and 63-400 μm (mean size = 185 μm). All samples evolved similarly through four textural phases: phase 1—loose and cohesion-less particles; phase 2—particles sintered at contacts and surrounded by fully connected tortuous pore space of up to 40% porosity; phase 3—continuous matrix of partially coalesced particles that contain both isolated spherical vesicles and connected networks of larger, contorted vesicles; phase 4—dense glass with 2-5% fully isolated vesicles that are mainly spherical. Textures evolve faster at higher temperature and higher H2O pressure. Coarse samples sinter more slowly and contain fewer, larger vesicles when fully sintered. We quantify the sintering progress by measuring porosity as a function of experimental run-time, and find an excellent collapse of data when run-time is normalized by the sintering timescale {λ}_s=η \\overline{R}/σ , where η is melt viscosity, \\overline{R} is mean particle radius, and σ is melt-gas surface tension. Because timescales of diffusive H2O equilibration are generally fast compared to those of sintering, the relevant melt viscosity is calculated from the solubility H2O content at experimental temperature and pressure. We use our results to develop a framework for estimating ash sintering rates under shallow conduit conditions, and predict that sintering of ash to dense glass can seal tuffisites in minutes to hours, depending on pressure (i.e., depth), temperature, and ash size.

  5. Mars: Difference Between Lowland and Highland Basalts Confirms A Tendency Observed In Terrestrial and Lunar Basaltic Compositions

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable 1 to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. 2 MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, 3 kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- 4 terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular 5 momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- 6 paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 7 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for 8 these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. 9 MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. Rock density is a very important factor for constructing tectonic blocks in celestial bodies (Theorem 4, [1]). Angular momenta regulation of different level tectonic blocks in rotating bodies is more effec- tively fulfilled at the crustal level as this level has the longest radius. Thus, composition of crustal basalts is very sensitive to hypsometric (tectonic0 position of certain plan- etary blocks. At Earth oceanic hollows are filled with Fe-rich tholeiites (the deepest Pacific depression is filled with the richest in Fe tholeiites), on continents prevail com- paratively Mg-rich continental basalts. Mare basalts of the Moon are predominantly Fe,Ti-rich. At higher crustal levels appear less dense feldspar-rich, KREEP basalts. This tendency for martian basalts became clear after TES experiment on MGS [2]. The TES data on mineralogy of low-albedo regions show that type1 spectra belong to less dense basic rocks (feldspar 50%, pyroxene 25%) than type2 spectra (feldspar 35%, pyroxene + glass 35%). It means that the highland basaltoids are less dense than the lowland ones. It is interesting that the type1 spectral shape is similar to a spec- trum of the Deccan Traps flood basalts [2]. These continental basalts of the low-lying Indostan subcontinent are known to be relatively Fe-rich and approach the oceanic tholeiites. Global gravity, magnetic, basaltic composition data, available upto now for these bodies: Earth, Moon, Mars, indicate that there is a regular planetology capable to make scientific predictions. References: [1] Kochemasov G.G. (1999) Theorems of wave planetary tectonics // Geophys. Res. Abstr., v. 1,# 3, 700; [2] Bandfield J.L., Hamilton V.E., Christensen Ph.R. (2000) A global view of martian surface composi- tions from MGS-TES // Science, v.287, # 5458, 1626-1630. MARS: DIFFERENCE BETWEEN LOWLAND AND HIGHLAND BASALTS CONFIRMS A TENDENCY OBSERVED IN TERRESTRIAL AND LUNAR BASALTIC COMPOSITIONS G. Kochemasov, IGEM RAS, 35 Staromonetny, Moscow 109017, Russia, 10 kochem@igem.ru, Fax: (007)(095) 230 21 79 Basalts are very widespread lithology on surfaces of terrestrial planets because their mantles, by general opinion, are predominantly basic in composition. Planetary sur- face unevennesses are often filled with this very fluid under high temperatures ma- terial. Basaltic compositions are however variable and this is helped by a wide iso- morphism of constituent minerals: Na-Ca feldspars and Fe-Mg dark minerals. Ratios between light and dark minerals as well as Fe/Mg ratios in dark minerals play an important role in regulation of basaltic densities. v 11

  6. Bioresorbable β-TCP-FeAg nanocomposites for load bearing bone implants: High pressure processing, properties and cell compatibility.

    PubMed

    Swain, S K; Gotman, I; Unger, R; Gutmanas, E Y

    2017-09-01

    In this paper, the processing and properties of iron-toughened bioresorbable β-tricalcium phosphate (β-TCP) nanocomposites are reported. β-TCP is chemically similar to bone mineral and thus a good candidate material for bioresorbable bone healing devices; however intrinsic brittleness and low bending strength make it unsuitable for use in load-bearing sites. Near fully dense β-TCP-matrix nanocomposites containing 30vol% Fe, with and without addition of silver, were produced employing high energy attrition milling of powders followed by high pressure consolidation/cold sintering at 2.5GPa. In order to increase pure iron's corrosion rate, 10 to 30vol% silver were added to the metal phase. The degradation behavior of the developed composite materials was studied by immersion in Ringer's and saline solutions for up to 1month. The mechanical properties, before and after immersion, were tested in compression and bending. All the compositions exhibited high mechanical strength, the strength in bending being several fold higher than that of polymer toughened β-TCP-30PLA nanocomposites prepared by the similar procedure of attrition milling and cold sintering, and of pure high-temperature sintered β-TCP. Partial substitution of iron with silver led to an increase in both strength and ductility. Furthermore, the galvanic action of silver particles dispersed in the iron phase significantly accelerated in vitro degradation of β-TCP-30(Fe-Ag) nanocomposites. After 1month immersion, the composites retained about 50% of their initial bending strength. In cell culture experiments, β-TCP-27Fe3Ag nanocomposites exhibited no signs of cytotoxicity towards human osteoblasts suggesting that they can be used as an implant material. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Arbitrary amplitude electrostatic wave propagation in a magnetized dense plasma containing helium ions and degenerate electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, S., E-mail: shahzadm100@gmail.com; Sadiq, Safeer; Haque, Q.

    2016-06-15

    The obliquely propagating arbitrary amplitude electrostatic wave is studied in a dense magnetized plasma having singly and doubly charged helium ions with nonrelativistic and ultrarelativistic degenerate electrons pressures. The Fermi temperature for ultrarelativistic degenerate electrons described by N. M. Vernet [(Cambridge University Press, Cambridge, 2007), p. 57] is used to define ion acoustic speed in ultra-dense plasmas. The pseudo-potential approach is used to solve the fully nonlinear set of dynamic equations for obliquely propagating electrostatic waves in a dense magnetized plasma containing helium ions. The upper and lower Mach number ranges for the existence of electrostatic solitons are found whichmore » depends on the obliqueness of the wave propagation with respect to applied magnetic field and charge number of the helium ions. It is found that only compressive (hump) soliton structures are formed in all the cases and only subsonic solitons are formed for a singly charged helium ions plasma case with nonrelativistic degenerate electrons. Both subsonic and supersonic soliton hump structures are formed for doubly charged helium ions with nonrelativistic degenerate electrons and ultrarelativistic degenerate electrons plasma case containing singly as well as doubly charged helium ions. The effect of propagation direction on the soliton amplitude and width of the electrostatic waves is also presented. The numerical plots are also shown for illustration using dense plasma parameters of a compact star (white dwarf) from literature.« less

  8. Efficiently dense hierarchical graphene based aerogel electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Lu, Chengxing; Peng, Huifen; Zhang, Xin; Wang, Zhenkun; Wang, Gongkai

    2016-08-01

    Boosting gravimetric and volumetric capacitances simultaneously at a high rate is still a discrepancy in development of graphene based supercapacitors. We report the preparation of dense hierarchical graphene/activated carbon composite aerogels via a reduction induced self-assembly process coupled with a drying post treatment. The compact and porous structures of composite aerogels could be maintained. The drying post treatment has significant effects on increasing the packing density of aerogels. The introduced activated carbons play the key roles of spacers and bridges, mitigating the restacking of adjacent graphene nanosheets and connecting lateral and vertical graphene nanosheets, respectively. The optimized aerogel with a packing density of 0.67 g cm-3 could deliver maximum gravimetric and volumetric capacitances of 128.2 F g-1 and 85.9 F cm-3, respectively, at a current density of 1 A g-1 in aqueous electrolyte, showing no apparent degradation to the specific capacitance at a current density of 10 A g-1 after 20000 cycles. The corresponding gravimetric and volumetric capacitances of 116.6 F g-1 and 78.1 cm-3 with an acceptable cyclic stability are also achieved in ionic liquid electrolyte. The results show a feasible strategy of designing dense hierarchical graphene based aerogels for supercapacitors.

  9. Composition and method for removing photoresist materials from electronic components

    DOEpatents

    Davenhall, Leisa B.; Rubin, James B.

    2002-01-01

    The invention is a combination of at least one dense phase fluid and at least one dense phase fluid modifier which can be used to contact substrates for electronic parts such as semiconductor wafers or chips to remove photoresist materials which are applied to the substrates during manufacture of the electronic parts. The dense phase fluid modifier is one selected from the group of cyclic, aliphatic or alicyclic compounds having the functional group: ##STR1## wherein Y is a carbon, oxygen, nitrogen, phosphorus or sulfur atom or a hydrocarbon group having from 1 to 10 carbon atoms, a halogen or halogenated hydrocarbon group having from 1 to 10 carbon atoms, silicon or a fluorinated silicon group; and wherein R.sub.1 and R.sub.2 can be the same or different substituents; and wherein, as in the case where X is nitrogen, R.sub.1 or R.sub.2 may not be present. The invention compositions generally are applied to the substrates in a pulsed fashion in order to remove the hard baked photoresist material remaining on the surface of the substrate after removal of soft baked photoresist material and etching of the barrier layer.

  10. Fine-scale distribution of zooplankton is linked to phytoplankton species composition and abundance in a North Norwegian fjord system

    NASA Astrophysics Data System (ADS)

    Norrbin, F.; Priou, P. D.; Varela, A. P.

    2016-02-01

    We studied the influence of dense layers of phytoplankton and aggregates on shaping the vertical distribution of zooplankton in a North Norwegian fjord using a Video Plankton Recorder (VPR). This instrument provided fine-scale vertical distribution (cm-m scale) of planktonic organisms as well as aggregates of marine snow in relation to environmental conditions. At the height - later stage of the spring phytoplankton bloom in May, the outer part of the fjord was dominated by Phaeocystis pouchetii, while diatoms (Chaetoceros spp.) were dominating in the innermost basin. Small copepods species like Pseudocalanus spp., Microsetella norvegica, and Oithona spp. prevailed over larger copepod species in the inner part of the fjord whereas the outer part was dominated by large copepods like Calanus finmarchicus. While the zooplankton where spread out over the water column during the early stage of the bloom, in May they were linked to the phytoplankton vertical distribution and in the winter situation they were found in deeper waters. Herbivorous zooplankton species were affected by phytoplankton species composition; C. finmarchicus and Pseudocalanus spp. avoided the dense layer of P. pouchetii while herbivorous zooplankton matched the distribution of the diatom-dominated bloom. Small, omnivorous copepod species like Microsetella sp., Oithona sp. and Pseudocalanus sp. were often associated with dense layers of snow aggregates. This distribution may provide a shelter from predators as well as a food source. Natural or anthropogenic-induced changes in phytoplankton composition and aggregate distribution may thus influence food-web interactions.

  11. From Interstellar PAHs and Ices to the Origin of Life

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty years thanks to significant, parallel developments in observational astronomy and laboratory astrophysics. Twenty years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to micron-sized cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In dense molecular clouds, the birthplace of stars and planets, these cold dust particles are coated with mixed molecular ices whose composition is very well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by earlier interstellar chemistry standards, is widespread throughout the Universe. The first part of this lecture will describe how infrared studies of interstellar space, combined with laboratory simulations, have revealed the composition of interstellar ices (the building blocks of comets) and the high abundance and nature of interstellar PAHs. The laboratory database has now enabled us to gain insight into the identities, concentrations, and physical state of many interstellar materials. Within a dense molecular cloud, and especially in the solar nebula during the star and planet formation stage, the materials frozen into interstellar/precometary ices are photoprocessed by ultraviolet light, producing more complex molecules. The remainder of the presentation will focus on the photochemical evolution of these materials and the possible role of these compounds on the early Earth. As these materials are thought to be the building blocks of comets and related to the carbonaceous components of micrometeorites, they are likely to have been important sources of complex organic materials on the early Earth and their composition may be related to the origin of life.

  12. Method of forming and assembly of parts

    DOEpatents

    Ripley, Edward B.

    2010-12-28

    A method of assembling two or more parts together that may be metal, ceramic, metal and ceramic parts, or parts that have different CTE. Individual parts are formed and sintered from particles that leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled, sintered parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

  13. Fully Ceramic Microencapsulated Fuel Development for LWR Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snead, Lance Lewis; Besmann, Theodore M; Terrani, Kurt A

    2012-01-01

    The concept, fabrication, and key feasibility issues of a new fuel form based on the microencapsulated (TRISO-type) fuel which has been specifically engineered for LWR application and compacted within a SiC matrix will be presented. This fuel, the so-called fully ceramic microencapsulated fuel is currently undergoing development as an accident tolerant fuel for potential UO2 replacement in commercial LWRs. While the ability of this fuel to facilitate normal LWR cycle performance is an ongoing effort within the program, this will not be a focus of this paper. Rather, key feasibility and performance aspects of the fuel will be presented includingmore » the ability to fabricate a LWR-specific TRISO, the need for and route to a high thermal conductivity and fully dense matrix that contains neutron poisons, and the performance of that matrix under irradiation and the interaction of the fuel with commercial zircaloy clad.« less

  14. Highly Efficient Surface Enhanced Raman Scattering (SERS) Nanowire/Ag Composites

    DTIC Science & Technology

    2007-01-01

    nanowires are sensitive at low concen- trations, quite repeatable, and inexpensive to produce. Technical Approach: The growth of the Ga2O3 nanowires was...DNT/methanol dilutions. The Ga2O3 /Ag nanowire composite substrates are shown in Fig. 8(a). As can be seen, they consist of a dense random 3D...MATERIALS SCIENCE AND TECHNOLOGY FIGURE 8 (a) Ga2O3 core/Ag shell nanowire composite and (b) comparison of SERS signal for Mesophotonics “Klarite

  15. Dense water plumes modulate richness and productivity of deep sea microbes.

    PubMed

    Luna, Gian Marco; Chiggiato, Jacopo; Quero, Grazia Marina; Schroeder, Katrin; Bongiorni, Lucia; Kalenitchenko, Dimitri; Galand, Pierre E

    2016-12-01

    Growing evidence indicates that dense water formation and flow over the continental shelf is a globally relevant oceanographic process, potentially affecting microbial assemblages down to the deep ocean. However, the extent and consequences of this influence have yet to be investigated. Here it is shown that dense water propagation to the deep ocean increases the abundance of prokaryotic plankton, and stimulates carbon production and organic matter degradation rates. Dense waters spilling off the shelf modifies community composition of deep sea microbial assemblages, leading to the increased relevance of taxa likely originating from the sea surface and the seafloor. This phenomenon can be explained by a combination of factors that interplay during the dense waters propagation, such as the transport of surface microbes to the ocean floor (delivering in our site 0.1 megatons of C), the stimulation of microbial metabolism due to increased ventilation and nutrients availability, the sediment re-suspension, and the mixing with ambient waters along the path. Thus, these results highlight a hitherto unidentified role for dense currents flowing over continental shelves in influencing deep sea microbes. In light of climate projections, this process will affect significantly the microbial functioning and biogeochemical cycling of large sectors of the ocean interior. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. The Mass of Kepler-93b and The Composition of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Dressing, Courtney D.; Charbonneau, David; Dumusque, Xavier; Gettel, Sara; Pepe, Francesco; Collier Cameron, Andrew; Latham, David W.; Molinari, Emilio; Udry, Stéphane; Affer, Laura; Bonomo, Aldo S.; Buchhave, Lars A.; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Haywood, Raphaëlle D.; Johnson, John Asher; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David F.; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Chris

    2015-02-01

    Kepler-93b is a 1.478 ± 0.019 R ⊕ planet with a 4.7 day period around a bright (V = 10.2), astroseismically characterized host star with a mass of 0.911 ± 0.033 M ⊙ and a radius of 0.919 ± 0.011 R ⊙. Based on 86 radial velocity observations obtained with the HARPS-N spectrograph on the Telescopio Nazionale Galileo and 32 archival Keck/HIRES observations, we present a precise mass estimate of 4.02 ± 0.68 M ⊕. The corresponding high density of 6.88 ± 1.18 g cm-3 is consistent with a rocky composition of primarily iron and magnesium silicate. We compare Kepler-93b to other dense planets with well-constrained parameters and find that between 1 and 6 M ⊕, all dense planets including the Earth and Venus are well-described by the same fixed ratio of iron to magnesium silicate. There are as of yet no examples of such planets with masses >6 M ⊕. All known planets in this mass regime have lower densities requiring significant fractions of volatiles or H/He gas. We also constrain the mass and period of the outer companion in the Kepler-93 system from the long-term radial velocity trend and archival adaptive optics images. As the sample of dense planets with well-constrained masses and radii continues to grow, we will be able to test whether the fixed compositional model found for the seven dense planets considered in this paper extends to the full population of 1-6 M ⊕ planets. Based on observations made with the Italian Telescopio Nazionale Galileo (TNG) operated on the island of La Palma by the Fundación Galileo Galilei of the INAF (Istituto Nazionale di Astrofisica) at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  17. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states

    NASA Astrophysics Data System (ADS)

    Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W.; Edmondson, Steve; Malmström, Eva

    2016-08-01

    We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors. Electronic supplementary information (ESI) available: Figures of LCST, polymerization kinetics, melt-processed films, DLS, TGA, precipitated fiber and powder, TEM (of isotropic GO), birefringence, OP-data, DMTA-data and DSC. See DOI: 10.1039/c6nr01502f

  18. Innovative Processing of Composites for Ultra-High Temperature Applications. Book 3

    DTIC Science & Technology

    1993-11-01

    SiC Samples Prepared with Four Preceramic Polymer Infiltration / Pyrolysis (at 15750C) Cycles Figure 21 Scanning Electron...Micrograph of Large Pores near the Surface of Siliconized SIC Sample with Four Preceramic Polymer Infiltration / Pyrolysis (at 1575*C) Cycles II...In order to achieve dense, bulk composites with maximum SiC /Si ratio, two infiltration / pyrolysis cycles were used. S (4) After siliconization,

  19. Human impacts on large benthic foraminifers near a densely populated area of Majuro Atoll, Marshall Islands.

    PubMed

    Osawa, Yoko; Fujita, Kazuhiko; Umezawa, Yu; Kayanne, Hajime; Ide, Yoichi; Nagaoka, Tatsutoshi; Miyajima, Toshihiro; Yamano, Hiroya

    2010-08-01

    Human impacts on sand-producing, large benthic foraminifers were investigated on ocean reef flats at the northeast Majuro Atoll, Marshall Islands, along a human population gradient. The densities of dominant foraminifers Calcarina and Amphistegina declined with distance from densely populated islands. Macrophyte composition on ocean reef flats differed between locations near sparsely or densely populated islands. Nutrient concentrations in reef-flat seawater and groundwater were high near or on densely populated islands. delta(15)N values in macroalgal tissues indicated that macroalgae in nearshore lagoons assimilate wastewater-derived nitrogen, whereas those on nearshore ocean reef flats assimilate nitrogen from other sources. These results suggest that increases in the human population result in high nutrient loading in groundwater and possibly into nearshore waters. High nutrient inputs into ambient seawater may have both direct and indirect negative effects on sand-producing foraminifers through habitat changes and/or the collapse of algal symbiosis. Copyright 2010 Elsevier Ltd. All rights reserved.

  20. Foreign Object Damage Behavior of a SiC/SiC Composite at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Pereira, J. Michael; Gyekenyesi, John P.; Choi, Sung R.

    2004-01-01

    Foreign object damage (FOD) behavior of a gas-turbine grade SiC/SiC ceramic matrix composite (CMC) was determined at 25 and 1316 C, employing impact velocities from 115 to 440 meters per second by 1.59-mm diameter stell-ball projectiles. Two different types of specimen support were used at each temperature: fully supported and partially supported. For a given temperature, the degree of post-impact strength degradation increased with increasing impact velocity, and was greater in a partially supported configuration than in a fully supported one. The elevated-temperature FOD resistance of the composite, particularly under partially supported loading at higher impact velocities greater than or equal to 350 meters per second, was significantly less than the ambient-temperature counterpart, attributed to a weakening effect of the composite. For fully supported loading, frontal contact stress played a major role in generating composite damage; whereas, for partially supported loading, both frontal contact and backside bending stresses were combined sources of damage generation. The SiC/SiC composite was able to survive higher energy impacts without complete structural failure but suffered more strength affecting damage from low energy impacts than AS800 and SN282 silicon nitrides.

  1. Material forming apparatus using a directed droplet stream

    DOEpatents

    Holcomb, David E.; Viswanathan, Srinath; Blue, Craig A.; Wilgen, John B.

    2000-01-01

    Systems and methods are described for rapidly forming precision metallic and intermetallic alloy net shape parts directly from liquid metal droplets. A directed droplet deposition apparatus includes a crucible with an orifice for producing a jet of material, a jet destabilizer, a charging structure, a deflector system, and an impact zone. The systems and methods provide advantages in that fully dense, microstructurally controlled parts can be fabricated at moderate cost.

  2. Energetic additive manufacturing process with feed wire

    DOEpatents

    Harwell, Lane D.; Griffith, Michelle L.; Greene, Donald L.; Pressly, Gary A.

    2000-11-07

    A process for additive manufacture by energetic wire deposition is described. A source wire is fed into a energy beam generated melt-pool on a growth surface as the melt-pool moves over the growth surface. This process enables the rapid prototyping and manufacture of fully dense, near-net shape components, as well as cladding and welding processes. Alloys, graded materials, and other inhomogeneous materials can be grown using this process.

  3. United States Air Force Summer Faculty Research Program. Management Report. Volume 1

    DTIC Science & Technology

    1988-12-01

    sensors , measure reaction characteristics of fuel and oxidizer at various inlet velocities and initial conditions. Application of spectroscopy, high... applications in armament systems. False signals caused by cloud, fog, and snow interfere with proper response of the sensors , and efforts to... sensor for this application have not been fully successful (1-18). Presence of dense clouds, fog, or snow will create false signals and will obscure

  4. Numerical and Analytical Modeling of Laser Deposition with Preheating (Preprint)

    DTIC Science & Technology

    2007-03-01

    temperature materials, Numerical Heat Transfer 11 (1987) 477-491. [9] L. Han, F.W. Liou, K.M. Phatk, Modeling of laser cladding with powder injection... cladding process. This laser additive manufacturing technique allows quick fabrication of fully-dense metallic components directly from Computer...1, laser deposition uses a focused laser beam as a heat source to create a melt pool on an underlying substrate. Powder material is then injected

  5. Dynamic Failure Processes Under Confining Stress in AlON, a Transparent Polycrystalline Ceramic

    DTIC Science & Technology

    2008-12-01

    axes, the dynamic loading is imposed (using MKB) along the second specimen axis and the third axis is used for the ultra-high-speed photography. The...to its optically isotropic cubic crystal structure, fully dense, polycrystalline bodies can be rendered completely transparent, making it a viable... tribological loading conditions. During indentation, the region beneath the indenter is effectively confined due to the surrounding medium, and it

  6. Lessons learned from whole exome sequencing in multiplex families affected by a complex genetic disorder, intracranial aneurysm.

    PubMed

    Farlow, Janice L; Lin, Hai; Sauerbeck, Laura; Lai, Dongbing; Koller, Daniel L; Pugh, Elizabeth; Hetrick, Kurt; Ling, Hua; Kleinloog, Rachel; van der Vlies, Pieter; Deelen, Patrick; Swertz, Morris A; Verweij, Bon H; Regli, Luca; Rinkel, Gabriel J E; Ruigrok, Ynte M; Doheny, Kimberly; Liu, Yunlong; Broderick, Joseph; Foroud, Tatiana

    2015-01-01

    Genetic risk factors for intracranial aneurysm (IA) are not yet fully understood. Genomewide association studies have been successful at identifying common variants; however, the role of rare variation in IA susceptibility has not been fully explored. In this study, we report the use of whole exome sequencing (WES) in seven densely-affected families (45 individuals) recruited as part of the Familial Intracranial Aneurysm study. WES variants were prioritized by functional prediction, frequency, predicted pathogenicity, and segregation within families. Using these criteria, 68 variants in 68 genes were prioritized across the seven families. Of the genes that were expressed in IA tissue, one gene (TMEM132B) was differentially expressed in aneurysmal samples (n=44) as compared to control samples (n=16) (false discovery rate adjusted p-value=0.023). We demonstrate that sequencing of densely affected families permits exploration of the role of rare variants in a relatively common disease such as IA, although there are important study design considerations for applying sequencing to complex disorders. In this study, we explore methods of WES variant prioritization, including the incorporation of unaffected individuals, multipoint linkage analysis, biological pathway information, and transcriptome profiling. Further studies are needed to validate and characterize the set of variants and genes identified in this study.

  7. Shock interactions with heterogeneous energetic materials

    NASA Astrophysics Data System (ADS)

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-01

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet, the majority of computational studies aimed at predicting phenomena affected by these processes, such as the initiation and propagation of detonation waves in explosives or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed. The measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of the microstructure along with a fully dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on the dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide a clear insight into the nature of threshold behavior and are a way to understand complex physical phenomena.

  8. Shock interactions with heterogeneous energetic materials

    DOE PAGES

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-14

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet the majority of computational studies aimed at predicting phenomena affected by these processes, such as initiation and propagation of detonation waves in explosives, or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed.more » Measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics (DFT-MD) derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of microstructure along with a fully-dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide clear insight into the nature of threshold behavior, and are a way to understand complex physical phenomena.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet the majority of computational studies aimed at predicting phenomena affected by these processes, such as initiation and propagation of detonation waves in explosives, or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed.more » Measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics (DFT-MD) derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of microstructure along with a fully-dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide clear insight into the nature of threshold behavior, and are a way to understand complex physical phenomena.« less

  10. Molecular shells in IRC+10216: tracing the mass loss history

    NASA Astrophysics Data System (ADS)

    Cernicharo, J.; Marcelino, N.; Agúndez, M.; Guélin, M.

    2015-03-01

    Thermally-pulsating AGB stars provide three-fourths of the matter returned to the interstellar medium. The mass and chemical composition of their ejecta largely control the chemical evolution of galaxies. Yet, both the mass loss process and the gas chemical composition remain poorly understood. We present maps of the extended 12CO and 13CO emissions in IRC+10216, the envelope of CW Leo, the high mass loss star the closest to the Sun. IRC+10216 is nearly spherical and expands radially with a velocity of 14.5 km s-1. The observations were made On-the-Fly with the IRAM 30 m telescope; their sensibility, calibration, and angular resolution are far higher than all previous studies. The telescope resolution at λ = 1.3 mm (11'' HPBW) corresponds to an expansion time of 500 yr. The CO emission consists of a centrally peaked pedestal and a series of bright, nearly spherical shells. It peaks on CW Leo and remains relatively strong up to rphot = 180''. Further out the emission becomes very weak and vanishes as CO gets photodissociated. As CO is the best tracer of the gas up to rphot, the maps show the mass loss history in the last 8000 yr. The bright CO shells denote over-dense regions. They show that the mass loss process is highly variable on timescales of hundreds of years. The new data, however, do not support previous claims of a strong decrease of the average mass loss in the last few thousand years. The over-dense shells are not perfectly concentric and extend farther to the N-NW. The typical shell separation is 800-1000 yr in the middle of the envelope, but seems to increase outwards. The shell-intershell brightness contrast is ≥3. All those key features can be accounted for if CW Leo has a companion star with a period ≃800 yr that increases the mass loss rate when it comes close to periastron. Higher angular resolution observations are needed to fully resolve the dense shells and measure the density contrast. The latter plays an essential role in our understanding of the envelope chemistry. This work was based on observations carried out with the IRAM 30 m telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Movies associated to Figs. 3, 5, 7, 8, and 10 are available in electronic form at http://www.aanda.orgData cubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/575/A91

  11. High coercivity microcrystalline Nd-rich Nd-Fe-Co-Al-B bulk magnets prepared by direct copper mold casting

    NASA Astrophysics Data System (ADS)

    Zhao, L. Z.; Hong, Y.; Fang, X. G.; Qiu, Z. G.; Zhong, X. C.; Gao, X. S.; Liu, Z. W.

    2016-06-01

    High coercivity Nd25Fe40Co20Al15-xBx (x=7-15) hard magnets were prepared by a simple process of injection casting. Different from many previous investigations on nanocomposite compositions, the magnets in this work contain hard magnetic Nd2(FeCoAl)14B, Nd-rich, and Nd1+ε(FeCo)4B4 phases. The magnetic properties, phase evolution, and microstructure of the as-cast and annealed magnets were investigated. As the boron content increased from 7 to 11 at%, the intrinsic coercivity Hcj of the as-cast magnet increased from 816 to 1140 kA/m. The magnets annealed at 750 °C have shown more regular and smaller grains than the as-cast alloys, especially for the x=11 alloy. The high intrinsic coercivities for the annealed alloys with x=8~11 result from the presence of small-sized grains in the microstructure. The highest Hcj of 1427 kA/m was obtained for the heat treated alloy with x=10. This work provides an alternative approach for preparing fully dense Nd-rich bulk hard magnets with relatively good properties.

  12. Thermodynamic and mechanical properties of epoxy resin DGEBF crosslinked with DETDA by molecular dynamics.

    PubMed

    Tack, Jeremy L; Ford, David M

    2008-06-01

    Fully atomistic molecular dynamics (MD) simulations were used to predict the properties of diglycidyl ether of bisphenol F (DGEBF) crosslinked with curing agent diethyltoluenediamine (DETDA). This polymer is a commercially important epoxy resin and a candidate for applications in nanocomposites. The calculated properties were density and bulk modulus (at near-ambient pressure and temperature) and glass transition temperature (at near-ambient pressure). The molecular topology, degree of curing, and MD force-field were investigated as variables. The models were created by densely packing pre-constructed oligomers of different composition and connectivity into a periodic simulation box. For high degrees of curing (greater than 90%), the density was found to be insensitive to the molecular topology and precise value of degree of curing. Of the two force-fields that were investigated, cff91 and COMPASS, the latter clearly gave more accurate values for the density as compared to experiment. In fact, the density predicted by COMPASS was within 6% of reported experimental values for the highly crosslinked polymer. The predictions of both force-fields for glass transition temperature were within the range of reported experimental values, with the predictions of cff91 being more consistent with a highly cured resin.

  13. Compositional-Spread Discovery of Catalysts for the Growth of Long-Length Dense Forests of Vertically Aligned Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Christen, Hans M.; Puretzky, Alex A.; Cui, Hongtao; Lowndes, Douglas H.; Belay, Kalayu; Geohegan, David B.

    2004-03-01

    The growth of dense forests of vertically aligned arrays of multi-walled carbon nanotubes (VAA-MWNTs) by chemical vapor deposition [CVD] from a single metallic catalyst layer typically self-terminates after only a few hundred microns of tube length. In order to obtain maximal growth to long lengths, a systematic simultaneous study of catalyst composition and thickness is needed performed here by a compositional-spread approach. Using Pulsed-Laser Deposition (PLD), metallic layers with a wedge-shaped thickness profile are deposited onto Al-coated silicon substrates. High temperature annealing of the metal catalyst films in flowing Ar/H2 gas followed by the one-hour growth of VA-MWNTs by CVD using acetylene gas yields VAA-MWNTs. Tube height (and thus the catalytic activity) is determined as function of position and can be analyzed as a function of catalyst thickness and composition. A dependence of tube height as function of catalyst composition (Mo/Fe ratio) demonstrates that a specific catalyst composition exhibits a local maximum in catalytic activity, permitting the extension of nanotube array growth up to 4 millimeters in height. Other combinations of catalysts and the growth of single-walled tubes will be discussed. This research was sponsored by the U.S. Department of Energy under contract DE-AC05-00OR22725 with the Oak Ridge National Laboratory, managed by UT-Battelle, LLC, and the Laboratory-Directed Research and Development Program at ORNL.

  14. Dynamic Consolidation and Investigation of Nanostructural W-Cu / W-Y Cylindrical Billets

    NASA Astrophysics Data System (ADS)

    Godibadze, B.; Dgebuadze, A.; Chagelishvili, E.; Mamniashvili, G.; Peikrishvili, A.

    2018-03-01

    The main purpose of presented work is to obtain W-Cu & W-Y cylindrical bulk nanostructured billets by explosive consolidation technology (ECT) in hot condition, with low porosity near to theoretical densities and improved physical / mechanical properties. Nanocomposites were subjected to densification into cylindrical steel tube containers using hot explosive consolidation (HEC) technology to fabricate high dense cylindrical billets. The first stage : Preliminary explosive densification of the precursor powder blend is carried out at room temperature with a loading intensity up to 10GPa to increase the initial density and to activate the particle surfaces in the blend. The second stage investigation were carried out for the same already predensified billets, but consolidation were conducted in hot conditions, after heating of samples in between 940-11000C, the intensity of loading was equal to 10GPa. Consolidated different type of W-Cu composition containing 10-40% of nanoscale W, during investigation showed that the combination of high temperatures (above 940°C) and two-stage shock wave compression was beneficial to the consolidation of the incompatible pair W-Cu composites, resulting in high densities, good integrity and good electronic properties. The structure and property of the samples obtained, depended on the sizes of tungsten particles. It was established that in comparison with W-Cu composites with coarse tungsten the application of nanoscale W precursors and depending of content of W gives different result. Tungsten is a prime material candidate for the first wall of a future fusion reactor. In this study, the microstructure and microhardness of tungsten-yttrium (W-Y) composites were investigated as a function of Y doping content (0.5÷2 wt. %). It was found that the crystallite sizes and the powder particle sizes were increased as a result of the increase of Y content. Nearly fully dense materials were obtained for W-Y alloys when the Y content was higher than 0.5 wt. %. Investigation revealed that the Y rich phases were complex (W-Y) oxides formed during the sintering process. Also very interesting to use doping chromium with yttrium-containing alloys. e.g. (W - 10÷12 Cr -0.5÷2 Y) wt. %. The extent up to which yttrium acts as an active element improving the adherence and stability of the protective Cr 2 O 3 layer formed during oxidation is assessed. The structure and characteristics of the obtained samples depends on the phase content, distribution of phases and processing parameters during explosive synthesis and consolidation. Cu – (10-30%) W powder mixtures were formed into cylindrical rods using a hot shock wave consolidation (HSWC) process. Different type of Cu - W precursor composition containing 10, 20 and 30% of nanoscale W were consolidated near theoretical density under 900°C The loading intensity was under 10 GPa. The investigation showed that the combination of high temperatures (above 800°C) and two stage shock wave compression was beneficial to the consolidation of the W-Cu & W-Y composites, resulting in high densities, good integrity and good electronic properties.

  15. Nuts Improve Diet Quality Compared to Other Energy-Dense Snacks While Maintaining Body Weight

    PubMed Central

    Tey, Siew Ling; Brown, Rachel; Gray, Andrew; Chisholm, Alexandra; Delahunty, Conor

    2011-01-01

    Previous studies have reported that regular nut consumption reduces cardiovascular disease (CVD) risk and does not promote weight gain despite the fact that nuts are energy-dense. However, no studies have investigated the body composition of those regularly consuming nuts compared to similar intakes of other snacks of equal energy density. This parallel study (n = 118) examined the effects of providing daily portions (~1100 kJ/d) of hazelnuts, chocolate, or potato crisps compared to a control group receiving no snacks for twelve weeks. Effects on body weight and composition, blood lipids and lipoproteins, resting metabolic rate (RMR), appetite indices, and dietary quality were compared. At week 12, there was no significant difference in any of the outcome measurements between the groups except for dietary quality, which improved significantly in the nut group. Nuts can be incorporated into the diet without adversely affecting body weight and can improve diet quality. PMID:21845219

  16. Facilitation in Caribbean coral reefs: high densities of staghorn coral foster greater coral condition and reef fish composition.

    PubMed

    Huntington, Brittany E; Miller, Margaret W; Pausch, Rachel; Richter, Lee

    2017-05-01

    Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.

  17. The aftermath of an invasion: Structure and composition of Central Appalachian hemlock forests following establishment of the hemlock woolly adelgid, Adelges tsugae

    Treesearch

    Heather L. Spaulding; Lynne K. Rieske

    2010-01-01

    As the highly invasive hemlock woolly adelgid, Adelges tsugae, continues to expand its distribution in eastern North America, affected forests will incur drastic changes in composition and structure. While these changes have been well-studied in dense hemlock forests in the Northeast, relatively little work is known about the effects of the adelgid at the western edge...

  18. Density Of The Continental Roots: Compositional And Thermal Effects

    NASA Astrophysics Data System (ADS)

    Kaban, M. K.; Schwintzer, P.; Artemieva, I.; Mooney, W. D.

    We use gravity, thermal, and seismic data to examine how the density and composi- tion of lithospheric roots vary beneath the cratons. Our interpretation is based on the gravity anomalies calculated by subtracting the gravitational effects of bathymetry, to- pography, and the crust from the observed gravity field, and the residual topography that characterizes the isostatic state of the lithosphere. We distinguish the effects of temperature and compositional variations in producing lithospheric density anomalies using two independent temperature constrains: based on interpretation of the surface heat flow data and estimated from global seismic tomography data. We find that in situ lithospheric density differs significantly between individual cratons, with the most dense values found beneath Eurasia and the least dense values beneath South Africa. This demonstrates that there is not a simple compensation of thermal and composition effects. We present a new gravity anomaly map that was corrected for crustal density structure and lithospheric temperatures. This map reveals differences in lithospheric composition, that are the result of the petrologic processes that have formed and mod- ified the lithosphere. All significant negative gravity anomalies are found in cratonic regions. In contrast, positive gravity anomalies are found in two distinct regions: near ocean-continent and continent-continent subduction zones, and within some continen- tal interiors. The origin of the latter positive anomalies is uncertain.

  19. Method of forming and assembly of metal and ceramic parts

    DOEpatents

    Ripley, Edward B

    2014-04-22

    A method of forming and assembling at least two parts together that may be metal, ceramic, or a combination of metal and ceramic parts. Such parts may have different CTE. Individual parts that are formed and sintered from particles leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

  20. Method of forming and assembly of metal parts and ceramic parts

    DOEpatents

    Ripley, Edward B [Knoxville, TN

    2011-11-22

    A method of forming and assembling at least two parts together that may be metal, ceramic, or a combination of metal and ceramic parts. Such parts may have different CTE. Individual parts that are formed and sintered from particles leave a network of interconnecting porosity in each sintered part. The separate parts are assembled together and then a fill material is infiltrated into the assembled parts using a method such as capillary action, gravity, and/or pressure. The assembly is then cured to yield a bonded and fully or near-fully dense part that has the desired physical and mechanical properties for the part's intended purpose. Structural strength may be added to the parts by the inclusion of fibrous materials.

  1. MobileFusion: real-time volumetric surface reconstruction and dense tracking on mobile phones.

    PubMed

    Ondrúška, Peter; Kohli, Pushmeet; Izadi, Shahram

    2015-11-01

    We present the first pipeline for real-time volumetric surface reconstruction and dense 6DoF camera tracking running purely on standard, off-the-shelf mobile phones. Using only the embedded RGB camera, our system allows users to scan objects of varying shape, size, and appearance in seconds, with real-time feedback during the capture process. Unlike existing state of the art methods, which produce only point-based 3D models on the phone, or require cloud-based processing, our hybrid GPU/CPU pipeline is unique in that it creates a connected 3D surface model directly on the device at 25Hz. In each frame, we perform dense 6DoF tracking, which continuously registers the RGB input to the incrementally built 3D model, minimizing a noise aware photoconsistency error metric. This is followed by efficient key-frame selection, and dense per-frame stereo matching. These depth maps are fused volumetrically using a method akin to KinectFusion, producing compelling surface models. For each frame, the implicit surface is extracted for live user feedback and pose estimation. We demonstrate scans of a variety of objects, and compare to a Kinect-based baseline, showing on average ∼ 1.5cm error. We qualitatively compare to a state of the art point-based mobile phone method, demonstrating an order of magnitude faster scanning times, and fully connected surface models.

  2. An Enhanced Vacuum Cure Technique for On-Aircraft Repair of Carbon-Bismaleimide Composites

    NASA Astrophysics Data System (ADS)

    Rider, Andrew N.; Baker, Alan A.; Wang, Chun H.; Smith, Graeme

    2011-06-01

    Carbon/bismaleimide (BMI) composite is increasingly employed in critical load carrying aircraft structures designed to operate at temperatures approaching 180°C. The high post-cure temperature (above 220°C) required to fully react the BMI resin, however, renders existing on-aircraft prepreg or wet layup repair methods invalid. This paper presents a new on-aircraft repair technique for carbon/BMI composites. The composite prepregs are first warm-staged to improve the ability to evacuate entrapped air. Then the patch is cured in the scarf cavity using the vacuum bag technique, followed by off-aircraft post-cure. The fully cured patch then can be bonded using a structural adhesive.

  3. Fabrication and ferroelectric properties of highly dense lead-free piezoelectric (K0.5Na0.5)NbO3 thick films by aerosol deposition

    NASA Astrophysics Data System (ADS)

    Ryu, Jungho; Choi, Jong-Jin; Hahn, Byung-Dong; Park, Dong-Soo; Yoon, Woon-Ha; Kim, Ki-Hoon

    2007-04-01

    Lead-free piezoelectric thick films of (K0.5Na0.5)NbO3 were fabricated by aerosol-deposition method. The thickness of KNN film was 7.1μm and fully dense films were obtained. The dielectric constants ɛ3T/ɛ0 of the as-deposited and annealed films at 1kHz were 116 and 545, respectively, which are higher than any previously reported values for lead-free piezoelectric thin/thick films, either without or with heat treatment. The ferroelectric properties were improved after annealing and the maximum values of Pr=8.1μC/cm3 and Ec=100kV/cm were achieved. These values are markedly superior to those of sintered KNN ceramic counterparts.

  4. Molecular Composition and Chemistry of Isolated Dense Cores

    NASA Astrophysics Data System (ADS)

    Cook, Amanda; Boogert, A.

    2009-01-01

    The composition of molecular clouds and the envelopes and disks surrounding low mass protostars within them is still poorly known. There is little doubt that a large fraction of the molecules is frozen on grains, but the abundance of several crucial species (e.g. ammonia, methanol, ions) in the ices is still uncertain. In addition, prominent spectral features discovered decades ago are still not securely identified (e.g. the 6.85-micron absorption band). Gas phase and grain surface chemistry play pivotal roles in molecule formation, but numerous other processes could have significant impacts as well: shocks, thermal heating, irradiation of ices by ultraviolet photons and cosmic rays. Complex species could be formed this way, profoundly influencing cloud, disk and planetary/cometary chemistry. We have obtained Spitzer/IRS spectra of an unprecedented sample of sight-lines tracing 25 dense isolated cores. These cores physically differ from the large, cluster-forming molecular clouds (e.g. Ophiuchus, Perseus) that are commonly studied: they are less turbulent, colder, less dense, and likely longer lived. These IRS spectra of isolated cores thus provide unique information on ice formation and destruction mechanisms. Toward the same cores, we observed 33 highly extincted background stars as well, tracing the quiescent cloud medium against which the ices around protostars can be contrasted.

  5. Catalyst containing oxygen transport membrane

    DOEpatents

    Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

    2012-12-04

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  6. Development of Bulk Nanocrystalline Tungsten Alloys for Fusion Reactor Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhigang Zak

    This project developed a technology for manufacturing bulk ultrafine tungsten materials that are at or near full density for fusion reactor structural applications, aiming to improve ductility and toughness of tungsten before and after irradiation. The project involved the development of fabrication processes for making bulk ultrafine grained W, the development of new alloys of ultrafine grained W and evaluations of properties of these specific materials. The goal of this fabrication process is to produce fully dense bulk W with ultrafine grain sizes, with uniform distributions of grain size and additives. To date there is no known process that couldmore » be used to make ultrafine grained tungsten in a fully dense state and in a cost-acceptable fashion. The specific technology described in this proposal for making ultrafine grained tungsten involves a suite of nano-particle processing and sintering techniques. The program also developed new alloys of ultrafine grained W, e.g. W-(Ta,V,Ti)-TiC alloys to improve ductility and toughness before and after irradiation. By completing this project, we achieved the following objectives: • Demonstrated experimentally the feasibility of producing bulk ultrafine grained tungsten alloys (at or near 100% dense, <1000 nm grain size) using the proposed process • Demonstrated the proposed ultrafine grained W alloys, namely, W-(Ta, V, Ti)-TiC, can indeed be made using the proposed process • Demonstrated that the properties of nano tungsten alloys meet the requirements for fusion reactor applications. The overall goal was to harness the potential of ultrafine grained W produced using the proposed processes as the core structural materials for future fusion reactors. The project was very successful overall, meeting all milestones and surpassing project goals in terms of process development and material’s blistering resistance properties. A novel process similar to the conventional press-and-sinter powder metallurgy method was developed for producing ultrafine grain tungsten from nanosize tungsten powders. Grain growth was significantly controlled during sintering by certain alloy compositions, particularly Ti, and most compositions sintered to maximum densification. To optimize this process, the effect of processing parameters on the densification and grain growth of nano-W powders was investigated. Near-fully densified tungsten was obtained at sintering temperatures between 1100 and 1300 °C, and both Ar and H2 sintering atmospheres were investigated. The Ar sintering atmosphere was determined to more favorably promote densification and minimize grain growth. The nanosized tungsten powder compacts were subjected to reduction in H2 as a part of the sintering cycle. The reduction temperature was found to have significant effects on the sintering of nano-W powder, primarily as a result of grain coarsening, which was seen at temperatures as low as 700 °C. In an effort to inhibit grain growth, the effect of Ti-based additives on the densification and grain growth of nano-W powders was investigated in this project. The addition of 1 wt.% Ti into tungsten led to more than a 63% decrease in average grain size of sintered samples at comparable density levels. Compared to conventional high temperature sintering, a lower temperature sintering cycle for a longer hold time resulted in both near-full density and fine grain size. The roles of the Ti additives include not only the inhibition of grain growth, but also the potential absorption of oxygen from W particles. The project has resulted in the publication; thus far, of six peer reviewed journal articles and seven conference presentations, as well as a master’s thesis. Two additional journal articles are currently in preparation. Presentations and articles were a particular focus of the second half of the project, once significant experimentation had been performed and analyzed. As part of our efforts to disseminate information of our results, the W research teams with Prof. Fang had a strong presence at multiple international conferences during 2015 and 2016. Several research groups in the US are now performing experiments using the ultrafine grained W materials.« less

  7. Design, Implementation, and Characterization of a Dedicated Breast Computed Mammotomography System for Enhanced Lesion Imaging

    DTIC Science & Technology

    2006-03-01

    Evaluation of fully 3D emission mammotomography with a compact cadmium zinc telluride detector,” IEEE Trans. Med. Imag. (Submitted) 2005. [16] M.P...times over a few months, and the degradation due to compromised adipose tissue boundaries as well as other physical breast features are becoming...breast lesions, especially in radiographically dense breasts,2,11-13 through the removal of contrast-reducing overlying tissue ; (2) uncompressed

  8. Relation of quantity of seed sown and density of seedlings to the development and survival of forest planting stock

    Treesearch

    W. G. Wahlenberg

    1929-01-01

    It is obvious that seedlings grown in dense stands can not develop so well as those grown without crowding. Nurserymen naturally wish to avoid injury to their stock from crowding, but they also desire to utilize their soil space as fully as possible. The optimum density of stand for each species and age class of nursery stock can be determined within reasonably close...

  9. Performance Evaluation of a Pose Estimation Method based on the SwissRanger SR4000

    DTIC Science & Technology

    2012-08-01

    however, not suitable for navigating a small robot. Commercially available Flash LIDAR now has sufficient accuracy for robotic application. A...Flash LIDAR simultaneously produces intensity and range images of the scene at a video frame rate. It has the following advantages over stereovision...fully dense depth data across its field-of-view. The commercially available Flash LIDAR includes the SwissRanger [17] and TigerEye 3D [18

  10. Casting fine grained, fully dense, strong inorganic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.

    2015-11-24

    Methods and apparatuses for casting inorganic materials are provided. The inorganic materials include metals, metal alloys, metal hydrides and other materials. Thermal control zones may be established to control the propagation of a freeze front through the casting. Agitation from a mechanical blade or ultrasonic energy may be used to reduce porosity and shrinkage in the casting. After solidification of the casting, the casting apparatus may be used to anneal the cast part.

  11. DUKW 21 - Amphibious Cargo Transfer from Ship to Shore

    DTIC Science & Technology

    2007-08-10

    issue of the pontoons and propulsors not being fully immersed is not as easily solved , but may be acceptable as is. The increased resistance of the...AGP1500 through improved fuel efficiency and reduced maintenance costs. The 1,500 shaft horsepower ( SHP ) engine is very power dense, and, since it uses a...Lawlor, 2006) The navigation method used by DARPA is also significant to this project. The DARPA Grand Challenge had a comprehensive mapping

  12. Fully solution-processed transparent electrodes based on silver nanowire composites for perovskite solar cells.

    PubMed

    Kim, Areum; Lee, Hongseuk; Kwon, Hyeok-Chan; Jung, Hyun Suk; Park, Nam-Gyu; Jeong, Sunho; Moon, Jooho

    2016-03-28

    We report all-solution-processed transparent conductive electrodes based on Ag nanowire (AgNW)-embedded metal oxide composite films for application in organometal halide perovskite solar cells. To address the thermal instability of Ag nanowires, we used combustive sol-gel derived thin films to construct ZnO/ITO/AgNW/ITO composite structures. The resulting composite configuration effectively prevented the AgNWs from undergoing undesirable side-reactions with halogen ions present in the perovskite precursor solutions that significantly deteriorate the optoelectrical properties of Ag nanowires in transparent conductive films. AgNW-based composite electrodes had a transmittance of ∼80% at 550 nm and sheet resistance of 18 Ω sq(-1). Perovskite solar cells fabricated using a fully solution-processed transparent conductive electrode, Au/spiro-OMeTAD/CH3NH3PbI3 + m-Al2O3/ZnO/ITO/AgNW/ITO, exhibited a power conversion efficiency of 8.44% (comparable to that of the FTO/glass-based counterpart at 10.81%) and were stable for 30 days in ambient air. Our results demonstrate the feasibility of using AgNWs as a transparent bottom electrode in perovskite solar cells produced by a fully printable process.

  13. Materials with structural hierarchy

    NASA Technical Reports Server (NTRS)

    Lakes, Roderic

    1993-01-01

    The role of structural hierarchy in determining bulk material properties is examined. Dense hierarchical materials are discussed, including composites and polycrystals, polymers, and biological materials. Hierarchical cellular materials are considered, including cellular solids and the prediction of strength and stiffness in hierarchical cellular materials.

  14. Tailoring Advanced Nanoscale Materials Through Synthesis of Composite Aerogel Architectures

    DTIC Science & Technology

    2000-01-01

    silica aerogel nanocomposites retain the characteristic yellow-green photoluminescence of ZnO nanocrystals (also illustrated by Deng, et al., for ZnO...aerogel relative to the mechanical durability of pure silica aerogel , even without thermally densifying[16b] the com- posite. 3. Chemical and...mediate to the values for the silica and guest particulate. Pure silica aerogel (~1 % dense) has a pore volume of ~4.4 cm3/g; silica-based composite

  15. Dense gas and star formation in individual Giant Molecular Clouds in M31

    NASA Astrophysics Data System (ADS)

    Viaene, S.; Forbrich, J.; Fritz, J.

    2018-04-01

    Studies both of entire galaxies and of local Galactic star formation indicate a dependency of a molecular cloud's star formation rate (SFR) on its dense gas mass. In external galaxies, such measurements are derived from HCN(1-0) observations, usually encompassing many Giant Molecular Clouds (GMCs) at once. The Andromeda galaxy (M31) is a unique laboratory to study the relation of the SFR and HCN emission down to GMC scales at solar-like metallicities. In this work, we correlate our composite SFR determinations with archival HCN, HCO+, and CO observations, resulting in a sample of nine reasonably representative GMCs. We find that, at the scale of individual clouds, it is important to take into account both obscured and unobscured star formation to determine the SFR. When correlated against the dense-gas mass from HCN, we find that the SFR is low, in spite of these refinements. We nevertheless retrieve an SFR-dense-gas mass correlation, confirming that these SFR tracers are still meaningful on GMC scales. The correlation improves markedly when we consider the HCN/CO ratio instead of HCN by itself. This nominally indicates a dependency of the SFR on the dense-gas fraction, in contradiction to local studies. However, we hypothesize that this partly reflects the limited dynamic range in dense-gas mass, and partly that the ratio of single-pointing HCN and CO measurements may be less prone to systematics like sidelobes. In this case, the HCN/CO ratio would importantly be a better empirical measure of the dense-gas content itself.

  16. Prototype of low thermal expansion materials: fabrication of mesoporous silica/polymer composites with densely filled polymer inside mesopore space.

    PubMed

    Kiba, Shosuke; Suzuki, Norihiro; Okawauchi, Yoshinori; Yamauchi, Yusuke

    2010-09-03

    A prototype of novel low thermal expansion materials using mesoporous silica particles is demonstrated. Mesoporous silica/polymer composites with densely filled polymer inside the mesopore space are fabricated by mechanically mixing both organically modified mesoporous silica and epoxy polymer. The mesopores are easily penetrated by polymers as a result of the capillary force during the mechanical composite processing. Furthermore, we propose a new model of polymer mobility restriction using mesoporous silica with a large pore space. The robust inorganic frameworks covering the polymer effectively restrict the polymer mobility against thermal energy. As a result, the degree of total thermal expansion of the composites is drastically decreased. From the mass-normalized thermal mechanical analysis (TMA) charts of various composites with different amounts of mesoporous silica particles, it is observed that the coefficient of thermal expansion (CTE) values gradually increase with an increase of the polymer amount outside the mesopores. It is proven that the CTE values in the range over the glass-transition temperatures (T(g)) are perfectly proportional to the outside polymer amounts. Importantly, the Y-intercept of the relation equation obtained by a least-square method is the CTE value and is almost zero. This means that thermal expansion does not occur if no polymers are outside the mesopores. Through such a quantative discussion, we clarify that only the outside polymer affects the thermal expansion of the composites, that is, the embedded polymers inside the mesopores do not expand at all during the thermal treatment.

  17. In-vitro and in-vivo design and validation of an injectable polysaccharide-hydroxyapatite composite material for sinus floor augmentation.

    PubMed

    Fricain, J C; Aid, R; Lanouar, S; Maurel, D B; Le Nihouannen, D; Delmond, S; Letourneur, D; Amedee Vilamitjana, J; Catros, S

    2018-04-07

    Polysaccharide-based composite matrices consisting of natural polysaccharides, pullulan and dextran supplemented with hydroxyapatite (Matrix-HA) have recently been developed. The principal objective of this study was to evaluate the capacities of this composite material to promote new bone formation in a sinus lift model in the sheep. Secondary objectives were to evaluate in vitro properties of the material regarding cell adhesion and proliferation. In this report, once such composite matrix was prepared as injectable beads after dispersion in a physiological buffer, and evaluated using a large animal model (sheep) for a sinus lift procedure. In vitro studies revealed that these microbeads (250-550μm in diameter) allow vascular cell adhesion and proliferation of Endothelial Cells (EC) after 1 and 7 days of culture. In vivo studies were performed in 12 adult sheep, and newly formed tissue was analyzed by Cone Beam Computed Tomography (CBCT scanning electron microscopy (SEM) and by histology 3 and 6 months post-implantation. CBCT analyses at the implantation time revealed the radiolucent properties of these matrices. Quantitative analysis showed an increase of a dense mineralized tissue in the Matrix-HA group up to 3 months of implantation. The mineralized volume over total volume after 6 months reached comparable values to those obtained for Bio-Oss ® used as positive control. Histological examination confirmed that the Matrix-HA did not induce any long term inflammatory events, and promoted direct contact between the osteoid tissue and lamellar bone structures and beads. After 6 months, we observed a dense network of osteocytes surrounding both biomaterials as well as a newly vascularized formed tissue in close contact to the biomaterials. In conclusion, the absence of animal components in Matrix-HA, the osteoconductive property of Matrix-HA in sheep, resulting in a dense bone and vascularized tissue, and the initial radiolucent property to follow graft integration offer great promises of this composite material for clinical use. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  18. CO2 adsorption using TiO2 composite polymeric membranes: A kinetic study.

    PubMed

    Hafeez, Sarah; Fan, X; Hussain, Arshad; Martín, C F

    2015-09-01

    CO2 is the main greenhouse gas which causes global climatic changes on larger scale. Many techniques have been utilised to capture CO2. Membrane gas separation is a fast growing CO2 capture technique, particularly gas separation by composite membranes. The separation of CO2 by a membrane is not just a process to physically sieve out of CO2 through the controlled membrane pore size. It mainly depends upon diffusion and solubility of gases, particularly for composite dense membranes. The blended components in composite membranes have a high capability to adsorb CO2. The adsorption kinetics of the gases may directly affect diffusion and solubility. In this study, we have investigated the adsorption behaviour of CO2 in pure and composite membranes to explore the complete understanding of diffusion and solubility of CO2 through membranes. Pure cellulose acetate (CA) and cellulose acetate-titania nanoparticle (CA-TiO2) composite membranes were fabricated and characterised using SEM and FTIR analysis. The results indicated that the blended CA-TiO2 membrane adsorbed more quantity of CO2 gas as compared to pure CA membrane. The high CO2 adsorption capacity may enhance the diffusion and solubility of CO2 in the CA-TiO2 composite membrane, which results in a better CO2 separation. The experimental data was modelled by Pseudo first-order, pseudo second order and intra particle diffusion models. According to correlation factor R(2), the Pseudo second order model was fitted well with experimental data. The intra particle diffusion model revealed that adsorption in dense membranes was not solely consisting of intra particle diffusion. Copyright © 2015. Published by Elsevier B.V.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Rekha R.; Celina, Mathias C.; Giron, Nicholas Henry

    We are developing computational models to help understand manufacturing processes, final properties and aging of structural foam, polyurethane PMDI. Th e resulting model predictions of density and cure gradients from the manufacturing process will be used as input to foam heat transfer and mechanical models. BKC 44306 PMDI-10 and BKC 44307 PMDI-18 are the most prevalent foams used in structural parts. Experiments needed to parameterize models of the reaction kinetics and the equations of motion during the foam blowing stages were described for BKC 44306 PMDI-10 in the first of this report series (Mondy et al. 2014). BKC 44307 PMDI-18more » is a new foam that will be used to make relatively dense structural supports via over packing. It uses a different catalyst than those in the BKC 44306 family of foams; hence, we expect that the reaction kineti cs models must be modified. Here we detail the experiments needed to characteriz e the reaction kinetics of BKC 44307 PMDI-18 and suggest parameters for the model based on these experiments. In additi on, the second part of this report describes data taken to provide input to the preliminary nonlinear visco elastic structural response model developed for BKC 44306 PMDI-10 foam. We show that the standard cu re schedule used by KCP does not fully cure the material, and, upon temperature elevation above 150°C, oxidation or decomposition reactions occur that alter the composition of the foam. These findings suggest that achieving a fully cured foam part with this formulation may be not be possible through therma l curing. As such, visco elastic characterization procedures developed for curing thermosets can provide only approximate material properties, since the state of the material continuously evolves during tests.« less

  20. Real-time isotope monitoring network at the Biosphere 2 Landscape Evolution Observatory resolves meter-to-catchment scale flow dynamics

    NASA Astrophysics Data System (ADS)

    Volkmann, T. H. M.; Van Haren, J. L. M.; Kim, M.; Harman, C. J.; Pangle, L.; Meredith, L. K.; Troch, P. A.

    2017-12-01

    Stable isotope analysis is a powerful tool for tracking flow pathways, residence times, and the partitioning of water resources through catchments. However, the capacity of stable isotopes to characterize catchment hydrological dynamics has not been fully exploited as commonly used methodologies constrain the frequency and extent at which isotopic data is available across hydrologically-relevant compartments (e.g. soil, plants, atmosphere, streams). Here, building upon significant recent developments in laser spectroscopy and sampling techniques, we present a fully automated monitoring network for tracing water isotopes through the three model catchments of the Landscape Evolution Observatory (LEO) at the Biosphere 2, University of Arizona. The network implements state-of-the-art techniques for monitoring in great spatiotemporal detail the stable isotope composition of water in the subsurface soil, the discharge outflow, and the atmosphere above the bare soil surface of each of the 330-m2 catchments. The extensive valving and probing systems facilitate repeated isotope measurements from a total of more than five-hundred locations across the LEO domain, complementing an already dense array of hydrometric and other sensors installed on, within, and above each catchment. The isotope monitoring network is operational and was leveraged during several months of experimentation with deuterium-labelled rain pulse applications. Data obtained during the experiments demonstrate the capacity of the monitoring network to resolve sub-meter to whole-catchment scale flow and transport dynamics in continuous time. Over the years to come, the isotope monitoring network is expected to serve as an essential tool for collaborative interdisciplinary Earth science at LEO, allowing us to disentangle changes in hydrological behavior as the model catchments evolve in time through weathering and colonization by plant communities.

  1. Acquisition of epibiotic bacteria along the life cycle of the hydrothermal shrimp Rimicaris exoculata.

    PubMed

    Guri, Mathieu; Durand, Lucile; Cueff-Gauchard, Valérie; Zbinden, Magali; Crassous, Philippe; Shillito, Bruce; Cambon-Bonavita, Marie-Anne

    2012-03-01

    The caridean shrimp Rimicaris exoculata dominates the fauna at several Mid-Atlantic Ridge hydrothermal vent sites. This shrimp has an enlarged gill chamber, harboring a dense ectosymbiotic community of chemoautotrophic bacteria associated with mineral oxide deposits. Until now, their acquisition is not fully understood. At three hydrothermal vent sites, we analyzed the epibionts diversity at different moult stages and also in the first stages of the shrimp life (eggs, hatched eggs (with larvae) and juveniles). Hatched eggs associated with young larvae were collected for the first time directly from gravid females at the Logachev vent site during the Serpentine cruise. An approach using 16S rRNA clone libraries, scanning and transmission electron microscopy, and fluorescent in situ hybridization was used. Molecular results and microscope observations indicated a switch in the composition of the bacterial community between early R. exoculata life cycle stage (egg libraries dominated by the Gammaproteobacteria) and later stages (juvenile/adult libraries dominated by the Epsilonproteobacteria). We hypothesized that the epibiotic phylotype composition could vary according to the life stage of the shrimp. Our results confirmed the occurrence of a symbiosis with Gammaproteobacteria and Epsilonproteobacteria, but more complex than previously assumed. We revealed the presence of active type-I methanotrophic bacteria colonizing the cephalothorax of shrimps from the Rainbow site. They were also present on the eggs from the Logachev site. This could be the first 'epibiotic' association between methanotrophic bacteria and hydrothermal vent crustacean. We discuss possible transmission pathways for epibionts linked to the shrimp life cycle.

  2. Acquisition of epibiotic bacteria along the life cycle of the hydrothermal shrimp Rimicaris exoculata

    PubMed Central

    Guri, Mathieu; Durand, Lucile; Cueff-Gauchard, Valérie; Zbinden, Magali; Crassous, Philippe; Shillito, Bruce; Cambon-Bonavita, Marie-Anne

    2012-01-01

    The caridean shrimp Rimicaris exoculata dominates the fauna at several Mid-Atlantic Ridge hydrothermal vent sites. This shrimp has an enlarged gill chamber, harboring a dense ectosymbiotic community of chemoautotrophic bacteria associated with mineral oxide deposits. Until now, their acquisition is not fully understood. At three hydrothermal vent sites, we analyzed the epibionts diversity at different moult stages and also in the first stages of the shrimp life (eggs, hatched eggs (with larvae) and juveniles). Hatched eggs associated with young larvae were collected for the first time directly from gravid females at the Logachev vent site during the Serpentine cruise. An approach using 16S rRNA clone libraries, scanning and transmission electron microscopy, and fluorescent in situ hybridization was used. Molecular results and microscope observations indicated a switch in the composition of the bacterial community between early R. exoculata life cycle stage (egg libraries dominated by the Gammaproteobacteria) and later stages (juvenile/adult libraries dominated by the Epsilonproteobacteria). We hypothesized that the epibiotic phylotype composition could vary according to the life stage of the shrimp. Our results confirmed the occurrence of a symbiosis with Gammaproteobacteria and Epsilonproteobacteria, but more complex than previously assumed. We revealed the presence of active type-I methanotrophic bacteria colonizing the cephalothorax of shrimps from the Rainbow site. They were also present on the eggs from the Logachev site. This could be the first ‘epibiotic' association between methanotrophic bacteria and hydrothermal vent crustacean. We discuss possible transmission pathways for epibionts linked to the shrimp life cycle. PMID:21993397

  3. Cold Seep Epifaunal Communities on the Hikurangi Margin, New Zealand: Composition, Succession, and Vulnerability to Human Activities

    PubMed Central

    Bowden, David A.; Rowden, Ashley A.; Thurber, Andrew R.; Baco, Amy R.; Levin, Lisa A.; Smith, Craig R.

    2013-01-01

    Cold seep communities with distinctive chemoautotrophic fauna occur where hydrocarbon-rich fluids escape from the seabed. We describe community composition, population densities, spatial extent, and within-region variability of epifaunal communities at methane-rich cold seep sites on the Hikurangi Margin, New Zealand. Using data from towed camera transects, we match observations to information about the probable life-history characteristics of the principal fauna to develop a hypothetical succession sequence for the Hikurangi seep communities, from the onset of fluid flux to senescence. New Zealand seep communities exhibit taxa characteristic of seeps in other regions, including predominance of large siboglinid tubeworms, vesicomyid clams, and bathymodiolin mussels. Some aspects appear to be novel; however, particularly the association of dense populations of ampharetid polychaetes with high-sulphide, high-methane flux, soft-sediment microhabitats. The common occurrence of these ampharetids suggests they play a role in conditioning sulphide-rich sediments at the sediment-water interface, thus facilitating settlement of clam and tubeworm taxa which dominate space during later successional stages. The seep sites are subject to disturbance from bottom trawling at present and potentially from gas hydrate extraction in future. The likely life-history characteristics of the dominant megafauna suggest that while ampharetids, clams, and mussels exploit ephemeral resources through rapid growth and reproduction, lamellibrachid tubeworm populations may persist potentially for centuries. The potential consequences of gas hydrate extraction cannot be fully assessed until extraction methods and target localities are defined but any long-term modification of fluid flow to seep sites would have consequences for all chemoautotrophic fauna. PMID:24204691

  4. Cold seep epifaunal communities on the Hikurangi margin, New Zealand: composition, succession, and vulnerability to human activities.

    PubMed

    Bowden, David A; Rowden, Ashley A; Thurber, Andrew R; Baco, Amy R; Levin, Lisa A; Smith, Craig R

    2013-01-01

    Cold seep communities with distinctive chemoautotrophic fauna occur where hydrocarbon-rich fluids escape from the seabed. We describe community composition, population densities, spatial extent, and within-region variability of epifaunal communities at methane-rich cold seep sites on the Hikurangi Margin, New Zealand. Using data from towed camera transects, we match observations to information about the probable life-history characteristics of the principal fauna to develop a hypothetical succession sequence for the Hikurangi seep communities, from the onset of fluid flux to senescence. New Zealand seep communities exhibit taxa characteristic of seeps in other regions, including predominance of large siboglinid tubeworms, vesicomyid clams, and bathymodiolin mussels. Some aspects appear to be novel; however, particularly the association of dense populations of ampharetid polychaetes with high-sulphide, high-methane flux, soft-sediment microhabitats. The common occurrence of these ampharetids suggests they play a role in conditioning sulphide-rich sediments at the sediment-water interface, thus facilitating settlement of clam and tubeworm taxa which dominate space during later successional stages. The seep sites are subject to disturbance from bottom trawling at present and potentially from gas hydrate extraction in future. The likely life-history characteristics of the dominant megafauna suggest that while ampharetids, clams, and mussels exploit ephemeral resources through rapid growth and reproduction, lamellibrachid tubeworm populations may persist potentially for centuries. The potential consequences of gas hydrate extraction cannot be fully assessed until extraction methods and target localities are defined but any long-term modification of fluid flow to seep sites would have consequences for all chemoautotrophic fauna.

  5. Peculiarities of binding composition production in vortex jet mill

    NASA Astrophysics Data System (ADS)

    Zagorodnyuk, L. Kh; Lesovik, V. S.; Sumskoy, D. A.; Elistratkin, M. Yu; Makhortov, D. S.

    2018-03-01

    The article investigates the disintegration of perlite production waste in a vortex jet mill; the regularities of milling were established. Binding compositions were obtained at different ratios of cement vs. perlite sand production waste in the vortex jet mill in various milling regimes. The peculiarities of milling processes were studied, and technological and physicomechanical properties of the binding compositions were determined as well. The microstructure of the cement stones made of activated Portland cement and binding compositions in the vortex jet mill was elucidated by electron microscopy. The open pores of the cement-binding compositions prepared using perlite fillers were found to be filled by newgrowths at different stages of collective growth. The microstructure of the binding compositions is dense due to rationally proportioned composition, effective mineral filler— perlite waste — that creates additional substrates for internal composite microstructure formation, mechanochemical activation of raw mixture, which allows obtaining composites with required properties.

  6. Development of manufacturing processes: improved technology for ceramic engine components. Monthly report, August 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Taylor, A.J.; Weber, G.W.

    Progress is described in a research program to develop advanced tooling concepts, processing techniques, and related technology for the economical high-volume manufacture of ceramic engine components. Because of the success of the initial fabrication effort for hot pressing fully dense ceramic turbine blades to shape and/or contour, the effort has been extended to include the fabrication of more complex shapes and the evaluation of alternative pressure-assisted, high-temperature, consolidation methods.

  7. The hot spot of vegetation canopies

    NASA Technical Reports Server (NTRS)

    Myneni, Ranga B.; Kanemasu, Edward T.

    1988-01-01

    A conventional radiometer is used to identify the hot spot (the peak in reflected radiation in the retrosolar direction) of vegetation. A multiwavelength-band radiometer collected radiances on fully grown dense wheat and maize canopies on several clear sunny days. It is noted that the hot spot is difficult to detect in the near IR wavelengths because the shadows are much darker. In general, the retrosolar brightness is found to be higher for smaller sun polar angles than for larger angles.

  8. Volumetric mammographic density: heritability and association with breast cancer susceptibility loci.

    PubMed

    Brand, Judith S; Humphreys, Keith; Thompson, Deborah J; Li, Jingmei; Eriksson, Mikael; Hall, Per; Czene, Kamila

    2014-12-01

    Mammographic density is a strong heritable trait, but data on its genetic component are limited to area-based and qualitative measures. We studied the heritability of volumetric mammographic density ascertained by a fully-automated method and the association with breast cancer susceptibility loci. Heritability of volumetric mammographic density was estimated with a variance component model in a sib-pair sample (N pairs = 955) of a Swedish screening based cohort. Associations with 82 established breast cancer loci were assessed in an independent sample of the same cohort (N = 4025 unrelated women) using linear models, adjusting for age, body mass index, and menopausal status. All tests were two-sided, except for heritability analyses where one-sided tests were used. After multivariable adjustment, heritability estimates (standard error) for percent dense volume, absolute dense volume, and absolute nondense volume were 0.63 (0.06) and 0.43 (0.06) and 0.61 (0.06), respectively (all P < .001). Percent and absolute dense volume were associated with rs10995190 (ZNF365; P = 9.0 × 10(-6) and 8.9 × 10(-7), respectively) and rs9485372 (TAB2; P = 1.8 × 10(-5) and 1.8 × 10(-3), respectively). We also observed associations of rs9383938 (ESR1) and rs2046210 (ESR1) with the absolute dense volume (P = 2.6 × 10(-4) and 4.6 × 10(-4), respectively), and rs6001930 (MLK1) and rs17356907 (NTN4) with the absolute nondense volume (P = 6.7 × 10(-6) and 8.4 × 10(-5), respectively). Our results support the high heritability of mammographic density, though estimates are weaker for absolute than percent dense volume. We also demonstrate that the shared genetic component with breast cancer is not restricted to dense tissues only. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Woven TPS Enabling Missions Beyond Heritage Carbon Phenolic

    NASA Technical Reports Server (NTRS)

    Stackpoole, M.; Feldman, J.; Venkatapathy, E.

    2013-01-01

    WTPS is a new approach to producing TPS architectures that uses precisely engineered 3D weaving techniques to customize material characteristics needed to meet specific missions requirements for protecting space vehicles from the intense heating generated during atmospheric entry. Using WTPS, sustainable, scalable, mission-optimized TPS solutions can be achieved with relatively low life cycle costs compared with the high costs and long development schedules currently associated with material development and certification. WTPS leverages the mature state-of-the-art weaving technology that has evolved from the textile industry to design TPS materials with tailorable performance. Currently, missions anticipated encountering heat fluxes in the range of 1500 4000 Wcm2 and pressures greater than 1.5 atm are limited to using fully dense Carbon Phenolic. However, fully dense carbon phenolic is only mass efficient at higher heat fluxes greater than 4000 Wcm2), and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this mid-density TPS gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This presentation will overview the WTPS concept and present some results from initial testing completed comparing WTPS architectures to heritage carbon phenolic.

  10. Elemental analysis of sunflower cataract in Wilson's disease: a study using scanning transmission electron microscopy and energy dispersive spectroscopy.

    PubMed

    Jang, Hyo Ju; Kim, Joon Mo; Choi, Chul Young

    2014-04-01

    Signature ophthalmic characteristics of Wilson's disease (WD) are regarded as diagnostically important manifestations of the disease. Previous studies have proved the common occurrence of copper accumulation in the liver of patients with WD. However, in the case of sunflower cataracts, one of the rare diagnostic signs of WD, no study has demonstrated copper accumulation in the lens capsules of sunflower cataracts in WD patients. To investigate the nanostructure and elemental composition of sunflower cataracts in WD, transmission electron microscopy (TEM) was done on the capsulorhexised anterior lens capsule of sunflower cataracts in WD in order to evaluate anatomical variation and elemental changes. We utilized energy dispersive X-ray spectroscopy (EDS) to investigate the elemental composition of the lens capsule using both point and mapping spectroscopy. Quantitative analysis was performed for relative comparison of the elements. TEM showed the presence of granular deposits of varying size (20-350 nm), appearing mainly in the posterior one third of the anterior capsule. The deposits appeared in linear patterns with scattered dots. There were no electron-dense particles in the epithelial cell layer of the lens. Copper and sulfur peaks were consistently revealed in electron-dense granular deposits. In contrast, copper and sulfur peaks were absent in other tissues, including granule-free lens capsules and epithelial tissue. Most copper was exclusively located in clusters of electron-dense particles, and the copper distribution overlapped with sulfur on mapping spectroscopy. Quantitative analysis presented inconsistent ratios of copper to sulfur in each electron-dense granule. The mean ratio of copper to sulfur was about 3.25 (with a range of 2.39-3.78). This is the first elemental analysis of single electron particles in sunflower cataracts using EDS in the ophthalmic area. Sunflower cataracts with WD are assumed to be the result of accumulation of heterogeneous compounds composed of several materials, including copper, sulfur, and/or copper-binding proteins. Linear patterns of copper and sulfur deposition were detected in various sizes and composition ratios with these elements in cases of WD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Contribution of Surface Chemistry to the Shear Thickening of Silica Nanoparticle Suspensions.

    PubMed

    Yang, Wufang; Wu, Yang; Pei, Xiaowei; Zhou, Feng; Xue, Qunji

    2017-01-31

    Shear thickening is a general process crucial for many processed products ranging from food and personal care to pharmaceuticals. Theoretical calculations and mathematical simulations of hydrodynamic interactions and granular-like contacts have proved that contact forces between suspended particles dominate the rheological characteristic of colloidal suspensions. However, relevant experimental studies are very rare. This study was conducted to reveal the influence of nanoparticle (NP) interactions on the rheological behavior of shear-thickening fluids (STFs) by changing the colloidal surface chemistries. Silica NPs with various surface chemical compositions are fabricated and used to prepare dense suspensions. Rheological experiments are conducted to determine the influence of NP interactions on corresponding dense suspension systems. The results suggest that the surface chemistries of silica NPs determine the rheological behavior of dense suspensions, including shear-thickening behavior, onset stress, critical volume fraction, and jamming volume fraction. This study provides useful reference for designing effective STFs and regulating their characteristics.

  12. Hot Corrosion Behavior of Arc-Sprayed Highly Dense NiCr-Based Coatings in Chloride Salt Deposit

    NASA Astrophysics Data System (ADS)

    Qin, Enwei; Yin, Song; Ji, Hua; Huang, Qian; Liu, Zekun; Wu, Shuhui

    2017-04-01

    To make cities more environmentally friendly, combustible wastes tend to be incinerated in waste-to-energy power plant boilers. However, release of chlorine gas (Cl2) during incineration causes serious problems related to hot corrosion of boiler tubes and poses a safety threat for such plants. In this study, a pseudo-de Laval nozzle was employed in a twin-wire arc spray system to enhance the velocity of in-flight particles. Highly dense NiCr-based coatings were obtained using the modified nozzle gun. The coating morphology was characterized by optical microscopy and scanning electron microscopy, and hot corrosion testing was carried out in a synthetic molten chloride salt environment. Results showed that the dense NiCr-based coatings exhibited high resistance against corrosion by chlorine, which can be related to the typical splat lamellar microstructure and chemical composition as well as minor alloying elements such as Ti and Mo.

  13. Catalyst containing oxygen transport membrane

    DOEpatents

    Lane, Jonathan A.; Wilson, Jamie R.; Christie, Gervase Maxwell; Petigny, Nathalie; Sarantopoulos, Christos

    2017-02-07

    A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a microstructure exhibiting substantially uniform pore size distribution as a result of using PMMA pore forming materials or a bi-modal particle size distribution of the porous support layer materials. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

  14. River Inflows into Lakes: Basin Temperature Profiles Driven By Peeling Detrainment from Dense Underflows

    NASA Astrophysics Data System (ADS)

    Hogg, C. A. R.; Huppert, H. E.; Imberger, J.; Dalziel, S. B.

    2014-12-01

    Dense gravity currents from river inflows feed fluid into confined basins in lakes. Large inflows can influence temperature profiles in the basins. Existing parameterisations of the circulation and mixing of such inflows are often based on the entrainment of ambient fluid into the underflowing gravity currents. However, recent observations have suggested that uni-directional entrainment into a gravity current does not fully describe the transfer between such gravity currents and the ambient water. Laboratory experiments visualised peeling detrainment from the gravity current occurring when the ambient fluid was stratified. A theoretical model of the observed peeling detrainment was developed to predict the temperature profile in the basin. This new model gives a better approximation of the temperature profile observed in the experiments than the pre-existing entraining model. The model can now be developed such that it integrates into operational models of lake basins.

  15. Nanotwinned metal MEMS films with unprecedented strength and stability

    PubMed Central

    Sim, Gi-Dong; Krogstad, Jessica A.; Reddy, K. Madhav; Xie, Kelvin Y.; Valentino, Gianna M.; Weihs, Timothy P.; Hemker, Kevin J.

    2017-01-01

    Silicon-based microelectromechanical systems (MEMS) sensors have become ubiquitous in consumer-based products, but realization of an interconnected network of MEMS devices that allows components to be remotely monitored and controlled, a concept often described as the “Internet of Things,” will require a suite of MEMS materials and properties that are not currently available. We report on the synthesis of metallic nickel-molybdenum-tungsten films with direct current sputter deposition, which results in fully dense crystallographically textured films that are filled with nanotwins. These films exhibit linear elastic mechanical behavior and tensile strengths exceeding 3 GPa, which is unprecedented for materials that are compatible with wafer-level device fabrication processes. The ultrahigh strength is attributed to a combination of solid solution strengthening and the presence of dense nanotwins. These films also have excellent thermal and mechanical stability, high density, and electrical properties that are attractive for next-generation metal MEMS applications. PMID:28782015

  16. Kinetic simulations of gas breakdown in the dense plasma focus

    NASA Astrophysics Data System (ADS)

    Bennett, N.; Blasco, M.; Breeding, K.; DiPuccio, V.; Gall, B.; Garcia, M.; Gardner, S.; Gatling, J.; Hagen, E. C.; Luttman, A.; Meehan, B. T.; Molnar, S.; O'Brien, R.; Ormond, E.; Robbins, L.; Savage, M.; Sipe, N.; Welch, D. R.

    2017-06-01

    The first fully kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus are described and shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission, and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. Previously, researchers noted three breakdown patterns related to pressure. Simulation and analytical results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.

  17. Optimizing Dense Plasma Focus Neutron Yields with Fast Gas Jets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Kueny, Christopher; Stein, Elizabeth; Link, Anthony; Schmidt, Andrea

    2016-10-01

    We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high density jet models fast gas puffs which allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of the jet compared to the background fill increases we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration is explored. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Heat transfer model and finite element formulation for simulation of selective laser melting

    NASA Astrophysics Data System (ADS)

    Roy, Souvik; Juha, Mario; Shephard, Mark S.; Maniatty, Antoinette M.

    2017-10-01

    A novel approach and finite element formulation for modeling the melting, consolidation, and re-solidification process that occurs in selective laser melting additive manufacturing is presented. Two state variables are introduced to track the phase (melt/solid) and the degree of consolidation (powder/fully dense). The effect of the consolidation on the absorption of the laser energy into the material as it transforms from a porous powder to a dense melt is considered. A Lagrangian finite element formulation, which solves the governing equations on the unconsolidated reference configuration is derived, which naturally considers the effect of the changing geometry as the powder melts without needing to update the simulation domain. The finite element model is implemented into a general-purpose parallel finite element solver. Results are presented comparing to experimental results in the literature for a single laser track with good agreement. Predictions for a spiral laser pattern are also shown.

  19. Asymmetric neutrino reaction and pulsar kick in magnetized proto-neutron stars in fully relativistic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Tomoyuki; Kajino, Toshitaka; Yasutake, Nobutoshi

    2012-11-12

    We calculate neutrino scattering and absorption on the hot and dense neutron-star matter with hyperons under the strong magnetic field using a perturbative approach. We find that the absorption cross-sections show a remarkable angular dependence. Its strength is reduced in the direction parallel to the magnetic field and enhanced in the opposite direction. This asymmetric variation becomes maximally 2.2 % of entire neutrino momentum when the magnetic field is assumed as about 2 Multiplication-Sign 10{sup 17} G. Since the pulsar kick after the supernova explosion may have relationships to this asymmetry, detailed discussions about the pulsar kick and the asymmetrymore » are presented with the comparison to the observed kick velocities in a fully relativistic approach.« less

  20. Melt-Infiltration Process For SiC Ceramics And Composites

    NASA Technical Reports Server (NTRS)

    Behrendt, Donald R.; Singh, Mrityunjay

    1994-01-01

    Reactive melt infiltration produces silicon carbide-based ceramics and composites faster and more economically than do such processes as chemical vapor infiltration (CVI), reaction sintering, pressureless sintering, hot pressing, and hot isostatic pressing. Process yields dense, strong materials at relatively low cost. Silicon carbide ceramics and composites made by reactive melt infiltration used in combustor liners of jet engines and in nose cones and leading edges of high-speed aircraft and returning spacecraft. In energy industry, materials used in radiant-heater tubes, heat exchangers, heat recuperators, and turbine parts. Materials also well suited to demands of advanced automobile engines.

  1. Finite Element Models and Properties of a Stiffened Floor-Equipped Composite Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.

    2010-01-01

    Finite element models were developed of a floor-equipped, frame and stringer stiffened composite cylinder including a coarse finite element model of the structural components, a coarse finite element model of the acoustic cavities above and below the beam-supported plywood floor, and two dense models consisting of only the structural components. The report summarizes the geometry, the element properties, the material and mechanical properties, the beam cross-section characteristics, the beam element representations and the boundary conditions of the composite cylinder models. The expressions used to calculate the group speeds for the cylinder components are presented.

  2. Properties of RBSN and RBSN-SiC composites. [Reaction Bonded Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Lightfoot, A.; Ker, H. L.; Haggerty, J. S.; Ritter, J. E.

    1990-01-01

    Strengths, fracture toughnesses, hardnesses, and dimensional changes have been measured for RBSN and RBSN/SiC composites. Samples were made from mixtures of Si and either Si- or C-rich SiC powders. For pure, 75 pct dense RBSN dispersed with octanol, strengths up to 858 MPa have been achieved. Improved strengths result from a combination of microstructural perfection and increased fracture toughness. The mechanical properties of the composites were approximately equal to those of methanol processed RBSN but not quite equal to those of the octanol-processed RBSN. Results are discussed in terms of observed microstructural features.

  3. Comparison of Reactive and Non-Reactive Spark Plasma Sintering Routes for the Fabrication of Monolithic and Composite Ultra High Temperature Ceramics (UHTC) Materials

    PubMed Central

    Orrù, Roberto; Cao, Giacomo

    2013-01-01

    A wider utilization of ultra high temperature ceramics (UHTC) materials strongly depends on the availability of efficient techniques for their fabrication as dense bodies. Based on recent results reported in the literature, it is possible to state that Spark Plasma Sintering (SPS) technology offers a useful contribution in this direction. Along these lines, the use of two different SPS-based processing routes for the preparation of massive UHTCs is examined in this work. One method, the so-called reactive SPS (R-SPS), consists of the synthesis and densification of the material in a single step. Alternatively, the ceramic powders are first synthesized by Self-propagating High-temperature Synthesis (SHS) and then sintered by SPS. The obtained results evidenced that R-SPS method is preferable for the preparation of dense monolithic products, while the sintering of SHS powders requires relatively milder conditions when considering binary composites. The different kinetic mechanisms involved during R-SPS of the monolithic and composite systems, i.e., combustion-like or gradual solid-diffusion, respectively, provides a possible explanation. An important role is also played by the SHS process, particularly for the preparation of composite powders, since stronger interfaces are established between the ceramic constituents formed in situ, thus favoring diffusion processes during the subsequent SPS step. PMID:28809229

  4. Fabrication of microscale materials with programmable composition gradients.

    PubMed

    Laval, Cédric; Bouchaudy, Anne; Salmon, Jean-Baptiste

    2016-04-07

    We present an original microfluidic technique coupling pervaporation and the use of Quake valves to fabricate microscale materials (∼10 × 100 μm(2) × 1 cm) with composition gradients along their longest dimension. Our device exploits pervaporation of water through a thin poly(dimethylsiloxane) (PDMS) membrane to continuously pump solutions (or dispersions) contained in different reservoirs connected to a microfluidic channel. This pervaporation-induced flow concentrates solutes (or particles) at the tip of the channel up to the formation of a dense material. The latter invades the channel as it is constantly enriched by an incoming flux of solutes/particles. Upstream Quake valves are used to select which reservoir is connected to the pervaporation channel and thus which solution (or dispersion) enriches the material during its growth. The microfluidic configuration of the pervaporation process is used to impose controlled growth along the channel thus enabling one to program spatial composition gradients using appropriate actuations of the valves. We demonstrate the possibilities offered by our technique through the fabrication of dense assemblies of nanoparticles and polymer composites with programmed gradients of fluorescent dyes. We also address the key issue of the spatial resolution of our gradients and we show that well-defined spatial modulations down to ≈50 μm can be obtained within colloidal materials, whereas gradients within polymer materials are resolved on length scales down to ≈1 mm due to molecular diffusion.

  5. Textural evolution of magma during the 9.4-ka trachytic explosive eruption at Kilian Volcano, Chaîne des Puys, France

    NASA Astrophysics Data System (ADS)

    Colombier, M.; Gurioli, L.; Druitt, T. H.; Shea, T.; Boivin, P.; Miallier, D.; Cluzel, N.

    2017-02-01

    Textural parameters such as density, porosity, pore connectivity, permeability, and vesicle size distributions of vesiculated and dense pyroclasts from the 9.4-ka eruption of Kilian Volcano, were quantified to constrain conduit and eruptive processes. The eruption generated a sequence of five vertical explosions of decreasing intensity, producing pyroclastic density currents and tephra fallout. The initial and final phases of the eruption correspond to the fragmentation of a degassed plug, as suggested by the increase of dense juvenile clasts (bimodal density distributions) as well as non-juvenile clasts, resulting from the reaming of a crater. In contrast, the intermediate eruptive phases were the results of more open-conduit conditions (unimodal density distributions, decreases in dense juvenile pyroclasts, and non-juvenile clasts). Vesicles within the pyroclasts are almost fully connected; however, there are a wide range of permeabilities, especially for the dense juvenile clasts. Textural analysis of the juvenile clasts reveals two vesiculation events: (1) an early nucleation event at low decompression rates during slow magma ascent producing a population of large bubbles (>1 mm) and (2) a syn-explosive nucleation event, followed by growth and coalescence of small bubbles controlled by high decompression rates immediately prior to or during explosive fragmentation. The similarities in pyroclast textures between the Kilian explosions and those at Soufrière Hills Volcano on Montserrat, in 1997, imply that eruptive processes in the two systems were rather similar and probably common to vulcanian eruptions in general.

  6. An Anomalous Composition in Slow Solar Wind as a Signature of Magnetic Reconnection in its Source Region

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Landi, E.; Lepri, S. T.; Kocher, M.; Zurbuchen, T. H.; Fisk, L. A.; Raines, J. M.

    2017-01-01

    In this paper, we study a subset of slow solar winds characterized by an anomalous charge state composition and ion temperatures compared to average solar wind distributions, and thus referred to as an “Outlier” wind. We find that although this wind is slower and denser than normal slow wind, it is accelerated from the same source regions (active regions and quiet-Sun regions) as the latter and its occurrence rate depends on the solar cycle. The defining property of the Outlier wind is that its charge state composition is the same as that of normal slow wind, with the only exception being a very large decrease in the abundance of fully charged species (He2+, C6+, N7+, O8+, Mg12+), resulting in a significant depletion of the He and C element abundances. Based on these observations, we suggest three possible scenarios for the origin of this wind: (1) local magnetic waves preferentially accelerating non-fully stripped ions over fully stripped ions from a loop opened by reconnection; (2) depleted fully stripped ions already contained in the corona magnetic loops before they are opened up by reconnection; or (3) fully stripped ions depleted by Coulomb collision after magnetic reconnection in the solar corona. If any one of these three scenarios is confirmed, the Outlier wind represents a direct signature of slow wind release through magnetic reconnection.

  7. The composition and metabolism of large and small LDL

    USDA-ARS?s Scientific Manuscript database

    Decreased size and increased density of LDL have been associated with increased coronary heart disease (CHD) risk. Elevated plasma concentrations of small dense LDL (sdLDL) correlate with high plasma triglycerides and low HDL cholesterol levels. This review highlights recent findings about the met...

  8. Development of Bioelastic Material for Aspects of Wound Repair.

    DTIC Science & Technology

    1992-01-01

    injury site and at eight weeks histological examination demonstrated a dense fibrovascular scar. For the test animals two compositions of bioelastic...reoperation5 O,6 5 : "intimal hyperplasia of saphenous vein bypass grafts, graft atherosclerosis, progression of underlying coronary artery disease 6 5

  9. The molecular composition of dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Allen, M.; Robinson, G. W.

    1977-01-01

    Presented in this paper is an ab initio chemical model for dense interstellar clouds that incorporates 598 grain surface reactions, with small grains providing the reaction area. Gas-phase molecules are depleted through collisions with grains. The abundances of 372 chemical species are calculated as a function of time and are found to be of sufficient magnitude to explain most observations. Peak abundances are achieved on time scales of the order of 100,000 to 1 million years, depending on cloud density and kinetic temperature. The reaction rates for ion-molecule chemistry are approximately the same, indicating that surface and gas-phase chemistry may be coupled in certain regions. The composition of grain mantles is shown to be a function of grain radius. In certain grain-size ranges, large molecules containing two or more heavy atoms are more predominant than lighter 'ices' - H2O, NH3, and CH4. It is possible that absorption due to these large molecules in the mantle may contribute to the observed 3-micron band in astronomical spectra.

  10. Bonding and structure in dense multi-component molecular mixtures

    DOE PAGES

    Meyer, Edmund R.; Ticknor, Christopher; Bethkenhagen, Mandy; ...

    2015-10-30

    We have performed finite-temperature density functional theory molecular dynamics simulations on dense methane, ammonia, and water mixtures (CH 4:NH 3:H 2O) for various compositions and temperatures (2000 K ≤ T ≤ 10000 K) that span a set of possible conditions in the interiors of ice-giant exoplanets. The equation-of-state, pair distribution functions, and bond autocorrelation functions (BACF) were used to probe the structure and dynamics of these complex fluids. In particular, an improvement to the choice of the cutoff in the BACF was developed that allowed analysis refinements for density and temperature effects. We note the relative changes in the naturemore » of these systems engendered by variations in the concentration ratios. As a result, a basic tenet emerges from all these comparisons that varying the relative amounts of the three heavy components (C,N,O) can effect considerable changes in the nature of the fluid and may in turn have ramifications for the structure and composition of various planetary layers.« less

  11. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOEpatents

    Petrovic, John J.

    1995-01-01

    Compositions consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  12. Magnesium-Aluminum-Zirconium Oxide Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  13. MgO-Al2O3-ZrO2 Amorphous Ternary Composite: A Dense and Stable Optical Coating

    NASA Technical Reports Server (NTRS)

    Shaoo, Naba K.; Shapiro, Alan P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of MgO-Al2O3-ZrO2 ternary mixed-composite material were investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases, and process- dependent material composition of films were investigated through the use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. Energy-dispersive x-ray analysis made evident the correlation between the optical constants and the process-dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.

  14. Towards long lasting zirconia-based composites for dental implants: Transformation induced plasticity and its consequence on ceramic reliability.

    PubMed

    Reveron, Helen; Fornabaio, Marta; Palmero, Paola; Fürderer, Tobias; Adolfsson, Erik; Lughi, Vanni; Bonifacio, Alois; Sergo, Valter; Montanaro, Laura; Chevalier, Jérôme

    2017-01-15

    Zirconia-based composites were developed through an innovative processing route able to tune compositional and microstructural features very precisely. Fully-dense ceria-stabilized zirconia ceramics (84vol% Ce-TZP) containing equiaxed alumina (8vol%Al 2 O 3 ) and elongated strontium hexa-aluminate (8vol% SrAl 12 O 19 ) second phases were obtained by conventional sintering. This work deals with the effect of the zirconia stabilization degree (CeO 2 in the range 10.0-11.5mol%) on the transformability and mechanical properties of Ce-TZP-Al 2 O 3 -SrAl 12 O 19 materials. Vickers hardness, biaxial flexural strength and Single-edge V-notched beam tests revealed a strong influence of ceria content on the mechanical properties. Composites with 11.0mol% CeO 2 or above exhibited the classical behaviour of brittle ceramics, with no apparent plasticity and very low strain to failure. On the contrary, composites with 10.5mol% CeO 2 or less showed large transformation-induced plasticity and almost no dispersion in strength data. Materials with 10.5mol% of ceria showed the highest values in terms of biaxial bending strength (up to 1.1GPa) and fracture toughness (>10MPa√m). In these ceramics, as zirconia transformation precedes failure, the Weibull modulus was exceptionally high and reached a value of 60, which is in the range typically reported for metals. The results achieved demonstrate the high potential of using these new strong, tough and stable zirconia-based composites in structural biomedical applications. Yttria-stabilized (Y-TZP) zirconia ceramics are increasingly used for developing metal-free restorations and dental implants. Despite their success related to their excellent mechanical resistance, Y-TZP can undergo Low Temperature Degradation which could be responsible for restoration damage or even worst the failure of the implant. Current research is focusing on strategies to improve the LTD resistance of Y-TZP or to develop alternative composites with better stability in vivo. In this work the mechanical characterization of a new type of very-stable zirconia-based composites is presented. These materials are composed of ceria-stabilized zirconia (84vol%Ce-TZP) containing two second phases (α-alumina and strontium hexa-aluminate) and exhibit exceptional strength, toughness and ductility, which may allow the processing of dental implants with a perfect reliability and longer lifetime. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Molybdenum disilicide composites reinforced with zirconia and silicon carbide

    DOEpatents

    Petrovic, J.J.

    1995-01-17

    Compositions are disclosed consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.

  16. Disability Studies in the Composition Classroom

    ERIC Educational Resources Information Center

    Browning, Ella R.

    2014-01-01

    Although attention to disability is becoming more apparent in first-year composition curricula, too often disability is simply "tacked on" to existing courses. Scholars have argued that composition instructors interested in fully integrating a disability studies perspective into their curriculum would do well, instead, to think…

  17. Hydrophobic matrix-free graphene-oxide composites with isotropic and nematic states.

    PubMed

    Wåhlander, Martin; Nilsson, Fritjof; Carlmark, Anna; Gedde, Ulf W; Edmondson, Steve; Malmström, Eva

    2016-08-21

    We demonstrate a novel route to synthesise hydrophobic matrix-free composites of polymer-grafted graphene oxide (GO) showing isotropic or nematic alignment and shape-memory effects. For the first time, a cationic macroinitiator (MI) has been immobilised on anionic GO and subsequently grafted with hydrophobic polymer grafts. Dense grafts of PBA, PBMA and PMMA with a wide range of average graft lengths (MW: 1-440 kDa) were polymerised by surface-initiated controlled radical precipitation polymerisation from the statistical MI. The surface modification is designed similarly to bimodal graft systems, where the cationic MI generates nanoparticle repulsion, similar to dense short grafts, while the long grafts offer miscibility in non-polar environments and cohesion. The state-of-the-art dispersions of grafted GO were in the isotropic state. Transparent and translucent matrix-free GO-composites could be melt-processed directly using only grafted GO. After processing, birefringence due to nematic alignment of grafted GO was observed as a single giant Maltese cross, 3.4 cm across. Permeability models for composites containing aligned 2D-fillers were developed, which were compared with the experimental oxygen permeability data and found to be consistent with isotropic or nematic states. The storage modulus of the matrix-free GO-composites increased with GO content (50% increase at 0.67 wt%), while the significant increases in the thermal stability (up to 130 °C) and the glass transition temperature (up to 17 °C) were dependent on graft length. The tuneable matrix-free GO-composites with rapid thermo-responsive shape-memory effects are promising candidates for a vast range of applications, especially selective membranes and sensors.

  18. Relationship between topological order and glass forming ability in densely packed enstatite and forsterite composition glasses

    PubMed Central

    Kohara, S.; Akola, J.; Morita, H.; Suzuya, K.; Weber, J. K. R.; Wilding, M. C.; Benmore, C. J.

    2011-01-01

    The atomic structures of magnesium silicate melts are key to understanding processes related to the evolution of the Earth’s mantle and represent precursors to the formation of most igneous rocks. Magnesium silicate compositions also represent a major component of many glass ceramics, and depending on their composition can span the entire fragility range of glass formation. The silica rich enstatite (MgSiO3) composition is a good glass former, whereas the forsterite (Mg2SiO4) composition is at the limit of glass formation. Here, the structure of MgSiO3 and Mg2SiO4 composition glasses obtained from levitated liquids have been modeled using Reverse Monte Carlo fits to diffraction data and by density functional theory. A ring statistics analysis suggests that the lower glass forming ability of the Mg2SiO4 glass is associated with a topologically ordered and very narrow ring distribution. The MgOx polyhedra have a variety of irregular shapes in MgSiO3 and Mg2SiO4 glasses and a cavity analysis demonstrates that both glasses have almost no free volume due to a large contribution from edge sharing of MgOx-MgOx polyhedra. It is found that while the atomic volume of Mg cations in the glasses increases compared to that of the crystalline phases, the number of Mg-O contacts is reduced, although the effective chemical interaction of Mg2+ remains similar. This unusual structure-property relation of Mg2SiO4 glass demonstrates that by using containerless processing it may be possible to synthesize new families of dense glasses and glass ceramics with zero porosity. PMID:21873237

  19. Powder and particulate production of metallic alloys

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    Developments of particulate metallurgy of alloyed materials where the final products is a fully dense body are discussed. Particulates are defined as powders, flakes, foils, silvers, ribbons and strip. Because rapid solidification is an important factor in particulate metallurgy, all of the particulates must have at least one dimension which is very fine, sometimes as fine as 10 to 50 microns, but move typically up to several hundred microns, provided that the dimension permits a minimum solidification rate of at least 100 K/s.

  20. Dense Non-Aqueous Phase Liquids (DNAPLs): Review of Emerging Characterization and Remediation Technologies

    DTIC Science & Technology

    2000-06-01

    the chemical can contact and fully react with contaminants in situ. The advantage of in situ destruction is that the process is completed in the ground...Because chemical oxidation is primarily targeted at dissolved plumes and is only marginally applicable to DNAPL source zones exhibiting relatively low...refer to a “DNAPL plume .” Certainly, a portion of the chemical components of a DNAPL may become dissolved in ground water, and this solution may spread

  1. Dynamic Failure Processes Under Confining Stress in AlON, a Transparent Polycrystalline Ceramic

    DTIC Science & Technology

    2009-09-01

    in a prismatic specimen along one of the three specimen axes, the dynamic loading is imposed (using MKB) along the second specimen axis and the third ...AlON are generally comparable to those of α-Al2O3. Owing to its optically isotropic cubic crystal structure, fully dense, polycrystalline bodies can...illustrated in indentation experiments on Al2O3 [46]) or under tribological loading conditions. During indentation, the region beneath the indenter is

  2. Manufacturing techniques for titanium aluminide based alloys and metal matrix composites

    NASA Astrophysics Data System (ADS)

    Kothari, Kunal B.

    Dual phase titanium aluminides composed vastly of gamma phase (TiAl) with moderate amount of alpha2 phase (Ti3Al) have been considered for several high temperature aerospace and automobile applications. High specific strength coupled with good high temperature performance in the areas of creep and oxidation resistance makes titanium aluminides "materials of choice" for next generation propulsion systems. Titanium alumnides are primarily being considered as potential replacements for Ni-based superalloys in gas turbine engine components with aim of developing more efficient and leaner engines exhibiting high thrust-to-weight ratio. Thermo-mechanical treatments have shown to enhance the mechanical performance of titanium aluminides. Additionally, small additions of interstitial elements have shown further and significant improvement in the mechanical performance of titanium alumnide alloys. However, titanium aluminides lack considerably in room temperature ductility and as a result manufacturing processes of these aluminides have greatly suffered. Traditional ingot metallurgy and investment casting based methods to produce titanium aluminide parts in addition to being expensive, have also been unsuccessful in producing titanium aluminides with the desired mechanical properties. Hence, the manufacturing costs associated with these methods have completely outweighed the benefits offered by titanium aluminides. Over the last two decades, several powder metallurgy based manufacturing techniques have been studied to produce titanium aluminide parts. These techniques have been successful in producing titanium aluminide parts with a homogeneous and refined microstructure. These powder metallurgy techniques also hold the potential of significant cost reduction depending on the wide market acceptance of titanium aluminides. In the present study, a powder metallurgy based rapid consolidation technique has been used to produce near-net shape parts of titanium aluminides. Micron-sized titanium aluminide powders were rapidly consolidated to form near-net shape titanium aluminide parts in form of small discs and tiles. The rapidly consolidated titanium aluminide parts were found to be fully dense. The microstructure morphology was found to vary with consolidation conditions. The mechanical properties were found to be significantly dependent on microstructure morphology and grain size. Due to rapid consolidation, grain growth during consolidation was limited, which in turn led to enhanced mechanical properties. The high temperature mechanical properties for the consolidated titanium aluminide samples were characterized and were found to retain good mechanical performance up to 700°C. Micron-sized titanium aluminide powders with slightly less Aluminum and small Nb, and Cr additions were rapidly consolidated into near-net shape parts. The consolidated parts were found to exhibit enhanced mechanical performance in terms of ductility and yield strength. The negative effect of Oxygen on the flexural strength at high temperatures was found to be reduced with the addition of Nb. In an effort to further reduce the grain size of the consolidated titanium aluminide samples, the as-received titanium aluminide powders were milled in an attrition mill. The average powder particle size of the powders was reduced by 60% after milling. The milled powders were then rapidly consolidated. The grain size of the consolidated parts was found to be in the sub-micrometer range. The mechanical properties were found to be significantly enhanced due to reduction of grain size in the sub-micrometer range. In order to develop a metal matrix composite based on titanium aluminide matrix reinforced with titanium boride, an experiment to study the effect of rapid consolidation on titanium diboride powders was conducted. Micron-sized titanium diboride powders were consolidated and were found to be 93% dense and exhibited minimal grain growth. The low density of the consolidated part was attributed to low consolidation temperature. Titanium aluminide and titanium diboride powders were blended together in an attrition mill and rapidly consolidated. A metal matrix composite with titanium aluminide matrix reinforced with titanium monoboride plates was formed. The titanium diboride in the powder form was found to be transformed to titanium monoboroide plates during consolidation due to the thermodynamic equilibrium between titanium and titanium monoboride. The metal matrix composite was found to be 90% dense. The low density was due to particle size mismatch between the matrix and reinforcement powders and low consolidation temperature. An increase in the volume of titanium monoboride plates in the metal matrix composite was accompanied by an increase in the elastic modulus of the metal matrix composite.

  3. Metal Alloy ICF Capsules Created by Electrodeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.

    Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less

  4. Shrink Wrapping Cells in a Defined Extracellular Matrix to Modulate the Chemo-Mechanical Microenvironment.

    PubMed

    Palchesko, Rachelle N; Szymanski, John M; Sahu, Amrita; Feinberg, Adam W

    2014-09-01

    Cell-matrix interactions are important for the physical integration of cells into tissues and the function of insoluble, mechanosensitive signaling networks. Studying these interactions in vitro can be difficult because the extracellular matrix (ECM) proteins that adsorb to in vitro cell culture surfaces do not fully recapitulate the ECM-dense basement membranes to which cells such as cardiomyocytes and endothelial cells adhere to in vivo . Towards addressing this limitation, we have developed a surface-initiated assembly process to engineer ECM proteins into nanostructured, microscale sheets that can be shrink wrapped around single cells and small cell ensembles to provide a functional and instructive matrix niche. Unlike current cell encapsulation technology using alginate, fibrin or other hydrogels, our engineered ECM is similar in density and thickness to native basal lamina and can be tailored in structure and composition using the proteins fibronectin, laminin, fibrinogen, and/or collagen type IV. A range of cells including C2C12 myoblasts, bovine corneal endothelial cells and cardiomyocytes survive the shrink wrapping process with high viability. Further, we demonstrate that, compared to non-encapsulated controls, the engineered ECM modulates cytoskeletal structure, stability of cell-matrix adhesions and cell behavior in 2D and 3D microenvironments.

  5. Shrink Wrapping Cells in a Defined Extracellular Matrix to Modulate the Chemo-Mechanical Microenvironment

    PubMed Central

    Palchesko, Rachelle N.; Szymanski, John M.; Sahu, Amrita; Feinberg, Adam W.

    2014-01-01

    Cell-matrix interactions are important for the physical integration of cells into tissues and the function of insoluble, mechanosensitive signaling networks. Studying these interactions in vitro can be difficult because the extracellular matrix (ECM) proteins that adsorb to in vitro cell culture surfaces do not fully recapitulate the ECM-dense basement membranes to which cells such as cardiomyocytes and endothelial cells adhere to in vivo. Towards addressing this limitation, we have developed a surface-initiated assembly process to engineer ECM proteins into nanostructured, microscale sheets that can be shrink wrapped around single cells and small cell ensembles to provide a functional and instructive matrix niche. Unlike current cell encapsulation technology using alginate, fibrin or other hydrogels, our engineered ECM is similar in density and thickness to native basal lamina and can be tailored in structure and composition using the proteins fibronectin, laminin, fibrinogen, and/or collagen type IV. A range of cells including C2C12 myoblasts, bovine corneal endothelial cells and cardiomyocytes survive the shrink wrapping process with high viability. Further, we demonstrate that, compared to non-encapsulated controls, the engineered ECM modulates cytoskeletal structure, stability of cell-matrix adhesions and cell behavior in 2D and 3D microenvironments. PMID:25530816

  6. The structure of MgO-SiO2 glasses at elevated pressure.

    PubMed

    Wilding, Martin; Guthrie, Malcolm; Kohara, Shinji; Bull, Craig L; Akola, Jaakko; Tucker, Matt G

    2012-06-06

    The magnesium silicate system is an important geophysical analogue and neutron diffraction data from glasses formed in this system may also provide an initial framework for understanding the structure-dependent properties of related liquids that are important during planetary formation. Neutron diffraction data collected in situ for a single composition (38 mol% SiO(2)) magnesium silicate glass sample shows local changes in structure as pressure is increased from ambient conditions to 8.6 GPa at ambient temperature. A method for obtaining the fully corrected, total structure factor, S(Q), has been developed that allows accurate structural characterization as this weakly scattering glass sample is compressed. The measured S(Q) data indicate changes in chemical ordering with pressure and the real-space transforms show an increase in Mg-O coordination number and a distortion of the local environment around magnesium ions. We have used reverse Monte Carlo methods to compare the high pressure and ambient pressure structures and also compare the high pressure form with a more silica-poor glass (Mg(2)SiO(4)) that represents the approach to a more dense, void-free and topologically ordered structure. The Mg-O coordination number increases with pressure and we also find that the degree of continuous connectivity of Si-O bonds increases via a collapse of interstices.

  7. Three-dimensional bioactive glass implants fabricated by rapid prototyping based on CO(2) laser cladding.

    PubMed

    Comesaña, R; Lusquiños, F; Del Val, J; López-Álvarez, M; Quintero, F; Riveiro, A; Boutinguiza, M; de Carlos, A; Jones, J R; Hill, R G; Pou, J

    2011-09-01

    Three-dimensional bioactive glass implants were produced by rapid prototyping based on laser cladding without using moulds. CO(2) laser radiation was employed to melt 45S5 and S520 bioactive glass particles and to deposit the material layer by layer following a desired geometry. Controlled thermal input and cooling rate by fine tuning of the processing parameters allowed the production of crack-free fully dense implants. Microstructural characterization revealed chemical composition stability, but crystallization during processing was extensive when 45S5 bioactive glass was used. Improved results were obtained using the S520 bioactive glass, which showed limited surface crystallization due to an expanded sintering window (the difference between the glass transition temperature and crystallization onset temperature). Ion release from the S520 implants in Tris buffer was similar to that of amorphous 45S5 bioactive glass prepared by casting in graphite moulds. Laser processed S520 scaffolds were not cytotoxic in vitro when osteoblast-like MC3T3-E1 cells were cultured with the dissolution products of the glasses; and the MC3T3-E1 cells attached and spread well when cultured on the surface of the materials. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Metal Alloy ICF Capsules Created by Electrodeposition

    DOE PAGES

    Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.

    2017-12-04

    Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less

  9. Preparation of Composite Coating on AZ91D Magnesium Alloy by Silica Sol-Micro Oxidation

    NASA Astrophysics Data System (ADS)

    Shao, Zhongcai; Zhang, Feifei; Zhao, Ruiqiang; Shen, Xiaoyi

    2016-03-01

    Composite coating was prepared on AZ91D magnesium alloy with a new method which combined silica sol with micro-arc oxidation (MAO). The MAO coating was prepared on the basis of MAO solution, and then coated by sol-gel process. The composite coating was obtained after second MAO treatment. Scanning electron microscopy coupled with X-ray diffraction (XRD), energy spectrum analysis and electrochemical testing was applied to characterize the properties of MAO coating and composite coating. The experimental test results indicated that the Si element derived from SiO2 gel particle embedded into the MAO coating by second MAO treatment. The surface of composite coating became dense and the holes were smaller with silica sol sealing process. The corrosion resistance of composite coating was improved than the MAO coating.

  10. Processing of Alumina-Toughened Zirconia Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Choi, Sung R.

    2003-01-01

    Dense and crack-free 10-mol%-yttria-stabilized zirconia (10YSZ)-alumina composites, containing 0 to 30 mol% of alumina, have been fabricated by hot pressing. Release of pressure before onset of cooling was crucial in obtaining crack-free material. Hot pressing at 1600 C resulted in the formation of ZrC by reaction of zirconia with grafoil. However, no such reaction was observed at 1500 C. Cubic zirconia and -alumina were the only phases detected from x-ray diffraction indicating no chemical reaction between the composite constituents during hot pressing. Microstructure of the composites was analyzed by scanning electron microscopy and transmission electron microscopy. Density and elastic modulus of the composites followed the rule-of-mixtures. Addition of alumina to 10YSZ resulted in lighter, stronger, and stiffer composites by decreasing density and increasing strength and elastic modulus.

  11. Preparation research of Nano-SiC/Ni-P composite coating under a compound field

    NASA Astrophysics Data System (ADS)

    Zhou, H. Z.; Wang, W. H.; Gu, Y. Q.; Liu, R.; Zhao, M. L.

    2016-07-01

    In this paper, the preparation process of Ni-P-SiC composite coatings on 45 steel surfaces with the assistance of magnetic and ultrasound fields was researched. The influence of external field on the surface morphology and performance of the composite layer is also discussed. Experimental results showed that when prepared under magnetic and ultrasonic fields, composite layers are significantly more dense and uniform than coatings made without external fields. Nano-SiC particles, dispersed uniformly in the layer, significantly improve the hardness of the composite layer, and the composite layer under the external field had the highest hardness at 680 HV The external fields can also accelerate deposition and increase the thickness of the layer. Compared to layers processed without the assistance of external fields, the thickness of the layers increased by nearly ten µm.

  12. The Feedback Between Continents and Compositional Anomalies in the Deep Mantle

    NASA Astrophysics Data System (ADS)

    Lowman, J. P.; Trim, S. J.

    2014-12-01

    Findings from global seismic tomography studies suggest that the deep mantle may harbor a pair of broad, steep-sided, relatively dense compositionally anomalous provinces. The longevity and stability of these Large Low Shear-Wave Velocity Provinces (LLSVPs) has received considerable interest but their possible influence on surface motion has drawn lesser attention. Recent work using numerical mantle convection models investigated the feedback between oceanic plate motion and high density compositional anomalies. It was found that surface mobility is affected by the presence of compositional anomalies such that critical density contrasts and volumes of the enriched material produce a transition to stagnant-lid convection. For lesser volumes and density contrast (for example, volumes that are representative of the concentrations in the Earth's mantle) the presence of the compositional anomalies affects mean plate velocity and size when compared to the characteristics of systems in which the enriched material is absent. In addition, numerous studies and lines of evidence in the geologic record suggest that the presence of the density anomalies plays a role in determining the location of mantle upwellings, which in turn influence surface dynamics. In this study, we present the results from a study implementing a two-dimensional mantle convection model featuring an anomalously dense component and distinct continental and oceanic lithosphere. The mass, momentum, and energy conservation equations are solved using a hybrid spectral-finite difference code. Compositional variations are tracked using Lagrangian tracer particles. Mobile tectonic plates are modeled using a force-balance method and plate boundary locations evolve in response to interior stresses, plate velocity, age and lithospheric chemistry (i.e., oceanic versus continental). We examine the influence of continents on compositional anomaly morphology and longevity and the influence of compositional anomalies on continental size, mobility and aggregation. The influence of continents is isolated by comparing our calculations with cases in which continents are absent.

  13. Temperature effects on polymer-carbon composite sensors

    NASA Technical Reports Server (NTRS)

    Lim, J. R.; Homer, M. L.; Manatt, K.; Kisor, A.; Lara, L.; Jewell, A. D.; Shevade, A.; Ryan, M. A.

    2003-01-01

    At JPL we have investigated the effects of temperature on polymer-carbon black composite sensors. While the electrical properties of polymer composites have been studied, with mechanisms of conductivity described by connectivity and tunneling, it is not fully understood how these properties affect sensor characteristics and responses.

  14. a Facile Synthesis of Fully Porous Tazo Composite and its Remarkable Gas Sensitive Performance

    NASA Astrophysics Data System (ADS)

    Liang, Dongdong; Liu, Shimin; Wang, Zhinuo; Guo, Yu; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan; Zhang, Zhihua

    The composite of a nanocrystalline SnO2 thick film deposited on an Al-doped ZnO ceramic substrate was firstly proposed. This study also provided a simple, fast and cost effective method to prepare SnO2 thick film and Al-doped ZnO ceramic as well as the final composite. The crystal structure, morphology, composition, pore size distribution and gas sensitivity of the composite were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, Barrett-Joyner-Halenda analysis and gas sensitive measurement system. Results indicated that the composite was fully porous consisted of SnO2, ZnO and ZnAl2O4 crystal phases. The macrosized pores generated in the composite could enhance the gas infiltration into the sensing layers effectively. In this way, combining a high gas-transporting-capability and a nanocrystalline SnO2 thick film, the composite showed very impressive performance. The gas sensitivity of the composite was high enough for ethanol vapor with different concentrations, which was comparable to other kinds of reported SnO2 gas sensors, while showing two straight lines with a turning point at 1000ppm. Finally, the gas sensitive mechanism was proposed based on the microstructure and composition of the composite.

  15. Cure effects on microcracking in IM7 fiber/Matrimid 5292{reg_sign} BMI composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilenski, M.S.; Shin, E.; Morgan, R.J.

    1995-12-31

    Initial results from a study of the microcracking behavior of the Matrimid 5292{reg_sign} BMI/IM7 carbon fiber system are presented. Studies were performed to determine the composite`s Stress Free Temperature (SFT) which is seen to control the presence and extent of microcracking. The SFT was determined using asymmetric laminates [0{sub 2}/90{sub 2}]. Varied post-cure cycles were utilized and it was found that until complete cure is obtained, the SFT is a function of the highest temperature experienced by the laminate, with little effect of previous thermal history. The reactions necessary to fully cure this system are not active at temperatures belowmore » 250 C, ruling out the possibility of obtaining a fully cured composite with a low SFT through extended post-cures at lower temperatures.« less

  16. Microbial Community Composition of Polyhydroxyalkanoate-Accumulating Organisms in Full-Scale Wastewater Treatment Plants Operated in Fully Aerobic Mode

    PubMed Central

    Oshiki, Mamoru; Onuki, Motoharu; Satoh, Hiroyasu; Mino, Takashi

    2013-01-01

    The removal of biodegradable organic matter is one of the most important objectives in biological wastewater treatments. Polyhydroxyalkanoate (PHA)-accumulating organisms (PHAAOs) significantly contribute to the removal of biodegradable organic matter; however, their microbial community composition is mostly unknown. In the present study, the microbial community composition of PHAAOs was investigated at 8 full-scale wastewater treatment plants (WWTPs), operated in fully aerobic mode, by fluorescence in situ hybridization (FISH) analysis and post-FISH Nile blue A (NBA) staining techniques. Our results demonstrated that 1) PHAAOs were in the range of 11–18% in the total number of cells, and 2) the microbial community composition of PHAAOs was similar at the bacterial domain/phylum/class/order level among the 8 full-scale WWTPs, and dominant PHAAOs were members of the class Alphaproteobacteria and Betaproteobacteria. The microbial community composition of α- and β-proteobacterial PHAAOs was examined by 16S rRNA gene clone library analysis and further by applying a set of newly designed oligonucleotide probes targeting 16S rRNA gene sequences of α- or β-proteobacterial PHAAOs. The results demonstrated that the microbial community composition of PHAAOs differed in the class Alphaproteobacteria and Betaproteobacteria, which possibly resulted in a different PHA accumulation capacity among the WWTPs (8.5–38.2 mg-C g-VSS−1 h−1). The present study extended the knowledge of the microbial diversity of PHAAOs in full-scale WWTPs operated in fully aerobic mode. PMID:23257912

  17. Initiation of Subduction Zones: A Consequence of Lateral Compositional Buoyancy Contrast Within the Lithosphere

    NASA Astrophysics Data System (ADS)

    Niu, Y.; O'Hara, M. J.; Pearce, J. A.

    2001-12-01

    Subduction of oceanic lithosphere into deep mantle is one of the key aspects of plate tectonics. Pull by the subducting-slab due to its negative buoyancy is widely accepted as the major driving force for plate motion and plate tectonics. Hence, there would be no plate tectonics if there were no subduction zones. Yet how a subduction zone initiates remains poorly known. Here we show that lateral compositional (vs. thermal) buoyancy contrast within the lithosphere creates the favored and necessary condition for the initiation of a subduction zone by (1) comparing the compositional and density differences between normal oceanic lithosphere (NOL) represented by abyssal peridotites (AP) and subarc lithosphere (SAL) represented by forearc peridotites (FP), and (2) simple physical analysis. As the gravitational attraction is the principal driving force of the subducting slab, it would be optimal if one part of the lithosphere experiences a greater gravitational attraction than its adjacent neighbor prior to or during the initiation of a subduction. This requires the pre-existence of a density contrast within the lithosphere. If the lithosphere is thermally uniform as is often the case, then the density contrast must result from a compositional contrast. This hypothesis can be tested by examining the lithospheric materials on both sides of a subduction zone. Subduction of a dense NOL beneath a buoyant continental lithosphere is straightforward, but intra-oceanic subduction such as in the western Pacific requires a scrutiny. Our data show that FP of Mariana and Tonga - two of the most important intra-oceanic subduction zones on Earth - are compositionally more depleted than AP: Cr#-sp (mean+/- 1σ ) = 0.584+/-0.084(FP) vs. 0.307+/-0.134(AP); Mg#-ol = 0.915+/-0.006(FP) vs. 0.898+/-0.082(AP); Mg#-opx = 0.917+/-0.006(FP) vs. 0.908+/-0.006(AP); Mg#-cpx = 0.929+/-0.021(FP) vs. 0.917+/-0.011(AP). As a result, SAL is > 0.7% less dense than NOL. This density contrast due to compositional difference is equivalent to Δ T = ~230° C, which is similar to or greater than the postulated thermal buoyancy contrast between a hot mantle plume and its surroundings. While the depleted nature of FP has been interpreted to result from subducting-slab dehydration induced high extents of mantle wedge melting, evidence indicates that the depletion of these FP predates the inception of the subduction, thus these FP are not residues of present-day arc magmatism. Hence, the compositional buoyancy contrast already existed within the lithosphere before the inception of the subduction in the western Pacific. Much of the Mariana SAL may be fragments of old continental lithosphere, whereas the Tonga/Fiji plateau and Kamchatka lithosphere may be remnants of buoyant, hence unsubductable oceanic plateaus (mantle plume head materials) for the Louisville and Hawaiian hotspots respectively. Passive continental margins, where the largest compositional buoyancy contrast exists within the lithosphere, are the loci of future subduction zones. Geometrical analysis shows that the compositional buoyancy contrast within the lithosphere under compression (e.g., ridge push) induces transtensional planes. The weakest plane in the vicinity of the compositional buoyancy contrast develops into a reverse fault. The dense NOL (the foot-wall) tends to sink into the hot and less dense asthenosphere. Calculations show that this tendency to sink reduces both the normal stress to, and shear resistance along, the fault plane, thus easing the sinking and favoring the initiation of a subduction zone. This concept also explains other observations and makes testable predictions on important geodynamic problems.

  18. Structure of electroexplosive TiC-Ni composite coatings on steel after electron-beam treatment

    NASA Astrophysics Data System (ADS)

    Romanov, D. A.; Goncharova, E. N.; Budovskikh, E. A.; Gromov, V. E.; Ivanov, Yu. F.; Teresov, A. D.; Kazimirov, S. A.

    2016-11-01

    The phase and elemental compositions of the surface layer in Hardox 450 steel after electroexplosive spraying of a TiC-Ni composite coating and subsequent irradiation by a submillisecond high-energy electron beam are studied by the methods of modern physical metallurgy. The electron-beam treatment conditions that result in the formation of dense surface layers having high luster and a submicrocrystalline structure based on titanium carbide and nickel are found. It is shown that electron-beam treatment of an electroexplosive coating performed under melting conditions leads to the formation of a homogeneous (in structure and concentration) surface layer.

  19. Properties and rapid low-temperature consolidation of nanocrystalline Fe-ZrO2 composite by pulsed current activated sintering

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Su; Ko, In-Yong; Yoon, Jin-Kook; Doh, Jung-Mann; Hong, Kyung-Tae; Shon, In-Jin

    2011-02-01

    Nanopowders of Fe and ZrO2 were synthesized from Fe2O3 and Zr by high-energy ball milling. The powder sizes of Fe and ZrO2 were 70 nm and 12 nm, respectively. Highly dense nanostructured 4/3Fe-ZrO2 composite was consolidated by a pulsed current activated sintering method within 1 minute from the mechanically synthesized powders (Fe-ZrO2) and horizontal milled Fe2O3+Zr powders under the 1 GPa pressure. The grain sizes of Fe and ZrO2 in the composite were calculated. The average hardness and fracture toughness values of nanostuctured 4/3Fe-ZrO2 composite were investigated.

  20. Mechanical properties of hot isostatically pressed zirconia (2 mol% yttria)-reinforced molybdenum disilicide composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Toshihiro; Hirota, Ken; Yamaguchi, Osamu

    1995-07-01

    Dense sintered composites of ZrO{sub 2} (2 mol% Y{sub 2}O{sub 3}) and MoSi{sub 2} have been fabricated by hot isostatic pressing for 2 h at 1400 C under 196 MPa. The ZrO{sub 2} particles in the composites consist of only t-ZrO{sub 2}. There is no reaction between ZrO{sub 2} and MoSi{sub 2}. Microstructures and mechanical properties are examined, in connection with increased ZrO{sub 2} content. The fracture toughness and bending strength of the composite with 40 mol% ZrO{sub 2} addition are 6.18 MPa{center_dot}m{sup 1/2} and 1034 MPa, respectively.

  1. Hydroxyapatite coatings deposited by liquid precursor plasma spraying: controlled dense and porous microstructures and osteoblastic cell responses.

    PubMed

    Huang, Yi; Song, Lei; Liu, Xiaoguang; Xiao, Yanfeng; Wu, Yao; Chen, Jiyong; Wu, Fang; Gu, Zhongwei

    2010-12-01

    Hydroxyapatite coatings were deposited on Ti-6Al-4V substrates by a novel plasma spraying process, the liquid precursor plasma spraying (LPPS) process. X-ray diffraction results showed that the coatings obtained by the LPPS process were mainly composed of hydroxyapatite. The LPPS process also showed excellent control on the coating microstructure, and both nearly fully dense and highly porous hydroxyapatite coatings were obtained by simply adjusting the solid content of the hydroxyapatite liquid precursor. Scanning electron microscope observations indicated that the porous hydroxyapatite coatings had pore size in the range of 10-200 µm and an average porosity of 48.26 ± 0.10%. The osteoblastic cell responses to the dense and porous hydroxyapatite coatings were evaluated with human osteoblastic cell MG-63, in respect of the cell morphology, proliferation and differentiation, with the hydroxyapatite coatings deposited by the atmospheric plasma spraying (APS) process as control. The cell experiment results indicated that the heat-treated LPPS coatings with a porous structure showed the best cell proliferation and differentiation among all the hydroxyapatite coatings. Our results suggest that the LPPS process is a promising plasma spraying technique for fabricating hydroxyapatite coatings with a controllable microstructure, which has great potential in bone repair and replacement applications.

  2. Anti-Fouling Double-Skinned Forward Osmosis Membrane with Zwitterionic Brush for Oily Wastewater Treatment.

    PubMed

    Ong, Chi Siang; Al-Anzi, Bader; Lau, Woei Jye; Goh, Pei Sean; Lai, Gwo Sung; Ismail, Ahmad Fauzi; Ong, Yue Seong

    2017-07-31

    Despite its attractive features for energy saving separation, the performance of forward osmosis (FO) has been restricted by internal concentration polarization and fast fouling propensity that occur in the membrane sublayer. These problems have significantly affected the membrane performance when treating highly contaminated oily wastewater. In this study, a novel double-skinned FO membrane with excellent anti-fouling properties has been developed for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between a highly dense polyamide (PA) layer for salt rejection and a fairly loose dense bottom zwitterionic layer for emulsified oil particle removal. The top dense PA layer was synthesized via interfacial polymerization meanwhile the bottom layer was made up of a zwitterionic polyelectrolyte brush - (poly(3-(N-2-methacryloxyethyl-N,N-dimethyl) ammonatopropanesultone), abbreviated as PMAPS layer. The resultant double-skinned membrane exhibited a high water flux of 13.7 ± 0.3 L/m 2 .h and reverse salt transport of 1.6 ± 0.2 g/m 2 .h under FO mode using 2 M NaCl as the draw solution and emulsified oily solution as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation.

  3. Volutin granules of Eimeria parasites are acidic compartments and have physiological and structural characteristics similar to acidocalcisomes

    PubMed Central

    Medeiros, Lia Carolina Soares; Gomes, Fabio; Maciel, Luis Renato Maia; Seabra, Sergio Henrique; Docampo, Roberto; Moreno, Silvia; Plattner, Helmut; Hentschel, Joachim; Kawazoe, Urara; Barrabin, Hector; de Souza, Wanderley; DaMatta, Renato Augusto; Miranda, Kildare

    2012-01-01

    The structural organization of parasites has been the subject of investigation by many groups and has lead to the identification of structures and metabolic pathways that may represent targets for anti-parasitic drugs. A specific group of organelles named acidocalcisomes has been identified in a number of organisms, including the apicomplexan parasites such as Toxoplasma and Plasmodium, where they have been shown to be involved in cation homeostasis, polyphosphate metabolism, and osmoregulation. Their structural counterparts in the apicomplexan parasite Eimeria have not been fully characterized. In this work, the ultrastructural and chemical properties of acidocalcisomes in Eimeria were characterized. Electron microscopy analysis of Eimeria parasites showed the dense organelles called volutin granules similar to acidocalcisomes. Immunolocalization of the vacuolar proton pyrophosphatase, considered as a marker for acidocalcisomes, showed labeling in vesicles of size and distribution similar to the dense organelles seen by electron microscopy. Spectrophotometric measurements of the kinetics of proton uptake showed a vacuolar proton pyrophosphatase activity. X-ray mapping revealed significant amounts of Na, Mg, P, K, Ca, and Zn in their matrix. The results suggest that volutin granules of Eimeria parasites are acidic, dense organelles and possess structural and chemical properties analogous to those of other acidocalcisomes, suggesting a similar functional role in these parasites. PMID:21699625

  4. Dense image registration through MRFs and efficient linear programming.

    PubMed

    Glocker, Ben; Komodakis, Nikos; Tziritas, Georgios; Navab, Nassir; Paragios, Nikos

    2008-12-01

    In this paper, we introduce a novel and efficient approach to dense image registration, which does not require a derivative of the employed cost function. In such a context, the registration problem is formulated using a discrete Markov random field objective function. First, towards dimensionality reduction on the variables we assume that the dense deformation field can be expressed using a small number of control points (registration grid) and an interpolation strategy. Then, the registration cost is expressed using a discrete sum over image costs (using an arbitrary similarity measure) projected on the control points, and a smoothness term that penalizes local deviations on the deformation field according to a neighborhood system on the grid. Towards a discrete approach, the search space is quantized resulting in a fully discrete model. In order to account for large deformations and produce results on a high resolution level, a multi-scale incremental approach is considered where the optimal solution is iteratively updated. This is done through successive morphings of the source towards the target image. Efficient linear programming using the primal dual principles is considered to recover the lowest potential of the cost function. Very promising results using synthetic data with known deformations and real data demonstrate the potentials of our approach.

  5. Application of fully stressed design procedures to redundant and non-isotropic structures

    NASA Technical Reports Server (NTRS)

    Adelman, H. M.; Haftka, R. T.; Tsach, U.

    1980-01-01

    An evaluation is presented of fully stressed design procedures for sizing highly redundant structures including structures made of composite materials. The evaluation is carried out by sizing three structures: a simple box beam of either composite or metal construction; a low aspect ratio titanium wing; and a titanium arrow wing for a conceptual supersonic cruise aircraft. All three structures are sized by ordinary fully-stressed design (FSD) and thermal fully stressed design (TFSD) for combined mechanical and thermal loads. Where possible, designs are checked by applying rigorous mathematical programming techniques to the structures. It is found that FSD and TFSD produce optimum designs for the metal box beam, but produce highly non-optimum designs for the composite box beam. Results from the delta wing and arrow wing indicate that FSD and TFSD exhibits slow convergence for highly redundant metal structures. Further, TFSD exhibits slow oscillatory convergence behavior for the arrow wing for very high temperatures. In all cases where FSD and TFSD perform poorly either in obtaining nonoptimum designs or in converging slowly, the assumptions on which the algorithms are based are grossly violated. The use of scaling, however, is found to be very effective in obtaining fast convergence and efficiently produces safe designs even for those cases when FSD and TFSD alone are ineffective.

  6. Magnetic and microstructural investigation of high-coercivity net-shape Nd-Fe-B-type magnets produced from spark-plasma-sintered melt-spun ribbons blended with DyF3

    NASA Astrophysics Data System (ADS)

    Žagar, Kristina; Kocjan, Andraž; Kobe, Spomenka

    2016-04-01

    Nanostructured Nd-Fe-B-type materials produced by melt-spinning (MS) are used in a variety of applications in the electronics, automotive, and sensor industries. The very rapid MS process leads to flake-like powders with metastable, nanoscale, Nd2Fe14B grains. These powders are then formed into net-shaped, isotropic, polymer-bonded magnets, or they are hot formed into fully dense, metallic magnets that are isotropic and anisotropic. These fully dense magnets are usually produced with a conventional hot press without the inclusion of additives prior to the hot pressing. As a result, their properties, particularly the coercivity (Hci), are insufficient at automotive-relevant temperatures of 100-150 °C since the material Hci has a large temperature coefficient. In this study, we instead add a thin layer of DyF3 to the melt-spun ribbons prior to their hot consolidation in order to enhance the coercivity through a diffusion-based, partial substitution of the Nd by Dy. This is accomplished by applying extremely rapid, spark-plasma sintering to minimize any growth of the nanoscale Nd2Fe14B grains during consolidation. The result is a very high-coercivity magnet with drastically reduced amounts of heavy rare earths that is suitable for high-temperature applications. This work clearly demonstrates how rapidly formed, metastable states can provide us with properties that are unobtainable with conventional techniques.

  7. Effect of driver impedance on dense plasma focus Z-pinch neutron yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sears, Jason, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Link, Anthony, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov; Schmidt, Andrea, E-mail: sears8@llnl.gov, E-mail: schmidt36@llnl.gov

    2014-12-15

    The Z-pinch phase of a dense plasma focus (DPF) heats the plasma by rapid compression and accelerates ions across its intense electric fields, producing neutrons through both thermonuclear and beam-target fusion. Driver characteristics have empirically been shown to affect performance, as measured by neutron yield per unit of stored energy. We are exploring the effect of driver characteristics on DPF performance using particle-in-cell (PIC) simulations of a kJ scale DPF. In this work, our PIC simulations are fluid for the run-down phase and transition to fully kinetic for the pinch phase, capturing kinetic instabilities, anomalous resistivity, and beam formation duringmore » the pinch. The anode-cathode boundary is driven by a circuit model of the capacitive driver, including system inductance, the load of the railgap switches, the guard resistors, and the coaxial transmission line parameters. It is known that the driver impedance plays an important role in the neutron yield: first, it sets the peak current achieved at pinch time; and second, it affects how much current continues to flow through the pinch when the pinch inductance and resistance suddenly increase. Here we show from fully kinetic simulations how total neutron yield depends on the impedance of the driver and the distributed parameters of the transmission circuit. Direct comparisons between the experiment and simulations enhance our understanding of these plasmas and provide predictive design capability for neutron source applications.« less

  8. Influence of indigenous minor components on fat crystal network of fully hydrogenated palm kernel oil and fully hydrogenated coconut oil.

    PubMed

    Chai, Xiu-Hang; Meng, Zong; Cao, Pei-Rang; Liang, Xin-Yu; Piatko, Michael; Campbell, Shawn; Koon Lo, Seong; Liu, Yuan-Fa

    2018-07-30

    Purification of triglycerides from fully hydrogenated palm kernel oil (FHPKO) and fully hydrogenated coconut oil (FHCNO) was performed by a chromatographic method. Lipid composition, thermal properties, polymorphism, isothermal crystallization behaviour, nanostructure and microstructure of FHPKO, FHPKO-triacylglycerol (TAG), FHCNO and FHCNO-TAG were evaluated. Removal of minor components had no effect on triglycerides composition. However, the presence of the minor components did increase the slip melting point and promote onset of crystallization. Furthermore, the thickness of the nanoscale crystals increased, and polymorphic transformation from β' to β occurred in FHPKO after the removal of minor components, and from α to β' in FHCNO. Sharp changes in the values of the Avrami constant K and exponent n suggested that the presence of minor components changed the crystal growth mechanism. The PLM results indicated that a coarser crystal structure with lower fractal dimension appeared after the removal of minor components from both FHPKO and FHCNO. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Strength and fatigue properties of three-step sintered dense nanocrystal hydroxyapatite bioceramics

    NASA Astrophysics Data System (ADS)

    Guo, Wen-Guang; Qiu, Zhi-Ye; Cui, Han; Wang, Chang-Ming; Zhang, Xiao-Jun; Lee, In-Seop; Dong, Yu-Qi; Cui, Fu-Zhai

    2013-06-01

    Dense hydroxyapatite (HA) ceramic is a promising material for hard tissue repair due to its unique physical properties and biologic properties. However, the brittleness and low compressive strength of traditional HA ceramics limited their applications, because previous sintering methods produced HA ceramics with crystal sizes greater than nanometer range. In this study, nano-sized HA powder was employed to fabricate dense nanocrystal HA ceramic by high pressure molding, and followed by a three-step sintering process. The phase composition, microstructure, crystal dimension and crystal shape of the sintered ceramic were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties of the HA ceramic were tested, and cytocompatibility was evaluated. The phase of the sintered ceramic was pure HA, and the crystal size was about 200 nm. The compressive strength and elastic modulus of the HA ceramic were comparable to human cortical bone, especially the good fatigue strength overcame brittleness of traditional sintered HA ceramics. Cell attachment experiment also demonstrated that the ceramics had a good cytocompatibility.

  10. Aging of microstructural compartments in human compact bone

    NASA Technical Reports Server (NTRS)

    Akkus, Ozan; Polyakova-Akkus, Anna; Adar, Fran; Schaffler, Mitchell B.

    2003-01-01

    Composition of microstructural compartments in compact bone of aging male subjects was assessed using Raman microscopy. Secondary mineralization of unremodeled fragments persisted for two decades. Replacement of these tissue fragments with secondary osteons kept mean composition constant over age, but at a fully mineralized limit. Slowing of remodeling may increase fracture susceptibility through an increase in proportion of highly mineralized tissue. In this study, the aging process in the microstructural compartments of human femoral cortical bone was investigated and related to changes in the overall tissue composition within the age range of 17-73 years. Raman microprobe analysis was used to assess the mineral content, mineral crystallinity, and carbonate substitution in fragments of primary lamellar bone that survived remodeling for decades. Tissue composition of the secondary osteonal population was investigated to determine the composition of turned over tissue volume. Finally, Raman spectral analysis of homogenized tissue was performed to evaluate the effects of unremodeled and newly formed tissue on the overall tissue composition. The chemical composition of the primary lamellar bone exhibited two chronological stages. Organic matrix became more mineralized and the crystallinity of the mineral improved during the first stage, which lasted for two decades. The mineral content and the mineral crystallinity did not vary during the second stage. The results for the primary lamellar bone demonstrated that physiological mineralization, as evidenced by crystal growth and maturation, is a continuous process that may persist as long as two decades, and the growth and maturation process stops after the organic matrix becomes "fully mineralized." The average mineral content and the average mineral crystallinity of the homogenized tissue did not change with age. It was also observed that the mineral content of the homogenized tissue was consistently greater than the osteons and similar to the "fully mineralized" stage of primary bone. The results of this study demonstrated that unremodeled compartments of bone grow older through maturation and growth of mineral crystals in a protracted fashion. However, the secondary osteonal remodeling impedes this aging process and maintains the mean tissue age fairly constant over decades. Therefore, slowing of remodeling may lead to brittle bone tissue through accumulation of fully mineralized tissue fragments.

  11. A Fully Contained Resin Infusion Process for Fiber-Reinforced Polymer Composite Fabrication and Repair

    DTIC Science & Technology

    2013-01-01

    Figures iv  Acknowledgments v  1.  Introduction 1  2.  Experimental 2  2.1  Composite Laminate Fabrication...2 Figure 2. Image of fiberglass composite being fabricated using VARTM processing. 2. Experimental 2.1 Composite Laminate Fabrication...style 5 × 5 plain 5 weave prepreg S-2 fiberglass fabric and a honeycomb core cured in an autoclave, much like the composite parts fielded in

  12. Generation of electromagnetic emission during the injection of dense supersonic plasma flows into arched magnetic field

    NASA Astrophysics Data System (ADS)

    Viktorov, Mikhail; Golubev, Sergey; Mansfeld, Dmitry; Vodopyanov, Alexander

    2016-04-01

    Interaction of dense supersonic plasma flows with an inhomogeneous arched magnetic field is one of the key problems in near-Earth and space plasma physics. It can influence on the energetic electron population formation in magnetosphere of the Earth, movement of plasma flows in magnetospheres of planets, energy release during magnetic reconnection, generation of electromagnetic radiation and particle precipitation during solar flares eruption. Laboratory study of this interaction is of big interest to determine the physical mechanisms of processes in space plasmas and their detailed investigation under reproducible conditions. In this work a new experimental approach is suggested to study interaction of supersonic (ion Mach number up to 2.7) dense (up to 1015 cm-3) plasma flows with inhomogeneous magnetic field (an arched magnetic trap with a field strength up to 3.3 T) which opens wide opportunities to model space plasma processes in laboratory conditions. Fully ionized plasma flows with density from 1013 cm-3 to 1015 cm-3 are created by plasma generator on the basis of pulsed vacuum arc discharge. Then plasma is injected in an arched open magnetic trap along or across magnetic field lines. The filling of the arched magnetic trap with dense plasma and further magnetic field lines break by dense plasma flow were experimentally demonstrated. The process of plasma deceleration during the injection of plasma flow across the magnetic field lines was experimentally demonstrated. Pulsed plasma microwave emission at the electron cyclotron frequency range was observed. It was shown that frequency spectrum of plasma emission is determined by position of deceleration region in the magnetic field of the magnetic arc, and is affected by plasma density. Frequency spectrum shifts to higher frequencies with increasing of arc current (plasma density) because the deceleration region of plasma flow moves into higher magnetic field. The observed emission can be related to the cyclotron mechanism of generation by non-equilibrium energetic electrons in dense plasma. The reported study was funded by RFBR, according to the research project No. 16-32-60056 mol_a_dk.

  13. Contrast studies of the process optimization and characterization of shielding fabric by amorphous Ni-Fe-P and Ni-P alloy

    NASA Astrophysics Data System (ADS)

    Yao, Kai; Wu, Xueyan; An, Zhentao

    2017-01-01

    A flexible shielding fabric with dense uniform coating was prepared after electrical deposition of amorphous Ni-Fe-P and Ni-P alloy on copper-coated polyethylene terephthalate (PET) fabric. The effects of coating composition and the deposition rate were discussed by the current density, temperature and pH value. The morphology, composition, and structure of coating were analyzed by SEM, EDS, and XRD characterizations. The EMI shielding effectiveness and corrosion resistance were also tested. The results fabric possesses dense, smooth, and uniform coating, when the processing conditions are 60°C, pH=1.5, and current density =8.7A/dm2. The coating fabric consists of amorphous Ni-Fe-P alloy with 16.62% P (weight percent), which has excellent of corrosion resistance. By contrast the EMI shielding effectiveness of amorphous Ni-Fe-P was better than amorphous Ni-P. The EMI shielding effectiveness of this coated fabric achieves 69.20dB-80.30dB in a broad frequency range between 300 kHz˜1.5 GHz.

  14. Nucleation of biomimetic apatite in synthetic body fluids: dense and porous scaffold development.

    PubMed

    Landi, Elena; Tampieri, Anna; Celotti, Giancarlo; Langenati, Ratih; Sandri, Monica; Sprio, Simone

    2005-06-01

    The effectiveness of synthetic body fluids (SBF) as biomimetic sources to synthesize carbonated hydroxyapatite (CHA) powder similar to the biological inorganic phase, in terms of composition and microstructure, was investigated. CHA apatite powders were prepared following two widely experimented routes: (1) calcium nitrate tetrahydrate and diammonium hydrogen phosphate and (2) calcium hydroxide and ortophosphoric acid, but using SBF as synthesis medium instead of pure water. The characteristics of the as-prepared powders were compared, also with the features of apatite powders synthesized via pure water-based classical methods. The powder thermal resistance and behaviour during densification were studied together with the mechanical properties of the dense samples. The sponge impregnation process was used to prepare porous samples having morphological and mechanical characteristics suitable for bone substitution. Using this novel synthesis was it possible to prepare nanosized (approximately equal to 20 nm), pure, carbonate apatite powder containing Mg, Na, K ions, with morphological and compositional features mimicking natural apatite and with improved thermal properties. After sintering at 1250 degrees C the carbonate-free apatite porous samples showed a surprising, high compressive strength together with a biomimetic morphology.

  15. Local order and crystallization of dense polydisperse hard spheres

    NASA Astrophysics Data System (ADS)

    Coslovich, Daniele; Ozawa, Misaki; Berthier, Ludovic

    2018-04-01

    Computer simulations give precious insight into the microscopic behavior of supercooled liquids and glasses, but their typical time scales are orders of magnitude shorter than the experimentally relevant ones. We recently closed this gap for a class of models of size polydisperse fluids, which we successfully equilibrate beyond laboratory time scales by means of the swap Monte Carlo algorithm. In this contribution, we study the interplay between compositional and geometric local orders in a model of polydisperse hard spheres equilibrated with this algorithm. Local compositional order has a weak state dependence, while local geometric order associated to icosahedral arrangements grows more markedly but only at very high density. We quantify the correlation lengths and the degree of sphericity associated to icosahedral structures and compare these results to those for the Wahnström Lennard-Jones mixture. Finally, we analyze the structure of very dense samples that partially crystallized following a pattern incompatible with conventional fractionation scenarios. The crystal structure has the symmetry of aluminum diboride and involves a subset of small and large particles with size ratio approximately equal to 0.5.

  16. Elasticity of Deep-Earth Materials at High P and T: Implication for Earths Lower Mantle

    NASA Astrophysics Data System (ADS)

    Bass, Jay; Sinogeikin, S. V.; Mattern, Estelle; Jackson, J. M.; Matas, J.; Wang, J.; Ricard, Y.

    2005-03-01

    Brillouin spectroscopy allows measurements of sound velocities and elasticity on phases of geophysical interest at high Pressures and Temperatures. This technique was used to measure the properties of numerous important phases of Earths deep interior. Emphasis is now on measurements at elevated P-T conditions, and measurements on dense polycrystals. Measurements to 60 GPa were made using diamond anvil cells. High temperature is achieved by electrical resistance and laser heating. Excellent results are obtained for polycrystalline samples of dense oxides such as silicate spinels, and (Mg,Al)(Si,Al)O3 --perovskites. A wide range of materials can now be characterized. These and other results were used to infer Earths average lower mantle composition and thermal structure by comparing mineral properties at lower mantle P-T conditions to global Earth models. A formal inversion procedure was used. Inversions of density and bulk sound velocity do not provide robust compositional and thermal models. Including shear properties in the inversions is important to obtain unique solutions. We discuss the range of models consistent with present lab results, and data needed to further refine lower mantle models.

  17. Effect of pH on film structure and electrical property of PMMA-Au composite particles prepared by redox transmetalation

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Mao; Lin, Kuan-Ju; Yu, Yi-Hsiuan; Ho, Chan-Yuan; Wei, Ming-Hsiung; Lu, Fu-Hsing; Tseng, Wenjea J.

    2014-01-01

    Surface-selective deposition of gold (Au) on electroless plated poly(methyl methacrylate)-nickel (PMMA-Ni) beads was prepared chemically by a facile redox-transmetalation route in which the Ni atoms on the PMMA surface were reacted with Au precursors, i.e., chloroauric acid (HAuCl4), in water to form predominately core-shell PMMA-Au composite particles without the need of reducing agent. The Ni layer acted as a sacrificial template to facilitate the selective transmetalation deposition of a metallic Au film. When pH of the precursor solution was adjusted from 6 to 9, morphology of the Au film changed from a uniform particulate film consisting of assemblies of Au nanoparticles, to densely packed, continuous film with platelet Au crystals, and finally to isolated Au islands on the PMMA surface with a raspberry-like core-shell morphology. Uniformly dense Au coating with a thickness of about 200 nm was formed on the PMMA beads at pH of 7 to 8, which gave rise to an electrical resistivity as low as 3 × 10-2 Ω cm.

  18. Dense Nonaqueous Phase Liquids at Former Manufactured Gas Plants: Challenges to Modeling and Remediation

    PubMed Central

    Birak, P.S.; Miller, C.T.

    2008-01-01

    The remediation of dense non-aqueous phase liquids (DNAPLs) in porous media continues to be one of the most challenging problems facing environmental scientists and engineers. Of all the environmentally relevant DNAPLs, tars in the subsurface at former manufactured gas plants (FMGP’s) pose one of the biggest challenges due to their complex chemical composition and tendency to alter wettability. To further our understanding of these complex materials, we consulted historic documentation to evaluate the impact of gas manufacturing on the composition and physicochemical nature of the resulting tars. In the recent literature, most work to date has been focused in a relatively narrow portion of the expected range of tar materials, which has yielded a bias toward samples of relatively low viscosity and density. In this work, we consider the dissolution and movement of tars in the subsurface, models used to predict these phenomena, and approaches used for remediation. We also explore the open issues and detail important gaps in our fundamental understanding of these extraordinarily complex systems that must be resolved to reach a mature level of understanding. PMID:19176266

  19. Method for preparing spherical ferrite beads and use thereof

    DOEpatents

    Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.

    2002-01-01

    The invention allows the fabrication of small, dense, highly polished spherical beads of hexagonal ferrites with selected compositions for use in nonreciprocal microwave and mm-wave devices as well as in microwave absorbent or reflective coatings, composites, and the like. A porous, generally spherical bead of hydrous iron oxide is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead is washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) under conditions of elevated temperature and pressure to convert the bead into a mixed hydrous iron-alkaline earth oxide while retaining the generally spherical shape. This mixed oxide bead is then washed, dried, and calcined to produce the desired (BaFe.sub.12 O.sub.19 or SrFe.sub.12 O.sub.19) crystal structure. The calcined bead is then sintered to form a dense bead of the BaFe.sub.12 O.sub.19 and SrFe.sub.12 O.sub.19 phase suitable for polishing and incorporation into various microwave devices and components.

  20. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting of Powder Produced by Granulation-Sintering-Deoxygenation Method

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Fang, Z. Zak; Zhang, Ying; Xia, Yang

    2017-12-01

    Commercial spherical Ti powders for additive manufacturing applications are produced today by melt-atomization methods at relatively high costs. A meltless production method, called granulation-sintering-deoxygenation (GSD), was developed recently to produce spherical Ti alloy powder at a significantly reduced cost. In this new process, fine hydrogenated Ti particles are agglomerated to form spherical granules, which are then sintered to dense spherical particles. After sintering, the solid fully dense spherical Ti alloy particles are deoxygenated using novel low-temperature deoxygenation processes with either Mg or Ca. This technical communication presents results of 3D printing using GSD powder and the selective laser melting (SLM) technique. The results showed that tensile properties of parts fabricated from spherical GSD Ti-6Al-4V powder by SLM are comparable with typical mill-annealed Ti-6Al-4V. The characteristics of 3D printed Ti-6Al-4V from GSD powder are also compared with that of commercial materials.

  1. Electromagnetic scattering calculations on the Intel Touchstone Delta

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Patterson, Jean; Scott, David

    1992-01-01

    During the first year's operation of the Intel Touchstone Delta system, software which solves the electric field integral equations for fields scattered from arbitrarily shaped objects has been transferred to the Delta. To fully realize the Delta's resources, an out-of-core dense matrix solution algorithm that utilizes some or all of the 90 Gbyte of concurrent file system (CFS) has been used. The largest calculation completed to date computes the fields scattered from a perfectly conducting sphere modeled by 48,672 unknown functions, resulting in a complex valued dense matrix needing 37.9 Gbyte of storage. The out-of-core LU matrix factorization algorithm was executed in 8.25 h at a rate of 10.35 Gflops. Total time to complete the calculation was 19.7 h-the additional time was used to compute the 48,672 x 48,672 matrix entries, solve the system for a given excitation, and compute observable quantities. The calculation was performed in 64-b precision.

  2. Short intense ion pulses for materials and warm dense matter research

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Persaud, Arun; Waldron, William L.; Barnard, John J.; Davidson, Ronald C.; Friedman, Alex; Gilson, Erik P.; Greenway, Wayne G.; Grote, David P.; Kaganovich, Igor D.; Lidia, Steven M.; Stettler, Matthew; Takakuwa, Jeffrey H.; Schenkel, Thomas

    2015-11-01

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 1010 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li+ ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Here we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.

  3. Kinetic simulations of gas breakdown in the dense plasma focus

    DOE PAGES

    Bennett, N.; Blasco, M.; Breeding, K.; ...

    2017-06-09

    We describe the first fully-kinetic, collisional, and electromagnetic simulations of the breakdown phase of a MA-scale dense plasma focus and are shown to agree with measured electrical characteristics, including breakdown time. In the model, avalanche ionization is driven by cathode electron emission and this results in incomplete gas breakdown along the insulator. This reinforces the importance of the conditioning process that creates a metallic layer on the insulator surface. The simulations, nonetheless, help explain the relationship between the gas pressure, the insulator length, and the coaxial gap width. In the past, researchers noted three breakdown patterns related to pressure. Simulationmore » and analytic results show that at low pressures, long ionization path lengths lead to volumetric breakdown, while high pressures lead to breakdown across the relatively small coaxial electrode gap. In an intermediate pressure regime, ionization path lengths are comparable to the insulator length which promotes ideal breakdown along the insulator surface.« less

  4. Simulations of the interaction of intense petawatt laser pulses with dense Z-pinch plasmas : final report LDRD 39670.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Dale Robert; MacFarlane, Joseph John; Mehlhorn, Thomas Alan

    We have studied the feasibility of using the 3D fully electromagnetic implicit hybrid particle code LSP (Large Scale Plasma) to study laser plasma interactions with dense, compressed plasmas like those created with Z, and which might be created with the planned ZR. We have determined that with the proper additional physics and numerical algorithms developed during the LDRD period, LSP was transformed into a unique platform for studying such interactions. Its uniqueness stems from its ability to consider realistic compressed densities and low initial target temperatures (if required), an ability that conventional PIC codes do not possess. Through several testmore » cases, validations, and applications to next generation machines described in this report, we have established the suitability of the code to look at fast ignition issues for ZR, as well as other high-density laser plasma interaction problems relevant to the HEDP program at Sandia (e.g. backlighting).« less

  5. Galaxy evolution. Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang.

    PubMed

    Tacchella, S; Carollo, C M; Renzini, A; Förster Schreiber, N M; Lang, P; Wuyts, S; Cresci, G; Dekel, A; Genzel, R; Lilly, S J; Mancini, C; Newman, S; Onodera, M; Shapley, A; Tacconi, L; Woo, J; Zamorani, G

    2015-04-17

    Most present-day galaxies with stellar masses ≥10(11) solar masses show no ongoing star formation and are dense spheroids. Ten billion years ago, similarly massive galaxies were typically forming stars at rates of hundreds solar masses per year. It is debated how star formation ceased, on which time scales, and how this "quenching" relates to the emergence of dense spheroids. We measured stellar mass and star-formation rate surface density distributions in star-forming galaxies at redshift 2.2 with ~1-kiloparsec resolution. We find that, in the most massive galaxies, star formation is quenched from the inside out, on time scales less than 1 billion years in the inner regions, up to a few billion years in the outer disks. These galaxies sustain high star-formation activity at large radii, while hosting fully grown and already quenched bulges in their cores. Copyright © 2015, American Association for the Advancement of Science.

  6. Development of SiC Nanoparticles and Second Phases Synergistically Reinforced Mg-Based Composites Processed by Multi-Pass Forging with Varying Temperatures

    PubMed Central

    Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun

    2018-01-01

    In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg17Al12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases. PMID:29342883

  7. Development of SiC Nanoparticles and Second Phases Synergistically Reinforced Mg-Based Composites Processed by Multi-Pass Forging with Varying Temperatures.

    PubMed

    Nie, Kaibo; Guo, Yachao; Deng, Kunkun; Wang, Xiaojun; Wu, Kun

    2018-01-13

    In this study, SiC nanoparticles were added into matrix alloy through a combination of semisolid stirring and ultrasonic vibration while dynamic precipitation of second phases was obtained through multi-pass forging with varying temperatures. During single-pass forging of the present composite, as the deformation temperature increased, the extent of recrystallization increased, and grains were refined due to the inhibition effect of the increasing amount of dispersed SiC nanoparticles. A small amount of twins within the SiC nanoparticle dense zone could be found while the precipitated phases of Mg 17 Al 12 in long strips and deformation bands with high density dislocations were formed in the particle sparse zone after single-pass forging at 350 °C. This indicated that the particle sparse zone was mainly deformed by dislocation slip while the nanoparticle dense zone may have been deformed by twinning. The yield strength and ultimate tensile strength of the composites were gradually enhanced through increasing the single-pass forging temperature from 300 °C to 400 °C, which demonstrated that initial high forging temperature contributed to the improvement of the mechanical properties. During multi-pass forging with varying temperatures, the grain size of the composite was gradually decreased while the grain size distribution tended to be uniform with reducing the deformation temperature and extending the forging passes. In addition, the amount of precipitated second phases was significantly increased compared with that after multi-pass forging under a constant temperature. The improvement in the yield strength of the developed composite was related to grain refinement strengthening and Orowan strengthening resulting from synergistical effect of the externally applied SiC nanoparticles and internally precipitated second phases.

  8. Suspensions on the basis of stabilised zirconium oxide for three-dimensional printing

    NASA Astrophysics Data System (ADS)

    Sokolov, P. S.; Komissarenko, D. A.; Shmeleva, I. A.; Slyusar, I. V.; Dosovitskiy, G. A.; Evdokimov, P. V.; Putlyaev, V. I.; Dosovitskiy, A. E.

    2018-04-01

    Present work considers the first results on rheological and photo-curing behaviour of suspension consisting of nanocrystalline stabilised zirconium dioxide powders (19 - 27 vol. %) and a liquid UV-photosensitive organic monomer. At ambient temperature compositions showed a viscosity of 2.5 and 0.8 Pa×s at 10 and 100 s-1 shear rates, respectively. Printability of these compositions was subsequently investigated by using an stereolithography machine Ember (Autodesk). 3D objects were later sintered in a separate furnace into dense translucent ZrO2 ceramics.

  9. Heterobimetallic Metal–Organic Framework as a Precursor to Prepare a Nickel/Nanoporous Carbon Composite Catalyst for 4-Nitrophenol Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ying; Zhang, Ying; Sun, Cheng Jun

    2014-11-01

    Nickel/nanoporous carbon (Ni/NPC) composites are facilely prepared by direct pyrolysis of nonporous heterobimetallic zinc-nickel-terephthalate frameworks (Zn1-xNixMOF, x approximate to 0-1, MOF= metal-organic framework) at 1223 K in situ. Tailoring the Ni/Zn ratio creates densely populated and small Ni nanocrystals (Ni NCs) while maintaining sufficient porosity and surface area in the final product, which exhibits the largest activity factor (9.2 s(-1)g(-1)) and excellent stability toward 4-nitrophenol reduction.

  10. Dense understory dwarf bamboo alters the retention of canopy tree seeds

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Zhang, Tengda; Guo, Qinxue; Tao, Jianping

    2016-05-01

    Tree seed retention is thought to be an important factor in the process of forest community regeneration. Although dense understory dwarf bamboo has been considered to have serious negative effects on the regeneration of forest community species, little attention has been paid to the relationship between dwarf bamboo and seed retention. In a field experiment we manipulated the density of Fargesia decurvata, a common understory dwarf bamboo, to investigate the retention of seeds from five canopy tree species in an evergreen and deciduous broad-leaved mixed forest in Jinfoshan National Nature Reserve, SW China. We found that the median survival time and retention ratio of seeds increased with the increase in bamboo density. Fauna discriminately altered seed retention in bamboo groves of different densities. Arthropods reduced seed survival the most, and seeds removed decreased with increasing bamboo density. Birds removed or ate more seeds in groves of medium bamboo density and consumed fewer seeds in dense or sparse bamboo habitats. Rodents removed a greater number of large and highly profitable seeds in dense bamboo groves but more small and thin-husked seeds in sparse bamboo groves. Seed characteristics, including seed size, seed mass and seed profitability, were important factors affecting seed retention. The results suggested that dense understory dwarf bamboo not only increased seeds concealment and reduced the probability and speed of seed removal but also influenced the trade-off between predation and risk of animal predatory strategies, thereby impacting the quantity and composition of surviving seeds. Our results also indicated that dense understory dwarf bamboo and various seed characteristics can provide good opportunities for seed storage and seed germination and has a potential positive effect on canopy tree regeneration.

  11. SU-C-207B-04: Automated Segmentation of Pectoral Muscle in MR Images of Dense Breasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verburg, E; Waard, SN de; Veldhuis, WB

    Purpose: To develop and evaluate a fully automated method for segmentation of the pectoral muscle boundary in Magnetic Resonance Imaging (MRI) of dense breasts. Methods: Segmentation of the pectoral muscle is an important part of automatic breast image analysis methods. Current methods for segmenting the pectoral muscle in breast MRI have difficulties delineating the muscle border correctly in breasts with a large proportion of fibroglandular tissue (i.e., dense breasts). Hence, an automated method based on dynamic programming was developed, incorporating heuristics aimed at shape, location and gradient features.To assess the method, the pectoral muscle was segmented in 91 randomly selectedmore » participants (mean age 56.6 years, range 49.5–75.2 years) from a large MRI screening trial in women with dense breasts (ACR BI-RADS category 4). Each MR dataset consisted of 178 or 179 T1-weighted images with voxel size 0.64 × 0.64 × 1.00 mm3. All images (n=16,287) were reviewed and scored by a radiologist. In contrast to volume overlap coefficients, such as DICE, the radiologist detected deviations in the segmented muscle border and determined whether the result would impact the ability to accurately determine the volume of fibroglandular tissue and detection of breast lesions. Results: According to the radiologist’s scores, 95.5% of the slices did not mask breast tissue in such way that it could affect detection of breast lesions or volume measurements. In 13.1% of the slices a deviation in the segmented muscle border was present which would not impact breast lesion detection. In 70 datasets (78%) at least 95% of the slices were segmented in such a way it would not affect detection of breast lesions, and in 60 (66%) datasets this was 100%. Conclusion: Dynamic programming with dedicated heuristics shows promising potential to segment the pectoral muscle in women with dense breasts.« less

  12. Background risk of breast cancer and the association between physical activity and mammographic density.

    PubMed

    Trinh, Thang; Eriksson, Mikael; Darabi, Hatef; Bonn, Stephanie E; Brand, Judith S; Cuzick, Jack; Czene, Kamila; Sjölander, Arvid; Bälter, Katarina; Hall, Per

    2015-04-02

    High physical activity has been shown to decrease the risk of breast cancer, potentially by a mechanism that also reduces mammographic density. We tested the hypothesis that the risk of developing breast cancer in the next 10 years according to the Tyrer-Cuzick prediction model influences the association between physical activity and mammographic density. We conducted a population-based cross-sectional study of 38,913 Swedish women aged 40-74 years. Physical activity was assessed using the validated web-questionnaire Active-Q and mammographic density was measured by the fully automated volumetric Volpara method. The 10-year risk of breast cancer was estimated using the Tyrer-Cuzick (TC) prediction model. Linear regression analyses were performed to assess the association between physical activity and volumetric mammographic density and the potential interaction with the TC breast cancer risk. Overall, high physical activity was associated with lower absolute dense volume. As compared to women with the lowest total activity level (<40 metabolic equivalent hours [MET-h] per day), women with the highest total activity level (≥50 MET-h/day) had an estimated 3.4 cm(3) (95% confidence interval, 2.3-4.7) lower absolute dense volume. The inverse association was seen for any type of physical activity among women with <3.0% TC 10-year risk, but only for total and vigorous activities among women with 3.0-4.9% TC risk, and only for vigorous activity among women with ≥5.0% TC risk. The association between total activity and absolute dense volume was modified by the TC breast cancer risk (P interaction = 0.05). As anticipated, high physical activity was also associated with lower non-dense volume. No consistent association was found between physical activity and percent dense volume. Our results suggest that physical activity may decrease breast cancer risk through reducing mammographic density, and that the physical activity needed to reduce mammographic density may depend on background risk of breast cancer.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demin, V. A., E-mail: victordemin88@gmail.com; Blank, V. D.; Karaeva, A. R.

    A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C{sub 60} molecule to a defect on the nanotube surface.

  14. Synthesis of novel macrocycles carrying pincer-type ligands as future candidates for potential applications in size-selective, stereochemical and recyclable catalysts

    NASA Astrophysics Data System (ADS)

    Khan, Burhan; Shah, Muhammad Raza; Rabnawaz, Muhammad

    2018-03-01

    Macrocycles with ultra dense functionalities are very useful but are difficult to synthesize. In this study, we report six novel macrocycles bearing a pincer ligand alone or a combination of pincer-calixarenes, and pincer-fluorene moieties. Click chemistry was utilized to synthesize the desired macrocycles in good yields. These macrocycles were fully characterized using mass spectrometry (EI-MS, ESI-MS, and MALDI-TOF MS), and NMR spectroscopy. These macrocycles are under investigations as size-selective and recyclable catalysts for various chemical transformations.

  15. Towards dense volumetric pancreas segmentation in CT using 3D fully convolutional networks

    NASA Astrophysics Data System (ADS)

    Roth, Holger; Oda, Masahiro; Shimizu, Natsuki; Oda, Hirohisa; Hayashi, Yuichiro; Kitasaka, Takayuki; Fujiwara, Michitaka; Misawa, Kazunari; Mori, Kensaku

    2018-03-01

    Pancreas segmentation in computed tomography imaging has been historically difficult for automated methods because of the large shape and size variations between patients. In this work, we describe a custom-build 3D fully convolutional network (FCN) that can process a 3D image including the whole pancreas and produce an automatic segmentation. We investigate two variations of the 3D FCN architecture; one with concatenation and one with summation skip connections to the decoder part of the network. We evaluate our methods on a dataset from a clinical trial with gastric cancer patients, including 147 contrast enhanced abdominal CT scans acquired in the portal venous phase. Using the summation architecture, we achieve an average Dice score of 89.7 +/- 3.8 (range [79.8, 94.8])% in testing, achieving the new state-of-the-art performance in pancreas segmentation on this dataset.

  16. Processing and mechanical characterization of alumina laminates

    NASA Astrophysics Data System (ADS)

    Montgomery, John K.

    2002-08-01

    Single-phase ceramics that combine property gradients or steps in monolithic bodies are sought as alternatives to ceramic composites made of dissimilar materials. This work describes novel processing methods to produce stepped-density (or laminated) alumina single-phase bodies that maintain their mechanical integrity. One arrangement consists of a stiff, dense bulk material with a thin, flaw tolerant, porous exterior layer. Another configuration consists of a lightweight, low-density bulk material with a thin, hard, wear resistant exterior layer. Alumina laminates with strong interfaces have been successfully produced in this work using two different direct-casting processes. Gelcasting is a useful near-net shape processing technique that has been combined with several techniques, such as reaction bonding of aluminum oxide and the use of starch as a fugative filler, to successfully produced stepped-density alumina laminates. The other direct casting process that has been developed in this work is thermoreversible gelcasting (TRG). This is a reversible gelation process that has been used to produce near-net shape dense ceramic bodies. Also, individual layers can be stacked together and heated to produce laminates. Bilayer laminate samples were produced with varied thickness of porous and dense layers. It was shown that due to the difference in modulus and hardness, transverse cracking is found upon Hertzian contact when the dense layer is on the exterior. In the opposite arrangement, compacted damage zones formed in the porous material and no damage occurred in the underlying dense layer. Flaw tolerant behavior of the porous exterior/dense underlayer was examined by measuring biaxial strength as a function of Vickers indentation load. It was found that the thinnest layer of porous material results in the greatest flaw tolerance. Also, higher strength was exhibited at large indentation loads when compared to dense monoliths. The calculated stresses on the surfaces and interface afforded an explanation of the behavior that failure initiates at the interface between the layers for the thinnest configuration, rather than the sample surface.

  17. Radiative-Transfer Modeling of Spectra of Densely Packed Particulate Media

    NASA Astrophysics Data System (ADS)

    Ito, G.; Mishchenko, M. I.; Glotch, T. D.

    2017-12-01

    Remote sensing measurements over a wide range of wavelengths from both ground- and space-based platforms have provided a wealth of data regarding the surfaces and atmospheres of various solar system bodies. With proper interpretations, important properties, such as composition and particle size, can be inferred. However, proper interpretation of such datasets can often be difficult, especially for densely packed particulate media with particle sizes on the order of wavelength of light being used for remote sensing. Radiative transfer theory has often been applied to the study of densely packed particulate media like planetary regoliths and snow, but with difficulty, and here we continue to investigate radiative transfer modeling of spectra of densely packed media. We use the superposition T-matrix method to compute scattering properties of clusters of particles and capture the near-field effects important for dense packing. Then, the scattering parameters from the T-matrix computations are modified with the static structure factor correction, accounting for the dense packing of the clusters themselves. Using these corrected scattering parameters, reflectance (or emissivity via Kirchhoff's Law) is computed with the method of invariance imbedding solution to the radiative transfer equation. For this work we modeled the emissivity spectrum of the 3.3 µm particle size fraction of enstatite, representing some common mineralogical and particle size components of regoliths, in the mid-infrared wavelengths (5 - 50 µm). The modeled spectrum from the T-matrix method with static structure factor correction using moderate packing densities (filling factors of 0.1 - 0.2) produced better fits to the laboratory measurement of corresponding spectrum than the spectrum modeled by the equivalent method without static structure factor correction. Future work will test the method of the superposition T-matrix and static structure factor correction combination for larger particles sizes and polydispersed clusters in search for the most effective modeling of spectra of densely packed particulate media.

  18. Ultrastructure and chemical composition of the proboscis hooks of Acanthocephalus lucii (Müller, 1776) (Acanthocephala: Palaeacanthocephala) using X-ray elemental analysis.

    PubMed

    Brázová, Tímea; Poddubnaya, Larisa G; Miss, Noemí Ramírez; Hanzelová, Vladimíra

    2014-12-01

    The ultrastructure and chemical composition of the proboscis hooks and surrounding tegument of Acanthocephalus lucii (Müller, 1776), a parasite of European perch, Perca fluviatilis Linnaeus, were examined using scanning (SEM) and transmission (TEM) electron microscopy and X-ray microanalysis (EDXA). The blade of middle hooks consists of three layers: an outer homogeneous layer, an inner heterogeneous layer and a central core. TEM observation revealed the presence of hollow tubes, which spaced the central core; fibrous inner hook layer surrounded by an electron-dense margin and the basal tegumental layer filled with electron-dense bodies and outer layer. We found for the first time that the so-called 'epidermal covering' surrounding of the exposed hook blade (outer hook layer) is a modified striped portion of the tegumental layer and there are no special contact sites between these two morphologically different structures, i.e. striped layer of the syncytial tegument and following proper outer hook layer, which is a homogeneous, moderately electron-dense layer of -0.3 μm in thickness. The hook root is embedded into subtegumental fibrous layer. X-ray microanalysis of both the surface and internal parts of A. lucii hooks demonstrated the presence of calcium, magnesium, phosphorus and sulphur. The highest concentration of sulphur was recorded at the tip of hooks, whereas the middle part of the hooks was most rich in calcium, phosphorus and magnesium. The proximal part of the hooks contained lower concentrations of sulphur, calcium and phosphorus. In the proboscis tegument, only two elements, calcium and silicon, were found. The differences observed in the chemical composition of the hook 'epidermal covering' and the proboscis tegument support our ultrastructural findings that the hook tegumental covering is a modified structure compared with that of the general proboscis tegument.

  19. Fabricating and strengthening the carbon nanotube/copper composite fibers with high strength and high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Han, Baoshuai; Guo, Enyu; Xue, Xiang; Zhao, Zhiyong; Li, Tiejun; Xu, Yanjin; Luo, Liangshun; Hou, Hongliang

    2018-05-01

    Combining the excellent properties of carbon nanotube (CNT) and copper, CNT/Cu composite fibers were fabricated by physical vapor deposition (PVD) and rolling treatment. Dense and continuous copper film (∼2 μm) was coated on the surface of the CNT fibers by PVD, and rolling treatment was adopt to strengthen the CNT/Cu composite fibers. After the rolling treatment, the defects between the Cu grains and the CNT bundles were eliminated, and the structure of both the copper film and the core CNT fibers were optimized. The rolled CNT/Cu composite fibers possess high tensile effective strength (1.01 ± 0.13 GPa) and high electrical conductivity ((2.6 ± 0.3) × 107 S/m), and thus, this material may become a promising wire material.

  20. Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites

    DOEpatents

    Tan, Seng; Tan, Cher-Dip

    2004-05-11

    An enhanced method for the post processing, i.e. oxidation or stabilization, of carbon materials including, but not limited to, carbon foams, carbon fibers, dense carbon-carbon composites, carbon/ceramic and carbon/metal composites, which method requires relatively very short and more effective such processing steps. The introduction of an "oxygen spill over catalyst" into the carbon precursor by blending with the carbon starting material or exposure of the carbon precursor to such a material supplies required oxygen at the atomic level and permits oxidation/stabilization of carbon materials in a fraction of the time and with a fraction of the energy normally required to accomplish such carbon processing steps. Carbon based foams, solids, composites and fiber products made utilizing this method are also described.

  1. Anisotropically biaxial strain in non-polar (112-0) plane In x Ga1-x N/GaN layers investigated by X-ray reciprocal space mapping.

    PubMed

    Zhao, Guijuan; Li, Huijie; Wang, Lianshan; Meng, Yulin; Ji, Zesheng; Li, Fangzheng; Wei, Hongyuan; Yang, Shaoyan; Wang, Zhanguo

    2017-07-03

    In this study, the indium composition x as well as the anisotropically biaxial strain in non-polar a-plane In x Ga 1-x N on GaN is studied by X-ray diffraction (XRD) analysis. In accordance with XRD reciprocal lattice space mapping, with increasing indium composition, the maximum of the In x Ga 1-x N reciprocal lattice points progressively shifts from a fully compressive strained to a fully relaxed position, then to reversed tensile strained. To fully understand the strain in the ternary alloy layers, it is helpful to grow high-quality device structures using a-plane nitrides. As the layer thickness increases, the strain of In x Ga 1-x N layer releases through surface roughening and the 3D growth-mode.

  2. Corrosion resistance and adhesion strength of a spin-assisted layer-by-layer assembled coating on AZ31 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Zhao, Yan-Bin; Liu, Han-Peng; Li, Chang-Yang; Chen, Yong; Li, Shuo-Qi; Zeng, Rong-Chang; Wang, Zhen-Lin

    2018-03-01

    A polyvinylpyrrolidone (PVP)/polyacrylic acid (PAA) layer-by-layer (LbL) assembled composite coating with a multilayer structure for the corrosion protection of AZ31 magnesium alloy was prepared by a novel spin-casting method. The microstructure and composition of this coating were investigated by means of SEM, XRD and FT-IR measurements. Moreover, electrochemical, immersion and scratch tests in vitro were performed to measure the corrosion performance and the adhesion strength. These results indicated that the (PVP/PAA)10 composite coating with defect-free, dense and uniform morphologies could be successfully deposited on the surface of magnesium alloy. The coating had excellent corrosion resistance and adhesion strength.

  3. Effect of Material Parameters on Mechanical Properties of Biodegradable Polymers/Nanofibrillated Cellulose (NFC) Nano Composites

    Treesearch

    Yottha Srithep; Ronald Sabo; Craig Clemons; Lih-Sheng Turng; Srikanth Pilla; Jun Peng

    2012-01-01

    Using natural cellulosic fibers as fillers for biodegradable polymers can result in fully biodegradable composites. Biodegradable composites were prepared using nanofibrillated cellulose (NFC) as the reinforcement and poly (3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV) as the polymer matrix. The objective of this study was to determine how various additives (i.e.,...

  4. Embracing Wicked Problems: The Turn to Design in Composition Studies

    ERIC Educational Resources Information Center

    Marback, Richard

    2009-01-01

    Recent appeal to the concept of design in composition studies benefits teaching writing in digital media. Yet the concept of design has not been developed enough to fully benefit composition instruction. This article develops an understanding of design as a matter of resolving wicked problems and makes a case for the advantages of this…

  5. Microstructures and Properties of 40Cu/Ag(Invar) Composites Fabricated by Powder Metallurgy and Subsequent Thermo-Mechanical Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Huang, Yingqiu; Liu, Xiangyu; Yang, Lei; Shi, Changdong; Wu, Yucheng; Tang, Wenming

    2018-03-01

    Composites of 40Cu/Ag(Invar) were prepared via pressureless sintering and subsequent thermo-mechanical treatment from raw materials of electroless Ag-plated Invar alloy powder and electrolytic Cu powder. Microstructures and properties of the prepared composites were studied to evaluate the effect of the Ag layer on blocking Cu/Invar interfacial diffusion in the composites. The electroless-plated Ag layer was dense, uniform, continuous, and bonded tightly with the Invar alloy substrate. During sintering of the composites, the Ag layer effectively prevented Cu/Invar interfacial diffusion. During cold-rolling, the Ag layer was deformed uniformly with the Invar alloy particles. The composites exhibited bi-continuous network structure and considerably improved properties. After sintering at 775 °C and subsequent thermo-mechanical treatment, the 40Cu/Ag(Invar) composites showed satisfactory comprehensive properties: relative density of 99.0 pct, hardness of HV 253, thermal conductivity of 55.7 W/(m K), and coefficient of thermal expansion of 11.2 × 10-6/K.

  6. The small, dense LDL phenotype and the risk of coronary heart disease: epidemiology, patho-physiology and therapeutic aspects.

    PubMed

    Lamarche, B; Lemieux, I; Després, J P

    1999-09-01

    More than decade ago, several cross-sectional studies have reported differences in LDL particle size, density and composition between coronary heart disease (CHD) patients and healthy controls. Three recent prospective, nested case-control studies have since confirmed that the presence of small, dense LDL particles was associated with more than a three-fold increase in the risk of CHD. The small, dense LDL phenotype rarely occurs as an isolated disorder. It is most frequently accompanied by hypertriglyceridemia, reduced HDL cholesterol levels, abdominal obesity, insulin resistance and by a series of other metabolic alterations predictive of an impaired endothelial function and increased susceptibility to thrombosis. Whether or not the small, dense LDL phenotype should be considered an independent CHD risk factor remains to be clearly established. The cluster of metabolic abnormalities associated with small, dense LDL particles has been referred to as the insulin resistance-dyslipidemic phenotype of abdominal obesity. Results from the Québec Cardiovascular Study have indicated that individuals displaying three of the numerous features of insulin resistance (elevated plasma insulin and apolipoprotein B concentrations and small, dense LDL particles) showed a remarkable increase in CHD risk. Our data suggest that the increased risk of CHD associated with having small, dense LDL particles may be modulated to a significant extent by the presence/absence of insulin resistance, abdominal obesity and increased LDL particle concentration. We suggest that the complex interactions among the metabolic alterations of the insulin resistance syndrome should be considered when evaluating the risk of CHD associated with the small, dense LDL phenotype. From a therapeutic standpoint, the treatment of this condition should not only aim at reducing plasma triglyceride levels, but also at improving all features of the insulin resistance syndrome, for which body weight loss and mobilization of abdominal fat appear as key elements. Finally, interventions leading to reduction in fasting triglyceride levels will increase LDL particle size and contribute to reduce CHD risk, particularly if plasma apolipoprotein B concentration (as a surrogate of the number of atherogenic particles) is also reduced.

  7. High electric breakdown strength and energy density in vinylidene fluoride oligomer/poly(vinylidene fluoride) blend thin films

    NASA Astrophysics Data System (ADS)

    Rahimabady, Mojtaba; Chen, Shuting; Yao, Kui; Eng Hock Tay, Francis; Lu, Li

    2011-10-01

    Dense α-phase blend films of vinylidene fluoride (VDF) oligomer and poly(vinylidene fluoride) (PVDF) of various compositions were prepared from chemical solution deposition. The dielectric constant of the films was unexpectedly lower, and the mechanical strength was higher than either of the two components, leading to high electromechanical dielectric breakdown strength (>850 MV/m vs. 300˜500 MV/m for typical PVDF-based films). The properties were attributed to the unique blend structure with high crystallinity and densely packed rigid amorphous phase incorporating long and short chains. A maximum polarization of 162 mC/m2 and a large electric energy density up to 27.3 J/cm3 were obtained.

  8. Improved osteoblasts growth on osteomimetic hydroxyapatite/BaTiO3 composites with aligned lamellar porous structure.

    PubMed

    Liu, Beilei; Chen, Liangjian; Shao, Chunsheng; Zhang, Fuqiang; Zhou, Kechao; Cao, Jun; Zhang, Dou

    2016-04-01

    Osteoblasts growing into bone substitute is an important step of bone regeneration. This study prepared porous hydroxyapatite (HA)/BaTiO3 piezoelectric composites with porosity of 40%, 50% and 60% by ice-templating method. Effects of HA/BaTiO3 composites with different porosities, with and without polarizing treatment on adhesion, proliferation and differentiation of osteoblasts were investigated in vitro. Results revealed that cell densities of the porous groups were significantly higher than those of the dense group (p<0.05), so did the alkaline phosphate (ALP) and bone gla protein (BGP) activities. Porosity of 50% group exhibited higher ALP activity and BGP activity than those of the 40% and 60% groups. Scanning electron microscopy (SEM) observations revealed that osteoblasts adhered and stretched better on porous HA/BaTiO3 than on the dense one, especially HA/BaTiO3 with porosity of 50% and 60%. However, there was no significant difference in the cell morphology, cell densities, ALP and BGP activities between the polarized group and the non-polarized group (p>0.05). The absence of mechanical loading on the polarized samples may account for this. The results indicated that hierarchically porous HA/BaTiO3 played a favorable part in osteoblasts proliferation, differentiation and adhesion process and is a promising bone substitute material. Copyright © 2015. Published by Elsevier B.V.

  9. Unprecedented simultaneous enhancement in damage tolerance and fatigue resistance of zirconia/Ta composites

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Beltrán, J. I.; Rodriguez-Suarez, T.; Pecharromán, C.; Muñoz, M. C.; Moya, J. S.; Bartolomé, J. F.

    2017-03-01

    Dense (>98 th%) and homogeneous ceramic/metal composites were obtained by spark plasma sintering (SPS) using ZrO2 and lamellar metallic powders of tantalum or niobium (20 vol.%) as starting materials. The present study has demonstrated the unique and unpredicted simultaneous enhancement in toughness and strength with very high flaw tolerance of zirconia/Ta composites. In addition to their excellent static mechanical properties, these composites also have exceptional resistance to fatigue loading. It has been shown that the major contributions to toughening are the resulting crack bridging and plastic deformation of the metallic particles, together with crack deflection and interfacial debonding, which is compatible with the coexistence in the composite of both, strong and weak ceramic/metal interfaces, in agreement with predictions of ab-initio calculations. Therefore, these materials are promising candidates for designing damage tolerance components for aerospace industry, cutting and drilling tools, biomedical implants, among many others.

  10. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, N.J.; Davidson, H.L.; Kerns, J.A.; Makowiecki, D.M.

    1998-07-21

    A process is disclosed for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost. 7 figs.

  11. Unprecedented simultaneous enhancement in damage tolerance and fatigue resistance of zirconia/Ta composites

    PubMed Central

    Smirnov, A.; Beltrán, J. I.; Rodriguez-Suarez, T.; Pecharromán, C.; Muñoz, M. C.; Moya, J. S.; Bartolomé, J. F.

    2017-01-01

    Dense (>98 th%) and homogeneous ceramic/metal composites were obtained by spark plasma sintering (SPS) using ZrO2 and lamellar metallic powders of tantalum or niobium (20 vol.%) as starting materials. The present study has demonstrated the unique and unpredicted simultaneous enhancement in toughness and strength with very high flaw tolerance of zirconia/Ta composites. In addition to their excellent static mechanical properties, these composites also have exceptional resistance to fatigue loading. It has been shown that the major contributions to toughening are the resulting crack bridging and plastic deformation of the metallic particles, together with crack deflection and interfacial debonding, which is compatible with the coexistence in the composite of both, strong and weak ceramic/metal interfaces, in agreement with predictions of ab-initio calculations. Therefore, these materials are promising candidates for designing damage tolerance components for aerospace industry, cutting and drilling tools, biomedical implants, among many others. PMID:28322343

  12. Characterization of pure and composite resorcinol formaldehyde aerogels doped with silver

    NASA Astrophysics Data System (ADS)

    Attia, S. M.; Abdelfatah, M. S.; Mossad, M. M.

    2017-07-01

    A series of Resorcinol Formaldehyde (RF) aerogels composites with nanoparticles of sliver were prepared by the sol-gel method at different concentrations doped silver. FTIR spectra of pure and composite RF aerogels show six absorption bands attributed to -OH groups bonded to the benzene ring, stretching of -CH2- bonds and aromatic ring stretching. FTIR results ensured that sliver particles do not interact with aerogel network. UV-visible spectrum of pure silver show an absorbance peak at 420 nm attributed to the surface plasmon excitation of sliver Nano spheres. UV-visible spectral of pure and composite RF aerogels shows a steep decrease of absorption with wavelength after 500 nm, making sample’s color reddish brown. TEM and SEM images of pure and composite RF aerogels revealed that the textural arrangement of RF aerogels can be described as densely packed small nodules.

  13. Process for fabricating composite material having high thermal conductivity

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    2001-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  14. Composite material having high thermal conductivity and process for fabricating same

    DOEpatents

    Colella, Nicholas J.; Davidson, Howard L.; Kerns, John A.; Makowiecki, Daniel M.

    1998-01-01

    A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

  15. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    NASA Astrophysics Data System (ADS)

    Pandian, Amaresh Samuthira; Chen, X. Chelsea; Chen, Jihua; Lokitz, Bradley S.; Ruther, Rose E.; Yang, Guang; Lou, Kun; Nanda, Jagjit; Delnick, Frank M.; Dudney, Nancy J.

    2018-06-01

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtain composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. A remarkable Li+ transference number of 0.79 is discovered for the composite electrolyte.

  16. Laboratory and observational study of the interrelation of the carbonaceous component of interstellar dust and solar system materials

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sanford, S. A.; Schutte, W. A.; Tielens, A. G. G. M.

    1991-01-01

    By studying the chemical and isotopic composition of interstellar ice and dust, one gains insight into the composition and chemical evolution of the solid bodies in the solar nebula and the nature of the material subsequently brought into the inner part of the solar system by comets and meteorites. It is now possible to spectroscopically probe the composition of interstellar ice and dust in the mid-infrared, the spectral range which is most diagnostic of fundamental molecular vibrations. We can compare these spectra of various astronomical objects (including the diffuse and dense interstellar medium, comets, and the icy outer planets and their satellites) with the spectra of analogs we produce in the laboratory under conditions which mimic those in these different objects. In this way one can determine the composition and abundances of the major constituents of the various ices and place general constraints on the types of organics coating the grains in the diffuse interstellar medium. In particular we have shown the ices in the dense clouds contain H2O, CH3OH, CO, perhaps some NH3 and H2CO, we well as nitriles and ketones or esters. Furthermore, by studying the photochemistry of these ice analogs in the laboratory, one gains insight into the chemistry which takes place in interstellar/precometary ices. Chemical and spectroscopic studies of photolyzed analogs (including deuterated species) are now underway. The results of some of these studies will be presented and implications for the evolution of the biogenic elements in interstellar dust and comets will be discussed.

  17. Electrically Conducting, Ca-Rich Brines, Rather Than Water, Expected in the Martian Subsurface

    NASA Technical Reports Server (NTRS)

    Burt, D. M.; Knauth, L. P.

    2003-01-01

    If Mars ever possessed a salty liquid hydrosphere, which later partly evaporated and froze down, then any aqueous fluids left near the surface could have evolved to become dense eutectic brines. Eutectic brines, by definition, are the last to freeze and the first to melt. If CaC12-rich, such brines can remain liquid until temperatures below 220 K, close to the average surface temperature of Mars. In the Martian subsurface, in intimate contact with the Ca-rich basaltic regolith, NaC1-rich early brines should have reacted to become Ca-rich. Fractional crystallization (freezing) and partial melting would also drive brines toward CaC12-rich compositions. In other words, eutectic brine compositions could be present in the shallow subsurface of Mars, for the same reasons that eutectic magma compositions are common on Earth. Don Juan Pond, Antarctica, a CaC12-rich eutectic brine, provides a possible terrestrial analog, particularly because it is fed from a basaltic aquifer. Owing to their relative density and fluid nature, brines in the Martian regolith should eventually become sandwiched between ice above and salts beneath. A thawing brine sandwich provides one explanation (among many) for the young gullies recently attributed to seepage of liquid water on Mars. Whether or not brine seepage explains the gullies phenomenon, dense, CaC12-rich brines are to be expected in the deep subsurface of Mars, although they might be somewhat diluted (temperatures permitting) and of variable salt composition. In any case, they should be good conductors of electricity.

  18. Future species composition will affect forest water use after loss of eastern hemlock from southern Appalachian forests

    Treesearch

    Steven Brantley; Chelcy R. Ford; James M. Vose

    2013-01-01

    Infestation of eastern hemlock (Tsuga canadensis (L.) Carr.) with hemlock woolly adelgid (HWA, Adelges tsugae) has caused widespread mortality of this key canopy species throughout much of the southern Appalachian Mountains in the past decade. Because eastern hemlock is heavily concentrated in riparian habitats, maintains a dense...

  19. On the formation of dense understory layers in forests worldwide: consequences and implications for forest dynamics, biodiversity, and succession

    Treesearch

    Alejandro A. Royo; Walter P. Carson

    2006-01-01

    The mechanistic basis underpinning forest succession is the gap-phase paradigm in which overstory disturbance interacts with seedling and sapling shade tolerance to determine successional trajectories. The theory, and ensuing simulation models, typically assume that understory plants have little impact on the advance regeneration layer's composition. We challenge...

  20. Zeolite-imidazolate framework (ZIF-8) membrane synthesis on a mixed-matrix substrate.

    PubMed

    Barankova, Eva; Pradeep, Neelakanda; Peinemann, Klaus-Viktor

    2013-10-21

    A thin, dense, compact and hydrogen selective ZIF-8 membrane was synthesized on a polymer/metal oxide mixed-matrix support by a secondary seeding method. The new concept of incorporating ZnO particles into the support and PDMS coating of the ZIF-8 layer is introduced to improve the preparation of ZIF-polymer composite membranes.

  1. Amorphous Mixed-Metal Oxide Thin Films from Aqueous Solution Precursors with Near-Atomic Smoothness.

    PubMed

    Kast, Matthew G; Cochran, Elizabeth A; Enman, Lisa J; Mitchson, Gavin; Ditto, Jeffrey; Siefe, Chris; Plassmeyer, Paul N; Greenaway, Ann L; Johnson, David C; Page, Catherine J; Boettcher, Shannon W

    2016-12-28

    Thin films with tunable and homogeneous composition are required for many applications. We report the synthesis and characterization of a new class of compositionally homogeneous thin films that are amorphous solid solutions of Al 2 O 3 and transition metal oxides (TMO x ) including VO x , CrO x , MnO x , Fe 2 O 3 , CoO x , NiO, CuO x , and ZnO. The synthesis is enabled by the rapid decomposition of molecular transition-metal nitrates TM(NO 3 ) x at low temperature along with precondensed oligomeric Al(OH) x (NO 3 ) 3-x cluster species, both of which can be processed from aq solution. The films are dense, ultrasmooth (R rms < 1 nm, near 0.1 nm in many cases), and atomically mixed amorphous metal-oxide alloys over a large composition range. We assess the chemical principles that favor the formation of amorphous homogeneous films over rougher phase-segregated nanocrystalline films. The synthesis is easily extended to other compositions of transition and main-group metal oxides. To demonstrate versatility, we synthesized amorphous V 0.1 Cr 0.1 Mn 0.1 Fe 0.1 Zn 0.1 Al 0.5 O x and V 0.2 Cr 0.2 Fe 0.2 Al 0.4 O x with R rms ≈ 0.1 nm and uniform composition. The combination of ideal physical properties (dense, smooth, uniform) and broad composition tunability provides a platform for film synthesis that can be used to study fundamental phenomena when the effects of transition metal cation identity, solid-state concentration of d-electrons or d-states, and/or crystallinity need to be controlled. The new platform has broad potential use in controlling interfacial phenomena such as electron transfer in solar-cell contacts or surface reactivity in heterogeneous catalysis.

  2. Longitudinal Association of Anthropometry with Mammographic Breast Density in the Study of Women's Health Across the Nation (Swan)

    PubMed Central

    Reeves, Katherine W.; Stone, Roslyn A.; Modugno, Francesmary; Ness, Roberta B.; Vogel, Victor G.; Weissfeld, Joel L.; Habel, Laurel A.; Sternfeld, Barbara; Cauley, Jane A.

    2009-01-01

    High percent mammographic breast density is strongly associated with increased breast cancer risk. Though body mass index (BMI) is positively associated with risk of postmenopausal breast cancer, BMI is negatively associated with percent breast density in cross-sectional studies. Few longitudinal studies have evaluated associations between BMI and weight and mammographic breast density. We studied the longitudinal relationships between anthropometry and breast density in a prospective cohort of 834 pre- and perimenopausal women enrolled in an ancillary study to the Study of Women's Health Across the Nation (SWAN). Routine screening mammograms were collected and read for breast density. Random intercept regression models were used to evaluate whether annual BMI change was associated with changes over time in dense breast area and percent density. The study population was 7.4% African American, 48.8% Caucasian, 21.8% Chinese, and 21.9% Japanese. Mean follow-up was 4.8 years. Mean annual weight change was +0.32 kg/year, mean change in dense area was -0.77 cm2/year, and mean change in percent density was -1.14%/year. In fully adjusted models, annual change in BMI was not significantly associated with changes in dense breast area (-0.17 cm2, 95% CI -0.64, 0.29). Borderline significant negative associations were observed between annual BMI change and annual percent density change, with percent density decreasing 0.36% (95% CI -0.74, 0.02) for a one unit increase in BMI over a year. This longitudinal study provides modest evidence that changes in BMI are not associated with changes in dense area, yet may be negatively associated with percent density. PMID:19065651

  3. Dense image matching of terrestrial imagery for deriving high-resolution topographic properties of vegetation locations in alpine terrain

    NASA Astrophysics Data System (ADS)

    Niederheiser, R.; Rutzinger, M.; Bremer, M.; Wichmann, V.

    2018-04-01

    The investigation of changes in spatial patterns of vegetation and identification of potential micro-refugia requires detailed topographic and terrain information. However, mapping alpine topography at very detailed scales is challenging due to limited accessibility of sites. Close-range sensing by photogrammetric dense matching approaches based on terrestrial images captured with hand-held cameras offers a light-weight and low-cost solution to retrieve high-resolution measurements even in steep terrain and at locations, which are difficult to access. We propose a novel approach for rapid capturing of terrestrial images and a highly automated processing chain for retrieving detailed dense point clouds for topographic modelling. For this study, we modelled 249 plot locations. For the analysis of vegetation distribution and location properties, topographic parameters, such as slope, aspect, and potential solar irradiation were derived by applying a multi-scale approach utilizing voxel grids and spherical neighbourhoods. The result is a micro-topography archive of 249 alpine locations that includes topographic parameters at multiple scales ready for biogeomorphological analysis. Compared with regional elevation models at larger scales and traditional 2D gridding approaches to create elevation models, we employ analyses in a fully 3D environment that yield much more detailed insights into interrelations between topographic parameters, such as potential solar irradiation, surface area, aspect and roughness.

  4. H2 Ortho-to-para Conversion on Grains: A Route to Fast Deuterium Fractionation in Dense Cloud Cores?

    NASA Astrophysics Data System (ADS)

    Bovino, S.; Grassi, T.; Schleicher, D. R. G.; Caselli, P.

    2017-11-01

    Deuterium fractionation, I.e., the enhancement of deuterated species with respect to non-deuterated ones, is considered to be a reliable chemical clock of star-forming regions. This process is strongly affected by the ortho-to-para H2 ratio. In this Letter we explore the effect of the ortho-para (o-p) H2 conversion on grains on the deuteration timescale in fully-depleted dense cores, including the most relevant uncertainties that affect this complex process. We show that (I) the o-p H2 conversion on grains is not strongly influenced by the uncertainties on the conversion time and the sticking coefficient, and (II) that the process is controlled by the temperature and the residence time of ortho-H2 on the surface, I.e., by the binding energy. We find that for binding energies between 330 and 550 K, depending on the temperature, the o-p H2 conversion on grains can shorten the deuterium fractionation timescale by orders of magnitude, opening a new route for explaining the large observed deuteration fraction D frac in dense molecular cloud cores. Our results suggest that the star formation timescale, when estimated through the timescale to reach the observed deuteration fractions, might be shorter than previously proposed. However, more accurate measurements of the binding energy are needed in order to better assess the overall role of this process.

  5. 21 CFR 184.1555 - Rapeseed oil.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Rapeseed oil. 184.1555 Section 184.1555 Food and... Substances Affirmed as GRAS § 184.1555 Rapeseed oil. (a) Fully hydrogenated rapeseed oil. (1) Fully hydrogenated rapeseed oil is a mixture of triglycerides in which the fatty acid composition is a mixture of...

  6. 21 CFR 184.1555 - Rapeseed oil.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Rapeseed oil. 184.1555 Section 184.1555 Food and... Substances Affirmed as GRAS § 184.1555 Rapeseed oil. (a) Fully hydrogenated rapeseed oil. (1) Fully hydrogenated rapeseed oil is a mixture of triglycerides in which the fatty acid composition is a mixture of...

  7. Movements, cover-type selection, and survival of fledgling Ovenbirds in managed deciduous and mixed coniferous-deciduous forests

    USGS Publications Warehouse

    Streby, Henry M.; Andersen, David E.

    2013-01-01

    We used radio telemetry to monitor movements, cover-type selection, and survival for fledglings of the mature-forest nesting Ovenbird (Seiurus aurocapilla) at two managed forest sites in north-central Minnesota. Both sites contained forested wetlands, regenerating clearcut stands of various ages, and logging roads, but differed in mature forest composition; one deciduous with open understory, and the other mixed coniferous-deciduous with dense understory. We used compositional analysis, modified to incorporate age-specific limitations in fledgling movements, to assess cover-type selection by fledglings throughout the dependent (on adult care) post-fledging period. Compared to those that were depredated, fledglings from nests in deciduous forest that survived the early post-fledging period had more older (sapling-dominated) clearcut available, directed movements toward older clearcuts and forested wetlands, and used older clearcuts more than other cover types relative to availability. Fledglings that were depredated had more young (shrub-dominated) clearcut and unpaved logging road available, and used mature forest and roads more than expected based on availability. For birds from nests in mixed mature forest with dense understory, movements and cover-type selection were similar between fledglings that survived and those that were depredated. However, fledglings that were depredated at that site also had more young clearcut available than fledglings that survived. We conclude that Ovenbird fledgling survival is influenced by distance of their nest to various non-nesting cover types, and by the subsequent selection among those cover types, but that the influence of non-nesting cover types varies depending on the availability of dense understory vegetation in mature forest.

  8. Low-Temperature Sintering of AlN Ceramics by Sm2O3-Y2O3-CaO Sintering Additives Formed via Decomposition of Nitrate Solutions

    NASA Astrophysics Data System (ADS)

    Zhan, Jun; Cao, Ye; Zhang, Hao; Guo, Jun; Zhang, Jianhua; Geng, Chunlei; Shi, Changdong; Cui, Song; Tang, Wenming

    2017-01-01

    The Sm, Y and Ca anhydrous nitrates were mixed with the AlN powder in ethanol and then decomposed into the Sm2O3-Y2O3-CaO sintering additives via calcining. Low-temperature sintering of the AlN ceramics was carried out at temperature range from 1675 to 1750 °C. Effects of the composition and adding amount of the sintering additives on the phases, microstructures and properties of the AlN ceramics were investigated. During sintering the AlN ceramics, main secondary phases of CaYAl3O7 and CaSmAl3O7 form. The relative density, bending strength and thermal conductivity of the AlN ceramics increase with the increase in the rare-earth oxides in them. The thermal conductivity of the sintered AlN ceramics is also greatly affected by the distribution of the secondary phases. As sintered at 1750 °C, the AlN ceramics by adding the sintering additives of 2 wt.% Sm2O3, 2 wt.% Y2O3 and 1 wt.% CaO formed via decomposition of their nitrates is fully dense and have the optimal bending strength and thermal conductivity of 402.1 MPa and 153.7 W/(m K), respectively.

  9. Properties of Cu-Based Shape-Memory Alloys Prepared by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Gustmann, T.; dos Santos, J. M.; Gargarella, P.; Kühn, U.; Van Humbeeck, J.; Pauly, S.

    2017-03-01

    Two shape-memory alloys with the nominal compositions (in wt.%) Cu-11.85Al-3.2Ni-3Mn and Cu-11.35Al-3.2Ni-3Mn-0.5Zr were prepared by selective laser melting (SLM). The parameters were optimised to identify the process window, in which almost fully dense samples can be obtained. Their microstructures were analysed and correlated with the shape-memory behaviour as well as the mechanical properties. Suction-cast specimens were also produced for comparison. Mainly, β 1' martensite forms in all samples, but 0.5 wt.% of Zr stabilises the Y phase (Cu2AlZr), and its morphology depends on the thermal history and cooling rate. After annealing, the Y phase is primarily found at the grain boundaries hampering grain coarsening. Due to the relative high cooling rates applied here, Zr is mostly dissolved in the martensite in the as-prepared samples and it has a grain-refining effect only up to a critical cooling rate. The Zr-containing samples have increased transformation temperatures, and the Y phase seems to be responsible for the jerky martensite-to-austenite transformation. All the samples are relatively ductile because they mostly fracture in a transgranular manner, exhibiting the typical double yielding. Selective laser melting allows the adjustment of the transformation temperatures and the mechanical properties already during processing without the need of a subsequent heat treatment.

  10. Effects of calcium phosphate/chitosan composite on bone healing in rats: calcium phosphate induces osteon formation.

    PubMed

    Fernández, Tulio; Olave, Gilberto; Valencia, Carlos H; Arce, Sandra; Quinn, Julian M W; Thouas, George A; Chen, Qi-Zhi

    2014-07-01

    Vascularization of an artificial graft represents one of the most significant challenges facing the field of bone tissue engineering. Over the past decade, strategies to vascularize artificial scaffolds have been intensively evaluated using osteoinductive calcium phosphate (CaP) biomaterials in animal models. In this work, we observed that CaP-based biomaterials implanted into rat calvarial defects showed remarkably accelerated formation and mineralization of new woven bone in defects in the initial stages, at a rate of ∼60 μm/day (0.8 mg/day), which was considerably higher than normal bone growth rates (several μm/day, 0.1 mg/day) in implant-free controls of the same age. Surprisingly, we also observed histological evidence of primary osteon formation, indicated by blood vessels in early-region fibrous tissue, which was encapsulated by lamellar osteocyte structures. These were later fully replaced by compact bone, indicating complete regeneration of calvarial bone. Thus, the CaP biomaterial used here is not only osteoinductive, but vasculogenic, and it may have contributed to the bone regeneration, despite an absence of osteons in normal rat calvaria. Further investigation will involve how this strategy can regulate formation of vascularized cortical bone such as by control of degradation rate, and use of models of long, dense bones, to more closely approximate repair of human cortical bone.

  11. The Effect of General Statistical Fiber Misalignment on Predicted Damage Initiation in Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2014-01-01

    A micromechanical method is employed for the prediction of unidirectional composites in which the fiber orientation can possess various statistical misalignment distributions. The method relies on the probability-weighted averaging of the appropriate concentration tensor, which is established by the micromechanical procedure. This approach provides access to the local field quantities throughout the constituents, from which initiation of damage in the composite can be predicted. In contrast, a typical macromechanical procedure can determine the effective composite elastic properties in the presence of statistical fiber misalignment, but cannot provide the local fields. Fully random fiber distribution is presented as a special case using the proposed micromechanical method. Results are given that illustrate the effects of various amounts of fiber misalignment in terms of the standard deviations of in-plane and out-of-plane misalignment angles, where normal distributions have been employed. Damage initiation envelopes, local fields, effective moduli, and strengths are predicted for polymer and ceramic matrix composites with given normal distributions of misalignment angles, as well as fully random fiber orientation.

  12. A deep learning model observer for use in alterative forced choice virtual clinical trials

    NASA Astrophysics Data System (ADS)

    Alnowami, M.; Mills, G.; Awis, M.; Elangovanr, P.; Patel, M.; Halling-Brown, M.; Young, K. C.; Dance, D. R.; Wells, K.

    2018-03-01

    Virtual clinical trials (VCTs) represent an alternative assessment paradigm that overcomes issues of dose, high cost and delay encountered in conventional clinical trials for breast cancer screening. However, to fully utilize the potential benefits of VCTs requires a machine-based observer that can rapidly and realistically process large numbers of experimental conditions. To address this, a Deep Learning Model Observer (DLMO) was developed and trained to identify lesion targets from normal tissue in small (200 x 200 pixel) image segments, as used in Alternative Forced Choice (AFC) studies. The proposed network consists of 5 convolutional layers with 2x2 kernels and ReLU (Rectified Linear Unit) activations, followed by max pooling with size equal to the size of the final feature maps and three dense layers. The class outputs weights from the final fully connected dense layer are used to consider sets of n images in an n-AFC paradigm to determine the image most likely to contain a target. To examine the DLMO performance on clinical data, a training set of 2814 normal and 2814 biopsy-confirmed malignant mass targets were used. This produced a sensitivity of 0.90 and a specificity of 0.92 when presented with a test data set of 800 previously unseen clinical images. To examine the DLMOs minimum detectable contrast, a second dataset of 630 simulated backgrounds and 630 images with simulated lesion and spherical targets (4mm and 6mm diameter), produced contrast thresholds equivalent to/better than human observer performance for spherical targets, and comparable (12 % difference) for lesion targets.

  13. Woven TPS Enabling Missions Beyond Heritage Carbon Phenolic

    NASA Technical Reports Server (NTRS)

    Stackpoole, Margaret M.; Venkatapathy, Ethiraj; Feldman, Jay D.

    2013-01-01

    NASAs Office of the Chief Technologist (OCT) Game Changing Division recently funded an effort to advance a Woven TPS (WTPS) concept. WTPS is a new approach to producing TPS architectures that uses precisely engineered 3D weaving techniques to customize material characteristics needed to meet specific missions requirements for protecting space vehicles from the intense heating generated during atmospheric entry. Using WTPS, sustainable, scalable, mission-optimized TPS solutions can be achieved with relatively low life cycle costs compared with the high costs and long development schedules currently associated with material development and certification. WTPS leverages the mature state-of-the-art weaving technology that has evolved from the textile industry to design TPS materials with tailorable performance. Currently, missions anticipated encountering heat fluxes in the range of 1500 4000 Wcm2 and pressures greater than 1.5 atm are limited to using fully dense Carbon Phenolic. However, fully dense carbon phenolic is only mass efficient at higher heat fluxes g(reater than 4000 Wcm2), and current mission designs suffer this mass inefficiency for lack of an alternative mid-density TPS. WTPS not only bridges this mid-density TPS gap but also offers a replacement for carbon phenolic, which itself requires a significant and costly redevelopment effort to re-establish its capability for use in the high heat flux missions recently prioritized in the NRC Decadal survey, including probe missions to Venus, Saturn and Neptune. This presentation will overview the WTPS concept and present some results from initial testing completed comparing WTPS architectures to heritage carbon phenolic.

  14. Remodeling of nuclear architecture by the thiodioxoxpiperazine metabolite chaetocin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illner, Doris; Zinner, Roman; Handtke, Violet

    2010-06-10

    Extensive changes of higher order chromatin arrangements can be observed during prometaphase, terminal cell differentiation and cellular senescence. Experimental systems where major reorganization of nuclear architecture can be induced under defined conditions, may help to better understand the functional implications of such changes. Here, we report on profound chromatin reorganization in fibroblast nuclei by chaetocin, a thiodioxopiperazine metabolite. Chaetocin induces strong condensation of chromosome territories separated by a wide interchromatin space largely void of DNA. Cell viability is maintained irrespective of this peculiar chromatin phenotype. Cell cycle markers, histone signatures, and tests for cellular senescence and for oxidative stress indicatemore » that chaetocin induced chromatin condensation/clustering (CICC) represents a distinct entity among nuclear phenotypes associated with condensed chromatin. The territorial organization of entire chromosomes is maintained in CICC nuclei; however, the conventional nuclear architecture harboring gene-dense chromatin in the nuclear interior and gene-poor chromatin at the nuclear periphery is lost. Instead gene-dense and transcriptionally active chromatin is shifted to the periphery of individual condensed chromosome territories where nascent RNA becomes highly enriched around their outer surface. This chromatin reorganization makes CICC nuclei an attractive model system to study this border zone as a distinct compartment for transcription. Induction of CICC is fully inhibited by thiol-dependent antioxidants, but is not related to the production of reactive oxygen species. Our results suggest that chaetocin functionally impairs the thioredoxin (Trx) system, which is essential for deoxynucleotide synthesis, but in addition involved in a wide range of cellular functions. The mechanisms involved in CICC formation remain to be fully explored.« less

  15. Rapid engineering of endothelial cell-lined vascular-like structures in in situ crosslinkable hydrogels.

    PubMed

    Kageyama, Tatsuto; Kakegawa, Takahiro; Osaki, Tatsuya; Enomoto, Junko; Ito, Taichi; Nittami, Tadashi; Fukuda, Junji

    2014-06-01

    Fabrication of perfusable vascular networks in vitro is one of the most critical challenges in the advancement of tissue engineering. Because cells consume oxygen and nutrients during the fabrication process, a rapid fabrication approach is necessary to construct cell-dense vital tissues and organs, such as the liver. In this study, we propose a rapid molding process using an in situ crosslinkable hydrogel and electrochemical cell transfer for the fabrication of perfusable vascular structures. The in situ crosslinkable hydrogel was composed of hydrazide-modified gelatin (gelatin-ADH) and aldehyde-modified hyaluronic acid (HA-CHO). By simply mixing these two solutions, the gelation occurred in less than 20 s through the formation of a stable hydrazone bond. To rapidly transfer cells from a culture surface to the hydrogel, we utilized a zwitterionic oligopeptide, which forms a self-assembled molecular layer on a gold surface. Human umbilical vein endothelial cells adhering on a gold surface via the oligopeptide layer were transferred to the hydrogel within 5 min, along with electrochemical desorption of the oligopeptides. This approach was applicable to cylindrical needles 200-700 µm in diameter, resulting in the formation of perfusable microchannels where the internal surface was fully enveloped with the transferred endothelial cells. The entire fabrication process was completed within 10 min, including 20 s for the hydrogel crosslinking and 5 min for the electrochemical cell transfer. This rapid fabrication approach may provide a promising strategy to construct perfusable vasculatures in cell-dense tissue constructs and subsequently allow cells to organize complicated and fully vascularized tissues while preventing hypoxic cell injury.

  16. ON THE INTERACTION OF ADENINE WITH IONIZING RADIATION: MECHANISTICAL STUDIES AND ASTROBIOLOGICAL IMPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Nicholas L.; Ullrich, Susanne; Bennett, Chris J.

    2011-04-01

    The molecular inventory available on the prebiotic Earth was likely derived from both terrestrial and extraterrestrial sources. A complete description of which extraterrestrial molecules may have seeded early Earth is therefore necessary to fully understand the prebiotic evolution which led to life. Galactic cosmic rays (GCRs) are expected to cause both the formation and destruction of important biomolecules-including nucleic acid bases such as adenine-in the interstellar medium within the ices condensed on interstellar grains. The interstellar ultraviolet (UV) component is expected to photochemically degrade gas-phase adenine on a short timescale of only several years. However, the destruction rate is expectedmore » to be significantly reduced when adenine is shielded in dense molecular clouds or even within the ices of interstellar grains. Here, biomolecule destruction by the energetic charged particle component of the GCR becomes important as it is not fully attenuated. Presented here are results on the destruction rate of the nucleobase adenine in the solid state at 10 K by energetic electrons, as generated in the track of cosmic ray particles as they penetrate ices. When both UV and energetic charged particle destructive processes are taken into account, the half-life of adenine within dense interstellar clouds is found to be {approx}6 Myr, which is on the order of a star-forming molecular cloud. We also discuss chemical reaction pathways within the ices to explain the production of observed species, including the formation of nitriles (R-C{identical_to}N), epoxides (C-O-C), and carbonyl functions (R-C=O).« less

  17. Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.

    2017-09-01

    Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.

  18. Role of Y2O3, CaO, MgO additives on structural and microstructural behavior of zirconia/mullite aggregates

    NASA Astrophysics Data System (ADS)

    Mishra, D. K.; Prusty, Sasmita; Mohapatra, B. K.; Singh, S. K.; Behera, S. N.

    2012-07-01

    Zirconia mullite (MUZ), Y2O3-MUZ, CaO-MUZ and MgO-MUZ composites, synthesized through plasma fusion technique, are becoming important due to their commercial scale of production within five minutes of plasma treatment from sillimanite, zircon and alumina mixture. The X-ray diffraction studies reveal the monoclinic zirconia phase in MUZ composite whereas mixed monoclinic, tetragonal and cubic phases of zirconia have been observed in Y2O3, CaO, MgO added MUZ composites. The Y2O3, CaO and MgO additives act as sintering aids to favour the transformation and stabilisation of tetragonal and cubic zirconia phases at room temperature. These additives also play a key role in the development of various forms of microstructure to achieve dense MUZ composites.

  19. Vertically Aligned and Continuous Nanoscale Ceramic-Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity.

    PubMed

    Zhang, Xiaokun; Xie, Jin; Shi, Feifei; Lin, Dingchang; Liu, Yayuan; Liu, Wei; Pei, Allen; Gong, Yongji; Wang, Hongxia; Liu, Kai; Xiang, Yong; Cui, Yi

    2018-06-13

    Among all solid electrolytes, composite solid polymer electrolytes, comprised of polymer matrix and ceramic fillers, garner great interest due to the enhancement of ionic conductivity and mechanical properties derived from ceramic-polymer interactions. Here, we report a composite electrolyte with densely packed, vertically aligned, and continuous nanoscale ceramic-polymer interfaces, using surface-modified anodized aluminum oxide as the ceramic scaffold and poly(ethylene oxide) as the polymer matrix. The fast Li + transport along the ceramic-polymer interfaces was proven experimentally for the first time, and an interfacial ionic conductivity higher than 10 -3 S/cm at 0 °C was predicted. The presented composite solid electrolyte achieved an ionic conductivity as high as 5.82 × 10 -4 S/cm at the electrode level. The vertically aligned interfacial structure in the composite electrolytes enables the viable application of the composite solid electrolyte with superior ionic conductivity and high hardness, allowing Li-Li cells to be cycled at a small polarization without Li dendrite penetration.

  20. Fully digital routing logic for single-photon avalanche diode arrays in highly efficient time-resolved imaging

    NASA Astrophysics Data System (ADS)

    Cominelli, Alessandro; Acconcia, Giulia; Ghioni, Massimo; Rech, Ivan

    2018-03-01

    Time-correlated single-photon counting (TCSPC) is a powerful optical technique, which permits recording fast luminous signals with picosecond precision. Unfortunately, given its repetitive nature, TCSPC is recognized as a relatively slow technique, especially when a large time-resolved image has to be recorded. In recent years, there has been a fast trend toward the development of TCPSC imagers. Unfortunately, present systems still suffer from a trade-off between number of channels and performance. Even worse, the overall measurement speed is still limited well below the saturation of the transfer bandwidth toward the external processor. We present a routing algorithm that enables a smart connection between a 32×32 detector array and five shared high-performance converters able to provide an overall conversion rate up to 10 Gbit/s. The proposed solution exploits a fully digital logic circuit distributed in a tree structure to limit the number and length of interconnections, which is a major issue in densely integrated circuits. The behavior of the logic has been validated by means of a field-programmable gate array, while a fully integrated prototype has been designed in 180-nm technology and analyzed by means of postlayout simulations.

  1. Signatures of personality on dense 3D facial images.

    PubMed

    Hu, Sile; Xiong, Jieyi; Fu, Pengcheng; Qiao, Lu; Tan, Jingze; Jin, Li; Tang, Kun

    2017-03-06

    It has long been speculated that cues on the human face exist that allow observers to make reliable judgments of others' personality traits. However, direct evidence of association between facial shapes and personality is missing from the current literature. This study assessed the personality attributes of 834 Han Chinese volunteers (405 males and 429 females), utilising the five-factor personality model ('Big Five'), and collected their neutral 3D facial images. Dense anatomical correspondence was established across the 3D facial images in order to allow high-dimensional quantitative analyses of the facial phenotypes. In this paper, we developed a Partial Least Squares (PLS) -based method. We used composite partial least squares component (CPSLC) to test association between the self-tested personality scores and the dense 3D facial image data, then used principal component analysis (PCA) for further validation. Among the five personality factors, agreeableness and conscientiousness in males and extraversion in females were significantly associated with specific facial patterns. The personality-related facial patterns were extracted and their effects were extrapolated on simulated 3D facial models.

  2. Glomeruli of Dense Deposit Disease contain components of the alternative and terminal complement pathway

    PubMed Central

    Sethi, Sanjeev; Gamez, Jeffrey D.; Vrana, Julie A.; Theis, Jason D.; Bergen, H. Robert; Zipfel, Peter F.; Dogan, Ahmet; Smith, Richard J. H.

    2009-01-01

    Dense Deposit Disease (DDD), or membranoproliferative glomerulonephritis type II, is a rare renal disease characterized by dense deposits in the mesangium and along the glomerular basement membranes that can be seen by electron microscopy. Although these deposits contain complement factor C3, as determined by immunofluorescence microscopy, their precise composition remains unknown. To address this question, we used mass spectrometry to identify the proteins in laser microdissected glomeruli isolated from paraffin-embedded tissue of eight confirmed cases of DDD. Compared to glomeruli from five control patients, we found that all of the glomeruli from patients with DDD contain components of the alternative pathway and terminal complement complex. Factor C9 was uniformly present as well as the two fluid-phase regulators of terminal complement complex clusterin and vitronectin. In contrast, in nine patients with immune complex–mediated membranoproliferative glomerulonephritis, glomerular samples contained mainly immunoglobulins and complement factors C3 and C4. Our study shows that in addition to fluid-phase dysregulation of the alternative pathway, soluble components of the terminal complement complex contribute to glomerular lesions found in DDD. PMID:19177158

  3. Impact of polymer structure and composition on fully resorbable endovascular scaffold performance

    PubMed Central

    Ferdous, Jahid; Kolachalama, Vijaya B.; Shazly, Tarek

    2014-01-01

    Fully erodible endovascular scaffolds are being increasingly considered for the treatment of obstructive arterial disease owing to their potential to mitigate long-term risks associated with permanent alternatives. While complete scaffold erosion facilitates vessel healing, generation and release of material degradation by-products from candidate materials such as poly-l-lactide (PLLA) may elicit local inflammatory responses that limit implant efficacy. We developed a computational framework to quantify how the compositional and structural parameters of PLLA-based fully erodible endovascular scaffolds affect degradation kinetics, erosion kinetics and the transient accumulation of material by-products within the arterial wall. Parametric studies reveal that, while some material properties have similar effects on these critical processes, others induce qualitatively opposing responses. For example, scaffold degradation is only mildly responsive to changes in either PLLA polydispersity or the initial degree of crystallinity, while the erosion kinetics is comparatively sensitive to crystallinity. Moreover, lactide doping can effectively tune both scaffold degradation and erosion, but a concomitant increase in local byproduct accumulation raises concerns about implant safety. Optimized erodible endovascular scaffolds must precisely balance therapeutic function and biological response over the implant lifetime, where compositional and structural parameters will have differential effects on implant performance. PMID:23261926

  4. Mechanical and thermal properties of planetologically important ices

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1987-01-01

    Two squences of ice composition were proposed for the icy satellites: a dense nebula model and a solar nebula model. Careful modeling of the structure, composition, and thermal history of satellites composed of these various ices requires quantitative information on the density, compressibility, thermal expansion, heat capacity, and thermal conductivity. Equations of state were fitted to the density data of the molecular ices. The unusual thermal and mechanical properties of the molecular and binary ices suggest a larger range of phenomena than previously anticipated, sufficiently complex perhaps to account for many of the unusual geologic phenomena found on the icy satellites.

  5. Building Extraction from Remote Sensing Data Using Fully Convolutional Networks

    NASA Astrophysics Data System (ADS)

    Bittner, K.; Cui, S.; Reinartz, P.

    2017-05-01

    Building detection and footprint extraction are highly demanded for many remote sensing applications. Though most previous works have shown promising results, the automatic extraction of building footprints still remains a nontrivial topic, especially in complex urban areas. Recently developed extensions of the CNN framework made it possible to perform dense pixel-wise classification of input images. Based on these abilities we propose a methodology, which automatically generates a full resolution binary building mask out of a Digital Surface Model (DSM) using a Fully Convolution Network (FCN) architecture. The advantage of using the depth information is that it provides geometrical silhouettes and allows a better separation of buildings from background as well as through its invariance to illumination and color variations. The proposed framework has mainly two steps. Firstly, the FCN is trained on a large set of patches consisting of normalized DSM (nDSM) as inputs and available ground truth building mask as target outputs. Secondly, the generated predictions from FCN are viewed as unary terms for a Fully connected Conditional Random Fields (FCRF), which enables us to create a final binary building mask. A series of experiments demonstrate that our methodology is able to extract accurate building footprints which are close to the buildings original shapes to a high degree. The quantitative and qualitative analysis show the significant improvements of the results in contrast to the multy-layer fully connected network from our previous work.

  6. Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays.

    PubMed

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2009-08-17

    The linear and nonlinear optical properties of a composite containing interacting spherical silver nanoparticles embedded in a dielectric host are studied as a function of interparticle separation using three dimensional frequency domain simulations. It is shown that for a fixed amount of metal, the effective third-order nonlinear susceptibility of the composite chi((3))(omega) can be significantly enhanced with respect to the linear optical properties, due to a combination of resonant surface plasmon excitation and local field redistribution. It is shown that this geometry-dependent susceptibility enhancement can lead to an improved figure of merit for nonlinear absorption. Enhancement factors for the nonlinear susceptibility of the composite are calculated, and the complex nature of the enhancement factors is discussed.

  7. Atomic temporal interval relations in branching time: calculation and application

    NASA Astrophysics Data System (ADS)

    Anger, Frank D.; Ladkin, Peter B.; Rodriguez, Rita V.

    1991-03-01

    A practical method of reasoning about intervals in a branching-time model which is dense, unbounded, future-branching, without rejoining branches is presented. The discussion is based on heuristic constraint- propagation techniques using the relation algebra of binary temporal relations among the intervals over the branching-time model. This technique has been applied with success to models of intervals over linear time by Allen and others, and is of cubic-time complexity. To extend it to branding-time models, it is necessary to calculate compositions of the relations; thus, the table of compositions for the 'atomic' relations is computed, enabling the rapid determination of the composition of arbitrary relations, expressed as disjunctions or unions of the atomic relations.

  8. Mechanical behavior of several hybrid ceramic-matrix-composite laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cutler, W.A.; Zok, F.W.; Lange, F.F.

    Several different hybrid laminated composites comprised of alternating layers of dense ceramic sheets (either SiC or Si{sub 3}N{sub 4}) and fiber-reinforced ceramic-matrix-composite (CMC) layers (Nicalon fibers with either glass or glass-ceramic matrices) have been fabricated and characterized. The effects of the reinforcement architecture (unidirectional vs cross-ply) and the relative volume fractions of the phases on the tensile and flexural properties have been examined. Comparisons have been made with the properties of the constituent layers. Rudimentary models have been developed to describe the onset of cracking and for the minimum volume fraction of CMC required to develop multiple cracks and thusmore » obtain a high failure strain.« less

  9. Electrophoretic formation of semiconductor layers with adjustable band gap

    NASA Astrophysics Data System (ADS)

    Shindrov, Alexander; Yuvchenko, Sergey; Vikulova, Maria; Tretyachenko, Elena; Zimnyakov, Dmitry; Gorokhovsky, Alexander

    2017-11-01

    The ceramic layers of the potassium polytitanates modified by transition metal salts were electrophoretically deposited onto the surface of glassy substrate coated with indium-tin oxide. The deposition allows obtaining a dense ceramic layer formed by composite agglomerates consisting of nanoscale particles with average size of 130-190 nm. The optical absorption spectra of the coatings modified in the mixtures of aqueous solutions of different transition metal salts were investigated. It was recognized that a bandgap value of these composites can be adjusted in a range from 1.4 to 2.3 eV depending the chemical composition of layered double hydroxide obtained during modification. This might be very promising for optoelectronic applications of such coatings due to an explicit control of optical properties.

  10. Fatigue Behavior of a Cross-Ply Metal Matrix Composite at Elevated Temperature Under Strain Controlled Mode.

    DTIC Science & Technology

    1994-12-01

    1991. 114 22. Nimmer, R. P. et al. "Fiber Array Geometry Effects Upon Composite Transverse Tensile Behavior," Titanium Aluminide Composites. February... Titanium , Silicon Carbide, Strain Control Mode 17. SECURITY CLASSIFICATION I18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFIKATION 20. LIMITATION OF...ends. Boyum was the first to examine fully reversed (R=-l) fatigue of a titanium composite under the load control mode, at both room and elevated

  11. Composite Bus Structure for the SMEX/WIRE Satellite

    NASA Technical Reports Server (NTRS)

    Rosanova, Giulio G.

    1998-01-01

    In an effort to reduce the weight and optimize the structural design of the Small Explorer (SMEX) Wide-Field Infrared Explorer (WIRE) spacecraft, it has become desirable to change the material and construction from mechanically fastened aluminum structure to a fully bonded fiber-reinforced composite (FRC) structure. GSFC has developed the WIRE spacecraft structural bus design concept, including the instrument and launch vehicle requirements. The WIRE Satellite is the fifth of a series of SMEX satellites to be launched once per year. GSFC has chosen Composite Optics Inc. (COI) as the prime contractor for the development and procurement of the WIRE composite structure. The detailed design of the fully bonded FRC structure is based on COI's Short Notice Accelerated Production SATellite ("SNAPSAT") approach. SNAPSAT is a state of the art design and manufacturing technology for advanced composite materials which utilizes flat-stock detail parts bonded together to produce a final structural assembly. The structural design approach adopted for the WIRE structure provides a very viable alternative to both traditional aluminum construction as well as high tech. molded type composite structures. This approach to composite structure design is much less costly than molded or honeycomb sandwich type composite construction, but may cost slightly more than conventional aluminum construction on the subsystem level. However on the overall program level the weight saving achieved is very cost effective, since the primary objective is to allocate more mass for science payloads.

  12. eComp at the University of New Mexico: Emphasizing Twenty-First Century Literacies in an Online Composition Program

    ERIC Educational Resources Information Center

    Bourelle, Tiffany; Bourelle, Andrew

    2015-01-01

    With distance education on the rise, a new program at the University of New Mexico provides an innovative way to teach first-year composition in a fully online format. The program, called eComp (short for Electronic Composition), insists that instructors receive formal and educational training before working in the model. In addition, the…

  13. Micromechanical Prediction of the Effective Behavior of Fully Coupled Electro-Magneto-Thermo-Elastic Multiphase Composites

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob

    2000-01-01

    The micromechanical generalized method of cells model is employed for the prediction of the effective moduli of electro-magneto-thermo-elastic composites. These include the effective elastic, piezoelectric, piezomagnetic, dielectric, magnetic permeability, electromagnetic coupling moduli, as well as the effective thermal expansion coefficients and the associated pyroelectric and pyromagnetic constants. Results are given for fibrous and periodically bilaminated composites.

  14. Fully-automated, high-throughput micro-computed tomography analysis of body composition enables therapeutic efficacy monitoring in preclinical models.

    PubMed

    Wyatt, S K; Barck, K H; Kates, L; Zavala-Solorio, J; Ross, J; Kolumam, G; Sonoda, J; Carano, R A D

    2015-11-01

    The ability to non-invasively measure body composition in mouse models of obesity and obesity-related disorders is essential for elucidating mechanisms of metabolic regulation and monitoring the effects of novel treatments. These studies aimed to develop a fully automated, high-throughput micro-computed tomography (micro-CT)-based image analysis technique for longitudinal quantitation of adipose, non-adipose and lean tissue as well as bone and demonstrate utility for assessing the effects of two distinct treatments. An initial validation study was performed in diet-induced obesity (DIO) and control mice on a vivaCT 75 micro-CT system. Subsequently, four groups of DIO mice were imaged pre- and post-treatment with an experimental agonistic antibody specific for anti-fibroblast growth factor receptor 1 (anti-FGFR1, R1MAb1), control immunoglobulin G antibody, a known anorectic antiobesity drug (rimonabant, SR141716), or solvent control. The body composition analysis technique was then ported to a faster micro-CT system (CT120) to markedly increase throughput as well as to evaluate the use of micro-CT image intensity for hepatic lipid content in DIO and control mice. Ex vivo chemical analysis and colorimetric analysis of the liver triglycerides were performed as the standard metrics for correlation with body composition and hepatic lipid status, respectively. Micro-CT-based body composition measures correlate with ex vivo chemical analysis metrics and enable distinction between DIO and control mice. R1MAb1 and rimonabant have differing effects on body composition as assessed by micro-CT. High-throughput body composition imaging is possible using a modified CT120 system. Micro-CT also provides a non-invasive assessment of hepatic lipid content. This work describes, validates and demonstrates utility of a fully automated image analysis technique to quantify in vivo micro-CT-derived measures of adipose, non-adipose and lean tissue, as well as bone. These body composition metrics highly correlate with standard ex vivo chemical analysis and enable longitudinal evaluation of body composition and therapeutic efficacy monitoring.

  15. Estimating forest-grassland dynamics using soil phytolith assemblages and δ13C of soil organic matter

    Treesearch

    Becky K. Kerns; Margeret M. Moore; Stephen C. Hart

    2001-01-01

    Our objectives were to examine the relationship between contemporary vegetation and surface soil phytolith assemblages, and use phytoliths and δ13C of soil organic matter (SOM) to explore forest-grassland vegetation dynamics. We established plots within three canopy types (open, old-growth, and dense young pine) with different grass species compositions in a...

  16. Method for grinding precision components

    DOEpatents

    Ramanath, Srinivasan; Kuo, Shih Yee; Williston, William H.; Buljan, Sergej-Tomislav

    2000-01-01

    A method for precision cylindrical grinding of hard brittle materials, such as ceramics or glass and composites comprising ceramics or glass, provides material removal rates as high as 19-380 cm.sup.3 /min/cm. The abrasive tools used in the method comprise a strong, light weight wheel core bonded to a continuous rim of abrasive segments containing superabrasive grain in a dense metal bond matrix.

  17. Species composition and succession in yellow pine stands following southern pine beetle outbreaks in Tennessee-preliminary results

    Treesearch

    Christopher M. Oswalt; Sonja N. Oswalt; Jason R. Meade

    2016-01-01

    The southern pine beetle (Dendroctonus frontalis) is a bark beetle that is native to the Southern United States, including Tennessee. The beetle is periodically epidemic and can cause high levels of mortalityduring epidemic years, particularly in dense or aging pine (Pinus spp.) stands. An epidemic outbreak of the Southern pine...

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakouzi, Elias; Sultan, Rabih

    Pattern formation in two-metal electrochemical deposition has been scarcely explored in the chemical literature. In this paper, we report new experiments on zinc-lead fractal co-deposition. Electrodeposits are grown in special cells at a fixed large value of the zinc ion concentration, while that of the lead ion is increased gradually. A very wide diversity of morphologies are obtained and classified. Most of the deposited domains are almost exclusively Pb or Zn. But certain regions originating at the base cathode, ranging from a short grass alley to dense, grown-up bushes or shrubs, manifest a combined Pb-Zn composition. Composition is determined usingmore » scanning electron microscopy/energy dispersive x ray measurements as well atomic absorption spectroscopy. Pb domains are characterized by shiny leaf-like and dense deposits as well as flowers with round, balloon-like corollas. The Zn zones display a greater variety of morphologies such as thick trunks and thin and fine branching, in addition to minute ''cigar flower'' structures. The various morphologies are analyzed and classified from the viewpoint of fractal nature, characterized by the box-count fractal dimension. Finally, macroscopic spatial alternation between two different characteristic morphologies is observed under certain conditions.« less

  19. A densely packed Sb2O3 nanosheet-graphene aerogel toward advanced sodium-ion batteries.

    PubMed

    Zhou, Jing; Yan, Bingyi; Yang, Jie; Yang, Yun; Zhou, Wei; Lan, Hao; Wang, Hua; Guo, Lin

    2018-05-17

    As a promising anodic material for rechargeable batteries, Sb2O3 has drawn increasing attention due to its high theoretical capacity and abundant natural deposits. However, poor cyclability and rate performance of Sb2O3 derived from a large volume change during insertion/desertion reactions as well as a sluggish kinetic process restrict its practical application. Herein, we report a facile amorphous-to-crystalline strategy to synthesize a densely packed Sb2O3 nanosheet-graphene aerogel as a novel anode for sodium ion batteries (SIBs). This Sb2O3/graphene composite displays a reversible capacity as high as 657.9 mA h g-1 even after 100 cycles at 0.1 A g-1, along with an excellent rate capacity of 356.8 mA h g-1 at 5.0 A g-1. The superior electrochemical performance is attributed to the synergistic effects of densely packed Sb2O3 nanosheets and graphene aerogel, which serves as both a robust support and stable buffer layer to maintain the structural stability of the nanocomposite, and enhances the electrode kinetics of electrolyte diffusion and electron transfer simultaneously. Hence, this densely-packed two-dimensional Sb2O3 nanosheet-graphene aerogel can be a promising anode material for rechargeable SIBs due to its facile synthesis process and outstanding electrochemical performance.

  20. Stand structure modulates the long-term vulnerability of Pinus halepensis to climatic drought in a semiarid Mediterranean ecosystem.

    PubMed

    Moreno-Gutiérrez, Cristina; Battipaglia, Giovanna; Cherubini, Paolo; Saurer, Matthias; Nicolás, Emilio; Contreras, Sergio; Querejeta, José Ignacio

    2012-06-01

    We investigated whether stand structure modulates the long-term physiological performance and growth of Pinus halepensis Mill. in a semiarid Mediterranean ecosystem. Tree radial growth and carbon and oxygen stable isotope composition of latewood (δ(13)C(LW) and δ(18)O(LW), respectively) from 1967 to 2007 were measured in P. halepensis trees from two sharply contrasting stand types: open woodlands with widely scattered trees versus dense afforested stands. In both stand types, tree radial growth, δ(13)C(LW) and δ(18)O(LW) were strongly correlated with annual rainfall, thus indicating that tree performance in this semiarid environment is largely determined by inter-annual changes in water availability. However, trees in dense afforested stands showed consistently higher δ(18)O(LW) and similar δ(13)C(LW) values compared with those in neighbouring open woodlands, indicating lower stomatal conductance and photosynthesis rates in the former, but little difference in water use efficiency between stand types. Trees in dense afforested stands were more water stressed and showed lower radial growth, overall suggesting greater vulnerability to drought and climate aridification compared with trees in open woodlands. In this semiarid ecosystem, the negative impacts of intense inter-tree competition for water on P. halepensis performance clearly outweigh potential benefits derived from enhanced infiltration and reduced run-off losses in dense afforested stands. © 2011 Blackwell Publishing Ltd.

  1. Viscosity and thermal conductivity of moderately dense gas mixtures.

    NASA Technical Reports Server (NTRS)

    Wakeham, W. A.; Kestin, J.; Mason, E. A.; Sandler, S. I.

    1972-01-01

    Derivation of a simple, semitheoretical expression for the initial density dependence of the viscosity and thermal conductivity of gaseous mixtures in terms of the appropriate properties of the pure components and of their interaction quantities. The derivation is based on Enskog's theory of dense gases and yields an equation in which the composition dependence of the linear factor in the density expansion is explicit. The interaction quantities are directly related to those of the mixture extrapolated to zero density and to a universal function valid for all gases. The reliability of the formulation is assessed with respect to the viscosity of several binary mixtures. It is found that the calculated viscosities of binary mixtures agree with the experimental data with a precision which is comparable to that of the most precise measurements.

  2. Fabrication Studies of Ternary Rare Earth Sulfides for Infrared Applications.

    DTIC Science & Technology

    1981-05-01

    sulfides. 1 The initial thrust of this investigation has been two-fold. The first objective was to satisfy a need for small , fully dense samples of...0I 60 55.50 45 40 15 30 25 20 28, CuKa Figure 3. X-ray diffraction pattern of CaLa 2S 4fired for 100 hours at 10600C. Small amounts of CaS (and...been increased 9 PBN-81-511 100 urn Figure 4. SEM micrograph of a mixture of La O and CaCO 3 before firing. The small cubes are CaCO The Ia2ോ

  3. Mutual-friction induced instability of normal-fluid vortex tubes in superfluid helium-4

    NASA Astrophysics Data System (ADS)

    Kivotides, Demosthenes

    2018-06-01

    It is shown that, as a result of its interactions with superfluid vorticity, a normal-fluid vortex tube in helium-4 becomes unstable and disintegrates. The superfluid vorticity acquires only a small (few percents of normal-fluid tube strength) polarization, whilst expanding in a front-like manner in the intervortex space of the normal-fluid, forming a dense, unstructured tangle in the process. The accompanied energy spectra scalings offer a structural explanation of analogous scalings in fully developed finite-temperature superfluid turbulence. A macroscopic mutual-friction model incorporating these findings is proposed.

  4. Beryllium R&D for blanket application

    NASA Astrophysics Data System (ADS)

    Donne, M. Dalle; Longhurst, G. R.; Kawamura, H.; Scaffidi-Argentina, F.

    1998-10-01

    The paper describes the main problems and the R&D for the beryllium to be used as neutron multiplier in blankets. As the four ITER partners propose to use beryllium in the form of pebbles for their DEMO relevant blankets (only the Russians consider the porous beryllium option as an alternative) and the ITER breeding blanket will use beryllium pebbles as well, the paper is mainly based on beryllium pebbles. Also the work on the chemical reactivity of fully dense and porous beryllium in contact with water steam is described, due to the safety importance of this point.

  5. Shear Induced Structural Relaxation in a Supercooled Colloidal Liquid

    NASA Astrophysics Data System (ADS)

    Chen, Dandan; Semwogerere, Denis; Weeks, Eric R.

    2009-11-01

    Amorphous materials include many common products we use everyday, such as window glass, moisturizer, shaving cream and peanut butter. These materials have liquid-like disordered structure, but keep their shapes like a solid. The rheology of dense amorphous materials under large shear strain is not fully understood, partly due to the difficulty of directly viewing the microscopic details of such materials. We use a colloidal suspension to simulate amorphous materials, and study the shear- induced structural relaxation with fast confocal microscopy. We quantify the plastic rearrangements of the particles using standard analysis techniques based on the motion of the particles.

  6. Breast Cancer Risk and Mammographic Density Assessed with Semiautomated and Fully Automated Methods and BI-RADS.

    PubMed

    Jeffers, Abra M; Sieh, Weiva; Lipson, Jafi A; Rothstein, Joseph H; McGuire, Valerie; Whittemore, Alice S; Rubin, Daniel L

    2017-02-01

    Purpose To compare three metrics of breast density on full-field digital mammographic (FFDM) images as predictors of future breast cancer risk. Materials and Methods This institutional review board-approved study included 125 women with invasive breast cancer and 274 age- and race-matched control subjects who underwent screening FFDM during 2004-2013 and provided informed consent. The percentage of density and dense area were assessed semiautomatically with software (Cumulus 4.0; University of Toronto, Toronto, Canada), and volumetric percentage of density and dense volume were assessed automatically with software (Volpara; Volpara Solutions, Wellington, New Zealand). Clinical Breast Imaging Reporting and Data System (BI-RADS) classifications of breast density were extracted from mammography reports. Odds ratios and 95% confidence intervals (CIs) were estimated by using conditional logistic regression stratified according to age and race and adjusted for body mass index, parity, and menopausal status, and the area under the receiver operating characteristic curve (AUC) was computed. Results The adjusted odds ratios and 95% CIs for each standard deviation increment of the percentage of density, dense area, volumetric percentage of density, and dense volume were 1.61 (95% CI: 1.19, 2.19), 1.49 (95% CI: 1.15, 1.92), 1.54 (95% CI: 1.12, 2.10), and 1.41 (95% CI: 1.11, 1.80), respectively. Odds ratios for women with extremely dense breasts compared with those with scattered areas of fibroglandular density were 2.06 (95% CI: 0.85, 4.97) and 2.05 (95% CI: 0.90, 4.64) for BI-RADS and Volpara density classifications, respectively. Clinical BI-RADS was more accurate (AUC, 0.68; 95% CI: 0.63, 0.74) than Volpara (AUC, 0.64; 95% CI: 0.58, 0.70) and continuous measures of percentage of density (AUC, 0.66; 95% CI: 0.60, 0.72), dense area (AUC, 0.66; 95% CI: 0.60, 0.72), volumetric percentage of density (AUC, 0.64; 95% CI: 0.58, 0.70), and density volume (AUC, 0.65; 95% CI: 0.59, 0.71), although the AUC differences were not statistically significant. Conclusion Mammographic density on FFDM images was positively associated with breast cancer risk by using the computer assisted methods and BI-RADS. BI-RADS classification was as accurate as computer-assisted methods for discrimination of patients from control subjects. © RSNA, 2016.

  7. 49 CFR 178.707 - Standards for composite IBCs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... designed to bear the entire stacking load. The inner receptacle and outer packaging form an integral... outer packaging. (2) A composite IBC with a fully enclosing outer packaging must be designed to permit assessment of the integrity of the inner container following the leakproofness and hydraulic tests. The outer...

  8. Effects of Neighborhood Socioeconomic Characteristics and Class Composition on Highly Competent Children.

    ERIC Educational Resources Information Center

    Maggi, Stefania; Hertzman, Clyde; Kohen, Dafina; D'Angiulli, Amedio

    2004-01-01

    The conditions that prevent highly competent children from fully developing their learning potential rarely have been addressed. The authors investigated the relationship between neighborhood socioeconomic characteristics, class composition, and changes in the proportion of highly competent children in kindergarten and in Grades 4 and 7. The…

  9. In-situ polymerisation of fully bioresorbable polycaprolactone/phosphate glass fibre composites: In vitro degradation and mechanical properties.

    PubMed

    Chen, Menghao; Parsons, Andrew J; Felfel, Reda M; Rudd, Christopher D; Irvine, Derek J; Ahmed, Ifty

    2016-06-01

    Fully bioresorbable composites have been investigated in order to replace metal implant plates used for hard tissue repair. Retention of the composite mechanical properties within a physiological environment has been shown to be significantly affected due to loss of the integrity of the fibre/matrix interface. This study investigated phosphate based glass fibre (PGF) reinforced polycaprolactone (PCL) composites with 20%, 35% and 50% fibre volume fractions (Vf) manufactured via an in-situ polymerisation (ISP) process and a conventional laminate stacking (LS) followed by compression moulding. Reinforcing efficiency between the LS and ISP manufacturing process was compared, and the ISP composites revealed significant improvements in mechanical properties when compared to LS composites. The degradation profiles and mechanical properties were monitored in phosphate buffered saline (PBS) at 37°C for 28 days. ISP composites revealed significantly less media uptake and mass loss (p<0.001) throughout the degradation period. The initial flexural properties of ISP composites were substantially higher (p<0.0001) than those of the LS composites, which showed that the ISP manufacturing process provided a significantly enhanced reinforcement effect than the LS process. During the degradation study, statistically higher flexural property retention profiles were also seen for the ISP composites compared to LS composites. SEM micrographs of fracture surfaces for the LS composites revealed dry fibre bundles and poor fibre dispersion with polymer rich zones, which indicated poor interfacial bonding, distribution and adhesion. In contrast, evenly distributed fibres without dry fibre bundles or polymer rich zones, were clearly observed for the ISP composite samples, which showed that a superior fibre/matrix interface was achieved with highly improved adhesion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Transparent Composites Made from Tunicate Cellulose Membranes and Environmentally Friendly Polyester.

    PubMed

    Zhao, Yadong; Moser, Carl; Henriksson, Gunnar

    2018-05-25

    A series of optically transparent composites were made by using tunicate cellulose membranes, in which the naturally organized cellulose microfibrillar network structure of tunicate tunics was preserved and used as the template and a solution of glycerol and citric acid at different molar ratios was used as the matrix. Polymerization through ester bond formation occurred at elevated temperatures without any catalyst, and water was released as the only byproduct. The obtained composites had a uniform and dense structure. Thus, the produced glycerol citrate polyester improved the transparency of the tunicate cellulose membrane while the cellulose membrane provided rigidity and strength to the prepared composite. The interaction between cellulose and polyester afforded the composites high thermal stability. Additionally, the composites were optically transparent and their shape, strength, and flexibility were adjustable by varying the formulation and reaction conditions. These composites of cellulose, glycerol, and citric acid are renewable and biocompatible and have many potential applications as structural materials in packaging, flexible displays, and solar cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The oxidation resistance optimization of titanium carbide/hastelloy (Ni-based alloy) composites applied for intermediate-temperature solid oxide fuel cell interconnects

    NASA Astrophysics Data System (ADS)

    Qi, Qian; Liu, Yan; Wang, Lujie; Huang, Jian; Xin, Xianshuang; Gai, Linlin; Huang, Zhengren

    2017-08-01

    Titanium carbide/hastelloy (TiC/hastelloy) composites are potential candidates for intermediate-temperature solid oxide fuel cell interconnects. In this work, TiC/hastelloy composites with suitable coefficient of thermal expansion are fabricated by in-situ reactive infiltration method, and their properties are optimized by adjusting TiC particle size (dTiC). The oxidation process of TiC/hastelloy composites is comprehensive performance of TiC and Ni-Cr alloy and determined by outward diffusion of Ti and Ni atoms and internal diffusion of O2. The oxidation resistance of composites could be improved by the decrease of dTiC through accelerating the formation of continuous and dense TiO2/Cr2O3 oxide scale. Moreover, the electrical conductivity of composites at 800 °C for 100 h is 5600-7500 S cm-1 and changes little with the prolongation of oxidation time. The decrease of dTiC is favorable for the properties optimization, and composites with 2.16 μm TiC exhibits good integrated properties.

  12. Microstructure Characterization and Wear-Resistant Properties Evaluation of an Intermetallic Composite in Ni-Mo-Si System.

    PubMed

    Huang, Boyuan; Song, Chunyan; Liu, Yang; Gui, Yongliang

    2017-02-04

    Intermetallic compounds have been studied for their potential application as structural wear materials or coatings on engineering steels. In the present work, a newly designed intermetallic composite in a Ni-Mo-Si system was fabricated by arc-melting process with commercially pure metal powders as starting materials. The chemical composition of this intermetallic composite is 45Ni-40Mo-15Si (at %), selected according to the ternary alloy diagram. The microstructure was characterized using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS), and the wear-resistant properties at room temperature were evaluated under different wear test conditions. Microstructure characterization showed that the composite has a dense and uniform microstructure. XRD results showed that the intermetallic composite is constituted by a binary intermetallic compound NiMo and a ternary Mo₂Ni₃Si metal silicide phase. Wear test results indicated that the intermetallic composite has an excellent wear-resistance at room-temperature, which is attributed to the high hardness and strong atomic bonding of constituent phases NiMo and Mo₂Ni₃Si.

  13. Sintering of (Ni,Mg)(Al,Fe)2O4 Materials and their Corrosion Process in Na3AlF6-AlF3-K3AlF6 Electrolyte

    NASA Astrophysics Data System (ADS)

    Xu, Yibiao; Li, Yawei; Yang, Jianhong; Sang, Shaobai; Wang, Qinghu

    2017-06-01

    The application of ledge-free sidewalls in the Hall-Héroult cells can potentially reduce the energy requirement of aluminum production by about 30 pct (Nightingale et al. in J Eur Ceram, 33:2761-2765, 2013). However, this approach poses great material challenges since such sidewalls are in direct contact with corrosive electrolyte. In the present paper, (Ni,Mg)(Al,Fe)2O4 materials were prepared using fused magnesia, reactive alumina, nickel oxide, and iron oxide powders as the starting materials. The sintering behaviors of specimens as well as their corrosion resistance to molten electrolyte have been investigated by means of X-ray diffraction and scanning electron microscope. The results show that after firing at temperature ranging from 1673 K (1400 °C) up to 1873 K (1600 °C), all the specimens prepared are composed of single-phase (Ni,Mg)(Al,Fe)2O4 composite spinel, the lattice parameter of which increases with increasing Fe3+ ion concentration. Increasing the iron oxide content enhances densification of the specimens, which is accompanied by the formation of homogeneously distributed smaller pores in the matrix. The corrosion tests show that corrosion layers consist of fluoride and Ni(Al,Fe)2O4 composite spinel grains are produced in specimens with Fe/Al mole ratio no more than 1, whereas dense Ni(Al,Fe)2O4 composite spinel layers are formed on the surface of the specimens with Fe/Al mole ratio more than 1. The dense Ni(Al,Fe)2O4 composite spinel layers formed improve the corrosion resistance of the specimens by inhibiting the infiltration of electrolyte and hindering the chemical reaction between the specimen and electrolyte.

  14. Composite superconducting wires obtained by high-rate tinning in molten Bi-Pb-Sr-Ca-Cu-O system

    NASA Technical Reports Server (NTRS)

    Grozav, A. D.; Konopko, L. A.; Leporda, N. I.

    1990-01-01

    The preparation of high-T(sub c) superconducting long composite wires by short-time tinning of the metal wires in a molten Bi-Pb-Sr-Ca-Cu-O compound is discussed. The application of this method to the high-T(sub c) materials is tested, possibly for the first time. The initial materials used for this experiment were ceramic samples with nominal composition Bi(1.5)Pb(0.5)Sr2Ca2Cu3O(x) and T(sub c) = 80 K prepared by the ordinary solid-state reaction, and industrial copper wires from 100 to 400 microns in diameter and from 0.5 to 1 m long. The continuously moving wires were let through a small molten zone (approximately 100 cubic mm). The Bi-based high-T(sub c) ceramics in a molten state is a viscous liquid and it has a strongly pronounced ability to spread on metal wire surfaces. The maximum draw rate of the Cu-wire, at which a dense covering is still possible, corresponds to the time of direct contact of wire surfaces and liquid ceramics for less than 0.1 s. A high-rate draw of the wire permits a decrease in the reaction of the oxide melt and Cu-wire. This method of manufacture led to the fabrication of wire with a copper core in a dense covering with uniform thickness of about h approximately equal to 5 to 50 microns. Composite wires with h approximately equal to 10 microns (h/d approximately equal to 0.1) sustained bending on a 15 mm radius frame without cracking during flexing.

  15. Hard TiCx/SiC/a-C:H nanocomposite thin films using pulsed high energy density plasma focus device

    NASA Astrophysics Data System (ADS)

    Umar, Z. A.; Rawat, R. S.; Tan, K. S.; Kumar, A. K.; Ahmad, R.; Hussain, T.; Kloc, C.; Chen, Z.; Shen, L.; Zhang, Z.

    2013-04-01

    Thin films of TiCx/SiC/a-C:H were synthesized on Si substrates using a complex mix of high energy density plasmas and instability accelerated energetic ions of filling gas species, emanated from hot and dense pinched plasma column, in dense plasma focus device. The conventional hollow copper anode of Mather type plasma focus device was replaced by solid titanium anode for synthesis of TiCx/SiC/a-C:H nanocomposite thin films using CH4:Ar admixture of (1:9, 3:7 and 5:5) for fixed 20 focus shots as well as with different number of focus shots with fixed CH4:Ar admixture ratio 3:7. XRD results showed the formation of crystalline TiCx/SiC phases for thin film synthesized using different number of focus shots with CH4:Ar admixture ratio fixed at 3:7. SEM results showed that the synthesized thin films consist of nanoparticle agglomerates and the size of agglomerates depended on the CH4:Ar admixture ratio as well as on the number of focus shots. Raman analysis showed the formation of polycrystalline/amorphous Si, SiC and a-C for different CH4:Ar ratio as well as for different number of focus shots. The XPS analysis confirmed the formation of TiCx/SiC/a-C:H composite thin film. Nanoindentation results showed that the hardness and elastic modulus values of composite thin films increased with increasing number of focus shots. Maximum values of hardness and elastic modulus at the surface of the composite thin film were found to be about 22 and 305 GPa, respectively for 30 focus shots confirming the successful synthesis of hard composite TiCx/SiC/a-C:H coatings.

  16. Elemental composition and optical properties reveal changes in dissolved organic matter along a permafrost thaw chronosequence in a subarctic peatland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodgkins, Suzanne B.; Tfaily, Malak M.; Podgorski, David C.

    2016-08-01

    The fate of carbon stored in permafrost-zone peatlands represents a significant uncertainty in global climate modeling. Given that the breakdown of dissolved organic matter (DOM) is often a major pathway for decomposition in peatlands, knowledge of DOM reactivity under different permafrost regimes is critical for determining future climate feedbacks. To explore the effects of permafrost thaw and resultant plant succession on DOM reactivity, we used a combination of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), UV/Vis absorbance, and excitation-emission matrix spectroscopy (EEMS) to examine the DOM elemental composition and optical properties of 27 pore water samples gathered frommore » various sites along a permafrost thaw sequence in Stordalen Mire, a thawing subarctic peatland in northern Sweden. The presence of dense Sphagnum moss, a feature that is dominant in the intermediate thaw stages, appeared to be the main driver of variation in DOM elemental composition and optical properties at Stordalen. Specifically, DOM from sites with Sphagnum had greater aromaticity, higher average molecular weights, and greater O/C, consistent with a higher abundance of phenolic compounds that likely inhibit decomposition. These compounds are released by Sphagnum and may accumulate due to inhibition of phenol oxidase activity by the acidic pH at these sites. In contrast, sites without Sphagnum, specifically fully-thawed rich fens, had more saturated, more reduced compounds, which were high in N and S. Optical properties at rich fens were indicated the presence of microbially-derived DOM, consistent with the higher decomposition rates previously measured at these sites. These results indicate that Sphagnum acts as an inhibitor of rapid decomposition and CH4 release in thawing subarctic peatlands, consistent with lower rates of CO2 and CH4 production previously observed at these sites. However, this inhibitory effect may disappear if Sphagnumdominated bogs transition to more waterlogged rich fens that contain very little to no living Sphagnum. Release of this inhibition allows for higher levels of microbial activity and potentially greater CH4 release, as has been observed in these fen sites.« less

  17. Elemental composition and optical properties reveal changes in dissolved organic matter along a permafrost thaw chronosequence in a subarctic peatland

    NASA Astrophysics Data System (ADS)

    Hodgkins, Suzanne B.; Tfaily, Malak M.; Podgorski, David C.; McCalley, Carmody K.; Saleska, Scott R.; Crill, Patrick M.; Rich, Virginia I.; Chanton, Jeffrey P.; Cooper, William T.

    2016-08-01

    The fate of carbon stored in permafrost-zone peatlands represents a significant uncertainty in global climate modeling. Given that the breakdown of dissolved organic matter (DOM) is often a major pathway for decomposition in peatlands, knowledge of DOM reactivity under different permafrost regimes is critical for determining future climate feedbacks. To explore the effects of permafrost thaw and resultant plant succession on DOM reactivity, we used a combination of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), UV/Vis absorbance, and excitation-emission matrix spectroscopy (EEMS) to examine the DOM elemental composition and optical properties of 27 pore water samples gathered from various sites along a permafrost thaw sequence in Stordalen Mire, a thawing subarctic peatland in northern Sweden. The presence of dense Sphagnum moss, a feature that is dominant in the intermediate thaw stages, appeared to be the main driver of variation in DOM elemental composition and optical properties at Stordalen. Specifically, DOM from sites with Sphagnum had greater aromaticity, higher average molecular weights, and greater O/C, consistent with a higher abundance of phenolic compounds that likely inhibit decomposition. These compounds are released by Sphagnum and may accumulate due to inhibition of phenol oxidase activity by the acidic pH at these sites. In contrast, sites without Sphagnum, specifically fully-thawed rich fens, had more saturated, more reduced compounds, which were high in N and S. Optical properties at rich fens indicated the presence of microbially-derived DOM, consistent with the higher decomposition rates previously measured at these sites. These results indicate that Sphagnum acts as an inhibitor of rapid decomposition and CH4 release in thawing subarctic peatlands, consistent with lower rates of CO2 and CH4 production previously observed at these sites. However, this inhibitory effect may disappear if Sphagnum-dominated bogs transition to more waterlogged rich fens that contain very little to no living Sphagnum. Release of this inhibition allows for higher levels of microbial activity and potentially greater CH4 release, as has been observed in these fen sites.

  18. Critical infrastructure monitoring using UAV imagery

    NASA Astrophysics Data System (ADS)

    Maltezos, Evangelos; Skitsas, Michael; Charalambous, Elisavet; Koutras, Nikolaos; Bliziotis, Dimitris; Themistocleous, Kyriacos

    2016-08-01

    The constant technological evolution in Computer Vision enabled the development of new techniques which in conjunction with the use of Unmanned Aerial Vehicles (UAVs) may extract high quality photogrammetric products for several applications. Dense Image Matching (DIM) is a Computer Vision technique that can generate a dense 3D point cloud of an area or object. The use of UAV systems and DIM techniques is not only a flexible and attractive solution to produce accurate and high qualitative photogrammetric results but also is a major contribution to cost effectiveness. In this context, this study aims to highlight the benefits of the use of the UAVs in critical infrastructure monitoring applying DIM. A Multi-View Stereo (MVS) approach using multiple images (RGB digital aerial and oblique images), to fully cover the area of interest, is implemented. The application area is an Olympic venue in Attica, Greece, at an area of 400 acres. The results of our study indicate that the UAV+DIM approach respond very well to the increasingly greater demands for accurate and cost effective applications when provided with, a 3D point cloud and orthomosaic.

  19. Short intense ion pulses for materials and warm dense matter research

    DOE PAGES

    Seidl, Peter A.; Persaud, Arun; Waldron, William L.; ...

    2015-08-14

    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment-II at Lawrence Berkeley National Laboratory, by generating beam spots size with radius r<1 mm within 2 ns FWHM and approximately 10 10 ions/pulse. To enable the short pulse durations and mm-scale focal spot radii, the 1.2 MeV Li + ion beam is neutralized in a 1.6-meter drift compression section located after the last accelerator magnet. An 8-Tesla short focal length solenoid compresses the beam in the presence of the large volume plasma near the end of this section before the target. The scientificmore » topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including selected topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Finally, we describe the accelerator commissioning and time-resolved ionoluminescence measurements of yttrium aluminum perovskite using the fully integrated accelerator and neutralized drift compression components.« less

  20. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy.

    PubMed

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  1. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  2. Phosphorus detection in vitrified bacteria by cryo-STEM annular dark-field analysis.

    PubMed

    Wolf, Sharon Grayer; Rez, Peter; Elbaum, Michael

    2015-11-01

    Bacterial cells often contain dense granules. Among these, polyphosphate bodies (PPBs) store inorganic phosphate for a variety of essential functions. Identification of PPBs has until now been accomplished by analytical methods that required drying or chemically fixing the cells. These methods entail large electron doses that are incompatible with low-dose imaging of cryogenic specimens. We show here that Scanning Transmission Electron Microscopy (STEM) of fully hydrated, intact, vitrified bacteria provides a simple means for mapping of phosphorus-containing dense granules based on quantitative sensitivity of the electron scattering to atomic number. A coarse resolution of the scattering angles distinguishes phosphorus from the abundant lighter atoms: carbon, nitrogen and oxygen. The theoretical basis is similar to Z contrast of materials science. EDX provides a positive identification of phosphorus, but importantly, the method need not involve a more severe electron dose than that required for imaging. The approach should prove useful in general for mapping of heavy elements in cryopreserved specimens when the element identity is known from the biological context. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  3. Defining Noble Gas Partitioning for Carbon Capture and Storage Environments

    NASA Astrophysics Data System (ADS)

    Warr, O.; Masters, A.; Rochelle, C.; Ballentine, C. J.

    2014-12-01

    For viable CCS implementation variables such as CO2 dissolution rates, reactions with the host rock and the extent of groundwater interaction must be accurately constrained. Noble gases play an important role in these systems [e.g. 1,2]. Their application, however, requires accurate Henry's constants within dense CO2-H2O systems. Current interpretations use pure noble gas-H2O partitioning data [3,4] and assume CO2-noble gas interactions are negligible, even at high (>700 kg/m3) CO2 densities [2]. To test this assumption we experimentally determined noble gas CO2-H2O partitioning for the 170-656 kg/m3 CO2 density range; representative of most CCS environments. Contrary to assumption, CO2 density significantly affected noble gas partition coefficients. For helium, increasing CO2 density resulted in a negative deviation trend from CO2-free values whilst for argon, krypton and xenon strong, positive deviations were observed. At 656 kg/m3 these deviations were -35%, 74%, 114% and 321% respectively. This is interpreted as the CO2 phase acting as a polar solvent inducing polarisation in the noble gases. Deviation trends are well defined using a 2nd order polynomial. The effect of a dense CO2 phase can now be incorporated into existing noble gas models. We also present results from a Gibbs-Ensemble Monte Carlo molecular simulation to model partitioning for this binary system. This fundamental technique makes predictions based on the pair-potentials of interaction between the molecules. Here it gives the phase compositions and Henry coefficients for noble gases. With a proven ability in accurately replicating both the CO2-H2O system and low pressure noble gas Henry constants the focus is now on fully optimising the model to match high pressure observations. [1] Gilfillan et al. (2009) Nature 458 614-618 [2] Gilfillan et al. (2008) GCA 72 1174-1198 [3] Crovetto et al. (1982) J.Chem.Phys. 76 1077-1086 [4] Ballentine et al. in Porcelli et al. (eds.) (2002) Rev.Min.Geo. 47 539-614.

  4. Copper-encapsulated vertically aligned carbon nanotube arrays.

    PubMed

    Stano, Kelly L; Chapla, Rachel; Carroll, Murphy; Nowak, Joshua; McCord, Marian; Bradford, Philip D

    2013-11-13

    A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution. Once dried, the salt forms a stabilizing crystal network throughout the array. After calcination and H2 reduction, Cu nanoparticles are left decorating the CNT surfaces. Studies were carried out to determine the optimal processing parameters to maximize Cu content in the composite. These included the duration of Py-C deposition and system process pressure as well as the implementation of subsequent and multiple Cu salt solution infiltrations. The optimized procedure yielded a nanoscale hybrid material where the anisotropic alignment from the VACNT array was preserved, and the mass of the stabilized arrays was increased by over 24-fold because of the addition of Cu. The procedure has been adapted for other Cu salts and can also be used for other metal salts altogether, including Ni, Co, Fe, and Ag. The resulting composite is ideally suited for application in thermal management devices because of its low density, mechanical integrity, and potentially high thermal conductivity. Additionally, further processing of the material via pressing and sintering can yield consolidated, dense bulk composites.

  5. THE COMPOSITION OF INTERSTELLAR GRAINS TOWARD ζ OPHIUCHI: CONSTRAINING THE ELEMENTAL BUDGET NEAR THE DIFFUSE-DENSE CLOUD TRANSITION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poteet, Charles A.; Whittet, Douglas C. B.; Draine, Bruce T., E-mail: charles.poteet@gmail.com

    2015-03-10

    We investigate the composition of interstellar grains along the line of sight toward ζ Ophiuchi, a well-studied environment near the diffuse-dense cloud transition. A spectral decomposition analysis of the solid-state absorbers is performed using archival spectroscopic observations from the Spitzer Space Telescope and Infrared Space Observatory. We find strong evidence for the presence of sub-micron-sized amorphous silicate grains, principally comprised of olivine-like composition, with no convincing evidence of H{sub 2}O ice mantles. However, tentative evidence for thick H{sub 2}O ice mantles on large (a ≈ 2.8 μm) grains is presented. Solid-state abundances of elemental Mg, Si, Fe, and O aremore » inferred from our analysis and compared to standard reference abundances. We find that nearly all of the Mg and Si atoms along the line of sight reside in amorphous silicate grains, while a substantial fraction of the elemental Fe resides in compounds other than silicates. Moreover, we find that the total abundance of elemental O is largely inconsistent with the adopted reference abundances, indicating that as much as ∼156 ppm of interstellar O is missing along the line of sight. After taking into account additional limits on the abundance of elemental O in other O-bearing solids, we conclude that any missing reservoir of elemental O must reside on large grains that are nearly opaque to infrared radiation.« less

  6. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandian, Amaresh Samuthira; Chen, Xi Chelsea; Chen, Jihua

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtainmore » composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. As a result, a remarkable Li + transference number of 0.79 is discovered for the composite electrolyte.« less

  7. Facile and scalable fabrication of polymer-ceramic composite electrolyte with high ceramic loadings

    DOE PAGES

    Pandian, Amaresh Samuthira; Chen, Xi Chelsea; Chen, Jihua; ...

    2018-04-24

    Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtainmore » composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. As a result, a remarkable Li + transference number of 0.79 is discovered for the composite electrolyte.« less

  8. A seismologically consistent compositional model of Earth's core.

    PubMed

    Badro, James; Côté, Alexander S; Brodholt, John P

    2014-05-27

    Earth's core is less dense than iron, and therefore it must contain "light elements," such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe-Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle.

  9. PMN-PT-PZT composite films for high frequency ultrasonic transducer applications.

    PubMed

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K Kirk

    2012-06-01

    We have successfully fabricated x (0.65PMN-0.35PT)-(1 - x )PZT ( x PMN-PT-(1 - x )PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol-gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of x PMN-PT-(1 - x )PZT films show better ferroelectric properties. A representative 0.9PMN-PT-0.1PZT thick film transducer is built. It has 200 MHz center frequency with a -6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB.

  10. PMN-PT–PZT composite films for high frequency ultrasonic transducer applications

    PubMed Central

    Hsu, Hsiu-Sheng; Benjauthrit, Vatcharee; Zheng, Fan; Chen, Rumin; Huang, Yuhong; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    We have successfully fabricated x(0.65PMN-0.35PT)–(1 − x)PZT (xPMN-PT–(1 − x)PZT), where x is 0.1, 0.3, 0.5, 0.7 and 0.9, thick films with a thickness of approximately 9 µm on platinized silicon substrate by employing a composite sol–gel technique. X-ray diffraction analysis and scanning electron microscopy revealed that these films are dense and creak-free with well-crystallized perovskite phase in the whole composition range. The dielectric constant can be controllably adjusted by using different compositions. Higher PZT content of xPMN-PT–(1 − x)PZT films show better ferroelectric properties. A representative 0.9PMN-PT–0.1PZT thick film transducer is built. It has 200 MHz center frequency with a −6 dB bandwidth of 38% (76 MHz). The measured two-way insertion loss is 65 dB. PMID:23750072

  11. Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering.

    PubMed

    Yu, Peng; Bao, Rui-Ying; Shi, Xiao-Jun; Yang, Wei; Yang, Ming-Bo

    2017-01-02

    Graphene hydrogel has shown greatly potentials in bone tissue engineering recently, but it is relatively weak in the practical use. Here we report a facile method to synthesize high strength composite graphene hydrogel. Graphene oxide (GO), hydroxyapatite (HA) nanoparticles (NPs) and chitosan (CS) self-assemble into a 3-dimensional hydrogel with the assistance of crosslinking agent genipin (GNP) for CS and reducing agent sodium ascorbate (NaVC) for GO simultaneously. The dense and oriented microstructure of the resulted composite gel endows it with high mechanical strength, high fixing capacity of HA and high porosity. These properties together with the good biocompatibility make the ternary composite gel a promising material for bone tissue engineering. Such a simultaneous crosslinking and reduction strategy can also be applied to produce a variety of 3D graphene-polymer based nanocomposites for biomaterials, energy storage materials and adsorbent materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A seismologically consistent compositional model of Earth’s core

    PubMed Central

    Badro, James; Côté, Alexander S.; Brodholt, John P.

    2014-01-01

    Earth’s core is less dense than iron, and therefore it must contain “light elements,” such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe–Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle. PMID:24821817

  13. The Allende multicompound chondrule (ACC)—Chondrule formation in a local super-dense region of the early solar system

    NASA Astrophysics Data System (ADS)

    Bischoff, Addi; Wurm, Gerhard; Chaussidon, Marc; Horstmann, Marian; Metzler, Knut; Weyrauch, Mona; Weinauer, Julia

    2017-05-01

    In Allende, a very complex compound chondrule (Allende compound chondrule; ACC) was found consisting of at least 16 subchondrules (14 siblings and 2 independents). Its overall texture can roughly be described as a barred olivine object (BO). The BO texture is similar in all siblings, but does not exist in the two independents, which appear as relatively compact olivine-rich units. Because of secondary alteration of pristine Allende components and the ACC in particular, only limited predictions can be made concerning the original compositions of the colliding melt droplets. Based on textural and mineralogical characteristics, the siblings must have been formed on a very short time scale in a dense, local environment. This is also supported by oxygen isotope systematics showing similar compositions for all 16 subchondrules. Furthermore, the ACC subchondrules are isotopically distinct from typical Allende chondrules, indicating formation in or reaction with a more 16O-poor reservoir. We modeled constraints on the particle density required at the ACC formation location, using textural, mineral-chemical, and isotopic observations on this multicompound chondrule to define melt droplet collision conditions. In this context, we discuss the possible relationship between the formation of complex chondrules and the formation of macrochondrules and cluster chondrites. While macrochondrules may have formed under similar or related conditions as complex chondrules, cluster chondrites certainly require different formation conditions. Cluster chondrites represent a mixture of viscously deformed, seemingly young chondrules of different chemical and textural types and a population of older chondrules. Concerning the formation of ACC calculations suggest the existence of very local, kilometer-sized, and super-dense chondrule-forming regions with extremely high solid-to-gas mass ratios of 1000 or more.

  14. Automated mammographic breast density estimation using a fully convolutional network.

    PubMed

    Lee, Juhun; Nishikawa, Robert M

    2018-03-01

    The purpose of this study was to develop a fully automated algorithm for mammographic breast density estimation using deep learning. Our algorithm used a fully convolutional network, which is a deep learning framework for image segmentation, to segment both the breast and the dense fibroglandular areas on mammographic images. Using the segmented breast and dense areas, our algorithm computed the breast percent density (PD), which is the faction of dense area in a breast. Our dataset included full-field digital screening mammograms of 604 women, which included 1208 mediolateral oblique (MLO) and 1208 craniocaudal (CC) views. We allocated 455, 58, and 91 of 604 women and their exams into training, testing, and validation datasets, respectively. We established ground truth for the breast and the dense fibroglandular areas via manual segmentation and segmentation using a simple thresholding based on BI-RADS density assessments by radiologists, respectively. Using the mammograms and ground truth, we fine-tuned a pretrained deep learning network to train the network to segment both the breast and the fibroglandular areas. Using the validation dataset, we evaluated the performance of the proposed algorithm against radiologists' BI-RADS density assessments. Specifically, we conducted a correlation analysis between a BI-RADS density assessment of a given breast and its corresponding PD estimate by the proposed algorithm. In addition, we evaluated our algorithm in terms of its ability to classify the BI-RADS density using PD estimates, and its ability to provide consistent PD estimates for the left and the right breast and the MLO and CC views of the same women. To show the effectiveness of our algorithm, we compared the performance of our algorithm against a state of the art algorithm, laboratory for individualized breast radiodensity assessment (LIBRA). The PD estimated by our algorithm correlated well with BI-RADS density ratings by radiologists. Pearson's rho values of our algorithm for CC view, MLO view, and CC-MLO-averaged were 0.81, 0.79, and 0.85, respectively, while those of LIBRA were 0.58, 0.71, and 0.69, respectively. For CC view and CC-MLO averaged cases, the difference in rho values between the proposed algorithm and LIBRA showed statistical significance (P < 0.006). In addition, our algorithm provided reliable PD estimates for the left and the right breast (Pearson's ρ > 0.87) and for the MLO and CC views (Pearson's ρ = 0.76). However, LIBRA showed a lower Pearson's rho value (0.66) for both the left and right breasts for the CC view. In addition, our algorithm showed an excellent ability to separate each sub BI-RADS breast density class (statistically significant, p-values = 0.0001 or less); only one comparison pair, density 1 and density 2 in the CC view, was not statistically significant (P = 0.54). However, LIBRA failed to separate breasts in density 1 and 2 for both the CC and MLO views (P > 0.64). We have developed a new deep learning based algorithm for breast density segmentation and estimation. We showed that the proposed algorithm correlated well with BI-RADS density assessments by radiologists and outperformed an existing state of the art algorithm. © 2018 American Association of Physicists in Medicine.

  15. Synthesis of Carbon-Coated ZnO Composite and Varistor Properties Study

    NASA Astrophysics Data System (ADS)

    Sun, Wei-Jie; Liu, Jin-Ran; Yao, Da-Chuan; Chen, Yong; Wang, Mao-Hua

    2017-03-01

    In this article, monodisperse ZnO composite nanoparticles were successfully prepared by sol-gel mixed precursor method. Subsequently, carbon as the shell was homogeneously coated on the surface of the ZnO composite nanoparticles via a simple adsorption and calcination process. Microstructural studies of the as-obtained powders were carried out using the techniques of the x-ray powder diffraction, scanning electron microscopy, field emission scanning electron microscopy, transmission electron microscopy with energy dispersive x-ray spectroscopy, and Fourier transform infrared spectroscopy. The results show that the pink ZnO composite powders were fully coated by carbon. Based on the results, the effect of glucose content on the microstructure of the synthesized composites and the electrical properties of the ZnO varistors sintered in air at 1150°C for 2 h were also fully studied. As the amount of glucose increased, the thickness of carbon can be increased from 2.5 nm to 5 nm. In particular, the ZnO varistor fabricated with the appropriate thickness of the carbon coating (5 nm) leads to the superior electrical performance, with present high breakdown voltage ( V b = 420 V/mm) and excellent nonlinear coefficient ( α = 61.7), compared with the varistors obtained without carbon coating.

  16. Geometric and compositional factors on critical current density in YBa2Cu3O7‑δ films containing nanorods

    NASA Astrophysics Data System (ADS)

    Horide, Tomoya; Nagao, Sho; Izutsu, Ryosuke; Ishimaru, Manabu; Kita, Ryusuke; Matsumoto, Kaname

    2018-06-01

    Critical current density (J c) was investigated in YBa2Cu3O7‑δ films containing nanorods prepared with various nanorod materials, with variation of nanorod content, substrate temperature, and oxidization condition. Three types of compositional situation were realized: films containing strain induced oxygen vacancies; fully oxidized films containing cation compositional deviation; and oxygen deficient films. Normalized J c‑B behavior was determined via the matching field, which is a geometric factor, regardless of the compositional details. A J c‑critical temperature (T c) relation depending on distribution and fraction of compositional deviation (cation compositional deviation and strain induced oxygen vacancies) was found: the J c values decreased with decreasing T c due to the effect of T c on nanorod pinning strength in the fully oxidized films; J c decreased with decreasing oxygen pressure in the film cooling process after film deposition in spite of T c remaining almost the same, due to reduction of the effective area for current flow in the oxygen deficient films. Thus, a J c landscape based on geometric and compositional factors was obtained. The study highlights the importance of the J c‑T c analysis in the understanding of J c in YBa2Cu3O7‑δ films containing nanorods.

  17. Ambient Effects on Basalt and Rhyolite Lavas under Venusian, Subaerial, and Subaqueous Conditions

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.

    1997-01-01

    Both subaerial and subaqueous environments have been used as analog settings for Venus volcanism. To assess the merits of this, the effects of ambient conditions on the physical properties of lava on Venus, the seafloor, and land on Earth are evaluated. Rhyolites on Venus and on the surface of Earth solidify before basalts do because of their lower eruption temperatures. Rhyolite crust is thinner than basalt crust at times less than about an hour, especially on Venus. At later times, rhyolite crust is thicker because of its lower latent heat relative to basalt. The high pressure on the seafloor and Venus inhibits the exsolution of volatiles in lavas. Vesicularity and bulk density are proportional, so that lavas of the same composition should be more dense on the seafloor and less dense on land. Because viscosity depends partly upon the fraction of unvesiculated water in a melt, basalts with the same initial volatile abundance will be least viscous on the seafloor and most viscous on land. Assuming the same preeruptive H2O contents, molten rhyolites on Venus will have viscosities approx. 10% that of rhyolites on land. Despite lower expected viscosities, under-water flows are more buoyant and should have heights like subaerial and Venusian lavas of the same composition and extrusive history. In cases where the influence of crust is insignificant, a volume of rhyolite will have a higher aspect ratio than the same volume of basalt, no matter what the environment. If flow rheology is dominated by the presence of strong crust, aspect ratios differ little among environments or between compositions. These analyses support a rhyolitic interpretation for the composition of Venusian festooned flows and a basaltic interpretation for the composition of Venusian steep-sided domes. Although ambient effects are significant, extrusion rate and eruption history must also be considered to explain analogous volcanic landforms on Earth and Venus.

  18. Testing Mechanisms and Scales of Equilibrium Using Textural and Compositional Analysis of Porphyroblasts in Rocks with Heterogeneous Garnet Distributions

    NASA Astrophysics Data System (ADS)

    Ruthven, R. C.; Ketcham, R. A.; Kelly, E. D.

    2015-12-01

    Three-dimensional textural analysis of garnet porphyroblasts and electron microprobe analyses can, in concert, be used to pose novel tests that challenge and ultimately increase our understanding of metamorphic crystallization mechanisms. Statistical analysis of high-resolution X-ray computed tomography (CT) data of garnet porphyroblasts tells us the degree of ordering or randomness of garnets, which can be used to distinguish the rate-limiting factors behind their nucleation and growth. Electron microprobe data for cores, rims, and core-to-rim traverses are used as proxies to ascertain porphyroblast nucleation and growth rates, and the evolution of sample composition during crystallization. MnO concentrations in garnet cores serve as a proxy for the relative timing of nucleation, and rim concentrations test the hypothesis that MnO is in equilibrium sample-wide during the final stages of crystallization, and that concentrations have not been greatly altered by intracrystalline diffusion. Crystal size distributions combined with compositional data can be used to quantify the evolution of nucleation rates and sample composition during crystallization. This study focuses on quartzite schists from the Picuris Mountains with heterogeneous garnet distributions consisting of dense and sparse layers. 3D data shows that the sparse layers have smaller, less euhedral garnets, and petrographic observations show that sparse layers have more quartz and less mica than dense layers. Previous studies on rocks with homogeneously distributed garnet have shown that crystallization rates are diffusion-controlled, meaning that they are limited by diffusion of nutrients to growth and nucleation sites. This research extends this analysis to heterogeneous rocks to determine nucleation and growth rates, and test the assumption of rock-wide equilibrium for some major elements, among a set of compositionally distinct domains evolving in mm- to cm-scale proximity under identical P-T conditions.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L.; Landi, E.; Lepri, S. T.

    In this paper, we study a subset of slow solar winds characterized by an anomalous charge state composition and ion temperatures compared to average solar wind distributions, and thus referred to as an “Outlier” wind. We find that although this wind is slower and denser than normal slow wind, it is accelerated from the same source regions (active regions and quiet-Sun regions) as the latter and its occurrence rate depends on the solar cycle. The defining property of the Outlier wind is that its charge state composition is the same as that of normal slow wind, with the only exceptionmore » being a very large decrease in the abundance of fully charged species (He{sup 2+}, C{sup 6+}, N{sup 7+}, O{sup 8+}, Mg{sup 12+}), resulting in a significant depletion of the He and C element abundances. Based on these observations, we suggest three possible scenarios for the origin of this wind: (1) local magnetic waves preferentially accelerating non-fully stripped ions over fully stripped ions from a loop opened by reconnection; (2) depleted fully stripped ions already contained in the corona magnetic loops before they are opened up by reconnection; or (3) fully stripped ions depleted by Coulomb collision after magnetic reconnection in the solar corona. If any one of these three scenarios is confirmed, the Outlier wind represents a direct signature of slow wind release through magnetic reconnection.« less

  20. Formation of the hindgut cuticular lining during embryonic development of Porcellio scaber (Crustacea, Isopoda)

    PubMed Central

    Mrak, Polona; Bogataj, Urban; Štrus, Jasna; Žnidaršič, Nada

    2015-01-01

    Abstract The hindgut and foregut in terrestrial isopod crustaceans are ectodermal parts of the digestive system and are lined by cuticle, an apical extracellular matrix secreted by epithelial cells. Morphogenesis of the digestive system was reported in previous studies, but differentiation of the gut cuticle was not followed in detail. This study is focused on ultrastructural analyses of hindgut apical matrices and cuticle in selected intramarsupial developmental stages of the terrestrial isopod Porcellio scaber in comparison to adult animals to obtain data on the hindgut cuticular lining differentiation. Our results show that in late embryos of stages 16 and 18 the apical matrix in the hindgut consists of loose material overlaid by a thin intensely ruffled electron dense lamina facing the lumen. The ultrastructural resemblance to the embryonic epidermal matrices described in several arthropods suggests a common principle in chitinous matrix differentiation. The hindgut matrix in the prehatching embryo of stage 19 shows characteristics of the hindgut cuticle, specifically alignment to the apical epithelial surface and a prominent electron dense layer of epicuticle. In the preceding embryonic stage – stage 18 – an electron dense lamina, closely apposed to the apical cell membrane, is evident and is considered as the first epicuticle formation. In marsupial mancae the advanced features of the hindgut cuticle and epithelium are evident: a more prominent epicuticular layer, formation of cuticular spines and an extensive apical labyrinth. In comparison to the hindgut cuticle of adults, the hindgut cuticle of marsupial manca and in particular the electron dense epicuticular layer are much thinner and the difference between cuticle architecture in the anterior chamber and in the papillate region is not yet distinguishable. Differences from the hindgut cuticle in adults imply not fully developed structure and function of the hindgut cuticle in marsupial manca, possibly related also to different environments, as mancae develop in marsupial fluid. Bacteria, evenly distributed within the homogenous electron dense material in the hindgut lumen, were observed only in one specimen of early marsupial manca. The morphological features of gut cuticle renewal are evident in the late marsupial mancae, and are similar to those observed in the exoskeleton. PMID:26261443

  1. Correlated compositional and mineralogical investigations at the Chang'e-3 landing site.

    PubMed

    Ling, Zongcheng; Jolliff, Bradley L; Wang, Alian; Li, Chunlai; Liu, Jianzhong; Zhang, Jiang; Li, Bo; Sun, Lingzhi; Chen, Jian; Xiao, Long; Liu, Jianjun; Ren, Xin; Peng, Wenxi; Wang, Huanyu; Cui, Xingzhu; He, Zhiping; Wang, Jianyu

    2015-12-22

    The chemical compositions of relatively young mare lava flows have implications for the late volcanism on the Moon. Here we report the composition of soil along the rim of a 450-m diameter fresh crater at the Chang'e-3 (CE-3) landing site, investigated by the Yutu rover with in situ APXS (Active Particle-induced X-ray Spectrometer) and VNIS (Visible and Near-infrared Imaging Spectrometer) measurements. Results indicate that this region's composition differs from other mare sample-return sites and is a new type of mare basalt not previously sampled, but consistent with remote sensing. The CE-3 regolith derived from olivine-normative basaltic rocks with high FeO/(FeO+MgO). Deconvolution of the VNIS data indicates abundant high-Ca ferropyroxene (augite and pigeonite) plus Fe-rich olivine. We infer from the regolith composition that the basaltic source rocks formed during late-stage magma-ocean differentiation when dense ferropyroxene-ilmenite cumulates sank and mixed with deeper, relatively ferroan olivine and orthopyroxene in a hybridized mantle source.

  2. Laser Cladding of Composite Bioceramic Coatings on Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Han, Jiege; Wang, Chunming; Huang, Anguo

    2016-02-01

    In this study, silicon nitride (Si3N4) and calcium phosphate tribasic (TCP) composite bioceramic coatings were fabricated on a Ti6Al4V (TC4) alloy using Nd:YAG pulsed laser, CO2 CW laser, and Semiconductor CW laser. The surface morphology, cross-sectional microstructure, mechanical properties, and biological behavior were carefully investigated. These investigations were conducted employing scanning electron microscope, energy-dispersive x-ray spectroscopy, and other methodologies. The results showed that both Si3N4 and Si3N4/TCP composite coatings were able to form a compact bonding interface between the coating and the substrate by using appropriate laser parameters. The coating layers were dense, demonstrating a good surface appearance. The bioceramic coatings produced by laser cladding have good mechanical properties. Compared with that of the bulk material, microhardness of composite ceramic coatings on the surface significantly increased. In addition, good biological activity could be obtained by adding TCP into the composite coating.

  3. Subcritical crack growth behavior of Al2O3-glass dental composites.

    PubMed

    Zhu, Qingshan; de With, Gijsbertus; Dortmans, Leonardus J M G; Feenstra, Frits

    2003-05-15

    The purpose of this study is to investigate the subcritical crack growth (SCG) behavior of alumina-glass dental composites. Alumina-glass composites were fabricated by infiltrating molten glass to porous alumina preforms. Rectangular bars of the composite were subject to dynamic loading in air, with stressing rates ranging from 0.01 MPa/s to 2 MPa/s. The SCG parameter n was determined to be 22.1 for the composite, which is substantially lower than those of high-purity dense alumina. Investigations showed that glass phases are responsible for the low n value as cracks propagate preferentially within glass phases or along the interface between glass phases and alumina phases, due to the fact that glasses are more vulnerable to chemical attacks by water molecules under stress corrosion conditions. The SCG behavior of the infiltration glass was also investigated and the SCG parameter n was determined to be 18.7. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 65B: 233-238, 2003

  4. Indentation creep behaviors of amorphous Cu-based composite alloys

    NASA Astrophysics Data System (ADS)

    Song, Defeng; Ma, Xiangdong; Qian, Linfang

    2018-04-01

    This work reports the indentation creep behaviors of two Si2Zr3/amorphous Cu-based composite alloys utilizing nanoindentation technique. By analysis with Kelvin model, the retardation spectra of alloys at different positions, detached and attached regions to the intermetallics, were deduced. For the indentation of detached regions to Si2Zr3 intermetallics in both alloys, very similarity in creep displacement can be observed and retardation spectra show a distinct disparity in the second retardation peak. For the indentation of detached regions, the second retardation spectra also display distinct disparity. At both positions, the retardation spectra suggest that Si elements may lead to the relatively dense structure in the amorphous matrix and to form excessive Si2Zr3 intermetallics which may deteriorate the plastic deformation of current Cu-based composite alloys.

  5. Repair behavior of He+-irradiated W-Y2O3 composites after different temperature-isochronal annealing experiments

    NASA Astrophysics Data System (ADS)

    Yao, Gang; Tan, Xiao-Yue; Luo, Lai-Ma; Zan, Xiang; Liu, Jia-Qin; Xu, Qiu; Zhu, Xifao-Yong; Wu, Yu-Cheng

    2018-01-01

    W-2%Y2O3 composites were prepared by wet chemical and powder metallurgy. Commercial roll tungsten was selected as a comparative sample in the He+ irradiation experiment. The experiment was conducted under He+ beam energy of 50 eV, irradiation dose of approximately 9.9 × 1024 ions/m2, and temperature of 1503-1553 K. The samples were annealed at 1173, 1373, and 1573 K for 1 h. The irradiation surface was observed in situ. The W-2%Y2O3 composites and pure tungsten displayed different grain orientation damage morphologies. In addition, the fuzzy structure was more likely to converge densely at the phase interface. Annealing repairs material surface irradiation damage, whereas the phase interface acts as a He+ migration channel.

  6. Femoral stem incorporating a diamond cubic lattice structure: Design, manufacture and testing.

    PubMed

    Jetté, Bruno; Brailovski, Vladimir; Dumas, Mathieu; Simoneau, Charles; Terriault, Patrick

    2018-01-01

    The current total hip prostheses with dense femoral stems are considerably stiffer than the host bones, which leads to such long-term complications as aseptic loosening, and eventually, the need for a revision. Consequently, the lifetime of the implantation does not match the lifetime expectation of young patients. A femoral stem design featuring a porous structure is proposed to lower its stiffness and allow bone tissue ingrowth. The porous structure is based on a diamond cubic lattice in which the pore size and the strut thickness are selected to meet the biomechanical requirements of the strength and the bone ingrowth. A porous stem and its fully dense counterpart are produced by laser powder-bed fusion using Ti-6Al-4V alloy. To evaluate the stiffness reduction, static testing based on the ISO standard 7206-4 is performed. The experimental results recorded by digital image correlation are analyzed and compared to the numerical model. The numerical and experimental force-displacement characteristics of the porous stem show a 31% lower stiffness as compared to that of its dense counterpart. Moreover, the correlation analysis of the total displacement and equivalent strain fields allows the preliminary validation of the numerical model of the porous stem. Finally, the analysis of the surface-to-volume and the strength-to-stiffness ratios of diamond lattice structures allow the assessment of their potential as biomimetic constructs for load-bearing orthopaedic implants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. H{sub 2} Ortho-to-para Conversion on Grains: A Route to Fast Deuterium Fractionation in Dense Cloud Cores?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovino, S.; Grassi, T.; Schleicher, D. R. G.

    Deuterium fractionation, i.e., the enhancement of deuterated species with respect to non-deuterated ones, is considered to be a reliable chemical clock of star-forming regions. This process is strongly affected by the ortho-to-para H{sub 2} ratio. In this Letter we explore the effect of the ortho–para (o–p) H{sub 2} conversion on grains on the deuteration timescale in fully-depleted dense cores, including the most relevant uncertainties that affect this complex process. We show that (i) the o–p H{sub 2} conversion on grains is not strongly influenced by the uncertainties on the conversion time and the sticking coefficient, and (ii) that the processmore » is controlled by the temperature and the residence time of ortho-H{sub 2} on the surface, i.e., by the binding energy. We find that for binding energies between 330 and 550 K, depending on the temperature, the o–p H{sub 2} conversion on grains can shorten the deuterium fractionation timescale by orders of magnitude, opening a new route for explaining the large observed deuteration fraction D {sub frac} in dense molecular cloud cores. Our results suggest that the star formation timescale, when estimated through the timescale to reach the observed deuteration fractions, might be shorter than previously proposed. However, more accurate measurements of the binding energy are needed in order to better assess the overall role of this process.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, R.; Soler, R.; Terradas, J.

    Observations of active regions and limb prominences often show cold, dense blobs descending with an acceleration smaller than that of free fall. The dynamics of these condensations falling in the solar corona is investigated in this paper using a simple fully ionized plasma model. We find that the presence of a heavy condensation gives rise to a dynamical rearrangement of the coronal pressure that results in the formation of a large pressure gradient that opposes gravity. Eventually this pressure gradient becomes so large that the blob acceleration vanishes or even points upward. Then, the blob descent is characterized by anmore » initial acceleration phase followed by an essentially constant velocity phase. These two stages can be identified in published time-distance diagrams of coronal rain events. Both the duration of the first stage and the velocity attained by the blob increase for larger values of the ratio of blob to coronal density, for larger blob mass, and for smaller coronal temperature. Dense blobs are characterized by a detectable density growth (up to 60% in our calculations) and by a steepening of the density in their lower part, that could lead to the formation of a shock. They also emit sound waves that could be detected as small intensity changes with periods of the order of 100 s and lasting between a few and about 10 periods. Finally, the curvature of falling paths with large radii is only relevant when a very dense blob falls along inclined magnetic field lines.« less

  9. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes

    PubMed Central

    Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.

    2017-01-01

    Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current–voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor–acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure. PMID:28281557

  10. Templated bilayer self-assembly of fully conjugated π-expanded macrocyclic oligothiophenes complexed with fullerenes

    NASA Astrophysics Data System (ADS)

    Cojal González, José D.; Iyoda, Masahiko; Rabe, Jürgen P.

    2017-03-01

    Fully conjugated macrocyclic oligothiophenes exhibit a combination of highly attractive structural, optical and electronic properties, and multifunctional molecular thin film architectures thereof are envisioned. However, control over the self-assembly of such systems becomes increasingly challenging, the more complex the target structures are. Here we show a robust self-assembly based on hierarchical non-covalent interactions. A self-assembled monolayer of hydrogen-bonded trimesic acid at the interface between an organic solution and graphite provides host-sites for the epitaxial ordering of Saturn-like complexes of fullerenes with oligothiophene macrocycles in mono- and bilayers. STM tomography verifies the formation of the templated layers. Molecular dynamics simulations corroborate the conformational stability and assign the adsorption sites of the adlayers. Scanning tunnelling spectroscopy determines their rectification characteristics. Current-voltage characteristics reveal the modification of the rectifying properties of the macrocycles by the formation of donor-acceptor complexes in a densely packed all-self-assembled supramolecular nanostructure.

  11. Discussion on Ubeid, K.A., 2016. Quaternary alluvial deposits of Wadi Gaza in the middle of the Gaza Strip (Palestine): Facies, granulometric characteristics, and their paleoflow direction. JAES 118: 274-283

    NASA Astrophysics Data System (ADS)

    Roskin, Joel

    2017-10-01

    The location of the Gaza Strip at the southeastern corner of the Mediterranean Sea along a transition zone between Mediterranean and arid climate zones at the meeting point between fluvial, coastal, and aeolian sediments makes the Strip an important region for Quaternary, hydrogeologic, geomorphic, and palaeoclimatic studies (Aish, 2004). Wadi Gaza, the only water course that fully crosses the Gaza Strip into the southeastern Mediterranean Sea is an important water source for the proliferating and dense population of the Gaza Strip (Zaineldeen and Aish, 2012), is an indispensable part of natural life in Gaza and has an interesting history and rich vegetation (Abd Rabou et al., 2016). As such, the hydrogeologic conditions of Wadi Gaza need to be fully resolved. This includes the study of the wadi's palaeohydrology and the current anthropogenic impact upon flow and deposition along the watercourse.

  12. Relating Kirtland's warbler population to changing landscape composition and structure

    Treesearch

    John R. Probst; Jerry Weinrich

    1993-01-01

    The population of male Kirtland's warbler (Dendroica kirtlandil) in the breeding season has averaged 206 from 1971 to 1987. The Kirtland's warbler occupies dense jack pine (Pinus banksiana) barrens from 5 to 23 years old and from 1.4 to 5.0 m high, formerly of wildfire origin. In 1984, 73% of the males censused were found in habitat naturally regenerated from...

  13. Bioinspired hybrid materials from spray-formed ceramic templates.

    PubMed

    Dwivedi, Gopal; Flynn, Katherine; Resnick, Michael; Sampath, Sanjay; Gouldstone, Andrew

    2015-05-20

    Thermally sprayed ceramics, when infiltrated with polymer, exhibit synergistic increases in strength and toughness. The structure of such composites-a dense, brick-mortar arrangement-is strikingly similar to that of nacre, as are the mechanisms underlying the robust mechanical behavior. This industrial-scale process thus presents an exciting tool for bio-mimetic exploration. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Additive manufacturing technology (direct metal laser sintering) as a novel approach to fabricate functionally graded titanium implants: preliminary investigation of fabrication parameters.

    PubMed

    Lin, Wei-Shao; Starr, Thomas L; Harris, Bryan T; Zandinejad, Amirali; Morton, Dean

    2013-01-01

    This article describes the preliminary findings of the mechanical properties of functionally graded titanium with controlled distribution of porosity and a reduced Young's modulus on the basis of a computeraided design (CAD) file, using the rapid-prototyping, direct metal laser sintering (DMLS) technique. Sixty specimens of Ti-6Al-4V were created using a DMLS machine (M270) following the standard for tensile testing of metals. One group was fabricated with only 170 W of laser energy to create fully dense specimens (control group). The remaining specimens all featured an outer fully dense "skin" layer and a partially sintered porous inner "core" region. The outer "skin" of each specimen was scanned at 170 W and set at a thickness of 0.35, 1.00, or 1.50 mm for different specimen groups. The inner "core" of each specimen was scanned at a lower laser power (43 or 85 W). The partially sintered core was clearly visible in all specimens, with somewhat greater porosity with the lower laser power. However, the amount of porosity in the core region was not related to the laser power alone; thinner skin layers resulted in higher porosity for the same power values in the core structure. The lowest Young's modulus achieved, 35 GPa, is close to that of bone and was achieved with a laser power of 43 W and a skin thickness of 0.35 mm, producing a core that comprised 74% of the total volume. Additive manufacturing technology may provide an efficient alternative way to fabricate customized dental implants based on a CAD file with a functionally graded structure that may minimize stress shielding and improve the long-term performance of dental implants.

  15. Experiments on the interaction of heavy ions with dense plasma at GSI-Darmstadt

    NASA Astrophysics Data System (ADS)

    Stöckl, C.; Boine-Frankenheim, O.; Geißel, M.; Roth, M.; Wetzler, H.; Seelig, W.; Iwase, O.; Spiller, P.; Bock, R.; Süß, W.; Hoffmann, D. H. H.

    One of the main objectives of the experimental plasma physics activities at the Gesellschaft für Schwerionenforschung (GSI) are the interaction processes of heavy ions with dense ionized matter. Gas-discharge plasma targets were used for energy loss and charge state measurements in a regime of electron density and temperature up to 10 19 cm -3 and 20 eV, respectively. An improved model of the charge exchange processes in fully ionized hydrogen plasma, taking into account multiple excited electronic configurations which subsequently ionize, has removed the discrepancies of previous theoretical descriptions. The energy loss of the ion beam in partially ionized plasmas such as argon was found to agree very well with our simple theoretical model based on the modified Bethe-Bloch theory. A new setup with a 100 J/5 GW Nd-glass laser now provides access to density ranges up to 10 21 cm -3 and temperatures of up to 100 eV. First results of interaction experiments with laser-produced plasma are presented. To fully exploit the experimental possibilities of the new laser-plasma setup both improved charge state detection systems and better plasma diagnostics are indispensable. Present developments and future possibilities in these fields are presented. This paper summarizes the following contributions: Interaction of heavy-ion beams with laser plasma by C. Stöckl et al. Energy Loss of Heavy Ions in a laser-produced plasma by M. Roth et al. Charge state measurements of heavy ions passing a laser produced plasma with high time resolution by W. Süß et al. Plasma diagnostics for laser-produced plasma by O. Iwase et al. Future possibilities of plasma diagnostics at GSI by M. Geißel et al.

  16. Acceptance Test Data for the AGR-5/6/7 Irradiation Test Fuel Composite Defective IPyC Fraction and Pyrocarbon Anisotropy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helmreich, Grant W.; Hunn, John D.; Skitt, Darren J.

    Coated particle composite J52R-16-98005 was produced by Babcock and Wilcox Technologies (BWXT) as fuel for the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program’s AGR-5/6/7 irradiation test in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR). This composite was comprised of four coated particle fuel batches J52O-16-93165B (26%), 93168B (26%), 93169B (24%), and 93170B (24%), chosen based on the Quality Control (QC) data acquired for each individual candidate AGR-5/6/7 batch. Each batch was coated in a 150-mm-diameter production-scale fluidized-bed chemical vapor deposition (CVD) furnace. Tristructural isotropic (TRISO) coatings were deposited on 425-μm-nominal-diameter spherical kernels from BWXT Lot J52R-16-69317more » containing a mixture of 15.5%-enriched uranium carbide and uranium oxide (UCO). The TRISO coatings consisted of four consecutive CVD layers: a ~50% dense carbon buffer layer with 100-μm-nominal thickness, a dense inner pyrolytic carbon (IPyC) layer with 40-μm-nominal thickness, a silicon carbide (SiC) layer with 35-μm-nominal thickness, and a dense outer pyrolytic carbon (OPyC) layer with 40-μm-nominal thickness. The TRISO-coated particle batches were sieved to upgrade the particles by removing over-sized and under-sized material, and the upgraded batches were designated by appending the letter A to the end of the batch number (e.g., 93165A). Secondary upgrading by sieving was performed on the A-designated batches to remove particles with missing or very-thin buffer layers that were identified during previous analysis of the individual batches for defective IPyC, as reported in the acceptance test data report for the AGR-5/6/7 production batches [Hunn et al. 2017]. The additionally-upgraded batches were designated by appending the letter B to the end of the batch number (e.g., 93165B).« less

  17. Chemical surface deposition of ultra-thin semiconductors

    DOEpatents

    McCandless, Brian E.; Shafarman, William N.

    2003-03-25

    A chemical surface deposition process for forming an ultra-thin semiconducting film of Group IIB-VIA compounds onto a substrate. This process eliminates particulates formed by homogeneous reactions in bath, dramatically increases the utilization of Group IIB species, and results in the formation of a dense, adherent film for thin film solar cells. The process involves applying a pre-mixed liquid coating composition containing Group IIB and Group VIA ionic species onto a preheated substrate. Heat from the substrate causes a heterogeneous reaction between the Group IIB and VIA ionic species of the liquid coating composition, thus forming a solid reaction product film on the substrate surface.

  18. Oxidation resistant coatings for ceramic matrix composite components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaubert, V.M.; Stinton, D.P.; Hirschfeld, D.A.

    Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking.

  19. Meeting Student Writers Where They Are: Using Wikipedia to Teach Responsible Scholarship

    ERIC Educational Resources Information Center

    Patch, Paula

    2010-01-01

    As students increasingly rely on digital media to locate information, composition instructors must incorporate into writing instruction critical evaluation of and reflection on students' use of Web content. A growing problem in the composition class is underdeveloped critical digital literacy skills. To become fully literate, students need more…

  20. Maximally Symmetric Composite Higgs Models.

    PubMed

    Csáki, Csaba; Ma, Teng; Shu, Jing

    2017-09-29

    Maximal symmetry is a novel tool for composite pseudo Goldstone boson Higgs models: it is a remnant of an enhanced global symmetry of the composite fermion sector involving a twisting with the Higgs field. Maximal symmetry has far-reaching consequences: it ensures that the Higgs potential is finite and fully calculable, and also minimizes the tuning. We present a detailed analysis of the maximally symmetric SO(5)/SO(4) model and comment on its observational consequences.

  1. The volatile oil composition of fresh and air-dried buds of Cannabis sativa.

    PubMed

    Ross, S A; ElSohly, M A

    1996-01-01

    The composition of the steam-distilled volatile oil of fresh and air-dried, indoor-grown marijuana was studied by GC/FID and GC/MS. In all, 68 components were detected of which 57 were fully identified. Drying of the plant material had no effect on the qualitative composition of the oil and did not affect the ability of individuals familiar with marijuana smell to recognize the odor.

  2. Ultrastructural and x-ray microanalytical observations of minocycline-related hyperpigmentation of the skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, S.; Murphy, G.F.; Bernhard, J.D.

    1981-09-01

    In order to elucidate the nature and distribution of the pigment responsible for the circumscribed blue-black cutaneous hyperpigmentation occurring after administration of minocycline hydrochloride, transmission electron microscopy and energy-dispersive electron x-ray microanalysis were performed on lesional skin. Ultrastructural observations demonstrated electron-dense iron-containing particles either incorporated into a variety of siderosomes, within dermal histiocytes, free within the cytoplasm, or, rarely, scattered among dermal collagen fibers. Electron x-ray microanalysis confirmed iron content present within these particles. Although siderosomal inclusions contained occasional melanosome complexes, the degree of deposition of electron-dense iron-containing particles in dermal histiocytes seemed to be primarily responsible for the blue-blackmore » discoloration of the skin. The present study is an investigation of the structure and composition of the pigment responsible for minocycline-related cutaneous hyperpigmentation.« less

  3. Development of AlN and TiB2 Composites with Nb2O5, Y2O3 and ZrO2 as Sintering Aids

    PubMed Central

    González, José C.; Rodríguez, Miguel Á.; Figueroa, Ignacio A.; Villafuerte-Castrejón, María-Elena; Díaz, Gerardo C.

    2017-01-01

    The synthesis of AlN and TiB2 by spark plasma sintering (SPS) and the effect of Nb2O5, Y2O3 and ZrO2 additions on the mechanical properties and densification of the produced composites is reported and discussed. After the SPS process, dense AlN and TiB2 composites with Nb2O5, Y2O3 and ZrO2 were successfully prepared. X-ray diffraction analysis showed that in the AlN composites, the addition of Nb2O5 gives rise to Nb4N3 during sintering. The compound Y3Al5O12 (YAG) was observed as precipitate in the sample with Y2O3. X-ray diffraction analysis of the TiB2 composites showed TiB2 as a single phase in these materials. The maximum Vickers and toughness values were 14.19 ± 1.43 GPa and 27.52 ± 1.75 GPa for the AlN and TiB2 composites, respectively. PMID:28772681

  4. Comparison of entrainment in constant volume and constant flux dense currents over sloping bottoms

    NASA Astrophysics Data System (ADS)

    Bhaganagar, K.; Nayamatullah, M.; Cenedese, C.

    2014-12-01

    Three dimensional high resolution large eddy simulations (LES) are employed to simulate lock-exchange and constant flux dense flows over inclined surface with the aim of investigating, visualizing and describing the turbulent structure and the evolution of bottom-propagating compositional density current at the channel bottom. The understanding of dynamics of density current is largely determined by the amount of interfacial mixing or entrainment between the ambient and dense fluids. No previous experimental or numerical studies have been done to estimate entrainment in classical lock-exchange system. The differences in entrainment between the lock-exchange and constant flux are explored. Comparing the results of flat bed with inclined surface results, flow exhibits significant differences near the leading edge or nose of the front of the density currents due to inclination of surface. Further, the instabilities are remarkably enhanced resulting Kelvin-Helmholtz and lobe-cleft type of instabilities arises much earlier in time. In this study, a brief analysis of entrainment on lock-exchange density current is presented using different bed slopes and a set of reduced gravity values (g'). We relate the entrainment value with different flow parameters such as Froude number (Fr) and Reynolds number (Re).

  5. Surface Modification of Zirconia Substrate by Calcium Phosphate Particles Using Sol-Gel Method.

    PubMed

    Jin, So Dam; Um, Sang Cheol; Lee, Jong Kook

    2015-08-01

    Surface modification with a biphasic composition of hydroxyapatite (HA) and tricalcium phosphate (TCP) was performed on a zirconia substrate using a sol-gel method. An initial calcium phosphate sol was prepared by mixing a solution of Ca(NO3)2 · 4H20 and (C2H5O)3P(O), while both porous and dense zirconia were used as substrates. The sol-gel coating was performed using a spin coater. The coated porous zirconia substrate was re-sintered at 1350 °C 2 h, while coated dense zirconia substrate was heat-treated at 750 °C 1 h. The microstructure of the resultant HA/TCP coatings was found to be dependent on the type of zirconia substrate used. With porous zirconia as a starting substrate, numerous isolated calcium phosphate particles (TCP and HA) were uniformly dispersed on the surface, and the particle size and covered area were dependent on the viscosity of the calcium phosphate sol. Conversely, when dense zirconia was used as a starting substrate, a thick film of nano-sized HA particles was obtained after heat treatment, however, substantial agglomeration and cracking was also observed.

  6. Constraining the mass and radius of neutron stars in globular clusters

    NASA Astrophysics Data System (ADS)

    Steiner, A. W.; Heinke, C. O.; Bogdanov, S.; Li, C. K.; Ho, W. C. G.; Bahramian, A.; Han, S.

    2018-05-01

    We analyse observations of eight quiescent low-mass X-ray binaries in globular clusters and combine them to determine the neutron star mass-radius curve and the equation of state of dense matter. We determine the effect that several uncertainties may have on our results, including uncertainties in the distance, the atmosphere composition, the neutron star maximum mass, the neutron star mass distribution, the possible presence of a hotspot on the neutron star surface, and the prior choice for the equation of state of dense matter. The distance uncertainty is implemented in a new Gaussian blurring method that can be directly applied to the probability distribution over mass and radius. We find that the radius of a 1.4 solar mass neutron star is most likely from 10 to 14 km and that tighter constraints are only possible with stronger assumptions about the nature of the neutron stars, the systematics of the observations, or the nature of dense matter. Strong phase transitions in the equation of state are preferred, and in this case, the radius is likely smaller than 12 km. However, radii larger than 12 km are preferred if the neutron stars have uneven temperature distributions.

  7. Cortical cell and neuron density estimates in one chimpanzee hemisphere.

    PubMed

    Collins, Christine E; Turner, Emily C; Sawyer, Eva Kille; Reed, Jamie L; Young, Nicole A; Flaherty, David K; Kaas, Jon H

    2016-01-19

    The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm(2) of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates.

  8. Atomization and dense-fluid breakup regimes in liquid rocket engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oefelein, Joseph; Dahms, Rainer Norbert Uwe

    Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less

  9. Atomization and dense-fluid breakup regimes in liquid rocket engines

    DOE PAGES

    Oefelein, Joseph; Dahms, Rainer Norbert Uwe

    2015-04-20

    Until recently, modern theory has lacked a fundamentally based model to predict the operating pressures where classical sprays transition to dense-fluid mixing with diminished surface tension. In this paper, such a model is presented to quantify this transition for liquid-oxygen–hydrogen and n-decane–gaseous-oxygen injection processes. The analysis reveals that respective molecular interfaces break down not necessarily because of vanishing surface tension forces but instead because of the combination of broadened interfaces and a reduction in mean free molecular path. When this occurs, the interfacial structure itself enters the continuum regime, where transport processes rather than intermolecular forces dominate. Using this model,more » regime diagrams for the respective systems are constructed that show the range of operating pressures and temperatures where this transition occurs. The analysis also reveals the conditions where classical spray dynamics persists even at high supercritical pressures. As a result, it demonstrates that, depending on the composition and temperature of the injected fluids, the injection process can exhibit either classical spray atomization, dense-fluid diffusion-dominated mixing, or supercritical mixing phenomena at chamber pressures encountered in state-of-the-art liquid rocket engines.« less

  10. Colloidal spray method for low cost thin coating deposition

    DOEpatents

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2005-01-25

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  11. Colloidal spray method for low cost thin coating deposition

    DOEpatents

    Pham, Ai-Quoc; Glass, Robert S.; Lee, Tae H.

    2002-01-01

    A dense or porous coating of material is deposited onto a substrate by forcing a colloidal suspension through an ultrasonic nebulizer and spraying a fine mist of particles in a carrier medium onto a sufficiently heated substrate. The spraying rate is essentially matched to the evaporation rate of the carrier liquid from the substrate to produce a coating that is uniformly distributed over the surface of the substrate. Following deposition to a sufficient coating thickness, a single sintering step may be used to produce a dense ceramic coating. Using this method, coatings ranging in thickness from about one to several hundred microns can be obtained. By using a plurality of compounds in the colloidal suspension, coatings of mixed composition can be obtained. By using a plurality of solutions and separate pumps and a single or multiple ultrasonic nebulizer(s), and varying the individual pumping rates and/or the concentrations of the solutions, a coating of mixed and discontinuously graded (e.g., stepped) or continuously graded layers may be obtained. This method is particularly useful for depositing ceramic coatings. Dense ceramic coating materials on porous substrates are useful in providing improved electrode performance in devices such as high power density solid oxide fuel cells. Dense ceramic coatings obtained by the invention are also useful for gas turbine blade coatings, sensors, steam electrolyzers, etc. The invention has general use in preparation of systems requiring durable and chemically resistant coatings, or coatings having other specific chemical or physical properties.

  12. Formation of Glycerol through Hydrogenation of CO Ice under Prestellar Core Conditions

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Chuang, K.-J.; Ioppolo, S.; Qasim, D.; van Dishoeck, E. F.; Linnartz, H.

    2017-06-01

    Observational studies reveal that complex organic molecules (COMs) can be found in various objects associated with different star formation stages. The identification of COMs in prestellar cores, I.e., cold environments in which thermally induced chemistry can be excluded and radiolysis is limited by cosmic rays and cosmic-ray-induced UV photons, is particularly important as this stage sets up the initial chemical composition from which ultimately stars and planets evolve. Recent laboratory results demonstrate that molecules as complex as glycolaldehyde and ethylene glycol are efficiently formed on icy dust grains via nonenergetic atom addition reactions between accreting H atoms and CO molecules, a process that dominates surface chemistry during the “CO freeze-out stage” in dense cores. In the present study we demonstrate that a similar mechanism results in the formation of the biologically relevant molecule glycerol—HOCH2CH(OH)CH2OH—a three-carbon-bearing sugar alcohol necessary for the formation of membranes of modern living cells and organelles. Our experimental results are fully consistent with a suggested reaction scheme in which glycerol is formed along a chain of radical-radical and radical-molecule interactions between various reactive intermediates produced upon hydrogenation of CO ice or its hydrogenation products. The tentative identification of the chemically related simple sugar glyceraldehyde—HOCH2CH(OH)CHO—is discussed as well. These new laboratory findings indicate that the proposed reaction mechanism holds much potential to form even more complex sugar alcohols and simple sugars.

  13. Investigation of Boron addition and compaction pressure on the compactibility, densification and microhardness of 316L Stainless Steel

    NASA Astrophysics Data System (ADS)

    Ali, S.; Rani, A. M. A.; Altaf, K.; Baig, Z.

    2018-04-01

    Powder Metallurgy (P/M) is one of the continually evolving technologies used for producing metal materials of various sizes and shapes. However, some P/M materials have limited use in engineering for their performance deficiency including fully dense components. AISI 316L Stainless Steel (SS) is one of the promising materials used in P/M that combines outstanding corrosion resistance, strength and ductility for numerous applications. It is important to analyze the material composition along with the processing conditions that lead to a superior behaviour of the parts manufactured with P/M technique. This research investigates the effect of Boron addition on the compactibility, densification, sintering characteristics and microhardness of 316L SS parts produced with P/M. In this study, 0.25% Boron was added to the 316L Stainless Steel matrix to study the increase in densification of the 316L SS samples. The samples were made at different compaction pressures ranging from 100 MPa to 600 MPa and sintered in Nitrogen atmosphere at a temperature of 1200°C. The effect of compaction pressure and sintering temperature and atmosphere on the density and microhardness was evaluated. The microstructure of the samples was examined by optical microscope and microhardness was found using Vickers hardness machine. Results of the study showed that sintered samples with Boron addition exhibited high densification with increase in microhardness as compared to pure 316L SS sintered samples.

  14. Contribution of different functional groups to the diet of major predatory fishes at a seagrass meadow in northeastern Japan

    NASA Astrophysics Data System (ADS)

    Yamada, Katsumasa; Hori, Masakazu; Tanaka, Yoshiyuki; Hasegawa, Natsuki; Nakaoka, Masahiro

    2010-01-01

    We examined the variation in habitat use and diet of three dominant fish species ( Myoxocephalus brandti, Pholidapus dybowskii, and Pholis crassispina) in a seagrass meadow in the Akkeshi-ko estuary in northeastern Japan, where broad and dense Zostera marina beds exist, using a semi-quantitative census of the fishes and analyses of their stomach contents. Differences among the three fish species in the temporal variation in abundance of each age class (mainly 1- and 2-year age classes) indicated that the temporal pattern of utilization of the seagrass meadow were different among them. In the semi-quantitative dietary analysis, two prey categories, i.e., taxonomic group (order and suborder) and functional group, were used to explain the variation in prey composition with size-dependent changes. The six prey functional groups were classified based on the ecological traits of the prey, i.e., trophic level, size, and life type (habitat and behavior). Ontogenetic shifts in prey of the three fish species could be fully explained by a combination of the two prey categories, and not by the use of only one category (taxonomic or functional group). The pattern of ontogenetic shifts in prey differed among the fish species and size (age) classes. These results indicate that segregation of habitat (seagrass meadow) and prey group (taxonomic and functional group) is performed among the three species, which may contribute to their coexistence in this estuary.

  15. THE RELATIONSHIP BETWEEN FAMILY-OF-ORIGIN VIOLENCE, HOSTILITY, AND INTIMATE PARTNER VIOLENCE IN MEN ARRESTED FOR DOMESTIC VIOLENCE: TESTING A MEDIATIONAL MODEL

    PubMed Central

    Elmquist, JoAnna; Shorey, Ryan C.; Labrecque, Lindsay; Ninnemann, Andrew; Zapor, Heather; Febres, Jeniimarie; Wolford-Clevenger, Caitlin; Plasencia, Maribel; Temple, Jeff R.; Stuart, Gregory L.

    2015-01-01

    Although research has shown links between family-of-origin violence (FOV), intimate partner violence (IPV), and hostility, research has not examined whether hostility mediates the relationship between FOV and IPV. The current study examined whether hostility mediates FOV and IPV perpetration in 302 men arrested for domestic violence. Results demonstrated that hostility fully mediated the relationship between father-to-participant FOV and physical and psychological IPV and the relationship between mother-to-participant FOV and physical IPV. Results indicated that hostility fully mediated the relationship between experiencing and witnessing FOV and physical IPV (composite FOV), and partially mediated the relationship between composite FOV and psychological aggression. PMID:26712239

  16. The Relationship Between Family-of-Origin Violence, Hostility, and Intimate Partner Violence in Men Arrested for Domestic Violence: Testing a Mediational Model.

    PubMed

    Elmquist, JoAnna; Shorey, Ryan C; Labrecque, Lindsay; Ninnemann, Andrew; Zapor, Heather; Febres, Jeniimarie; Wolford-Clevenger, Caitlin; Plasencia, Maribel; Temple, Jeff R; Stuart, Gregory L

    2016-09-01

    Although research has shown links between family-of-origin violence (FOV), intimate partner violence (IPV), and hostility, research has not examined whether hostility mediates the relationship between FOV and IPV. The current study examined whether hostility mediates FOV and IPV perpetration in 302 men arrested for domestic violence. Results demonstrated that hostility fully mediated the relationship between father-to-participant FOV and physical and psychological IPV, and the relationship between mother-to-participant FOV and physical IPV. Results indicated that hostility fully mediated the relationship between experiencing and witnessing FOV and physical IPV (composite FOV), and partially mediated the relationship between composite FOV and psychological aggression. © The Author(s) 2015.

  17. Strengthening of ferrous binder jet 3D printed components through bronze infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordero, Zachary C.; Siddel, Derek H.; Peter, William H.

    Fully-dense, net shape objects have been fabricated from a rapidly-solidified ferrous powder using binder-jet 3D printing and molten bronze infiltration. X-ray diffraction, scanning electron microscopy, and differential thermal analysis were used to characterize the structural evolution of the powder feedstock during an infiltration heating cycle. Microindentation and bend tests were performed on the infiltrated material to evaluate its mechanical properties. The infiltrated material had an 11 GPa hardness and moderate damage tolerance. It was found that infiltration improved both the ductility and strength of the sintered preforms by eliminating the stress concentration at the interparticle necks.

  18. Strengthening of ferrous binder jet 3D printed components through bronze infiltration

    DOE PAGES

    Cordero, Zachary C.; Siddel, Derek H.; Peter, William H.; ...

    2017-04-08

    Fully-dense, net shape objects have been fabricated from a rapidly-solidified ferrous powder using binder-jet 3D printing and molten bronze infiltration. X-ray diffraction, scanning electron microscopy, and differential thermal analysis were used to characterize the structural evolution of the powder feedstock during an infiltration heating cycle. Microindentation and bend tests were performed on the infiltrated material to evaluate its mechanical properties. The infiltrated material had an 11 GPa hardness and moderate damage tolerance. It was found that infiltration improved both the ductility and strength of the sintered preforms by eliminating the stress concentration at the interparticle necks.

  19. A comparison of mechanical properties of some foams and honeycombs

    NASA Technical Reports Server (NTRS)

    Bhat, Balakrishna T.; Wang, T. G.

    1990-01-01

    A comparative study is conducted of the mechanical properties of foam-core and honeycomb-core sandwich panels, using a normalizing procedure based on common properties of cellular solids and related properties of dense solids. Seven different honeycombs and closed-foam cells are discussed; of these, three are commercial Al alloy honeycombs, one is an Al-alloy foam, and two are polymeric foams. It is concluded that ideal, closed-cell foams may furnish compressive strengths which while isotropic can be fully comparable to the compressive strengths of honeycombs in the thickness direction. The shear strength of ideal closed-cell foams may be superior to the shear strength of honeycombs.

  20. Digital Fresnel reflection holography for high-resolution 3D near-wall flow measurement.

    PubMed

    Kumar, S Santosh; Hong, Jiarong

    2018-05-14

    We propose a novel backscatter holographic imaging system, as a compact and effective tool for 3D near-wall flow diagnostics at high resolutions, utilizing light reflected at the solid-liquid interface as a reference beam. The technique is fully calibrated, and is demonstrated in a densely seeded channel to achieve a spatial resolution of near-wall flows equivalent to or exceeding prior digital inline holographic measurements using local tracer seeding technique. Additionally, we examined the effects of seeding concentration and laser coherence on the measurement resolution and sample volume resolved, demonstrating the potential to manipulate sample domain by tuning the laser coherence profile.

  1. Processing and Characterization of Graphene/Polyimide-Nickel Oxide Hybrid Nanocomposites for Advanced Energy Storage in Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Okafor, Patricia A.

    This research is focused on enhancing electrochemical properties/energy storage capabilities of graphene-polyimide composites. The composite's dense morphology/structure limits ionic penetration owing to high bulk resistances resulting in poor electrochemical performance. Modification of the composite's morphology by incorporation of facile pores during curing increases total available surface area to electrolyte species. Presence of pores increases adsorption sites for double layer formation and increases overall capacitance. In this work, aromatic polyimide precursors were reacted in the presence of nano-graphene fillers to synthesize graphene-polyimide composite films. The resulting composite was very stiff and dense with a high glass transition temperature (Tg) of 400 °C and storage modulus of 7.20 GPa. Selective decomposition of a thermally labile poly(acrylic ester) resin introduced into the composite during synthesis creates pores of varying size and shapes which increases available surface area of embedded stacked graphene sheets available for ion adsorption and double layer formation. Proper control over pore size and specific surface area of pores was required to ensure good performance in terms of both power delivery rate and energy storage capacity. Dynamic mechanical studies on modified composite showed very good mechanical property while shifts in imide peaks to lower wave numbers in Raman and Fourier transform spectroscopy (FTIR) confirms presence of chemical interaction between graphene filler and polymer matrix confirming uniform dispersion of fillers in the material. Thermogravimetric analysis (TGA) shows thermal stability for the composite systems at temperatures above 700°C. To further optimize material's energy storage capabilities, a hybrid composite was formed by depositing relatively cheap nickel oxide onto the modified porous composite system by a two-step process. A remarkable improvement in electrochemical properties up to an order of magnitude was observed. Electrochemical performance of the hybrid system showed strong dependence on deposition current density, deposition time and substrate pore morphology. Increased NiO particle size (aggregates) was observed with increased deposition time and current density which had a significant impact on charge transfer resistance and specific capacitance. Several correlations were made between composite's morphology and obtained properties. The material's morphology showed direct correlation with double layer capacitance, charge capacity, bulk resistance and sheet conductivity measured using cyclic voltammetry (CV), cyclic charge discharge (CCD), electrochemical impedance spectroscopy (EIS) and four probe measurements respectively. It was observed that smaller well distributed pores showed enhanced properties compared to larger pores. Material's overall performance shows a linear dependence on porosity. The overall electrochemical and electrical behavior of the system is directly linked to the composite's morphology and structure as will be demonstrated in this thesis work.

  2. Soviet Developments in High Temperature Ceramics No. 1, January-December 1975

    DTIC Science & Technology

    1976-02-25

    in microstructure and granulometric composition of silicon nitride in the process of hot pressing were studied by optical and electron micrographic...and on the laboratory-made a-alumina specimens^have shown that densely- sintered ceramics can be produced by a simplified process using a- Al -O...dusting of the powdered ceramic materials, spinel slurry deposition and subsequent fusion by a plasma jet traveling along the coated surface at

  3. Effects of long-term prescribed burning on structure, composition, and timber quality of oak-hickory forests in the Missouri Ozarks

    Treesearch

    Benjamin O. Knapp; John M. Kabrick

    2014-01-01

    Prescribed fire is commonly being used as a management tool for restoring or maintaining woodlands in the Central Hardwood Forest region. Woodlands are characterized as having canopies that are more open than those of forests, with lower abundance of woody stems in the midstory and understory layers, and a dense, diverse ground flora that is dominated by herbaceous...

  4. Improved Production Of Wrought Articles From Powders

    NASA Technical Reports Server (NTRS)

    Thomas, James R.; Singleton, Ogle R.

    1994-01-01

    Improved technique for consolidation of powders into dense articles developed. Peripheral bands used in consolidation, forging, and rolling operations. Facilitates consolidation of dispersion-hardened aluminous powders and composite mixtures for processing to such useful wrought articles as plates and sheets. Potential use in production of plates and sheets and perhaps other objects from "hard" powders, particularly from powders, objects made from which have propensity to crack when mechanically worked to other forms.

  5. Evaluating the warping of laminated particleboard panels

    Treesearch

    Zhiyong Cai

    2004-01-01

    Laminated wood composites have been used widely in the secondary manufacturing processes in the wood panel industries. Warping, which is defined as the out-of-plane deformation of an initially flat panel, is a longstanding problem associated with the use of laminated wood composites. The mechanism of warping is still not fully understood. A new two- dimensional warping...

  6. Automatic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1981-01-01

    Report reviews chemical vapor deposition (CVD) for processing integrated circuits and describes fully automatic machine for CVD. CVD proceeds at relatively low temperature, allows wide choice of film compositions (including graded or abruptly changing compositions), and deposits uniform films of controllable thickness at fairly high growth rate. Report gives overview of hardware, reactants, and temperature ranges used with CVD machine.

  7. Investigating interphase development is wood polymer composites by inverse gas chromatography

    Treesearch

    Timothy G. Rials; John Simonsen

    2000-01-01

    The influence of secondary interactions on the development of interfacial structure in composites of wood and amorphous thermoplastic polymers is not well understood. This study used inverse gas chromatography to investigate the effect of different polymers on the surfirce energy of partially or fully coated white pine wood meal. In this way, the development of the...

  8. Investigating Interphase Development in Woodpolymer Composites by Inverse Gas Chromatography

    Treesearch

    Timothy G. Rials; John Simonsen

    2000-01-01

    The influence of secondary interactions on the development of interfacial structure in composites of wood and amorphous thermoplastic polymers is not well understood. This study used inverse gas chromatography to investigate the effect of different polymers on the surface energy of partially or fully coated white pine wood meal. In this way, the development of the...

  9. Discovery and characterization of iron sulfide and polyphosphate bodies coexisting in Archaeoglobus fulgidus cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toso, Daniel B.; Javed, Muhammad Mohsin; Czornyj, Elizabeth

    Inorganic storage granules have long been recognized in bacterial and eukaryotic cells but were only recently identified in archaeal cells. Here, we report the cellular organization and chemical compositions of storage granules in the Euryarchaeon, Archaeoglobus fulgidusstrain VC16, a hyperthermophilic, anaerobic, and sulfate-reducing microorganism. Dense granules were apparent inA. fulgiduscells imaged by cryo electron microscopy (cryoEM) but not so by negative stain electron microscopy. Cryo electron tomography (cryoET) revealed that each cell contains one to several dense granules located near the cell membrane. Energy dispersive X-ray (EDX) spectroscopy and scanning transmission electron microscopy (STEM) show that, surprisingly, each cell containsmore » not just one but often two types of granules with different elemental compositions. One type, named iron sulfide body (ISB), is composed mainly of the elements iron and sulfur plus copper; and the other one, called polyphosphate body (PPB), is composed of phosphorus and oxygen plus magnesium, calcium, and aluminum. PPBs are likely used for energy storage and/or metal sequestration/detoxification. ISBs could result from the reduction of sulfate to sulfide via anaerobic energy harvesting pathways and may be associated with energy and/or metal storage or detoxification. The exceptional ability of these archaeal cells to sequester different elements may have novel bioengineering applications.« less

  10. Discovery and characterization of iron sulfide and polyphosphate bodies coexisting in Archaeoglobus fulgidus cells

    DOE PAGES

    Toso, Daniel B.; Javed, Muhammad Mohsin; Czornyj, Elizabeth; ...

    2016-01-01

    Inorganic storage granules have long been recognized in bacterial and eukaryotic cells but were only recently identified in archaeal cells. Here, we report the cellular organization and chemical compositions of storage granules in the Euryarchaeon, Archaeoglobus fulgidusstrain VC16, a hyperthermophilic, anaerobic, and sulfate-reducing microorganism. Dense granules were apparent inA. fulgiduscells imaged by cryo electron microscopy (cryoEM) but not so by negative stain electron microscopy. Cryo electron tomography (cryoET) revealed that each cell contains one to several dense granules located near the cell membrane. Energy dispersive X-ray (EDX) spectroscopy and scanning transmission electron microscopy (STEM) show that, surprisingly, each cell containsmore » not just one but often two types of granules with different elemental compositions. One type, named iron sulfide body (ISB), is composed mainly of the elements iron and sulfur plus copper; and the other one, called polyphosphate body (PPB), is composed of phosphorus and oxygen plus magnesium, calcium, and aluminum. PPBs are likely used for energy storage and/or metal sequestration/detoxification. ISBs could result from the reduction of sulfate to sulfide via anaerobic energy harvesting pathways and may be associated with energy and/or metal storage or detoxification. The exceptional ability of these archaeal cells to sequester different elements may have novel bioengineering applications.« less

  11. A comparative study of monoclonal antibodies. 1. Phase behavior and protein-protein interactions

    PubMed Central

    Lewus, Rachael A.; Levy, Nicholas E.; Lenhoff, Abraham M.; Sandler, Stanley I.

    2018-01-01

    Protein phase behavior is involved in numerous aspects of downstream processing, either by design as in crystallization or precipitation processes, or as an undesired effect, such as aggregation. This work explores the phase behavior of eight monoclonal antibodies (mAbs) that exhibit liquid-liquid separation, aggregation, gelation, and crystallization. The phase behavior has been studied systematically as a function of a number of factors, including solution composition and pH, in order to explore the degree of variability among different antibodies. Comparisons of the locations of phase boundaries show consistent trends as a function of solution composition; however, changing the solution pH has different effects on each of the antibodies studied. Furthermore, the types of dense phases formed varied among the antibodies. Protein-protein interactions, as reflected by values of the osmotic second virial coefficient, are used to correlate the phase behavior. The primary findings are that values of the osmotic second virial coefficient are useful for correlating phase boundary locations, though there is appreciable variability among the antibodies in the apparent strengths of the intrinsic protein-protein attraction manifested. However, the osmotic second virial coefficient does not provide a clear basis to predict the type of dense phase likely to result under a given set of solution conditions. PMID:25378269

  12. Local environmental pollution strongly influences culturable bacterial aerosols at an urban aquatic superfund site.

    PubMed

    Dueker, M Elias; O'Mullan, Gregory D; Juhl, Andrew R; Weathers, Kathleen C; Uriarte, Maria

    2012-10-16

    In polluted environments, when microbial aerosols originate locally, species composition of the aerosols should reflect the polluted source. To test the connection between local environmental pollution and microbial aerosols near an urban waterfront, we characterized bacterial aerosols at Newtown Creek (NTC), a public waterway and Superfund site in a densely populated area of New York, NY, USA. Culturable bacterial aerosol fallout rate and surface water bacterial concentrations were at least an order of magnitude greater at NTC than at a neighboring, less polluted waterfront and a nonurban coastal site in Maine. The NTC culturable bacterial aerosol community was significantly different in taxonomic structure from previous urban and coastal aerosol studies, particularly in relative abundances of Actinobacteria and Proteobacteria. Twenty-four percent of the operational taxonomic units in the NTC overall (air + water) bacterial isolate library were most similar to bacterial 16S rRNA gene sequences previously described in terrestrial or aquatic environments contaminated with sewage, hydrocarbons, heavy metals, and other industrial waste. This study is the first to examine the community composition and local deposition of bacterial aerosols from an aquatic Superfund site. The findings have important implications for the use of aeration remediation in polluted aquatic environments and suggest a novel pathway of microbial exposure in densely populated urban communities containing contaminated soil and water.

  13. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  14. Numerical Generation of Dense Plume Fingers in Unsaturated Homogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Cremer, C.; Graf, T.

    2012-04-01

    In nature, the migration of dense plumes typically results in the formation of vertical plume fingers. Flow direction in fingers is downwards, which is counterbalanced by upwards flow of less dense fluid between fingers. In heterogeneous media, heterogeneity itself is known to trigger the formation of fingers. In homogeneous media, however, fingers are also created even if all grains had the same diameter. The reason is that pore-scale heterogeneity leading to different flow velocities also exists in homogeneous media due to two effects: (i) Grains of identical size may randomly arrange differently, e.g. forming tetrahedrons, hexahedrons or octahedrons. Each arrangement creates pores of varying diameter, thus resulting in different average flow velocities. (ii) Random variations of solute concentration lead to varying buoyancy effects, thus also resulting in different velocities. As a continuation of previously made efforts to incorporate pore-scale heterogeneity into fully saturated soil such that dense fingers are realistically generated (Cremer and Graf, EGU Assembly, 2011), the current paper extends the research scope from saturated to unsaturated soil. Perturbation methods are evaluated by numerically re-simulating a laboratory-scale experiment of plume transport in homogeneous unsaturated sand (Simmons et al., Transp. Porous Media, 2002). The following 5 methods are being discussed: (i) homogeneous sand, (ii) initial perturbation of solute concentration, (iii) spatially random, time-constant perturbation of solute source, (iv) spatially and temporally random noise of simulated solute concentration, and (v) random K-field that introduces physically insignificant but numerically significant heterogeneity. Results demonstrate that, as opposed to saturated flow, perturbing the solute source will not result in plume fingering. This is because the location of the perturbed source (domain top) and the location of finger generation (groundwater surface) do not coincide. Alternatively, similar to saturated flow, applying either a random concentration noise (iv) or a random K-field (v) generates realistic plume fingering. Future work will focus on the generation mechanisms of plume finger splitting.

  15. CO2 exchange in a temperate marginal sea of the Mediterranean Sea: processes and carbon budget

    NASA Astrophysics Data System (ADS)

    Cossarini, G.; Querin, S.; Solidoro, C.

    2012-08-01

    Marginal seas play a potentially important role in the global carbon cycle; however, due to differences in the scales of variability and dynamics, marginal seas are seldom fully accounted for in global models or estimates. Specific high-resolution studies may elucidate the role of marginal seas and assist in the compilation of a complete global budget. In this study, we investigated the air-sea exchange and the carbon cycle dynamics in a marginal sub-basin of the Mediterranean Sea (the Adriatic Sea) by adopting a coupled transport-biogeochemical model of intermediate complexity including carbonate dynamics. The Adriatic Sea is a highly productive area owed to riverine fertilisation and is a site of intense dense water formation both on the northern continental shelf and in the southern sub-basin. Therefore, the study area may be an important site of CO2 sequestration in the Mediterranean Sea. The results of the model simulation show that the Adriatic Sea, as a whole, is a CO2 sink with a mean annual flux of 36 mg m-2 day-1. The northern part absorbs more carbon (68 mg m-2 day-1) due to an efficient continental shelf pump process, whereas the southern part behaves similar to an open ocean. Nonetheless, the Southern Adriatic Sea accumulates dense, southward-flowing, carbon-rich water produced on the northern shelf. During a warm year and despite an increase in aquatic primary productivity, the sequestration of atmospheric CO2 is reduced by approximately 15% due to alterations of the solubility pump and reduced dense water formation. The seasonal cycle of temperature and biological productivity modulates the efficiency of the carbon pump at the surface, whereas the intensity of winter cooling in the northern sub-basin leads to the export of C-rich dense water to the deep layer of the southern sub-basin and, subsequently, to the interior of the Mediterranean Sea.

  16. How to form planetesimals from mm-sized chondrules and chondrule aggregates

    NASA Astrophysics Data System (ADS)

    Carrera, Daniel; Johansen, Anders; Davies, Melvyn B.

    2015-07-01

    The size distribution of asteroids and Kuiper belt objects in the solar system is difficult to reconcile with a bottom-up formation scenario due to the observed scarcity of objects smaller than ~100 km in size. Instead, planetesimals appear to form top-down, with large 100-1000 km bodies forming from the rapid gravitational collapse of dense clumps of small solid particles. In this paper we investigate the conditions under which solid particles can form dense clumps in a protoplanetary disk. We used a hydrodynamic code to model the interaction between solid particles and the gas inside a shearing box inside the disk, considering particle sizes from submillimeter-sized chondrules to meter-sized rocks. We found that particles down to millimeter sizes can form dense particle clouds through the run-away convergence of radial drift known as the streaming instability. We made a map of the range of conditions (strength of turbulence, particle mass-loading, disk mass, and distance to the star) that are prone to producing dense particle clumps. Finally, we estimate the distribution of collision speeds between mm-sized particles. We calculated the rate of sticking collisions and obtain a robust upper limit on the particle growth timescale of ~105 years. This means that mm-sized chondrule aggregates can grow on a timescale much smaller than the disk accretion timescale (~106-107 years). Our results suggest a pathway from the mm-sized grains found in primitive meteorites to fully formed asteroids. We speculate that asteroids may form from a positive feedback loop in which coagualation leads to particle clumping driven by the streaming instability. This clumping, in turn, reduces collision speeds and enhances coagulation. Future simulations should model coagulation and the streaming instability together to explore this feedback loop further. Appendices are available in electronic form at http://www.aanda.org

  17. Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites.

    PubMed

    Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D; Hill, Curtis W; Brewer, Jeffrey C; Tucker, Dennis S; Cheng, Z-Y

    2016-10-21

    Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu 3 Ti 4 O 12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced-up to about 10 times - by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10 -1 ). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing.

  18. Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D.; Hill, Curtis W.; Brewer, Jeffrey C.; Tucker, Dennis S.; Cheng, Z.-Y.

    2016-10-01

    Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu3Ti4O12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced-up to about 10 times - by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10-1). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing.

  19. Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites

    PubMed Central

    Zhang, Lin; Shan, Xiaobing; Bass, Patrick; Tong, Yang; Rolin, Terry D.; Hill, Curtis W.; Brewer, Jeffrey C.; Tucker, Dennis S.; Cheng, Z.-Y.

    2016-01-01

    Influences of process conditions on microstructure and dielectric properties of ceramic-polymer composites are systematically studied using CaCu3Ti4O12 (CCTO) as filler and P(VDF-TrFE) 55/45 mol.% copolymer as the matrix by combining solution-cast and hot-pressing processes. It is found that the dielectric constant of the composites can be significantly enhanced–up to about 10 times – by using proper processing conditions. The dielectric constant of the composites can reach more than 1,000 over a wide temperature range with a low loss (tan δ ~ 10−1). It is concluded that besides the dense structure of composites, the uniform distribution of the CCTO particles in the matrix plays a key role on the dielectric enhancement. Due to the influence of the CCTO on the microstructure of the polymer matrix, the composites exhibit a weaker temperature dependence of the dielectric constant than the polymer matrix. Based on the results, it is also found that the loss of the composites at low temperatures, including room temperature, is determined by the real dielectric relaxation processes including the relaxation process induced by the mixing. PMID:27767184

  20. THERMAL FATIGUE OF INCONEL ALLOY DA718

    DTIC Science & Technology

    2016-10-27

    this material meets the required improvement and offers a low cost alternative to powder metallurgy Rene’95. However, its thermal fatigue resistance ...remains to be fully clarified. Its nominal chemical composition is shown in Table B-1. In the fully heat treated condition, DA718 consists of a γ...chromel-alumel thermocouple , spot-welded to the mid-length of the specimen. The thermal strain, induced by the expansion and contraction of the

  1. Hydrothermal synthesis of NiCo2O4 nanowires/nitrogen-doped graphene for high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Chen, Jianpeng; Ma, Yuxiao; Zhang, Jingdan; Liu, Jianhua; Li, Songmei; An, Junwei

    2014-09-01

    NiCo2O4 nanowires/nitrogen-doped graphene (NCO/NG) composite materials were synthesized by hydrothermal treatment in a water-glycerol mixed solvent and subsequent thermal transformation. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The electrochemical performance of the composites was evaluated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum techniques. NiCo2O4 nanowires are densely coated by nitrogen-doped graphene and the composite displays good electrochemical performance. The maximum specific capacitance of NCO/NG is 1273.13 F g-1 at 0.5 A g-1 in 6 M KOH aqueous solution, and it exhibits good capacity retention without noticeable degradation after 3000 cycles at 4 A g-1.

  2. Grain Spectroscopy

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.

    1992-01-01

    Our fundamental knowledge of interstellar grain composition has grown substantially during the past two decades thanks to significant advances in two areas: astronomical infrared spectroscopy and laboratory astrophysics. The opening of the mid-infrared, the spectral range from 4000-400 cm(sup -1) (2.5-25 microns), to spectroscopic study has been critical to this progress because spectroscopy in this region reveals more about a materials molecular composition and structure than any other physical property. Infrared spectra which are diagnostic of interstellar grain composition fall into two categories: absorption spectra of the dense and diffuse interstellar media, and emission spectra from UV-Vis rich dusty regions. The former will be presented in some detail, with the latter only very briefly mentioned. This paper summarized what we have learned from these spectra and presents 'doorway' references into the literature. Detailed reviews of many aspects of interstellar dust are given.

  3. Strain field reconstruction on composite spars based on the identification of equivalent load conditions

    NASA Astrophysics Data System (ADS)

    Airoldi, A.; Marelli, L.; Bettini, P.; Sala, G.; Apicella, A.

    2017-04-01

    Technologies based on optical fibers provide the possibility of installing relatively dense networks of sensors that can perform effective strain sensing functions during the operational life of structures. A contemporary trend is the increasing adoption of composite materials in aerospace constructions, which leads to structural architectures made of large monolithic elements. The paper is aimed at showing the feasibility of a detailed reconstruction of the strain field in a composite spar, which is based on the development of reference finite element models and the identification of load modes, consisting of a parameterized set of forces. The procedure is described and assessed in ideal conditions. Thereafter, a surrogate model is used to obtain realistic representation of the data acquired by the strain sensing system, so that the developed procedure is evaluated considering local effects due to the introduction of loads, significant modelling discrepancy in the development of the reference model and the presence of measurement noise. Results show that the method can obtain a robust and quite detailed reconstruction of strain fields, even at the level of local distributions, of the internal forces in the spars and of the displacements, by identifying an equivalent set of load parameters. Finally, the trade-off between the number of sensor and the accuracy, and the optimal position of the sensors for a given maximum number of sensors is evaluated by performing a multi-objective optimization, thus showing that even a relative dense network of externally applied sensors can be used to achieve good quality results.

  4. Distribution of rubidium, strontium, and zirconium in tuff from two deep coreholes at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Spengler, Richard W.; Peterman, Zell E.; ,

    1991-01-01

    Variations in concentrations of trace elements Rb, Sr, and Zr within the sequence of high-silica tuff and dacitic lava beneath Yucca Mountain reflect both primary composition and secondary alteration. Rb and K concentrations have parallel trends. Rb concentrations are significantly lower within intervals containing zeolitic nonwelded to partially welded and bedded tuffs and are higher in thick moderately to densely welded zones. Sr concentrations increase with depth from about 30 ppm in the Topopah Spring Member of the Paintbrush Tuff to almost 300 ppm in the older tuffs. Zr concentrations are about 100 ppm in the Topopah Spring Member and also increase with depth to about 150 ppm in the Lithic Ridge Tuff and upper part of the older tuffs. Conspicuous local high concentrations of Sr in the lower part of the Tram Member, in the dacite lava, and in unit c of the older tuffs in USW G-1, and in the densely welded zone of the Bullfrog Member in USW GU-3/G-3 closely correlate with high concentrations of less-mobile Zr and may reflect either primary composition or elemental redistribution resulting largely from smectitic alteration. Initial 87Sr/86Sr values from composite samples increase upward in units above the Bullfrog Member of the Crater Flat Tuff. The progressive tenfold increase in Sr with depth coupled with the similarity of initial 87Sr/86Sr values within the Bullfrog Member and older units to those of Paleozoic marine carbonates are consistent with a massive influx of Sr from water derived from a Paleozoic carbonate aquifer.

  5. Liquid-feed flame spray pyrolysis synthesis of oxide nanopowders for the processing of ceramic composites

    NASA Astrophysics Data System (ADS)

    Taylor, Nathan John

    In the liquid-feed flame spray pyrolysis (LF-FSP) process, alcohol solutions of metalloorganic precursors are aerosolized by O2 and combusted. The metal oxide combustion products are rapidly quenched (< 10 ms) from flame temperatures of 1500°C to temperatures < 400° C, limiting particle growth. The resulting nanopowders are typically agglomerated but unaggregated. Here, we demonstrate two processing approaches to dense materials: nanopowders with the exact composition, and mixed single metal oxide nanopowders. The effect of the initial degree of phase separation on the final microstructures was determined by sintering studies. Our first studies included the production of yttrium aluminum garnet, Y3Al5O12 (YAG), tubes which we extruded from a thermoplastic/ceramic blend. At equivalent final densities, we found finer grain sizes in the from the mixed Y2O3 and Al2 O3 nanopowders, which was attributed to densification occurring before full transformation to the YAG phase. The enhanced densification in production of pure YAG from the reactive sintering process led us to produce composites in the YAG/alpha-Al 2O3 system. Finally, a third Y2O3 stabilized ZrO2 (YSZ) phase was added to further refine grain sizes using the same two processing approaches. In a separate study, single-phase metastable Al2O3 rich spinels with the composition MO•3Al 2O3 where M = Mg, Ni, and Co were sintered to produce dense MAl2O4/alpha-Al2O3 composites. All of these studies provide a test of the bottom-up approach; that is, how the initial length scale of mixing affects the final composite microstructure. Overall, the length scale of mixing is highly dependent upon the specific oxide composites studied. This work provides a processing framework to be adopted by other researchers to further refine microstructural size. LF-FSP flame temperatures were mapped using different alcohols with different heats of combustion: methanol, ethanol, 1-propanol, and n-butanol. The effect of different alcohols on particle size and phase was determined through studies on Al2O3, Y2O3 and TiO2 nanopowders. The final studies describe the morphology of composite nanopowders produced in the WO3-TiO2 and CuO-TiO2 systems. The composite nanopowders have novel morphology, and may offer novel electronic, optical, or catalytic properties.

  6. Characterization of a New Fully Recycled Carbon Fiber Reinforced Composite Subjected to High Strain Rate Tension

    NASA Astrophysics Data System (ADS)

    Meftah, H.; Tamboura, S.; Fitoussi, J.; BenDaly, H.; Tcharkhtchi, A.

    2017-08-01

    The aim of this study is the complete physicochemical characterization and strain rate effect multi-scale analysis of a new fully recycled carbon fiber reinforced composites for automotive crash application. Two composites made of 20% wt short recycled carbon fibers (CF) are obtained by injection molding. The morphology and the degree of dispersion of CF in the matrixes were examined using a new ultrasonic method and SEM. High strain tensile behavior up to 100 s-1 is investigated. In order to avoid perturbation due to inertial effect and wave propagation, the specimen geometry was optimized. The elastic properties appear to be insensitive to the strain rate. However, a high strain rate effect on the local visco-plasticity of the matrix and fiber/matrix interface visco-damageable behavior is emphasized. The predominant damage mechanisms evolve from generalized matrix local ductility at low strain rate regime to fiber/matrix interface debonding and fibers pull-out at high strain rate regime.

  7. Characterization of a New Fully Recycled Carbon Fiber Reinforced Composite Subjected to High Strain Rate Tension

    NASA Astrophysics Data System (ADS)

    Meftah, H.; Tamboura, S.; Fitoussi, J.; BenDaly, H.; Tcharkhtchi, A.

    2018-06-01

    The aim of this study is the complete physicochemical characterization and strain rate effect multi-scale analysis of a new fully recycled carbon fiber reinforced composites for automotive crash application. Two composites made of 20% wt short recycled carbon fibers (CF) are obtained by injection molding. The morphology and the degree of dispersion of CF in the matrixes were examined using a new ultrasonic method and SEM. High strain tensile behavior up to 100 s-1 is investigated. In order to avoid perturbation due to inertial effect and wave propagation, the specimen geometry was optimized. The elastic properties appear to be insensitive to the strain rate. However, a high strain rate effect on the local visco-plasticity of the matrix and fiber/matrix interface visco-damageable behavior is emphasized. The predominant damage mechanisms evolve from generalized matrix local ductility at low strain rate regime to fiber/matrix interface debonding and fibers pull-out at high strain rate regime.

  8. A long-term assessment of the variability in winter use of dense conifer cover by female white-tailed deer.

    PubMed

    Delgiudice, Glenn D; Fieberg, John R; Sampson, Barry A

    2013-01-01

    Long-term studies allow capture of a wide breadth of environmental variability and a broader context within which to maximize our understanding of relationships to specific aspects of wildlife behavior. The goal of our study was to improve our understanding of the biological value of dense conifer cover to deer on winter range relative to snow depth and ambient temperature. We examined variation among deer in their use of dense conifer cover during a 12-year study period as potentially influenced by winter severity and cover availability. Female deer were fitted with a mixture of very high frequency (VHF, n = 267) and Global Positioning System (GPS, n = 24) collars for monitoring use of specific cover types at the population and individual levels, respectively. We developed habitat composites for four study sites. We fit multinomial response models to VHF (daytime) data to describe population-level use patterns as a function of snow depth, ambient temperature, and cover availability. To develop alternative hypotheses regarding expected spatio-temporal patterns in the use of dense conifer cover, we considered two sets of competing sub-hypotheses. The first set addressed whether or not dense conifer cover was limiting on the four study sites. The second set considered four alternative sub-hypotheses regarding the potential influence of snow depth and ambient temperature on space use patterns. Deer use of dense conifer cover increased the most with increasing snow depth and most abruptly on the two sites where it was most available, suggestive of an energy conservation strategy. Deer use of dense cover decreased the most with decreasing temperatures on the sites where it was most available. At all four sites deer made greater daytime use (55 to >80% probability of use) of open vegetation types at the lowest daily minimum temperatures indicating the importance of thermal benefits afforded from increased exposure to solar radiation. Date-time plots of GPS data (24 hr) allowed us to explore individual diurnal and seasonal patterns of habitat use relative to changes in snow depth. There was significant among-animal variability in their propensity to be found in three density classes of conifer cover and other open types, but little difference between diurnal and nocturnal patterns of habitat use. Consistent with our findings reported elsewhere that snow depth has a greater impact on deer survival than ambient temperature, herein our population-level results highlight the importance of dense conifer cover as snow shelter rather than thermal cover. Collectively, our findings suggest that maximizing availability of dense conifer cover in an energetically beneficial arrangement with quality feeding sites should be a prominent component of habitat management for deer.

  9. A Long-Term Assessment of the Variability in Winter Use of Dense Conifer Cover by Female White-Tailed Deer

    PubMed Central

    DelGiudice, Glenn D.; Fieberg, John R.; Sampson, Barry A.

    2013-01-01

    Backgound Long-term studies allow capture of a wide breadth of environmental variability and a broader context within which to maximize our understanding of relationships to specific aspects of wildlife behavior. The goal of our study was to improve our understanding of the biological value of dense conifer cover to deer on winter range relative to snow depth and ambient temperature. Methodology/Principal Findings We examined variation among deer in their use of dense conifer cover during a 12-year study period as potentially influenced by winter severity and cover availability. Female deer were fitted with a mixture of very high frequency (VHF, n = 267) and Global Positioning System (GPS, n = 24) collars for monitoring use of specific cover types at the population and individual levels, respectively. We developed habitat composites for four study sites. We fit multinomial response models to VHF (daytime) data to describe population-level use patterns as a function of snow depth, ambient temperature, and cover availability. To develop alternative hypotheses regarding expected spatio-temporal patterns in the use of dense conifer cover, we considered two sets of competing sub-hypotheses. The first set addressed whether or not dense conifer cover was limiting on the four study sites. The second set considered four alternative sub-hypotheses regarding the potential influence of snow depth and ambient temperature on space use patterns. Deer use of dense conifer cover increased the most with increasing snow depth and most abruptly on the two sites where it was most available, suggestive of an energy conservation strategy. Deer use of dense cover decreased the most with decreasing temperatures on the sites where it was most available. At all four sites deer made greater daytime use (55 to >80% probability of use) of open vegetation types at the lowest daily minimum temperatures indicating the importance of thermal benefits afforded from increased exposure to solar radiation. Date-time plots of GPS data (24 hr) allowed us to explore individual diurnal and seasonal patterns of habitat use relative to changes in snow depth. There was significant among-animal variability in their propensity to be found in three density classes of conifer cover and other open types, but little difference between diurnal and nocturnal patterns of habitat use. Conclusions/Significance Consistent with our findings reported elsewhere that snow depth has a greater impact on deer survival than ambient temperature, herein our population-level results highlight the importance of dense conifer cover as snow shelter rather than thermal cover. Collectively, our findings suggest that maximizing availability of dense conifer cover in an energetically beneficial arrangement with quality feeding sites should be a prominent component of habitat management for deer. PMID:23785421

  10. Anthropogenic CO2 in a dense water formation area of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Ingrosso, Gianmarco; Bensi, Manuel; Cardin, Vanessa; Giani, Michele

    2017-05-01

    There is growing evidence that the on-going ocean acidification of the Mediterranean Sea could be favoured by its active overturning circulation. The areas of dense water formation are, indeed, preferential sites for atmospheric carbon dioxide absorption and through them the ocean acidification process can quickly propagate into the deep layers. In this study we estimated the concentration of anthropogenic CO2 (Cant) in the dense water formation areas of the middle and southern Adriatic Sea. Using the composite tracer TrOCA (Tracer combining Oxygen, inorganic Carbon, and total Alkalinity) and carbonate chemistry data collected throughout March 2013, our results revealed that a massive amount of Cant has invaded all the identified water masses. High Cant concentration was detected at the bottom layer of the Pomo Pit (middle Adriatic, 96.8±9.7 μmol kg-1) and Southern Adriatic Pit (SAP, 85.2±9.4 μmol kg-1), associated respectively with the presence of North Adriatic Dense Water (NAdDW) and Adriatic Dense Water (AdDW). This anthropogenic contamination was clearly linked to the dense water formation events, which govern strong CO2 flux from the atmosphere to the sea and the sinking of dense, CO2-rich surface waters to the deep sea. However, a very high Cant level (94.5±12.5 μmol kg-1) was also estimated at the intermediate layer, as a consequence of a recent vertical mixing that determined the physical and biogeochemical modification of the water of Levantine origin (i.e. Modified Levantine Intermediate Water, MLIW) and favoured the atmospheric CO2 intrusion. The penetration of Cant in the Adriatic Sea determined a significant pH reduction since the pre-industrial era (- 0.139±0.019 pH units on average). This estimation was very similar to the global Mediterranean Sea acidification, but it was again more pronounced at the bottom of the Pomo Pit, within the layer occupied by NAdDW (- 0.157±0.018 pH units), and at the intermediate layer of the recently formed MLIW (- 0.143±0.020 pH units). Our results indicate that the Adriatic Sea could potentially be one of the Mediterranean regions most affected by the ocean acidification and also demonstrate its active role in sequestering and storing Cant.

  11. Improving protein complex classification accuracy using amino acid composition profile.

    PubMed

    Huang, Chien-Hung; Chou, Szu-Yu; Ng, Ka-Lok

    2013-09-01

    Protein complex prediction approaches are based on the assumptions that complexes have dense protein-protein interactions and high functional similarity between their subunits. We investigated those assumptions by studying the subunits' interaction topology, sequence similarity and molecular function for human and yeast protein complexes. Inclusion of amino acids' physicochemical properties can provide better understanding of protein complex properties. Principal component analysis is carried out to determine the major features. Adopting amino acid composition profile information with the SVM classifier serves as an effective post-processing step for complexes classification. Improvement is based on primary sequence information only, which is easy to obtain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Composite perfluorohydrocarbon membranes, their preparation and use

    DOEpatents

    Ding, Yong; Bikson, Benjamin

    2017-04-04

    Composite porous hydrophobic membranes are prepared by forming a perfluorohydrocarbon layer on the surface of a preformed porous polymeric substrate. The substrate can be formed from poly (aryl ether ketone) and a perfluorohydrocarbon layer can be chemically grafted to the surface of the substrate. The membranes can be utilized for a broad range of fluid separations, such as microfiltration, nanofiltration, ultrafiltration as membrane contactors for membrane distillation and for degassing and dewatering of fluids. The membranes can further contain a dense ultra-thin perfluorohydrocarbon layer superimposed on the porous poly (aryl ether ketone) substrate and can be utilized as membrane contactors or as gas separation. membranes for natural gas treatment and gas dehydration.

  13. Steel bonded dense silicon nitride compositions and method for their fabrication

    DOEpatents

    Landingham, R.L.; Shell, T.E.

    1985-05-20

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500/sup 0/C in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850/sup 0/ to 950/sup 0/C in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  14. Steel bonded dense silicon nitride compositions and method for their fabrication

    DOEpatents

    Landingham, Richard L.; Shell, Thomas E.

    1987-01-01

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500.degree. C. in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850.degree. to 950.degree. C. in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  15. Biomimetic whisker-shaped apatite coating of titanium powder.

    PubMed

    Sim, Young Uk; Kim, Jong Hee; Yang, Tae Young; Yoon, Seog Young; Park, Hong Chae

    2010-05-01

    Biomimetic apatite coatings on chemically modified titanium powder have been processed and the resulting coating layers evaluated in terms of morphology, composition and structure, using TF-XRD, XPS, SEM, TEM and FTIR analysis. After 7 days immersion in a simulated body fluid (SBF), nanometer-sized fine precipitates with an amorphous whisker-like phase and a Ca/P atomic ratio of 1.94 were obtained on the external surface of the titanium particles. When the immersion time in SBF was extended to 16 days, the coating layer consisted of the whisker-like nanostructured crystals of carbonated hydroxyapatite with a atomic ratio of 3; in such a case, a double coating layer was developed. The double layer could be divided into two regions and could be clearly distinguished: an inner dense region (approximately 200 nm in thickness) which may include hard agglomerated crystals and an outer less dense region (> 500 nm in thickness) in which crystals are loosely distributed.

  16. Degradation of porous poly(D,L-lactic-co-glycolic acid) films based on water diffusion.

    PubMed

    Huang, Ying-Ying; Qi, Min; Liu, Hong-Ze; Zhao, Hong; Yang, Da-Zhi

    2007-03-15

    Poly(D,L-lactic-co-glycolic acid) has been extensively used as a controlled release carrier for drug delivery due to its good biocompatibility, biodegradability, and mechanical strength. Effects of dense and porous film's degradation behavior have been systematically investigated up to 17 weeks in Hank's Simulated Body Fluid at 37 degrees C. The degradation of the films was studied by measuring changes in weight, molecular weight and its distribution, morphology, composition etc.. A special thing was that the differences in water diffusion in dense and porous structure films caused the different degradation behavior. According to the characteristic changes of various properties of films, the degradation process is suggested to be roughly divided into four stages, tentatively named as water absorption stage, dramatic loss of molecular weight or micro-pores formed stage, loss of weight or enlarged-pores formed stage, pores diminished or pores collapse stage.

  17. Atomic force microscopy of adsorbed proteoglycan mimetic nanoparticles: Toward new glycocalyx-mimetic model surfaces.

    PubMed

    Hedayati, Mohammadhasan; Kipper, Matt J

    2018-06-15

    Blood vessels present a dense, non-uniform, polysaccharide-rich layer, called the endothelial glycocalyx. The polysaccharides in the glycocalyx include polyanionic glycosaminoglycans (GAGs). This polysaccharide-rich surface has excellent and unique blood compatibility. We report new methods for preparing and characterizing dense GAG surfaces that can serve as models of the vascular endothelial glycocalyx. The GAG-rich surfaces are prepared by adsorbing heparin or chondroitin sulfate-containing polyelectrolyte complex nanoparticles (PCNs) to chitosan-hyaluronan polyelectrolyte multilayers (PEMs). The surfaces are characterized by PeakForce tapping atomic force microscopy, both in air and in aqueous pH 7.4 buffer, and by PeakForce quantitative nanomechanics (PF-QNM) mode with high spatial resolution. These new surfaces provide access to heparin-rich or chondroitin sulfate-rich coatings that mimic both composition and nanoscale structural features of the vascular endothelial glycocalyx. Copyright © 2018. Published by Elsevier Ltd.

  18. Floristic and phytosociology in dense "terra firme" rainforest in the Belo Monte Hydroelectric Plant influence area, Pará, Brazil.

    PubMed

    Lemos, D A N; Ferreira, B G A; Siqueira, J D P; Oliveira, M M; Ferreira, A M

    2015-08-01

    The objective of the present study was to characterise the floristic and phytosociological composition on a stretch of dense "Terra Firme" rainforest located in the Belo Monte hydroelectric plant area of influence, located in the state of Pará, Brazil. All trees with DAP >10 cm situated in 75 permanent plots of 1 ha were inventoried. 27,126 individuals trees (361 ind.ha-1), distributed in 59 botanical families, comprising 481 species were observed. The families with the largest number of species were Fabaceae (94), Araceae (65) and Arecaceae (43), comprising 43.7% of total species. The species Alexa grandiflora (4.41), Cenostigma tocantinum (2.50) and Bertholletia excelsa (2.28) showed the highest importance values (IV). The ten species with greater IV are concentrated (22%). The forest community has high species richness and can be classified as diverse age trees, heterogeneous and of medium conservation condition.

  19. Inclusion of transverse shear deformation in exact buckling and vibration analysis of composite plate assemblies

    NASA Technical Reports Server (NTRS)

    Anderson, Melvin S.; Kennedy, David

    1992-01-01

    The problem considered is the development of the necessary plate stiffnesses for use in a general purpose program for buckling and vibration of composite plate assemblies. The required stiffnesses are for the assumption of sinusoidal response along the plate length with transverse shear included. The method is based on the exact solution of the plate differential equations for a composite laminate having fully populated A, B, and D matrices which leads to a differential equation of tenth order.

  20. Fully iterative scatter corrected digital breast tomosynthesis using GPU-based fast Monte Carlo simulation and composition ratio update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyungsang; Ye, Jong Chul, E-mail: jong.ye@kaist.ac.kr; Lee, Taewon

    2015-09-15

    Purpose: In digital breast tomosynthesis (DBT), scatter correction is highly desirable, as it improves image quality at low doses. Because the DBT detector panel is typically stationary during the source rotation, antiscatter grids are not generally compatible with DBT; thus, a software-based scatter correction is required. This work proposes a fully iterative scatter correction method that uses a novel fast Monte Carlo simulation (MCS) with a tissue-composition ratio estimation technique for DBT imaging. Methods: To apply MCS to scatter estimation, the material composition in each voxel should be known. To overcome the lack of prior accurate knowledge of tissue compositionmore » for DBT, a tissue-composition ratio is estimated based on the observation that the breast tissues are principally composed of adipose and glandular tissues. Using this approximation, the composition ratio can be estimated from the reconstructed attenuation coefficients, and the scatter distribution can then be estimated by MCS using the composition ratio. The scatter estimation and image reconstruction procedures can be performed iteratively until an acceptable accuracy is achieved. For practical use, (i) the authors have implemented a fast MCS using a graphics processing unit (GPU), (ii) the MCS is simplified to transport only x-rays in the energy range of 10–50 keV, modeling Rayleigh and Compton scattering and the photoelectric effect using the tissue-composition ratio of adipose and glandular tissues, and (iii) downsampling is used because the scatter distribution varies rather smoothly. Results: The authors have demonstrated that the proposed method can accurately estimate the scatter distribution, and that the contrast-to-noise ratio of the final reconstructed image is significantly improved. The authors validated the performance of the MCS by changing the tissue thickness, composition ratio, and x-ray energy. The authors confirmed that the tissue-composition ratio estimation was quite accurate under a variety of conditions. Our GPU-based fast MCS implementation took approximately 3 s to generate each angular projection for a 6 cm thick breast, which is believed to make this process acceptable for clinical applications. In addition, the clinical preferences of three radiologists were evaluated; the preference for the proposed method compared to the preference for the convolution-based method was statistically meaningful (p < 0.05, McNemar test). Conclusions: The proposed fully iterative scatter correction method and the GPU-based fast MCS using tissue-composition ratio estimation successfully improved the image quality within a reasonable computational time, which may potentially increase the clinical utility of DBT.« less

Top