Fixed-axis electric sail deployment dynamics analysis using hub-mounted momentum control
NASA Astrophysics Data System (ADS)
Fulton, JoAnna; Schaub, Hanspeter
2018-03-01
The deployment dynamics of a spin stabilized electric sail (E-sail) with a hub-mounted control actuator are investigated. Both radial and tangential deployment mechanisms are considered to take the electric sail from a post-launch stowed configuration to a fully deployed configuration. The tangential configuration assumes the multi-kilometer tethers are wound up on the exterior of the spacecraft hub, similar to yo-yo despinner configurations. The deployment speed is controlled through the hub rate. The radial deployment configuration assumes each tether is on its own spool. Here both the hub and spool rate are control variables. The sensitivity of the deployment behavior to E-sail length, maximum rate and tension parameters is investigated. A constant hub rate deployment is compared to a time varying hub rate that maintains a constant tether tension condition. The deployment time can be reduced by a factor of 2 or more by using a tension controlled deployment configuration.
Development of deployable structures for large space platform systems, part 1
NASA Technical Reports Server (NTRS)
Cox, R. L.; Nelson, R. A.
1982-01-01
Eight deployable platform design objectives were established: autodeploy/retract; fully integrated utilities; configuration variability; versatile payload and subsystem interfaces; structural and packing efficiency; 1986 technology readiness; minimum EVA/RMS; and Shuttle operational compatibility.
A Nonlinear Dynamic Model and Free Vibration Analysis of Deployable Mesh Reflectors
NASA Technical Reports Server (NTRS)
Shi, H.; Yang, B.; Thomson, M.; Fang, H.
2011-01-01
This paper presents a dynamic model of deployable mesh reflectors, in which geometric and material nonlinearities of such a space structure are fully described. Then, by linearization around an equilibrium configuration of the reflector structure, a linearized model is obtained. With this linearized model, the natural frequencies and mode shapes of a reflector can be computed. The nonlinear dynamic model of deployable mesh reflectors is verified by using commercial finite element software in numerical simulation. As shall be seen, the proposed nonlinear model is useful for shape (surface) control of deployable mesh reflectors under thermal loads.
Deployable and retractable telescoping tubular structure development
NASA Astrophysics Data System (ADS)
Thomson, M. W.
1993-02-01
The paper describes the design and the structural performance of a new type of deployable and retractable telescoping mast, which can be used for flight systems that require a deployable beam with superaccurate positioning characteristics or for short to medium highly loaded structural applications. The mast employs a Bi-STEM (a two-piece Storable Tubular Extendible Member) boom as an actuator and stabilizer, which alleviates the need for the deployed telescoping mast segments to overlap. Due to this feature and because the segments can be fully overlapped when stowed, the mast enables an unusually lightweight and compact launch configuration.
International Space Station (ISS)
1994-07-20
An artist's conception of what the final configuration of the International Space Station (ISS) will look like when it is fully built and deployed. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.
NASA Astrophysics Data System (ADS)
Alegria Mira, Lara; Thrall, Ashley P.; De Temmerman, Niels
2016-02-01
Deployable scissor structures are well equipped for temporary and mobile applications since they are able to change their form and functionality. They are structural mechanisms that transform from a compact state to an expanded, fully deployed configuration. A barrier to the current design and reuse of scissor structures, however, is that they are traditionally designed for a single purpose. Alternatively, a universal scissor component (USC)-a generalized element which can achieve all traditional scissor types-introduces an opportunity for reuse in which the same component can be utilized for different configurations and spans. In this article, the USC is optimized for structural performance. First, an optimized length for the USC is determined based on a trade-off between component weight and structural performance (measured by deflections). Then, topology optimization, using the simulated annealing algorithm, is implemented to determine a minimum weight layout of beams within a single USC component.
Otani, Tomohiro; Ii, Satoshi; Shigematsu, Tomoyoshi; Fujinaka, Toshiyuki; Hirata, Masayuki; Ozaki, Tomohiko; Wada, Shigeo
2017-05-01
Coil embolization of cerebral aneurysms with inhomogeneous coil distribution leads to an incomplete occlusion of the aneurysm. However, the effects of this factor on the blood flow characteristics are still not fully understood. This study investigates the effects of coil configuration on the blood flow characteristics in a coil-embolized aneurysm using computational fluid dynamics (CFD) simulation. The blood flow analysis in the aneurysm with coil embolization was performed using a coil deployment (CD) model, in which the coil configuration was constructed using a physics-based simulation of the CD. In the CFD results, total flow momentum and kinetic energy in the aneurysm gradually decayed with increasing coil packing density (PD), regardless of the coil configuration attributed to deployment conditions. However, the total shear rate in the aneurysm was relatively high and the strength of the local shear flow varied based on the differences in coil configuration, even at adequate PDs used in clinical practice (20-25 %). Because the sufficient shear rate reduction is a well-known factor in the blood clot formation occluding the aneurysm inside, the present study gives useful insight into the effects of coil configuration on the treatment efficiency of coil embolization.
InSight Lander Solar Array Test
2018-01-23
While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22200
InSight Lander Solar Array Test
2018-01-23
While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22203
InSight Lander Solar Array Test
2018-01-23
While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22202
InSight Lander Solar Array Test
2018-01-23
While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22201
InSight Lander Solar Array Test
2018-01-23
While in the landed configuration for the last time before arriving on Mars, NASA's InSight lander was commanded to deploy its solar arrays to test and verify the exact process that it will use on the surface of the Red Planet. During the test on Jan. 23, 2018 from the Lockheed Martin clean room in Littleton, Colorado, engineers and technicians evaluated that the solar arrays fully deployed and conducted an illumination test to confirm that the solar cells were collecting power. A video is available at https://photojournal.jpl.nasa.gov/catalog/PIA22204
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoopman, J. D.
This report documents Livermore Computing (LC) activities in support of ASC L2 milestone 5589: Modernization and Expansion of LLNL Archive Disk Cache, due March 31, 2016. The full text of the milestone is included in Attachment 1. The description of the milestone is: Description: Configuration of archival disk cache systems will be modernized to reduce fragmentation, and new, higher capacity disk subsystems will be deployed. This will enhance archival disk cache capability for ASC archive users, enabling files written to the archives to remain resident on disk for many (6–12) months, regardless of file size. The milestone was completed inmore » three phases. On August 26, 2015 subsystems with 6PB of disk cache were deployed for production use in LLNL’s unclassified HPSS environment. Following that, on September 23, 2015 subsystems with 9 PB of disk cache were deployed for production use in LLNL’s classified HPSS environment. On January 31, 2016, the milestone was fully satisfied when the legacy Data Direct Networks (DDN) archive disk cache subsystems were fully retired from production use in both LLNL’s unclassified and classified HPSS environments, and only the newly deployed systems were in use.« less
GLUE 2 deployment: Ensuring quality in the EGI/WLCG information system
NASA Astrophysics Data System (ADS)
Burke, Stephen; Alandes Pradillo, Maria; Field, Laurence; Keeble, Oliver
2014-06-01
The GLUE 2 information model is now fully supported in the production EGI/WLCG information system. However, to make it usable and allow clients to rely on the published information it is important that the meaning is clearly defined, and that information providers and site configurations are validated to ensure as far as possible that what they publish is correct. In this paper we describe the definition of a detailed schema usage profile, the implementation of a software tool to validate published information according to the profile and the use of the tool in the production Grid, and also summarise the overall state of GLUE 2 deployment.
Martin, Caitlin; Sun, Wei
2016-01-01
Transcatheter aortic valve (TAV) implantation within a failed bioprosthetic valve is a growing trend for high-risk patients. The non-compliant stent of the previous prosthesis may prevent full expansion of the TAV, which has been shown to distort the leaflet configuration, and has been hypothesized to adversely affect durability. In this study, TAV leaflet fatigue damage under cyclic pressurization in the setting of stent underexpansion by 0 (fully expanded), 1, 2 and 3 mm was simulated using finite element analysis to test this hypothesis. In the 2 and 3 mm underexpanded devices, the TAV leaflets exhibited severe pin-wheeling during valve closure, which increased leaflet stresses dramatically, and resulted in accelerated fatigue damage of the leaflets. The leaflet fatigue damage in the 1 mm underexpanded case was similar to that in the fully expanded case. Clinically a range of 10% to 15% underexpansion is generally considered acceptable; however, it was observed in this study that ≥2 mm (≥9.1%) underexpansion, will significantly impact device durability. Further study is necessary to determine the impact of various deployment conditions, i.e. non-uniform and non-circular deployments and different implantation heights, on differing TAV devices, but it is clear that the normal TAV leaflet configuration must be preserved in order to preserve durability. PMID:27734178
Astronomical observatories on the Moon
NASA Astrophysics Data System (ADS)
Swanson, Paul N.; Cutts, James A.
1994-06-01
The Space Exploration Initiative presents an opportunity to construct astronomical telescopes on the Moon using the infrastructure provided by the lunar outpost. Small automatically deployed telescopes can be carried on the survey missions, be deployed on the lunar surface and be operated remotely from the Earth. Possibilities for early, small optical telescopes are a zenith pointed transit telescope, a student telescope, and a 0.5 to 1 meter automatic, fully steerable telescope. After the lunar outpost is established the lunar interferometers will be constructed in an evolutionary fashion. There are three lunar interferometers which have been studied. The most ambitious is the optical interferometer with a 1 to 2 -km baseline and seven 1.5 aperture elements arranged in a 'Y' configuration with a central beam combiner. The Submillimeter interferometer would use seven, 5-m reflectors in a 'Y' or circular configuration with a 1-km baseline. The Very Low Frequency (VLF) array would operate below 30 mHz with as many as 100 elements and a 200-km baseline.
Multifunctional Inflatable Structure Being Developed for the PowerSphere Concept
NASA Technical Reports Server (NTRS)
Peterson, Todd T.
2004-01-01
NASA has funded a collaborative team of The Aerospace Corporation, ILC Dover, Lockheed Martin, and NASA Glenn Research Center to develop the Multifunctional Inflatable Structure (MIS) for a "PowerSphere" concept through a NASA Research Announcement. This power system concept has several advantages, including a high collection area, low weight and stowage volume, and the elimination of all solar array pointing mechanisms. The current 3-year effort will culminate with the fabrication and testing of a fully functional engineering development unit. The baseline design of the Power-Sphere consists of two opposing semispherical domes connected to a central spacecraft. Each semispherical dome consists of hexagonal and pentagonal solar cell panels that together form a geodetic sphere. Inflatable ultraviolet (UV) rigidizable tubular hinges between the solar cell panels and UV rigidizable isogrid center columns with imbedded flex circuitry form the MIS. The reference configuration for the PowerSphere is a 0.6-m-diameter (fully deployed) spacecraft with a total mass budget of 4 kg (1 kg for PowerSphere, 3 kg for spacecraft) capable of producing 29 W of electricity with 10-percent-efficient thin-film solar cells. In a stowed configuration, the solar cell panels will be folded sequentially to the outside of the instrument decks. The center column will be z-folded between the instrument decks and the spacecraft housing for packaging. The instrument panel will secure the z-folded stack with launch ties. After launch, once the release tie is triggered, the center column and hinge tubes will inflate and be rigidized in their final configurations by ultraviolet radiation. The overall PowerSphere deployment sequence is shown pictorially in the following illustration.
Self-Deployable Membrane Structures
NASA Technical Reports Server (NTRS)
Sokolowski, Witold M.; Willis, Paul B.; Tan, Seng C.
2010-01-01
Currently existing approaches for deployment of large, ultra-lightweight gossamer structures in space rely typically upon electromechanical mechanisms and mechanically expandable or inflatable booms for deployment and to maintain them in a fully deployed, operational configuration. These support structures, with the associated deployment mechanisms, launch restraints, inflation systems, and controls, can comprise more than 90 percent of the total mass budget. In addition, they significantly increase the stowage volume, cost, and complexity. A CHEM (cold hibernated elastic memory) membrane structure without any deployable mechanism and support booms/structure is deployed by using shape memory and elastic recovery. The use of CHEM micro-foams reinforced with carbon nanotubes is considered for thin-membrane structure applications. In this advanced structural concept, the CHEM membrane structure is warmed up to allow packaging and stowing prior to launch, and then cooled to induce hibernation of the internal restoring forces. In space, the membrane remembers its original shape and size when warmed up. After the internal restoring forces deploy the structure, it is then cooled to achieve rigidization. For this type of structure, the solar radiation could be utilized as the heat energy used for deployment and space ambient temperature for rigidization. The overall simplicity of the CHEM self-deployable membrane is one of its greatest assets. In present approaches to space-deployable structures, the stow age and deployment are difficult and challenging, and introduce a significant risk, heavy mass, and high cost. Simple procedures provided by CHEM membrane greatly simplify the overall end-to-end process for designing, fabricating, deploying, and rigidizing large structures. The CHEM membrane avoids the complexities associated with other methods for deploying and rigidizing structures by eliminating deployable booms, deployment mechanisms, and inflation and control systems that can use up the majority of the mass budget
A fully redundant power hinge for LANDSAT-D appendages
NASA Technical Reports Server (NTRS)
Mamrol, F. E.; Matteo, D. N.
1981-01-01
The configuration and testing of a power driven hinge for deployment of the solar array and antenna boom for the LANDSAT-D spacecraft is discussed. The hinge is fully mechanically and electrically redundant and, thereby, can sustain a single point failure of any one motor (or its power supply), speed reducer, or bearing set without loss of its ability to function. This design utilizes the capability of the stepper motor drive to remove the flexibility of the drive train from the joint stiffness equation when the hinge is loaded against its stop. This feature precludes gapping of the joint under spacecraft maneuver loads even in the absence of a latching feature. Thus, retraction is easily accomplished by motor reversal without the need for a solenoid function to remove the latch.
NASA Astrophysics Data System (ADS)
Hu, Fei; Song, Yanping; Huang, Zhirong; Liu, Wenlan; Li, Wan
2018-05-01
The tetrahedral elements that make up the large deployable reflector (LDR) are a kind of metamorphic element, which belongs to the multi-loop coupling mechanism. Firstly, the method of combining topology with screw theory is put forward. The parametric model and the constrained matrix are established to analyze the malleability of 3RR-3RRR tetrahedral element. Secondly, the kinematics expression of each motion pair is deduced by the relationship between the velocity and the motion spinor. Finally, the configuration of the metamorphic element is optimized to make the parabolic antenna fully folded, so that the antenna can meet the maximum folding ratio. The results show that the 3RR-3RRR element is a single-degree of freedom (DOF) mechanism. What's more, three new configurations 3RS-3RRR, 3SR-3RRR and 3UU-3RRR are obtained on the basis of optimization. In particular, it proves to be that the LDR which consists of the 3RS-3RRR metamorphic element can achieve the maximum folding ratio. This paper provides a theoretical basis for the computer-aided design of the truss antennas, which has an excellent applicability in the field of aerospace and other multi-loop coupling mechanism.
Methods and Apparatus for Deployable Swirl Vanes
NASA Technical Reports Server (NTRS)
Shah, Parthiv N. (Inventor)
2017-01-01
An aircraft control structure for drag management includes a nozzle structure configured to exhaust a swirling fluid stream. A plurality of swirl vanes are positioned within the nozzle structure, and an actuation subsystem is configured to cause the plurality of swirl vanes to move from a deployed state to a non-deployed state. In the non-deployed state, the plurality of swirl vanes are substantially flush with the inner surface of the nozzle structure. In the deployed state, the plurality of swirl vanes produce the swirling fluid stream.
Rain rate instrument for deployment at sea, phase 2
NASA Technical Reports Server (NTRS)
Steele, Jimmy W.
1992-01-01
This report describes, in detail, the SBIR Phase 2 contracting effort provided for by NASA Contract Number NAS8-38481 in which a prototype Rain Rate Sensor was developed. FWG Model RP101A is a fully functional rain rate and droplet size analyzing instrument. The RP101A is a fully functional rain rate and droplet size analyzing instrument. The RP101A consists of a fiber optic probe containing a 32-fiber array connected to an electronic signal processor. When interfaced to an IBM compatible personal computer and configured with appropriate software, the RP101A is capable of measuring rain rates and particles ranging in size from around 300 microns up to 6 to 7 millimeters. FWG Associates, Inc. intends to develop a production model from the prototype and continue the effort under NASA's SBIR Phase 3 program.
Differential Drag Analysis to Infer the Geometrical Configuration of a Cubesat
NASA Astrophysics Data System (ADS)
Bussy-Virat, C.; Ridley, A. J.; Cutler, J.; Sharma, S.; Judd, E.
2016-12-01
On May 16th, 2016, the Miniature X-ray Solar Spectrometer (MinXSS) and the CubeSat investigating Atmospheric Density Response to Extreme driving (CADRE) were deployed from the International Space Station. While communication with MinXSS was quickly established, it has been impossible to interact with CADRE thus far. A likely reason could be that its solar panels did not open, preventing the antenna from fully functioning and eliminating communication with the ground stations. An orbit propagator that was developed for mission design and analysis was used to model the trajectories of the satellites. By comparing the drag accelerations on the two CubeSats, we are attempting to infer the number of solar panels that CADRE deployed. Ensemble simulations allow the modeling of uncertainties on its attitude, as it is likely to tumble if no solar panel was deployed. This technique introduces many challenges, as there are many unknowns, including the drag coefficient, the attitude, and the thermospheric density. We present results of this study, as well as these challenges that were encountered.
Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Authors, Various
1980-01-01
The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distancesmore » necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.« less
Bioinspired morphing wings for extended flight envelope and roll control of small drones.
Di Luca, M; Mintchev, S; Heitz, G; Noca, F; Floreano, D
2017-02-06
Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone.
Bioinspired morphing wings for extended flight envelope and roll control of small drones
Heitz, G.; Noca, F.; Floreano, D.
2017-01-01
Small-winged drones can face highly varied aerodynamic requirements, such as high manoeuvrability for flight among obstacles and high wind resistance for constant ground speed against strong headwinds that cannot all be optimally addressed by a single aerodynamic profile. Several bird species solve this problem by changing the shape of their wings to adapt to the different aerodynamic requirements. Here, we describe a novel morphing wing design composed of artificial feathers that can rapidly modify its geometry to fulfil different aerodynamic requirements. We show that a fully deployed configuration enhances manoeuvrability while a folded configuration offers low drag at high speeds and is beneficial in strong headwinds. We also show that asymmetric folding of the wings can be used for roll control of the drone. The aerodynamic performance of the morphing wing is characterized in simulations, in wind tunnel measurements and validated in outdoor flights with a small drone. PMID:28163882
OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sands, M. D.
1980-01-01
This programmatic environmental analysis is an initial assessment of OTEC technology considering development, demonstration and commercialization; it is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adversemore » environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties.« less
Fredriksson, Rikard; Shin, Jaeho; Untaroiu, Costin D
2011-08-01
To study the potential of active, passive, and integrated (combined active and passive) safety systems in reducing pedestrian upper body loading in typical impact configurations. Finite element simulations using models of generic sedan car fronts and the Polar II pedestrian dummy were performed for 3 impact configurations at 2 impact speeds. Chest contact force, head injury criterion (HIC(15)), head angular acceleration, and the cumulative strain damage measure (CSDM(0.25)) were employed as injury parameters. Further, 3 countermeasures were modeled: an active autonomous braking system, a passive deployable countermeasure, and an integrated system combining the active and passive systems. The auto-brake system was modeled by reducing impact speed by 10 km/h (equivalent to ideal full braking over 0.3 s) and introducing a pitch of 1 degree and in-crash deceleration of 1 g. The deployable system consisted of a deployable hood, lifting 100 mm in the rear, and a lower windshield air bag. All 3 countermeasures showed benefit in a majority of impact configurations in terms of injury prevention. The auto-brake system reduced chest force in a majority of the configurations and decreased HIC(15), head angular acceleration, and CSDM in all configurations. Averaging all impact configurations, the auto-brake system showed reductions of injury predictors from 20 percent (chest force) to 82 percent (HIC). The passive deployable countermeasure reduced chest force and HIC(15) in a majority of configurations and head angular acceleration and CSDM in all configurations, although the CSDM decrease in 2 configurations was minimal. On average a reduction from 20 percent (CSDM) to 58 percent (HIC) was recorded in the passive deployable countermeasures. Finally, the integrated system evaluated in this study reduced all injury assessment parameters in all configurations compared to the reference situations. The average reductions achieved by the integrated system ranged from 56 percent (CSDM) to 85 percent (HIC). Both the active (autonomous braking) and passive deployable system studied had a potential to decrease pedestrian upper body loading. An integrated pedestrian safety system combining the active and passive systems increased the potential of the individual systems in reducing pedestrian head and chest loading.
Portable, space-saving medical patient support system
Bzorgi,; Fariborz, [Knoxville, TN
2011-02-01
A support platform having a stowed configuration and a deployed configuration on a floor. The support platform is related to stretcher devices that are used for transporting, confining, or conducting medical procedures on medical patients in medical emergencies. The support platform typically includes a work surface that has a geometric extent. A base that typically includes a plurality of frame members is provided, and the frame members are disposed across the geometric extent of, and proximal to, the work surface in the stowed configuration. The frame members are typically disposed on the floor in the deployed configuration. There is a foldable bracing system engaged with the work surface and engaged with the base. At least a portion of the foldable bracing system is disposed substantially inside at least a portion of the plurality of frame members in the stowed configuration. Further, the foldable bracing system is configured for translocation of the work surface distal from the base in the deployed configuration.
NASA Technical Reports Server (NTRS)
Heard, Walter L., Jr.; Collins, Timothy J.; Dyess, James W.; Kenner, Scott; Bush, Harold G.
1993-01-01
A concept is presented for achieving a remotely deployable truss-stiffened reflector consisting of seven integrated sandwich panels that form the reflective surface, and an integrated feed boom. The concept has potential for meeting aperture size and surface precision requirements for some high-frequency microwave remote sensing applications. The packaged reflector/feed boom configuration is a self-contained unit that can be conveniently attached to a spacecraft bus. The package has a cylindrical envelope compatible with typical launch vehicle shrouds. Dynamic behavior of a deployed configuration having a 216-inch focal length and consisting of 80-inch-diameter, two-inch-thick panels is examined through finite-element analysis. Results show that the feed boom and spacecraft bus can have a large impact on the fundamental frequency of the deployed configuration. Two candidate rib-stiffened sandwich panel configurations for this application are described, and analytical results for panel mass and stiffness are presented. Results show that the addition of only a few rib stiffeners, if sufficiently deep, can efficiently improve sandwich panel stiffness.
Hazrati, Sadegh; Harrad, Stuart
2007-03-01
PUF disk passive air samplers are increasingly employed for monitoring of POPs in ambient air. In order to utilize them as quantitative sampling devices, a calibration experiment was conducted. Time integrated indoor air concentrations of PCBs and PBDEs were obtained from a low volume air sampler operated over a 50 d period alongside the PUF disk samplers in the same office microenvironment. Passive sampling rates for the fully-sheltered sampler design employed in our research were determined for the 51 PCB and 7 PBDE congeners detected in all calibration samples. These values varied from 0.57 to 1.55 m3 d(-1) for individual PCBs and from 1.1 to 1.9 m3 d(-1) for PBDEs. These values are appreciably lower than those reported elsewhere for different PUF disk sampler designs (e.g. partially sheltered) employed under different conditions (e.g. in outdoor air), and derived using different calibration experiment configurations. This suggests that sampling rates derived for a specific sampler configuration deployed under specific environmental conditions, should not be extrapolated to different sampler configurations. Furthermore, our observation of variable congener-specific sampling rates (consistent with other studies), implies that more research is required in order to understand fully the factors that influence sampling rates. Analysis of wipe samples taken from the inside of the sampler housing, revealed evidence that the housing surface scavenges particle bound PBDEs.
Development and modeling of self-deployable structures
NASA Astrophysics Data System (ADS)
Neogi, Depankar
Deployable space structures are prefabricated structures which can be transformed from a closed, compact configuration to a predetermined expanded form in which they are stable and can bear loads. The present research effort investigates a new family of deployable structures, called the Self-Deployable Structures (SDS). Unlike other deployable structures, which have rigid members, the SDS members are flexible while the connecting joints are rigid. The joints store the predefined geometry of the deployed structure in the collapsed state. The SDS is stress-free in both deployed and collapsed configurations and results in a self-standing structure which acquires its structural properties after a chemical reaction. Reliability of deployment is one of the most important features of the SDS, since it does not rely on mechanisms that can lock during deployment. The unit building block of these structures is the self-deployable structural element (SDSE). Several SDSE members can be linked to generate a complex building block such as a triangular or a tetrahedral structure. Different SDSE and SDS concepts are investigated in the research work, and the performance of SDS's are experimentally and theoretically explored. Triangular and tetrahedral prototype SDS have been developed and presented. Theoretical efforts include modeling the behavior of 2-dimensional SDSs. Using this design tool, engineers can study the effects of different packing configurations and deployment sequence; and perform optimization on the collapsed state of a structure with different external constraints. The model also predicts if any lockup or entanglement occurs during deployment.
Use of Unmanned Aerial Systems to Study Atmospheric Processes During Sea Ice Freeze Up
NASA Astrophysics Data System (ADS)
de Boer, G.; Lawrence, D.; Weibel, D.; Borenstein, S.; Bendure, A.; Solomon, A.; Intrieri, J. M.
2017-12-01
In October 2016, a team of scientists deployed to Oliktok Point, Alaska to make atmospheric measurements as part of the Evaluation of Routine Atmospheric Sounding measurements using Unmanned Systems (ERASMUS) and Inaugural Campaigns for ARM Research using Unmanned Systems (ICARUS) campaigns. The deployment included operations using the University of Colorado DataHawk2 UAS. The DataHawk2 was configured to make measurements of atmospheric thermodynamics, wind and surface temperature, providing information on lower tropospheric thermodynamic structure, turbulent surface fluxes, and surface temperature. During this campaign, the team experienced a variety of weather regimes and witnessed the development of near shore sea ice. In this presentation, we will give an overview of the measurements obtained during this time and how they were used to better understand freeze up processes in this coastal environment. Additionally, we will provide insight into how these platforms are being used for evaluation of a fully-coupled sea ice forecast model operated by NOAA's Physical Sciences Division.
ViNEL: A Virtual Networking Lab for Cyber Defense Education
ERIC Educational Resources Information Center
Reinicke, Bryan; Baker, Elizabeth; Toothman, Callie
2018-01-01
Professors teaching cyber security classes often face challenges when developing workshops for their students: How does one quickly and efficiently configure and deploy an operating system for a temporary learning/testing environment? Faculty teaching these classes spend countless hours installing, configuring and deploying multiple system…
NASA Technical Reports Server (NTRS)
Cleveland, Paul E.; Parrish, Keith A.
2005-01-01
A thorough and unique thermal verification and model validation plan has been developed for NASA s James Webb Space Telescope. The JWST observatory consists of a large deployed aperture optical telescope passively cooled to below 50 Kelvin along with a suite of several instruments passively and actively cooled to below 37 Kelvin and 7 Kelvin, respectively. Passive cooling to these extremely low temperatures is made feasible by the use of a large deployed high efficiency sunshield and an orbit location at the L2 Lagrange point. Another enabling feature is the scale or size of the observatory that allows for large radiator sizes that are compatible with the expected power dissipation of the instruments and large format Mercury Cadmium Telluride (HgCdTe) detector arrays. This passive cooling concept is simple, reliable, and mission enabling when compared to the alternatives of mechanical coolers and stored cryogens. However, these same large scale observatory features, which make passive cooling viable, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone to most space missions thermal verification plan. JWST is simply too large in its deployed configuration to be properly thermal balance tested in the facilities that currently exist. This reality, when combined with a mission thermal concept with little to no flight heritage, has necessitated the need for a unique and alternative approach to thermal system verification and model validation. This paper describes the thermal verification and model validation plan that has been developed for JWST. The plan relies on judicious use of cryogenic and thermal design margin, a completely independent thermal modeling cross check utilizing different analysis teams and software packages, and finally, a comprehensive set of thermal tests that occur at different levels of JWST assembly. After a brief description of the JWST mission and thermal architecture, a detailed description of the three aspects of the thermal verification and model validation plan is presented.
Micro/Nanosatellite Mars Network for Global Lower Atmosphere Characterization
NASA Technical Reports Server (NTRS)
Tinker, Mike L.
2012-01-01
To address multiple key challenge areas for robotic exploration of Mars, to achieve scientific goals and reduce risk for future human missions, a micro/nanosatellite constellation for lower atmosphere characterization is proposed. A microsatellite design is discussed that can operate (1) in tandem with another microsat or (2) as a "mother-ship" to deploy a network of nanosatellites (CubeSats). Either configuration of the network would perform radio occultation-based atmospheric measurements. Advantages of the proposed network are low development cost based on an existing microsatellite bus, and proven performance of the bus to date. Continued efforts in miniaturization of instruments are needed to fully enable the mother-ship/nanosat version of the proposed network.
2006-06-16
KENNEDY SPACE CENTER, FLA. - At Astrotech Space Operations in Titusville, Fla., the tilt table lowers the STEREO spacecraft "A." In this position, technicians can perform the final comprehensive performance test of the instruments, verifying the instrument is fully functional before flight. After a rotation, this configuration also allows deployment tests to be done on the solar arrays. STEREO stands for Solar Terrestrial Relations Observatory. The STEREO mission is the first to take measurements of the sun and solar wind in 3-dimension. This new view will improve our understanding of space weather and its impact on the Earth. STEREO is expected to lift off aboard a Boeing Delta II rocket on July 22. Photo credit: NASA/George Shelton
Gaythorpe, Katy; Adams, Ben
2016-05-21
Epidemics of water-borne infections often follow natural disasters and extreme weather events that disrupt water management processes. The impact of such epidemics may be reduced by deployment of transmission control facilities such as clinics or decontamination plants. Here we use a relatively simple mathematical model to examine how demographic and environmental heterogeneities, population behaviour, and behavioural change in response to the provision of facilities, combine to determine the optimal configurations of limited numbers of facilities to reduce epidemic size, and endemic prevalence. We show that, if the presence of control facilities does not affect behaviour, a good general rule for responsive deployment to minimise epidemic size is to place them in exactly the locations where they will directly benefit the most people. However, if infected people change their behaviour to seek out treatment then the deployment of facilities offering treatment can lead to complex effects that are difficult to foresee. So careful mathematical analysis is the only way to get a handle on the optimal deployment. Behavioural changes in response to control facilities can also lead to critical facility numbers at which there is a radical change in the optimal configuration. So sequential improvement of a control strategy by adding facilities to an existing optimal configuration does not always produce another optimal configuration. We also show that the pre-emptive deployment of control facilities has conflicting effects. The configurations that minimise endemic prevalence are very different to those that minimise epidemic size. So cost-benefit analysis of strategies to manage endemic prevalence must factor in the frequency of extreme weather events and natural disasters. Copyright © 2016 Elsevier Ltd. All rights reserved.
TrustBuilder2: A Reconfigurable Framework for Trust Negotiation
NASA Astrophysics Data System (ADS)
Lee, Adam J.; Winslett, Marianne; Perano, Kenneth J.
To date, research in trust negotiation has focused mainly on the theoretical aspects of the trust negotiation process, and the development of proof of concept implementations. These theoretical works and proofs of concept have been quite successful from a research perspective, and thus researchers must now begin to address the systems constraints that act as barriers to the deployment of these systems. To this end, we present TrustBuilder2, a fully-configurable and extensible framework for prototyping and evaluating trust negotiation systems. TrustBuilder2 leverages a plug-in based architecture, extensible data type hierarchy, and flexible communication protocol to provide a framework within which numerous trust negotiation protocols and system configurations can be quantitatively analyzed. In this paper, we discuss the design and implementation of TrustBuilder2, study its performance, examine the costs associated with flexible authorization systems, and leverage this knowledge to identify potential topics for future research, as well as a novel method for attacking trust negotiation systems.
Automatic provisioning, deployment and orchestration for load-balancing THREDDS instances
NASA Astrophysics Data System (ADS)
Cofino, A. S.; Fernández-Tejería, S.; Kershaw, P.; Cimadevilla, E.; Petri, R.; Pryor, M.; Stephens, A.; Herrera, S.
2017-12-01
THREDDS is a widely used web server to provide to different scientific communities with data access and discovery. Due to THREDDS's lack of horizontal scalability and automatic configuration management and deployment, this service usually deals with service downtimes and time consuming configuration tasks, mainly when an intensive use is done as is usual within the scientific community (e.g. climate). Instead of the typical installation and configuration of a single or multiple independent THREDDS servers, manually configured, this work presents an automatic provisioning, deployment and orchestration cluster of THREDDS servers. This solution it's based on Ansible playbooks, used to control automatically the deployment and configuration setup on a infrastructure and to manage the datasets available in THREDDS instances. The playbooks are based on modules (or roles) of different backends and frontends load-balancing setups and solutions. The frontend load-balancing system enables horizontal scalability by delegating requests to backend workers, consisting in a variable number of instances for the THREDDS server. This implementation allows to configure different infrastructure and deployment scenario setups, as more workers are easily added to the cluster by simply declaring them as Ansible variables and executing the playbooks, and also provides fault-tolerance and better reliability since if any of the workers fail another instance of the cluster can take over it. In order to test the solution proposed, two real scenarios are analyzed in this contribution: The JASMIN Group Workspaces at CEDA and the User Data Gateway (UDG) at the Data Climate Service from the University of Cantabria. On the one hand, the proposed configuration has provided CEDA with a higher level and more scalable Group Workspaces (GWS) service than the previous one based on Unix permissions, improving also the data discovery and data access experience. On the other hand, the UDG has improved its scalability by allowing requests to be distributed to the backend workers instead of being served by a unique THREDDS worker. As a conclusion the proposed configuration supposes a significant improvement with respect to configurations based on non-collaborative THREDDS' instances.
An object-oriented approach to deploying highly configurable Web interfaces for the ATLAS experiment
NASA Astrophysics Data System (ADS)
Lange, Bruno; Maidantchik, Carmen; Pommes, Kathy; Pavani, Varlen; Arosa, Breno; Abreu, Igor
2015-12-01
The ATLAS Technical Coordination disposes of 17 Web systems to support its operation. These applications, whilst ranging from managing the process of publishing scientific papers to monitoring radiation levels in the equipment in the experimental cavern, are constantly prone to changes in requirements due to the collaborative nature of the experiment and its management. In this context, a Web framework is proposed to unify the generation of the supporting interfaces. FENCE assembles classes to build applications by making extensive use of JSON configuration files. It relies heavily on Glance, a technology that was set forth in 2003 to create an abstraction layer on top of the heterogeneous sources that store the technical coordination data. Once Glance maps out the database modeling, records can be referenced in the configuration files by wrapping unique identifiers around double enclosing brackets. The deployed content can be individually secured by attaching clearance attributes to their description thus ensuring that view/edit privileges are granted to eligible users only. The framework also provides tools for securely writing into a database. Fully HTML5-compliant multi-step forms can be generated from their JSON description to assure that the submitted data comply with a series of constraints. Input validation is carried out primarily on the server- side but, following progressive enhancement guidelines, verification might also be performed on the client-side by enabling specific markup data attributes which are then handed over to the jQuery validation plug-in. User monitoring is accomplished by thoroughly logging user requests along with any POST data. Documentation is built from the source code using the phpDocumentor tool and made readily available for developers online. Fence, therefore, speeds up the implementation of Web interfaces and reduces the response time to requirement changes by minimizing maintenance overhead.
Automation of surface observations program
NASA Technical Reports Server (NTRS)
Short, Steve E.
1988-01-01
At present, surface weather observing methods are still largely manual and labor intensive. Through the nationwide implementation of Automated Surface Observing Systems (ASOS), this situation can be improved. Two ASOS capability levels are planned. The first is a basic-level system which will automatically observe the weather parameters essential for aviation operations and will operate either with or without supplemental contributions by an observer. The second is a more fully automated, stand-alone system which will observe and report the full range of weather parameters and will operate primarily in the unattended mode. Approximately 250 systems are planned by the end of the decade. When deployed, these systems will generate the standard hourly and special long-line transmitted weather observations, as well as provide continuous weather information direct to airport users. Specific ASOS configurations will vary depending upon whether the operation is unattended, minimally attended, or fully attended. The major functions of ASOS are data collection, data processing, product distribution, and system control. The program phases of development, demonstration, production system acquisition, and operational implementation are described.
Fractional Factorial Experiment Designs to Minimize Configuration Changes in Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
DeLoach, Richard; Cler, Daniel L.; Graham, Albert B.
2002-01-01
This paper serves as a tutorial to introduce the wind tunnel research community to configuration experiment designs that can satisfy resource constraints in a configuration study involving several variables, without arbitrarily eliminating any of them from the experiment initially. The special case of a configuration study featuring variables at two levels is examined in detail. This is the type of study in which each configuration variable has two natural states - 'on or off', 'deployed or not deployed', 'low or high', and so forth. The basic principles are illustrated by results obtained in configuration studies conducted in the Langley National Transonic Facility and in the ViGYAN Low Speed Tunnel in Hampton, Virginia. The crucial role of interactions among configuration variables is highlighted with an illustration of difficulties that can be encountered when they are not properly taken into account.
Transformable and Reconfigurable Entry, Descent and Landing Systems and Methods
NASA Technical Reports Server (NTRS)
Fernandez, Ian M. (Inventor); Venkatapathy, Ethiraj (Inventor); Hamm, Kenneth R. (Inventor)
2014-01-01
A deployable aerodynamic decelerator structure includes a ring member disposed along a central axis of the aerodynamic decelerator, a plurality of jointed rib members extending radially from the ring member and a flexible layer attached to the plurality of rib members. A deployment device is operable to reconfigure the flexible layer from a stowed configuration to a deployed configuration by movement of the rib members and a control device is operable to redirect a lift vector of the decelerator structure by changing an orientation of the flexible layer.
A Kirigami shape memory polymer honeycomb concept for deployment
NASA Astrophysics Data System (ADS)
Neville, Robin M.; Chen, Jianguo; Guo, Xiaogang; Zhang, Fenghua; Wang, Wenxin; Dobah, Yousef; Scarpa, Fabrizio; Leng, Jinsong; Peng, Hua-Xin
2017-05-01
We present a shape memory polymer (SMP) honeycomb with tuneable and shape morphing mechanical characteristics. Kirigami (Origami with cutting allowed) techniques have been used to design and manufacture the honeycomb. The cellular structure described in this work has styrene SMP hinges that create the shape change and the deployment actuation. To create a large volumetric deployment, the Kirigami open honeycomb configuration has been designed by setting an initial three-dimensional re-entrant auxetic (negative Poisson’s ratio) configuration, while the final honeycomb shape assume a convex (positive Poisson’s ratio) layout. A model was developed to predict the shape change of the structure, and compared to experimental results from a demonstrator honeycomb deployment test.
Self-Deploying Trusses Containing Shape-Memory Polymers
NASA Technical Reports Server (NTRS)
Schueler, Robert M.
2008-01-01
Composite truss structures are being developed that can be compacted for stowage and later deploy themselves to full size and shape. In the target applications, these smart structures will precisely self-deploy and support a large, lightweight space-based antenna. Self-deploying trusses offer a simple, light, and affordable alternative to articulated mechanisms or inflatable structures. The trusses may also be useful in such terrestrial applications as variable-geometry aircraft components or shelters that can be compacted, transported, and deployed quickly in hostile environments. The truss technology uses high-performance shape-memory-polymer (SMP) thermoset resin reinforced with fibers to form a helical composite structure. At normal operating temperatures, the truss material has the structural properties of a conventional composite. This enables truss designs with required torsion, bending, and compression stiffness. However, when heated to its designed glass transition temperature (Tg), the SMP matrix acquires the flexibility of an elastomer. In this state, the truss can be compressed telescopically to a configuration encompassing a fraction of its original volume. When cooled below Tg, the SMP reverts to a rigid state and holds the truss in the stowed configuration without external constraint. Heating the materials above Tg activates truss deployment as the composite material releases strain energy, driving the truss to its original memorized configuration without the need for further actuation. Laboratory prototype trusses have demonstrated repeatable self-deployment cycles following linear compaction exceeding an 11:1 ratio (see figure).
Self-deploying photovoltaic power system
NASA Technical Reports Server (NTRS)
Colozza, Anthony J. (Inventor)
1993-01-01
A lightweight flexible photovoltaic (PV) blanket is attached to a support structure of initially stowed telescoping members. The deployment mechanism comprises a series of extendable and rotatable columns. As these columns are extended the PV blanket is deployed to its proper configuration.
Thermal/structural design verification strategies for large space structures
NASA Technical Reports Server (NTRS)
Benton, David
1988-01-01
Requirements for space structures of increasing size, complexity, and precision have engendered a search for thermal design verification methods that do not impose unreasonable costs, that fit within the capabilities of existing facilities, and that still adequately reduce technical risk. This requires a combination of analytical and testing methods. This requires two approaches. The first is to limit thermal testing to sub-elements of the total system only in a compact configuration (i.e., not fully deployed). The second approach is to use a simplified environment to correlate analytical models with test results. These models can then be used to predict flight performance. In practice, a combination of these approaches is needed to verify the thermal/structural design of future very large space systems.
Atmospheric verification mission for the TSS/STARFAC tethered satellite
NASA Technical Reports Server (NTRS)
Wood, George M., Jr.; Stuart, Thomas D.; Crouch, Donald S.; Deloach, Richard; Brown, Kenneth G.
1991-01-01
Two types of a tethered satellite system (TSS) - a basic 1.8-m-diameter spherical spacecraft and the Shuttle Tethered Aerothermodynamic Research Facility (STARFAC) are considered. Issues related to the deployment and retrieval of a large satellite with exceedingly long tethers are discussed, and the objectives of an Atmospheric Verification Mission (ATM) are outlined. Focus is concentrated on the ATM satellite which will fly after TSS-1 and before the fully instrumented and costlier TSS-2. The differences between the AVM and TSS-2, including the configuration of the aerodynamic stabilizers, instrumentation, and the materials of construction are outlined. The basic Kevlar tether defined for the TSS-2 is being considered for use with the AVM, however, a complex tether is under consideration as well.
Scientific Cluster Deployment and Recovery - Using puppet to simplify cluster management
NASA Astrophysics Data System (ADS)
Hendrix, Val; Benjamin, Doug; Yao, Yushu
2012-12-01
Deployment, maintenance and recovery of a scientific cluster, which has complex, specialized services, can be a time consuming task requiring the assistance of Linux system administrators, network engineers as well as domain experts. Universities and small institutions that have a part-time FTE with limited time for and knowledge of the administration of such clusters can be strained by such maintenance tasks. This current work is the result of an effort to maintain a data analysis cluster (DAC) with minimal effort by a local system administrator. The realized benefit is the scientist, who is the local system administrator, is able to focus on the data analysis instead of the intricacies of managing a cluster. Our work provides a cluster deployment and recovery process (CDRP) based on the puppet configuration engine allowing a part-time FTE to easily deploy and recover entire clusters with minimal effort. Puppet is a configuration management system (CMS) used widely in computing centers for the automatic management of resources. Domain experts use Puppet's declarative language to define reusable modules for service configuration and deployment. Our CDRP has three actors: domain experts, a cluster designer and a cluster manager. The domain experts first write the puppet modules for the cluster services. A cluster designer would then define a cluster. This includes the creation of cluster roles, mapping the services to those roles and determining the relationships between the services. Finally, a cluster manager would acquire the resources (machines, networking), enter the cluster input parameters (hostnames, IP addresses) and automatically generate deployment scripts used by puppet to configure it to act as a designated role. In the event of a machine failure, the originally generated deployment scripts along with puppet can be used to easily reconfigure a new machine. The cluster definition produced in our CDRP is an integral part of automating cluster deployment in a cloud environment. Our future cloud efforts will further build on this work.
Seven-panel solar wing deployment and on-orbit maneuvering analyses
NASA Astrophysics Data System (ADS)
Hwang, Earl
2005-05-01
BSS developed a new generation high power (~20kW) solar array to meet the customer demands. The high power solar array had the north and south solar wings of which designs were identical. Each side of the solar wing consists of three main conventional solar panels and the four-side panel swing-out new design. The fully deployed solar array surface area is 966 ft2. It was a quite challenging task to define the solar array's optimum design parameters and deployment scheme for such a huge solar array's successful deployment and on-orbit maneuvering. Hence, a deployable seven-flex-panel solar wing nonlinear math model and a fully deployed solar array/bus-payload math model were developed with the Dynamic Analysis and Design System (DADS) program codes utilizing the inherited and empirical data. Performing extensive parametric analyses with the math model, the optimum design parameters and the orbit maneuvering /deployment schemes were determined to meet all the design requirements, and for the successful solar wing deployment on-orbit.
NASA Technical Reports Server (NTRS)
Shaffer, Joe R.; Headley, David E.
1993-01-01
Compact storable components expand to create large shelter. Fully deployed structure provides large, unobstructed bay. Deployed trusses support wall and roof blankets. Provides temporary cover for vehicles, people, and materials. Terrestrial version used as garage, hangar, or large tent.
Dynamic analysis of the large deployable reflector
NASA Technical Reports Server (NTRS)
Calleson, Robert E.; Scott, A. Don
1987-01-01
The Large Deployable Reflector (LDR) is to be an astronomical observatory orbiting above Earth's obscuring atmosphere and operating in the spectral range between 30 microns and 1000 microns wavelength. The LDR will be used to study such astronomical phenomena as stellar and galactic formation, cosmology, and planetary atmospheres. The LDR will be the first observatory to be erected and assembled in space. This distinction brings with it several major technological challenges such as the development of ultra-lightweight deployable mirrors, advanced mirror fabrication techniques, advanced structures, and control of vibrations due to various sources of excitation. The purpose of this analysis is to provide an assessment of the vibrational response due to secondary mirror chopping and LDR slewing. The dynamic response of two 20-m LDR configurations was studied. Two mirror support configurations were investigated for the Ames concept, the first employs a six-strut secondary mirror support structure, while the second uses a triple-bipod support design. All three configurations were modeled using a tetrahedral truss design for the primary mirror support structure. Response resulting from secondary mirror chopping was obtained for the two Ames configurations, and the response of the primary mirror from slewing was obtained for all three configurations.
NASA Technical Reports Server (NTRS)
Raboin, Jasen L. (Inventor); Valle, Gerard D. (Inventor); Edeen, Gregg A. (Inventor); delaFuente, Horacio M. (Inventor); Schneider, William C. (Inventor); Spexarth, Gary R. (Inventor); Pandya, Shalini Gupta (Inventor); Johnson, Christopher J. (Inventor)
2003-01-01
An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch or pre-deployed configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.
Development of deployable structures for large space platform systems, volume 1
NASA Technical Reports Server (NTRS)
1982-01-01
Generic deployable spacecraft configurations and deployable platform systems concepts were identified. Sizing, building block concepts, orbiter packaging, thermal analysis, cost analysis, and mass properties analysis as related to platform systems integration are considered. Technology needs are examined and the major criteria used in concept selection are delineated. Requirements for deployable habitat modules, tunnels, and OTV hangars are considered.
Java bioinformatics analysis web services for multiple sequence alignment--JABAWS:MSA.
Troshin, Peter V; Procter, James B; Barton, Geoffrey J
2011-07-15
JABAWS is a web services framework that simplifies the deployment of web services for bioinformatics. JABAWS:MSA provides services for five multiple sequence alignment (MSA) methods (Probcons, T-coffee, Muscle, Mafft and ClustalW), and is the system employed by the Jalview multiple sequence analysis workbench since version 2.6. A fully functional, easy to set up server is provided as a Virtual Appliance (VA), which can be run on most operating systems that support a virtualization environment such as VMware or Oracle VirtualBox. JABAWS is also distributed as a Web Application aRchive (WAR) and can be configured to run on a single computer and/or a cluster managed by Grid Engine, LSF or other queuing systems that support DRMAA. JABAWS:MSA provides clients full access to each application's parameters, allows administrators to specify named parameter preset combinations and execution limits for each application through simple configuration files. The JABAWS command-line client allows integration of JABAWS services into conventional scripts. JABAWS is made freely available under the Apache 2 license and can be obtained from: http://www.compbio.dundee.ac.uk/jabaws.
Sheath-Based Rollable Lenticular-Shaped and Low-Stiction Composite Boom
NASA Technical Reports Server (NTRS)
Fernandez, Juan M. (Inventor)
2018-01-01
Various embodiments provide rollable and deployable composite booms that may be used in a wide range of applications both for space and terrestrial structural solutions. Various embodiment composite booms may be bistable, i.e. having a stable strain energy minimum in the coiled configuration as well as the in the deployed configuration. In various embodiments, a boom may be fabricated by aligning two independent tape-springs front-to-front encircled by a durable seamless polymer sleeve. The durable seamless polymer sleeve may allow the two tape-springs to slide past each other during the coiling/deployment process so as to reduce, e.g., minimize, shear and its derived problems.
Airframe noise prediction evaluation
NASA Technical Reports Server (NTRS)
Yamamoto, Kingo J.; Donelson, Michael J.; Huang, Shumei C.; Joshi, Mahendra C.
1995-01-01
The objective of this study is to evaluate the accuracy and adequacy of current airframe noise prediction methods using available airframe noise measurements from tests of a narrow body transport (DC-9) and a wide body transport (DC-10) in addition to scale model test data. General features of the airframe noise from these aircraft and models are outlined. The results of the assessment of two airframe prediction methods, Fink's and Munson's methods, against flight test data of these aircraft and scale model wind tunnel test data are presented. These methods were extensively evaluated against measured data from several configurations including clean, slat deployed, landing gear-deployed, flap deployed, and landing configurations of both DC-9 and DC-10. They were also assessed against a limited number of configurations of scale models. The evaluation was conducted in terms of overall sound pressure level (OASPL), tone corrected perceived noise level (PNLT), and one-third-octave band sound pressure level (SPL).
Janiga, Gábor; Daróczy, László; Berg, Philipp; Thévenin, Dominique; Skalej, Martin; Beuing, Oliver
2015-11-05
The optimal treatment of intracranial aneurysms using flow diverting devices is a fundamental issue for neuroradiologists as well as neurosurgeons. Due to highly irregular manifold aneurysm shapes and locations, the choice of the stent and the patient-specific deployment strategy can be a very difficult decision. To support the therapy planning, a new method is introduced that combines a three-dimensional CFD-based optimization with a realistic deployment of a virtual flow diverting stent for a given aneurysm. To demonstrate the feasibility of this method, it was applied to a patient-specific intracranial giant aneurysm that was successfully treated using a commercial flow diverter. Eight treatment scenarios with different local compressions were considered in a fully automated simulation loop. The impact on the corresponding blood flow behavior was evaluated qualitatively as well as quantitatively, and the optimal configuration for this specific case was identified. The virtual deployment of an uncompressed flow diverter reduced the inflow into the aneurysm by 24.4% compared to the untreated case. Depending on the positioning of the local stent compression below the ostium, blood flow reduction could vary between 27.3% and 33.4%. Therefore, a broad range of potential treatment outcomes was identified, illustrating the variability of a given flow diverter deployment in general. This method represents a proof of concept to automatically identify the optimal treatment for a patient in a virtual study under certain assumptions. Hence, it contributes to the improvement of virtual stenting for intracranial aneurysms and can support physicians during therapy planning in the future. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2006-07-01
The purpose of this report, "Working Paper National Costs of the Metropolitan ITS Infrastructure: Updated with 2005 Deployment Data," is to update the estimates of the costs remaining to fully deploy Intelligent Transportation Systems (ITS) infrastru...
High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned
NASA Technical Reports Server (NTRS)
Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig
2014-01-01
The integration and deployment testing of the High Gain Antenna System (HGAS) for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission-degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity-negation mechanism, and use of dynamic modeling is described and lessons learned presented
High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned
NASA Technical Reports Server (NTRS)
Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig
2014-01-01
The integration and deployment testing of the High Gain Antenna System for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based, deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity negation mechanism, and use of dynamic modeling is described and lessons learned presented.
GPM Solar Array Gravity Negated Deployment Testing
NASA Technical Reports Server (NTRS)
Penn, Jonathan; Johnson, Chris; Lewis, Jesse; Dear, Trevin; Stewart, Alphonso
2014-01-01
NASA Goddard Space Flight Center (GSFC) successfully developed a g-negation support system for use on the solar arrays of the Global Precipitation Measurement (GPM) Satellite. This system provides full deployment capability at the subsystem and observatory levels. In addition, the system provides capability for deployed configuration first mode frequency verification testing. The system consists of air pads, a support structure, an air supply, and support tables. The g-negation support system was used to support all deployment activities for flight solar array deployment testing.
PIV Logon Configuration Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Glen Alan
This document details the configurations and enhancements implemented to support the usage of federal Personal Identity Verification (PIV) Card for logon on unclassified networks. The guidance is a reference implementation of the configurations and enhancements deployed at the Los Alamos National Laboratory (LANL) by Network and Infrastructure Engineering – Core Services (NIE-CS).
Configuration Analysis of the ERS Points in Large-Volume Metrology System
Jin, Zhangjun; Yu, Cijun; Li, Jiangxiong; Ke, Yinglin
2015-01-01
In aircraft assembly, multiple laser trackers are used simultaneously to measure large-scale aircraft components. To combine the independent measurements, the transformation matrices between the laser trackers’ coordinate systems and the assembly coordinate system are calculated, by measuring the enhanced referring system (ERS) points. This article aims to understand the influence of the configuration of the ERS points that affect the transformation matrix errors, and then optimize the deployment of the ERS points to reduce the transformation matrix errors. To optimize the deployment of the ERS points, an explicit model is derived to estimate the transformation matrix errors. The estimation model is verified by the experiment implemented in the factory floor. Based on the proposed model, a group of sensitivity coefficients are derived to evaluate the quality of the configuration of the ERS points, and then several typical configurations of the ERS points are analyzed in detail with the sensitivity coefficients. Finally general guidance is established to instruct the deployment of the ERS points in the aspects of the layout, the volume size and the number of the ERS points, as well as the position and orientation of the assembly coordinate system. PMID:26402685
New Antenna Deployment, Pointing and Supporting Mechanism
NASA Technical Reports Server (NTRS)
Costabile, V.; Lumaca, F.; Marsili, P.; Noni, G.; Portelli, C.
1996-01-01
On ITALSAT Flight 2, the Italian telecommunications satellite, the two L-Ka antennas (Tx and Rx) use two large deployable reflectors (2000-mm diameter), whose deployment and fine pointing functions are accomplished by means of an innovative mechanism concept. The Antenna Deployment & Pointing Mechanism and Supporting Structure (ADPMSS) is based on a new configuration solution, where the reflector and mechanisms are conceived as an integrated, self-contained assembly. This approach is different from the traditional configuration solution. Typically, a rigid arm is used to deploy and then support the reflector in the operating position, and an Antenna Pointing Mechanism (APM) is normally interposed between the reflector and the arm for steering operation. The main characteristics of the ADPMSS are: combined implementation of deployment, pointing, and reflector support; optimum integration of active components and interface matching with the satellite platform; structural link distribution to avoid hyperstatic connections; very light weight and; high performance in terms of deployment torque margin and pointing range/accuracy. After having successfully been subjected to all component-level qualification and system-level acceptance tests, two flight ADPMSS mechanisms (one for each antenna) are now integrated on ITALSAT F2 and are ready for launch. This paper deals with the design concept, development, and testing program performed to qualify the ADPMSS mechanism.
Space Qualification Testing of a Shape Memory Alloy Deployable CubeSat Antenna
2016-09-15
the SMA deployment in the space environment. The HCT QHA successfully passed all required NASA General Environmental Verification Standards space... NASA /JPL parabolic deployable antenna design [28] .................. 19 Figure 11. SERC and NASA /JPL parabolic antenna prototype [28...19 Figure 12. SERC and NASA /JPL parabolic antenna stowed configuration [28] ............. 20 Figure 13. JPL KaPDA antenna [29
Cable-catenary large antenna concept
NASA Technical Reports Server (NTRS)
Akle, W.
1985-01-01
Deployable to very large diameters (over 1000 ft), while still remaining compatible with a complete satellite system launch by STS, the cable-catenary antenna comprises: 8 radial deployable boom masts; a deployable hub and feed support center mast; balanced front and back, radial and circumferential catenary cabling for highly accurate (mm) surface control; no interfering cabling in the antenna field; and an RF reflecting mesh supported on the front catenaries. Illustrations show the antenna-satellite system deployed and stowed configurations; the antenna deployment sequence; the design analysis logic; the sizing analysis output, and typical parametric design data.
NASA Astrophysics Data System (ADS)
Downey, Austin; Laflamme, Simon; Ubertini, Filippo
2017-12-01
Condition evaluation of wind turbine blades is difficult due to their large size, complex geometry and lack of economic and scalable sensing technologies capable of detecting, localizing, and quantifying faults over a blade’s global area. A solution is to deploy inexpensive large area electronics over strategic areas of the monitored component, analogous to sensing skin. The authors have previously proposed a large area electronic consisting of a soft elastomeric capacitor (SEC). The SEC is highly scalable due to its low cost and ease of fabrication, and can, therefore, be used for monitoring large-scale components. A single SEC is a strain sensor that measures the additive strain over a surface. Recently, its application in a hybrid dense sensor network (HDSN) configuration has been studied, where a network of SECs is augmented with a few off-the-shelf strain gauges to measure boundary conditions and decompose the additive strain to obtain unidirectional surface strain maps. These maps can be analyzed to detect, localize, and quantify faults. In this work, we study the performance of the proposed sensing skin at conducting condition evaluation of a wind turbine blade model in an operational environment. Damage in the form of changing boundary conditions and cuts in the monitored substrate are induced into the blade. An HDSN is deployed onto the interior surface of the substrate, and the blade excited in a wind tunnel. Results demonstrate the capability of the HDSN and associated algorithms to detect, localize, and quantify damage. These results show promise for the future deployment of fully integrated sensing skins deployed inside wind turbine blades for condition evaluation.
A geopressured-geothermal, solar conversion system to produce potable water
NASA Astrophysics Data System (ADS)
Nitschke, George Samuel
A design is presented for recovering Geopressured-Geothermal (GPGT) reservoir brines for conversion into solar ponds to renewably power coastal seawater desalination. The hot, gas-cut, high-pressure GPGT brine is flowed through a well-bore to surface systems which concentrate the brine in multi-effect evaporators and recover the gas. The gas and distilled water are used for thermal enhanced oil recovery, and the concentrated brine is used to construct solar ponds. The thermal energy from the solar ponds is used to produce electricity, which is then used to renewably power coastal desalination plants for large-scale potable water production from the sea. The design is proposed for deployment in California and Texas, where the two largest U.S. GPGT basins exist. Projections show that the design fully deployed in California could provide 5 MAF/y (million acre-ft per year) while yielding a 45% Rate of Return (combined oil and water revenues); the California municipal water load is 10 MAF/y. The dissertation contains a feasibility study of the design approach, supported by engineering analyses and simulation models, included in the appendices. A range of systems configurations and GPGT flow conditions are modeled to illustrate how the approach lends itself to modular implementation, i.e., incrementally installing a single system, tens of systems, up to 1000 systems, which corresponds to full deployment in California for the scenario analyzed. The dissertation includes a method for launching and piloting the approach, starting from a single system installation.
Qualification of the Tropical Rainfall Measuring Mission Solar Array Deployment System
NASA Technical Reports Server (NTRS)
Lawrence, Jon
1998-01-01
The Tropical Rainfall Measuring Mission (TRMM) solar arrays are placed into orbital configuration by a complex deployment system. Its two wings each comprise twin seven square solar panels located by a twelve foot articulated boom. The four spring-driven hinge lines per wing are rate-limited by viscous dampers. The wings are stowed against the spacecraft kinematically, and released by five pyrotechnically-actuated mechanisms. Since deployment failure would be catastrophic, a total of 17 deployment tests were completed to qualify the system for the worst cast launch environment. This successful testing culminated in the flawless deployment of the solar arrays on orbit, 15 minutes after launch in November 1997. The custom gravity negation system used to perform deployment testing is modular to allow its setup in several locations, including the launch site in Japan. Both platform and height can be varied, to meet the requirements of the test configuration and the test facility. Its air pad floatation system meets tight packaging requirements, allowing installation while stowed against the spacecraft without breaking any flight interfaces, and avoiding interference during motion. This system was designed concurrently with the deployment system, to facilitate its installation, to aid in the integration of the flight system to the spacecraft, while demonstrating deployment capabilities. Critical parameters for successful testing were alignment of deployment axes and tables to gravity, alignment of table seams to minimize discontinuities, and minimizing pressure drops in the air supply system. Orbital performance was similar to that predicted by ground testing.
Uncertainty-based Optimization Algorithms in Designing Fractionated Spacecraft
Ning, Xin; Yuan, Jianping; Yue, Xiaokui
2016-01-01
A fractionated spacecraft is an innovative application of a distributive space system. To fully understand the impact of various uncertainties on its development, launch and in-orbit operation, we use the stochastic missioncycle cost to comprehensively evaluate the survivability, flexibility, reliability and economy of the ways of dividing the various modules of the different configurations of fractionated spacecraft. We systematically describe its concept and then analyze its evaluation and optimal design method that exists during recent years and propose the stochastic missioncycle cost for comprehensive evaluation. We also establish the models of the costs such as module development, launch and deployment and the impacts of their uncertainties respectively. Finally, we carry out the Monte Carlo simulation of the complete missioncycle costs of various configurations of the fractionated spacecraft under various uncertainties and give and compare the probability density distribution and statistical characteristics of its stochastic missioncycle cost, using the two strategies of timing module replacement and non-timing module replacement. The simulation results verify the effectiveness of the comprehensive evaluation method and show that our evaluation method can comprehensively evaluate the adaptability of the fractionated spacecraft under different technical and mission conditions. PMID:26964755
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Kurt; James, Scott C.; Roberts, Jesse D.
A modelling framework identifies deployment locations for current-energy-capture devices that maximise power output while minimising potential environmental impacts. The framework, based on the Environmental Fluid Dynamics Code, can incorporate site-specific environmental constraints. Over a 29-day period, energy outputs from three array layouts were estimated for: (1) the preliminary configuration (baseline), (2) an updated configuration that accounted for environmental constraints, (3) and an improved configuration subject to no environmental constraints. Of these layouts, array placement that did not consider environmental constraints extracted the most energy from flow (4.38 MW-hr/day), 19% higher than output from the baseline configuration (3.69 MW-hr/day). Array placementmore » that considered environmental constraints removed 4.27 MW-hr/day of energy (16% more than baseline). In conclusion, this analysis framework accounts for bathymetry and flow-pattern variations that typical experimental studies cannot, demonstrating that it is a valuable tool for identifying improved array layouts for field deployments.« less
Wooten, Nikki R
2012-01-01
This study examined the associations between deployment cycle stressors, post-traumatic stress symptoms (PTSS), and resilience in Army National Guard (ARNG) women deployed to Operations Enduring Freedom and Iraqi Freedom. Resilience was also tested as a mediator. Hierarchical linear regression indicated that deployment and post-deployment stressors were positively associated, and resilience was negatively associated with PTSS. Resilience fully mediated the association between post-deployment stressors and PTSS. Findings suggest assessing deployment and post-deployment stressors in ARNG women may be helpful in identifying those at risk for severe PTSS; and highlight the potential of individual-level resilient characteristics in mitigating the adverse impact of post-deployment stressors.
DOT National Transportation Integrated Search
2006-10-01
Recent gage restraint measurement system (GRMS) developments include the redesign of GRMS vehicles to conduct testing from a deployable axle instead of using freight truck mounted axle and GRMS on hi-rail vehicles. This new test configuration results...
Deployable M-braced truss structure
NASA Technical Reports Server (NTRS)
Mikulas, M. M., Jr. (Inventor); Rhodes, M. D. (Inventor)
1986-01-01
A deployable M-braced truss structure, efficiently packaged into a compact stowed position and expandable to an operative position at the use site is described. The M-braced configuration effectively separates tension compression and shear in the structure and permits efficient structural design. Both diagonals and longerons telescope from an M-braced base unit and deploy either pneumatically, mechanically by springs or cables, or by powered reciprocating mechanisms. Upon full deployment, the diagonals and longerons lock into place with a simple latch mechanism.
Deployment Simulation of Ultra-Lightweight Inflatable Structures
NASA Technical Reports Server (NTRS)
Wang, John T.; Johnson, Arthur R.
2002-01-01
Dynamic deployment analyses of folded inflatable tubes are conducted to investigate modeling issues related to the deployment of solar sail booms. The analyses are necessary because ground tests include gravity effects and may poorly represent deployment in space. A control volume approach, available in the LS-DYNA nonlinear dynamic finite element code, and the ideal gas law are used to simulate the dynamic inflation deployment process. Three deployment issues are investigated for a tube packaged in a Z-fold configuration. The issues are the effect of the rate of inflation, the effect of residual air, and the effect of gravity. The results of the deployment analyses reveal that the time and amount of inflation gas required to achieve a full deployment are related to these issues.
ESA Science Archives, VO tools and remote Scientific Data reduction in Grid Architectures
NASA Astrophysics Data System (ADS)
Arviset, C.; Barbarisi, I.; de La Calle, I.; Fajersztejn, N.; Freschi, M.; Gabriel, C.; Gomez, P.; Guainazzi, M.; Ibarra, A.; Laruelo, A.; Leon, I.; Micol, A.; Parrilla, E.; Ortiz, I.; Osuna, P.; Salgado, J.; Stebe, A.; Tapiador, D.
2008-08-01
This paper presents the latest functionalities of the ESA Science Archives located at ESAC, Spain, in particular, the following archives : the ISO Data Archive (IDA {http://iso.esac.esa.int/ida}), the XMM-Newton Science Archive (XSA {http://xmm.esac.esa.int/xsa}), the Integral SOC Science Data Archive (ISDA {http://integral.esac.esa.int/isda}) and the Planetary Science Archive (PSA {http://www.rssd.esa.int/psa}), both the classical and the map-based Mars Express interfaces. Furthermore, the ESA VOSpec {http://esavo.esac.esa.int/vospecapp} spectra analysis tool is described, which allows to access and display spectral information from VO resources (both real observational and theoretical spectra), including access to Lines database and recent analysis functionalities. In addition, we detail the first implementation of RISA (Remote Interface for Science Analysis), a web service providing remote users the ability to create fully configurable XMM-Newton data analysis workflows, and to deploy and run them on the ESAC Grid. RISA makes fully use of the inter-operability provided by the SIAP (Simple Image Access Protocol) services as data input, and at the same time its VO-compatible output can directly be used by general VO-tools.
Application of the ADAMS program to deployable space truss structures
NASA Technical Reports Server (NTRS)
Calleson, R. E.
1985-01-01
The need for a computer program to perform kinematic and dynamic analyses of large truss structures while deploying from a packaged configuration in space led to the evaluation of several existing programs. ADAMS (automatic dynamic analysis of mechanical systems), a generalized program from performing the dynamic simulation of mechanical systems undergoing large displacements, is applied to two concepts of deployable space antenna units. One concept is a one cube folding unit of Martin Marietta's Box Truss Antenna and the other is a tetrahedral truss unit of a Tetrahedral Truss Antenna. Adequate evaluation of dynamic forces during member latch-up into the deployed configuration is not yet available from the present version of ADAMS since it is limited to the assembly of rigid bodies. Included is a method for estimating the maximum bending stress in a surface member at latch-up. Results include member displacement and velocity responses during extension and an example of member bending stresses at latch-up.
Software as a service approach to sensor simulation software deployment
NASA Astrophysics Data System (ADS)
Webster, Steven; Miller, Gordon; Mayott, Gregory
2012-05-01
Traditionally, military simulation has been problem domain specific. Executing an exercise currently requires multiple simulation software providers to specialize, deploy, and configure their respective implementations, integrate the collection of software to achieve a specific system behavior, and then execute for the purpose at hand. This approach leads to rigid system integrations which require simulation expertise for each deployment due to changes in location, hardware, and software. Our alternative is Software as a Service (SaaS) predicated on the virtualization of Night Vision Electronic Sensors (NVESD) sensor simulations as an exemplary case. Management middleware elements layer self provisioning, configuration, and integration services onto the virtualized sensors to present a system of services at run time. Given an Infrastructure as a Service (IaaS) environment, enabled and managed system of simulations yields a durable SaaS delivery without requiring user simulation expertise. Persistent SaaS simulations would provide on demand availability to connected users, decrease integration costs and timelines, and benefit the domain community from immediate deployment of lessons learned.
Deployment Simulation Methods for Ultra-Lightweight Inflatable Structures
NASA Technical Reports Server (NTRS)
Wang, John T.; Johnson, Arthur R.
2003-01-01
Two dynamic inflation simulation methods are employed for modeling the deployment of folded thin-membrane tubes. The simulations are necessary because ground tests include gravity effects and may poorly represent deployment in space. The two simulation methods are referred to as the Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method. They are available in the LS-DYNA nonlinear dynamic finite element code. Both methods are suitable for modeling the interactions between the inflation gas and the thin-membrane tube structures. The CV method only considers the pressure induced by the inflation gas in the simulation, while the ALE method models the actual flow of the inflation gas. Thus, the transient fluid properties at any location within the tube can be predicted by the ALE method. Deployment simulations of three packaged tube models; namely coiled, Z-folded, and telescopically-folded configurations, are performed. Results predicted by both methods for the telescopically-folded configuration are correlated and computational efficiency issues are discussed.
Efficient structures for geosynchronous spacecraft solar arrays. Phase 1, 2 and 3
NASA Astrophysics Data System (ADS)
Adams, L. R.; Hedgepeth, J. M.
1981-09-01
Structural concepts for deploying and supporting lightweight solar-array blankets for geosynchronous electrical power are evaluated. It is recommended that the STACBEAM solar-array system should be the object of further study and detailed evaluation. The STACBEAM system provides high stiffness at low mass, and with the use of a low mass deployment mechanism, full structural properties can be maintained throughout deployment. The stowed volume of the STACBEAM is acceptably small, and its linear deployment characteristic allows periodic attachments to the solar-array blanket to be established in the stowed configuration and maintained during deployment.
Efficient structures for geosynchronous spacecraft solar arrays. Phase 1, 2 and 3
NASA Technical Reports Server (NTRS)
Adams, L. R.; Hedgepeth, J. M.
1981-01-01
Structural concepts for deploying and supporting lightweight solar-array blankets for geosynchronous electrical power are evaluated. It is recommended that the STACBEAM solar-array system should be the object of further study and detailed evaluation. The STACBEAM system provides high stiffness at low mass, and with the use of a low mass deployment mechanism, full structural properties can be maintained throughout deployment. The stowed volume of the STACBEAM is acceptably small, and its linear deployment characteristic allows periodic attachments to the solar-array blanket to be established in the stowed configuration and maintained during deployment.
The Development and Flight Testing of an Aerially Deployed Unmanned Aerial System
NASA Astrophysics Data System (ADS)
Smith, Andrew
An investigation into the feasibility of aerial deployed unmanned aerial vehicles was completed. The investigation included the development and flight testing of multiple unmanned aerial systems to investigate the different components of potential aerial deployment missions. The project consisted of two main objectives; the first objective dealt with the development of an airframe capable of surviving aerial deployment from a rocket and then self assembling from its stowed configuration into its flight configuration. The second objective focused on the development of an autopilot capable of performing basic guidance, navigation, and control following aerial deployment. To accomplish these two objectives multiple airframes were developed to verify their completion experimentally. The first portion of the project, investigating the feasibility of surviving an aerial deployment, was completed using a fixed wing glider that following a successful deployment had 52 seconds of controlled flight. Before developing the autopilot in the second phase of the project, the glider was significantly upgraded to fix faults discovered in the glider flight testing and to enhance the system capabilities. Unfortunately to conform to outdoor flight restrictions imposed by the university and the Federal Aviation Administration it was required to switch airframes before flight testing of the new fixed wing platform could begin. As a result, an autopilot was developed for a quadrotor and verified experimentally completely indoors to remain within the limits of governing policies.
Radiation Tolerant Intelligent Memory Stack (RTIMS)
NASA Technical Reports Server (NTRS)
Ng, Tak-kwong; Herath, Jeffrey A.
2006-01-01
The Radiation Tolerant Intelligent Memory Stack (RTIMS), suitable for both geostationary and low earth orbit missions, has been developed. The memory module is fully functional and undergoing environmental and radiation characterization. A self-contained flight-like module is expected to be completed in 2006. RTIMS provides reconfigurable circuitry and 2 gigabits of error corrected or 1 gigabit of triple redundant digital memory in a small package. RTIMS utilizes circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuitries are stacked into a module of 42.7mm x 42.7mm x 13.00mm. Triple module redundancy, current limiting, configuration scrubbing, and single event function interrupt detection are employed to mitigate radiation effects. The mitigation techniques significantly simplify system design. RTIMS is well suited for deployment in real-time data processing, reconfigurable computing, and memory intensive applications.
Design, characterization, and sensitivity of the supernova trigger system at Daya Bay
NASA Astrophysics Data System (ADS)
Wei, Hanyu; Lebanowski, Logan; Li, Fei; Wang, Zhe; Chen, Shaomin
2016-02-01
Providing an early warning of galactic supernova explosions from neutrino signals is important in studying supernova dynamics and neutrino physics. A dedicated supernova trigger system has been designed and installed in the data acquisition system at Daya Bay and integrated into the worldwide Supernova Early Warning System (SNEWS). Daya Bay's unique feature of eight identically-designed detectors deployed in three separate experimental halls makes the trigger system naturally robust against cosmogenic backgrounds, enabling a prompt analysis of online triggers and a tight control of the false-alert rate. The trigger system is estimated to be fully sensitive to 1987A-type supernova bursts throughout most of the Milky Way. The significant gain in sensitivity of the eight-detector configuration over a mass-equivalent single detector is also estimated. The experience of this online trigger system is applicable to future projects with spatially distributed detectors.
Deployment Methods for an Origami-Inspired Rigid-Foldable Array
NASA Technical Reports Server (NTRS)
Zirbel, Shannon A.; Trease, Brian P.; Magleby, Spencer P.; Howell, Larry L.
2014-01-01
The purpose of this work is to evaluate several deployment methods for an origami-inspired solar array at two size scales: 25-meter array and CubeSat array. The array enables rigid panel deployment and introduces new concepts for actuating CubeSat deployables. The design for the array was inspired by the origami flasher model (Lang, 1997; Shafer, 2001). Figure 1 shows the array prototyped from Garolite and Kapton film at the CubeSat scale. Prior work demonstrated that rigid panels like solar cells could successfully be folded into the final stowed configuration without requiring the panels to flex (Zirbel, Lang, Thomson, & al., 2013). The design of the array is novel and enables efficient use of space. The array can be wrapped around the central bus of the spacecraft in the case of the large array, or can accommodate storage of a small instrument payload in the case of the CubeSat array. The radial symmetry of this array around the spacecraft is ideally suited for spacecraft that need to spin. This work focuses on several actuation methods for a one-time deployment of the array. The array is launched in its stowed configuration and it will be deployed when it is in space. Concepts for both passive and active actuation were considered.
Supporting performance and configuration management of GTE cellular networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Ming; Lafond, C.; Jakobson, G.
GTE Laboratories, in cooperation with GTE Mobilnet, has developed and deployed PERFFEX (PERFormance Expert), an intelligent system for performance and configuration management of cellular networks. PERFEX assists cellular network performance and radio engineers in the analysis of large volumes of cellular network performance and configuration data. It helps them locate and determine the probable causes of performance problems, and provides intelligent suggestions about how to correct them. The system combines an expert cellular network performance tuning capability with a map-based graphical user interface, data visualization programs, and a set of special cellular engineering tools. PERFEX is in daily use atmore » more than 25 GTE Mobile Switching Centers. Since the first deployment of the system in late 1993, PERFEX has become a major GTE cellular network performance optimization tool.« less
USDA-ARS?s Scientific Manuscript database
Service oriented architectures allow modelling engines to be hosted over the Internet abstracting physical hardware configuration and software deployments from model users. Many existing environmental models are deployed as desktop applications running on user's personal computers (PCs). Migration ...
Deploying Liquid Filaments and Suspensions with an Electrohydrodynamic Liquid Bridge
NASA Astrophysics Data System (ADS)
Saville, D. A.
2005-11-01
We show that a dynamic liquid bridge can be formed by deploying the filament issuing from a Taylor Cone onto a surface with the nozzle and surface held at different electric potentials. This configuration differs sharply form the familiar `electrospinning' configuration where the filament whips violently. Nevertheless, although the aspect ratio (length/diameter) exceeds the Plateau limit by more than two orders of magnitude the bridge is stable. Here we report on the stability characteristics and show that such a bridge can be used to `print' sub-micron scale features on a moving surface with both clear fluids and suspensions.
Convoluted nozzle design for the RL10 derivative 2B engine
NASA Technical Reports Server (NTRS)
1985-01-01
The convoluted nozzle is a conventional refractory metal nozzle extension that is formed with a portion of the nozzle convoluted to show the extendible nozzle within the length of the rocket engine. The convoluted nozzle (CN) was deployed by a system of four gas driven actuators. For spacecraft applications the optimum CN may be self-deployed by internal pressure retained, during deployment, by a jettisonable exit closure. The convoluted nozzle is included in a study of extendible nozzles for the RL10 Engine Derivative 2B for use in an early orbit transfer vehicle (OTV). Four extendible nozzle configurations for the RL10-2B engine were evaluated. Three configurations of the two position nozzle were studied including a hydrogen dump cooled metal nozzle and radiation cooled nozzles of refractory metal and carbon/carbon composite construction respectively.
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Rajan, M.
1977-01-01
The effects of gravity gradient torques during boom deployment maneuvers of a spinning spacecraft are examined. Configurations where the booms extended only along the hub principal axes and where one or two booms are offset from the principal axes were considered. For the special case of symmetric deployment (principal axes booms) the stability boundaries are determined, and a stability chart is used to study the system behavior. Possible cases of instability during this type of maneuver are identified. In the second configuration an expression for gravity torque about the hub center of mass was developed. The nonlinear equations of motion are solved numerically, and the substantial influence of the gravity torque during asymmetric deployment maneuvers is indicated.
Steering Concept of a 2-Blade Heliogyro Solar Sail Spacecraft
NASA Technical Reports Server (NTRS)
Wiwattananon, Peerawan; Bryant, Robert G.
2017-01-01
Solar sails can be classified into two groups based on their method of stabilization: 1) truss supported, and 2) centrifugally (spin) supported. The truss configuration requires masts or booms to deploy, support, and rigidize the sails whereas the spin type uses the spacecraft’s centrifugal force to deploy and stabilize the sails. The truss-supported type sail has a scaling limitation because as the sail area gets larger, the sail is increasingly more difficult to make and stow: the masts and booms get heavier, occupying more volume, and have increased risk during deployment. This major disadvantage limits the size of the sail area. The spin type comes in two configurations: 1) spinning square/disk sail and 2) heliogyro sail. This spinning square/disk sail architecture suffers the same sail area limitation as the truss-supported sail.
Hinge specification for a square-faceted tetrahedral truss
NASA Technical Reports Server (NTRS)
Adams, L. R.
1984-01-01
A square-faceted tetrahedral truss is geometrically analyzed. Expressions are developed for single degree of freedom hinges which allow packaging of the structure into a configuration in which all members are parallel and closely packed in a square pattern. Deployment is sequential, thus providing control over the structure during deployment.
Nelson, Kurt; James, Scott C.; Roberts, Jesse D.; ...
2017-06-05
A modelling framework identifies deployment locations for current-energy-capture devices that maximise power output while minimising potential environmental impacts. The framework, based on the Environmental Fluid Dynamics Code, can incorporate site-specific environmental constraints. Over a 29-day period, energy outputs from three array layouts were estimated for: (1) the preliminary configuration (baseline), (2) an updated configuration that accounted for environmental constraints, (3) and an improved configuration subject to no environmental constraints. Of these layouts, array placement that did not consider environmental constraints extracted the most energy from flow (4.38 MW-hr/day), 19% higher than output from the baseline configuration (3.69 MW-hr/day). Array placementmore » that considered environmental constraints removed 4.27 MW-hr/day of energy (16% more than baseline). In conclusion, this analysis framework accounts for bathymetry and flow-pattern variations that typical experimental studies cannot, demonstrating that it is a valuable tool for identifying improved array layouts for field deployments.« less
Fang, Yibin; Yu, Ying; Cheng, Jiyong; Wang, Shengzhang; Wang, Kuizhong; Liu, Jian-Min; Huang, Qinghai
2013-01-01
Adjusting hemodynamics via flow diverter (FD) implantation is emerging as a novel method of treating cerebral aneurysms. However, most previous FD-related hemodynamic studies were based on virtual FD deployment, which may produce different hemodynamic outcomes than realistic (in vivo) FD deployment. We compared hemodynamics between virtual FD and realistic FD deployments in rabbit aneurysm models using computational fluid dynamics (CFD) simulations. FDs were implanted for aneurysms in 14 rabbits. Vascular models based on rabbit-specific angiograms were reconstructed for CFD studies. Real FD configurations were reconstructed based on micro-CT scans after sacrifice, while virtual FD configurations were constructed with SolidWorks software. Hemodynamic parameters before and after FD deployment were analyzed. According to the metal coverage (MC) of implanted FDs calculated based on micro-CT reconstruction, 14 rabbits were divided into two groups (A, MC >35%; B, MC <35%). Normalized mean wall shear stress (WSS), relative residence time (RRT), inflow velocity, and inflow volume in Group A were significantly different (P<0.05) from virtual FD deployment, but pressure was not (P>0.05). The normalized mean WSS in Group A after realistic FD implantation was significantly lower than that of Group B. All parameters in Group B exhibited no significant difference between realistic and virtual FDs. This study confirmed MC-correlated differences in hemodynamic parameters between realistic and virtual FD deployment. PMID:23823503
NASA Astrophysics Data System (ADS)
Gadkari, Siddharth; Gu, Sai
2018-06-01
A two-dimensional numerical fluid model is developed for studying the influence of packing configurations on dielectric barrier discharge (DBD) characteristics. Discharge current profiles and time averaged electric field strength, electron number density, and electron temperature distributions are compared for the three DBD configurations, plain DBD with no packing, partially packed DBD, and fully packed DBD. The results show that a strong change in discharge behaviour occurs when a DBD is fully packed as compared to partial packing or no packing. While the average electric field strength and electron temperature of a fully packed DBD are higher relative to the other DBD configurations, the average electron density is substantially lower and may impede the DBD reactor performance under certain operating conditions. Possible scenarios of the synergistic effect of the combination of plasma with catalysis are also discussed.
NASA Technical Reports Server (NTRS)
Tseng, K.; Morino, L.
1975-01-01
A general formulation is presented for the analysis of steady and unsteady, subsonic and supersonic aerodynamics for complex aircraft configurations. The theoretical formulation, the numerical procedure, the description of the program SOUSSA (steady, oscillatory and unsteady, subsonic and supersonic aerodynamics) and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, AGARD wing-tail interference in both subsonic and supersonic flows as well as flutter analysis results are included. The theoretical formulation is based upon an integral equation, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered. Here small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis. This is particularly convenient for the linear systems analysis of the whole aircraft.
Deployment and Evaluation of the Helicopter In-Flight Tracking System (HITS)
NASA Technical Reports Server (NTRS)
Daskalakis, Anastasios; Martone, Patrick
2004-01-01
The Gulf of Mexico airspace has two major operating regions: low altitude offshore (below 7,000 ft) and high altitude oceanic (above 18,000 ft). Both regions suffer significant inefficiencies due to the lack of continuous surveillance during Instrument Flight Rules operations. Provision of surveillance in the offshore region is hindered by its low-altitude nature, which makes coverage by conventional radars economically infeasible. Significant portions of the oceanic sectors are inaccessible to shore-based sensors, as they are beyond line-of-sight. Two emerging surveillance technologies were assessed that are relatively low cost and can be deployed on offshore platforms Wide Area Multilateration and Automatic Dependent Surveillance Broadcast. Performance criteria were formulated using existing FAA specifications. Three configurations were developed and deployed representative of systems serving full-size and reduced-sized domestic terminal areas and an en-route/oceanic region. These configurations were evaluated during nine flight test periods using fixed- and rotary-wing aircraft.
Deployable reflector configurations
NASA Astrophysics Data System (ADS)
Meinel, A. B.; Meinel, M. P.; Woolf, N. J.
Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.
Deployable reflector configurations. [for space telescope
NASA Technical Reports Server (NTRS)
Meinel, A. B.; Meinel, M. P.; Woolf, N. J.
1983-01-01
Both the theoretical reasons for considering a non-circular format for the Large Deployable Reflector, and a potentially realizable concept for such a device, are discussed. The optimum systems for diffraction limited telescopes with incoherent detection have either a single filled aperture, or two such apertures as an interferometer to synthesize a larger aperture. For a single aperture of limited area, a reflector in the form of a slot can be used to give increased angular resolution. It is shown how a 20 x 8 meter telescope can be configured to fit the Space Shuttle bay, and deployed with relatively simple operations. The relationship between the sunshield design and the inclination of the orbit is discussed. The possible use of the LDR as a basic module to permit the construction of supergiant space telescopes and interferometers both for IR/submm studies and for the entire ultraviolet through mm wave spectral region is discussed.
NASA Technical Reports Server (NTRS)
Getliffe, Gwendolyn V.; Inamdar, Niraj K.; Masterson, Rebecca; Miller, David W.
2012-01-01
This report, concluding a one-year NIAC Phase I study, describes a new structural and mechanical technique aimed at reducing the mass and increasing the deployed-to-stowed length and volume ratios of spacecraft systems. This technique uses the magnetic fields generated by electrical current passing through coils of high-temperature superconductors (HTSs) to support spacecraft structures and deploy them to operational configurations from their stowed positions inside a launch vehicle fairing.
Bio-inspired structural bistability employing elastomeric origami for morphing applications
NASA Astrophysics Data System (ADS)
Daynes, Stephen; Trask, Richard S.; Weaver, Paul M.
2014-12-01
A structural concept based upon the principles of adaptive morphing cells is presented whereby controlled bistability from a flat configuration into a textured arrangement is shown. The material consists of multiple cells made from silicone rubber with locally reinforced regions based upon kirigami principles. On pneumatic actuation these cells fold or unfold based on the fold lines created by the interaction of the geometry with the reinforced regions. Each cell is able to maintain its shape in either a retracted or deployed state, without the aid of mechanisms or sustained actuation, due to the existence of structural bistability. Mathematical quantification of the surface texture is introduced, based on out-of-plane deviations of a deployed structure compared to a reference plane. Additionally, finite element analysis is employed to characterize the geometry and stability of an individual cell during actuation and retraction. This investigation highlights the critical role that angular rotation, at the center of each cell, plays on the deployment angle as it transitions through the elastically deployed configuration. The analysis of this novel concept is presented and a pneumatically actuated proof-of-concept demonstrator is fabricated.
The Galileo high gain antenna deployment anomaly
NASA Technical Reports Server (NTRS)
Johnson, Michael R.
1994-01-01
On April 11, 1991, the Galileo spacecraft executed a sequence that would open the spacecraft's High Gain Antenna. The Antenna's launch restraint had been released just after deployment sequence, the antenna, which opens like an umbrella, never reached the fully deployed position. The analyses and tests that followed allowed a conclusive determination of the likely failure mechanisms and pointed to some strategies to use for recovery of the high gain antenna.
A Modular Instrumentation System for NASA's Habitat Demonstration Unit
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Kennedy, Kriss; Yim, Hester; Wagner, Raymond S.; Hong, Todd; Studor, George; Delaune, Paul
2010-01-01
NASA's human spaceflight program is focused on developing technologies to expand the reaches of human exploration and science activities beyond low earth orbit. A critical aspect of living in space or on planetary surfaces is habitation, which provides a safe and comfortable space in which humans can live and work. NASA is seeking out the best option for habitation by exploring several different concepts through the Habitat Demonstration Unit (HDU) project. The purpose of this HDU is to develop a fully autonomous habitation system that enables human exploration of space. One critical feature of the HDU project that helps to accomplish its mission of autonomy is the instrumentation system that monitors key subsystems operating within a Habitat configuration. The following paper will discuss previous instrumentation systems used in analog habitat concepts and how the current instrumentation system being implemented on the HDU1-PEM, or pressurized excursion module, is building upon the lessons learned of those previous systems. Additionally, this paper will discuss the benefits and the limitations of implementing a wireless sensor network (WSN) as the basis for data transport in the instrumentation system. Finally, this paper will address the experiences and lessons learned with integration, testing prior to deployment, and field testing at the JSC rock yard. NASA is developing the HDU1-PEM as a step towards a fully autonomous habitation system that enables human exploration of space. To accomplish this purpose, the HDU project is focusing on development, integration, testing, and evaluation of habitation systems. The HDU will be used as a technology pull, testbed, and integration environment in which to advance NASA's understanding of alternative mission architectures, requirements, and operations concepts definition and validation. This project is a multi-year effort. In 2010, the HDU1-PEM will be in a pressurized excursion module configuration, and in 2011 the module will be reconfigured for a pressurized core module configuration. Each year the HDU configurations will undergo testing at NASA's Desert Research and Technology Studies (D-RaTS) in Arizona [1]. As part of this project, a modular instrumentation system is developed to meet the monitoring needs of the HDU subsystems and to integrate with the current command and data handling infrastructure that has been developed for the project. The main objective of this study is to provide for the monitoring needs of the HDU. The requirements necessary to meet this objective are developed by working with the subsystem managers of the HDU to understand their monitoring needs. Additionally, the instrumentation system design leverages knowledge and lessons learned from previous studies, such as the inflatable habitat health monitoring system that was deployed in Antarctica [2], the integrated health monitoring system developed for NASA's Microhab [3], and the JSC Lunar Habitat Wireless Testbed to demonstrate a "standardsbased" approach to a wireless instrumentation system [4]. The HDU also requires flexibility in reconfiguration options, and it is necessary to demonstrate and evaluate a modular approach to an instrumentation system. Thus, the instrumentation system is designed in two parts: the primary system employs a standard WSN configuration, and the secondary system employs a wired USB hub. The WSN design provides for reconfiguration or replacement of sensors due to malfunctions or upgrades by using a wireless node that accepts ten instrument inputs and wirelessly transmits the data to the command and data handling system. The USB hub is necessary for those instruments that operate using a wired USB connection, although the design attempts to limit the amount of sensors that need to be wired connections.
Evaluation of Airframe Noise Reduction Concepts via Simulations Using a Lattice Boltzmann Approach
NASA Technical Reports Server (NTRS)
Fares, Ehab; Casalino, Damiano; Khorrami, Mehdi R.
2015-01-01
Unsteady computations are presented for a high-fidelity, 18% scale, semi-span Gulfstream aircraft model in landing configuration, i.e. flap deflected at 39 degree and main landing gear deployed. The simulations employ the lattice Boltzmann solver PowerFLOW® to simultaneously capture the flow physics and acoustics in the near field. Sound propagation to the far field is obtained using a Ffowcs Williams and Hawkings acoustic analogy approach. In addition to the baseline geometry, which was presented previously, various noise reduction concepts for the flap and main landing gear are simulated. In particular, care is taken to fully resolve the complex geometrical details associated with these concepts in order to capture the resulting intricate local flow field thus enabling accurate prediction of their acoustic behavior. To determine aeroacoustic performance, the farfield noise predicted with the concepts applied is compared to high-fidelity simulations of the untreated baseline configurations. To assess the accuracy of the computed results, the aerodynamic and aeroacoustic impact of the noise reduction concepts is evaluated numerically and compared to experimental results for the same model. The trends and effectiveness of the simulated noise reduction concepts compare well with measured values and demonstrate that the computational approach is capable of capturing the primary effects of the acoustic treatment on a full aircraft model.
NASA Astrophysics Data System (ADS)
Venkateswara, Y.; Gupta, Sachin; Samatham, S. Shanmukharao; Varma, Manoj Raama; Enamullah, Suresh, K. G.; Alam, Aftab
2018-02-01
We report the structural, magnetic, and transport properties of the polycrystalline CrVTiAl alloy along with first-principles calculations. The alloy crystallizes in a LiMgPdSn-type structure with a lattice parameter of 6.14 Å at room temperature. The absence of the (111) peak along with the presence of a weak (200) peak indicates the antisite disorder of Al with Cr and V atoms, which is different from the pure DO3 type. Magnetization measurements reveal a magnetic transition near 710 K, a coercive field of ˜100 Oe at 3 K, and a moment of ˜10-3μB/f .u . These observations are indicative of fully compensated ferrimagnetism in the alloy, which is confirmed by theoretical modeling. The temperature coefficient of resistivity is found to be negative, signaling the semiconducting nature. However, the absence of exponential dependence indicates the semiconducting nature with gapless/spin-gapless behavior. Electronic and magnetic properties of CrVTiAl for all three possible crystallographic configurations are studied theoretically. All the configurations are found to be different forms of semiconductors. The ground-state configuration is a fully compensated ferrimagnet with band gaps of 0.58 and 0.30 eV for the spin-up and -down bands, respectively. The next-higher-energy configuration is also fully compensated ferrimagnetic but has a spin-gapless semiconducting nature. The highest-energy configuration corresponds to a nonmagnetic, gapless semiconductor. The energy differences among these configurations are quite small (<1 mRy /atom ), which hints that, at finite temperatures, the alloy exists in a disordered phase, which is a mixture of the three configurations. By taking into account the theoretical and experimental findings, we conclude that CrVTiAl is a fully compensated ferrimagnet with a predominantly spin-gapless semiconducting nature.
Apollo 9 Lunar Module in lunar landing configuration
NASA Technical Reports Server (NTRS)
1969-01-01
View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on the Lunar Module 'Spider' has been deployed. Note Lunar Module's upper hatch and docking tunnel.
System and Apparatus for Deploying a Satellite
NASA Technical Reports Server (NTRS)
Santos, Luis H. (Inventor); Hudeck, John D. (Inventor)
2016-01-01
A frictionless satellite constraint system is provided. The constraint system includes at least one clamp bar configured to restrain a satellite within the constraint system in an axial direction. The constraint system also includes a plurality of pins configured to restrain the satellite within the constraint system in a lateral direction.
Advanced Structural and Inflatable Hybrid Spacecraft Module
NASA Technical Reports Server (NTRS)
Schneider, William C. (Inventor); delaFuente, Horacio M. (Inventor); Edeen, Gregg A. (Inventor); Kennedy, Kriss J. (Inventor); Lester, James D. (Inventor); Gupta, Shalini (Inventor); Hess, Linda F. (Inventor); Lin, Chin H. (Inventor); Malecki, Richard H. (Inventor); Raboin, Jasen L. (Inventor)
2001-01-01
An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.
The Installation of Satellite Modems on SEIS-UK Supported Remote Seismic Deployments
NASA Astrophysics Data System (ADS)
Horleston, A. C.; Brisbourne, A.; Hawthorn, D.
2006-12-01
SEIS-UK, as the UK's NERC funded national seismic equipment facility, is frequently involved in large, often remote, temporary seismic networks (running for up to 2 years). Up till now all these deployments have been managed solely by on-site maintenance but now SEIS-UK is investing in a number of satellite modems. The Michrosat 2400 OEM Modems, provided by Wireless Innovations Ltd, will be integrated within Guralp DCM data-logger units and will be used to provide regular state-of-health reports from remote networks. They will also provide the user the facility to communicate with the deployed systems, apply configuration changes and request system re-boots. This should lead to less instrument down-time and allow for more focussed site visits and thus, hopefully, reduce the cost (and servicing time) of remote installations. The Michrosat Modems are relatively low-powered and draw a maximum current of 2.5A (at 4.4v) for a few microseconds when initialising a call, dropping to bursts of approximately 1A when transmitting. This makes them ideally suited to temporary deployments relying on solar charged battery power. We will present examples of the configuration and typical deployment of the modems and the types of data transmitted.
Ball Screw Actuator Including a Stop with an Integral Guide
NASA Technical Reports Server (NTRS)
Wingett, Paul T. (Inventor); Perek, John (Inventor); Geck, Kellan (Inventor)
2015-01-01
An actuator includes a housing assembly, a ball nut, a ball screw, and a ball screw stop. The ball nut is rotationally mounted in the housing assembly, is adapted to receive an input torque, and is configured, upon receipt thereof, to rotate and supply a drive force. The ball screw is mounted within the housing assembly and extends through the ball nut. The ball screw has a first end and a second end, and is coupled to receive the drive force from the ball nut. The ball screw is configured, upon receipt of the drive force, to selectively translate between a stow position and a deploy position. The ball screw stop is mounted on the ball screw to translate therewith and is configured to at selectively engage the housing assembly while the ball screw is translating, and engage the ball nut when the ball screw is in the deploy position.
High resolution earth observation from geostationary orbit by optical aperture synthesys
NASA Astrophysics Data System (ADS)
Mesrine, M.; Thomas, E.; Garin, S.; Blanc, P.; Alis, C.; Cassaing, F.; Laubier, D.
2017-11-01
In this paper, we describe Optical Aperture Synthesis (OAS) imaging instrument concepts studied by Alcatel Alenia Space under a CNES R&T contract in term of technical feasibility. First, the methodology to select the aperture configuration is proposed, based on the definition and quantification of image quality criteria adapted to an OAS instrument for direct imaging of extended objects. The following section presents, for each interferometer type (Michelson and Fizeau), the corresponding optical configurations compatible with a large field of view from GEO orbit. These optical concepts take into account the constraints imposed by the foreseen resolution and the implementation of the co-phasing functions. The fourth section is dedicated to the analysis of the co-phasing methodologies, from the configuration deployment to the fine stabilization during observation. Finally, we present a trade-off analysis allowing to select the concept wrt mission specification and constraints related to instrument accommodation under launcher shroud and in-orbit deployment.
NASA Technical Reports Server (NTRS)
Cleveland, Paul; Parrish, Keith; Thomson, Shaun; Marsh, James; Comber, Brian
2016-01-01
The James Webb Space Telescope (JWST), successor to the Hubble Space Telescope, will be the largest astronomical telescope ever sent into space. To observe the very first light of the early universe, JWST requires a large deployed 6.5-meter primary mirror cryogenically cooled to less than 50 Kelvin. Three scientific instruments are further cooled via a large radiator system to less than 40 Kelvin. A fourth scientific instrument is cooled to less than 7 Kelvin using a combination pulse-tube Joule-Thomson mechanical cooler. Passive cryogenic cooling enables the large scale of the telescope which must be highly folded for launch on an Ariane 5 launch vehicle and deployed once on orbit during its journey to the second Earth-Sun Lagrange point. Passive cooling of the observatory is enabled by the deployment of a large tennis court sized five layer Sunshield combined with the use of a network of high efficiency radiators. A high purity aluminum heat strap system connects the three instrument's detector systems to the radiator systems to dissipate less than a single watt of parasitic and instrument dissipated heat. JWST's large scale features, while enabling passive cooling, also prevent the typical flight configuration fully-deployed thermal balance test that is the keystone of most space missions' thermal verification plans. This paper describes the JWST Core 2 Test, which is a cryogenic thermal balance test of a full size, high fidelity engineering model of the Observatory's 'Core' area thermal control hardware. The 'Core' area is the key mechanical and cryogenic interface area between all Observatory elements. The 'Core' area thermal control hardware allows for temperature transition of 300K to approximately 50 K by attenuating heat from the room temperature IEC (instrument electronics) and the Spacecraft Bus. Since the flight hardware is not available for test, the Core 2 test uses high fidelity and flight-like reproductions.
Study of a 30-M Boom For Solar Sail-Craft: Model Extendibility and Control Strategy
NASA Technical Reports Server (NTRS)
Keel, Leehyun
2005-01-01
Space travel propelled by solar sails is motivated by the fact that the momentum exchange that occurs when photons are reflected and/or absorbed by a large solar sail generates a small but constant acceleration. This acceleration can induce a constant thrust in very large sails that is sufficient to maintain a polar observing satellite in a constant position relative to the Sun or Earth. For long distance propulsion, square sails (with side length greater than 150 meters) can reach Jupiter in two years and Pluto in less than ten years. Converting such design concepts to real-world systems will require accurate analytical models and model parameters. This requires extensive structural dynamics tests. However, the low mass and high flexibility of large and light weight structures such as solar sails makes them unsuitable for ground testing. As a result, validating analytical models is an extremely difficult problem. On the other hand, a fundamental question can be asked. That is whether an analytical model that represents a small-scale version of a solar-sail boom can be extended to much larger versions of the same boom. To answer this question, we considered a long deployable boom that will be used to support the solar sails of the sail-craft. The length of fully deployed booms of the actual solar sail-craft will exceed 100 meters. However, the test-bed we used in our study is a 30 meter retractable boom at MSFC. We first develop analytical models based on Lagrange s equations and the standard Euler-Bernoulli beam. Then the response of the models will be compared with test data of the 30 meter boom at various deployed lengths. For this stage of study, our analysis was limited to experimental data obtained at 12ft and 18ft deployment lengths. The comparison results are positive but speculative. To observe properly validate the analytic model, experiments at longer deployment lengths, up to the full 30 meter, have been requested. We expect the study to answer the extendibility question of the analytical models. In operation, rapid temperature changes can be induced in solar sails as they transition from day to night and vice versa. This generates time dependent thermally induced forces, which may in turn create oscillation in structural members such as booms. Such oscillations have an adverse effect on system operations, precise pointing of instruments and antennas and can lead to self excited vibrations of increasing amplitude. The latter phenomenon is known as thermal flutter and can lead to the catastrophic failure of structural systems. To remedy this problem, an active vibration suppression system has been developed. It was shown that piezoelectric actuators used in conjunction with a Proportional Feedback Control (PFC) law (or Velocity Feedback Control (VFC) law) can induce moments that can suppress structural vibrations and prevent flutter instability in spacecraft booms. In this study, we will investigate control strategies using piezoelectric transducers in active, passive, and/or hybrid control configurations. Advantages and disadvantages of each configuration will be studied and experiments to determine their capabilities and limitations will be planned. In particular, special attention will be given to the hybrid control, also known as energy recycling, configuration due to its unique characteristics.
Analysis of the Flight Motions of a Small Deployable Glider Configuration
NASA Technical Reports Server (NTRS)
Coe, Paul L., Jr.
1975-01-01
An investigation was conducted at the request of the U.S. Air Force Avionics Laboratory to analyze the flight characteristics of a small uncontrolled glider with folding wings. The study consisted of wind-tunnel tests of an actual glider and a theoretical analysis of the performance, stability, and trimmability of the configuration.
Dynamic Deployment Simulations of Inflatable Space Structures
NASA Technical Reports Server (NTRS)
Wang, John T.
2005-01-01
The feasibility of using Control Volume (CV) method and the Arbitrary Lagrangian Eulerian (ALE) method in LSDYNA to simulate the dynamic deployment of inflatable space structures is investigated. The CV and ALE methods were used to predict the inflation deployments of three folded tube configurations. The CV method was found to be a simple and computationally efficient method that may be adequate for modeling slow inflation deployment sine the inertia of the inflation gas can be neglected. The ALE method was found to be very computationally intensive since it involves the solving of three conservative equations of fluid as well as dealing with complex fluid structure interactions.
Deployment dynamics and control of large-scale flexible solar array system with deployable mast
NASA Astrophysics Data System (ADS)
Li, Hai-Quan; Liu, Xiao-Feng; Guo, Shao-Jing; Cai, Guo-Ping
2016-10-01
In this paper, deployment dynamics and control of large-scale flexible solar array system with deployable mast are investigated. The adopted solar array system is introduced firstly, including system configuration, deployable mast and solar arrays with several mechanisms. Then dynamic equation of the solar array system is established by the Jourdain velocity variation principle and a method for dynamics with topology changes is introduced. In addition, a PD controller with disturbance estimation is designed to eliminate the drift of spacecraft mainbody. Finally the validity of the dynamic model is verified through a comparison with ADAMS software and the deployment process and dynamic behavior of the system are studied in detail. Simulation results indicate that the proposed model is effective to describe the deployment dynamics of the large-scale flexible solar arrays and the proposed controller is practical to eliminate the drift of spacecraft mainbody.
NASA Technical Reports Server (NTRS)
1982-01-01
Design and test data for packaging, deploying, and assembling structures for near term space platform systems, were provided by testing light type hardware in the Neutral Buoyancy Simulator. An optimum or near optimum structural configuration for varying degrees of deployment utilizing different levels of EVA and RMS was achieved. The design of joints and connectors and their lock/release mechanisms were refined to improve performance and operational convenience. The incorporation of utilities into structural modules to determine their effects on packaging and deployment was evaluated. By simulation tests, data was obtained for stowage, deployment, and assembly of the final structural system design to determine construction timelines, and evaluate system functioning and techniques.
Lessons Learned in the Flight Qualification of the S-NPP and NOAA-20 Solar Array Mechanisms
NASA Technical Reports Server (NTRS)
Helfrich, Daniel; Sexton, Adam
2018-01-01
Deployable solar arrays are the energy source used on almost all Earth orbiting spacecraft and their release and deployment are mission-critical; fully testing them on the ground is a challenging endeavor. The 8 meter long deployable arrays flown on two sequential NASA weather satellites were each comprised of three rigid panels almost 2 meters wide. These large panels were deployed by hinges comprised of stacked constant force springs, eddy current dampers, and were restrained through launch by a set of four releasable hold-downs using shape memory alloy release devices. The ground qualification testing of such unwieldy deployable solar arrays, whose design was optimized for orbital operations, proved to be quite challenging and provides numerous lessons learned. A paperwork review and follow-up inspection after hardware storage determined that there were negative torque margins and missing lubricant, this paper will explain how these unexpected issues were overcome. The paper will also provide details on how the hinge subassemblies, the fully-assembled array, and mechanical ground support equipment were subsequently improved and qualified for a follow-on flight with considerably less difficulty. The solar arrays built by Ball Aerospace Corp. for the Suomi National Polar Partnership (S-NPP) satellite and the Joint Polar Satellite System (JPSS-1) satellite (now NOAA-20) were both successfully deployed on-obit and are performing well.
Lessons Learned in the Flight Qualification of the S-NPP and NOAA-20 Solar Array Mechanisms
NASA Technical Reports Server (NTRS)
Sexton, Adam; Helfrich, Dan
2018-01-01
Deployable solar arrays are the energy source used on almost all Earth orbiting spacecraft and their release and deployment are mission-critical; fully testing them on the ground is a challenging endeavor. The 8 meter long deployable arrays flown on two sequential NASA weather satellites were each comprised of three rigid panels almost 2 meters wide. These large panels were deployed by hinges comprised of stacked constant force springs, eddy current dampers, and were restrained through launch by a set of four releasable hold-downs using shape memory alloy release devices. The ground qualification testing of such unwieldy deployable solar arrays, whose design was optimized for orbital operations, proved to be quite challenging and provides numerous lessons learned. A paperwork review and follow-up inspection after hardware storage determined that there were negative torque margins and missing lubricant, this paper will explain how these unexpected issues were overcome. The paper will also provide details on how the hinge subassemblies, the fully-assembled array, and mechanical ground support equipment were subsequently improved and qualified for a follow-on flight with considerably less difficulty. The solar arrays built by Ball Aerospace Corp. for the Suomi National Polar Partnership (SNPP) satellite and the Joint Polar Satellite System (JPSS-1) satellite (now NOAA-20) were both successfully deployed on-obit and are performing well.
Zwierzak, Iwona; Cosentino, Daria; Narracott, Andrew J; Bonhoeffer, Philipp; Diaz, Vanessa; Fenner, John W; Schievano, Silvia
2014-12-01
To quantify variability of in vitro and in vivo measurement of 3D device geometry using 3D and biplanar imaging. Comparison of stent reconstruction is reported for in vitro coronary stent deployment (using micro-CT and optical stereo-photogrammetry) and in vivo pulmonary valve stent deformation (using 4DCT and biplanar fluoroscopy). Coronary stent strut length and inter-strut angle were compared in the fully deployed configuration. Local (inter-strut angle) and global (dog-boning ratio) measures of stent deformation were reported during stent deployment. Pulmonary valve stent geometry was assessed throughout the cardiac cycle by reconstruction of stent geometry and measurement of stent diameter. Good agreement was obtained between methods for assessment of coronary stent geometry with maximum disagreement of +/- 0.03 mm (length) and +/- 3 degrees (angle). The stent underwent large, non-uniform, local deformations during balloon inflation, which did not always correlate with changes in stent diameter. Three-dimensional reconstruction of the pulmonary valve stent was feasible for all frames of the fluoroscopy and for 4DCT images, with good correlation between the diameters calculated from the two methods. The largest compression of the stent during the cardiac cycle was 6.98% measured from fluoroscopy and 7.92% from 4DCT, both in the most distal ring. Quantitative assessment of stent geometry reconstructed from biplanar imaging methods in vitro and in vivo has shown good agreement with geometry reconstructed from 3D techniques. As a result of their short image acquisition time, biplanar methods may have significant advantages in the measurement of dynamic 3D stent deformation.
flexCloud: Deployment of the FLEXPART Atmospheric Transport Model as a Cloud SaaS Environment
NASA Astrophysics Data System (ADS)
Morton, Don; Arnold, Dèlia
2014-05-01
FLEXPART (FLEXible PARTicle dispersion model) is a Lagrangian transport and dispersion model used by a growing international community. We have used it to simulate and forecast the atmospheric transport of wildfire smoke, volcanic ash and radionuclides. Additionally, FLEXPART may be run in backwards mode to provide information for the determination of emission sources such as nuclear emissions and greenhouse gases. This open source software is distributed in source code form, and has several compiler and library dependencies that users need to address. Although well-documented, getting it compiled, set up, running, and post-processed is often tedious, making it difficult for the inexperienced user. Our interest is in moving scientific modeling and simulation activities from site-specific clusters and supercomputers to a cloud model as a service paradigm. Choosing FLEXPART for our prototyping, our vision is to construct customised IaaS images containing fully-compiled and configured FLEXPART codes, including pre-processing, execution and postprocessing components. In addition, with the inclusion of a small web server in the image, we introduce a web-accessible graphical user interface that drives the system. A further initiative being pursued is the deployment of multiple, simultaneous FLEXPART ensembles in the cloud. A single front-end web interface is used to define the ensemble members, and separate cloud instances are launched, on-demand, to run the individual models and to conglomerate the outputs into a unified display. The outcome of this work is a Software as a Service (Saas) deployment whereby the details of the underlying modeling systems are hidden, allowing modelers to perform their science activities without the burden of considering implementation details.
Lessons Learnt from and Sustainability of Adopting a Personal Learning Environment & Network (Ple&N)
ERIC Educational Resources Information Center
Tsui, Eric; Sabetzadeh, Farzad
2014-01-01
This paper describes the feedback from the configuration and deployment of a Personal Learning Environment & Network (PLE&N) tool to support peer-based social learning for university students and graduates. An extension of an earlier project in which a generic and PLE&N was deployed for all learners, the current PLE&N is a…
INSAT-2A and 2B development mechanisms
NASA Technical Reports Server (NTRS)
Sathyanarayan, M. N.; Rao, M. Nageswara; Nataraju, B. S.; Viswanatha, N.; Chary, M. Laxmana; Balan, K. S.; Murthy, V. Sridhara; Aller, Raju; Kumar, H. N. Suresha
1994-01-01
The Indian National Satellite (INSAT) 2A and 2B have deployment mechanisms for deploying the solar array, two C/S band antenna reflectors and a coilable lattice boom with sail. The mechanisms have worked flawlessly on both satellites. The configuration details, precautions taken during the design phase, the test philosophy, and some of the critical analysis activities are discussed.
High-resolution deployable telescope for satellite applications
NASA Astrophysics Data System (ADS)
Pica, Giulia; Ciofaniello, Luca; Mattei, Stefania; Santovito, Maria Rosaria; Gardi, Roberto
2004-02-01
CO.RI.S.T.A. is involved in a research project funded by ASI (Italian Space Agency), named MITAR, to realise a very compact, lightweight deployable telescope in visible wavelength range to get earth images from microsatellite. The satellite considered for the study is SMART, an Italian academic multi-mission microsatellite operating on circular sun-synchronous orbits. The telescope has a Cassegrain configuration with a parabolic primary mirror and an hyperbolic secondary mirror. This configuration guaranties the best aberrations corrections and the best compactness. The primary and the secondary mirror are 40 cm and 10 cm in diameter respectively, while their relative distance is 52cm. Mirrors will be realised with innovative composite material to obtain lightweight optical elements. Thanks to its limited size and light weight, the system can be easily deployed. The deployable structure will keep the secondary mirror close to the primary one during launch phases. Once in orbit, a system of lenticular tape springs and dumpers will extend the structure. The structure will be enclosed in multilayer blankets that will shield the sensor from light and will thermally stabilize the structure, preventing excessive thermal deformation. The images will be detected by a very high resolution CCD camera installed onboard the satellite.
Adaptable Deployable Entry & Placement Technology (ADEPT) for Cubesat Delivery to Mars Surface
NASA Technical Reports Server (NTRS)
Wercinski, Paul
2014-01-01
The Adaptable, Deployable Entry and Placement Technology (ADEPT), uses a mechanical skeleton to deploy a revolutionary carbon fabric system that serves as both heat shield and primary structure during atmospheric entry. The NASA ADEPT project, currently funded by the Game Changing Development Program in STMD is currently focused on 1m class hypersonic decelerators for the delivery of very small payloads ( 5 kg) to locations of interest in an effort to leverage low-cost platforms to rapidly mature the technology while simultaneously delivering high-value science. Preliminary mission design and aerothermal performance testing in arcjets have shown the ADEPT system is quite capable of safe delivery of cubesats to Mars surface. The ability of the ADEPT to transit to Mars in a stowed configuration (similar to an umbrella) provides options for integration with the Mars 2020 cruise stage, even to consider multiple ADEPTs. System-level test campaigns are underway for FY15 execution or planning for FY16. These include deployment testing, wind tunnel testing, system-level arc jet testing, and a sounding rocket flight test. The goal is system level maturation (TRL 6) at a 1m class Mars design reference mission configuration.
Structural Analysis of NASA's ULDB using Photogrammetric Measurements
NASA Astrophysics Data System (ADS)
Young, Leyland; Garde, Gabriel; Cathey, Henry
The National Aeronautics and Space Administration (NASA) Balloon Program Office (BPO) has been developing a super-pressure Ultra Long Duration Balloon (ULDB) for constant altitude and longer flight times. The development of the ULDB has progressed in many areas that are significant to NASA's desired goals. However, there has been a re-occurring anomaly of the ULDB called a cleft, which prevents the balloon from properly deploying at float altitudes. Over the years, there has been an influx of hypotheses and speculations to the cause of the cleft formation. Significant changes were made to the design paradigm of the ULDB to address the clefting issue. It was hypothesized that the design philosophy of fore-shortening the tendons relative to the polyethylene film was causing the cleft formation, thus the fore-shortened scheme was removed in the design process. The latest design concept removed the fore-shortening and produced a one to one matching of the tendons and film. Consequently, in 2006, a six million cubic foot (MCF) balloon was designed with the new concept of zero fore-shortening and clefted as it reached its float altitude. This 6 MCF cleft proved that the clefting phenomenon was not properly understood and there was more to the problem than just fore-shortening. Most analytical analyses conducted on the ULDB towards the clefting issue focused on pressure stabilities. It was shown through several finite element analyses that the new design concept produces a stable balloon when pressurized; thus, pressurized stability was believed to be a sufficient measure to indicate if a balloon would cleft or not cleft. Eventually, the 6 MCF balloon that clefted in 2006 showed that the pressurized stability analysis is subjective and is not applicable in predicting a cleft formation. Moreover, the analytical pressurized stability is conducted on a fully deployed balloon, whereas, the clefting phenomena occurs as part of the deployment process, and is clearly seen during the final deployment stages. In time, there is no doubt that an analytical tool will be available to fully analyze the ULDB for all concerns; however, at the present time, the analytical efforts are ongoing but are delayed by the complexity of modeling a balloon from un-deployed to deployed configuration. Thus, in the absence of an analytical tool, the development of the ULDB was steered towards more experimental work in understanding the clefting phenomena. This paper highlights the experimental analyses conducted on several scaled model ULDB's using photogrammetry measurements. The experimental work began with two 48-gore 4-meter diameter scaled ULDB's having the characteristics of a 180-degree bulge angle and 7.5-degree bulge angle respectively. The 180-degree balloon inflation experiments showed that similes of clefts appeared in the balloon at the onset of full deployment; whereas, these cleft-like formations were absent in the subsequent experiments with the 7.5-degree bulge angle balloon. This confirmed the thought that "excess material" designed in the gore width to create a 180-degree bulge angle is likely contributing to the clefting phenomena. Thus, the ULDB project decided to build three 200-gore 27-meter balloons: a 90-degree bulge angle, a 55- degree bulge angle, and a 1.8-degree bulge angle balloon to verify the hypothesis of excess material contribution to the clefting phenomena and to explore the limits of the deployment trade space. The experimental analysis with photogrammetry of these three 27-meter diameter balloons provided valuable data of stresses and strains and of the deployment mechanics of an ULDB that proves excess material is a contributor to the clefting phenomena. Significantly, the photogrammetry data showed that there are significant benefits for the lower value lobe angle designs; moreover, the lower value lobe angle balloon deployed better and had stresses and strains comparable to the other two designs. Another test was conducted on an 8-meter 48-gore scaled model ULDB to test the strain limits of the film. After
Saini, Amandeep; Okeme, Joseph O; Goosey, Emma; Diamond, Miriam L
2015-10-01
Two passive air samplers (PAS), polyurethane foam (PUF) disks and Sorbent Impregnated PUF (SIP) disks, were characterized for uptake of phthalates and brominated flame-retardants (BFRs) indoors using fully and partially sheltered housings. Based on calibration against an active low-volume air sampler for gas- and particle-phase compounds, we recommend generic sampling rates of 3.5±0.9 and 1.0±0.4 m(3)/day for partially and fully sheltered housing, respectively, which applies to gas-phase phthalates and BFRs as well as particle-phase DEHP (the later for the partially sheltered PAS). For phthalates, partially sheltered SIPs are recommended. Further, we recommend the use of partially sheltered PAS indoors and a deployment period of one month. The sampling rate for the partially sheltered PUF and SIP of 3.5±0.9 m(3)/day is indistinguishable from that reported for fully sheltered PAS deployed outdoors, indicating the role of the housing outdoors to minimize the effect of variable wind velocities on chemical uptake, versus the partially sheltered PAS deployed indoors to maximize chemical uptake where air flow rates are low. Copyright © 2015. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Stubbs, Sandy M.
1965-01-01
An experimental investigation was made to determine the landing characteristics of a 1/4-scale dynamic model of the Apollo spacecraft command module using two different active (heat shield deployed prior to landing) landing systems for impact attenuation. One landing system (configuration 1) consisted of six hydraulic struts and eight crushable honeycomb struts. The other landing system (configuration 2), consisted of four hydraulic struts and six strain straps. Tests made on water and the hard clay-gravel composite landing surfaces simulated parachute letdown (vertical) velocities of 23 ft/sec (7.0 m/s) (full scale). Landings made on the sand landing surface simulated vertical velocities of 30 ft/sec (9.1 m/s). Horizontal velocities of from 0 to 50 ft/sec (15 m/s) were simulated. Landing attitudes ranged from -30'degrees to 20 degrees, and the roll attitudes were O degrees, 90 degrees, and 180 degrees. For configuration 1, maximum normal accelerations at the vehicle center of gravity for landings on water, sand, and the hard clay-gravel composite surface were 9g, 20g, and 18g, respectively. The maximum normal center-of-gravity acceleration for configuration 2 which was landed only on the hard clay-gravel landing surface was approximately 19g. Accelerations for configuration 2 were generally equal to or lower than accelerations for configuration 1 and normal.
Progress toward establishing a US national laboratory on the International Space Station
NASA Astrophysics Data System (ADS)
Uhran, Mark L.
2010-01-01
The International Space Station (ISS) is rapidly approaching the long-awaited completion of assembly. All United States (US) core elements have been integrated and tested on-orbit and the principle elements of the European and Japanese laboratories were successfully deployed in 2008. The fully envisioned configuration is on schedule to be completed as planned by the end of US government fiscal year 2010. Section 507 of the NASA Authorization Act of 2005 designated the US segment of the ISS as a " national laboratory", thereby opening up its use to other US government agencies, US private firms and US non-profit institutions. This paper reports on progress toward identifying and entering into agreements with entities outside of NASA that plan to use the ISS in the post-assembly timeframe. The original 1984 vision of a robust, multi-mission space station serving as a platform for the advancement of US science, technology and industry will soon be achieved.
Measurement of the ν _{μ } energy spectrum with IceCube-79
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bradascio, F.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Waza, A.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.
2017-10-01
IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The ν _μ energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of a multivariate classification process based on machine learning. The subsequent unfolding was performed using the software Truee. The resulting spectrum covers an E_ν -range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows an excess of more than 1.9 σ in four adjacent bins for neutrino energies E_ν ≥ 177.8 {TeV}. The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos.
Signal acquisition and analysis for cortical control of neuroprosthetics.
Tillery, Stephen I Helms; Taylor, Dawn M
2004-12-01
Work in cortically controlled neuroprosthetic systems has concentrated on decoding natural behaviors from neural activity, with the idea that if the behavior could be fully decoded it could be duplicated using an artificial system. Initial estimates from this approach suggested that a high-fidelity signal comprised of many hundreds of neurons would be required to control a neuroprosthetic system successfully. However, recent studies are showing hints that these systems can be controlled effectively using only a few tens of neurons. Attempting to decode the pre-existing relationship between neural activity and natural behavior is not nearly as important as choosing a decoding scheme that can be more readily deployed and trained to generate the desired actions of the artificial system. These artificial systems need not resemble or behave similarly to any natural biological system. Effective matching of discrete and continuous neural command signals to appropriately configured device functions will enable effective control of both natural and abstract artificial systems using compatible thought processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aartsen, M. G.; Ackermann, M.; Adams, J.
IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The ν μ energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of a multivariate classification process based on machine learning. The subsequent unfolding was performed using the software Truee. The resulting spectrum covers an E ν-range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows anmore » excess of more than 1.9σ in four adjacent bins for neutrino energies E ν ≥ 177.8TeV. The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos.« less
Aartsen, M. G.; Ackermann, M.; Adams, J.; ...
2017-10-20
IceCube is a neutrino observatory deployed in the glacial ice at the geographic South Pole. The ν μ energy unfolding described in this paper is based on data taken with IceCube in its 79-string configuration. A sample of muon neutrino charged-current interactions with a purity of 99.5% was selected by means of a multivariate classification process based on machine learning. The subsequent unfolding was performed using the software Truee. The resulting spectrum covers an E ν-range of more than four orders of magnitude from 125 GeV to 3.2 PeV. Compared to the Honda atmospheric neutrino flux model, the energy spectrum shows anmore » excess of more than 1.9σ in four adjacent bins for neutrino energies E ν ≥ 177.8TeV. The obtained spectrum is fully compatible with previous measurements of the atmospheric neutrino flux and recent IceCube measurements of a flux of high-energy astrophysical neutrinos.« less
Structures and Mechanisms Design Concepts for Adaptive Deployable Entry Placement Technology
NASA Technical Reports Server (NTRS)
Yount, Bryan C.; Arnold, James O.; Gage, Peter J.; Mockelman, Jeffrey; Venkatapathy, Ethiraj
2012-01-01
System studies have shown that large deployable aerodynamic decelerators such as the Adaptive Deployable Entry and Placement Technology (ADEPT) concept can revolutionize future robotic and human exploration missions involving atmospheric entry, descent and landing by significantly reducing the maximum heating rate, total heat load, and deceleration loads experienced by the spacecraft during entry [1-3]. ADEPT and the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) [4] share the approach of stowing the entry system in the shroud of the launch vehicle and deploying it to a much larger diameter prior to entry. The ADEPT concept provides a low ballistic coefficient for planetary entry by employing an umbrella-like deployable structure consisting of ribs, struts and a fabric cover that form an aerodynamic decelerator capable of undergoing hypersonic flight. The ADEPT "skin" is a 3-D woven carbon cloth that serves as a thermal protection system (TPS) and as a structural surface that transfers aerodynamic forces to the underlying ribs [5]. This paper focuses on design activities associated with integrating ADEPT components (cloth, ribs, struts and mechanisms) into a system that can function across all configurations and environments of a typical mission concept: stowed during launch, in-space deployment, entry, descent, parachute deployment and separation from the landing payload. The baseline structures and mechanisms were selected via trade studies conducted during the summer and fall of 2012. They are now being incorporated into the design of a ground test article (GTA) that will be fabricated in 2013. It will be used to evaluate retention of the stowed configuration in a launch environment, mechanism operation for release, deployment and locking, and static strength of the deployed decelerator. Of particular interest are the carbon cloth interfaces, underlying hot structure, (Advanced Carbon- Carbon ribs) and other structural components (nose cap, struts, and main body) designed to withstand the pressure and extremely high heating experienced during planetary entry.
Increasing Flight Software Reuse with OpenSatKit
NASA Technical Reports Server (NTRS)
McComas, David C.
2018-01-01
In January 2015 the NASA Goddard Space Flight Center (GSFC) released the Core Flight System (cFS) as open source under the NASA Open Source Agreement (NOSA) license. The cFS is based on flight software (FSW) developed for 12 spacecraft spanning nearly two decades of effort and it can provide about a third of the FSW functionality for a low-earth orbiting scientific spacecraft. The cFS is a FSW framework that is portable, configurable, and extendable using a product line deployment model. However, the components are maintained separately so the user must configure, integrate, and deploy them as a cohesive functional system. This can be very challenging especially for organizations such as universities building cubesats that have minimal experience developing FSW. Supporting universities was one of the primary motivators for releasing the cFS under NOSA. This paper describes the OpenSatKit that was developed to address the cFS deployment challenges and to serve as a cFS training platform for new users. It provides a fully functional out-of-the box software system that includes NASA's cFS, Ball Aerospace's command and control system COSMOS, and a NASA dynamic simulator called 42. The kit is freely available since all of the components have been released as open source. The kit runs on a Linux platform, includes 8 cFS applications, several kit-specific applications, and built in demos illustrating how to use key application features. It also includes the software necessary to port the cFS to a Raspberry Pi and instructions for configuring COSMOS to communicate with the target. All of the demos and test scripts can be rerun unchanged with the cFS running on the Raspberry Pi. The cFS uses a 3-tiered layered architecture including a platform abstraction layer, a Core Flight Executive (cFE) middle layer, and an application layer. Similar to smart phones, the cFS application layer is the key architectural feature for users to extend the FSW functionality to meet their mission-specific requirements. The platform abstraction layer and the cFE layers go a step further than smart phones by providing a platform-agnostic Application Programmer Interface (API) that allows applications to run unchanged on different platforms. OpenSatKit can serve two significant architectural roles that will further help the adoption of the cFS and help create a community of users that can share assets. First, the kit is being enhanced to automate the integration of applications with the goal of creating a virtual cFS "App Store".. Second, a platform certification test suite can be developed that would allow users to verify the port of the cFS to a new platform. This paper will describe the current state of these efforts and future plans.
A Novel Approach for a Low-Cost Deployable Antenna
NASA Technical Reports Server (NTRS)
Amend, Chris; Nurnberger, Michael; Oppenheimer, Paul; Koss, Steve; Purdy, Bill
2010-01-01
The Naval Research Laboratory (NRL) has designed, built, and fully qualified a low cost, low Passive Intermodulation (PIM) 12-foot (3.66-m) diameter deployable ultra high frequency (UHF) antenna for the Tacsat-4 program. The design utilized novel approaches in reflector material and capacitive coupling techniques. This paper discusses major design trades, unique design characteristics, and lessons learned from the development of the Tacsat 4 deployable antenna. This antenna development was sponsored by the Office of Naval Research.
Fuel injection system and method of operating the same for an engine
Topinka, Jennifer Ann [Niskayuna, NY; DeLancey, James Peter [Corinth, NY; Primus, Roy James [Niskayuna, NY; Pintgen, Florian Peter [Niskayuna, NY
2011-02-15
A fuel injector is coupled to an engine. The fuel injector includes an injection opening configured to vary in cross-section between a open state and a fully closed state. The fuel injector is configured to provide a plurality of discrete commanded fuel injections into an engine cylinder by modulating the size of the injection opening without completely closing the opening to the fully closed state.
Micron Accuracy Deployment Experiment (MADE), phase A. Volume 1
NASA Technical Reports Server (NTRS)
Peterson, Lee D.; Lake, Mark S.
1995-01-01
This report documents a Phase A In-STEP flight experiment development effort. The objective of the experiment is to deploy a portion of a segmented reflector on the Shuttle and study its micron-level mechanics. Ground test data are presented which projects that the on-orbit precision of the test article should be approximately 5 microns. Extensive hardware configuration development information is also provided.
Securing your Site in Development and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akopov, Mikhail S.
Why wait until production deployment, or even staging and testing deployment to identify security vulnerabilities? Using tools like Burp Suite, you can find security vulnerabilities before they creep up on you. Prevent cross-site scripting attacks, and establish a firmer trust between your website and your client. Verify that Apache/Nginx have the correct SSL Ciphers set. We explore using these tools and more to validate proper Apache/Nginx configurations, and to be compliant with modern configuration standards as part of the development cycle. Your clients can use tools like https://securityheaders.io and https://ssllabs.com to get a graded report on your level of compliancemore » with OWASP Secure Headers Project and SSLLabs recommendations. Likewise, you should always use the same sites to validate your configurations. Burp Suite will find common misconfigurations and will also perform more thorough security testing of your applications. In this session you will see examples of vulnerabilities that were detected early on, as well has how to integrate these practices into your daily workflow.« less
TWRS authorization basis configuration control summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendoza, D.P.
This document was developed to define the Authorization Basis management functional requirements for configuration control, to evaluate the management control systems currently in place, and identify any additional controls that may be required until the TWRS [Tank Waste Remediation System] Configuration Management system is fully in place.
NASA Technical Reports Server (NTRS)
Tseng, K.; Morino, L.
1975-01-01
A general formulation for the analysis of steady and unsteady, subsonic and supersonic potential aerodynamics for arbitrary complex geometries is presented. The theoretical formulation, the numerical procedure, and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for an AGARD coplanar wing-tail interfering configuration in both subsonic and supersonic flows are considered.
NASA Astrophysics Data System (ADS)
Fredericks, J.; Rueda-Velasquez, C. A.
2016-12-01
As we move from keeping data on our disks to sharing it with the world, often in real-time, we are obligated to also tell an unknown user about how our observations were made. Data that are shared must not only have ownership metadata, unit descriptions and content formatting information. The provider must also share information that is needed to assess the data as it relates to potential re-use. A user must be able to assess the limitations and capabilities of the sensor, as it is configured, to understand its value. For example, when an instrument is configured, it typically affects the data accuracy and operational limits of the sensor. An operator may sacrifice data accuracy to achieve a broader operational range and visa versa. If you are looking at newly discovered data, it is important to be able to find all of the information that relates to assessing the data quality for your particular application. Traditionally, metadata are captured by data managers who usually do not know how the data are collected. By the time data are distributed, this knowledge is often gone, buried within notebooks or hidden in documents that are not machine-harvestable and often not human-readable. In a recently funded NSF EarthCube Integrative Activity called X-DOMES (Cross-Domain Observational Metadata in EnviroSensing), mechanisms are underway to enable the capture of sensor and deployment metadata by sensor manufacturers and field operators. The support has enabled the development of a community ontology repository (COR) within the Earth Science Information Partnership (ESIP) community, fostering easy creation of resolvable terms for the broader community. This tool enables non-experts to easily develop W3C standards-based content, promoting the implementation of Semantic Web technologies for enhanced discovery of content and interoperability in workflows. The X-DOMES project is also developing a SensorML Viewer/Editor to provide an easy interface for sensor manufacturers and field operators to fully-describe sensor capabilities and configuration/deployment content - automatically generating it in machine-harvestable encodings that can be referenced by data managers and/or associated with the data through web-services, such as the OGC SWE Sensor Observation Service.
A New Baseline for Chronic Fatigue: Why Measuring Flight Time Is the Wrong Approach
2013-04-01
crew is shown to report fully or nearly fully effective for the following sortie despite their harrowing schedule. (Table 3) Flyawake Results...Journal of Psychology, July 1948: 13. Svan, Jennifer H. "Air Force Changes Deployments Lengths for Some 42,000 Airmen." Stars and Stripes, September 16
NASA Technical Reports Server (NTRS)
Tseng, K.; Morino, L.
1975-01-01
A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0.
The Radiology Resident iPad Toolbox: an educational and clinical tool for radiology residents.
Sharpe, Emerson E; Kendrick, Michael; Strickland, Colin; Dodd, Gerald D
2013-07-01
Tablet computing and mobile resources are the hot topics in technology today, with that interest spilling into the medical field. To improve resident education, a fully configured iPad, referred to as the "Radiology Resident iPad Toolbox," was created and implemented at the University of Colorado. The goal was to create a portable device with comprehensive educational, clinical, and communication tools that would contain all necessary resources for an entire 4-year radiology residency. The device was distributed to a total of 34 radiology residents (8 first-year residents, 8 second-year residents, 9 third-year residents, and 9 fourth-year residents). This article describes the process used to develop and deploy the device, provides a distillation of useful applications and resources decided upon after extensive evaluation, and assesses the impact this device had on resident education. The Radiology Resident iPad Toolbox is a cost-effective, portable, educational instrument that has increased studying efficiency; improved access to study materials such as books, radiology cases, lectures, and web-based resources; and increased interactivity in educational conferences and lectures through the use of audience-response software, with questions geared toward the new ABR board format. This preconfigured tablet fully embraces the technology shift into mobile computing and represents a paradigm shift in educational strategy. Copyright © 2013 American College of Radiology. Published by Elsevier Inc. All rights reserved.
IPv6 testing and deployment at Prague Tier 2
NASA Astrophysics Data System (ADS)
Kouba, Tomáŝ; Chudoba, Jiří; Eliáŝ, Marek; Fiala, Lukáŝ
2012-12-01
Computing Center of the Institute of Physics in Prague provides computing and storage resources for various HEP experiments (D0, Atlas, Alice, Auger) and currently operates more than 300 worker nodes with more than 2500 cores and provides more than 2PB of disk space. Our site is limited to one C-sized block of IPv4 addresses, and hence we had to move most of our worker nodes behind the NAT. However this solution demands more difficult routing setup. We see the IPv6 deployment as a solution that provides less routing, more switching and therefore promises higher network throughput. The administrators of the Computing Center strive to configure and install all provided services automatically. For installation tasks we use PXE and kickstart, for network configuration we use DHCP and for software configuration we use CFEngine. Many hardware boxes are configured via specific web pages or telnet/ssh protocol provided by the box itself. All our services are monitored with several tools e.g. Nagios, Munin, Ganglia. We rely heavily on the SNMP protocol for hardware health monitoring. All these installation, configuration and monitoring tools must be tested before we can switch completely to IPv6 network stack. In this contribution we present the tests we have made, limitations we have faced and configuration decisions that we have made during IPv6 testing. We also present testbed built on virtual machines that was used for all the testing and evaluation.
Beaumont, Steven P; Allan, Helen T
2014-01-01
To explore how peacetime employment of military nurses in the UK National Health Service Medical Defence Hospital Units prepares them to be competent to practise in their role on deployment. Military secondary care nurses are employed within UK National Health Service Trusts to gain clinical experience that will be relevant to their military nursing role. A two-stage grounded theory study using mixed methods: postal questionnaire survey and in-depth interviews. In stage one a postal questionnaire was distributed to all serving military nurses. Stage two involved 12 semi-structured interviews. The data from both parts of the study were analysed using grounded theory. Four categories and one core category were identified, which suggested that participants did not feel fully prepared for deployment. Their feelings of preparedness increased with deployment experience and decreased when the nature of injuries seen on deployment changed. Respondents argued that even when unprepared, they did not feel incompetent. The findings suggest that the peacetime clinical experience gained in the National Health Service did not always develop the necessary competencies to carry out roles as military nurses on deployment. This study highlights the unique role of military nurses. We discuss these findings in the light of the literature on competency and expertise. The military nurses in this study did not feel fully prepared for deployed operations. We propose a new model for how military nurses could gain relevant experience from their National Health Service placements. National Health Service clinical placements need to be reassessed regularly to ensure that they are meeting military nurses' clinical requirements. Experiences of nurses returning from deployment could be shared and used as a basis for reflection and learning within National Health Service Trusts and also inform decisions regarding the appropriateness of clinical placements for qualified military nurses. © 2012 Blackwell Publishing Ltd.
Artist concept of Hubble Space Telescope (HST) orbiting Earth after deploy
1990-04-05
This artist concept shows the Hubble Space Telescope (HST) in operational configuration orbiting the Earth after its deploy from Discovery, Orbiter Vehicle (OV) 103 during STS-31. The high gain antennas (HGAs) and solar arrays (SAs) have been extended. HST's aperature door is open as it views the universe from a vantage point above the Earth's atmosphere. View provided by the Marshall Space Flight Center (MSFC).
Expandable tubulars for use in geologic structures
Spray, Jeffery A.; Svedeman, Steven; Walter, David; Mckeighan, Peter; Siebanaler, Shane; Dewhurst, Peter; Hobson, Steven; Foss, Doug; Wirz, Holger; Sharpe, Aaron; Apostal, Michael
2014-08-12
An expandable tubular includes a plurality of leaves formed from sheet material that have curved surfaces. The leaves extend around a portion or fully around the diameter of the tubular structure. Some of the adjacent leaves of the tubular are coupled together. The tubular is compressed to a smaller diameter so that it can be inserted through previously deployed tubular assemblies. Once the tubular is properly positioned, it is deployed and coupled or not coupled to a previously deployed tubular assembly. The tubular is useful for all types of wells and boreholes.
A spin-recovery parachute system for light general-aviation airplanes
NASA Technical Reports Server (NTRS)
Bradshaw, C.
1980-01-01
A tail mounted spin recovery parachute system was designed and developed for use on light general aviation airplanes. The system was designed for use on typical airplane configurations, including low wing, high wing, single engine and twin engine designs. A mechanically triggered pyrotechnic slug gun is used to forcibly deploy a pilot parachute which extracts a bag that deploys a ring slot spin recovery parachute. The total system weighs 8.2 kg. System design factors included airplane wake effects on parachute deployment, prevention of premature parachute deployment, positive parachute jettison, compact size, low weight, system reliability, and pilot and ground crew safety. Extensive ground tests were conducted to qualify the system. The recovery parachute was used successfully in flight 17 times.
Apollo 9 Lunar Module in lunar landing configuration
NASA Technical Reports Server (NTRS)
1969-01-01
View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The Lunar Module 'Spider' is flying upside down in relation to the earth below. The landing gear on the 'Spider' had been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads.
System Architecture Modeling for Technology Portfolio Management using ATLAS
NASA Technical Reports Server (NTRS)
Thompson, Robert W.; O'Neil, Daniel A.
2006-01-01
Strategic planners and technology portfolio managers have traditionally relied on consensus-based tools, such as Analytical Hierarchy Process (AHP) and Quality Function Deployment (QFD) in planning the funding of technology development. While useful to a certain extent, these tools are limited in the ability to fully quantify the impact of a technology choice on system mass, system reliability, project schedule, and lifecycle cost. The Advanced Technology Lifecycle Analysis System (ATLAS) aims to provide strategic planners a decision support tool for analyzing technology selections within a Space Exploration Architecture (SEA). Using ATLAS, strategic planners can select physics-based system models from a library, configure the systems with technologies and performance parameters, and plan the deployment of a SEA. Key parameters for current and future technologies have been collected from subject-matter experts and other documented sources in the Technology Tool Box (TTB). ATLAS can be used to compare the technical feasibility and economic viability of a set of technology choices for one SEA, and compare it against another set of technology choices or another SEA. System architecture modeling in ATLAS is a multi-step process. First, the modeler defines the system level requirements. Second, the modeler identifies technologies of interest whose impact on an SEA. Third, the system modeling team creates models of architecture elements (e.g. launch vehicles, in-space transfer vehicles, crew vehicles) if they are not already in the model library. Finally, the architecture modeler develops a script for the ATLAS tool to run, and the results for comparison are generated.
Shin, Sangmi; Park, Seongha; Kim, Yongho; Matson, Eric T
2016-04-22
Recently, commercial unmanned aerial systems (UAS) have gained popularity. However, these UAS are potential threats to people in terms of safety in public places, such as public parks or stadiums. To reduce such threats, we consider a design, modeling, and evaluation of a cost-efficient sensor system that detects and tracks small UAS. In this research, we focus on discovering the best sensor deployments by simulating different types and numbers of sensors in a designated area, which provide reasonable detection rates at low costs. Also, the system should cover the crowded areas more thoroughly than vacant areas to reduce direct threats to people underneath. This research study utilized the Agent-Based Modeling (ABM) technique to model a system consisting of independent and heterogeneous agents that interact with each other. Our previous work presented the ability to apply ABM to analyze the sensor configurations with two types of radars in terms of cost-efficiency. The results from the ABM simulation provide a list of candidate configurations and deployments that can be referred to for applications in the real world environment.
Shin, Sangmi; Park, Seongha; Kim, Yongho; Matson, Eric T.
2016-01-01
Recently, commercial unmanned aerial systems (UAS) have gained popularity. However, these UAS are potential threats to people in terms of safety in public places, such as public parks or stadiums. To reduce such threats, we consider a design, modeling, and evaluation of a cost-efficient sensor system that detects and tracks small UAS. In this research, we focus on discovering the best sensor deployments by simulating different types and numbers of sensors in a designated area, which provide reasonable detection rates at low costs. Also, the system should cover the crowded areas more thoroughly than vacant areas to reduce direct threats to people underneath. This research study utilized the Agent-Based Modeling (ABM) technique to model a system consisting of independent and heterogeneous agents that interact with each other. Our previous work presented the ability to apply ABM to analyze the sensor configurations with two types of radars in terms of cost-efficiency. The results from the ABM simulation provide a list of candidate configurations and deployments that can be referred to for applications in the real world environment. PMID:27110790
Vibration characteristics of a deployable controllable-geometry truss boom
NASA Technical Reports Server (NTRS)
Dorsey, J. T.
1983-01-01
An analytical study was made to evaluate changes in the fundamental frequency of a two dimensional cantilevered truss boom at various stages of deployment. The truss could be axially deployed or retracted and undergo a variety of controlled geometry changes by shortening or lengthening the telescoping diagonal members in each bay. Both untapered and tapered versions of the truss boom were modeled and analyzed by using the finite element method. Large reductions in fundamental frequency occurred for both the untapered and tapered trusses when they were uniformly retracted or maneuvered laterally from their fully deployed position. These frequency reductions can be minimized, however, if truss geometries are selected which maintain cantilever root stiffness during truss maneuvers.
NASA Astrophysics Data System (ADS)
Greuter, U.; Buehler, C.; Rasmussen, P.; Emmenegger, M.; Maden, D.; Koennecke, M.; Schlumpf, N.
We present the basic concept and the realization of our fully configurable data-acquisition hardware for the neutron scattering instruments at SINQ. This system allows collection of the different data entities and event-related signals generated by the various detector units. It offers a variety of synchronization options, including a time-measuring mode for time-of-flight determinations. Based on configurable logic (FPGA, CPLD), event rates up to the MHz range can be processed and transmitted to a programmable online data-reduction system (Histogram Memory). It is implemented on a commercially available VME Power PC module running a real-time operating system (VxWorks).
Deployed Communications in an Austere Environment: A Delphi Study
2013-12-01
gateways to access the Global Information Grid ( GIG ) will escalate dramatically. The ability simply to “deploy” a unit similar to the RF- SATCOM network...experts had divergent views on how deployed communications systems would link back to the GIG . The scenario uses both projected technologies. First...the self-configuring RF-SATCOM network link acts as a gateway to the GIG , providing wireless RF connectivity to autho- rized devices within the area
Behavioral and Physiological Response of Baleen Whales to Ships and Ship Noise
2014-09-30
student Angela Szesciorka) on tag designs to provide longer term deployments of archival tags especially for work with humpback whales off northern...California. 2. Conduct test deployments of dart-attached archival tags in 2014 on humpback whales in Monterey Bay and the Gulf of the Farallones on... humpback whales to tests different dart attachment configurations and develop a new longer term dart-attached archival tag system. 3. Successfully
Low-speed longitudinal and lateral-directional aerodynamic characteristics of the X-31 configuration
NASA Technical Reports Server (NTRS)
Banks, Daniel W.; Gatlin, Gregory M.; Paulson, John W., Jr.
1992-01-01
An experimental investigation of a 19 pct. scale model of the X-31 configuration was completed in the Langley 14 x 22 Foot Subsonic Tunnel. This study was performed to determine the static low speed aerodynamic characteristics of the basic configuration over a large range of angle of attack and sideslip and to study the effects of strakes, leading-edge extensions (wing-body strakes), nose booms, speed-brake deployment, and inlet configurations. The ultimate purpose was to optimize the configuration for high angle of attack and maneuvering-flight conditions. The model was tested at angles of attack from -5 to 67 deg and at sideslip angles from -16 to 16 deg for speeds up to 190 knots (dynamic pressure of 120 psf).
Aerodynamic Characteristics of Two Waverider-Derived Hypersonic Cruise Configurations
NASA Technical Reports Server (NTRS)
Cockrell, Charles E., Jr.; Huebner, Lawrence D.; Finley, Dennis B.
1996-01-01
An evaluation was made on the effects of integrating the required aircraft components with hypersonic high-lift configurations known as waveriders to create hypersonic cruise vehicles. Previous studies suggest that waveriders offer advantages in aerodynamic performance and propulsion/airframe integration (PAI) characteristics over conventional non-waverider hypersonic shapes. A wind-tunnel model was developed that integrates vehicle components, including canopies, engine components, and control surfaces, with two pure waverider shapes, both conical-flow-derived waveriders for a design Mach number of 4.0. Experimental data and limited computational fluid dynamics (CFD) solutions were obtained over a Mach number range of 1.6 to 4.63. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is not comparable to that of the pure waverider shapes, but is comparable to previously tested hypersonic models. Both configurations exhibit good lateral-directional stability characteristics.
Apollo 9 Lunar Module in lunar landing configuration
NASA Technical Reports Server (NTRS)
1969-01-01
View of the Apollo 9 Lunar Module, in a lunar landing configuration, as photographed form the Command/Service Module on the fifth day of the Apollo 9 earth-orbital mission. The landing gear on the 'Spider' has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the 'Spider' were Astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot.
2007-09-01
Configuration Consideration ...........................54 C. MAE NGAT DAM, CHIANG MAI , THAILAND, FIELD EXPERIMENT...2006 802.11 Network Topology Mae Ngat Dam, Chiang Mai , Thailand.......................39 Figure 31. View of COASTS 2006 802.11 Topology...Requirements (Background From Google Earth).....62 Figure 44. Mae Ngat Dam, Chiang Mai , Thailand (From Google Earth
Graphic representation of STS-99 orbiter during mission
2000-02-04
JSC2000E01551 (January 2000) --- An "exploded" drawing depicts the Space Shuttle Endeavour and the Shuttle Radar Topography Mission (SRTM) mast, along with the pallet for SRTM and supportive antennae. The mast will be deployed and retracted by a motor-driven nut within the mast canister. This nut will pull the mast from its stowed configuration and allow it to unfold like an accordion. A crew member inside the shuttle will initiate the mast deployment, a chore which will take about 20 minutes. The mast also can be deployed manually during a contingency extravehicular activity (EVA) using a hand-held motor. The mast is 200 feet (60 meters) long.
Large Deployable Reflector (LDR)
NASA Technical Reports Server (NTRS)
Alff, W. H.
1980-01-01
The feasibility and costs were determined for a 1 m to 30 m diameter ambient temperature, infrared to submillimeter orbiting astronomical telescope which is to be shuttle-deployed, free-flying, and have a 10 year orbital life. Baseline concepts, constraints on delivery and deployment, and the sunshield required are examined. Reflector concepts, the optical configuration, alignment and pointing, and materials are also discussed. Technology studies show that a 10 m to 30 m diameter system which is background and diffraction limited at 30 micron m is feasible within the stated time frame. A 10 m system is feasible with current mirror technology, while a 30 m system requires technology still in development.
gemcWeb: A Cloud Based Nuclear Physics Simulation Software
NASA Astrophysics Data System (ADS)
Markelon, Sam
2017-09-01
gemcWeb allows users to run nuclear physics simulations from the web. Being completely device agnostic, scientists can run simulations from anywhere with an Internet connection. Having a full user system, gemcWeb allows users to revisit and revise their projects, and share configurations and results with collaborators. gemcWeb is based on simulation software gemc, which is based on standard GEant4. gemcWeb requires no C++, gemc, or GEant4 knowledge. Using a simple but powerful GUI allows users to configure their project from geometries and configurations stored on the deployment server. Simulations are then run on the server, with results being posted to the user, and then securely stored. Python based and open-source, the main version of gemcWeb is hosted internally at Jefferson National Labratory and used by the CLAS12 and Electron-Ion Collider Project groups. However, as the software is open-source, and hosted as a GitHub repository, an instance can be deployed on the open web, or any institution's intra-net. An instance can be configured to host experiments specific to an institution, and the code base can be modified by any individual or group. Special thanks to: Maurizio Ungaro, PhD., creator of gemc; Markus Diefenthaler, PhD., advisor; and Kyungseon Joo, PhD., advisor.
Virtual Network Configuration Management System for Data Center Operations and Management
NASA Astrophysics Data System (ADS)
Okita, Hideki; Yoshizawa, Masahiro; Uehara, Keitaro; Mizuno, Kazuhiko; Tarui, Toshiaki; Naono, Ken
Virtualization technologies are widely deployed in data centers to improve system utilization. However, they increase the workload for operators, who have to manage the structure of virtual networks in data centers. A virtual-network management system which automates the integration of the configurations of the virtual networks is provided. The proposed system collects the configurations from server virtualization platforms and VLAN-supported switches, and integrates these configurations according to a newly developed XML-based management information model for virtual-network configurations. Preliminary evaluations show that the proposed system helps operators by reducing the time to acquire the configurations from devices and correct the inconsistency of operators' configuration management database by about 40 percent. Further, they also show that the proposed system has excellent scalability; the system takes less than 20 minutes to acquire the virtual-network configurations from a large scale network that includes 300 virtual machines. These results imply that the proposed system is effective for improving the configuration management process for virtual networks in data centers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Mark Alan
This report documents progress on DOE Grant# DE-FG02-08ER64531 funded by the Department of Energy’s Atmospheric Systems Research (ASR) program covering the period between its inception in 2008 and its conclusion in 2014. The Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility #1 (AMF#1) is a collection of state-of-the art atmospheric sensing systems including remote and in situ instrumentation designed to characterize the atmospheric column above and in the immediate vicinity of the deployment location. The grant discussed in this report funded the activities of the AMF#1 Site Scientist Team. Broad responsibilities of this team included examining new deployment sites and recommendingmore » instrument deployment configurations; data quality control during the early stages of deployments and for certain instruments through the course of the deployment; scientific outreach in the host country or location (particularly international deployments); scientific research oriented toward basic questions about cloud physics and radiation transfer in the deployment region; and training of Ph.D. students to conduct future research relevant to the Atmospheric Systems Research (ASR) program.« less
Link-quality measurement and reporting in wireless sensor networks.
Chehri, Abdellah; Jeon, Gwanggil; Choi, Byoungjo
2013-03-04
Wireless Sensor networks (WSNs) are created by small hardware devices that possess the necessary functionalities to measure and exchange a variety of environmental data in their deployment setting. In this paper, we discuss the experiments in deploying a testbed as a first step towards creating a fully functional heterogeneous wireless network-based underground monitoring system. The system is mainly composed of mobile and static ZigBee nodes, which are deployed on the underground mine galleries for measuring ambient temperature. In addition, we describe the measured results of link characteristics such as received signal strength, latency and throughput for different scenarios.
Link-Quality Measurement and Reporting in Wireless Sensor Networks
Chehri, Abdellah; Jeon, Gwanggil; Choi, Byoungjo
2013-01-01
Wireless Sensor networks (WSNs) are created by small hardware devices that possess the necessary functionalities to measure and exchange a variety of environmental data in their deployment setting. In this paper, we discuss the experiments in deploying a testbed as a first step towards creating a fully functional heterogeneous wireless network-based underground monitoring system. The system is mainly composed of mobile and static ZigBee nodes, which are deployed on the underground mine galleries for measuring ambient temperature. In addition, we describe the measured results of link characteristics such as received signal strength, latency and throughput for different scenarios. PMID:23459389
1972-05-01
Technicians at NASA’s Marshall Space Flight Center check the wiring on a mechanical test article of the Apollo Telescope Mount (ATM) solar array. Four such arrays were joined in a cross to provide electric power for the ATM in Earth orbit. The deployment mechanism for extending the wing to the fully open position had just been tested when this photograph was taken. The array was suspended from beams riding on air bearings to closely simulate the weightless conditions under which it would be deployed in space. The wings are folded against the sides of the ATM for launch and are deployed by a scissors mechanism in Earth’s orbit.
Inflatable nested toroid structure
NASA Technical Reports Server (NTRS)
Johnson, Christopher J. (Inventor); Raboin, Jasen L. (Inventor); Spexarth, Gary R. (Inventor)
2011-01-01
An inflatable structure comprises at least two generally toroidal, inflatable modules. When in a deployed mode, the first, inner module has a major diameter less than that of a second, outer module and is positioned within the inner circumference of the outer module such that the first module is nested circumferentially alongside the second module. The inflatable structure, in a non-deployed, non-inflated mode, is of compact configuration and adapted to be transported to a site of deployment. When deployed, the inflatable structure is of substantially increased interior volume. In one embodiment, access between the interior of the first module and the second module is provided by at least one port or structural pass-through. In another embodiment, the inflatable structure includes at least one additional generally toroidal module external of and circumferentially surrounding the second module.
NASA Technical Reports Server (NTRS)
Turner, Travis L. (Inventor); Kidd, Reggie T. (Inventor); Lockard, David P (Inventor); Khorrami, Mehdi R. (Inventor); Streett, Craig L. (Inventor); Weber, Douglas Leo (Inventor)
2016-01-01
A slat cove filler is utilized to reduce airframe noise resulting from deployment of a leading edge slat of an aircraft wing. The slat cove filler is preferably made of a super elastic shape memory alloy, and the slat cove filler shifts between stowed and deployed shapes as the slat is deployed. The slat cove filler may be configured such that a separate powered actuator is not required to change the shape of the slat cove filler from its deployed shape to its stowed shape and vice-versa. The outer contour of the slat cove filler preferably follows a profile designed to maintain accelerating flow in the gap between the slat cove filler and wing leading edge to provide for noise reduction.
Hodor, Paul; Chawla, Amandeep; Clark, Andrew; Neal, Lauren
2016-01-15
: One of the solutions proposed for addressing the challenge of the overwhelming abundance of genomic sequence and other biological data is the use of the Hadoop computing framework. Appropriate tools are needed to set up computational environments that facilitate research of novel bioinformatics methodology using Hadoop. Here, we present cl-dash, a complete starter kit for setting up such an environment. Configuring and deploying new Hadoop clusters can be done in minutes. Use of Amazon Web Services ensures no initial investment and minimal operation costs. Two sample bioinformatics applications help the researcher understand and learn the principles of implementing an algorithm using the MapReduce programming pattern. Source code is available at https://bitbucket.org/booz-allen-sci-comp-team/cl-dash.git. hodor_paul@bah.com. © The Author 2015. Published by Oxford University Press.
Hodor, Paul; Chawla, Amandeep; Clark, Andrew; Neal, Lauren
2016-01-01
Summary: One of the solutions proposed for addressing the challenge of the overwhelming abundance of genomic sequence and other biological data is the use of the Hadoop computing framework. Appropriate tools are needed to set up computational environments that facilitate research of novel bioinformatics methodology using Hadoop. Here, we present cl-dash, a complete starter kit for setting up such an environment. Configuring and deploying new Hadoop clusters can be done in minutes. Use of Amazon Web Services ensures no initial investment and minimal operation costs. Two sample bioinformatics applications help the researcher understand and learn the principles of implementing an algorithm using the MapReduce programming pattern. Availability and implementation: Source code is available at https://bitbucket.org/booz-allen-sci-comp-team/cl-dash.git. Contact: hodor_paul@bah.com PMID:26428290
Integration of XRootD into the cloud infrastructure for ALICE data analysis
NASA Astrophysics Data System (ADS)
Kompaniets, Mikhail; Shadura, Oksana; Svirin, Pavlo; Yurchenko, Volodymyr; Zarochentsev, Andrey
2015-12-01
Cloud technologies allow easy load balancing between different tasks and projects. From the viewpoint of the data analysis in the ALICE experiment, cloud allows to deploy software using Cern Virtual Machine (CernVM) and CernVM File System (CVMFS), to run different (including outdated) versions of software for long term data preservation and to dynamically allocate resources for different computing activities, e.g. grid site, ALICE Analysis Facility (AAF) and possible usage for local projects or other LHC experiments. We present a cloud solution for Tier-3 sites based on OpenStack and Ceph distributed storage with an integrated XRootD based storage element (SE). One of the key features of the solution is based on idea that Ceph has been used as a backend for Cinder Block Storage service for OpenStack, and in the same time as a storage backend for XRootD, with redundancy and availability of data preserved by Ceph settings. For faster and easier OpenStack deployment was applied the Packstack solution, which is based on the Puppet configuration management system. Ceph installation and configuration operations are structured and converted to Puppet manifests describing node configurations and integrated into Packstack. This solution can be easily deployed, maintained and used even in small groups with limited computing resources and small organizations, which usually have lack of IT support. The proposed infrastructure has been tested on two different clouds (SPbSU & BITP) and integrates successfully with the ALICE data analysis model.
Vehicle integration effects on hypersonic waveriders. M.S. Thesis - George Washington Univ.
NASA Technical Reports Server (NTRS)
Cockrell, Charles Edward, Jr.
1994-01-01
The integration of a class of hypersonic high-lift configurations known as waveriders into hypersonic cruise vehicles was evaluated. Waveriders offer advantages in aerodynamic performance and propulsion/airframe integration (PAI) characteristics over conventional hypersonic shapes. A wind-tunnel model was developed which integrates realistic vehicle components with two waverider shapes, referred to as the 'straight-wing' and 'cranked-wing' shapes. Both shapes were conical-flow-derived waveriders at a design Mach number of 4.0. The cranked-wing shape was designed to provide advantages in subsonic performance and directional stability over conventional waveriders. Experimental data and limited computational fluid dynamics (CFD) predictions were obtained over a Mach number range of 2.3 to 4.63 at a Reynolds number of 2.0x10(exp 6) per foot. The CFD predictions and flow visualization data confirmed the shock attachment characteristics of the baseline waverider shapes and illustrated the waverider flow-field properties. Both CFD predictions and experimental data showed that no significant performance degradations occur at off-design Mach numbers for the waverider shapes and the integrated configurations. The experimental data showed that the effects of adding a realistic canopy were minimal. The effects of adding engine components were to increase the drag and thus degrade the aerodynamic performance of the configuration. A significant degradation in aerodynamic performance was observed when 0 degree control surfaces were added to close the blunt base of the waverider to a sharp trailing edge. A comparison of the fully-integrated waverider models to the baseline shapes showed that the performance was significantly degraded when all of the components were added to the waveriders. The fully-integrated configurations studied here do not offer significant performance advantages over conventional hypersonic vehicles, but still offer advantages in air-breathing propulsion integration. Additionally, areas are identified in this study where improvements could be made to enhance the performance. Both fully-integrated configurations are longitudinally unstable over the Mach number range studied for unpowered conditions. The cranked-wing fully-integrated configuration provided significantly better lateral-directional stability characteristics than the straight-wing configuration.
Increasing Flight Software Reuse with OpenSatKit
NASA Technical Reports Server (NTRS)
McComas, David
2018-01-01
In January 2015 the NASA Goddard Space Flight Center (GSFC) released the Core Flight System (cFS) as open source under the NASA Open Source Agreement (NOSA) license. The cFS is based on flight software (FSW) developed for 12 spacecraft spanning nearly two decades of effort and it can provide about a third of the FSW functionality for a low-earth orbiting scientific spacecraft. The cFS is a FSW framework that is portable, configurable, and extendable using a product line deployment model. However, the components are maintained separately so the user must configure, integrate, and deploy them as a cohesive functional system. This can be very challenging especially for organizations such as universities building cubesats that have minimal experience developing FSW. Supporting universities was one of the primary motivators for releasing the cFS under NOSA. This paper describes the OpenSatKit that was developed to address the cFS deployment challenges and to serve as a cFS training platform for new users. It provides a fully functional out-of-the box software system that includes NASA's cFS, Ball Aerospaceâ€"TM"s command and control system COSMOS, and a NASA dynamic simulator called 42. The kit is freely available since all of the components have been released as open source. The kit runs on a Linux platform, includes 8 cFS applications, several kit-specific applications, and built in demos illustrating how to use key application features. It also includes the software necessary to port the cFS to a Raspberry Pi and instructions for configuring COSMOS to communicate with the target. All of the demos and test scripts can be rerun unchanged with the cFS running on the Raspberry Pi. The cFS uses a 3-tiered layered architecture including a platform abstraction layer, a Core Flight Executive (cFE) middle layer, and an application layer. Similar to smart phones, the cFS application layer is the key architectural feature for userâ€"TM"s to extend the FSW functionality to meet their mission-specific requirements. The platform abstraction layer and the cFE layers go a step further than smart phones by providing a platform-agnostic Application Programmer Interface (API) that allows applications to run unchanged on different platforms. OpenSatKit can serve two significant architectural roles that will further help the adoption of the cFS and help create a community of users that can share assets. First, the kit is being enhanced to automate the integration of applications with the goal of creating a virtual cFS 'App Store'. Second, a platform certification test suite can be developed that would allow users to verify the port of the cFS to a new platform. This paper will describe the current state of these efforts and future plans.
Optimizing Automatic Deployment Using Non-functional Requirement Annotations
NASA Astrophysics Data System (ADS)
Kugele, Stefan; Haberl, Wolfgang; Tautschnig, Michael; Wechs, Martin
Model-driven development has become common practice in design of safety-critical real-time systems. High-level modeling constructs help to reduce the overall system complexity apparent to developers. This abstraction caters for fewer implementation errors in the resulting systems. In order to retain correctness of the model down to the software executed on a concrete platform, human faults during implementation must be avoided. This calls for an automatic, unattended deployment process including allocation, scheduling, and platform configuration.
Erectable/deployable concepts for large space system technology
NASA Technical Reports Server (NTRS)
Agan, W. E.
1980-01-01
Erectable/deployable space structure concepts particularly relating to the development of a science and applications space platform are presented. Design and operating features for an automatic coupler clevis joint, a side latching detent joint, and a module-to-module auto lock coupler are given. An analysis of the packaging characteristics of stacked subassembly, single fold, hybrid, and double fold concepts is given for various platform structure configurations. Payload carrier systems and assembly techniques are also discussed.
A repositionable valved stent for endovascular treatment of deteriorated bioprostheses.
Zegdi, Rachid; Khabbaz, Ziad; Borenstein, Nicolas; Fabiani, Jean-Noël
2006-10-03
We report our animal experience of endovascular valve replacement (VR) of failed bioprosthesis (BP) using an original delivery catheter allowing repositioning of the valved stent (VS). Among the different devices designed for percutaneous VR, none has the potential for repositioning of a fully deployed VS. Five sheep underwent, on beating heart, tricuspid VR with a stented BP. Prolapse of 1 leaflet was induced by tearing. For the endovascular tricuspid VR, we used a VS constructed with a nitinol self-expandable stent and a porcine stentless aortic valve. We also used an original delivery catheter, allowing repositioning of the VS through a compression or relaxation mechanism of the stent. Epicardial echocardiography and right ventriculography showed severe tricuspid regurgitation, with a regurgitant jet extending to the inferior vena cava. After surgical exposure to the infrarenal inferior vena cava, the VS was successfully implanted inside the failed BP in all cases. Repositioning of the fully deployed VS was always possible. Echocardiographic and macroscopic studies revealed adequate VS positioning, excellent leaflet opening, and absence of any intraprosthetic or periprosthetic leak. Endovascular VR was easily performed in sheep with failed BP in the tricuspid position. The novel delivery catheter allowed adequate repositioning of our fully deployed VS before its definitive release. One may anticipate that the safety improvement conferred by this new technology will certainly favor the development of percutaneous VR in clinical practice.
NASA Technical Reports Server (NTRS)
Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, Todd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa;
2015-01-01
This paper describes the design of a unique suite of mechanisms which make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses 4 stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.
NASA Technical Reports Server (NTRS)
Budinoff, Jason; Gendreau, Keith; Arzoumanian, Zaven; Baker, Charles; Berning, Robert; Colangelo, TOdd; Holzinger, John; Lewis, Jesse; Liu, Alice; Mitchell, Alissa;
2016-01-01
This paper describes the design of a unique suite of mechanisms that make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses four stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.
NASA Technical Reports Server (NTRS)
Curtis, Steven A.
2005-01-01
A report summarizes the design concept of a super miniaturized autonomous reconfigurable technology (SMART) solar sail a proposed deployable, fully autonomous solar sail for use in very fine station keeping of a spacecraft. The SMART solar sail would include a reflective film stretched among nodes of a SMART space frame made partly of nanotubule struts. A microelectromechanical system (MEMS) at each vertex of the frame would spool and unspool nanotubule struts between itself and neighboring nodes to vary the shape of the frame. The MEMSs would be linked, either wirelessly or by thin wires within the struts, to an evolvable neural software system (ENSS) that would control the MEMSs to reconfigure the sail as needed. The solar sail would be highly deformable from an initially highly compressed configuration, yet also capable of enabling very fine maneuvering of the spacecraft by means of small sail-surface deformations. The SMART Solar Sail would be connected to the main body of the spacecraft by a SMART multi-tether structure, which would include MEMS actuators like those of the frame plus tethers in the form of longer versions of the struts in the frame.
Portable convertible blast effects shield
Pastrnak, John W.; Hollaway, Rocky; Henning, Carl D.; Deteresa, Steve; Grundler, Walter; Hagler,; Lisle B.; Kokko, Edwin; Switzer, Vernon A
2010-10-26
A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.
Portable convertible blast effects shield
Pastrnak, John W [Livermore, CA; Hollaway, Rocky [Modesto, CA; Henning, Carl D [Livermore, CA; Deteresa, Steve [Livermore, CA; Grundler, Walter [Hayward, CA; Hagler, Lisle B [Berkeley, CA; Kokko, Edwin [Dublin, CA; Switzer, Vernon A [Livermore, CA
2007-05-22
A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more telescoping cylindrical rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration, such as by click locks.
Evaluation of the towplow for Caltrans operations.
DOT National Transportation Integrated Search
2015-09-30
Caltrans requested that the Advanced Highway Maintenance and Construction Technology Research Center (AHMCT) research center configure, procure, and deploy two Viking-Cives TowPlow systems and conduct an extensive evaluation to determine the most ben...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, David; Margolis, Robert; Denholm, Paul
Declining costs of both solar photovoltaics (PV) and battery storage have raised interest in the creation of “solar-plus-storage” systems to provide dispatchable energy and reliable capacity. There has been limited deployment of PV-plus-energy storage systems (PV+ESS), and the actual configuration and performance of these systems for dispatchable energy are in the early stages of being defined. In contrast, concentrating solar power with thermal energy storage (CSP+TES) has been deployed at scale with the proven capability of providing a dispatchable, reliable source of renewable generation. A key question moving forward is how to compare the relative costs and benefits of PV+ESSmore » and CSP+TES. While both technologies collect solar radiation and produce electricity, they do so through very different mechanisms, which creates challenges for direct comparison. Nonetheless, it is important to establish a framework for comparison and to identify cost and performance targets to aid meeting the nation’s goals for clean energy deployment. In this paper, we provide a preliminary assessment comparing the cost of energy from CSP+TES and PV+ESS that focuses on a single metric: levelized cost of energy (LCOE). We begin by defining the configuration of each system, which is particularly important for PV+ESS systems. We then examine a range of projected cost declines for PV, batteries, and CSP. Finally, we summarize the estimated LCOE over a range of configuration and cost estimates. We conclude by acknowledging that differences in these technologies present challenges for comparison using a single performance metric. We define systems with similar configurations in some respects. In reality, because of inherent differences in CSP+TES and PV+ESS systems, they will provide different grid services and different value. For example, depending on its configuration, a PV+ESS system may provide additional value over CSP+TES by providing more flexible operation, including certain ancillary services and the ability to store off-peak grid energy. Alternatively, direct thermal energy storage allows a greater capture of solar energy, reducing the potential for curtailments in very high solar scenarios. So while this analysis evaluates a key performance metric (cost per unit of generation) under a range of cost projections, additional analysis of the value per unit of generation will be needed to comprehensively assess the relative competitiveness of solar energy systems deployed with energy storage.« less
2014-11-01
thus increasing the likelihood of additional testing delays. For example, testing of the ship’s fire sprinklers was delayed because construction of...not deploy as scheduled or will deploy without fully tested systems . The Navy is implementing steps to achieve the $11.5 billion congressional cost...cap, by postponing installation of some systems until after ship delivery, and deferring an estimated $200 million - $250 million in previously
Maximizing photovoltaic power generation of a space-dart configured satellite
NASA Astrophysics Data System (ADS)
Lee, Dae Young; Cutler, James W.; Mancewicz, Joe; Ridley, Aaron J.
2015-06-01
Many small satellites are power constrained due to their minimal solar panel area and the eclipse environment of low-Earth orbit. As with larger satellites, these small satellites, including CubeSats, use deployable power arrays to increase power production. This presents a design opportunity to develop various objective functions related to energy management and methods for optimizing these functions over a satellite design. A novel power generation model was created, and a simulation system was developed to evaluate various objective functions describing energy management for complex satellite designs. The model uses a spacecraft-body-fixed spherical coordinate system to analyze the complex geometry of a satellite's self-induced shadowing with computation provided by the Open Graphics Library. As an example design problem, a CubeSat configured as a space-dart with four deployable panels is optimized. Due to the fast computation speed of the solution, an exhaustive search over the design space is used to find the solar panel deployment angles which maximize total power generation. Simulation results are presented for a variety of orbit scenarios. The method is extendable to a variety of complex satellite geometries and power generation systems.
Implications of the Strategic Defense Initiative for ABM Treaty.
1986-02-01
are permitted to be developed only in deployed or is about to deploy non-limited sytems a fixed, land-based configuration. Thus, some having some ABM ...AIAl A Professional Paper 441 /February 1986 Implications of the Strategic Defense Initiative for ABM Treaty DTICF L) by Z -LECTE AUG 2 2 W58 George R...Ade i-ccd E Lj ,viL Implications of the Strategic Defense Initiative for the ABM Treaty GEORGE R. SCHNEITER Introduction The article first reviews the
A 2.2 sq m /24 sq ft/ self-controlled deployable heat pipe radiator - Design and test
NASA Technical Reports Server (NTRS)
Edelstein, F.
1975-01-01
An all heat pipe, deployable radiator has been developed which can effectively control pumped fluid loop temperatures under varying loads using variable conductance panel heat pipes. The 2.2 sq m (24 sq ft) aluminum panel can be coupled to either a fluid header or a flexible heat pipe header capable of transporting 850 watts in a 90-deg bent configuration. Test results support the feasibility of using this system to passively control Freon-21 loop temperatures.
HP3 on ExoMars - Cutting airbag cloths with the sharp tip of a mechanical mole
NASA Astrophysics Data System (ADS)
Krause, C.; Izzo, M.; Re, E.; Mehls, C.; Richter, L.; Coste, P.
2009-04-01
The HP3 - Heat Flow and Physical Properties Package - is planned to be one of the Humboldt lander-based instruments on the ESA ExoMars mission. HP3 will allow the measurement of the subsurface temperature gradient and physical as well as thermophysical properties of the subsurface regolith of Mars down to a depth of 5 meters. From these measurements, the planetary heat flux can be inferred. The HP³ instrument package consists of a mole trailing a package of thermal and electrical sensors into the regolith. Beside the payload elements Thermal Excitation and Measurement Suite and a Permittivity Probe the HP3 experiment includes sensors to detect the forward motion and the tilt of the HP3 payload compartment. The HP3 experiment will be integrated into the lander platform of the ExoMars mission. The original accommodation featured a deployment device or a robotic arm to place HP3 onto the soil outside the deflated lander airbags. To avoid adding such deployment devices, it was suggested that the HP3 mole should be capable of piercing the airbags under the lander. The ExoMars lander airbag is made of 4 Kevlar layers (2 abrasive and 2 bladders). A double fold of the airbag (a worst case) would represent a pile of 12 layers. An exploratory study has examined the possibility of piercing airbag cloths by adding sharp cutting blades on the tip of a penetrating mole. In the experimental setup representative layers were laid over a Mars soil simulant. Initial tests used a hammer-driven cutting tip and had moderate to poor results. More representative tests used a prototype of the HP3 mole and were fully successful: the default 4 layer configuration was pierced as well as the 12 layer configuration, the latter one within 3 hours and about 3000 mole strokes This improved behaviour is attributed to the use of representative test hardware where guidance and suppression of mole recoil were concerned. The presentation will provide an explanation of the technical requirements on airbag cutting with a mole and the mentioned experimental setup and results.
Scalable and fail-safe deployment of the ATLAS Distributed Data Management system Rucio
NASA Astrophysics Data System (ADS)
Lassnig, M.; Vigne, R.; Beermann, T.; Barisits, M.; Garonne, V.; Serfon, C.
2015-12-01
This contribution details the deployment of Rucio, the ATLAS Distributed Data Management system. The main complication is that Rucio interacts with a wide variety of external services, and connects globally distributed data centres under different technological and administrative control, at an unprecedented data volume. It is therefore not possible to create a duplicate instance of Rucio for testing or integration. Every software upgrade or configuration change is thus potentially disruptive and requires fail-safe software and automatic error recovery. Rucio uses a three-layer scaling and mitigation strategy based on quasi-realtime monitoring. This strategy mainly employs independent stateless services, automatic failover, and service migration. The technologies used for deployment and mitigation include OpenStack, Puppet, Graphite, HAProxy and Apache. In this contribution, the interplay between these components, their deployment, software mitigation, and the monitoring strategy are discussed.
The Adaptable, Deployable Entry and Placement Technology (ADEPT)
NASA Technical Reports Server (NTRS)
Wercinski, Paul
2017-01-01
The initial system-level development of the nano-ADEPT architecture will culminate in the launch of a 0.7 meter deployed diameter ADEPT sounding rocket flight experiment named, SR-1. Launch is planned for August 2017. The test will utilize the NASA Flight Opportunities Program sounding rocket platform provided by UP Aerospace to launch SR-1 to an apogee over 100 km and achieve re-entry conditions with a peak velocity near Mach 3. The SR-1 flight experiment will demonstrate most of the primary end-to-end mission stages including: launch in a stowed configuration, separation and deployment in exo-atmospheric conditions, and passive ballistic re-entry of a 70-degree half-angle faceted cone geometry.
Art concept of Magellan spacecraft in cruise configuration
NASA Technical Reports Server (NTRS)
1988-01-01
Magellan spacecraft cruise configuration is illustrated in this artist concept. With solar panels deployed and having jettisoned the inertial upper stage (IUS), Magellan approaches the sun which it will orbit approximately 1.6 times before encountering Venus. Magellan, named after the 16th century Portuguese explorer, will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperture radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best from prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta Aerospace is developing the spacecraft and Hughes Aircraft Company, the advanced imaging radar. Magellan will be deployed from payload bay (PLB) of Atlantis, Orbiter Vehicle (OV) 104, during the STS-30 mission.
Hopkins-Chadwick, Denise L
2012-01-01
Many military nurses find a period of transition is necessary in order to fully return to work after deployment. Coworkers and supervisors can be a positive or negative force in that transition. Using data from a larger study, evidence-based strategies to support nurses who return to nursing work after deployment were developed. Having an understanding of what returning nurses say about their "coming home" phase can help coworkers and supervisors be a positive force in work transition. A table of tasks with explanations is provided to assist coworkers and supervisors in facilitating the transition back to noncombat nurse work.
Potential Retrieval of Aerosol Microphysics From Multistatic Space-Borne Lidar
NASA Astrophysics Data System (ADS)
Levitan, Nathaniel; Gross, Barry; Moshary, Fred; Wu, Yonghua
2018-04-01
HSRL lidars are being considered for deployment to space to retrieve aerosol microphysics. The literature is mostly focused on the monostatic configuration; but, in this paper, we explore whether additional information for the retrieval of microphysics can be obtained by adding a second detector in a bistatic configuration. The information gained from the additional measurements can under certain conditions reduce the ill-posed nature of aerosol microphysics retrieval and reducing the uncertainty in the retrievals.
The NASA Polarimetric Radar (NPOL)
NASA Technical Reports Server (NTRS)
Petersen, Walter A.; Wolff, David B.
2013-01-01
Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.
Qualification of a High Accuracy Dual-Axis Antenna Deployment and Trimming Mechanism
NASA Technical Reports Server (NTRS)
Gossant, Alain; Morichon, Francois
2010-01-01
The Antenna Deployment and Trimming Mechanism Mark 2 (ADTM Mk2) has been developed to answer today's need for a generic antenna deployment and high accuracy pointing mechanism, allowing RF sensing applications and easier dual deployments configurations. This paper presents the design and evolution from its predecessor, the experience of the design team from kick off to qualification and batch manufacture, as well as some lessons learned from ramping up "mass-production" capabilities while implementing customer driven changes. Astrium has manufactured and flown ADTM units for the past 20 years, from an initial deployment-only mechanism developed for the Orion program to today's Eurostar E3000 ADTM family. The Antenna ADTM Mk2 is an evolution of the original ADTM Mk1. Although it uses Mk1 building blocks to minimize risks associated with the development of a new product, it incorporates major evolutions and is the new baseline for Astrium latest generation of Eurostar E3000 telecom satellites.
Jumat, Jennifer D; Bezuidenhout, Marthie C; Neethling, Theodor G
2014-11-25
South Africa has dedicated itself to participate in peace support operations (PSOs). The concept of 'jointness', involving different arms of services, was adopted within the South African National Defence Force, thus involving nurses in PSOs. Combat-readiness being a prerequisite for those involved in PSOs raised questions as to the readiness of forces to participate in these missions. There is a need for specific nursing care during PSOs, but the role and functions of nurses during such operations were not clearly defined; thus their preparation for these missions had very little scientific grounding. These were to explore the pre-deployment preparation needs of military professional nurses during PSOs, and to describe the experience of these nurses whilst being deployed. A quantitative exploratory, descriptive and contextual approach was used. Questionnaires were distributed to 99 professional nurses who had deployment experience, and 72 participated (73% response rate). Relevant peace mission concepts are the environment, jointness, behaviour and mission readiness, which served as the conceptual bases for the study. Findings indicated that the nurses were not fully informed of their responsibilities during deployment or the circumstances under which they would have to work and live. Their preparation is not fully integrated with that of the other armed forces, and deficiencies in their training and development were identified which negatively impact on their mission readiness. Recommendations were made in terms of human resource requirements, psychological training, better integration of jointness training, and content of training and development to ensure mission readiness of nurses.
CONFU: Configuration Fuzzing Testing Framework for Software Vulnerability Detection
Dai, Huning; Murphy, Christian; Kaiser, Gail
2010-01-01
Many software security vulnerabilities only reveal themselves under certain conditions, i.e., particular configurations and inputs together with a certain runtime environment. One approach to detecting these vulnerabilities is fuzz testing. However, typical fuzz testing makes no guarantees regarding the syntactic and semantic validity of the input, or of how much of the input space will be explored. To address these problems, we present a new testing methodology called Configuration Fuzzing. Configuration Fuzzing is a technique whereby the configuration of the running application is mutated at certain execution points, in order to check for vulnerabilities that only arise in certain conditions. As the application runs in the deployment environment, this testing technique continuously fuzzes the configuration and checks “security invariants” that, if violated, indicate a vulnerability. We discuss the approach and introduce a prototype framework called ConFu (CONfiguration FUzzing testing framework) for implementation. We also present the results of case studies that demonstrate the approach’s feasibility and evaluate its performance. PMID:21037923
Mechanisms of Günther Tulip filter tilting during transfemoral placement.
Matsui, Y; Horikawa, M; Ohta, K; Jahangiri Noudeh, Y; Kaufman, J A; Farsad, K
The purpose of this study was to characterize the mechanisms of Günther Tulip filter (GTF) tilting during transfemoral placement in an experimental model with further validation in a clinical series. In an experimental study, 120 GTF placements in an inferior vena cava (IVC) model were performed using 6 configurations of pre-deployment filter position. The angle between the pre-deployment filter axis and IVC axis, and the proximity of the constrained filter legs to IVC wall prior to deployment were evaluated. The association of those pre-deployment factors with post-deployment filter tilting was analyzed. The association noted in the experimental study was then evaluated in a retrospective clinical series of 21 patients. In the experimental study, there was a significant association between the pre-deployment angle and post-deployment filter tilting (P<0.0001). With a low pre-deployment angle (≤5°), a significant association was noted between filter tilting and the proximity of the constrained filter legs to the far IVC wall (P=0.001). In a retrospective clinical study, a significant association between the pre-deployment angle and post-deployment filter tilting was also noted with a linear regression model (P=0.026). Significant association of the pre-deployment angle with post-deployment GTF tilting was shown in both the experimental and clinical studies. The experimental study also showed that proximity of filter legs is relevant when pre-deployment angle is small. Addressing these factors may result in a lower incidence of filter tilting. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.
GEOS-5 During ORACLES: Status Update
NASA Technical Reports Server (NTRS)
da Silva, Arlindo; Longo, Karla
2017-01-01
In this talk we summarize the GEOS-5 capabilities to be deployed during the ORACLES 2016 Campaign. We describe model configuration, data products and web services available. We also discuss the measurement and flight requirements for the GEOS-5 Team.
International Space Station (ISS)
1994-04-20
An artist's concept of a fully deployed International Space Station (ISS) Alpha. The ISS-A is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experiments.
Gossamer-1: Mission concept and technology for a controlled deployment of gossamer spacecraft
NASA Astrophysics Data System (ADS)
Seefeldt, Patric; Spietz, Peter; Sproewitz, Tom; Grundmann, Jan Thimo; Hillebrandt, Martin; Hobbie, Catherin; Ruffer, Michael; Straubel, Marco; Tóth, Norbert; Zander, Martin
2017-01-01
Gossamer structures for innovative space applications, such as solar sails, require technology that allows their controlled and thereby safe deployment. Before employing such technology for a dedicated science mission, it is desirable, if not necessary, to demonstrate its reliability with a Technology Readiness Level (TRL) of six or higher. The aim of the work presented here is to provide reliable technology that enables the controlled deployment and verification of its functionality with various laboratory tests, thereby qualifying the hardware for a first demonstration in low Earth orbit (LEO). The development was made in the Gossamer-1 project of the German Aerospace Center (DLR). This paper provides an overview of the Gossamer-1 mission and hardware development. The system is designed based on the requirements of a technology demonstration mission. The design rests on a crossed boom configuration with triangular sail segments. Employing engineering models, all aspects of the deployment were tested under ambient environment. Several components were also subjected to environmental qualification testing. An innovative stowing and deployment strategy for a controlled deployment, as well as the designs of the bus system, mechanisms and electronics are described. The tests conducted provide insights into the deployment process and allow a mechanical characterization of that deployment process, in particular the measurement of the deployment forces. Deployment on system level could be successfully demonstrated to be robust and controllable. The deployment technology is on TRL four approaching level five, with a qualification model for environmental testing currently being built.
Aided generation of search interfaces to astronomical archives
NASA Astrophysics Data System (ADS)
Zorba, Sonia; Bignamini, Andrea; Cepparo, Francesco; Knapic, Cristina; Molinaro, Marco; Smareglia, Riccardo
2016-07-01
Astrophysical data provider organizations that host web based interfaces to provide access to data resources have to cope with possible changes in data management that imply partial rewrites of web applications. To avoid doing this manually it was decided to develop a dynamically configurable Java EE web application that can set itself up reading needed information from configuration files. Specification of what information the astronomical archive database has to expose is managed using the TAP SCHEMA schema from the IVOA TAP recommendation, that can be edited using a graphical interface. When configuration steps are done the tool will build a war file to allow easy deployment of the application.
In-Vacuum Photogrammetry of a 10-Meter Solar Sail
NASA Technical Reports Server (NTRS)
Meyer, Chris G.; Jones, Thomas W.; Lunsford, Charles B.; Pappa, Richard S.
2005-01-01
In July 2004, a 10-meter solar sail structure developed by L Garde, Inc. was tested in vacuum at the NASA Glenn 30-meter Plum Brook Space Power Facility in Sandusky, Ohio. The three main objections of the test were to demonstrate unattended deployment from a stowed configuration, to measure the deployed shape of the sail at both ambient and cryogenic room temperatures, and to measure the deployed structural dynamic characteristics (vibration modes). This paper summarizes the work conducted to fulfill the second test objective. The deployed shape was measured photogrammetrically in vacuum conditions with four 2-megapixel digital video cameras contained in custom made pressurized canisters. The canisters included high-intensity LED ring lights to illuminate a grid of retroreflective targets distributed on the solar sail. The test results closely matched pre-test photogrammetry numerical simulations and compare well with ABAQUS finite-element model predictions.
Using XML Configuration-Driven Development to Create a Customizable Ground Data System
NASA Technical Reports Server (NTRS)
Nash, Brent; DeMore, Martha
2009-01-01
The Mission data Processing and Control Subsystem (MPCS) is being developed as a multi-mission Ground Data System with the Mars Science Laboratory (MSL) as the first fully supported mission. MPCS is a fully featured, Java-based Ground Data System (GDS) for telecommand and telemetry processing based on Configuration-Driven Development (CDD). The eXtensible Markup Language (XML) is the ideal language for CDD because it is easily readable and editable by all levels of users and is also backed by a World Wide Web Consortium (W3C) standard and numerous powerful processing tools that make it uniquely flexible. The CDD approach adopted by MPCS minimizes changes to compiled code by using XML to create a series of configuration files that provide both coarse and fine grained control over all aspects of GDS operation.
Space Station tethered refueling facility operations
NASA Technical Reports Server (NTRS)
Kiefel, E. R.; Rudolph, L. K.; Fester, D. A.
1986-01-01
The space-based orbital transfer vehicle will require a large cryogenic fuel storage facility at the Space Station. An alternative to fuel storage onboard the Space Station, is on a tethered orbital refueling facility (TORF) which is separated from the Space Station by a sufficient distance to induce a gravity gradient to settle the propellants. Facility operations are a major concern associated with a tethered LO2/LH2 storage depot. A study was carried out to analyze these operations so as to identify the preferred TORF deployment direction (up or down) and whether the TORF should be permanently or intermittently deployed. The analyses considered safety, contamination, rendezvous, servicing, transportation rate, communication, and viewing. An upwardly, intermittently deployed facility is the preferred configuration for a tethered cryogenic fuel storage.
Extravehicular activity translation arm (EVATA) study
NASA Technical Reports Server (NTRS)
Preiswerk, P. R.; Stammreich, J. R.
1978-01-01
The preliminary design of a deployable Extravehicular Activity Translation Arm (EVATA) assembly which will allow an EVA crewman to perform tasks in the vicinity of the External TNK (ET) umbilical doors and to inspect most of the underside of the shuttle spacecraft is reported. The concept chosen for the boom structure was the Astro Extendable Support Structure (ESS) which formed the main structure for the Synthetic Aperture Radar (SAR) Antenna System on the SEASAT A spacecraft. This structure is a deployable triangular truss. A comparison of the EVATA and the SEASAT A ESS is shown. The development of status of the ESS is shown. The satellite configuration, the stowed truss load path, and the envelope deployment sequence for the ESS are also shown.
Variable Geometry Aircraft Pylon Structure and Related Operation Techniques
NASA Technical Reports Server (NTRS)
Shah, Parthiv N. (Inventor)
2014-01-01
An aircraft control structure can be utilized for purposes of drag management, noise control, or aircraft flight maneuvering. The control structure includes a high pressure engine nozzle, such as a bypass nozzle or a core nozzle of a turbofan engine. The nozzle exhausts a high pressure fluid stream, which can be swirled using a deployable swirl vane architecture. The control structure also includes a variable geometry pylon configured to be coupled between the nozzle and the aircraft. The variable geometry pylon has a moveable pylon section that can be deployed into a deflected state to maintain or alter a swirling fluid stream (when the swirl vane architecture is deployed) for drag management purposes, or to assist in the performance of aircraft flight maneuvers.
Emergency canine surgery in a deployed forward surgical team: a case report.
Beitler, Alan L; Jeanette, Joseph P; McGraw, Andrew L; Butera, Jennifer R; Vanfosson, Christopher A; Seery, Jason M
2011-04-01
Forward surgical teams (FSTs) perform a variety of non-doctrinal functions. During their deployment to Afghanistan, the 541st FST (Airborne) performed emergency surgery on a German shepherd military working dog (MWD). Retrospective examination of a case of veterinary surgery in a deployed FST. A 5 1/2-year-old German shepherd MWD presented with extreme lethargy, tachycardia, excessive drooling, and a firm, distended abdomen. These conditions resulted from gastric dilatation with volvulus. Since evacuation to a veterinarian was untenable, emergency laparotomy was performed in the FST. The gastric dilatation with volvulus was treated by detorsion and gastropexy, and the canine patient fully recovered. Canine surgery can be safely performed in an FST. Based on the number of MWDs deployed throughout the theater, FSTs may be called upon to care for them in the absence of available veterinary care.
2018-05-17
The RainCube 6U CubeSat with fully-deployed antenna. RainCube, CubeRRT and TEMPEST-D are currently integrated aboard Orbital ATKs Cygnus spacecraft and are awaiting launch on an Antares rocket. After the CubeSats have arrived at the station, they will be deployed into low-Earth orbit and will begin their missions to test these new technologies useful for predicting weather, ensuring data quality, and helping researchers better understand storms. https://photojournal.jpl.nasa.gov/catalog/PIA22457
2007-12-01
1-minute data and the hourly averaged satellite transmitted data during the bum-in period show some disagreement between some pairs of sensors...compares it with the time taken for another pulse to travel in the opposite direction. Likewise, differences are measured between other pairs of...all electronics and battery packs in place in the well and powered up. This was done to simulate the actual configuration during deployment. On the
Large space erectable structures - building block structures study
NASA Technical Reports Server (NTRS)
Armstrong, W. H.; Skoumal, D. E.; Straayer, J. W.
1977-01-01
A modular planar truss structure and a long slender boom concept identified as building block approaches to construction of large spacecraft configurations are described. The concepts are compatible in weight and volume goals with the Space Transportation System, use standard structural units, and represent high on-orbit productivity in terms of structural area or beam length. Results of structural trade studies involving static and dynamic analyses of a single module and rigid body deployment analyses to assess kinetics and kinematics of automatic deployment of the building block modules are presented.
GEOS-20 m cable boom mechanism
NASA Technical Reports Server (NTRS)
Schmidt, B. K.; Suttner, K.
1977-01-01
The GEOS cable boom mechanism allows the controlled deployment of a 20 m long cable in a centrifugal force field. In launch configuration the flat cable is reeled on a 240 mm diameter drum. The electrical connection between the rotating drum and the stationary housing is accomplished via a flexlead positioned inside the drum. Active motion control of this drum is achieved by a self locking worm gear, driven by a stepper motor. The deployment length of the cable is monitored by an optical length indicator, sensing black bars engraved on the cable surface.
Rapidly deployable emergency communication system
Gladden, Charles A.; Parelman, Martin H.
1979-01-01
A highly versatile, highly portable emergency communication system which permits deployment in a very short time to cover both wide areas and distant isolated areas depending upon mission requirements. The system employs a plurality of lightweight, fully self-contained repeaters which are deployed within the mission area to provide communication between field teams, and between each field team and a mobile communication control center. Each repeater contains a microcomputer controller, the program for which may be changed from the control center by the transmission of digital data within the audible range (300-3,000 Hz). Repeaters are accessed by portable/mobile transceivers, other repeaters, and the control center through the transmission and recognition of digital data code words in the subaudible range.
Portable convertible blast effects shield
Pastrnak, John W [Livermore, CA; Hollaway, Rocky [Modesto, CA; Henning, Carl D [Livermore, CA; Deteresa, Steve [Livermore, CA; Grundler, Walter [Hayward, CA; Hagler, Lisle B [Berkeley, CA; Kokko, Edwin [Dublin, CA; Switzer, Vernon A [Livermore, CA
2011-03-15
A rapidly deployable portable convertible blast effects shield/ballistic shield includes a set two or more frusto-conically-tapered telescoping rings operably connected to each other to convert between a telescopically-collapsed configuration for storage and transport, and a telescopically-extended upright configuration forming an expanded inner volume. In a first embodiment, the upright configuration provides blast effects shielding, such as against blast pressures, shrapnel, and/or fire balls. And in a second embodiment, the upright configuration provides ballistic shielding, such as against incoming weapons fire, shrapnel, etc. Each ring has a high-strength material construction, such as a composite fiber and matrix material, capable of substantially inhibiting blast effects and impinging projectiles from passing through the shield. And the set of rings are releasably securable to each other in the telescopically-extended upright configuration by the friction fit of adjacent pairs of frusto-conically-tapered rings to each other.
NASA Technical Reports Server (NTRS)
Graff, S. H.
1985-01-01
Sometimes it is necessary to mount a payload remotely from the main body of a spacecraft or space station. The reasons for this vary from vibration isolation to avoidance of measurement contamination. For example the SP-100 project, which grew out of the increased interest in nuclear power in space for space stations and for deep space explorations, requires separation of the nuclear reactor from the user because of vibration, heat and radiation. The different attitude control problems for beam and tether configurations are discussed. The beam configuration uses a conservative design approach. The vibration, beam flexibility and deployment concerns are analyzed. The tether configuration offers some very attractive design features, but not without several thorny problems. These problems are analyzed. One configuration will be recommended for the main thrust of the SP-100 design effort based on attitude control considerations.
Foreign Police Development: The Third Time’s the Charm
2010-02-10
inclusive concept of a standing Interagency Task Force ( IATF ) headquarters, which would deploy on short notice as part of a combatant command’s...COCOM) combined joint task force (CJTF). In this case, the President would appoint a senior civilian to lead the IATF and its fully integrated civil...agencies in support seems the most practical, flexible, and cost-effective. Part of that IATF would be a fully integrated police development team
Deployment Technology of a Heliogyro Solar Sail for Long Duration Propulsion
NASA Technical Reports Server (NTRS)
Peerawan, Wiwattananon; Bryant, Robert G.; Edmonson, William W.; Moore, William B.; Bell, Jared M.
2015-01-01
Interplanetary, multi-mission, station-keeping capabilities will require that a spacecraft employ a highly efficient propulsion-navigation system. The majority of space propulsion systems are fuel-based and require the vehicle to carry and consume fuel as part of the mission. Once the fuel is consumed, the mission is set, thereby limiting the potential capability. Alternatively, a method that derives its acceleration and direction from solar photon pressure using a solar sail would eliminate the requirement of onboard fuel to meet mission objectives. MacNeal theorized that the heliogyro-configured solar sail architecture would be lighter, less complex, cheaper, and less risky to deploy a large sail area versus a masted sail. As sail size increases, the masted sail requires longer booms resulting in increased mass, and chaotic uncontrollable deployment. With a heliogyro, the sail membrane is stowed as a roll of thin film forming a blade when deployed that can extend up to kilometers. Thus, a benefit of using a heliogyro-configured solar sail propulsion technology is the mission scalability as compared to masted versions, which are size constrained. Studies have shown that interplanetary travel is achievable by the heliogyro solar sail concept. Heliogyro solar sail concept also enables multi-mission missions such as sample returns, and supply transportation from Earth to Mars as well as station-keeping missions to provide enhanced warning of solar storm. This paper describes deployment technology being developed at NASA Langley Research Center to deploy and control the center-of-mass/center-of-pressure using a twin bladed heliogyro solar sail 6-unit (6U) CubeSat. The 6U comprises 2x2U blade deployers and 2U for payload. The 2U blade deployers can be mounted to 6U or larger scaled systems to serve as a non-chemical in-space propulsion system. A single solar sail blade length is estimated to be 2.4 km with a total area from two blades of 720 m2; total allowable weight of a 6U CubeSat is approximately 8 kg. This makes the theoretical characteristic acceleration of approximately 0.75 mm/s2 at I AU (astronomical unit), when compared to IKAROS (0.005 mm/s2) and NanoSail-D (0.02 mm/s2).
Aerial Deployment and Inflation System for Mars Helium Balloons
NASA Technical Reports Server (NTRS)
Lachenmeler, Tim; Fairbrother, Debora; Shreves, Chris; Hall, Jeffery, L.; Kerzhanovich, Viktor V.; Pauken, Michael T.; Walsh, Gerald J.; White, Christopher V.
2009-01-01
A method is examined for safely deploying and inflating helium balloons for missions at Mars. The key for making it possible to deploy balloons that are light enough to be buoyant in the thin, Martian atmosphere is to mitigate the transient forces on the balloon that might tear it. A fully inflated Mars balloon has a diameter of 10 m, so it must be folded up for the trip to Mars, unfolded upon arrival, and then inflated with helium gas in the atmosphere. Safe entry into the Martian atmosphere requires the use of an aeroshell vehicle, which protects against severe heating and pressure loads associated with the hypersonic entry flight. Drag decelerates the aeroshell to supersonic speeds, then two parachutes deploy to slow the vehicle down to the needed safe speed of 25 to 35 m/s for balloon deployment. The parachute system descent dynamic pressure must be approximately 5 Pa or lower at an altitude of 4 km or more above the surface.
GEODSS Present Configuration and Potential
2014-06-28
to provide critical metric tracking capacity for deep space catalog maintenance. The follow-up TOS designed as a deployable gap filler in SSN deep...CASTOR) - A RAVEN System In Canada [3]WindowPane Observatory Lanphier Shutter System 2014 Retrieved From: http://windowpaneobservatory.com/ [4]J.N
B-747 Vortex Alleviation Flight Tests : Ground-Based Sensor Measurements
DOT National Transportation Integrated Search
1982-01-01
In 1979, a series of B-747 flight tests were carried out to study the wake-vortex alleviation produced by deploying spoilers in the landing configuration. The alleviation achieved was examined by encounters of probe aircraft and by velocity profile m...
NASA Technical Reports Server (NTRS)
Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.
1991-01-01
Measurements of pressure distributions and force coefficients were carried out in two types of squeeze film dampers, executing a circular centered orbit, an open-ended configuration, and a partially sealed one, in order to investigate the effect of fluid inertia and cavitation on pressure distributions and force coefficients. Dynamic pressure measurements were carried out for two orbit radii, epsilon 0.5 and 0.8. It was found that the partially sealed configuration was less influenced by fluid inertia than the open ended configuration.
Low Density Supersonic Decelerator Parachute Decelerator System
NASA Technical Reports Server (NTRS)
Gallon, John C.; Clark, Ian G.; Rivellini, Tommaso P.; Adams, Douglas S.; Witkowski, Allen
2013-01-01
The Low Density Supersonic Decelerator Project has undertaken the task of developing and testing a large supersonic ringsail parachute. The parachute under development is intended to provide mission planners more options for parachutes larger than the Mars Science Laboratory's 21.5m parachute. During its development, this new parachute will be taken through a series of tests in order to bring the parachute to a TRL-6 readiness level and make the technology available for future Mars missions. This effort is primarily focused on two tests, a subsonic structural verification test done at sea level atmospheric conditions and a supersonic flight behind a blunt body in low-density atmospheric conditions. The preferred method of deploying a parachute behind a decelerating blunt body robotic spacecraft in a supersonic flow-field is via mortar deployment. Due to the configuration constraints in the design of the test vehicle used in the supersonic testing it is not possible to perform a mortar deployment. As a result of this limitation an alternative deployment process using a ballute as a pilot is being developed. The intent in this alternate approach is to preserve the requisite features of a mortar deployment during canopy extraction in a supersonic flow. Doing so will allow future Mars missions to either choose to mortar deploy or pilot deploy the parachute that is being developed.
NASA Astrophysics Data System (ADS)
Tender, Leonard M.; Gray, Sam A.; Groveman, Ethan; Lowy, Daniel A.; Kauffman, Peter; Melhado, Julio; Tyce, Robert C.; Flynn, Darren; Petrecca, Rose; Dobarro, Joe
2008-05-01
Here we describe the first demonstration of a microbial fuel cell (MFC) as a practical alternative to batteries for a low-power consuming application. The specific application reported is a meteorological buoy (ca. 18-mW average consumption) that measures air temperature, pressure, relative humidity, and water temperature, and that is configured for real-time line-of-sight RF telemetry of data. The specific type of MFC utilized in this demonstration is the benthic microbial fuel cell (BMFC). The BMFC operates on the bottom of marine environments, where it oxidizes organic matter residing in oxygen depleted sediment with oxygen in overlying water. It is maintenance free, does not deplete (i.e., will run indefinitely), and is sufficiently powerful to operate a wide range of low-power marine-deployed scientific instruments normally powered by batteries. Two prototype BMFCs used to power the buoy are described. The first was deployed in the Potomac River in Washington, DC, USA. It had a mass of 230 kg, a volume of 1.3 m3, and sustained 24 mW (energy equivalent of ca. 16 alkaline D-cells per year at 25 °C). Although not practical due to high cost and extensive in-water manipulation required to deploy, it established the precedence that a fully functional scientific instrument could derive all of its power from a BMFC. It also provided valuable lessons for developing a second, more practical BMFC that was subsequently used to power the buoy in a salt marsh near Tuckerton, NJ, USA. The second version BMFC has a mass of 16 kg, a volume of 0.03 m3, sustains ca. 36 mW (energy equivalent of ca. 26 alkaline D-cells per year at 25 °C), and can be deployed by a single person from a small craft with minimum or no in-water manipulation. This BMFC is being further developed to reduce cost and enable greater power output by electrically connecting multiple units in parallel. Use of this BMFC powering the meteorological buoy highlights the potential impact of BMFCs to enable long term (persistent) operation of durable low-power marine instruments (up to 100 mW average power consumption) far longer than practical by batteries.
PTC MathCAD and Workgroup Manager: Implementation in a Multi-Org System
NASA Technical Reports Server (NTRS)
Jones, Corey
2015-01-01
In this presentation, the presenter will review what was done at Kennedy Space Center to deploy and implement PTC MathCAD and PTC Workgroup Manager in a multi-org system. During the presentation the presenter will explain how they configured PTC Windchill to create custom soft-types and object initialization rules for their custom numbering scheme and why they choose these methods. This presentation will also include how to modify the EPM default soft-type file in the PTC Windchill server codebase folder. The presenter will also go over the code used in a start up script to initiate PTC MathCAD and PTC Workgroup Manager in the proper order, and also set up the environment variables when running both PTC Workgroup Manager and PTC Creo. The configuration.ini file the presenter used will also be reviewed to show you how to set up the PTC Workgroup Manager and customized it to their user community. This presentation will be of interest to administrators trying to create a similar set-up in either a single org or multiple org system deployment. The big take away will be ideas and best practices learned through implementing this system, and the lessons learned what to do and not to do when setting up this configuration. Attendees will be exposed to several different sets of code used and that worked well and will hear some limitations on what the software can accomplish when configured this way.
Walsh, David O; Turner, Peter
2014-05-27
Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.
Landing Gear Components Noise Study - PIV and Hot-Wire Measurements
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Burley, Casey L.; Stead, Daniel J.; Becker, Lawrence E.; Price, Jennifer L.
2010-01-01
PIV and hot-wire measurements of the wake flow from rods and bars are presented. The test models include rods of different diameters and cross sections and a rod juxtaposed to a plate. The latter is representative of the latch door that is attached to an aircraft landing gear when the gear is deployed, while the single and multiple rod configurations tested are representative of some of the various struts and cables configuration present on an aircraft landing gear. The test set up is described and the flow measurements are presented. The effect of model surface treatment and freestream turbulence on the spanwise coherence of the vortex shedding is studied for several rod and bar configurations.
Transcardiac conducted electrical weapon (TASER) probe deployments: incidence and outcomes.
Bozeman, William P; Teacher, Eric; Winslow, James E
2012-12-01
TASER (TASER International, Scottsdale, AZ) conducted electrical weapons (CEWs) are commonly used by law enforcement officers. Although animal studies have suggested that transcardiac CEW discharges may produce direct cardiac effects, this has not been demonstrated in human studies. This study sought to determine the incidence and outcomes of transcardiac CEW probe impact locations in a large series of actual CEW deployments. A multi-center database of consecutive CEW uses by law enforcement officers was retrospectively reviewed. Case report forms were independently reviewed by three investigators to identify cases with paired probe configurations potentially producing a transcardiac discharge vector. Descriptive analysis was performed and inter-rater reliability was assessed. Among 1201 total CEW uses, 813 included probe deployments and 178 cases had paired anterior probe impacts potentially capable of producing a transcardiac discharge vector. This represents 14.8% of all CEW uses (95% confidence interval [CI] 12.9-16.9%) and 21.9% of CEW uses in probe mode (95% CI 19.1-24.9%). Inter-rater agreement was very good, with kappa = 0.82. There were no immediate deaths in any cases (97.5% CI 0.0-0.3%) to suggest a cardiac dysrhythmia, including those with transcardiac discharge vector. CEW deployments with probe impact configurations capable of producing a transcardiac discharge occur in a minority of cases in field use conditions. None of these cases, transcardiac or otherwise, produced immediately fatal dysrhythmias. These data support the overall safety of CEWs and provide a benchmark estimate of the likelihood of transcardiac discharge vectors occurring in field use of CEWs. Copyright © 2012 Elsevier Inc. All rights reserved.
Posture Detection Based on Smart Cushion for Wheelchair Users
Ma, Congcong; Li, Wenfeng; Gravina, Raffaele; Fortino, Giancarlo
2017-01-01
The postures of wheelchair users can reveal their sitting habit, mood, and even predict health risks such as pressure ulcers or lower back pain. Mining the hidden information of the postures can reveal their wellness and general health conditions. In this paper, a cushion-based posture recognition system is used to process pressure sensor signals for the detection of user’s posture in the wheelchair. The proposed posture detection method is composed of three main steps: data level classification for posture detection, backward selection of sensor configuration, and recognition results compared with previous literature. Five supervised classification techniques—Decision Tree (J48), Support Vector Machines (SVM), Multilayer Perceptron (MLP), Naive Bayes, and k-Nearest Neighbor (k-NN)—are compared in terms of classification accuracy, precision, recall, and F-measure. Results indicate that the J48 classifier provides the highest accuracy compared to other techniques. The backward selection method was used to determine the best sensor deployment configuration of the wheelchair. Several kinds of pressure sensor deployments are compared and our new method of deployment is shown to better detect postures of the wheelchair users. Performance analysis also took into account the Body Mass Index (BMI), useful for evaluating the robustness of the method across individual physical differences. Results show that our proposed sensor deployment is effective, achieving 99.47% posture recognition accuracy. Our proposed method is very competitive for posture recognition and robust in comparison with other former research. Accurate posture detection represents a fundamental basic block to develop several applications, including fatigue estimation and activity level assessment. PMID:28353684
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehos, Mark; Turchi, Craig; Jorgenson, Jennie
2016-05-01
This report examines the remaining challenges to achieving the competitive concentrating solar power (CSP) costs and large-scale deployment envisioned under the U.S. Department of Energy's SunShot Initiative. Although CSP costs continue to decline toward SunShot targets, CSP acceptance and deployment have been hindered by inexpensive photovoltaics (PV). However, a recent analysis found that thermal energy storage (TES) could increase CSP's value--based on combined operational and capacity benefits--by up to 6 cents/kWh compared to variable-generation PV, under a 40% renewable portfolio standard in California. Thus, the high grid value of CSP-TES must be considered when evaluating renewable energy options. An assessmentmore » of net system cost accounts for the difference between the costs of adding new generation and the avoided cost from displacing other resources providing the same level of energy and reliability. The net system costs of several CSP configurations are compared with the net system costs of conventional natural-gas-fired combustion-turbine (CT) and combined-cycle plants. At today's low natural gas prices and carbon emission costs, the economics suggest a peaking configuration for CSP. However, with high natural gas prices and emission costs, each of the CSP configurations compares favorably against the conventional alternatives, and systems with intermediate to high capacity factors become the preferred alternatives. Another analysis compares net system costs for three configurations of CSP versus PV with batteries and PV with CTs. Under current technology costs, the least-expensive option is a combination of PV and CTs. However, under future cost assumptions, the optimal configuration of CSP becomes the most cost-effective option.« less
Oweis, Salah; D'Ussel, Louis; Chagnon, Guy; Zuhowski, Michael; Sack, Tim; Laucournet, Gaullume; Jackson, Edward J.
2002-06-04
A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.
Best Practices for Continuous Monitoring of Temperature and Flow in Wadeable Streams (Final Report)
This final report is a technical "best practices" document describing sensor deployment for and collection of continuous temperature and flow data at ungaged sites in wadeable streams. This document addresses questions related to equipment needs; configuration, placement, and ins...
Collapsible structure for an antenna reflector
NASA Technical Reports Server (NTRS)
Trubert, M. R. (Inventor)
1973-01-01
A collapsible support for an antenna reflector for use in supporting spacecraft antennas is described. The support has a regid base and a number of struts which are pivoted at the base. The deployment of the struts and their final configuration for supporting the antenna are illustrated.
ADEPT Sounding Rocket One (SR-1)Flight Experiment Overview
NASA Technical Reports Server (NTRS)
Wercinski, Paul; Smith, B.; Yount, B.; Cassell, A.; Kruger, C.; Brivkalns, C.; Makino, A.; Duttta, S.; Ghassemieh, S.; Wu, S.;
2017-01-01
The SR-1 flight experiment will demonstrate most of the primary end-to-end mission stages including: launch in a stowed configuration, separation and deployment in exo-atmospheric conditions, and passive ballistic re-entry of a 70-degree half-angle faceted cone geometry.
JINR cloud infrastructure evolution
NASA Astrophysics Data System (ADS)
Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.
2016-09-01
To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.
Home Automation System Based on Intelligent Transducer Enablers.
Suárez-Albela, Manuel; Fraga-Lamas, Paula; Fernández-Caramés, Tiago M; Dapena, Adriana; González-López, Miguel
2016-09-28
This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet.
Home Automation System Based on Intelligent Transducer Enablers
Suárez-Albela, Manuel; Fraga-Lamas, Paula; Fernández-Caramés, Tiago M.; Dapena, Adriana; González-López, Miguel
2016-01-01
This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet. PMID:27690031
Touring DNS Open Houses for Trends and Configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalafut, Prof. Andrew; Shue, Craig A; Gupta, Prof. Minaxi
2011-01-01
DNS is a critical component of the Internet. It maps domain names to IP addresses and serves as a distributed database for various other applications, including mail, Web, and spam filtering. This paper examines DNS zones in the Internet for diversity, adoption rates of new technologies, and prevalence of configuration issues. To gather data, we sweep 60% of the Internet's domains in June - August 2007 for zone transfers. 6.6% of them allow us to transfer their complete information. Surprisingly, this includes a large fraction of the domains deploying DNSSEC. We find that DNS zones vary significantly in size andmore » some span many ASes. Also, while anti-spam technologies appear to be getting deployed, the adoption rates of DNSSEC and IPv6 continue to be low. Finally, we also find that carelessness in handing DNS records can lead to reduced availability of name servers, email, and Web servers. This also undermines anti-spam efforts and the efforts to shut down phishing sites or to contain malware infections.« less
Implementation of Grid Tier 2 and Tier 3 facilities on a Distributed OpenStack Cloud
NASA Astrophysics Data System (ADS)
Limosani, Antonio; Boland, Lucien; Coddington, Paul; Crosby, Sean; Huang, Joanna; Sevior, Martin; Wilson, Ross; Zhang, Shunde
2014-06-01
The Australian Government is making a AUD 100 million investment in Compute and Storage for the academic community. The Compute facilities are provided in the form of 30,000 CPU cores located at 8 nodes around Australia in a distributed virtualized Infrastructure as a Service facility based on OpenStack. The storage will eventually consist of over 100 petabytes located at 6 nodes. All will be linked via a 100 Gb/s network. This proceeding describes the development of a fully connected WLCG Tier-2 grid site as well as a general purpose Tier-3 computing cluster based on this architecture. The facility employs an extension to Torque to enable dynamic allocations of virtual machine instances. A base Scientific Linux virtual machine (VM) image is deployed in the OpenStack cloud and automatically configured as required using Puppet. Custom scripts are used to launch multiple VMs, integrate them into the dynamic Torque cluster and to mount remote file systems. We report on our experience in developing this nation-wide ATLAS and Belle II Tier 2 and Tier 3 computing infrastructure using the national Research Cloud and storage facilities.
Certification of production-quality gLite Job Management components
NASA Astrophysics Data System (ADS)
Andreetto, P.; Bertocco, S.; Capannini, F.; Cecchi, M.; Dorigo, A.; Frizziero, E.; Giacomini, F.; Gianelle, A.; Mezzadri, M.; Molinari, E.; Monforte, S.; Prelz, F.; Rebatto, D.; Sgaravatto, M.; Zangrando, L.
2011-12-01
With the advent of the recent European Union (EU) funded projects aimed at achieving an open, coordinated and proactive collaboration among the European communities that provide distributed computing services, more strict requirements and quality standards will be asked to middleware providers. Such a highly competitive and dynamic environment, organized to comply a business-oriented model, has already started pursuing quality criteria, thus requiring to formally define rigorous procedures, interfaces and roles for each step of the software life-cycle. This will ensure quality-certified releases and updates of the Grid middleware. In the European Middleware Initiative (EMI), the release management for one or more components will be organized into Product Team (PT) units, fully responsible for delivering production ready, quality-certified software and for coordinating each other to contribute to the EMI release as a whole. This paper presents the certification process, with respect to integration, installation, configuration and testing, adopted at INFN by the Product Team responsible for the gLite Web-Service based Computing Element (CREAM CE) and for the Workload Management System (WMS). The used resources, the testbeds layout, the integration and deployment methods, the certification steps to provide feedback to developers and to grant quality results are described.
Simulating clefts in pumpkin balloons
NASA Astrophysics Data System (ADS)
Baginski, Frank; Brakke, Kenneth
2010-02-01
The geometry of a large axisymmetric balloon with positive differential pressure, such as a sphere, leads to very high film stresses. These stresses can be significantly reduced by using a tendon re-enforced lobed pumpkin-like shape. A number of schemes have been proposed to achieve a cyclically symmetric pumpkin shape, including the constant bulge angle (CBA) design, the constant bulge radius (CBR) design, CBA/CBR hybrids, and NASA’s recent constant stress (CS) design. Utilizing a hybrid CBA/CBR pumpkin design, Flight 555-NT in June 2006 formed an S-cleft and was unable to fully deploy. In order to better understand the S-cleft phenomenon, a series of inflation tests involving four 27-m diameter 200-gore pumpkin balloons were conducted in 2007. One of the test vehicles was a 1/3-scale mockup of the Flight 555-NT balloon. Using an inflation procedure intended to mimic ascent, the 1/3-scale mockup developed an S-cleft feature strikingly similar to the one observed in Flight 555-NT. Our analysis of the 1/3-scale mockup found it to be unstable. We compute asymmetric equilibrium configurations of this balloon, including shapes with an S-cleft feature.
Structural Bus and Release Mechanisms on the ST5 Satellites: Summary and Status
NASA Technical Reports Server (NTRS)
Rossoni, Peter
2007-01-01
The Space Technology 5 Mechanical System met the challenge of packaging a fully functional science and technology satellite system with its Deployer mechanism into a compact 0.07cu m volume. Three 25 kg satellites were orbited in constellation in March, 2006. The ST5 mechanical system is composed of 1) The Structural Bus; 2) Magnetometer Instrument Boom 3) Spacecraft Deployer Release Mechanism This system includes a highly integrated electronics enclosure as a multifunctional structure; a lightweight, magnetically clean Magnetometer Boom; the first use of Nitinol Shape-Memory Alloy trigger devices for deploying multiple spacecraft; an innovative compliant mount for the umbilical connector and a Deployer mechanism that imparts both separation velocity and mission spin rate to three constellation flying satellites These elements employed cutting-edge design and analysis tools, state-of-the-art testing facilities and proven engineering techniques to meet stringent performance criteria, enabling the mission s success.
Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission
NASA Technical Reports Server (NTRS)
Meyers, Stew; Sturm, James
2004-01-01
The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25-kilogram micro-class spacecraft in formation through the Earth's magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25-kg Micosat resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state-of-the-art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper. This paper describes the development efforts and resulting self-deploying magnetometer boom.
Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission
NASA Technical Reports Server (NTRS)
Meyers, Stew; Sturm, James
2004-01-01
The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25 kilogram micro class spacecraft in formation through the Earth s magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25 kg "Micosat" resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state of the art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper, This paper describes the development efforts and resulting self-deploying magnetometer boom.
CORAL Server and CORAL Server Proxy: Scalable Access to Relational Databases from CORAL Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valassi, A.; /CERN; Bartoldus, R.
The CORAL software is widely used at CERN by the LHC experiments to access the data they store on relational databases, such as Oracle. Two new components have recently been added to implement a model involving a middle tier 'CORAL server' deployed close to the database and a tree of 'CORAL server proxies', providing data caching and multiplexing, deployed close to the client. A first implementation of the two new components, released in the summer 2009, is now deployed in the ATLAS online system to read the data needed by the High Level Trigger, allowing the configuration of a farmmore » of several thousand processes. This paper reviews the architecture of the software, its development status and its usage in ATLAS.« less
An efficient approach to the deployment of complex open source information systems
Cong, Truong Van Chi; Groeneveld, Eildert
2011-01-01
Complex open source information systems are usually implemented as component-based software to inherit the available functionality of existing software packages developed by third parties. Consequently, the deployment of these systems not only requires the installation of operating system, application framework and the configuration of services but also needs to resolve the dependencies among components. The problem becomes more challenging when the application must be installed and used on different platforms such as Linux and Windows. To address this, an efficient approach using the virtualization technology is suggested and discussed in this paper. The approach has been applied in our project to deploy a web-based integrated information system in molecular genetics labs. It is a low-cost solution to benefit both software developers and end-users. PMID:22102770
González-Parada, Eva; Cano-García, Jose; Aguilera, Francisco; Sandoval, Francisco; Urdiales, Cristina
2017-01-01
Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage. PMID:28075364
González-Parada, Eva; Cano-García, Jose; Aguilera, Francisco; Sandoval, Francisco; Urdiales, Cristina
2017-01-09
Autonomous mobile nodes in mobile wireless sensor networks (MWSN) allow self-deployment and self-healing. In both cases, the goals are: (i) to achieve adequate coverage; and (ii) to extend network life. In dynamic environments, nodes may use reactive algorithms so that each node locally decides when and where to move. This paper presents a behavior-based deployment and self-healing algorithm based on the social potential fields algorithm. In the proposed algorithm, nodes are attached to low cost robots to autonomously navigate in the coverage area. The proposed algorithm has been tested in environments with and without obstacles. Our study also analyzes the differences between non-hierarchical and hierarchical routing configurations in terms of network life and coverage.
Simulation-Based Airframe Noise Prediction of a Full-Scale, Full Aircraft
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Fares, Ehab
2016-01-01
A previously validated computational approach applied to an 18%-scale, semi-span Gulfstream aircraft model was extended to the full-scale, full-span aircraft in the present investigation. The full-scale flap and main landing gear geometries used in the simulations are nearly identical to those flown on the actual aircraft. The lattice Boltzmann solver PowerFLOW® was used to perform time-accurate predictions of the flow field associated with this aircraft. The simulations were performed at a Mach number of 0.2 with the flap deflected 39 deg. and main landing gear deployed (landing configuration). Special attention was paid to the accurate prediction of major sources of flap tip and main landing gear noise. Computed farfield noise spectra for three selected baseline configurations (flap deflected 39 deg. with and without main gear extended, and flap deflected 0 deg. with gear deployed) are presented. The flap brackets are shown to be important contributors to the farfield noise spectra in the mid- to high-frequency range. Simulated farfield noise spectra for the baseline configurations, obtained using a Ffowcs Williams and Hawkings acoustic analogy approach, were found to be in close agreement with acoustic measurements acquired during the 2006 NASA-Gulfstream joint flight test of the same aircraft.
NASA Technical Reports Server (NTRS)
Dunaway, Brian; Edeen, Marybeth
2000-01-01
Water to be generated by, delivered to, and processed by the International Space Station (ISS) is a critical Environmental Control and Life Support (ECLS) element, especially for the early ISS missions. A significant portion of the water required by the ISS shall be provided by the Shuttle Transportation System (STS) Orbiter. The balance of water generated by the Orbiter Fuel Cells (FC), minus that water consumed by the Orbiter Flash Evaporator System (FES) and crew, is available for transfer to the ISS. During later missions, crew respired and perspired water, as well as effluent water from the Orbiter LiOH canisters, will be collected as condensate and available for transfer to the ISS. Orbiter radiator performance provides the most variance in determining the amount of net Orbiter water available for transfer to the ISS. As radiator performance decreases, the dependence upon the FES (and FC water) increases for rejecting Orbiter waste heat. Generally, radiator performance decreases as the ISS assembly size increases (especially as solar arrays are added), and also as beta angle increases. ISS solar array deployment necessitates the use of models with articulating solar arrays (for Earth local-vertical attitudes), as array position dramatically affects Orbiter radiator performance. Recent developments in the relaxation of beta angle limitations have also increased the complexity and difficulty of providing water to the ISS. Other factors that may hinder the ability to transfer water are the number of empty Contingency Water Containers (CWCs) available, duration of open-hatch time, crew activity timeline, and full CWC storage capability. A parametric study has been accomplished that provides a quick-reference table for determining expected water generation rates for ISS missions 2A.2 through 7A.1. An hourly Orbiter water generation rate is reported according to a matrix that consists of: (1) (six) significant changes in ISS assembly configuration; (2) (four) beta angles (0 deg. , +37 deg., +53 deg. , and +75 deg.); (3) the (three) most representative ISS attitudes (XPOP-O, XPOP-180 and +XVV); (4) (four) Orbiter radiator configurations (both stowed, starboard deployed, port deployed, and both deployed) and (5) the (two) conditions (radiator inlet temperatures and fuel cell power) most consistent with sleep and wake periods. Those permutations of higher probability of occurrence than others have been identified. Another parametric study has been accomplished that provides a quick-reference table for determining expected water generation rates for ISS assembly complete missions. An hourly Orbiter water generation rate is reported according to a matrix that consists of: (1) (seven) beta angles (-75 deg., -60 deg., -30 deg., 0 deg., +30 deg., +60 deg., and +75 deg.); (2) the (nine) PYR angles that define the corners of the envelope; (3) (four) Orbiter radiator configurations (both stowed, starboard deployed, port deployed, and both deployed) and (4) the (two) conditions (radiator inlet temperatures and fuel cell power) most consistent with sleep and wake periods.
Aerodynamic Coefficients from Aeroballistic Range Testing of Deployed- and Stowed-SIAD SFDT Models
NASA Technical Reports Server (NTRS)
Wilder, Michael C.; Brown, Jeffrey D.; Bogdanoff, David W.; Yates, Leslie A.; Dyakonov, Artem A.; Clark, Ian G.; Grinstead, Jay H.
2017-01-01
This report documents a ballistic-range test campaign conducted in 2012 in order to estimate the aerodynamic stability characteristics of two configurations of the Supersonic Flight Dynamics Test (SFDT) vehicle prior to its initial flight in 2014. The SFDT vehicle was a test bed for demonstrating several new aerodynamic decelerator technologies then being developed under the Low-Density Supersonic Decelerator (LDSD) Project. Of particular interest here is the Supersonic Inflatable Aerodynamic Decelerator (SIAD), an inflatable attached torus used to increase the drag surface area of an entry vehicle during the supersonic portion of the entry trajectory. Two model configurations were tested in the ballistic range: one representing the SFDT vehicle prior to deployment of the SIAD, and the other representing the nominal shape with the SIAD inflated. Both models were fabricated from solid metal, and therefore, the effects of the flexibility of the inflatable decelerator were not considered. The test conditions were chosen to match, as close as possible, the Mach number, Reynolds number, and motion dynamics expected for the SFDT vehicle in flight, both with the SIAD stowed and deployed. For SFDT models with the SIAD stowed, 12 shots were performed covering a Mach number range of 3.2 to 3.7. For models representing the deployed SIAD, 37 shots were performed over a Mach number range of 2.0 to 3.8. Pitch oscillation amplitudes covered a range from 0.7 to 20.6 degrees RMS. Portions of this report (data analysis approach, aerodynamic modeling, and resulting aerodynamic coefficients) were originally published as an internal LDSD Project report [1] in 2012. In addition, this report provides a description of the test design approach, the test facility, and experimental procedures. Estimated non-linear aerodynamic coefficients, including pitch damping, for both model configurations are reported, and the shot-by-shot trajectory measurements, plotted in comparison with calculated trajectories based on the derived non-linear aerodynamic coefficients, are provided as appendices. Since the completion of these tests, two full-scale SFDT flights have been successfully conducted: one in June 2014 [2, 3], and one in June 2015 [3].
NASA Astrophysics Data System (ADS)
Wang, S.; McGillis, W. R.; Hu, R.; Culligan, P. J.
2017-12-01
Green infrastructure (GI) interventions, such as right-of-way bioswales, are being implemented in many urban areas, including New York City, to help mitigate the negative impacts of stormwater runoff. To understand the storm water retention capacity of bioswales, hydrological models, at scales ranging from the tributary area of a single right-of-way bioswale to an entire watershed, are often invoked. The validation and calibration of these models is, however, currently hampered by lack of extensive field measurements that quantify bioswale stormwater retention behaviors for different storm sizes and bioswale configurations. To overcome this problem, three field methods to quantify the water retention capacity of individual bioswales were developed. The methods are potentially applicable to other applications concerned with quantifying flow regimes in urban area. Precise measurements with high time resolutions and low environmental impacts are desired for gauging the hydraulic performance of bioswales, and similar GI configurations. To satisfy these requirements, an in-field measurement method was developed which involved the deployment of acoustic water-level sensors to measure the upstream and downstream water levels of flow into and out of a bioswale located in the Bronx areas of New York City. The measurements were made during several individual storm events. To provide reference flow rates to enable accurate calibration of the acoustic water level measurements, two other conductometry-based methods, which made use of YSI sensors and injected calcium chloride solutions, were also developed and deployed simultaneously with the water level measurements. The suite of data gathered by these methods enabled the development of a relationship between stage-discharge and rainfall intensity, which was then used to obtain the upstream and downstream hydrographs for the individual bioswale for the different storm events. This presentation will describe in detail the developed field methods, and will present results arising from the deployment of the methods, including results on the stormwater infiltration quantity and infiltration rate of the studied bioswale. The field methods are easily deployed at other bioswales sites and for other similar GI configurations.
Demand Response and Energy Storage Integration Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ookie; Cheung, Kerry; Olsen, Daniel J.
2016-03-01
Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational valuemore » in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.« less
Demand Response and Energy Storage Integration Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ookie; Cheung, Kerry
Demand response and energy storage resources present potentially important sources of bulk power system services that can aid in integrating variable renewable generation. While renewable integration studies have evaluated many of the challenges associated with deploying large amounts of variable wind and solar generation technologies, integration analyses have not yet fully incorporated demand response and energy storage resources. This report represents an initial effort in analyzing the potential integration value of demand response and energy storage, focusing on the western United States. It evaluates two major aspects of increased deployment of demand response and energy storage: (1) Their operational valuemore » in providing bulk power system services and (2) Market and regulatory issues, including potential barriers to deployment.« less
NASA Technical Reports Server (NTRS)
Lee, Paul U.; Bender, Kim; Pagan, Danielle
2011-01-01
Flexible Airspace Management (FAM) is a mid- term Next Generation Air Transportation System (NextGen) concept that allows dynamic changes to airspace configurations to meet the changes in the traffic demand. A series of human-in-the-loop (HITL) studies have identified procedures and decision support requirements needed to implement FAM. This paper outlines a suggested FAM procedure and associated decision support functionality based on these HITL studies. A description of both the tools used to support the HITLs and the planned NextGen technologies available in the mid-term are presented and compared. The mid-term implementation of several NextGen capabilities, specifically, upgrades to the Traffic Management Unit (TMU), the initial release of an en route automation system, the deployment of a digital data communication system, a more flexible voice communications network, and the introduction of a tool envisioned to manage and coordinate networked ground systems can support the implementation of the FAM concept. Because of the variability in the overall deployment schedule of the mid-term NextGen capabilities, the dependency of the individual NextGen capabilities are examined to determine their impact on a mid-term implementation of FAM. A cursory review of the different technologies suggests that new functionality slated for the new en route automation system is a critical enabling technology for FAM, as well as the functionality to manage and coordinate networked ground systems. Upgrades to the TMU are less critical but important nonetheless for FAM to be fully realized. Flexible voice communications network and digital data communication system could allow more flexible FAM operations but they are not as essential.
A Rapidly Deployable Bridge System
2013-01-15
17 - 4PH SS H1150 Hinge Pins 30x106 psi (2) 143 ksi (4) 157 ksi (4) - 104.7 ksi SS T316 Cables 30x106 psi - 116 ksi - 77.3 ksi The stress...CLASSIFICATION OF: 17 . LIMITATION OF ABSTRACT Public Release 18. NUMBER OF PAGES 12 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b...an MLC30/12m configuration. The MLC50/20m system uses 17 modules in a 9/8 configuration. The connection of the modules to each other is by means of
This external review draft report is a technical "best practices" document describing sensor deployment for and data collection of continuous temperature and flow at ungaged sites in wadeable streams. This document addresses questions related to equipment needs; configuration, pl...
30 CFR 7.505 - Structural components.
Code of Federal Regulations, 2011 CFR
2011-07-01
... designed for multiple uses to accommodate the structure's maximum occupancy. (ii) The airlock shall be configured to accommodate a stretcher without compromising its function. (4) Be designed and made to withstand 15 pounds per square inch (psi) overpressure for 0.2 seconds prior to deployment. (5) Be designed...
30 CFR 7.505 - Structural components.
Code of Federal Regulations, 2013 CFR
2013-07-01
... designed for multiple uses to accommodate the structure's maximum occupancy. (ii) The airlock shall be configured to accommodate a stretcher without compromising its function. (4) Be designed and made to withstand 15 pounds per square inch (psi) overpressure for 0.2 seconds prior to deployment. (5) Be designed...
30 CFR 7.505 - Structural components.
Code of Federal Regulations, 2014 CFR
2014-07-01
... designed for multiple uses to accommodate the structure's maximum occupancy. (ii) The airlock shall be configured to accommodate a stretcher without compromising its function. (4) Be designed and made to withstand 15 pounds per square inch (psi) overpressure for 0.2 seconds prior to deployment. (5) Be designed...
30 CFR 7.505 - Structural components.
Code of Federal Regulations, 2012 CFR
2012-07-01
... designed for multiple uses to accommodate the structure's maximum occupancy. (ii) The airlock shall be configured to accommodate a stretcher without compromising its function. (4) Be designed and made to withstand 15 pounds per square inch (psi) overpressure for 0.2 seconds prior to deployment. (5) Be designed...
30 CFR 7.505 - Structural components.
Code of Federal Regulations, 2010 CFR
2010-07-01
... designed for multiple uses to accommodate the structure's maximum occupancy. (ii) The airlock shall be configured to accommodate a stretcher without compromising its function. (4) Be designed and made to withstand 15 pounds per square inch (psi) overpressure for 0.2 seconds prior to deployment. (5) Be designed...
Rao, Akshay; Elara, Mohan Rajesh; Elangovan, Karthikeyan
This paper aims to develop a local path planning algorithm for a bio-inspired, reconfigurable crawling robot. A detailed description of the robotic platform is first provided, and the suitability for deployment of each of the current state-of-the-art local path planners is analyzed after an extensive literature review. The Enhanced Vector Polar Histogram algorithm is described and reformulated to better fit the requirements of the platform. The algorithm is deployed on the robotic platform in crawling configuration and favorably compared with other state-of-the-art local path planning algorithms.
Large space deployable antenna systems
NASA Technical Reports Server (NTRS)
1978-01-01
The design technology is described for manufacturing a 20 m or larger space erectable antenna with high thermal stability, high dynamic stiffness, and minimum stowed size. The selected approach includes a wrap rib design with a cantilever beam basic element and graphite-epoxy composite lenticular cross section ribs. The rib configuration and powered type operated deploying mechanism are described and illustrated. Other features of the parabolic reflector discussed include weight and stowed diameter characteristics, structural dynamics characteristics, orbit thermal aperture limitations, and equivalent element and secondary (on axis) patterns. A block diagram of the multiple beam pattern is also presented.
A novel approach to spacecraft re-entry and recovery
NASA Astrophysics Data System (ADS)
Patten, Richard; Hedgecock, Judson C.
1990-01-01
A deployable radiative heat shield design for spacecraft reentry is discussed. The design would allow the spacecraft to be cylindrical instead of the the traditional conical shape, providing a greater internal volume and thus enhancing mission capabilities. The heat shield uses a flexible thermal blanket material which is deployed in a manner similar to an umbrella. Based on the radiative properties of this blanket material, heating constraints have been established which allow a descent trajectory to be designed. The heat shield and capsule configuration are analyzed for resistance to heat flux and aerodynamic stability based on reentry trajectory. Experimental tests are proposed.
Large Deployable Reflector (LDR) feasibility study update
NASA Technical Reports Server (NTRS)
Alff, W. H.; Banderman, L. W.
1983-01-01
In 1982 a workshop was held to refine the science rationale for large deployable reflectors (LDR) and develop technology requirements that support the science rationale. At the end of the workshop, a set of LDR consensus systems requirements was established. The subject study was undertaken to update the initial LDR study using the new systems requirements. The study included mirror materials selection and configuration, thermal analysis, structural concept definition and analysis, dynamic control analysis and recommendations for further study. The primary emphasis was on the dynamic controls requirements and the sophistication of the controls system needed to meet LDR performance goals.
The GEOS-20 m Cable Boom Mechanism
NASA Technical Reports Server (NTRS)
Schmidt, G. K.; Suttner, K.
1977-01-01
The GEOS Cable Boom Mechanism which allows the controlled deployment of a 20 m long cable in a centrifugal force field is described. In launch configuration the flat cable is reeled on a 240 mm diameter drum. The electrical connection between the rotating drum and the stationary housing is accomplished via a flexlead positioned inside the drum. Active motion control of this drum is achieved by a self locking worm gear, driven by a stepper motor. The deployment length of the cable is monitored by an optical length indicator, sensing black bars engraved on the cable surface.
OV-104's RMS releases Gamma Ray Observatory (GRO) during STS-37 deployment
1991-04-07
Atlantis', Orbiter Vehicle (OV) 104's, remote manipulator system (RMS) releases Gamma Ray Observatory (GRO) during STS-37 deployment. Visible on the GRO as it drifts away from the RMS end effector are the four complement instruments: the Energetic Gamma Ray Experiment (bottom); Imaging Compton Telescope (COMPTEL) (center); Oriented Scintillation Spectrometer Experiment (OSSE) (top); and Burst and Transient Source Experiment (BATSE) (at four corners). GRO's solar array (SA) panels are extended and are in orbit configuration. View was taken through aft flight deck window which reflects some of the crew compartment interior.
Web-Based Interface for Command and Control of Network Sensors
NASA Technical Reports Server (NTRS)
Wallick, Michael N.; Doubleday, Joshua R.; Shams, Khawaja S.
2010-01-01
This software allows for the visualization and control of a network of sensors through a Web browser interface. It is currently being deployed for a network of sensors monitoring Mt. Saint Helen s volcano; however, this innovation is generic enough that it can be deployed for any type of sensor Web. From this interface, the user is able to fully control and monitor the sensor Web. This includes, but is not limited to, sending "test" commands to individual sensors in the network, monitoring for real-world events, and reacting to those events
2013-09-10
SL2-X7-615 (22 June 1973) --- An overhead view of the Skylab 1 space station cluster in Earth orbit photographed from the Skylab 2 Command/Service Module during the final ?fly around? inspection by the CSM. The space station is sharply contrasted against a black sky background. Note the deployed parasol solar shield which shades the Orbital Workshop where the micrometeoroid shield is missing. The one remaining OWS solar array system wing has been fully deployed successfully. The OWS solar panel on the opposite side is missing completely. Photo credit: NASA
Risk Analysis for Unintentional Slide Deployment During Airline Operations.
Ayra, Eduardo S; Insua, David Ríos; Castellanos, María Eugenia; Larbi, Lydia
2015-09-01
We present a risk analysis undertaken to mitigate problems in relation to the unintended deployment of slides under normal operations within a commercial airline. This type of incident entails relevant costs for the airline industry. After assessing the likelihood and severity of its consequences, we conclude that such risks need to be managed. We then evaluate the effectiveness of various countermeasures, describing and justifying the chosen ones. We also discuss several issues faced when implementing and communicating the proposed measures, thus fully illustrating the risk analysis process. © 2015 Society for Risk Analysis.
IUS with Magellan spacecraft drifts into space after STS-30 deployment
1989-05-04
STS030-71-063 (4 May 1989) --- This scene is one of two released by NASA showing the process of solar array panel deployment on the Magellan spacecraft. Panels are not fully extended in this frame. The spacecraft had earlier been released by the STS-30 crewmembers to begin its long journey to the planet Venus for an extensive radar mapping mission. The frame was photographed through Atlantis? aft flight deck windows with a handheld 70mm camera. The complementary photograph is STS030-71-070.
41 CFR 301-73.101 - How must we prepare to implement ETS?
Code of Federal Regulations, 2010 CFR
2010-07-01
... traveler use of your online self-service booking tool once you have fully deployed ETS within your agency... applicable business systems (e.g., financial, human resources, etc.). Note 2 to § 301-73.101: Best practices...
41 CFR 301-73.101 - How must we prepare to implement ETS?
Code of Federal Regulations, 2011 CFR
2011-07-01
... traveler use of your online self-service booking tool once you have fully deployed ETS within your agency... applicable business systems (e.g., financial, human resources, etc.). Note 2 to § 301-73.101: Best practices...
NASA Astrophysics Data System (ADS)
Liang, Feng; Yang, Xiao-Dong; Zhang, Wei; Qian, Ying-Jing
2018-03-01
In this paper, a dynamical model of simply-supported spinning pipes conveying fluid with axial deployment is proposed and the transverse free vibration and stability for such a doubly gyroscopic system involving time-dependent parameters are investigated. The partial differential equations of motion are derived by the extended Hamilton principle and then truncated by the Galerkin technique. The time-variant frequencies, mode shapes and responses to initial conditions are comprehensively investigated to reveal the dynamical essence of the system. It is indicated that the qualitative stability evolution of the system mainly depends on the effect of fluid-structure interaction (FSI), while the spinning motion will enhance the pipe rigidity and eliminate the buckling instability. The dynamical evolution of a retracting pipe is almost inverse to that of the deploying one. The pipe possesses different mode configurations of spatial curves as the pipe length increases and some modal and response characteristics of the present system are found rather distinct from those of deploying cantilevered structures.
Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco
2015-02-05
One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.
NASA Astrophysics Data System (ADS)
den Hollander, Richard J. M.; Bouma, Henri; van Rest, Jeroen H. C.; ten Hove, Johan-Martijn; ter Haar, Frank B.; Burghouts, Gertjan J.
2017-10-01
Video analytics is essential for managing large quantities of raw data that are produced by video surveillance systems (VSS) for the prevention, repression and investigation of crime and terrorism. Analytics is highly sensitive to changes in the scene, and for changes in the optical chain so a VSS with analytics needs careful configuration and prompt maintenance to avoid false alarms. However, there is a trend from static VSS consisting of fixed CCTV cameras towards more dynamic VSS deployments over public/private multi-organization networks, consisting of a wider variety of visual sensors, including pan-tilt-zoom (PTZ) cameras, body-worn cameras and cameras on moving platforms. This trend will lead to more dynamic scenes and more frequent changes in the optical chain, creating structural problems for analytics. If these problems are not adequately addressed, analytics will not be able to continue to meet end users' developing needs. In this paper, we present a three-part solution for managing the performance of complex analytics deployments. The first part is a register containing meta data describing relevant properties of the optical chain, such as intrinsic and extrinsic calibration, and parameters of the scene such as lighting conditions or measures for scene complexity (e.g. number of people). A second part frequently assesses these parameters in the deployed VSS, stores changes in the register, and signals relevant changes in the setup to the VSS administrator. A third part uses the information in the register to dynamically configure analytics tasks based on VSS operator input. In order to support the feasibility of this solution, we give an overview of related state-of-the-art technologies for autocalibration (self-calibration), scene recognition and lighting estimation in relation to person detection. The presented solution allows for rapid and robust deployment of Video Content Analysis (VCA) tasks in large scale ad-hoc networks.
The impact of deployment to Iraq or Afghanistan on partners and wives of military personnel.
de Burgh, H Thomas; White, Claire J; Fear, Nicola T; Iversen, Amy C
2011-04-01
Deployment has well documented psychological consequences for military personnel. To fully understand the human cost of war, the psychosocial impact of separation and homecoming of military personnel on their families must also be considered. Recent arduous conflicts in Iraq and Afghanistan make understanding the impact of war on spouses topical and pertinent. Widespread psychological morbidity and social dysfunction have been reported in spouses of military personnel who have been deployed to combat zones such as Vietnam, with difficulties most acute for spouses of military personnel with post-traumatic stress disorder (PTSD). A review of the literature published between 2001 and 2010 assessing the impact of deployments to Iraq and Afghanistan on spouses of military personnel was conducted. A total of 14 US-based studies were identified which examined psychological morbidity, help seeking, marital dysfunction and stress in spouses. Longer deployments, deployment extensions and PTSD in military personnel were found to be associated with psychological problems for the spouse. Methodological differences in the studies limit direct comparisons. Recommendations for future research are outlined. The needs of spouses of military personnel remain an important issue with implications for service provision and occupational capability of both partners.
Do PEV Drivers Park Near Publicly Accessible EVSE in San Diego but Not Use Them?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francfort, James Edward
The PEV charging stations deployed as part of The EV Project included both residential and non-residential sites. Non-residential sites included EVSE installed in workplace environments, fleet applications and those that were publicly accessible near retail centers, parking lots, and similar locations. The EV Project utilized its Micro-Climate® planning process to determine potential sites for publicly accessible EVSE in San Diego. This process worked with local stakeholders to target EVSE deployment near areas where significant PEV traffic and parking was expected. This planning process is described in The Micro-Climate deployment Process in San Diego1. The EV Project issued its deployment planmore » for San Diego in November 2010, prior to the sale of PEVs by Nissan and Chevrolet. The Project deployed residential EVSE concurrent with vehicle delivery starting in December 2010. The installation of non-residential EVSE commenced in April 2011 consistent with the original Project schedule, closely following the adoption of PEVs. The residential participation portion of The EV Project was fully subscribed by January 2013 and the non-residential EVSE deployment was essentially completed by August 2013.« less
Saccadic eye movements do not disrupt the deployment of feature-based attention.
Kalogeropoulou, Zampeta; Rolfs, Martin
2017-07-01
The tight link of saccades to covert spatial attention has been firmly established, yet their relation to other forms of visual selection remains poorly understood. Here we studied the temporal dynamics of feature-based attention (FBA) during fixation and across saccades. Participants reported the orientation (on a continuous scale) of one of two sets of spatially interspersed Gabors (black or white). We tested performance at different intervals between the onset of a colored cue (black or white, indicating which stimulus was the most probable target; red: neutral condition) and the stimulus. FBA built up after cue onset: Benefits (errors for valid vs. neutral cues), costs (invalid vs. neutral), and the overall cueing effect (valid vs. invalid) increased with the cue-stimulus interval. Critically, we also tested visual performance at different intervals after a saccade, when FBA had been fully deployed before saccade initiation. Cueing effects were evident immediately after the saccade and were predicted most accurately and most precisely by fully deployed FBA, indicating that FBA was continuous throughout saccades. Finally, a decomposition of orientation reports into target reports and random guesses confirmed continuity of report precision and guess rates across the saccade. We discuss the role of FBA in perceptual continuity across saccades.
NASA Astrophysics Data System (ADS)
Sterpone, L.; Violante, M.
2007-08-01
Modern SRAM-based field programmable gate array (FPGA) devices offer high capability in implementing complex system. Unfortunately, SRAM-based FPGAs are extremely sensitive to single event upsets (SEUs) induced by radiation particles. In order to successfully deploy safety- or mission-critical applications, designer need to validate the correctness of the obtained designs. In this paper we describe a system based on partial-reconfiguration for running fault-injection experiments within the configuration memory of SRAM-based FPGAs. The proposed fault-injection system uses the internal configuration capabilities that modern FPGAs offer in order to inject SEU within the configuration memory. Detailed experimental results show that the technique is orders of magnitude faster than previously proposed ones.
2008-12-01
In future network-centric warfare environments, teams of autonomous vehicles will be deployed in a coorperative manner to conduct wide-area...of data back to the command station, autonomous vehicles configured with high bandwidth communication system are positioned between the command
DOT National Transportation Integrated Search
1998-01-01
Advanced traveler information systems (ATIS) are moving beyond the research stage to become fully integrated elements of urban transportation management systems. By definition, ATIS work best when multiple public and private organizations are able to...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eric Larson; Robert Williams; Thomas Kreutz
2012-03-11
The overall objective of this project was to quantify the energy, environmental, and economic performance of industrial facilities that would coproduce electricity and transportation fuels or chemicals from a mixture of coal and biomass via co-gasification in a single pressurized, oxygen-blown, entrained-flow gasifier, with capture and storage of CO{sub 2} (CCS). The work sought to identify plant designs with promising (Nth plant) economics, superior environmental footprints, and the potential to be deployed at scale as a means for simultaneously achieving enhanced energy security and deep reductions in U.S. GHG emissions in the coming decades. Designs included systems using primarily already-commercializedmore » component technologies, which may have the potential for near-term deployment at scale, as well as systems incorporating some advanced technologies at various stages of R&D. All of the coproduction designs have the common attribute of producing some electricity and also of capturing CO{sub 2} for storage. For each of the co-product pairs detailed process mass and energy simulations (using Aspen Plus software) were developed for a set of alternative process configurations, on the basis of which lifecycle greenhouse gas emissions, Nth plant economic performance, and other characteristics were evaluated for each configuration. In developing each set of process configurations, focused attention was given to understanding the influence of biomass input fraction and electricity output fraction. Self-consistent evaluations were also carried out for gasification-based reference systems producing only electricity from coal, including integrated gasification combined cycle (IGCC) and integrated gasification solid-oxide fuel cell (IGFC) systems. The reason biomass is considered as a co-feed with coal in cases when gasoline or olefins are co-produced with electricity is to help reduce lifecycle greenhouse gas (GHG) emissions for these systems. Storing biomass-derived CO{sub 2} underground represents negative CO{sub 2} emissions if the biomass is grown sustainably (i.e., if one ton of new biomass growth replaces each ton consumed), and this offsets positive CO{sub 2} emissions associated with the coal used in these systems. Different coal:biomass input ratios will produce different net lifecycle greenhouse gas (GHG) emissions for these systems, which is the reason that attention in our analysis was given to the impact of the biomass input fraction. In the case of systems that produce only products with no carbon content, namely electricity, ammonia and hydrogen, only coal was considered as a feedstock because it is possible in theory to essentially fully decarbonize such products by capturing all of the coal-derived CO{sub 2} during the production process.« less
Turbulence Measurements from Compliant Moorings - Part I: Motion Characterization
Harding, Samuel; Kilcher, Levi; Thomson, Jim
2017-06-20
High-fidelity measurements of turbulence in the ocean have long been challenging to collect, in particular in the middle of the water column. In response, a measurement technique has been developed to deploy an Acoustic Doppler Velocimeter (ADV) to mid-water locations on a compliant mooring. A variety of instrumentation platforms have been deployed as part of this work with a range of dynamic motion characteristics. The platforms discussed herein include the streamlined StableMoor™ buoy (SMB), the Tidal Turbulence Mooring (TTM) system based on a conventional 0.9 m spherical buoy, and a 100 lb sounding weight suspended from the stern of amore » research vessel. The ADV head motion is computed from inertial motion sensors integrated into an ADV, and the spectra of these signals are investigated to quantify the motion of each platform. The SMB with a single ADV head mounted on the nose provided the most stable platform for the measurement of tidal turbulence in the inertial sub-range for flow speeds exceeding 1:0 ms -1. The modification of the SMB with a transverse wing configuration for multiple ADVs showed a similar frequency response to the nose configuration in the horizontal plane but with large contamination in the vertical direction as a result of platform roll. While the ADV motion on the TTM was significant in the horizontal directions, the vertical motion of this configuration was the most stable of all configurations tested. The sounding weight measurements showed the greatest motion at the ADV head but are likely to be influenced by both prop-wash and vessel motion.« less
Multifunctional Deployment Hinges Rigidified by Ultraviolet
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Simburger, Edward J.; Matusmoto, James; Giants, Thomas W.; Garcia, Alexander; Perry, Alan; Rawal, Suraj; Marshall, Craig; Lin, John Kun Hung; Day, Jonathan Robert;
2005-01-01
Multifunctional hinges have been developed for deploying and electrically connecting panels comprising planar arrays of thin-film solar photovoltaic cells. In the original intended application of these hinges, the panels would be facets of a 32-sided (and approximately spherical) polyhedral microsatellite (see figure), denoted a PowerSphere, that would be delivered to orbit in a compact folded configuration, then deployed by expansion of gas in inflation bladders. Once deployment was complete, the hinges would be rigidified to provide structural connections that would hold the panels in their assigned relative positions without backlash. Such hinges could also be used on Earth for electrically connecting and structurally supporting solar panels that are similarly shipped in compact form and deployed at their destinations. As shown in section A-A in the figure, a hinge of this type is partly integrated with an inflation bladder and partly integrated with the frame of a solar panel. During assembly of the hinge, strip extensions from a flexible circuit harness on the bladder are connected to corresponding thin-film conductors on the solar panel by use of laser welding and wrap-around contacts. The main structural component of the hinge is a layer of glass fiber impregnated with an ultraviolet-curable resin. After deployment, exposure to ultraviolet light from the Sun cures the resin, thereby rigidifying the hinge.
NASA Astrophysics Data System (ADS)
Silva, James
2017-09-01
The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CE νNS) using metallic superconducting and germanium semi-conducting detectors with sub-keV thresholds placed near a neutrino source such as the Chooz Nuclear Reactor Complex. In this poster, we present an estimate of the flux of cosmic-ray induced neutrons, which represent an important background in any (CE νNS) search, based on reconstructed cosmic ray data from the Chooz Site. We have simulated a possible Ricochet deployment at the Chooz site in GEANT4 focusing on the spallation neutrons generated when cosmic rays interact with the water tank veto that would surround our detector. We further simulate and discuss the effectiveness of various shielding configurations for optimizing the background levels for a future Ricochet deployment.
A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment
Dash, Suryadeep; Lomber, Stephen G.
2016-01-01
Microsaccades aid vision by helping to strategically sample visual scenes. Despite the importance of these small eye movements, no cortical area has ever been implicated in their generation. Here, we used unilateral and bilateral reversible inactivation of the frontal eye fields (FEF) to identify a cortical drive for microsaccades. Unexpectedly, FEF inactivation altered microsaccade metrics and kinematics. Such inactivation also impaired microsaccade deployment following peripheral cue onset, regardless of cue side or inactivation configuration. Our results demonstrate that the FEF provides critical top-down drive for microsaccade generation, particularly during the recovery of microsaccades after disruption by sensory transients. Our results constitute the first direct evidence, to our knowledge, for the contribution of any cortical area to microsaccade generation, and they provide a possible substrate for how cognitive processes can influence the strategic deployment of microsaccades. PMID:27509130
A Causal Role for the Cortical Frontal Eye Fields in Microsaccade Deployment.
Peel, Tyler R; Hafed, Ziad M; Dash, Suryadeep; Lomber, Stephen G; Corneil, Brian D
2016-08-01
Microsaccades aid vision by helping to strategically sample visual scenes. Despite the importance of these small eye movements, no cortical area has ever been implicated in their generation. Here, we used unilateral and bilateral reversible inactivation of the frontal eye fields (FEF) to identify a cortical drive for microsaccades. Unexpectedly, FEF inactivation altered microsaccade metrics and kinematics. Such inactivation also impaired microsaccade deployment following peripheral cue onset, regardless of cue side or inactivation configuration. Our results demonstrate that the FEF provides critical top-down drive for microsaccade generation, particularly during the recovery of microsaccades after disruption by sensory transients. Our results constitute the first direct evidence, to our knowledge, for the contribution of any cortical area to microsaccade generation, and they provide a possible substrate for how cognitive processes can influence the strategic deployment of microsaccades.
Virtual evaluation of stent graft deployment: a validated modeling and simulation study.
De Bock, S; Iannaccone, F; De Santis, G; De Beule, M; Van Loo, D; Devos, D; Vermassen, F; Segers, P; Verhegghe, B
2012-09-01
The presented study details the virtual deployment of a bifurcated stent graft (Medtronic Talent) in an Abdominal Aortic Aneurysm model, using the finite element method. The entire deployment procedure is modeled, with the stent graft being crimped and bent according to the vessel geometry, and subsequently released. The finite element results are validated in vitro with placement of the device in a silicone mock aneurysm, using high resolution CT scans to evaluate the result. The presented work confirms the capability of finite element computer simulations to predict the deformed configuration after endovascular aneurysm repair (EVAR). These simulations can be used to quantify mechanical parameters, such as neck dilations, radial forces and stresses in the device, that are difficult or impossible to obtain from medical imaging. Copyright © 2012 Elsevier Ltd. All rights reserved.
Rona, Roberto J; Jones, Margaret; Sundin, Josefin; Goodwin, Laura; Hull, Lisa; Wessely, Simon; Fear, Nicola T
2012-09-01
In a longitudinal study we assessed which baseline risk factors are associated with persistent and partially remitted PTSD in comparison to fully remitted PTSD. 6427 (68%) of a randomly selected sample of UK service personnel completed the PTSD checklist (PCL) between 2004 and 2006 (Phase 1) and between 2007 and 2009 (Phase 2). 230 (3.9%) had possible PTSD at baseline. 66% of those with possible PTSD at baseline remitted (PCL score <30) or partially remitted (PCL score 30-49) by phase 2 of the study. Associations of persistent PTSD with the fully remitted group for risk factors at phase 1 adjusted for confounders were having discharged from service (OR 2.97, 95% CI 1.26-6.99), higher educational qualification (OR 2.74, 95% 1.23-6.08), feeling unsupported on return from deployment (OR 10.97, 95% CI 3.13-38.45), deployed not with parent unit (OR 5.63, 95% CI 1.45-21.85), multiple physical symptoms (OR 3.36, 95% CI 1.44-7.82), perception of poor or fair health (OR 2.84, 95% CI 1.28-6.27), older age and perception of risk to self (increasing with the number of events reported, p = 0.04). Deploying but not with a parent unit and psychological distress were associated in the partially remitted PTSD when compared to the fully remitted group. The positive and negative likelihood ratios for the factors most highly associated with persistent PTSD indicated they were of marginal value to identify those whose presumed PTSD would be persistent. Many factors contribute to the persistence of PTSD but none alone is useful for clinical prediction. Copyright © 2012 Elsevier Ltd. All rights reserved.
Financial management and dental school equity, Part II: Tactics.
Chambers, David W; Bergstrom, Roy
2004-04-01
Financial management includes all processes that build organizations' equity through accumulating assets in strategically important areas. The tactical aspects of financial management are budget deployment and monitoring. Budget deployment is the process of making sure that costs are fairly allocated. Budget monitoring addresses issues of effective uses and outcomes of resources. This article describes contemporary deployment and monitoring mechanisms, including revenue positive and marginal analysis, present value, program phases, options logic, activity-based costing, economic value added, cost of quality, variance reconciliation, and balanced scorecards. The way financial decisions are framed affects comparative decision-making and even influences the arithmetic of accounting. Familiarity with these concepts should make it possible for dental educators to more fully participate in discussions about the relationships between budgeting and program strategy.
Point-and-stare operation and high-speed image acquisition in real-time hyperspectral imaging
NASA Astrophysics Data System (ADS)
Driver, Richard D.; Bannon, David P.; Ciccone, Domenic; Hill, Sam L.
2010-04-01
The design and optical performance of a small-footprint, low-power, turnkey, Point-And-Stare hyperspectral analyzer, capable of fully automated field deployment in remote and harsh environments, is described. The unit is packaged for outdoor operation in an IP56 protected air-conditioned enclosure and includes a mechanically ruggedized fully reflective, aberration-corrected hyperspectral VNIR (400-1000 nm) spectrometer with a board-level detector optimized for point and stare operation, an on-board computer capable of full system data-acquisition and control, and a fully functioning internal hyperspectral calibration system for in-situ system spectral calibration and verification. Performance data on the unit under extremes of real-time survey operation and high spatial and high spectral resolution will be discussed. Hyperspectral acquisition including full parameter tracking is achieved by the addition of a fiber-optic based downwelling spectral channel for solar illumination tracking during hyperspectral acquisition and the use of other sensors for spatial and directional tracking to pinpoint view location. The system is mounted on a Pan-And-Tilt device, automatically controlled from the analyzer's on-board computer, making the HyperspecTM particularly adaptable for base security, border protection and remote deployments. A hyperspectral macro library has been developed to control hyperspectral image acquisition, system calibration and scene location control. The software allows the system to be operated in a fully automatic mode or under direct operator control through a GigE interface.
Beating the tyranny of scale with a private cloud configured for Big Data
NASA Astrophysics Data System (ADS)
Lawrence, Bryan; Bennett, Victoria; Churchill, Jonathan; Juckes, Martin; Kershaw, Philip; Pepler, Sam; Pritchard, Matt; Stephens, Ag
2015-04-01
The Joint Analysis System, JASMIN, consists of a five significant hardware components: a batch computing cluster, a hypervisor cluster, bulk disk storage, high performance disk storage, and access to a tape robot. Each of the computing clusters consists of a heterogeneous set of servers, supporting a range of possible data analysis tasks - and a unique network environment makes it relatively trivial to migrate servers between the two clusters. The high performance disk storage will include the world's largest (publicly visible) deployment of the Panasas parallel disk system. Initially deployed in April 2012, JASMIN has already undergone two major upgrades, culminating in a system which by April 2015, will have in excess of 16 PB of disk and 4000 cores. Layered on the basic hardware are a range of services, ranging from managed services, such as the curated archives of the Centre for Environmental Data Archival or the data analysis environment for the National Centres for Atmospheric Science and Earth Observation, to a generic Infrastructure as a Service (IaaS) offering for the UK environmental science community. Here we present examples of some of the big data workloads being supported in this environment - ranging from data management tasks, such as checksumming 3 PB of data held in over one hundred million files, to science tasks, such as re-processing satellite observations with new algorithms, or calculating new diagnostics on petascale climate simulation outputs. We will demonstrate how the provision of a cloud environment closely coupled to a batch computing environment, all sharing the same high performance disk system allows massively parallel processing without the necessity to shuffle data excessively - even as it supports many different virtual communities, each with guaranteed performance. We will discuss the advantages of having a heterogeneous range of servers with available memory from tens of GB at the low end to (currently) two TB at the high end. There are some limitations of the JASMIN environment, the high performance disk environment is not fully available in the IaaS environment, and a planned ability to burst compute heavy jobs into the public cloud is not yet fully available. There are load balancing and performance issues that need to be understood. We will conclude with projections for future usage, and our plans to meet those requirements.
Mercury-Atlas 9 'Faith 7' spacecraft splashdown in the Pacific Ocean
NASA Technical Reports Server (NTRS)
1963-01-01
The Mercury-Atlas 9 'Faith 7' spacecraft, with Astronaut L. Gordon Cooper Jr. aboard, nears splashdown in the Pacific Ocean to conclude a 22 orbit mission lasting 34 hours and 20.5 minutes. The capsules parachute is fully deployed in this view.
10Gbps monolithic silicon FTTH transceiver without laser diode for a new PON configuration.
Zhang, Jing; Liow, Tsung-Yang; Lo, Guo-Qiang; Kwong, Dim-Lee
2010-03-01
A new passive optical network (PON) configuration and a novel silicon photonic transceiver architecture for optical network unit (ONU) are proposed, eliminating the need for an internal laser source in ONU. The Si transceiver is fully monolithic, includes integrated wavelength division multiplexing (WDM) filters, modulators (MOD) and photo-detectors (PD), and demonstrates low-cost high volume manufacturability.
NASA Astrophysics Data System (ADS)
Evangelio, Alvaro; Campo-Cortes, Francisco; Gordillo, Jose Manuel
2014-11-01
It is well known that the controlled production of monodisperse simple and composite emulsions possesses uncountable applications in medicine, pharmacy, materials science and industry. Here we present both experiments and slender-body theory regarding the generation of simple emulsions using a configuration that we have called Confined Selective Withdrawal, since it is an improved configuration of the classical Selective Withdrawal. We consider two different situations, namely, the cases when the outer flow Reynolds number is high and low, respectively. Several geometrical configurations and a wide range of viscosity ratios are analyzed so that the physics behind the phenomenon can be fully understood. In addition, we present both experiments and theory regarding the generation of composite emulsions. This phenomenon is only feasible when the outer flow Reynolds number is low enough. In this case, we propose a more complex theory which requires the simultaneous resolution of two interfaces in order to predict the shape of the jet and the sizes of the drops formed. The excellent agreement between our slender-body approximation and the experimental evidence fully validates our theories.
Structural concepts for large solar concentrators
NASA Technical Reports Server (NTRS)
Hedgepeth, J. M.; Miller, R. K.
1986-01-01
Solar collectors for space use are examined, including both early designs and current concepts. In particular, attention is given to stiff sandwich panels and aluminum dishes as well as inflated and umbrella-type membrane configurations. The Sunflower concentrator is described as an example of a high-efficiency collector. It is concluded that stiff reflector panels are most likely to provide the long-term consistent accuracy necessary for low-orbit operation. A new configuration consisting of a Pactruss backup structure, with identical panels installed after deployment in space, is presented. It is estimated that concentration ratios in excess of 2000 can be achieved with this concept.
Apollo 9 Lunar Module in lunar landing configuration
1969-03-07
AS09-21-3181 (7 March 1969) --- A View of the Apollo 9 Lunar Module (LM), "Spider," in a lunar lading configuration, as photographed from the Command and Service Modules (CSM) on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module (CM), "Gumdrop," while the other two astronauts checked out the LM.
Aerodynamic Characteristics of Tube-Launched Tandem Wing Unmanned Aerial Vehicle
NASA Astrophysics Data System (ADS)
Rosid, Nurhayyan H.; Irsyad Lukman, E.; Fadlillah, M. Ahmad; Agoes Moelyadi, M.
2018-04-01
Tube Launched UAV with expandable tandem-wing configuration becomes one of the most interesting topic to be investigated. Folding wing mechanism is used due to the requirements that the UAV should be folded into tubular launcher. This paper focuses on investigating the aerodynamics characteristics because of the effects of folding wing mechanism, tandem wing configuration, and rapid deploying process from tube launcher. The aerodynamic characteristics investigation is conducted using computational fluid dynamics (CFD) at low Reynolds numbers (Re < 200000). The results of the simulation are used for the development of ITB Tube-launched UAV prototype and for future studies.
A framework for porting the NeuroBayes machine learning algorithm to FPGAs
NASA Astrophysics Data System (ADS)
Baehr, S.; Sander, O.; Heck, M.; Feindt, M.; Becker, J.
2016-01-01
The NeuroBayes machine learning algorithm is deployed for online data reduction at the pixel detector of Belle II. In order to test, characterize and easily adapt its implementation on FPGAs, a framework was developed. Within the framework an HDL model, written in python using MyHDL, is used for fast exploration of possible configurations. Under usage of input data from physics simulations figures of merit like throughput, accuracy and resource demand of the implementation are evaluated in a fast and flexible way. Functional validation is supported by usage of unit tests and HDL simulation for chosen configurations.
Jiang, Zheyu; Ramapriya, Gautham Madenoor; Tawarmalani, Mohit; ...
2018-04-20
Heat and mass integration to consolidate distillation columns in a multicomponent distillation configuration can lead to a number of new energy efficient and cost effective configurations. In this paper, we identify a powerful and simple-to-use fact about heat and mass integration. The newly developed heat and mass integrated configurations, which we call as HMP configurations, involve first introducing thermal couplings to all intermediate transfer streams, followed by consolidating columns associated with a lighter pure product reboiler and a heavier pure product condenser. A systematic method of enumerating all HMP configurations is introduced. We compare the energy savings of HMP configurationsmore » with the well-known fully thermally coupled (FTC) configurations. We demonstrate that HMP configurations can have very similar and sometimes even the same minimum total vapor duty requirement as the FTC configuration, while using far less number of column sections, intermediate transfer streams, and thermal couplings than the FTC configurations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Zheyu; Ramapriya, Gautham Madenoor; Tawarmalani, Mohit
Heat and mass integration to consolidate distillation columns in a multicomponent distillation configuration can lead to a number of new energy efficient and cost effective configurations. In this paper, we identify a powerful and simple-to-use fact about heat and mass integration. The newly developed heat and mass integrated configurations, which we call as HMP configurations, involve first introducing thermal couplings to all intermediate transfer streams, followed by consolidating columns associated with a lighter pure product reboiler and a heavier pure product condenser. A systematic method of enumerating all HMP configurations is introduced. We compare the energy savings of HMP configurationsmore » with the well-known fully thermally coupled (FTC) configurations. We demonstrate that HMP configurations can have very similar and sometimes even the same minimum total vapor duty requirement as the FTC configuration, while using far less number of column sections, intermediate transfer streams, and thermal couplings than the FTC configurations.« less
Nanosatellite Launch Adapter System (NLAS)
NASA Technical Reports Server (NTRS)
Chartres, James; Cappuccio, Gelsomina
2015-01-01
The Nanosatellite Launch Adapter System (NLAS) was developed to increase access to space while simplifying the integration process of miniature satellites, called nanosats or CubeSats, onto launch vehicles. A standard CubeSat measures about 10 cm square, and is referred to as a 1-unit (1U) CubeSat. A single NLAS provides the capability to deploy 24U of CubeSats. The system is designed to accommodate satellites measuring 1U, 1.5U, 2U, 3U and 6U sizes for deployment into orbit. The NLAS may be configured for use on different launch vehicles. The system also enables flight demonstrations of new technologies in the space environment.
Joint for deployable structures
NASA Technical Reports Server (NTRS)
Craighead, N. D., II; Preliasco, R. J.; Hult, T. D. (Inventor)
1985-01-01
A joint is described for connecting a pair of beams to pivot them between positions in alignment or beside one another, which is of light weight and which operates in a controlled manner. The joint includes a pair of fittings and at least one center link having opposite ends pivotally connected to opposite fittings and having axes that pass through centerplates of the fittings. A control link having opposite ends pivotally connected to the different fittings controls their relative orientations, and a toggle assemly holds the fittings in the deployed configuration wherein they are aligned. The fittings have stops that lie on one side of the centerplane opposite the toggle assembly.
APOLLO 17 - INFLIGHT Experiment Equipment
1972-11-28
S72-53950 (November 1972) --- The transmitter of the Surface Electrical Properties Experiment (S-204) in a deployed configuration. This experiment will be deployed at the Taurus-Littrow landing site by the Apollo 17 crewmen. The purpose of the SEP experiment is to obtain data about the electromagnetic energy transmission, absorption and reflection characteristics of the lunar surface and subsurface for use in the development of a geological model of the upper layers of the moon. The experiment is designed to determine layering in the lunar surface, to search for the presence of water below the surface, and to measure electrical properties of the lunar material in situ.
Payload vehicle aerodynamic reentry analysis
NASA Astrophysics Data System (ADS)
Tong, Donald
An approach for analyzing the dynamic behavior of a cone-cylinder payload vehicle during reentry to insure proper deployment of the parachute system and recovery of the payload is presented. This analysis includes the study of an aerodynamic device that is useful in extending vehicle axial rotation through the maximum dynamic pressure region. Attention is given to vehicle configuration and reentry trajectory, the derivation of pitch static aerodynamics, the derivation of the pitch damping coefficient, pitching moment modeling, aerodynamic roll device modeling, and payload vehicle reentry dynamics. It is shown that the vehicle dynamics at parachute deployment are well within the design limit of the recovery system, thus ensuring successful payload recovery.
STS-26 Discovery, Orbiter Vehicle (OV) 103, IUS / TDRS-C deployment
1988-09-29
During STS-26, inertial upper stage (IUS) with the tracking and data relay satellite C (TDRS-C) located in the payload bay (PLB) of Discovery, Orbiter Vehicle (OV) 103, is raised into deployment attitude (an angle of 50 degrees) by the airborne support equipment (ASE). ASE aft frame tilt actuator (AFTA) table supports the IUS as it is positioned in the PLB and the ASE umbilical boom drifts away from IUS toward ASE forward cradle. TDRS-C solar array panels (in stowed configuration) are visible on top of the IUS. In the background are the orbital maneuvering system (OMS) pods and the Earth's limb.
Deployment of the P4 Truss SAW during Expedition 13 / STS-115 Joint Operations
2006-09-15
S115-E-06184 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m. (CDT). The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Sept. 12 and the deployment of the arrays set the stage for future expansion of the station.
Deployment of the P4 Truss SAW during Expedition 13 / STS-115 Joint Operations
2006-09-15
S115-E-06186 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m. (CDT). The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Sept. 12 and the deployment of the arrays set the stage for future expansion of the station.
Deployment of the P4 Truss FWD SAW during Expedition 13 and STS-115 EVA Joint Operations
2006-09-14
S115-E-05996 (14 Sept. 2006) --- Space Shuttle Atlantis astronauts spread a second set of wings for the International Space Station today. The new solar arrays were fully extended at 7:44 a.m. (CDT). The new arrays span a total of 240 feet and have a width of 38 feet. They are attached to the station's newest component, the P3/P4 integrated truss segment. The installation of the P3/P4, which occurred Tuesday and the deployment of the arrays set the stage for future expansion of the station.
Two-stage optics - High-acuity performance from low-acuity optical systems
NASA Technical Reports Server (NTRS)
Meinel, Aden B.; Meinel, Marjorie P.
1992-01-01
The concept of two-stage optics, developed under a program to enhance the performance, lower the cost, and increase the reliability of the 20-m Large Deployable Telescope, is examined. The concept permits the large primary mirror to remain as deployed or as space-assembled, with phasing and subsequent control of the system done by a small fully assembled optical active element placed at an exit pupil. The technique is being applied to correction of the fabrication/testing error in the Hubble Space Telescope primary mirror. The advantages offered by this concept for very large space telescopes are discussed.
IUS with Magellan spacecraft drifts into space after STS-30 deployment
1989-05-04
STS030-71-070 (4 May 1989) --- This scene is one of two released by NASA showing the process of solar array panel deployment on the Magellan spacecraft. Though partially blended into the backdrop of the blackness of space, it appears the two panels are fully extended in this frame. The spacecraft had earlier been released by the STS-30 crewmembers to begin its long journey to the planet Venus for an extensive radar mapping mission. The frame was photographed through Atlantis' aft flight deck windows with a handheld 70mm camera. The complementary photograph is STS030-71-063.
The deployment of information systems and information technology in field hospitals.
Crowe, Ian R J; Naguib, Raouf N G
2010-01-01
Information systems and related technologies continue to develop and have become an integral part of healthcare provision and hospital care in particular. Field hospitals typically operate in the most austere and difficult of conditions and have yet to fully exploit related technologies. This paper addresses those aspects of healthcare informatics, healthcare knowledge management and lean healthcare that can be applied to field hospitals, with a view to improving patient care. The aim is to provide a vision for the deployment of information systems and information technology in field hospitals, using the British Army's field hospital as a representative model.
DOT National Transportation Integrated Search
2010-08-01
The deployment of a Cooperative Intersection Collision Avoidance System Stop Sign Assist (CICAS-SSA) can save lives by addressing the causal factor of crashes at rural thru-Stop intersection: drivers who stop on the minor leg of the intersection,...
Meteorological tower design for severe weather and remote locations
Kelly Elder; Ilkoo Angutikjuak; Jessica Baker; Matt Belford; Tom Bennett; Karl Birkeland; Daniel Bowker; Doug Chabot; April Cheuvront; Mark Dixon; Dylan Elder; Lee Elder; Shari Gearheard; Greg Giedt; Kim Grant; Sam Green; Ethan Greene; Nick Houfek; Caleb Huntington; Henry Huntington; Thomas Huntington; Daniel Janigian; Crane Johnson; Glen Liston; Rob Maris; Andrea Marsh; Hans-Peter Marshall; Aidan Meiners; Alex Meiners; Theo Meiners; Limakee Palluq; Josh Pope; Esa Qillaq; Joelli Sanguya; Sam Sehnert; Ron Simenhois; Banning Starr; Roger Tyler
2012-01-01
We have developed a robust meteorological tower for deployment in locations with extreme conditions and for applications that require relatively maintenance-free structures. The basic design consists of a triangular base with two horizontal rails on each side, and uprights at the triangle vertices for various instrument configurations. The fabrication materials include...
Phased-array-fed antenna configuration study. Volume 1: Technology assessment
NASA Technical Reports Server (NTRS)
Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.; Gerson, H. I.; Srinivas, D. N.
1983-01-01
The status of the technologies for phased-array-fed dual reflector systems is reviewed. The different aspects of these technologies, including optical performances, phased array systems, problems encountered in phased array design, beamforming networks, MMIC design and its incorporation into waveguide systems, reflector antenna structures, and reflector deployment mechanisms are addressed.
ERIC Educational Resources Information Center
De Souza, Denise E.
2016-01-01
This article focuses on the design of a critical realist review that deployed Bhaskar's resolution, redescribing, retroduction, eliminating, identifying, and correcting schema and Pawson and Tilley's Context-Mechanism-Outcome configuration underpinned by realist social theory. Methodologically, the review examined the relationship between…
Issues concerning centralized versus decentralized power deployment
NASA Technical Reports Server (NTRS)
Metcalf, Kenneth J.; Harty, Richard B.; Robin, James F.
1991-01-01
The results of a study of proposed lunar base architectures to identify issues concerning centralized and decentralized power system deployment options are presented. The power system consists of the energy producing system (power plant), the power conditioning components used to convert the generated power into the form desired for transmission, the transmission lines that conduct this power from the power sources to the loads, and the primary power conditioning hardware located at the user end. Three power system architectures, centralized, hybrid, and decentralized, were evaluated during the course of this study. Candidate power sources were characterized with respect to mass and radiator area. Two electrical models were created for each architecture to identify the preferred method of power transmission, dc or ac. Each model allowed the transmission voltage level to be varied at assess the impact on power system mass. The ac power system models also permitted the transmission line configurations and placements to determine the best conductor construction and installation location. Key parameters used to evaluate each configuration were power source and power conditioning component efficiencies, masses, and radiator areas; transmission line masses and operating temperatures; and total system mass.
STS-66 landing at Edwards Air Force Base
NASA Technical Reports Server (NTRS)
1994-01-01
The drag chute is fully deployed as the Space Shuttle Atlantis heads toward a stop at Edwards Air Force Base in southern California, ending a successful 10 day, 22 hour and 34 minute space mission. Landing occured at 7:34 a.m. (PST), November 14, 1994.
Multiple spacecraft configuration designs for coordinated flight missions
NASA Astrophysics Data System (ADS)
Fumenti, Federico; Theil, Stephan
2018-06-01
Coordinated flight allows the replacement of a single monolithic spacecraft with multiple smaller ones, based on the principle of distributed systems. According to the mission objectives and to ensure a safe relative motion, constraints on the relative distances need to be satisfied. Initially, differential perturbations are limited by proper orbit design. Then, the induced differential drifts can be properly handled through corrective maneuvers. In this work, several designs are surveyed, defining the initial configuration of a group of spacecraft while counteracting the differential perturbations. For each of the investigated designs, focus is placed upon the number of deployable spacecraft and on the possibility to ensure safe relative motion through station keeping of the initial configuration, with particular attention to the required Δ V budget and the constraints violations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Rhett
The SDN Project completed on time and on budget and successfully accomplished 100% of the scope of work outlined in the original Statement of Project Objective (SOPO). The SDN Project formed an alliance between Ameren Corporation, University of Illinois Urbana- Champaign (UIUC), Pacific Northwest National Laboratories (PNNL), and Schweitzer Engineering Laboratories, Inc. (SEL). The objective of the SDN Project is to address Topic Area of Interest 2: Sustain critical energy delivery functions while responding to a cyber-intrusion under Funding Opportunity Announcement DE-FOA-0000797. The goal of the project is to design and commercially release technology that provides a method to sustainmore » critical energy delivery functions during a cyber intrusion and to do this control system operators need the ability to quickly identify and isolate the affected network areas, and re-route critical information and control flows around. The objective of the SDN Project is to develop a Flow Controller that monitors, configures, and maintains the safe, reliable network traffic flows of all the local area networks (LANs) on a control system in the Energy sector. The SDN team identified the core attributes of a control system and produced an SDN flow controller that has the same core attributes enabling networks to be designed, configured and deployed that maximize the whitelisted, deny-bydefault and purpose built networks. This project researched, developed and commercially released technology that: Enables all field networks be to configured and monitored as if they are a single asset to be protected; Enables greatly improved and even precalculated response actions to reliability and cyber events; Supports pre-configured localized response actions tailored to provide resilience against failures and centralized response to cyber-attacks that improve network reliability and availability; Architecturally enables the right subject matter experts, who are usually the information technology and operational technology engineers, to be the ones centrally administering the technology and responding to events; Simplifies network configuration, improving deterministic Ethernet transport times, and providing instant visualization on where the communication circuits are and how all circuits are impacted when changes (e.g., configuration changes, failures or intrusions) happen, allowing operators to minimize downtime; and Improves the ability to identify deviations in network behavior resulting in detection and analysis of potential cyber intrusions and faster response times Results: This project has forever changed the way critical infrastructure networks are designed, secured, deployed and maintained. The cybersecurity and performance advantages achieved are significant, simply put traditional networking has been obsoleted while the team maintained Ethernet interoperability avoiding any legacy concerns. The team commercially released technology that accomplished all the cybersecurity goals outlined in the SOPO and completed it by executing the project management plan approved in the initial contract. The resulting Energy sector SDN flow controller model number is SEL-5056 and can be freely downloaded from the www.SELinc.com website. This technology not only improves the cybersecurity of control systems but has measured results that it improves the performance and reliability of the control system as well. This means the system owners can confidently apply it to their systems knowing that it will, “first do no harm” but actually improve the system as well. Success of the project is best measured by the sales and deployment of the technology. System owners in industrial, electric, defense, and oil and gas only months after commercial release have approved plans for deployment.« less
Folding Properties of Two-Dimensional Deployable Membrane Using FEM Analyses
NASA Astrophysics Data System (ADS)
Satou, Yasutaka; Furuya, Hiroshi
Folding FEM analyses are presented to examine folding properties of a two-dimensional deployable membrane for a precise deployment simulation. A fold model of the membrane is proposed by dividing the wrapping fold process into two regions which are the folded state and the transient process. The cross-section of the folded state is assumed to be a repeating structure, and analytical procedures of the repeating structure are constructed. To investigate the mechanical properties of the crease in detail, the bending stiffness is considered in the FEM analyses. As the results of the FEM analyses, the configuration of the membrane and the contact force by the adjacent membrane are obtained quantitatively for an arbitrary layer pitch. Possible occurrence of the plastic deformation is estimated using the Mises stress in the crease. The FEM results are compared with one-dimensional approximation analyses to evaluate these results.
Sentinel-1 SAR Deployment Testing- Lessons Learned
NASA Astrophysics Data System (ADS)
Schwarz, Sebastian; Alberti, Mathias V.
2015-09-01
On April 3rd 2014, ESA has launched the Sentinel-1A spacecraft with its SAR instrument payload. During the first 12 hours in space, the antenna was released and successfully deployed to its operational configuration. Almost 6 years before that date, the first conceptual considerations regarding integration, alignment and on- ground deployment testing took place. Starting in these early phases of the project, the paper contains an overview of the concepts and trades which were performed to identify the most suitable off-loading MGSE for this heavy and fragile antenna. Following that, the challenges and lessons learned during the different developments of this test setup are discussed. This includes MGSE specific topics, such as the minimization of structural deformation under load or the optimization of the pulley arrangement as result of a coupled multibody analysis. On the other hand, load and deformation control strategies for the flight hardware, as well as safety related aspects are covered.
System Level Aerothermal Testing for the Adaptive Deployable Entry and Placement Technology (ADEPT)
NASA Technical Reports Server (NTRS)
Cassell, Alan; Gorbunov, Sergey; Yount, Bryan; Prabhu, Dinesh; de Jong, Maxim; Boghozian, Tane; Hui, Frank; Chen, Y.-K.; Kruger, Carl; Poteet, Carl;
2016-01-01
The Adaptive Deployable Entry and Placement Technology (ADEPT), a mechanically deployable entry vehicle technology, has been under development at NASA since 2011. As part of the technical maturation of ADEPT, designs capable of delivering small payloads (10 kg) are being considered to rapidly mature sub 1 m deployed diameter designs. The unique capability of ADEPT for small payloads comes from its ability to stow within a slender volume and deploy to achieve a mass efficient drag surface with a high heat rate capability. The low ballistic coefficient results in entry heating and mechanical loads that can be met by a revolutionary three-dimensionally woven carbon fabric supported by a deployable skeleton structure. This carbon fabric has test proven capability as both primary structure and payload thermal protection system. In order to rapidly advance ADEPTs technical maturation, the project is developing test methods that enable thermostructural design requirement verification of ADEPT designs at the system level using ground test facilities. Results from these tests are also relevant to larger class missions and help us define areas of focused component level testing in order to mature material and thermal response design codes. The ability to ground test sub 1 m diameter ADEPT configurations at or near full-scale provides significant value to the rapid maturation of this class of deployable entry vehicles. This paper will summarize arc jet test results, highlight design challenges, provide a summary of lessons learned and discuss future test approaches based upon this methodology.
Integrated 220 GHz Source Development
2014-05-27
placement of the anode far enough from the emitter to prevent the deposi- tion of sputtered anode particles. Fully-Integrated High Power Amplifier The...waveguide circuit dimensions and tolerances. We demonstrated high power and good transmission with a five-beam configuration during 2012. Peak output...circuit dimensions and tolerances. We demonstrated high power and good transmission with a five-beam configuration during 2012. Peak output powers up
Net radiative forcing from widespread deployment of photovoltaics.
Nemet, Gregory F
2009-03-15
If photovoltaics (PV) are to contribute significantly to stabilizing the climate, they will need to be deployed on the scale of multiple terawatts. Installation of that much PV would cover substantial portions of the Earth's surface with dark-colored, sunlight-absorbing panels, reducing the Earth's albedo. How much radiative forcing would result from this change in land use? How does this amount compare to the radiative forcing avoided by substituting PV for fossil fuels? This analysis uses a series of simple equations to compare the two effects and finds that substitution dominates; the avoided radiative forcing due to substitution of PV for fossil fuels is approximately 30 times largerthan the forcing due to albedo modification. Sensitivity analysis, including discounting of future costs and benefits, identifies unfavorable yet plausible configurations in which the albedo effect substantially reduces the climatic benefits of PV. The value of PV as a climate mitigation option depends on how it is deployed, not just how much it is deployed--efficiency of PV systems and the carbon intensity of the substituted energy are particularly important
Development of deployable structures for large space platform systems. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Greenberg, H. S.
1983-01-01
The preponderance of study effort was devoted toward the deployable platform systems study which culminated in the detailed design of a ground test article for future development testing. This design is representative of a prototype square-truss, single-fold building-block design that can construct deployable platform structures. This prototype design was selected through a comprehensive and traceable selection process applied to eight competitive designs. The selection process compared the competitive designs according to seven major selection criteria, i.e., design versatility, cost, thermal stability, meteoroid impact significance, reliability, performance predictability, and orbiter integration suitability. In support of the foregoing, a materials data base, and platform systems technology development needs were established. An erectable design of an OTV hangar was selected and recommended for further design development. This design was selected from five study-developed competitive single-fold and double-fold designs including hard-shell and inflatable designs. Also, two deployable manned module configurations, i.e., a hard-shell and an inflatable design were each developed to the same requirements as the composite of two Space station baseline habitat modules.
Surveillance of a 2D Plane Area with 3D Deployed Cameras
Fu, Yi-Ge; Zhou, Jie; Deng, Lei
2014-01-01
As the use of camera networks has expanded, camera placement to satisfy some quality assurance parameters (such as a good coverage ratio, an acceptable resolution constraints, an acceptable cost as low as possible, etc.) has become an important problem. The discrete camera deployment problem is NP-hard and many heuristic methods have been proposed to solve it, most of which make very simple assumptions. In this paper, we propose a probability inspired binary Particle Swarm Optimization (PI-BPSO) algorithm to solve a homogeneous camera network placement problem. We model the problem under some more realistic assumptions: (1) deploy the cameras in the 3D space while the surveillance area is restricted to a 2D ground plane; (2) deploy the minimal number of cameras to get a maximum visual coverage under more constraints, such as field of view (FOV) of the cameras and the minimum resolution constraints. We can simultaneously optimize the number and the configuration of the cameras through the introduction of a regulation item in the cost function. The simulation results showed the effectiveness of the proposed PI-BPSO algorithm. PMID:24469353
NASA Astrophysics Data System (ADS)
Haagmans, G. G.; Verhagen, S.; Voûte, R. L.; Verbree, E.
2017-09-01
Since GPS tends to fail for indoor positioning purposes, alternative methods like indoor positioning systems (IPS) based on Bluetooth low energy (BLE) are developing rapidly. Generally, IPS are deployed in environments covered with obstacles such as furniture, walls, people and electronics influencing the signal propagation. The major factor influencing the system performance and to acquire optimal positioning results is the geometry of the beacons. The geometry of the beacons is limited to the available infrastructure that can be deployed (number of beacons, basestations and tags), which leads to the following challenge: Given a limited number of beacons, where should they be placed in a specified indoor environment, such that the geometry contributes to optimal positioning results? This paper aims to propose a statistical model that is able to select the optimal configuration that satisfies the user requirements in terms of precision. The model requires the definition of a chosen 3D space (in our case 7 × 10 × 6 meter), number of beacons, possible user tag locations and a performance threshold (e.g. required precision). For any given set of beacon and receiver locations, the precision, internal- and external reliability can be determined on forehand. As validation, the modeled precision has been compared with observed precision results. The measurements have been performed with an IPS of BlooLoc at a chosen set of user tag locations for a given geometric configuration. Eventually, the model is able to select the optimal geometric configuration out of millions of possible configurations based on a performance threshold (e.g. required precision).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-11-20
NOAA/DOE has selected three concepts for a baseline design of the cold water pipe (CWP) for OTEC plants: (1) a FRP CWP of sandwich wall construction suspended from the Applied Physical Laboratory/John Hopkins University (APL/JHU) barge at a site 200 miles east of the coast of Brazil using a horizontal deployment scheme; (2) an elastomer CWP suspended from the APL/JHU barge off the southeast coast of Puerto Rico using either a horizontal or vertical deployment scheme; and (3) a polyethylene CWP (single or multiple pipe) suspended from the Gibbs and Cox spar at the Puerto Rico site using a horizontalmore » deployment scheme. TRW has developed a baseline design for each of these configurations. This volume of the report includes the following appendices: (A) fiberglass reinforced plastic cold water pipe (specification and drawingss); (B) specification for polyethylene CWP; (C) elastomer pipe drawings; (D) drawings for OTEC 10/40 hull/CWP transitions; (E) structural design of OTEC 10/40 CWP support and CWP transitions; (F) universal transition joint for CWP; (G) dynamic spherical seal of CWP; (H) at-sea deployment loads - surface towing loads; (I) OTEC 10/40 CWP deployment up-ending loads; (J) cost estimates for OTEC 10/40 hull/CWP transitions; and (K) OTEC 10/40 CWP deployment scenario and cost estimate. (WHK)« less
Managing Risk for Thermal Vacuum Testing of the International Space Station Radiators
NASA Technical Reports Server (NTRS)
Carek, Jerry A.; Beach, Duane E.; Remp, Kerry L.
2000-01-01
The International Space Station (ISS) is designed with large deployable radiator panels that are used to reject waste heat from the habitation modules. Qualification testing of the Heat Rejection System (HRS) radiators was performed using qualification hardware only. As a result of those tests, over 30 design changes were made to the actual flight hardware. Consequently, a system level test of the flight hardware was needed to validate its performance in the final configuration. A full thermal vacuum test was performed on the flight hardware in order to demonstrate its ability to deploy on-orbit. Since there is an increased level of risk associated with testing flight hardware, because of cost and schedule limitations, special risk mitigation procedures were developed and implemented for the test program, This paper introduces the Continuous Risk Management process that was utilized for the ISS HRS test program. Testing was performed in the Space Power Facility at the NASA Glenn Research Center, Plum Brook Station located in Sandusky, Ohio. The radiator system was installed in the 100-foot diameter by 122-foot tall vacuum chamber on a special deployment track. Radiator deployments were performed at several thermal conditions similar to those expected on-orbit using both the primary deployment mechanism and the back-up deployment mechanism. The tests were highly successful and were completed without incident.
Mercury-Atlas 9 'Faith 7' spacecraft splashdown in the Pacific Ocean
NASA Technical Reports Server (NTRS)
1971-01-01
The Mercury-Atlas 9 'Faith 7' spacecraft, with Astronaut L. Gordon Cooper Jr. aboard, splashdown in the Pacific Ocean to conclude a 22 orbit mission lasting 34 hours and 20.5 minutes. The capsules parachute is fully deployed in this view. A rescue helicopter hovers overhead
STS-67 landing at Edwards Air Force Base
NASA Technical Reports Server (NTRS)
1995-01-01
The drag chute is fully deployed in this view of the Space Shuttle Endeavour as it completes a mission of almost 17 days duration in space on runway 22 at Edwards Air Force Base in southern California. Landing occurred at 1:46 p.m. (EST), March 18, 1995.
1963-05-16
S63-09630 (16 May 1963) --- The Mercury-Atlas 9 (MA-9) "Faith 7" spacecraft, with astronaut L. Gordon Cooper Jr. aboard, nears splashdown in the Pacific Ocean to conclude a 22-orbit mission lasting 34 hours and 20.5 minutes. The capsule's parachute is fully deployed in this view. Photo credit: NASA
Methodological Approaches to Online Scoring of Essays.
ERIC Educational Resources Information Center
Chung, Gregory K. W. K.; O'Neil, Harold F., Jr.
This report examines the feasibility of scoring essays using computer-based techniques. Essays have been incorporated into many of the standardized testing programs. Issues of validity and reliability must be addressed to deploy automated approaches to scoring fully. Two approaches that have been used to classify documents, surface- and word-based…
Intensifying the proportion of urban green infrastructure has been considered as one of the remedies for air pollution levels in cities, yet the impact of numerous vegetation types deployed in different built environments has to be fully synthesised and quantified. This review ex...
Biomimetic Models for An Ecological Approach to Massively-Deployed Sensor Networks
NASA Technical Reports Server (NTRS)
Jones, Kennie H.; Lodding, Kenneth N.; Olariu, Stephan; Wilson, Larry; Xin, Chunsheng
2005-01-01
Promises of ubiquitous control of the physical environment by massively-deployed wireless sensor networks open avenues for new applications that will redefine the way we live and work. Due to small size and low cost of sensor devices, visionaries promise systems enabled by deployment of massive numbers of sensors ubiquitous throughout our environment working in concert. Recent research has concentrated on developing techniques for performing relatively simple tasks with minimal energy expense, assuming some form of centralized control. Unfortunately, centralized control is not conducive to parallel activities and does not scale to massive size networks. Execution of simple tasks in sparse networks will not lead to the sophisticated applications predicted. We propose a new way of looking at massively-deployed sensor networks, motivated by lessons learned from the way biological ecosystems are organized. We demonstrate that in such a model, fully distributed data aggregation can be performed in a scalable fashion in massively deployed sensor networks, where motes operate on local information, making local decisions that are aggregated across the network to achieve globally-meaningful effects. We show that such architectures may be used to facilitate communication and synchronization in a fault-tolerant manner, while balancing workload and required energy expenditure throughout the network.
Nucleon-nucleon scattering from fully dynamical lattice QCD.
Beane, S R; Bedaque, P F; Orginos, K; Savage, M J
2006-07-07
We present results of the first fully dynamical lattice QCD determination of nucleon-nucleon scattering lengths in the 1S0 channel and 3S1 - 3D1 coupled channels. The calculations are performed with domain-wall valence quarks on the MILC staggered configurations with a lattice spacing of b = 0.125 fm in the isospin-symmetric limit, and in the absence of electromagnetic interactions.
Theoretical and experimental design studies for the Atmospheric General Circulation Experiment
NASA Technical Reports Server (NTRS)
Fowlis, W. W.; Hathaway, D. H.; Miller, T. L.; Roberts, G. O.; Kopecky, K. J.
1985-01-01
The major criterion for the Atmospheric General Circulation Experiment (AGCE) design is that it be possible to realize strong baroclinic instability in the spherical configuration chosen. A configuration was selected in which a hemispherical shell of fluid is subjected to latitudinal temperature gradients on its spherical boundaries and the latitudinal boundaries are insulators. Work in the laboratory with a cylindrical version of this configuration revealed more instabilities than baroclinic instability. Since researchers fully expect these additional instabilities to appear in the spherical configuration also, they decided to continue the laboratory cylindrical annulus studies. Four flow regimes were identified: an axisymmetric Hadley circulation, boundary layer convection, baroclinic waves and deep thermal convection. Regime diagrams were prepared.
NASA Technical Reports Server (NTRS)
Luckring, James M.; Deere, Karen A.; Childs, Robert E.; Stremel, Paul M.; Long, Kurtis R.
2016-01-01
A hybrid transition trip-dot sizing and placement test technique was developed in support of recent experimental research on a hybrid wing-body configuration under study for the NASA Environmentally Responsible Aviation project. The approach combines traditional methods with Computational Fluid Dynamics. The application had three-dimensional boundary layers that were simulated with either fully turbulent or transitional flow models using established Reynolds-Averaged Navier-Stokes methods. Trip strip effectiveness was verified experimentally using infrared thermography during a low-speed wind tunnel test. Although the work was performed on one specific configuration, the process was based on fundamental flow physics and could be applicable to other configurations.
A collaborative network middleware project by Lambda Station, TeraPaths, and Phoebus
NASA Astrophysics Data System (ADS)
Bobyshev, A.; Bradley, S.; Crawford, M.; DeMar, P.; Katramatos, D.; Shroff, K.; Swany, M.; Yu, D.
2010-04-01
The TeraPaths, Lambda Station, and Phoebus projects, funded by the US Department of Energy, have successfully developed network middleware services that establish on-demand and manage true end-to-end, Quality-of-Service (QoS) aware, virtual network paths across multiple administrative network domains, select network paths and gracefully reroute traffic over these dynamic paths, and streamline traffic between packet and circuit networks using transparent gateways. These services improve network QoS and performance for applications, playing a critical role in the effective use of emerging dynamic circuit network services. They provide interfaces to applications, such as dCache SRM, translate network service requests into network device configurations, and coordinate with each other to setup up end-to-end network paths. The End Site Control Plane Subsystem (ESCPS) builds upon the success of the three projects by combining their individual capabilities into the next generation of network middleware. ESCPS addresses challenges such as cross-domain control plane signalling and interoperability, authentication and authorization in a Grid environment, topology discovery, and dynamic status tracking. The new network middleware will take full advantage of the perfSONAR monitoring infrastructure and the Inter-Domain Control plane efforts and will be deployed and fully vetted in the Large Hadron Collider data movement environment.
Open Path Trace Gas Laser Sensors for UAV Deployment
NASA Astrophysics Data System (ADS)
Shadman, S.; Mchale, L.; Rose, C.; Yalin, A.
2015-12-01
Novel trace gas sensors based on open-path Cavity Ring-down Spectroscopy (CRDS) are being developed to enable remote and mobile deployments including on small unmanned aerial systems (UAS). Relative to established closed-path CRDS instruments, the use of open-path configurations allows removal of the bulky and power hungry vacuum and flow system, potentially enabling lightweight and low power instruments with high sensitivity. However, open path operation introduces new challenges including the need to maintain mirror cleanliness, mitigation of particle optical effects, and the need to measure spectral features that are relatively broad. The present submission details open-path CRDS instruments for ammonia and methane and their planned use in UAS studies. The ammonia sensor uses a quantum cascade laser at 10.3 mm in a configuration in which the laser frequency is continuously swept and a trigger circuit and acousto-optic modulator (AOM) extinguish the light when the laser is resonant with the cavity. Ring-down signals are measured with a two-stage thermoelectrically cooled MCT photodetector. The cavity mirrors have reflectivity of 0.9995 and a noise equivalent absorption of 1.5 ppb Hz-1/2 was demonstrated. A first version of the methane sensor operated at 1.7um with a telecom diode laser while the current version operates at 3.6 um with an interband cascade laser (stronger absorption). We have performed validation measurements against known standards for both sensors. Compact optical assemblies are being developed for UAS deployment. For example, the methane sensor head will have target mass of <4 kg and power draw <40 W. A compact single board computer and DAQ system is being designed for sensor control and signal processing with target mass <1 kg and power draw <10 W. The sensor size and power parameters are suitable for UAS deployment on both fixed wing and rotor style UAS. We plan to deploy the methane sensor to measure leakage and emission of methane from natural gas infrastructure, and to deploy both sensors together to study emissions from dairies and feedlots. The latter measurement campaign will also examine ammonia deposition to the ground, and bi-directional ammonia fluxes, using methane as a conservative tracer and examining the change in the ratio of ammonia to methane as a function of downwind position.
Contamination Control Considerations for the Next Generation Space Telescope (NGST)
NASA Technical Reports Server (NTRS)
Wooldridge, Eve M.
1998-01-01
The NASA Space Science Program, in its ongoing mission to study the universe, has begun planning for a telescope that will carry on the Hubble Space Telescope's exploration. This telescope, the 'Next Generation Space Telescope' (NGST), will be 6-8 meters in diameter, will be radiatively cooled to 30-60 Kelvin in order to enable extremely deep exposures at near infrared wavelengths, and will operate for a lifetime of 5-10 years. The requirement will be to measure wavelengths from 1-5 microns, with a goal to measure wavelengths from 0.6-30 microns. As such, NGST will present a new contamination control challenge. The Goddard Space Flight Center (GSFC) performed one of three preliminary feasibility studies for the NGST, presenting a telescope with an 8 meter, deployable primary mirror and a deployable secondary mirror. The telescope would be radiatively cooled, with the optical telescope assembly (OTA) and the science instrument module (SIM) isolated from the warmer spacecraft support module (SSM). The OTA and the SIM would also be shielded from sunlight with an enormous, inflatable sun-shield. The GSFC telescope was designed for launch on an Atlas HAS, which would require launching the telescope in a stowed configuration, with the SSM, antennae, sun-shield, primary mirror 'petals', and secondary mirror deployed once on-orbit. The launch configuration and deployment scenario of an exposed telescope measuring near infrared and cooled to 30-60 K are the factors presenting contamination hazards to the NGST mission. Preliminary science requirements established are: less than 20% reflectance decrease on optical surfaces over the wavelength range, and less than 0.3% obscuration of optical surfaces. In order to meet these requirements, NGST must be built and launched with careful attention to contamination control. Initial contamination control design options include strict selecting of materials and baking out of hardware down to the component level, minimizing or eliminating exposure of the OTA to sunlight or earth albedo during deployment and early on-orbit operations, cleaning of the primary and secondary mirrors at the launch site, cleaning of the launch vehicle fairing, locating thrusters and vents on the warm side of the sun shield only, and the possibility of including a deployable cover if that is shown to be necessary.
Network configuration management : paving the way to network agility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maestas, Joseph H.
2007-08-01
Sandia networks consist of nearly nine hundred routers and switches and nearly one million lines of command code, and each line ideally contributes to the capabilities of the network to convey information from one location to another. Sandia's Cyber Infrastructure Development and Deployment organizations recognize that it is therefore essential to standardize network configurations and enforce conformance to industry best business practices and documented internal configuration standards to provide a network that is agile, adaptable, and highly available. This is especially important in times of constrained budgets as members of the workforce are called upon to improve efficiency, effectiveness, andmore » customer focus. Best business practices recommend using the standardized configurations in the enforcement process so that when root cause analysis results in recommended configuration changes, subsequent configuration auditing will improve compliance to the standard. Ultimately, this minimizes mean time to repair, maintains the network security posture, improves network availability, and enables efficient transition to new technologies. Network standardization brings improved network agility, which in turn enables enterprise agility, because the network touches all facets of corporate business. Improved network agility improves the business enterprise as a whole.« less
Managing a Real-Time Embedded Linux Platform with Buildroot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diamond, J.; Martin, K.
2015-01-01
Developers of real-time embedded software often need to build the operating system, kernel, tools and supporting applications from source to work with the differences in their hardware configuration. The first attempts to introduce Linux-based real-time embedded systems into the Fermilab accelerator controls system used this approach but it was found to be time-consuming, difficult to maintain and difficult to adapt to different hardware configurations. Buildroot is an open source build system with a menu-driven configuration tool (similar to the Linux kernel build system) that automates this process. A customized Buildroot [1] system has been developed for use in the Fermilabmore » accelerator controls system that includes several hardware configuration profiles (including Intel, ARM and PowerPC) and packages for Fermilab support software. A bootable image file is produced containing the Linux kernel, shell and supporting software suite that varies from 3 to 20 megabytes large – ideal for network booting. The result is a platform that is easier to maintain and deploy in diverse hardware configurations« less
A technology development program for large space antennas
NASA Technical Reports Server (NTRS)
Russell, R. A.; Campbell, T. G.; Freeland, R. E.
1980-01-01
The design and application of the offset wrap rib and the maypole (hoop/column) antenna configurations are described. The NASA mission model that generically categorizes the classes of user requirements, as well as the methods used to determine critical technologies and requirements are discussed. Performance estimates for the mesh deployable antenna selected for development are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Fritz, John Floren
2013-08-27
Minimega is a simple emulytics platform for creating testbeds of networked devices. The platform consists of easily deployable tools to facilitate bringing up large networks of virtual machines including Windows, Linux, and Android. Minimega attempts to allow experiments to be brought up quickly with nearly no configuration. Minimega also includes tools for simple cluster management, as well as tools for creating Linux based virtual machine images.
Chalupnikova, Katerina; Solc, Petr; Sulimenko, Vadym; Sedlacek, Radislav; Svoboda, Petr
2014-01-01
At the end of the growth phase, mouse antral follicle oocytes acquire full developmental competence. In the mouse, this event is marked by the transition from the so-called non-surrounded nucleolus (NSN) chromatin configuration into the transcriptionally quiescent surrounded nucleolus (SN) configuration, which is named after a prominent perinucleolar condensed chromatin ring. However, the SN chromatin configuration alone is not sufficient for determining the developmental competence of the SN oocyte. There are additional nuclear and cytoplamic factors involved, while a little is known about the changes occurring in the cytoplasm during the NSN/SN transition. Here, we report functional analysis of maternal ELAVL2 an AU-rich element binding protein. Elavl2 gene encodes an oocyte-specific protein isoform (denoted ELAVL2°), which acts as a translational repressor. ELAVL2° is abundant in fully grown NSN oocytes, is ablated during the NSN/SN transition and remains low during the oocyte-to-embryo transition (OET). ELAVL2° overexpression during meiotic maturation causes errors in chromosome segregation, indicating the significance of naturally reduced ELAVL2° levels in SN oocytes. On the other hand, during oocyte growth, prematurely reduced Elavl2 expression results in lower yields of fully grown and meiotically matured oocytes, suggesting that Elavl2 is necessary for proper oocyte maturation. Moreover, Elavl2 knockdown showed stimulating effects on translation in fully grown oocytes. We propose that ELAVL2 has an ambivalent role in oocytes: it functions as a pleiotropic translational repressor in efficient production of fully grown oocytes, while its disposal during the NSN/SN transition contributes to the acquisition of full developmental competence. PMID:24553115
NASA Technical Reports Server (NTRS)
Koenig, Keith
1986-01-01
The theoretical and numerical bases of a program for the solution of the Euler equations with viscous-inviscid interaction for high Reynolds number transonic flow past wing/body configurations are explained. The emphasis is upon the logic behind the equation development. The program is fully detailed so that the user can quickly become familiar with its operation.
Development of a Deployable Nonmetallic Boom for Reconfigurable Systems of Small Modular Spacecraft
NASA Technical Reports Server (NTRS)
Rehnmark, Fredrik
2007-01-01
Launch vehicle payload capacity and the launch environment represent two of the most operationally limiting constraints on space system mass, volume, and configuration. Large-scale space science and power platforms as well as transit vehicles have been proposed that greatly exceed single-launch capabilities. Reconfigurable systems launched as multiple small modular spacecraft with the ability to rendezvous, approach, mate, and conduct coordinated operations have the potential to make these designs feasible. A key characteristic of these proposed systems is their ability to assemble into desired geometric (spatial) configurations. While flexible and sparse formations may be realized by groups of spacecraft flying in close proximity, flyers physically connected by active structural elements could continuously exchange power, fluids, and heat (via fluids). Configurations of small modular spacecraft temporarily linked together could be sustained as long as needed with minimal propellant use and reconfigured as often as needed over extended missions with changing requirements. For example, these vehicles could operate in extremely compact configurations during boost phases of a mission and then redeploy to generate power or communicate while coasting and upon reaching orbit. In 2005, NASA funded Phase 1 of a program called Modular Reconfigurable High-Energy Technology Demonstrator Assembly Testbed (MRHE) to investigate reconfigurable systems of small spacecraft. The MRHE team was led by NASA's Marshall Space Flight Center and included Lockheed Martin's Advanced Technology Center (ATC) in Palo Alto and its subcontractor, ATK. One of the goals of Phase 1 was to develop an MRHE concept demonstration in a relevant 1-g environment to highlight a number of requisite technologies. In Phase 1 of the MRHE program, Lockheed Martin devised and conducted an automated space system assembly demonstration featuring multipurpose free-floating robots representing Spacecraft in the newly built Controls and Automation Laboratory (CAL) at the ATC. The CAL lab features a 12' x 24' granite air-bearing table and an overhead simulated starfield. Among the technologies needed for the concept demo were mating interfaces allowing the spacecraft to dock and deployable structures allowing for adjustable separation between spacecraft after a rigid connection had been established. The decision to use a nonmetallic deployable boom for this purpose was driven by the MRHE concept demo requirements reproduced in Table 1.
Murphy, Christian; Vaughan, Moses; Ilahi, Waseem; Kaiser, Gail
2010-01-01
For large, complex software systems, it is typically impossible in terms of time and cost to reliably test the application in all possible execution states and configurations before releasing it into production. One proposed way of addressing this problem has been to continue testing and analysis of the application in the field, after it has been deployed. A practical limitation of many such automated approaches is the potentially high performance overhead incurred by the necessary instrumentation. However, it may be possible to reduce this overhead by selecting test cases and performing analysis only in previously-unseen application states, thus reducing the number of redundant tests and analyses that are run. Solutions for fault detection, model checking, security testing, and fault localization in deployed software may all benefit from a technique that ignores application states that have already been tested or explored. In this paper, we present a solution that ensures that deployment environment tests are only executed in states that the application has not previously encountered. In addition to discussing our implementation, we present the results of an empirical study that demonstrates its effectiveness, and explain how the new approach can be generalized to assist other automated testing and analysis techniques intended for the deployment environment. PMID:21197140
Deployment of the National Transparent Optical Network around the San Francisco Bay Area
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCammon, K.; Haigh, R.; Armstrong, G.
1996-06-01
We report on the deployment and initial operation of the National Transparent Optical Network, an experimental WDM network testbed around the San Francisco Bay Area, during the Optical Fiber Conference (OFC`96) held in San Jose, CA. The deployment aspects of the physical plant, optical and SONET layers are examined along with a discussion of broadband applications which utilized the network during the OFC`96 demonstration. The network features dense WDM technology, transparent optical routing technology using acousto- optic tunable filter based switches, and network modules with add/drop, multicast, and wavelength translation capabilities. The physical layer consisted of over 300 km ofmore » Sprint and Pacific Bell conventional single mode fiber which was amplified with I I optical amplifiers deployed in pre-amp, post-amp, and line amp configurations. An out-of-band control network provided datacom channels from remote equipment sites to the SONET network manager deployed at the San Jose Convention Center for the conference. Data transport over five wavelengths was achieved in the 1550 nm window using a variety of signal formats including analog and digital signal transmission on different wavelengths on the same fiber. The network operated throughout the week of OFC`96 and is still in operation today.« less
Apollo 9 Lunar Module in lunar landing configuration
1969-03-07
AS09-21-3199 (7 March 1969) --- Excellent view of the Apollo 9 Lunar Module, "Spider," in a lunar landing configuration, as photographed from the Command and Service Modules on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Lunar surface probes (sensors) extend out from the landing gear foot pads. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander; and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module, "Gumdrop," while the other two astronauts checked out the Lunar Module.
Apollo 9 Lunar Module in lunar landing configuration
1969-03-07
AS09-21-3212 (7 March 1969) --- A view of the Apollo 9 Lunar Module (LM), "Spider", in a lunar landing configuration, as photographed from the Command and Service Modules (CSM) on the fifth day of the Apollo 9 Earth-orbital mission. The landing gear on the "Spider" has been deployed. Lunar surface probes (sensors) extend out from landing gear foot pads. Inside the "Spider" were astronauts James A. McDivitt, Apollo 9 commander, and Russell L. Schweickart, lunar module pilot. Astronaut David R. Scott, command module pilot, remained at the controls in the Command Module (CM), "Gumdrop", while the other two astronauts checked out the Lunar Module.
Using GBrowse 2.0 to visualize and share next-generation sequence data
2013-01-01
GBrowse is a mature web-based genome browser that is suitable for deployment on both public and private web sites. It supports most of genome browser features, including qualitative and quantitative (wiggle) tracks, track uploading, track sharing, interactive track configuration, semantic zooming and limited smooth track panning. As of version 2.0, GBrowse supports next-generation sequencing (NGS) data by providing for the direct display of SAM and BAM sequence alignment files. SAM/BAM tracks provide semantic zooming and support both local and remote data sources. This article provides step-by-step instructions for configuring GBrowse to display NGS data. PMID:23376193
Tracking and data relay satellite system configuration and tradeoff study. Volume 1: Study summary
NASA Technical Reports Server (NTRS)
Hill, T. E.
1973-01-01
A study was conducted to determine the configuration and tradeoffs of a tracking and data relay satellite. The study emphasized the design of a three axis stabilized satellite and a telecommunications system optimized for support of low and medium data rate user spacecraft. Telecommunications support to low and high, or low medium, and high data rate users, considering launches with the Delta 2914, the Atlas/Centaur, and the space shuttle was also considered. The following subjects are presented: (1) launch and deployment profile, (2) spacecraft mechanical and structural design, (3) attitude stabilization and control subsystem, and (4) reliability analysis.
Orbital transfer of large space structures with nuclear electric rockets
NASA Technical Reports Server (NTRS)
Silva, T. H.; Byers, D. C.
1980-01-01
This paper discusses the potential application of electric propulsion for orbit transfer of a large spacecraft structure from low earth orbit to geosynchronous altitude in a deployed configuration. The electric power was provided by the spacecraft nuclear reactor space power system on a shared basis during transfer operations. Factors considered with respect to system effectiveness included nuclear power source sizing, electric propulsion thruster concept, spacecraft deployment constraints, and orbital operations and safety. It is shown that the favorable total impulse capability inherent in electric propulsion provides a potential economic advantage over chemical propulsion orbit transfer vehicles by reducing the number of Space Shuttle flights in ground-to-orbit transportation requirements.
NASA Technical Reports Server (NTRS)
Agnew, Donald L.; Jones, Peter A.
1989-01-01
A study was conducted to define reasonable and representative large deployable reflector (LDR) system concepts for the purpose of defining a technology development program aimed at providing the requisite technological capability necessary to start LDR development by the end of 1991. This volume includes the executive summary for the total study, a report of thirteen system analysis and trades tasks (optical configuration, aperture size, reflector material, segmented mirror, optical subsystem, thermal, pointing and control, transportation to orbit, structures, contamination control, orbital parameters, orbital environment, and spacecraft functions), and descriptions of three selected LDR system concepts. Supporting information is contained in appendices.
STS-26 Discovery, Orbiter Vehicle (OV) 103, IUS / TDRS-C deployment
1988-09-29
During STS-26, inertial upper stage (IUS) with tracking and data relay satellite C (TDRS-C) located in the payload bay (PLB) of Discovery, Orbiter Vehicle (OV) 103, is positioned into its proper deployment attitude (an angle of 50 degrees) by the airborne support equipment (ASE). In the foreground, the ASE forward cradle is visible. The IUS is mounted in the ASE aft frame tilt actuator (AFTA) table. TDRS-C components in stowed configuration include solar array panels, TDRS single access #1 and #2, TDRS SGL, and S-Band omni antenna. In the background are the orbital maneuvering system (OMS) pods, the Earth's cloud-covered surface, and the Earth's limb.
A Lightweight, Precision-Deployable, Optical Bench for High Energy Astrophysics Missions
NASA Astrophysics Data System (ADS)
Danner, Rolf; Dailey, D.; Lillie, C.
2011-09-01
The small angle of total reflection for X-rays, forcing grazing incidence optics with large collecting areas to long focal lengths, has been a fundamental barrier to the advancement of high-energy astrophysics. Design teams around the world have long recognized that a significant increase in effective area beyond Chandra and XMM-Newton requires either a deployable optical bench or separate X-ray optics and instrument module on formation flying spacecraft. Here, we show that we have in hand the components for a lightweight, precision-deployable optical bench that, through its inherent design features, is the affordable path to the next generation of imaging high-energy astrophysics missions. We present our plans for a full-scale engineering model of a deployable optical bench for Explorer-class missions. We intend to use this test article to raise the technology readiness level (TRL) of the tensegrity truss for a lightweight, precision-deployable optical bench for high-energy astrophysics missions from TRL 3 to TRL 5 through a set of four well-defined technology milestones. The milestones cover the architecture's ability to deploy and control the focal point, characterize the deployed dynamics, determine long-term stability, and verify the stowed load capability. Our plan is based on detailed design and analysis work and the construction of a first prototype by our team. Building on our prior analysis and the high TRL of the architecture components we are ready to move on to the next step. The key elements to do this affordably are two existing, fully characterized, flight-quality, deployable booms. After integrating them into the test article, we will demonstrate that our architecture meets the deployment accuracy, adjustability, and stability requirements. The same test article can be used to further raise the TRL in the future.
ZeroCal: Automatic MAC Protocol Calibration
NASA Astrophysics Data System (ADS)
Meier, Andreas; Woehrle, Matthias; Zimmerling, Marco; Thiele, Lothar
Sensor network MAC protocols are typically configured for an intended deployment scenario once and for all at compile time. This approach, however, leads to suboptimal performance if the network conditions deviate from the expectations. We present ZeroCal, a distributed algorithm that allows nodes to dynamically adapt to variations in traffic volume. Using ZeroCal, each node autonomously configures its MAC protocol at runtime, thereby trying to reduce the maximum energy consumption among all nodes. While the algorithm is readily usable for any asynchronous low-power listening or low-power probing protocol, we validate and demonstrate the effectiveness of ZeroCal on X-MAC. Extensive testbed experiments and simulations indicate that ZeroCal quickly adapts to traffic variations. We further show that ZeroCal extends network lifetime by 50% compared to an optimal configuration with identical and static MAC parameters at all nodes.
STS-65 Columbia, OV-102, with drag chute deployed lands at KSC SLF
NASA Technical Reports Server (NTRS)
1994-01-01
The Space Shuttle Columbia, Orbiter Vehicle (OV) 102, its drag chute fully deployed, completes a record duration mission as it lands on Runway 33 at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF). A helicopter flying overhead observes as OV-102's nose landing gear (NLG) and main landing gear (MLG) roll along the runway. Landing occurred at 6:38 am (Eastern Daylight Time (EDT)). STS-65 mission duration was 14 days 17 hours and 56 minutes. Onboard were six NASA astronauts and a Japanese payload specialist who conducted experiments in support of the International Microgravity Laboratory 2 (IML-2) during the mission.
Staggering Inflation To Stabilize Attitude of a Solar Sail
NASA Technical Reports Server (NTRS)
Quadrelli, Marco; West, John
2007-01-01
A document presents computational-simulation studies of a concept for stabilizing the attitude of a spacecraft during deployment of such structures as a solar sail or other structures supported by inflatable booms. Specifically, the solar sail considered in this paper is a square sail with inflatable booms and attitude control vanes at the corners. The sail inflates from its stowed configuration into a square sail with four segments and four vanes at the tips. Basically, the concept is one of controlling the rates of inflation of the booms to utilize in mass-distribution properties to effect changes in the system s angular momentum. More specifically, what was studied were the effects of staggering inflation of each boom by holding it at constant length for specified intervals between intervals of increasing length until full length is reached. The studies included sensitivity analyses of effects of variations in mass properties, boom lengths, rates of increase in boom length, initial rates of rotation of the spacecraft, and several asymmetries that could arise during deployment. The studies led to the conclusion that the final attitude of the spacecraft could be modified by varying the parameters of staggered inflation. Computational studies also showed that by feeding back attitude and attitude-rate measurements so that corrective action is taken during the deployment, the final attitude can be maintained very closely to the initial attitude, thus mitigating the attitude changes incurred during deployment and caused by modeling errors. Moreover, it was found that by optimizing the ratio between the holding and length-increasing intervals in deployment of a boom, one could cause deployment to track a desired deployment profile to place the entire spacecraft in a desired attitude at the end of deployment.
Desktop Systems for Manufacturing Carbon Nanotube Films by Chemical Vapor Deposition
2007-06-01
existing low cost tube furnace designs limit the researcher’s ability to fully separate critical reaction parameters such as temperature and flow...Often heated using an external resistive heater coil, a typical configuration, shown in Figure 4, might place a tube made of a non- reactive ...researcher’s ability to fully separate critical parameters such as temperature and flow profiles. Additionally, the use of heating elements external to
Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft
NASA Astrophysics Data System (ADS)
Su, Weihua
This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation of the framework. Gust responses of the Flying-Wing configuration subject to stall effects are investigated. A bilinear torsional stiffness model is introduced to study the skin wrinkling due to large bending curvature of the Flying-Wing. The numerical studies illustrate the improvements of the existing reduced-order formulation with new capabilities of both structural modeling and coupled aeroelastic and flight dynamic analysis of fully flexible aircraft.
Improvement of the System of Training of Specialists by University for Coal Mining Enterprises
NASA Astrophysics Data System (ADS)
Mikhalchenko, Vadim; Seredkina, Irina
2017-11-01
In the article the ingenious technique of the Quality Function Deployment with reference to the process of training of specialists with higher education by university is considered. The method is based on the step-by-step conversion of customer requirements into specific organizational, meaningful and functional transformations of the technological process of the university. A fully deployed quality function includes four stages of tracking customer requirements while creating a product: product planning and design, process design, production design. The Quality Function Deployment can be considered as one of the methods for optimizing the technological processes of training of specialists with higher education in the current economic conditions. Implemented at the initial stages of the life cycle of the technological process, it ensures not only the high quality of the "product" of graduate school, but also the fullest possible satisfaction of consumer's requests and expectations.
A fully automated GC-FID system was designed and built to measure ambient concentrations of C2-C10 volatile organic compounds, including many oxygenated compounds, without using liquid cryogen. It was deployed at Blodgett Forest Research Station in Georgetown, CA USA, 38 deg 53' ...
The Face of Mourning: Deploying Grief To Construct a Nation.
ERIC Educational Resources Information Center
Wiederhold, Eve
2002-01-01
Argues the predilection for sharing speech that informs the study of rhetoric does not fully address the haunted sense of psychic and embodied displacement that can accompany connections made to imagined social constructs to satisfy desires for affiliation. Focuses on media representations of the shootings at Columbine High School and two cases of…
Intensifying the proportion of urban green infrastructure has been considered as one of the remedies for air pollution levels in cities, yet the impact of numerous vegetation types deployed in different built environments has to be fully synthesised and quantified. This review ex...
1990-07-01
No comment . ’D. No comment . E. The best display was the partially articulated HUD. F. Only pitch bars below the horizon should be articulated. G. Fully articulated pitch bars were the best. H. Fully articulated configuration was easiest to quickly determine which direction to the horizon. I. No comment . J. Fully articulated HUD gave instant feedback on which way to pull to the horizon, K. No comment . L. Definite difference using the full articulation. 2. The following zomments are
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Lee H.; Laros, James H., III
This paper describes a methodology for implementing disk-less cluster systems using the Network File System (NFS) that scales to thousands of nodes. This method has been successfully deployed and is currently in use on several production systems at Sandia National Labs. This paper will outline our methodology and implementation, discuss hardware and software considerations in detail and present cluster configurations with performance numbers for various management operations like booting.
2007-02-01
JSC2007-E-06523 (February 2007) --- Computer-generated artist's rendering of the International Space Station after Space Shuttle Atlantis' (STS-117/13A) undocking and departure. The image shows the addition of the second and third starboard truss segments (S3/S4) with Photovoltaic Radiator (PVR) and the deployed third set of solar arrays. P6 starboard solar array wing and one radiator are retracted.
James Webb Space Telescope: Large Deployable Cryogenic Telescope in Space
NASA Technical Reports Server (NTRS)
Lightsey, Paul A.; Atkinson, Charles; Clampin, Mark; Feinberg, Lee D.
2012-01-01
The James Webb Space Telescope (JWST) is an infrared space telescope designed to explore four major science themes: first light and reionization, the assembly of galaxies, the birth of stars and protoplanetary systems, and planetary systems and origins of life. JWST is a segmented architecture telescope with an aperture of 6.6 m. It will operate at cryogenic temperature (40 K), achieved via passive cooling, in an orbit about the Earth-Sun second Lagrange point (L2). Passive cooling is facilitated by means of a large sunshield that provides thermal isolation and protection from direct illumination from the Sun. The large size of the telescope and spacecraft systems require that they are stowed for launch in a configuration that fits the Ariane 5 fairing, and then deployed after launch. Routine wavefront sensing and control measurements are used to achieve phasing of the segmented primary mirror and initial alignment of the telescope. A suite of instruments will provide the capability to observe over a spectral range from 0.6- to 27-micron wavelengths with imaging and spectroscopic configurations. An overview is presented of the architecture and selected optical design features of JWST are described
The Service Environment for Enhanced Knowledge and Research (SEEKR) Framework
NASA Astrophysics Data System (ADS)
King, T. A.; Walker, R. J.; Weigel, R. S.; Narock, T. W.; McGuire, R. E.; Candey, R. M.
2011-12-01
The Service Environment for Enhanced Knowledge and Research (SEEKR) Framework is a configurable service oriented framework to enable the discovery, access and analysis of data shared in a community. The SEEKR framework integrates many existing independent services through the use of web technologies and standard metadata. Services are hosted on systems by using an application server and are callable by using REpresentational State Transfer (REST) protocols. Messages and metadata are transferred with eXtensible Markup Language (XML) encoding which conform to a published XML schema. Space Physics Archive Search and Extract (SPASE) metadata is central to utilizing the services. Resources (data, documents, software, etc.) are described with SPASE and the associated Resource Identifier is used to access and exchange resources. The configurable options for the service can be set by using a web interface. Services are packaged as web application resource (WAR) files for direct deployment on application services such as Tomcat or Jetty. We discuss the composition of the SEEKR framework, how new services can be integrated and the steps necessary to deploying the framework. The SEEKR Framework emerged from NASA's Virtual Magnetospheric Observatory (VMO) and other systems and we present an overview of these systems from a SEEKR Framework perspective.
Modular Countermine Payload for Small Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman Herman; Doug Few; Roelof Versteeg
2010-04-01
Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processormore » that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multi-mission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.« less
Modular countermine payload for small robots
NASA Astrophysics Data System (ADS)
Herman, Herman; Few, Doug; Versteeg, Roelof; Valois, Jean-Sebastien; McMahill, Jeff; Licitra, Michael; Henciak, Edward
2010-04-01
Payloads for small robotic platforms have historically been designed and implemented as platform and task specific solutions. A consequence of this approach is that payloads cannot be deployed on different robotic platforms without substantial re-engineering efforts. To address this issue, we developed a modular countermine payload that is designed from the ground-up to be platform agnostic. The payload consists of the multi-mission payload controller unit (PCU) coupled with the configurable mission specific threat detection, navigation and marking payloads. The multi-mission PCU has all the common electronics to control and interface to all the payloads. It also contains the embedded processor that can be used to run the navigational and control software. The PCU has a very flexible robot interface which can be configured to interface to various robot platforms. The threat detection payload consists of a two axis sweeping arm and the detector. The navigation payload consists of several perception sensors that are used for terrain mapping, obstacle detection and navigation. Finally, the marking payload consists of a dual-color paint marking system. Through the multimission PCU, all these payloads are packaged in a platform agnostic way to allow deployment on multiple robotic platforms, including Talon and Packbot.
Energy release for the actuation and deployment of muscle-inspired asymmetrically multistable chains
NASA Astrophysics Data System (ADS)
Kidambi, Narayanan; Zheng, Yisheng; Harne, Ryan L.; Wang, K. W.
2018-03-01
Animal locomotion and movement requires energy, and the elastic potential energy stored in skeletal muscle can facilitate movements that are otherwise energetically infeasible. A significant proportion of this energy is captured and stored in the micro- and nano-scale constituents of muscle near the point of instability between asymmetric equilibrium states. This energy may be quickly released to enable explosive macroscopic motions or to reduce the metabolic cost of cyclic movements. Inspired by these behaviors, this research explores modular metastructures of bistable element chains and develops methods to release the energy stored in higher-potential system configurations. Quasi-static investigations reveal the role of state-transition pathways on the overall efficiency of the deployment event. It is shown that sequential, local release of energy from the bistable elements is more efficient than concurrent energy release achieved by applying a force at the free end of the structure. From dynamic analyses and experiments, it is shown that that the energy released from one bistable element can be used to activate the release of energy from subsequent links, reducing the actuation energy required to extend or deploy the chain below that required for quasi-static deployment. This phenomenon is influenced by the level of asymmetry in the bistable constituents and the location of the impulse that initiates the deployment of the structure. The results provide insight into the design and behavior of asymmetrically multistable chains that can leverage stored potential energy to enable efficient and effective system deployment and length change.
MCNP-model for the OAEP Thai Research Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallmeier, F.X.; Tang, J.S.; Primm, R.T. III
An MCNP input was prepared for the Thai Research Reactor, making extensive use of the MCNP geometry`s lattice feature that allows a flexible and easy rearrangement of the core components and the adjustment of the control elements. The geometry was checked for overdefined or undefined zones by two-dimensional plots of cuts through the core configuration with the MCNP geometry plotting capabilities, and by a three-dimensional view of the core configuration with the SABRINA code. Cross sections were defined for a hypothetical core of 67 standard fuel elements and 38 low-enriched uranium fuel elements--all filled with fresh fuel. Three test calculationsmore » were performed with the MCNP4B-code to obtain the multiplication factor for the cases with control elements fully inserted, fully withdrawn, and at a working position.« less
Inter-comparison of isotropic and anisotropic sea ice rheology in a fully coupled model
NASA Astrophysics Data System (ADS)
Roberts, A.; Cassano, J. J.; Maslowski, W.; Osinski, R.; Seefeldt, M. W.; Hughes, M.; Duvivier, A.; Nijssen, B.; Hamman, J.; Hutchings, J. K.; Hunke, E. C.
2015-12-01
We present the sea ice climate of the Regional Arctic System Model (RASM), using a suite of new physics available in the Los Alamos Sea Ice Model (CICE5). RASM is a high-resolution fully coupled pan-Arctic model that also includes the Parallel Ocean Program (POP), the Weather Research and Forecasting Model (WRF) and Variable Infiltration Capacity (VIC) land model. The model domain extends from ~45˚N to the North Pole and is configured to run at ~9km resolution for the ice and ocean components, coupled to 50km resolution atmosphere and land models. The baseline sea ice model configuration includes mushy-layer sea ice thermodynamics and level-ice melt ponds. Using this configuration, we compare the use of isotropic and anisotropic sea ice mechanics, and evaluate model performance using these two variants against observations including Arctic buoy drift and deformation, satellite-derived drift and deformation, and sea ice volume estimates from ICESat. We find that the isotropic rheology better approximates spatial patterns of thickness observed across the Arctic, but that both rheologies closely approximate scaling laws observed in the pack using buoys and RGPS data. A fundamental component of both ice mechanics variants, the so called Elastic-Viscous-Plastic (EVP) and Anisotropic-Elastic-Plastic (EAP), is that they are highly sensitive to the timestep used for elastic sub-cycling in an inertial-resolving coupled framework, and this has a significant affect on surface fluxes in the fully coupled framework.
NASA Technical Reports Server (NTRS)
Limaye, Ashutosh S.; Molthan, Andrew L.; Srikishen, Jayanthi
2010-01-01
The development of the Nebula Cloud Computing Platform at NASA Ames Research Center provides an open-source solution for the deployment of scalable computing and storage capabilities relevant to the execution of real-time weather forecasts and the distribution of high resolution satellite data to the operational weather community. Two projects at Marshall Space Flight Center may benefit from use of the Nebula system. The NASA Short-term Prediction Research and Transition (SPoRT) Center facilitates the use of unique NASA satellite data and research capabilities in the operational weather community by providing datasets relevant to numerical weather prediction, and satellite data sets useful in weather analysis. SERVIR provides satellite data products for decision support, emphasizing environmental threats such as wildfires, floods, landslides, and other hazards, with interests in numerical weather prediction in support of disaster response. The Weather Research and Forecast (WRF) model Environmental Modeling System (WRF-EMS) has been configured for Nebula cloud computing use via the creation of a disk image and deployment of repeated instances. Given the available infrastructure within Nebula and the "infrastructure as a service" concept, the system appears well-suited for the rapid deployment of additional forecast models over different domains, in response to real-time research applications or disaster response. Future investigations into Nebula capabilities will focus on the development of a web mapping server and load balancing configuration to support the distribution of high resolution satellite data sets to users within the National Weather Service and international partners of SERVIR.
NASA Astrophysics Data System (ADS)
Holland, Alexander F.; Pearson, Jens; Lysford, Wilson; Straub, Jeremy
2016-05-01
This paper presents work on the development of Origami-style solar panels and their adaption and efficacy for use in Earth orbit. It focuses on the enabling capability of this technology for the generation and transmission of power. The proposed approach provides increased collection (solar panel) and transmission (microwave radiation) surface area, as compared to other systems with similar mass and volume. An overview of the system is presented, including its pre-deployment configuration, the deployment process and its final configuration. Its utility for wireless power transmission mission is then considered. An economic discussion is then presented to consider how the mass and volume efficiencies provided enable the system to approach target willingness-to-pay values that were presented and considered in prior work. A key consideration regarding the use of wireless power transfer in Earth orbit is the reliability of the technology. This has several different areas of consideration. It must reliably supply power to its customers (or they would have to have local generation capabilities sufficient for their needs, defeating the benefit of this system). It must also be shown to reliably supply power only to designated locations (and not inadvertently or otherwise beam power at other locations). The effect of the system design (including the Origami structure and deployment / rigidity mechanisms) is considered to assess whether the use of this technology may impair either of these key mission/safety-critical goals. This analysis is presented and a discussion of mitigation techniques to several prospective problems is presented, before concluding with a discussion of future work.
Evolution of grid-wide access to database resident information in ATLAS using Frontier
NASA Astrophysics Data System (ADS)
Barberis, D.; Bujor, F.; de Stefano, J.; Dewhurst, A. L.; Dykstra, D.; Front, D.; Gallas, E.; Gamboa, C. F.; Luehring, F.; Walker, R.
2012-12-01
The ATLAS experiment deployed Frontier technology worldwide during the initial year of LHC collision data taking to enable user analysis jobs running on the Worldwide LHC Computing Grid to access database resident data. Since that time, the deployment model has evolved to optimize resources, improve performance, and streamline maintenance of Frontier and related infrastructure. In this presentation we focus on the specific changes in the deployment and improvements undertaken, such as the optimization of cache and launchpad location, the use of RPMs for more uniform deployment of underlying Frontier related components, improvements in monitoring, optimization of fail-over, and an increasing use of a centrally managed database containing site specific information (for configuration of services and monitoring). In addition, analysis of Frontier logs has allowed us a deeper understanding of problematic queries and understanding of use cases. Use of the system has grown beyond user analysis and subsystem specific tasks such as calibration and alignment, extending into production processing areas, such as initial reconstruction and trigger reprocessing. With a more robust and tuned system, we are better equipped to satisfy the still growing number of diverse clients and the demands of increasingly sophisticated processing and analysis.
Non-Functional Property Driven Service Governance: Performance Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yan; Zhu, Liming; Bass, Len
2007-09-17
Service governance is a set of businesses processes, policies and technical solutions that support enterprises in their implementation and management of their SOA. The decisions of service governance, especially concerning service boundaries at the enterprise level, influence the deployment topology of business services across or within business organizations. Deployment topologies are realized by integration technologies such as Enterprise Service Bus (ESB). Service governance and technical solutions interact in a subtle way including through communication patterns and protocols between services and ESBs, as well as the deployment and configuration of ESB. These factors have a strong influence on the Non- Functionalmore » Properties (NFP) of a SOA solution. A systematic approach is essential to understand alternative technical solutions for a specific service governance decision. This paper proposes a modeling approach to evaluate the performance-related NFP impacts when mapping service governance to technical solutions using an ESB. This approach is illustrated by the quantitative performance analysis of a real« less
Advanced consequence management program: challenges and recent real-world implementations
NASA Astrophysics Data System (ADS)
Graser, Tom; Barber, K. S.; Williams, Bob; Saghir, Feras; Henry, Kurt A.
2002-08-01
The Enhanced Consequence Management, Planning and Support System (ENCOMPASS) was developed under DARPA's Advanced Consequence Management program to assist decision-makers operating in crisis situations such as terrorist attacks using conventional and unconventional weapons and natural disasters. ENCOMPASS provides the tools for first responders, incident commanders, and officials at all levels to share vital information and consequently, plan and execute a coordinated response to incidents of varying complexity and size. ENCOMPASS offers custom configuration of components with capabilities ranging from map-based situation assessment, situation-based response checklists, casualty tracking, and epidemiological surveillance. Developing and deploying such a comprehensive system posed significant challenges for DARPA program management, due to an inherently complex domain, a broad spectrum of customer sites and skill sets, an often inhospitable runtime environment, demanding development-to-deployment transition requirements, and a technically diverse and geographically distributed development team. This paper introduces ENCOMPASS and explores these challenges, followed by an outline of selected ENCOMPASS deployments, demonstrating how ENCOMPASS can enhance consequence management in a variety real world contexts.
Investigating the seismic signal of elephants: using seismology to mitigate elephant human conflict
NASA Astrophysics Data System (ADS)
Webb, S. J.; Manzi, M.; Naidoo, A.; Raveloson, A.
2015-12-01
Human interactions with wild elephants are often a source of conflict, as elephants invade inhabited lands looking for sustenance. In order to mitigate these interactions, a number of elephant defense systems are under development. These include electric fences, bees and the playback of warning calls recorded from elephants. With the discovery that elephants use seismic signals to communicate (O'Connell-Rodwell et al., 2006, Behav. Ecol. Sociobiol.), it is hoped that seismic signals can also be used to help reduce conflict. Our current research project investigates the spectral content of the elephant seismic signal that travels through the ground using a variety of geophones and seismometers. Our experimental setup used a Geometrics Geode 24 channel seismic system with an array of 24 geophones spaced 1 m apart in an area of compact soil overlying weathered granites. Initially we used 14 Hz vertical geophones. The ground and ambient noise conditions were characterized by recording several hammer shots. These were used to identify the air wave, wind noise, and the direct wave, which had a dominant frequency of ~50 Hz. Several trained elephants that 'rumble' on command were then deployed ~5 m perpendicular to a line of 24 (14 Hz) vertical geophones between the 1 and 10 m geophone positions. We recorded a number of different elephants and configurations, and digitally recorded video for comparison. An additional deployment of 20 (14 Hz) horizontal geophones was also used. For all data, the sample interval was 0.25 ms and the recording length was 16 s as the timing of the rumbles could not be precisely controlled. We were able to identify the airwave due to the elephant's rumble with velocities between 305-310 m/s and the ground seismic signal due to the rumble with frequencies between 20-30 Hz. Our next experiment will include broadband seismometers at a further distance, to more fully characterize the frequency content of the elephant signal.
Mechanical Design of High Lift Systems for High Aspect Ratio Swept Wings
NASA Technical Reports Server (NTRS)
Rudolph, Peter K. C.
1998-01-01
The NASA Ames Research Center is working to develop a methodology for the optimization and design of the high lift system for future subsonic airliners with the involvement of two partners. Aerodynamic analysis methods for two dimensional and three dimensional wing performance with flaps and slats deployed are being developed through a grant with the aeronautical department of the University of California Davis, and a flap and slat mechanism design procedure is being developed through a contract with PKCR, Inc., of Seattle, WA. This report documents the work that has been completed in the contract with PKCR on mechanism design. Flap mechanism designs have been completed for seven (7) different mechanisms with a total of twelve (12) different layouts all for a common single slotted flap configuration. The seven mechanisms are as follows: Simple Hinge, Upside Down/Upright Four Bar Linkage (two layouts), Upside Down Four Bar Linkages (three versions), Airbus A330/340 Link/Track Mechanism, Airbus A320 Link/Track Mechanism (two layouts), Boeing Link/Track Mechanism (two layouts), and Boeing 767 Hinged Beam Four Bar Linkage. In addition, a single layout has been made to investigate the growth potential from a single slotted flap to a vane/main double slotted flap using the Boeing Link/Track Mechanism. All layouts show Fowler motion and gap progression of the flap from stowed to a fully deployed position, and evaluations based on spanwise continuity, fairing size and number, complexity, reliability and maintainability and weight as well as Fowler motion and gap progression are presented. For slat design, the options have been limited to mechanisms for a shallow leading edge slat. Three (3) different layouts are presented for maximum slat angles of 20 deg, 15 deg and 1O deg all mechanized with a rack and pinion drive similar to that on the Boeing 757 airplane. Based on the work of Ljungstroem in Sweden, this type of slat design appears to shift the lift curve so that higher lift is achieved with the deployed slat with no increase in angle of attack. The layouts demonstrate that these slat systems can be designed with no need for slave links, and an experimental test program is outlined to experimentally validate the lift characteristics of the shallow slat.
NASA Astrophysics Data System (ADS)
Erickson, C. M.; Martinez, A.
1993-06-01
The 1992 Integrated Modular Engine (IME) design concept, proposed to the Air Force Space Systems Division as a candidate for a National Launch System (NLS) upper stage, emphasized a detailed Quality Functional Deployment (QFD) procedure which set the basis for its final selection. With a list of engine requirements defined and prioritized by the customer, a QFD procedure was implemented where the characteristics of a number of engine and component configurations were assessed for degree of requirement satisfaction. The QFD process emphasized operability, cost, reliability and performance, with relative importance specified by the customer. Existing technology and near-term advanced technology were surveyed to achieve the required design strategies. In the process, advanced nozzles, advanced turbomachinery, valves, controls, and operational procedures were evaluated. The integrated arrangement of three conventional bell nozzle thrust chambers with two advanced turbopump sets selected as the configuration meeting all requirements was rated significantly ahead of the other candidates, including the Aerospike and horizontal flow nozzle configurations.
Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling.
Berthier, Ludovic; Charbonneau, Patrick; Coslovich, Daniele; Ninarello, Andrea; Ozawa, Misaki; Yaida, Sho
2017-10-24
Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, because of the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally relevant timescales. In this work, we not only close the colossal gap between experiments and simulations but manage to create in silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four estimates of their configurational entropy. These measurements consistently confirm that the steep entropy decrease observed in experiments is also found in simulations, even beyond the experimental glass transition. Our numerical results thus extend the observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation. Published under the PNAS license.
Breaking the glass ceiling: Configurational entropy measurements in extremely supercooled liquids
NASA Astrophysics Data System (ADS)
Berthier, Ludovic
Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, due to the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally-relevant timescales. In this work we not only close the colossal gap between experiments and simulations but manage to create in-silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four independent estimates of their configurational entropy. These measurements consistently indicate that the steep entropy decrease observed in experiments is found in simulations even beyond the experimental glass transition. Our numerical results thus open a new observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation.
Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling
Berthier, Ludovic; Charbonneau, Patrick; Coslovich, Daniele; Ninarello, Andrea; Ozawa, Misaki
2017-01-01
Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, because of the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally relevant timescales. In this work, we not only close the colossal gap between experiments and simulations but manage to create in silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four estimates of their configurational entropy. These measurements consistently confirm that the steep entropy decrease observed in experiments is also found in simulations, even beyond the experimental glass transition. Our numerical results thus extend the observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation. PMID:29073056
Configurational entropy measurements in extremely supercooled liquids that break the glass ceiling
NASA Astrophysics Data System (ADS)
Berthier, Ludovic; Charbonneau, Patrick; Coslovich, Daniele; Ninarello, Andrea; Ozawa, Misaki; Yaida, Sho
2017-10-01
Liquids relax extremely slowly on approaching the glass state. One explanation is that an entropy crisis, because of the rarefaction of available states, makes it increasingly arduous to reach equilibrium in that regime. Validating this scenario is challenging, because experiments offer limited resolution, while numerical studies lag more than eight orders of magnitude behind experimentally relevant timescales. In this work, we not only close the colossal gap between experiments and simulations but manage to create in silico configurations that have no experimental analog yet. Deploying a range of computational tools, we obtain four estimates of their configurational entropy. These measurements consistently confirm that the steep entropy decrease observed in experiments is also found in simulations, even beyond the experimental glass transition. Our numerical results thus extend the observational window into the physics of glasses and reinforce the relevance of an entropy crisis for understanding their formation.
How, When, and Where? Assessing Renewable Energy Self-Sufficiency at the Neighborhood Level.
Grosspietsch, David; Thömmes, Philippe; Girod, Bastien; Hoffmann, Volker H
2018-02-20
Self-sufficient decentralized systems challenge the centralized energy paradigm. Although scholars have assessed specific locations and technological aspects, it remains unclear how, when, and where energy self-sufficiency could become competitive. To address this gap, we develop a techno-economic model for energy self-sufficient neighborhoods that integrates solar photovoltaics (PV), conversion, and storage technologies. We assess the cost of 100% self-sufficiency for both electricity and heat, comparing different technical configurations for a stylized neighborhood in Switzerland and juxtaposing these findings with projections on market and technology development. We then broaden the scope and vary the neighborhood's composition (residential share) and geographic position (along different latitudes). Regarding how to design self-sufficient neighborhoods, we find two promising technical configurations. The "PV-battery-hydrogen" configuration is projected to outperform a fossil-fueled and grid-connected reference configuration when energy prices increase by 2.5% annually and cost reductions in hydrogen-related technologies by a factor of 2 are achieved. The "PV-battery" configuration would allow achieving parity with the reference configuration sooner, at 21% cost reduction. Additionally, more cost-efficient deployment is found in neighborhoods where the end-use is small commercial or mixed and in regions where seasonal fluctuations are low and thus allow for reducing storage requirements.
Conformational dynamics of the inner pore helix of voltage-gated potassium channels
NASA Astrophysics Data System (ADS)
Choe, Seungho; Grabe, Michael
2009-06-01
Voltage-gated potassium (Kv) channels control the electrical excitability of neurons and muscles. Despite this key role, how these channels open and close or gate is not fully understood. Gating is usually attributed to the bending and straightening of pore-lining helices at glycine and proline residues. In this work we focused on the role of proline in the Pro-Val-Pro (PVP) motif of the inner S6 helix in the Kv1.2 channel. We started by developing a simple hinged-rod model to fully explore the configurational space of bent helices and we related these configurations to the degree of pore opening. We then carried out fully atomistic simulations of the S6 helices and compared these simulations to the hinged-rod model. Both methods suggest that Kv1 channels are not tightly closed when the inner helices are straight, unlike what is seen in the non-PVP containing channels KcsA and KirBac. These results invite the possibility that the S6 helices may be kinked when Kv1 channels are closed. Our simulations indicate that the wild-type helix adopts multiple spatially distinct configurations, which is consistent with its role in adopting a closed state and an open state. The two most dominant configurational basins correspond to a 6 Å movement of the helix tail accompanied by the PVP region undergoing a local α-helix to 310-helix transition. We explored how single point mutations affect the propensity of the S6 helix to adopt particular configurations. Interestingly, mutating the first proline, P405 (P473 in Shaker), to alanine completely removed the bistable nature of the S6 helix possibly explaining why this mutation compromises the channel. Next, we considered four other mutations in the area known to affect channel gating and we saw similarly dramatic changes to the helix's dynamics and range of motion. Our results suggest a possible mechanism of helix pore closure and they suggest differences in the closed state of glycine-only channels, like KcsA, and PVP containing channels.
Shuttle-launch triangular space station
NASA Technical Reports Server (NTRS)
Schneider, W. C. (Inventor); Berka, R. B. (Inventor); Kavanaugh, C. (Inventor); Nagy, K. (Inventor); Parish, R. C. (Inventor); Schliesing, J. A. (Inventor); Smith, P. D. (Inventor); Stebbins, F. J. (Inventor); Wesselski, C. J. (Inventor)
1986-01-01
A triangular space station deployable in orbit is described. The framework is comprized of three trusses, formed of a pair of generally planar faces consistine of foldable struts. The struts expand and lock into rigid structural engagement forming a repetition of equilater triangles and nonfolding diagonal struts interconnecting the two faces. The struts are joined together by node fittings. The framework can be packaged into a size and configuration transportable by a space shuttle. When deployed, the framework provides a large work/construction area and ample planar surface area for solar panels and thermal radiators. A plurity of modules are secured to the framework and then joined by tunnels to make an interconnected modular display. Thruster units for the space station orientation and altitude maintenance are provided.
MER : from landing to six wheels on Mars ... twice
NASA Technical Reports Server (NTRS)
Krajewski, Joel; Burke, Kevin; Lewicki, Chris; Limonadi, Daniel; Trebi-Ollennu, Ashitey; Voorhees, Chris
2005-01-01
Application of the Pathfinder landing system design to enclose the much larger Mars Exploration Rover required a variety of Rover deployments to achieve the surface driving configuration. The project schedule demanded that software design, engineering model test, and flight hardware build to be accomplished in parallel. This challenge was met through (a) bounding unknown environments against which to design and test, (b) early mechanical prototype testing, (c) constraining the scope of on-board autonomy to survival-critical deployments, (d) executing a balance of nominal and off-nominal test cases, (e) developing off-nominal event mitigation techniques before landing, (f) flexible replanning in response to surprises during operations. Here is discussed several specific events encountered during initial MER surface operations.
Evolutionary Multiobjective Query Workload Optimization of Cloud Data Warehouses
Dokeroglu, Tansel; Sert, Seyyit Alper; Cinar, Muhammet Serkan
2014-01-01
With the advent of Cloud databases, query optimizers need to find paretooptimal solutions in terms of response time and monetary cost. Our novel approach minimizes both objectives by deploying alternative virtual resources and query plans making use of the virtual resource elasticity of the Cloud. We propose an exact multiobjective branch-and-bound and a robust multiobjective genetic algorithm for the optimization of distributed data warehouse query workloads on the Cloud. In order to investigate the effectiveness of our approach, we incorporate the devised algorithms into a prototype system. Finally, through several experiments that we have conducted with different workloads and virtual resource configurations, we conclude remarkable findings of alternative deployments as well as the advantages and disadvantages of the multiobjective algorithms we propose. PMID:24892048
Aerothermodynamic environment for a Titan probe with deployable decelerator
NASA Technical Reports Server (NTRS)
Green, M. J.; Swenson, B. L.; Balakrishnan, A.
1985-01-01
It is pointed out that further exploration of Titan, Saturn's largest moon, is of current interest to the scientific community, particularly from the standpoint of the organic chemical evolution of its atmosphere. For a suitable study of this Saturnian satellite, a mission involving a Titan atmospheric entry probe is to be conducted. The probe is to employ a deployable decelerator with the aim to allow scientific measurements in the haze layer. The present investigation is concerned with an assessment of the aerothermodynamic environment for the considered probe during its hypervelocity, low-Reynolds-number entry. Attention is given to the employed computational method, the Titan probe configuration, the Titan probe trajectory, the viscous-layer regime of the aerothermodynamic environment, and the incipient merged-layer regime.
Rapid deployable global sensing hazard alert system
Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M
2015-04-28
A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.
A compact neutron scatter camera for field deployment
Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.
2016-08-23
Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less
LHCb Build and Deployment Infrastructure for run 2
NASA Astrophysics Data System (ADS)
Clemencic, M.; Couturier, B.
2015-12-01
After the successful run 1 of the LHC, the LHCb Core software team has taken advantage of the long shutdown to consolidate and improve its build and deployment infrastructure. Several of the related projects have already been presented like the build system using Jenkins, as well as the LHCb Performance and Regression testing infrastructure. Some components are completely new, like the Software Configuration Database (using the Graph DB Neo4j), or the new packaging installation using RPM packages. Furthermore all those parts are integrated to allow easier and quicker releases of the LHCb Software stack, therefore reducing the risk of operational errors. Integration and Regression tests are also now easier to implement, allowing to improve further the software checks.
The Democratic Public to Be Brought into Existence and Education as Secularization
ERIC Educational Resources Information Center
Oliverio, Stefano
2014-01-01
The paper tackles the fundamental question of whether democracy has by now been turned into a meaningless liturgy of a past religion and proposes a Deweyan answer which points to the need to fully realize modernity in order to bring into existence a genuine democracy. By deploying an archaeological reading of "The Public and Its…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-29
... System or the Supplemental Complex Repository for Examiners AGENCY: United States Patent and Trademark... been scanned into the Image File Wrapper system (IFW) or the Supplemental Complex Repository for..., the USPTO had fully deployed SCORE, a data repository system designed to augment IFW with the capture...
Mercury-Atlas (MA)-9 - "Faith 7" Spacecraft Splashdown - Pacific Ocean
1971-03-26
S71-24944 (16 May 1963) --- The Mercury-Atlas 9 "Faith 7" spacecraft, with astronaut L. Gordon Cooper Jr. aboard, splashes down in the Pacific Ocean to conclude a 22-orbit mission lasting 34 hours and 20.5 minutes. The capsule's parachute is fully deployed in this view. A rescue helicopter hovers overhead. Photo credit: NASA
NASA Technical Reports Server (NTRS)
Wang, Nanbor; Kircher, Michael; Schmidt, Douglas C.
2000-01-01
Although existing CORBA specifications, such as Real-time CORBA and CORBA Messaging, address many end-to-end quality-of-service (QoS) properties, they do not define strategies for configuring these properties into applications flexibly, transparently, and adaptively. Therefore, application developers must make these configuration decisions manually and explicitly, which is tedious, error-prone, and often sub-optimal. Although the recently adopted CORBA Component Model (CCM) does define a standard configuration frame-work for packaging and deploying software components, conventional CCM implementations focus on functionality rather than adaptive quality-of service, which makes them unsuitable for next-generation applications with demanding QoS requirements. This paper presents three contributions to the study of middleware for QoS-enabled component-based applications. It outlines reflective middleware techniques designed to adaptively: (1) select optimal communication mechanisms, (2) man- age QoS properties of CORBA components in their containers, and (3) (re)configure selected component executors dynamically. Based on our ongoing research on CORBA and the CCM, we believe the application of reflective techniques to component middleware will provide a dynamically adaptive and (re)configurable framework for COTS software that is well-suited for the QoS demands of next-generation applications.
Design and analysis of coiled fiber reinforced soft pneumatic actuator.
Singh, Gaurav; Xiao, Chenzhang; Hsiao-Wecksler, Elizabeth T; Krishnan, Girish
2018-04-18
Fiber reinforced elastomeric enclosures (FREEs) are soft pneumatic actuators that can contract and generate forces upon pressurization. Typical engineering applications utilize FREEs in their straight cylindrical configuration and derive actuation displacement and forces from their ends. However, there are several instances in nature, such as an elephant trunk, snakes and grapevine tendrils, where a spiral configuration of muscle systems is used for gripping, thereby establishing a mechanical connection with uniform force distribution. Inspired by these examples, this paper investigates the constricting behavior of a contracting FREE actuator deployed in a spiral or coiled configuration around a cylindrical object. Force balance is used to model the blocked force of the FREE, which is then related to the constriction force using a string model. The modeling and experimental findings reveal an attenuation in the blocked force, and thus the constriction force caused by the coupling of peripheral contact forces acting in the spiral configuration. The usefulness of the coiled FREE configuration is demonstrated in a soft arm orthosis for crutch users that provides a constriction force around the forearm. This design minimizes injury risk by reducing wrist load and improving wrist posture.
CFD Predictions for Transonic Performance of the ERA Hybrid Wing-Body Configuration
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Luckring, James M.; McMillin, S. Naomi; Flamm, Jeffrey D.; Roman, Dino
2016-01-01
A computational study was performed for a Hybrid Wing Body configuration that was focused at transonic cruise performance conditions. In the absence of experimental data, two fully independent computational fluid dynamics analyses were conducted to add confidence to the estimated transonic performance predictions. The primary analysis was performed by Boeing with the structured overset-mesh code OVERFLOW. The secondary analysis was performed by NASA Langley Research Center with the unstructured-mesh code USM3D. Both analyses were performed at full-scale flight conditions and included three configurations customary to drag buildup and interference analysis: a powered complete configuration, the configuration with the nacelle/pylon removed, and the powered nacelle in isolation. The results in this paper are focused primarily on transonic performance up to cruise and through drag rise. Comparisons between the CFD results were very good despite some minor geometric differences in the two analyses.
Sensor deployment on unmanned ground vehicles
NASA Astrophysics Data System (ADS)
Gerhart, Grant R.; Witus, Gary
2007-10-01
TARDEC has been developing payloads for small robots as part of its unmanned ground vehicle (UGV) development programs. These platforms typically weigh less than 100 lbs and are used for various physical security and force protection applications. This paper will address a number of technical issues including platform mobility, payload positioning, sensor configuration and operational tradeoffs. TARDEC has developed a number of robots with different mobility mechanisms including track, wheel and hybrid track/wheel running gear configurations. An extensive discussion will focus upon omni-directional vehicle (ODV) platforms with enhanced intrinsic mobility for positioning sensor payloads. This paper also discusses tradeoffs between intrinsic platform mobility and articulated arm complexity for end point positioning of modular sensor packages.
Mechanical Overview of the International X-Ray Observatory
NASA Technical Reports Server (NTRS)
Robinson, David W.; McClelland, Ryan S.
2009-01-01
The International X-ray Observatory (IXO) is a new collaboration between NASA, ESA, and JAXA which is under study for launch in 2020. IXO will be a large 6600 kilogram Great Observatory-class mission which will build upon the legacies of the Chandra and XMM-Newton X-ray observatories. It combines elements from NASA's Constellation-X program and ESA's XEUS program. The observatory will have a 20-25 meter focal length, which necessitates the use of a deployable instrument module. Currently the project is actively trading configurations and layouts of the various instruments and spacecraft components. This paper will provide a snapshot of the latest observatory configuration under consideration and summarize the observatory from the mechanical engineering perspective.
Furberg, Robert D; Ortiz, Alexa M; Zulkiewicz, Brittany A; Hudson, Jordan P; Taylor, Olivia M; Lewis, Megan A
2016-06-27
Tablet-based health care interventions have the potential to encourage patient care in a timelier manner, allow physicians convenient access to patient records, and provide an improved method for patient education. However, along with the continued adoption of tablet technologies, there is a concomitant need to develop protocols focusing on the configuration, management, and maintenance of these devices within the health care setting to support the conduct of clinical research. Develop three protocols to support tablet configuration, tablet management, and tablet maintenance. The Configurator software, Tile technology, and current infection control recommendations were employed to develop three distinct protocols for tablet-based digital health interventions. Configurator is a mobile device management software specifically for iPhone operating system (iOS) devices. The capabilities and current applications of Configurator were reviewed and used to develop the protocol to support device configuration. Tile is a tracking tag associated with a free mobile app available for iOS and Android devices. The features associated with Tile were evaluated and used to develop the Tile protocol to support tablet management. Furthermore, current recommendations on preventing health care-related infections were reviewed to develop the infection control protocol to support tablet maintenance. This article provides three protocols: the Configurator protocol, the Tile protocol, and the infection control protocol. These protocols can help to ensure consistent implementation of tablet-based interventions, enhance fidelity when employing tablets for research purposes, and serve as a guide for tablet deployments within clinical settings.
The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader
Kang, Byungjeon; Kojcev, Risto; Sinibaldi, Edoardo
2016-01-01
Flexible probes that are safely deployed to hard-to-reach targets while avoiding critical structures are strategic in several high-impact application fields, including the biomedical sector and the sector of inspections at large. A critical problem for these tools is the best approach for deploying an entire tool body, not only its tip, on a sought trajectory. A probe that achieves this deployment is considered to follow the leader (or to achieve follow-the-leader deployment) because its body sections follow the track traced by its tip. Follow-the-leader deployment through cavities is complicated due to a lack of external supports. Currently, no definitive implementation for a probe that is intrinsically able to follow the leader, i.e., without relying on external supports, has been achieved. In this paper, we present a completely new device, namely the first interlaced continuum robot, devised to intrinsically follow the leader. We developed the interlaced configuration by pursuing a conceptual approach irrespective of application-specific constraints and assuming two flexible tools with controllable stiffness. We questioned the possibility of solving the previously mentioned deployment problem by harnessing probe symmetry during the design process. This study examines the entire development of the novel interlaced probe: model-based conceptual design, detailed design and prototyping, and preliminary experimental assessment. Our probe can build a track with a radius of curvature that is as small as twice the probe diameter, which enables it to outperform state-of-the-art tools that are aimed at follow-the-leader deployment. Despite the limitations that are inherently associated with its original character, this study provides a prototypical approach to the design of interlaced continuum systems and demonstrates the first interlaced continuum probe, which is intrinsically able to follow the leader. PMID:26914328
The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader.
Kang, Byungjeon; Kojcev, Risto; Sinibaldi, Edoardo
2016-01-01
Flexible probes that are safely deployed to hard-to-reach targets while avoiding critical structures are strategic in several high-impact application fields, including the biomedical sector and the sector of inspections at large. A critical problem for these tools is the best approach for deploying an entire tool body, not only its tip, on a sought trajectory. A probe that achieves this deployment is considered to follow the leader (or to achieve follow-the-leader deployment) because its body sections follow the track traced by its tip. Follow-the-leader deployment through cavities is complicated due to a lack of external supports. Currently, no definitive implementation for a probe that is intrinsically able to follow the leader, i.e., without relying on external supports, has been achieved. In this paper, we present a completely new device, namely the first interlaced continuum robot, devised to intrinsically follow the leader. We developed the interlaced configuration by pursuing a conceptual approach irrespective of application-specific constraints and assuming two flexible tools with controllable stiffness. We questioned the possibility of solving the previously mentioned deployment problem by harnessing probe symmetry during the design process. This study examines the entire development of the novel interlaced probe: model-based conceptual design, detailed design and prototyping, and preliminary experimental assessment. Our probe can build a track with a radius of curvature that is as small as twice the probe diameter, which enables it to outperform state-of-the-art tools that are aimed at follow-the-leader deployment. Despite the limitations that are inherently associated with its original character, this study provides a prototypical approach to the design of interlaced continuum systems and demonstrates the first interlaced continuum probe, which is intrinsically able to follow the leader.
DDDAS-based Resilient Cyberspace (DRCS)
2016-08-03
Resilient Middleware ( CRM ), Supervisor VMs (SVMs), and Master VMs (MVMs). In what follows, we briefly highlight the main functions to be provided by each...phases. 4.5.1.2 Cloud Resilient Middleware ( CRM ) The CRM provides the control and management services to deploy and configure the software and...To speedup the process of selecting the appropriate resilient algorithms and execution environments, the CRM repository contains a set of SBE
High-Fidelity Real-Time Simulation on Deployed Platforms
2010-08-26
three–dimensional transient heat conduction “ Swiss Cheese ” problem; and a three–dimensional unsteady incompressible Navier- Stokes low–Reynolds–number...our approach with three examples: a two?dimensional Helmholtz acoustics ?horn? problem; a three?dimensional transient heat conduction ? Swiss Cheese ...solutions; a transient lin- ear heat conduction problem in a three–dimensional “ Swiss Cheese ” configuration Ω — to illustrate treat- ment of many
The Photovolatic Power Converter: A Technology Readiness Assessment
2005-06-01
Field Test Configurations .............................................................42 Figure 8. SBR Deployed on a pack and flat on the ground...2. Atira and NPS47 The Graduate School of Business and Public Policy ( BPP ) is one of four schools that organizes and conducts research projects...at NPS. “ BPP is responsible for eight graduate academic programs and awards eight graduate degrees. The largest program is the resident defense
Android application and REST server system for quasar spectrum presentation and analysis
NASA Astrophysics Data System (ADS)
Wasiewicz, P.; Pietralik, K.; Hryniewicz, K.
2017-08-01
This paper describes the implementation of a system consisting of a mobile application and RESTful architecture server intended for the analysis and presentation of quasars' spectrum. It also depicts the quasar's characteristics and significance to the scientific community, the source for acquiring astronomical objects' spectral data, used software solutions as well as presents the aspect of Cloud Computing and various possible deployment configurations.
Long-Range Ballistic Missile Defense in Europe
2010-04-26
land-based configurations. • Phase 3 ( 2018 timeframe): Deploy improved area coverage in Europe against medium- and intermediate-range Iranian...military services. “I think that all our military programs should be managed through those regular processes,” he said, and “that would include...10 interceptors itself would likely have comprised an area somewhat larger than a football field. The area of supporting infrastructure was likely
2005-01-01
developed a partnership with the Defense Acquisition University to in- tegrate DISA’s systems engineering processes, software , and network...in place, with processes being implemented: deployment management; systems engineering ; software engineering ; configuration man- agement; test and...CSS systems engineering is a transition partner with Carnegie Mellon University’s Software Engineering Insti- tute and its work on the capability
NASA's Space Launch System: SmallSat Deployment to Deep Space
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Creech, Stephen D.
2017-01-01
Leveraging the significant capability it offers for human exploration and flagship science missions, NASA's Space Launch System (SLS) also provides a unique opportunity for lower-cost deep-space science in the form of small-satellite secondary payloads. Current plans call for such opportunities to begin with the rocket's first flight; a launch of the vehicle's Block 1 configuration, capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO), which will send the Orion crew vehicle around the moon and return it to Earth. On that flight, SLS will also deploy 13 CubeSat-class payloads to deep-space destinations. These secondary payloads will include not only NASA research, but also spacecraft from industry and international partners and academia. The payloads also represent a variety of disciplines including, but not limited to, studies of the moon, Earth, sun, and asteroids. While the SLS Program is making significant progress toward that first launch, preparations are already under way for the second, which will see the booster evolve to its more-capable Block 1B configuration, able to deliver 105t to LEO. That configuration will have the capability to carry large payloads co-manifested with the Orion spacecraft, or to utilize an 8.4-meter (m) fairing to carry payloads several times larger than are currently possible. The Block 1B vehicle will be the workhorse of the Proving Ground phase of NASA's deep-space exploration plans, developing and testing the systems and capabilities necessary for human missions into deep space and ultimately to Mars. Ultimately, the vehicle will evolve to its full Block 2 configuration, with a LEO capability of 130 metric tons. Both the Block 1B and Block 2 versions of the vehicle will be able to carry larger secondary payloads than the Block 1 configuration, creating even more opportunities for affordable scientific exploration of deep space. This paper will outline the progress being made toward flying smallsats on the first flight of SLS, and discuss future opportunities for smallsats on subsequent flights.
An Investigation into Establishing a Formation of Small Satellites in a Lunar Flower Constellation
NASA Astrophysics Data System (ADS)
McManus, Lauren
Lunar science missions such as LADEE and GRAIL achieved unprecedented measurements of the Lunar exosphere and gravity field. These missions were performed with one (LADEE) or two (GRAIL) traditional satellites. The global coverage achieved by these missions could have been greatly enhanced with the use of a constellation of satellites. A constellation of communication satellites at the Moon would also be necessary if a Lunar human base were to be established. Constellations with many satellites are expensive with traditional technology, but have become feasible through the technological advancements and affordability of cubesats. Cubesat constellations allow for full surface coverage in science or communication missions at a reasonable mission cost. Repeat ground track orbits offer interesting options for science or communication constellations, since they provide repeat coverage of the surface at a fixed time between sequential visits. Flower constellations are a family of constellations being studied primarily by Daniele Mortari at Texas A&M; University that make use of repeat ground tracks. Orbital parameters are selected such that the nodal period of the orbit matches the nodal period of the primary body by a factor dependent on the number of days and the number of revolutions to repeat the ground track. All orbits in a flower constellation have identical orbital elements, with the exception of the right ascension of the ascending node (RAAN) and the initial mean anomaly, which are determined based on the desired phasing scheme desired. Flower constellations have thus far primarily been studied at Earth. A flower constellation at the Moon could be quite useful for science or communication purposes. In this scenario, the flower constellation satellites would be small satellites, which introduces many unique challenges. The cubesats would have limited propulsion capability and would need to be deployed from a mothercraft. Orbital maintenance would then be required after deployment to retain the repeat ground track nature of flower constellations. The limited fuel on the cubesats and the maneuvers required determine the lifetime of the constellation. The communications range of the cubesats will also be limited; following a successful deployment, the mothercraft must move into a long-term communications orbit where it can see both the children craft and Earth, to act as a communications relay. This work investigates the differences in flower constellations at the Moon versus at Earth. It is found that due to the longer rotation period of the Moon, the number of petals in the flower constellation must be quite large in order to produce reasonable orbit sizes. Two types of flower constellations are investigated: a single-petal and multi-petal constellation. The single-petal constellation consists of a string-of-pearls formation within one inertial flower constellation orbit. The multi-petal configuration has one satellite per inertial orbit, with the orbits spaced symmetrically within a 360 degree RAAN distribution. Optimal methods for deployment are explored for both configurations. Phasing orbits are used to deploy the single-petal constellation. This is found to be a simple and low-cost deployment scheme. The multi-petal configuration requires larger plane change maneuvers, and three-burn transfer orbit solutions that are optimal over single impulsive burn maneuvers are found. The mothercraft maneuver into the long-term communications orbit is also investigated. This maneuver is once again just a phase orbit maneuver for the single-petal constellation and is low cost. A polar mothercraft orbit is desired for the multi-petal configuration, again requiring a large and expensive plane change maneuver. As was the case with the deployment maneuver, a three-burn transfer orbit series is found to be cost optimal over a series of impulsive burns for this maneuver. Finally, once the constellation is established, orbit maintenance maneuvers are calculated. A 4 kg cubesat with 1 kg of fuel is assumed, and various thruster types are used to correlate required maintenance Delta-Vs to propellant mass required. It is found that the flower constellations at the Moon can be maintained for between 100 and 800 days, depending on the eciency of the thruster system used. Ultimately, a small satellite constellation at the Moon is found to be feasible to establish and maintain for a science or communication mission.
Code of Federal Regulations, 2014 CFR
2014-01-01
... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS..., takeoff distances, and landing distances, changes in the airplane's configuration, speed, power, and... with all the airplane wheel brake assemblies at the fully worn limit of their allowable wear range...
Code of Federal Regulations, 2013 CFR
2013-01-01
... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS..., takeoff distances, and landing distances, changes in the airplane's configuration, speed, power, and... with all the airplane wheel brake assemblies at the fully worn limit of their allowable wear range...
Code of Federal Regulations, 2011 CFR
2011-01-01
... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS..., takeoff distances, and landing distances, changes in the airplane's configuration, speed, power, and... with all the airplane wheel brake assemblies at the fully worn limit of their allowable wear range...
Code of Federal Regulations, 2012 CFR
2012-01-01
... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS..., takeoff distances, and landing distances, changes in the airplane's configuration, speed, power, and... with all the airplane wheel brake assemblies at the fully worn limit of their allowable wear range...
Code of Federal Regulations, 2010 CFR
2010-01-01
... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS..., takeoff distances, and landing distances, changes in the airplane's configuration, speed, power, and... with all the airplane wheel brake assemblies at the fully worn limit of their allowable wear range...
Integrated Glass Coating Manufacturing Line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brophy, Brenor
2015-09-30
This project aims to enable US module manufacturers to coat glass with Enki’s state of the art tunable functionalized AR coatings at the lowest possible cost and highest possible performance by encapsulating Enki’s coating process in an integrated tool that facilitates effective process improvement through metrology and data analysis for greater quality and performance while reducing footprint, operating and capital costs. The Phase 1 objective was a fully designed manufacturing line, including fully specified equipment ready for issue of purchase requisitions; a detailed economic justification based on market prices at the end of Phase 1 and projected manufacturing costs andmore » a detailed deployment plan for the equipment.« less
Study for prediction of rotor/wake/fuselage interference, part 1
NASA Technical Reports Server (NTRS)
Clark, D. R.; Maskew, B.
1985-01-01
A method was developed which allows the fully coupled calculation of fuselage and rotor airloads for typical helicopter configurations in forward flight. To do this, an iterative solution is carried out based on a conventional panel representation of the fuselage and a blade element representation of the rotor where fuselage and rotor singularity strengths are determined simultaneously at each step and the rotor wake is allowed to relax (deform) in response to changes in rotor wake loading and fuselage presence. On completion of the iteration, rotor loading and inflow, fuselage singularity strength (and, hence, pressure and velocity distributions) and rotor wake are all consistent. The results of a fully coupled calculation of the flow around representative helicopter configurations are presented. The effect of fuselage components on the rotor flow field and the overall wake structure is detailed and the aerodynamic interference between the different parts of the aircraft is discussed.
Elastohydrodynamics of elliptical contacts for materials of low elastic modulus
NASA Technical Reports Server (NTRS)
Hamrock, B. J.; Dowson, D.
1983-01-01
The influence of the ellipticity parameter k and the dimensionless speed U, load W, and materials G parameters on minimum film thickness for materials of low elastic modulus was investigated. The ellipticity parameter was varied from 1 (a ball-on-plane configuration) to 12 (a configuration approaching a line contact); U and W were each varied by one order of magnitude. Seventeen cases were used to generate the minimum- and central-film-thickness relations. The influence of lubricant starvation on minimum film thickness in starved elliptical, elastohydrodynamic configurations was also investigated for materials of low elastic modulus. Lubricant starvation was studied simply by moving the inlet boundary closer to the center of the conjunction in the numerical solutions. Contour plots of pressure and film thickness in and around the contact were presented for both fully flooded and starved lubrication conditions. It is evident from these figures that the inlet pressure contours become less circular and closer to the edge of the Hertzian contact zone and that the film thickness decreases substantially as the serverity of starvation increases. The results presented reveal the essential features of both fully flooded and starved, elliptical, elastohydrodynamic conjunctions for materials of low elastic modulus.
Towards the Development of a Unified Distributed Date System for L1 Spacecraft
NASA Technical Reports Server (NTRS)
Lazarus, Alan J.; Kasper, Justin C.
2005-01-01
The purpose of this grant, 'Towards the Development of a Unified Distributed Data System for L1 Spacecraft', is to take the initial steps towards the development of a data distribution mechanism for making in-situ measurements more easily accessible to the scientific community. Our obligations as subcontractors to this grant are to add our Faraday Cup plasma data to this initial study and to contribute to the design of a general data distribution system. The year 1 objectives of the overall project as stated in the GSFC proposal are: 1) Both the rsync and Perl based data exchange tools will be fully developed and tested in our mixed, Unix, VMS, Windows and Mac OS X data service environment. Based on the performance comparisons, one will be selected and fully deployed. Continuous data exchange between all L1 solar wind monitors initiated. 2) Data version metadata will be agreed upon, fully documented, and deployed on our data sites. 3) The first version of the data description rules, encoded in a XML Schema, will be finalized. 4) Preliminary set of library routines will be collected, documentation standards and formats agreed on, and desirable routines that have not been implemented identified and assigned. 5) ViSBARD test site implemented to independently validate data mirroring procedures. The specific MIT tasks over the duration of this project are the following: a) implement mirroring service for WIND plasma data b) participate in XML Schema development c) contribute toward routine library.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Pavel V. Tsvetkov
2009-05-20
This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologicmore » repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.« less
Design and optimisation of novel configurations of stormwater constructed wetlands
NASA Astrophysics Data System (ADS)
Kiiza, Christopher
2017-04-01
Constructed wetlands (CWs) are recognised as a cost-effective technology for wastewater treatment. CWs have been deployed and could be retrofitted into existing urban drainage systems to prevent surface water pollution, attenuate floods and act as sources for reusable water. However, there exist numerous criteria for design configuration and operation of CWs. The aim of the study was to examine effects of design and operational variables on performance of CWs. To achieve this, 8 novel designs of vertical flow CWs were continuously operated and monitored (weekly) for 2years. Pollutant removal efficiency in each CW unit was evaluated from physico-chemical analyses of influent and effluent water samples. Hybrid optimised multi-layer perceptron artificial neural networks (MLP ANNs) were applied to simulate treatment efficiency in the CWs. Subsequently, predictive and analytical models were developed for each design unit. Results show models have sound generalisation abilities; with various design configurations and operational variables influencing performance of CWs. Although some design configurations attained faster and higher removal efficiencies than others; all 8 CW designs produced effluents permissible for discharge into watercourses with strict regulatory standards.
Managing computer-controlled operations
NASA Technical Reports Server (NTRS)
Plowden, J. B.
1985-01-01
A detailed discussion of Launch Processing System Ground Software Production is presented to establish the interrelationships of firing room resource utilization, configuration control, system build operations, and Shuttle data bank management. The production of a test configuration identifier is traced from requirement generation to program development. The challenge of the operational era is to implement fully automated utilities to interface with a resident system build requirements document to eliminate all manual intervention in the system build operations. Automatic update/processing of Shuttle data tapes will enhance operations during multi-flow processing.
A candidate V/STOL research aircraft design concept using an S-3A aircraft and 2 Pegasus 11 engines
NASA Technical Reports Server (NTRS)
Lampkin, B. A.
1980-01-01
A candidate V/STOL research aircraft concept which uses an S-3A airframe and two Pegasus 11 engines was studied to identify a feasible V/STOL national flight facility that could be obtained at the lowest possible cost for the demonstration of V/STOL technology, inflight simulation, and flight research. The rationale for choosing the configuration, a description of the configuration, and the capability of a fully developed aircraft are discussed.
Two-dimensional interpreter for field-reversed configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinhauer, Loren, E-mail: lstein@uw.edu
2014-08-15
An interpretive method is developed for extracting details of the fully two-dimensional (2D) “internal” structure of field-reversed configurations (FRC) from common diagnostics. The challenge is that only external and “gross” diagnostics are routinely available in FRC experiments. Inferring such critical quantities as the poloidal flux and the particle inventory has commonly relied on a theoretical construct based on a quasi-one-dimensional approximation. Such inferences sometimes differ markedly from the more accurate, fully 2D reconstructions of equilibria. An interpreter based on a fully 2D reconstruction is needed to enable realistic within-the-shot tracking of evolving equilibrium properties. Presented here is a flexible equilibriummore » reconstruction with which an extensive data base of equilibria was constructed. An automated interpreter then uses this data base as a look-up table to extract evolving properties. This tool is applied to data from the FRC facility at Tri Alpha Energy. It yields surprising results at several points, such as the inferences that the local β (plasma pressure/external magnetic pressure) of the plasma climbs well above unity and the poloidal flux loss time is somewhat longer than previously thought, both of which arise from full two-dimensionality of FRCs.« less
A Proposed Ascent Abort Flight Test for the Max Launch Abort System
NASA Technical Reports Server (NTRS)
Tartabini, Paul V.; Gilbert, Michael G.; Starr, Brett R.
2016-01-01
The NASA Engineering and Safety Center initiated the Max Launch Abort System (MLAS) Project to investigate alternate crew escape system concepts that eliminate the conventional launch escape tower by integrating the escape system into an aerodynamic fairing that fully encapsulates the crew capsule and smoothly integrates with the launch vehicle. This paper proposes an ascent abort flight test for an all-propulsive towerless escape system concept that is actively controlled and sized to accommodate the Orion Crew Module. The goal of the flight test is to demonstrate a high dynamic pressure escape and to characterize jet interaction effects during operation of the attitude control thrusters at transonic and supersonic conditions. The flight-test vehicle is delivered to the required test conditions by a booster configuration selected to meet cost, manufacturability, and operability objectives. Data return is augmented through judicious design of the boost trajectory, which is optimized to obtain data at a range of relevant points, rather than just a single flight condition. Secondary flight objectives are included after the escape to obtain aerodynamic damping data for the crew module and to perform a high-altitude contingency deployment of the drogue parachutes. Both 3- and 6-degree-of-freedom trajectory simulation results are presented that establish concept feasibility, and a Monte Carlo uncertainty assessment is performed to provide confidence that test objectives can be met.
SeqMule: automated pipeline for analysis of human exome/genome sequencing data.
Guo, Yunfei; Ding, Xiaolei; Shen, Yufeng; Lyon, Gholson J; Wang, Kai
2015-09-18
Next-generation sequencing (NGS) technology has greatly helped us identify disease-contributory variants for Mendelian diseases. However, users are often faced with issues such as software compatibility, complicated configuration, and no access to high-performance computing facility. Discrepancies exist among aligners and variant callers. We developed a computational pipeline, SeqMule, to perform automated variant calling from NGS data on human genomes and exomes. SeqMule integrates computational-cluster-free parallelization capability built on top of the variant callers, and facilitates normalization/intersection of variant calls to generate consensus set with high confidence. SeqMule integrates 5 alignment tools, 5 variant calling algorithms and accepts various combinations all by one-line command, therefore allowing highly flexible yet fully automated variant calling. In a modern machine (2 Intel Xeon X5650 CPUs, 48 GB memory), when fast turn-around is needed, SeqMule generates annotated VCF files in a day from a 30X whole-genome sequencing data set; when more accurate calling is needed, SeqMule generates consensus call set that improves over single callers, as measured by both Mendelian error rate and consistency. SeqMule supports Sun Grid Engine for parallel processing, offers turn-key solution for deployment on Amazon Web Services, allows quality check, Mendelian error check, consistency evaluation, HTML-based reports. SeqMule is available at http://seqmule.openbioinformatics.org.
Chiral separation and twin-beam photonics
NASA Astrophysics Data System (ADS)
Bradshaw, David S.; Andrews, David L.
2016-03-01
It is well-known that, in a homogeneous fluid medium, most optical means that afford discrimination between molecules of opposite handedness are intrinsically weak effects. The reason is simple: the wide variety of origins for differential response commonly feature real or virtual electronic transitions that break a parity condition. Despite being electric dipole allowed, they manifest the chirality of the material in which they occur by breaking a selection rule that would otherwise preclude the simultaneous involvement of magnetic dipole or electric quadrupole forms of coupling. Although the latter are typically weaker than electric dipole effects by several orders of magnitude, it is the involvement of these weak forms of interaction that are responsible for chiral sensitivity. There have been a number of attempts to cleverly exploit novel optical configurations to enhance the relative magnitude - and hence potentially the efficiency - of chiral discrimination. The prospect of success in any such venture is enticing, because of the huge impact that such an advance might be expected to have in the health, food and medical sectors. Some of these proposals have utilized mirror reflection, and others surface plasmon coupling, or optical binding methods. Several recent works in the literature have drawn attention to a further possibility: the deployment of optical beam interference as a means to achieve chiral separations of sizeable extent. In this paper the underlying theory is fully developed to identify the true scope and limitations of such an approach.
NASA Astrophysics Data System (ADS)
Eakin, C. M.
2017-12-01
Plate tectonics is primarily driven by the subduction of cold dense oceanic slabs. It has yet to be fully understood however how variations in slab morphology and buoyancy influence the surrounding mantle dynamics, and what difference if any is seen at the surface. An excellent natural laboratory to answer such questions is found along the Andean margin where the world's largest flat slab is presently subducting beneath much of Peru. Following the deployment of broadband seismic arrays across the region, mantle flow both beneath and above the flat-slab is investigated using targeted shear-wave splitting techniques that detect seismic anisotropy and the pattern of mantle deformation. The along strike change in slab dip angle and buoyancy content is found to exert a strong control over the surrounding mantle flow field. Modeling of the induced mantle flow, and the dynamic topography at the surface that results, predicts a wave of dynamic subsidence that propagates away from the trench as the flat slab develops. This is found to correlate well with the record of widespread sediment deposition across western Amazonia during the Miocene. A combination of uplift, flexure and dynamic topography during slab flattening is proposed to explain the overall landscape evolution of the region and the subsequent configuration of the transcontinental Amazon drainage system we see today.
NASA Technical Reports Server (NTRS)
Brauckmann, Gregory J.; Scallion, William I.
2004-01-01
Aerodynamic tests in support of the Columbia accident investigation were conducted in two hypersonic wind tunnels at the NASA Langley Research Center, the 20-Inch Mach 6 Air Tunnel and the 20-Inch CF4 Tunnel. The primary purpose of these tests was to measure the forces and moments generated by a variety of outer mold line alterations (damage scenarios) using 0.0075-scale models of the Space Shuttle Orbiter. Simultaneously acquired global heat transfer mappings were obtained for a majority of the configurations tested. Test parametrics included angles of attack from 38 to 42 deg, unit Reynolds numbers from 0.3 x 10(exp 6) to 3.0 x 10(exp 6) per foot, and normal shock density ratios of 5 (Mach 6 air) and 12 (CF4). The damage scenarios evaluated included asymmetric boundary layer transition, gouges in the windward surface thermal protection system tiles, wing leading edge damage (partially and fully missing reinforced carbon-carbon (RCC) panels), deformation of the wing windward surface, and main landing gear and/or door deployment. The measured aerodynamic increments for the damage scenarios examined were generally small in magnitude, as were the flight-derived values during most of the entry prior to loss of communication. A progressive damage scenario is presented that qualitatively matches the flight observations for the STS-107 entry.
Low-Cost Sensor Units for Measuring Urban Air Quality
NASA Astrophysics Data System (ADS)
Popoola, O. A.; Mead, M.; Stewart, G.; Hodgson, T.; McLoed, M.; Baldovi, J.; Landshoff, P.; Hayes, M.; Calleja, M.; Jones, R.
2010-12-01
Measurements of selected key air quality gases (CO, NO & NO2) have been made with a range of miniature low-cost sensors based on electrochemical gas sensing technology incorporating GPS and GPRS for position and communication respectively. Two types of simple to operate sensors units have been designed to be deployed in relatively large numbers. Mobile handheld sensor units designed for operation by members of the public have been deployed on numerous occasions including in Cambridge, London and Valencia. Static sensor units have also been designed for long-term autonomous deployment on existing street furniture. A study was recently completed in which 45 sensor units were deployed in the Cambridge area for a period of 3 months. Results from these studies indicate that air quality varies widely both spatially and temporally. The widely varying concentrations found suggest that the urban environment cannot be fully understood using limited static site (AURN) networks and that a higher resolution, more dispersed network is required to better define air quality in the urban environment. The results also suggest that higher spatial and temporal resolution measurements could improve knowledge of the levels of individual exposure in the urban environment.
Origami tubes with reconfigurable polygonal cross-sections.
Filipov, E T; Paulino, G H; Tachi, T
2016-01-01
Thin sheets can be assembled into origami tubes to create a variety of deployable, reconfigurable and mechanistically unique three-dimensional structures. We introduce and explore origami tubes with polygonal, translational symmetric cross-sections that can reconfigure into numerous geometries. The tubular structures satisfy the mathematical definitions for flat and rigid foldability, meaning that they can fully unfold from a flattened state with deformations occurring only at the fold lines. The tubes do not need to be straight and can be constructed to follow a non-linear curved line when deployed. The cross-section and kinematics of the tubular structures can be reprogrammed by changing the direction of folding at some folds. We discuss the variety of tubular structures that can be conceived and we show limitations that govern the geometric design. We quantify the global stiffness of the origami tubes through eigenvalue and structural analyses and highlight the mechanical characteristics of these systems. The two-scale nature of this work indicates that, from a local viewpoint, the cross-sections of the polygonal tubes are reconfigurable while, from a global viewpoint, deployable tubes of desired shapes are achieved. This class of tubes has potential applications ranging from pipes and micro-robotics to deployable architecture in buildings.
Origami tubes with reconfigurable polygonal cross-sections
Filipov, E. T.; Paulino, G. H.; Tachi, T.
2016-01-01
Thin sheets can be assembled into origami tubes to create a variety of deployable, reconfigurable and mechanistically unique three-dimensional structures. We introduce and explore origami tubes with polygonal, translational symmetric cross-sections that can reconfigure into numerous geometries. The tubular structures satisfy the mathematical definitions for flat and rigid foldability, meaning that they can fully unfold from a flattened state with deformations occurring only at the fold lines. The tubes do not need to be straight and can be constructed to follow a non-linear curved line when deployed. The cross-section and kinematics of the tubular structures can be reprogrammed by changing the direction of folding at some folds. We discuss the variety of tubular structures that can be conceived and we show limitations that govern the geometric design. We quantify the global stiffness of the origami tubes through eigenvalue and structural analyses and highlight the mechanical characteristics of these systems. The two-scale nature of this work indicates that, from a local viewpoint, the cross-sections of the polygonal tubes are reconfigurable while, from a global viewpoint, deployable tubes of desired shapes are achieved. This class of tubes has potential applications ranging from pipes and micro-robotics to deployable architecture in buildings. PMID:26997894
Code of Federal Regulations, 2010 CFR
2010-07-01
... an unreasonable burden on mission accomplishment (e.g., emergency travel is involved and TMS/ETS is... Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ARRANGING FOR TRAVEL SERVICES, PAYING TRAVEL EXPENSES, AND CLAIMING REIMBURSEMENT 50-ARRANGING FOR...
Code of Federal Regulations, 2011 CFR
2011-07-01
... an unreasonable burden on mission accomplishment (e.g., emergency travel is involved and TMS/ETS is... Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ARRANGING FOR TRAVEL SERVICES, PAYING TRAVEL EXPENSES, AND CLAIMING REIMBURSEMENT 50-ARRANGING FOR...
Code of Federal Regulations, 2010 CFR
2010-07-01
...: (1) Such use would result in an unreasonable burden on mission accomplishment (e.g., emergency travel...-73.102 Section 301-73.102 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES AGENCY RESPONSIBILITIES 73-TRAVEL PROGRAMS eTravel Service and Travel...
Code of Federal Regulations, 2011 CFR
2011-07-01
...: (1) Such use would result in an unreasonable burden on mission accomplishment (e.g., emergency travel...-73.102 Section 301-73.102 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES AGENCY RESPONSIBILITIES 73-TRAVEL PROGRAMS eTravel Service and Travel...
Apollo 16 spacecraft touches down in the central Pacific Ocean
NASA Technical Reports Server (NTRS)
1972-01-01
The Apollo 16 spacecraft touches down in the central Pacific Ocean at the end of its mission. Splashdown occured at 1:45:06 p.m., Thursday, April 27, 1972, at coordinates of 00:45.2 degrees south latitude and 156:11.4 degrees west longitude, a point approximately 215 miles southeast of Christmas Island. All its parachutes are fully deployed.
Survey of Network Visualization Tools
2007-12-01
Dimensionality • 2D Comments: Deployment Type: • Components for tool building • Standalone Tool OS: • Windows Extensibility • ActiveX ...Visual Basic Comments: Interoperability Daisy is fully compliant with Microsoft’s ActiveX , therefore, other Windows based programs can...other functions that improve analytic decision making. Available in ActiveX , C++, Java, and .NET editions. • Tom Sawyer Visualization: Enables you to
Cure-in-place process for seals
Hirasuna, Alan R.
1981-01-01
A cure-in-place process which allows a rubber seal element to be deformed to its service configuration before it is cross-linked and, hence, is a plastic and does not build up internal stress as a result of the deformation. This provides maximum residual strength to resist the differential pressure. Furthermore, the process allows use of high modulus formulations of the rubber seal element which would otherwise crack if cured and then deformed to its service configuration, resulting in a seal which has better gap bridging capability. Basically, the process involves positioning an uncured seal element in place, deforming it to its service configuration, heating the seal element, curing it in place, and then fully seating the seal.
Design of an Oximeter Based on LED-LED Configuration and FPGA Technology
Stojanovic, Radovan; Karadaglic, Dejan
2013-01-01
A fully digital photoplethysmographic (PPG) sensor and actuator has been developed. The sensing circuit uses one Light Emitting Diode (LED) for emitting light into human tissue and one LED for detecting the reflectance light from human tissue. A Field Programmable Gate Array (FPGA) is used to control the LEDs and determine the PPG and Blood Oxygen Saturation (SpO2). The configurations with two LEDs and four LEDs are developed for measuring PPG signal and Blood Oxygen Saturation (SpO2). N-LEDs configuration is proposed for multichannel SpO2 measurements. The approach resulted in better spectral sensitivity, increased and adjustable resolution, reduced noise, small size, low cost and low power consumption. PMID:23291575
Shape Memory Composite Hybrid Hinge
NASA Technical Reports Server (NTRS)
Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen
2012-01-01
There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature is reduced to below its glass transition temperature. After the deployable structure is launched in space, the SMC tube is reheated and the hinge is unfolded to deploy the structure. Based on test results, the hybrid hinge can achieve higher than 99.999% shape recovery. The hybrid hinge inherits all of the good characteristics of a tape-spring hinge such as simplicity, light weight, high deployment reliability, and high deployment precision. Conversely, it eliminates the deployment impact that has significantly limited the applications of a tape-spring hinge. The deployment dynamics of a hybrid hinge are in a slow and controllable fashion. The SMC tube of a hybrid hinge is a multifunctional component. It serves as a deployment mechanism during the deployment process, and also serves as a structural component after the hinge is fully deployed, which makes a hybrid hinge much stronger and stiffer than a tape-spring hinge. Unlike a mechanically deploying hinge that uses relatively moving components, a hybrid hinge depends on material deformation for its packing and deployment. It naturally eliminates the microdynamic phenomenon.
Parametric study of modern airship productivity
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Flaig, K.
1980-01-01
A method for estimating the specific productivity of both hybrid and fully buoyant airships is developed. Various methods of estimating structural weight of deltoid hybrids are discussed and a derived weight estimating relationship is presented. Specific productivity is used as a figure of merit in a parametric study of fully buoyant ellipsoidal and deltoid hybrid semi-buoyant vehicles. The sensitivity of results as a function of assumptions is also determined. No airship configurations were found to have superior specific productivity to transport airplanes.
Deployable aerospace PV array based on amorphous silicon alloys
NASA Technical Reports Server (NTRS)
Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey
1989-01-01
The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.
Deployable aerospace PV array based on amorphous silicon alloys
NASA Astrophysics Data System (ADS)
Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey
1989-04-01
The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.
Vinokur, Amiram D.; Pierce, Penny F.; Lewandowski-Romps, Lisa; Hobfoll, Stevan E.; Galea, Sandro
2011-01-01
Longitudinal data from a stratified representative sample of U.S. Air Force personnel (N = 1009) deployed to the wars in Iraq, Afghanistan, and other locations were analyzed in this study. Using structural equation models, we examined the effects of war exposure on traumatic experiences, Post Traumatic Stress (PTS) symptoms, resource loss, and on subsequent functioning, perceived health, and on job and organizationally relevant outcomes. The job and organizational outcomes included job burnout, job involvement, job strain, job satisfaction, work-family conflict, organizational commitment, deployment readiness, and intention to reenlist. We found that deployment to the theater of the war increased risk of exposure to trauma, which in turn, predicted elevated PTS symptoms and resource loss. PTS symptoms predicted later loss of resources and deterioration in perceived health and functioning. In turn, resource loss predicted negative job and organizational outcomes. Exposure to trauma fully mediated the effects of deployment to the theater of war on PTS symptoms and resource loss and had additional significant indirect effects on several job and organizational relevant outcomes. For returning veterans, deployment to the theater of war, exposure to trauma, PTS symptoms, and resource loss represents a ‘cascading’ chain of events that over time results in a decline of health and functioning as well as in adverse job and organizationally relevant outcomes that may affect organizational effectiveness. PMID:21280941
Kline, Anna; Ciccone, Donald S; Weiner, Marc; Interian, Alejandro; St Hill, Lauren; Falca-Dodson, Maria; Black, Christopher M; Losonczy, Miklos
2013-01-01
This study examines gender differences in post-traumatic stress symptoms (PTSS) and PTSS risk/protective factors among soldiers deployed to Iraq. We pay special attention to two potentially modifiable military factors, military preparedness and unit cohesion, which may buffer the deleterious psychological effects of combat. Longitudinal data were collected on 922 New Jersey National Guard soldiers (91 women) deployed to Iraq in 2008. Anonymous surveys administered at pre- and post-deployment included the PTSD Checklist (PCL), the Unit Support Scale, and a preparedness scale adapted from the Iowa Gulf War Study. Bivariate analyses and hierarchical multiple regression were used to identify predictors of PTSS and their explanatory effects on the relationship between gender and PTSS. Women had a higher prevalence of probable post-deployment PTSD than men (18.7% vs. 8.7%; OR = 2.45; CI [1.37, 4.37]) and significantly higher post-deployment PTSS (33.73 vs. 27.37; p = .001). While there were no gender differences in combat exposure, women scored higher on pre-deployment PTSS (26.9 vs. 23.1; p ≤ .001) and lower on military preparedness (1.65 vs. 2.41; p ≤ .001) and unit cohesion (32.5 vs. 38.1; p ≤ .001). In a multivariate model, controlling for all PTSS risk/resilience factors reduced the gender difference as measured by the unstandardized Beta (B) by 45%, with 18% uniquely attributable to low cohesion and low preparedness. In the fully controlled model, gender remained a significant predictor of PTSS but the effect size was small (d = .26). Modifiable military institutional factors may account for much of the increased vulnerability of women soldiers to PTSD.
Flap Edge Aeroacoustic Measurements and Predictions
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Humphreys, William M., Jr.
2000-01-01
An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady surface pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and surface roughness were successfully scaled by utilizing aerodynamic performance and boundary layer scaling methods developed herein.
High-Resolution Uitra Low Power, Intergrated Aftershock and Microzonation System
NASA Astrophysics Data System (ADS)
Passmore, P.; Zimakov, L. G.
2012-12-01
Rapid Aftershock Mobilization plays an essential role in the understanding of both focal mechanism and rupture propagation caused by strong earthquakes. A quick assessment of the data provides a unique opportunity to study the dynamics of the entire earthquake process in-situ. Aftershock study also provides practical information for local authorities regarding the post earthquake activity, which is very important in order to conduct the necessary actions for public safety in the area affected by the strong earthquake. Refraction Technology, Inc. has developed a self-contained, fully integrated Aftershock System, model 160-03, providing the customer simple and quick deployment during aftershock emergency mobilization and microzonation studies. The 160-03 has no external cables or peripheral equipment for command/control and operation in the field. The 160-03 contains three major components integrated in one case: a) 24-bit resolution state-of-the art low power ADC with CPU and Lid interconnect boards; b) power source; and c) three component 2 Hz sensors (two horizontals and one vertical), and built-in ±4g accelerometer. Optionally, the 1 Hz sensors can be built-in the 160-03 system at the customer's request. The self-contained rechargeable battery pack provides power autonomy up to 7 days during data acquisition at 200 sps on continuous three weak motion and triggered three strong motion recording channels. For longer power autonomy, the 160-03 Aftershock System battery pack can be charged from an external source (solar power system). The data in the field is recorded to a built-in swappable USB flash drive. The 160-03 configuration is fixed based on a configuration file stored on the system, so no external command/control interface is required for parameter setup in the field. For visual control of the system performance in the field, the 160-03 has a built-in LED display which indicates the systems recording status as well as a hot swappable USB drive and battery status. The detailed specifications and performance are presented and discussed.;
Flap Edge Aeroacoustic Measurements and Predictions
NASA Technical Reports Server (NTRS)
Brooks, Thomas F.; Humphreys, William M., Jr.
2000-01-01
An aeroacoustic model test has been conducted to investigate the mechanisms of sound generation on high-lift wing configurations. This paper presents an analysis of flap side-edge noise, which is often the most dominant source. A model of a main element wing section with a half-span flap was tested at low speeds of up to a Mach number of 0.17, corresponding to a wing chord Reynolds number of approximately 1.7 million. Results are presented for flat (or blunt), flanged, and round flap-edge geometries, with and without boundary-layer tripping, deployed at both moderate and high flap angles. The acoustic database is obtained from a Small Aperture Directional Array (SADA) of microphones, which was constructed to electronically steer to different regions of the model and to obtain farfield noise spectra and directivity from these regions. The basic flap-edge aerodynamics is established by static surface pressure data, as well as by Computational Fluid Dynamics (CFD) calculations and simplified edge flow analyses. Distributions of unsteady pressure sensors over the flap allow the noise source regions to be defined and quantified via cross-spectral diagnostics using the SADA output. It is found that shear layer instability and related pressure scatter is the primary noise mechanism. For the flat edge flap, two noise prediction methods based on unsteady-surface-pressure measurements are evaluated and compared to measured noise. One is a new causality spectral approach developed here. The other is a new application of an edge-noise scatter prediction method. The good comparisons for both approaches suggest that much of the physics is captured by the prediction models. Areas of disagreement appear to reveal when the assumed edge noise mechanism does not fully define, the noise production. For the different edge conditions, extensive spectra and directivity are presented. Significantly, for each edge configuration, the spectra for different flow speeds, flap angles, and surface roughness were successfully scaled by utilizing aerodynamic performance and boundary layer scaling method developed herein.
High fidelity wireless network evaluation for heterogeneous cognitive radio networks
NASA Astrophysics Data System (ADS)
Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso
2012-06-01
We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal-level interactions with real radios. This holistic wireless evaluation approach supports a large-scale, het- erogeneous, and dynamic CR network architecture and allows developing cross-layer network protocols under high fidelity, repeatable, and scalable wireless test scenarios suitable for heterogeneous space, air, and ground networks.
Pathway Ranking for In-place Sediment Management (CU1209). Site 2 Report - Pearl Harbor
2006-04-01
type resistance cell. The probe is configured with two pairs of stainless steel electrodes, the outer pair through which a known current is imposed...the “bioinhibited” (no oxygen control) deployment at BPA . Vertical axis is dissolved oxygen concentration, and horizontal axis is sample record at 6...99 Table 5-7. BFSD results from site BPA . Numbers in the Flux Rate Confidence column indicate the
Array Receivers and Sound Sources for Three Dimensional Shallow Water Acoustic Field Experiments
2016-12-06
upgrade included improving the SHRU clocks by utilizing chip- scale atomic clocks (CSAC), enlarging battery packs to extend the operation duration, and...instrument upgrade included improving the SHRU clocks by utilizing chip-scale atomic clocks (CSAC), enlarging battery packs to extend the operation...Changing the deployment configuration to use dual pressure housings to augment the alkaline primary battery payload to achieve the one-year duration
1987-06-01
described the state )f ruaturity of software engineering as being equivalent to the state of maturity of Civil Engineering before Pythagoras invented the...formal verification languages, theorem provers or secure configuration 0 management tools would have to be maintained and used in the PDSS Center to
Investigation of Storage Options for Scientific Computing on Grid and Cloud Facilities
NASA Astrophysics Data System (ADS)
Garzoglio, Gabriele
2012-12-01
In recent years, several new storage technologies, such as Lustre, Hadoop, OrangeFS, and BlueArc, have emerged. While several groups have run benchmarks to characterize them under a variety of configurations, more work is needed to evaluate these technologies for the use cases of scientific computing on Grid clusters and Cloud facilities. This paper discusses our evaluation of the technologies as deployed on a test bed at FermiCloud, one of the Fermilab infrastructure-as-a-service Cloud facilities. The test bed consists of 4 server-class nodes with 40 TB of disk space and up to 50 virtual machine clients, some running on the storage server nodes themselves. With this configuration, the evaluation compares the performance of some of these technologies when deployed on virtual machines and on “bare metal” nodes. In addition to running standard benchmarks such as IOZone to check the sanity of our installation, we have run I/O intensive tests using physics-analysis applications. This paper presents how the storage solutions perform in a variety of realistic use cases of scientific computing. One interesting difference among the storage systems tested is found in a decrease in total read throughput with increasing number of client processes, which occurs in some implementations but not others.
Investigation of storage options for scientific computing on Grid and Cloud facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzoglio, Gabriele
In recent years, several new storage technologies, such as Lustre, Hadoop, OrangeFS, and BlueArc, have emerged. While several groups have run benchmarks to characterize them under a variety of configurations, more work is needed to evaluate these technologies for the use cases of scientific computing on Grid clusters and Cloud facilities. This paper discusses our evaluation of the technologies as deployed on a test bed at FermiCloud, one of the Fermilab infrastructure-as-a-service Cloud facilities. The test bed consists of 4 server-class nodes with 40 TB of disk space and up to 50 virtual machine clients, some running on the storagemore » server nodes themselves. With this configuration, the evaluation compares the performance of some of these technologies when deployed on virtual machines and on bare metal nodes. In addition to running standard benchmarks such as IOZone to check the sanity of our installation, we have run I/O intensive tests using physics-analysis applications. This paper presents how the storage solutions perform in a variety of realistic use cases of scientific computing. One interesting difference among the storage systems tested is found in a decrease in total read throughput with increasing number of client processes, which occurs in some implementations but not others.« less
Benefits of Colocating Concentrating Solar Power and Wind
Sioshansi, Ramteen; Denholm, Paul
2013-09-16
Here, we analyze the potential benefits of colocating wind and concentrating solar power (CSP) plants in the southwestern U.S. Using a location in western Texas as a case study, we demonstrate that such a deployment strategy can improve the capacity factor of the combined plant and the associated transmission investment. This is because of two synergies between wind and CSP: 1) the negative correlation between real-time wind and solar resource availability and 2) the use of low-cost high-efficiency thermal energy storage in CSP. The economic tradeoff between transmission and system performance is highly sensitive to CSP and transmission costs. Finally,more » we demonstrate that a number of deployment configurations, which include up to 67% CSP, yield a positive net return on investment.« less
Controlled tether extends satellite's orbital range
NASA Astrophysics Data System (ADS)
Wigotsky, V.
1984-06-01
A low orbit satellite tethered to the Space Shuttle Orbiter's cargo bay would be able to conduct upper atmosphere experiments without fear of orbit deterioration. NASA has in light of this initiated a Tethered Satellite System program aimed at the 1987 deployment of a 1,100-lb, 5 ft-diameter satellite to a distance of 6-12 miles from the Space Shuttle on a Kevlar tether. The distance of the fully developed system will be 62 miles, representing an altitude of 80 miles above the earth. Tether diameters under consideration are in the 0.065-0.1 inch range. The satellite control system will consist of a reel drive, a deployment boom, and a boom-mounted tether control, in order to vary tether tension during gravity gradient changes.
Heat pipe radiator technology for space power systems
NASA Technical Reports Server (NTRS)
Carlson, A. W.; Gustafson, E.; Ercegovic, B. A.
1986-01-01
High-reliability high-performance deployable monogroove and dual-slot heat pipe radiator systems to meet the requirements for electric power in future space missions, such as the 300-kW(e) electric powder demand projected for NASA's Space Station, are discussed. Analytical model trade studies of various configurations show the advantages of the dual-slot heat pipe radiator for high temperature applications as well as its weight reduction potential over the 50-350 F temperature range. The ammonia-aluminum monogroove heat pipe, limited to below-180 F operating temperatures, is under development, and can employ methanol-stainless steel heat pipes to achieve operating temperatures in excess of 300 F. Dual-slot heat pipe configuration proof-of-concept testing was begun in 1985.
NASA Astrophysics Data System (ADS)
Stewart, Alphonso C.
2001-09-01
A Kevlar cord and two thermal knives are key components in the Solar Array Restraint and Release System (SARRS) on the Microwave Anisotropy Probe (MAP) spacecraft at NASA's Goddard Space Flight Center. The SARRS uses a 25-foot (7.62 m) length Kevlar cord that encircles the spacecraft and secures the solar panels in stowed configuration for launch. Once in orbit, one of two redundantly configured thermal knives severs the Kevlar cord and permits the panels to deploy. The purpose of this paper is to present the details of the design, development test results, and the various innovations that were created during the development of this novel use of the thermal knife and Kevlar cord.
Aerodynamic characteristics of proposed assured crew return capability (ACRC) configurations
NASA Technical Reports Server (NTRS)
Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.
1989-01-01
The aerodynamic characteristics of seven reentry configurations suggested as possible candidate vehicles to return crew members from the U.S. Space Station Freedom to earth has been reviewed. The shapes varied from those capable of purely ballistic entry to those capable of gliding entry and fromk parachute landing to conventional landing. Data were obtained from existing (published and unpublished) sources and from recent wind tunnel tests. The lifting concepts are more versatile and satisfy all the mission requirements. Two of the lifting shapes studied appear promising - a lifting body and a deployable wing concept. The choice of an ACRC concept, however, will be made after all factors involving transportation from earth to orbit and back to earth again have been weighed.
Aerodynamic characteristics of proposed assured crew return capability (ACRC) configurations
NASA Astrophysics Data System (ADS)
Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.
1989-07-01
The aerodynamic characteristics of seven reentry configurations suggested as possible candidate vehicles to return crew members from the U.S. Space Station Freedom to earth has been reviewed. The shapes varied from those capable of purely ballistic entry to those capable of gliding entry and fromk parachute landing to conventional landing. Data were obtained from existing (published and unpublished) sources and from recent wind tunnel tests. The lifting concepts are more versatile and satisfy all the mission requirements. Two of the lifting shapes studied appear promising - a lifting body and a deployable wing concept. The choice of an ACRC concept, however, will be made after all factors involving transportation from earth to orbit and back to earth again have been weighed.
NASA Technical Reports Server (NTRS)
Stewart, Alphonso; Brodeur, Stephen J. (Technical Monitor)
2001-01-01
A Kevlar cord and two thermal knives are key components in the Soar Array Restraint and Release System (SARRS) on the Microwave Anisotropy Probe (MAP) spacecraft at NASA's Goddard Space Flight Center. The SARRS uses a 25-foot (7.62 m) length Kevlar cord that encircles the spacecraft and secures the solar panels in stowed configuration for launch. Once in orbit, one of two redundantly configured thermal knives severs the Kevlar cord and permits the panels to deploy. The purpose of this paper is to present the details of the design, development test results, and the various innovations that were created during the development of this novel use of the thermal knife and Kevlar cord.
Enabling the On-line Intrinsic Evolution of Analog Controllers
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; Ferguson, Michael I.
2005-01-01
The intrinsic evolution of analog controllers to provide closed-loop control of the speed of a DC motor has been previously demonstrated at NASA Marshall Space Flight Center. A side effect of the evolutionary process is that during evolution there are necessarily poor configurations to be evaluated that could cause damage to the plant, This paper concerns the development and implementation of a safe Evolvable Analog Controller (EAC) architecture able to evolve controllers on-line even in the presence of these poor configurations, The EAC concept is discussed and experimental results are presented that show the feasibility of the approach This EAC architecture represents the first in a series of steps required to make deployment of an evolvable controller a reality.
Enabling the On-Line Intrinsic Evolution of Analog Controllers
NASA Technical Reports Server (NTRS)
Gwaltney, David A.; Ferguson, Michael I.
2005-01-01
The intrinsic evolution of analog controllers to provide closed-loop control of the speed of a DC motor has been previously demonstrated at NASA Marshall Space Flight Center. A side fleet of the evolutionary process is that during evolution there are necessarily poor configurations to be evaluated that could cause damage to the plant. This paper concern the development and implementation of a safe Evolvable Analog Controller (EAC) architecture able to evolve controllers on-line even in the presence of these poor configurations. The EAC concept is discussed and experimental results are presented that show the feasibility of the approach This EAC architecture represents the first in a series of steps required to make deployment of an evolvable controller a reality.
Hydrodynamical analysis of the effect of fish fins morphology
NASA Astrophysics Data System (ADS)
Azwadi Che Sidik, Nor; Yen, Tey Wah
2013-12-01
The previous works on the biomechanics of fishes focuses on the locomotion effect of the fish bodies. However, there is quite a insufficiency in unveiling the respective function of fins when the fishes pose statics and exposed to fluid flow. Accordingly, this paper's focus is to investigate the hydrodynamic effect of the fins configuration to the fluid flow of shark-shaped-inspired structure. The drag and lift coefficient is computed for different cases of fish fins addition and configuration. The k-epsilon turbulence model is deployed using finite volume method with the aid of commercial software ANSYS CFX. The finding will demystify some of the functions of the fish's fins in term of their contribution to the hydrodynamic flow around the fishes.
Review of Large Spacecraft Deployable Membrane Antenna Structures
NASA Astrophysics Data System (ADS)
Liu, Zhi-Quan; Qiu, Hui; Li, Xiao; Yang, Shu-Li
2017-11-01
The demand for large antennas in future space missions has increasingly stimulated the development of deployable membrane antenna structures owing to their light weight and small stowage volume. However, there is little literature providing a comprehensive review and comparison of different membrane antenna structures. Space-borne membrane antenna structures are mainly classified as either parabolic or planar membrane antenna structures. For parabolic membrane antenna structures, there are five deploying and forming methods, including inflation, inflation-rigidization, elastic ribs driven, Shape Memory Polymer (SMP)-inflation, and electrostatic forming. The development and detailed comparison of these five methods are presented. Then, properties of membrane materials (including polyester film and polyimide film) for parabolic membrane antennas are compared. Additionally, for planar membrane antenna structures, frame shapes have changed from circular to rectangular, and different tensioning systems have emerged successively, including single Miura-Natori, double, and multi-layer tensioning systems. Recent advances in structural configurations, tensioning system design, and dynamic analysis for planar membrane antenna structures are investigated. Finally, future trends for large space membrane antenna structures are pointed out and technical problems are proposed, including design and analysis of membrane structures, materials and processes, membrane packing, surface accuracy stability, and test and verification technology. Through a review of large deployable membrane antenna structures, guidance for space membrane-antenna research and applications is provided.
Furberg, Robert D; Zulkiewicz, Brittany A; Hudson, Jordan P; Taylor, Olivia M; Lewis, Megan A
2016-01-01
Background Tablet-based health care interventions have the potential to encourage patient care in a timelier manner, allow physicians convenient access to patient records, and provide an improved method for patient education. However, along with the continued adoption of tablet technologies, there is a concomitant need to develop protocols focusing on the configuration, management, and maintenance of these devices within the health care setting to support the conduct of clinical research. Objective Develop three protocols to support tablet configuration, tablet management, and tablet maintenance. Methods The Configurator software, Tile technology, and current infection control recommendations were employed to develop three distinct protocols for tablet-based digital health interventions. Configurator is a mobile device management software specifically for iPhone operating system (iOS) devices. The capabilities and current applications of Configurator were reviewed and used to develop the protocol to support device configuration. Tile is a tracking tag associated with a free mobile app available for iOS and Android devices. The features associated with Tile were evaluated and used to develop the Tile protocol to support tablet management. Furthermore, current recommendations on preventing health care–related infections were reviewed to develop the infection control protocol to support tablet maintenance. Results This article provides three protocols: the Configurator protocol, the Tile protocol, and the infection control protocol. Conclusions These protocols can help to ensure consistent implementation of tablet-based interventions, enhance fidelity when employing tablets for research purposes, and serve as a guide for tablet deployments within clinical settings. PMID:27350013
Systems Suitable for Information Professionals.
ERIC Educational Resources Information Center
Blair, John C., Jr.
1983-01-01
Describes computer operating systems applicable to microcomputers, noting hardware components, advantages and disadvantages of each system, local area networks, distributed processing, and a fully configured system. Lists of hardware components (disk drives, solid state disk emulators, input/output and memory components, and processors) and…
Correlates of perceived need for mental health care among active military personnel.
Sareen, Jitender; Belik, Shay-Lee; Stein, Murray B; Asmundson, Gordon J G
2010-01-01
There is increasing concern about mental health problems and need for mental health care among soldiers after deployment. This study examined correlates of self-perceived need for mental health care among active military personnel. Data were from a 2002 cross-sectional population-based survey of 8,441 active Canadian military personnel (2,592 women) aged 16 to 54 (response rate 81%). A fully structured lay-administered interview for past-year DSM-IV mental disorders and perceived need for mental health care was conducted. Five domains of self-perceived need were assessed: information, medication, counseling, social intervention, and skills training. Several deployment factors were assessed (length of deployment, number of deployments, and exposure to deployment-related traumatic events), as were long-term restriction in activities because of disability and suicidal ideation. Multiple logistic regression models were used to determine correlates of perceived need. After adjustment for mental disorders, the strongest and most consistent correlates of perceived need were long-term restriction in activities, suicidal ideation, female gender, and regular service status (versus reserve status) (adjusted odds ratios ranging from 1.28 to 4.37). Deployment and exposure to combat and witnessing atrocities were moderately associated with an increase in self-perceived need for mental health care. The findings suggest that a range of issues beyond the presence of common mental disorders need to be considered in understanding the factors that contribute to a sense of need for mental health treatment. Postdeployment screening programs should consider systematically assessing self-perceived need for mental health treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Karen S; Kasemir, Kay
2009-01-01
An effective alarm system consists of a mechanism to monitor control points and generate alarm notifications, tools for operators to view, hear, acknowledge and handle alarms and a good configuration. Despite the availability of numerous fully featured tools, accelerator alarm systems continue to be disappointing to operations, frequently to the point of alarms being permanently silenced or totally ignored. This is often due to configurations that produce an excessive number of alarms or fail to communicate the required operator response. Most accelerator controls systems do a good job of monitoring specified points and generating notifications when parameters exceed predefined limits.more » In some cases, improved tools can help, but more often, poor configuration is the root cause of ineffective alarm systems. A SNS, we have invested considerable effort in generating appropriate configurations using a rigorous set of rules based on best practices in the industrial process controls community. This paper will discuss our alarm configuration philosophy and operator response to our new system.« less
HSX as an example of a resilient non-resonant divertor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bader, A.; Boozer, A. H.; Hegna, C. C.
This study describes an initial description of the resilient divertor properties of quasi-symmetric (QS) stellarators using the HSX (Helically Symmetric eXperiment) configuration as a test-case. Divertors in high-performance QS stellarators will need to be resilient to changes in plasma configuration that arise due to evolution of plasma pressure profiles and bootstrap currents for divertor design. Resiliency is tested by examining the changes in strike point patterns from the field line following, which arise due to configurational changes. A low strike point variation with high configuration changes corresponds to high resiliency. The HSX edge displays resilient properties with configuration changes arisingmore » from the (1) wall position, (2) plasma current, and (3) external coils. The resilient behavior is lost if large edge islands intersect the wall structure. The resilient edge properties are corroborated by heat flux calculations from the fully 3-D plasma simulations using EMC3-EIRENE. Additionally, the strike point patterns are found to correspond to high curvature regions of magnetic flux surfaces.« less
HSX as an example of a resilient non-resonant divertor
Bader, A.; Boozer, A. H.; Hegna, C. C.; ...
2017-03-16
This study describes an initial description of the resilient divertor properties of quasi-symmetric (QS) stellarators using the HSX (Helically Symmetric eXperiment) configuration as a test-case. Divertors in high-performance QS stellarators will need to be resilient to changes in plasma configuration that arise due to evolution of plasma pressure profiles and bootstrap currents for divertor design. Resiliency is tested by examining the changes in strike point patterns from the field line following, which arise due to configurational changes. A low strike point variation with high configuration changes corresponds to high resiliency. The HSX edge displays resilient properties with configuration changes arisingmore » from the (1) wall position, (2) plasma current, and (3) external coils. The resilient behavior is lost if large edge islands intersect the wall structure. The resilient edge properties are corroborated by heat flux calculations from the fully 3-D plasma simulations using EMC3-EIRENE. Additionally, the strike point patterns are found to correspond to high curvature regions of magnetic flux surfaces.« less
Submission of FeCrAl Feedstock for Support of AFC ATR-2 Irradiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Barrett, Kristine E.; Sun, Zhiqian
The Advanced Test Reactor (ATR) is currently being used to test accident tolerant fuel (ATF) forms destined for commercial nuclear power plant deployment. One irradiation program using the ATR for ATF concepts, Accident Tolerant Fuel-2 (ATF-2), is a water loop irradiation test using miniaturized fuel pins as test articles. This complicated testing configuration requires a series of pre-test experiments and verification including a flowing loop autoclave test and a sensor qualification test (SQT) prior to full test train deployment within the ATR. In support of the ATF-2 irradiation program, Oak Ridge National Laboratory (ORNL) has supplied two different Generation IImore » FeCrAl alloys in rod stock form to Idaho National Laboratory (INL). These rods will be machined into dummy pins for deployment in the autoclave test and SQT. Post-test analysis of the dummy pins will provide initial insight into the performance of Generation II FeCrAl alloys in the ATF-2 irradiation experiment as well as within a commercial nuclear reactor.« less
Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał
2016-01-01
Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper. PMID:27649186
Use of control umbilicals as a deployment mode for free flying telerobotic work systems
NASA Technical Reports Server (NTRS)
Kuehn, J. S.; Selle, E. D.
1987-01-01
Work to date on telerobotic work systems for use in space generally consider two deployment modes, free flying, or fixed within a limited work envelope. Control tethers may be employed to obtain a number of operational advantages and added flexibility in the basing and deployment of telerobotic work systems. Use of a tether allows the work system to be separated into two major modules, the remote work package and the control module. The Remote Work Package (RWP) comprises the free flying portion of the work system while the Control Module (CM) remains at the work system base. The chief advantage of this configuration is that only the components required for completion of the work task must be located at the work site. Reaction mass used in free flight is stored at the Control module and supplied to the RWP through the tether, eliminating the need for the RWP to carry it. The RWP can be made less massive than a self contained free flying work system. As a result, reaction mass required for free flight is lower than for a self contained free flyer.
Niewiadomska-Szynkiewicz, Ewa; Sikora, Andrzej; Marks, Michał
2016-09-14
Using mobile robots or unmanned vehicles to assist optimal wireless sensors deployment in a working space can significantly enhance the capability to investigate unknown environments. This paper addresses the issues of the application of numerical optimization and computer simulation techniques to on-line calculation of a wireless sensor network topology for monitoring and tracking purposes. We focus on the design of a self-organizing and collaborative mobile network that enables a continuous data transmission to the data sink (base station) and automatically adapts its behavior to changes in the environment to achieve a common goal. The pre-defined and self-configuring approaches to the mobile-based deployment of sensors are compared and discussed. A family of novel algorithms for the optimal placement of mobile wireless devices for permanent monitoring of indoor and outdoor dynamic environments is described. They employ a network connectivity-maintaining mobility model utilizing the concept of the virtual potential function for calculating the motion trajectories of platforms carrying sensors. Their quality and utility have been justified through simulation experiments and are discussed in the final part of the paper.
Initial Field Deployment Results of Green PCB Removal from Sediment Systems (GPRSS)
NASA Technical Reports Server (NTRS)
Devor, Robert; Captain, James; Weis, Kyle; Maloney, Phillip; Booth, Greg; Quinn, Jacqueline
2014-01-01
Purpose of Study: (a) Develop/optimize technology capable of removing PCBs from contaminated sediments; (b) Develop design for functional GPRSS unit; (c) Produce and prove functionality of prototype units in a laboratory settings; (d) Produce fully-functional GPRSS units for testing at a demonstration site in Altavista, VA; and (e) Evaluate efficacy of GPRSS technology for the remediation of PCB-contaminated sediments.
Family Reintegration Following Guard Deployment
2010-09-20
P15 before they reach a crisis, or divorce is imminent. Many participants in this study were not fully aware of the resources that the Family...accommodations made by the wives during separation. Wartime Separation and Marital Adversity Historical records indicate an increase in divorce ...before separation remains unclear, with several researchers finding the men with less satisfying marriages were the ones more likely to divorce (Pavalko
An Ethical Basis for Autonomous System Deployment
2009-09-24
Discussion on Robo -Ethics, Amsterdam, NL, March 2008.GSU Neurophilosophy 20. Brown Bag Lunch Series, "Governing Lethal Behavior: Embedding Ethics in an...5. Implementation of responsibility advisor : An ethical permission responsibility advisor was prototyped and demonstrated in a manner fully...PTF_Interface_Final_Largev3.mpg • Demonstration of the Ethical Responsibility Advisor : http://www.cc.gatech.edu/ai/robot-lab/ethics/res-advisor.mpg
L-3 Com AVISYS civil aviation self-protection system
NASA Astrophysics Data System (ADS)
Carey, Jim
2006-05-01
In early 2004, L-3 Com AVISYS Corporation (hereinafter referred to as L-3 AVISYS or AVISYS) completed a contract for the integration and deployment of an advanced Infrared Countermeasures self-protection suite for a Head of State Airbus A340 aircraft. This initial L-3 AVISYS IRCM Suite was named WIPPS (Widebody Integrated Platform Protection System). The A340 WIPPS installation provisions were FAA certified with the initial deployment of the modified aircraft. WIPPS is unique in that it utilizes a dual integrated missile warning subsystem to produce a robust, multi-spectral, ultra-low false alarm rate threat warning capability. WIPPS utilizes the Thales MWS-20 Pulsed Doppler Radar Active MWS and the EADS AN/AAR-60 Ultraviolet Passive MWS. These MWS subsystems are integrated through an L-3 AVISYS Electronic Warfare Control Set (EWCS). The EWCS also integrates the WIPPS MWS threat warning information with the A340 flight computer data to optimize ALE-47 Countermeasure Dispensing System IR decoy dispensing commands, program selection and timing. WIPPS utilizes standard and advanced IR Decoys produced by ARMTEC Defense and Alloy Surfaces. WIPPS demonstrated that when IR decoy dispensing is controlled by threat range and time-to-go information provided by an Active MWS, unsurpassed self protection levels are achievable. Recognizing the need for high volume civil aviation protection, L-3 AVISYS configured a variant of WIPPS optimized for commercial airline reliability requirements, safety requirements, supportability and most importantly, affordability. L-3 AVISYS refers to this IRCM suite as CAPS (Commercial Airliner Protection System). CAPS has been configured for applications to all civil aircraft ranging from the small Regional Jets to the largest Wide-bodies. This presentation and paper will provide an overview of the initial WIPPS IRCM Suite and the important factors that were considered in defining the CAPS configuration.
Towards Full Aircraft Airframe Noise Prediction: Detached Eddy Simulations
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.; Mineck, Raymond E.
2014-01-01
Results from a computational study on the aeroacoustic characteristics of an 18%-scale, semi-span Gulf-stream aircraft model are presented in this paper. NASA's FUN3D unstructured compressible Navier-Stokes solver was used to perform steady and unsteady simulations of the flow field associated with this high-fidelity aircraft model. Solutions were obtained for free-air at a Mach number of 0.2 with the flap deflected at 39 deg, with the main gear off and on (the two baseline configurations). Initially, the study focused on accurately predicting the prominent noise sources at both flap tips for the baseline configuration with deployed flap only. Building upon the experience gained from this initial effort, subsequent work involved the full landing configuration with both flap and main landing gear deployed. For the unsteady computations, we capitalized on the Detached Eddy Simulation capability of FUN3D to capture the complex time-dependent flow features associated with the flap and main gear. To resolve the noise sources over a broad frequency range, the tailored grid was very dense near the flap inboard and outboard tips and the region surrounding the gear. Extensive comparison of the computed steady and unsteady surface pressures with wind tunnel measurements showed good agreement for the global aerodynamic characteristics and the local flow field at the flap inboard tip. However, the computed pressure coefficients indicated that a zone of separated flow that forms in the vicinity of the outboard tip is larger in extent along the flap span and chord than measurements suggest. Computed farfield acoustic characteristics from a FW-H integral approach that used the simulated pressures on the model solid surface were in excellent agreement with corresponding measurements.
Space station preliminary design report
NASA Technical Reports Server (NTRS)
1982-01-01
The results of a 3 month preliminary design and analysis effort is presented. The configuration that emerged consists of a very stiff deployable truss structure with an overall triangular cross section having universal modules attached at the apexes. Sufficient analysis was performed to show feasibility of the configuration. An evaluation of the structure shows that desirable attributes of the configuration are: (1) the solar cells, radiators, and antennas will be mounted to stiff structure to minimize control problems during orbit maintenance and correction, docking, and attitude control; (2) large flat areas are available for mounting and servicing of equipment; (3) Large mass items can be mounted near the center of gravity of the system to minimize gravity gradient torques; (4) the trusses are lightweight structures and can be transported into orbit in one Shuttle flight; (5) the trusses are expandable and will require a minimum of EVA; and (6) the modules are anticipated to be structurally identical except for internal equipment to minimize cost.
NASA Technical Reports Server (NTRS)
Hahne, Daniel E.
1999-01-01
Using the F-16XL as a test-bed, two strategies for improving the low-speed flying characteristics that had minimal impact on high-speed performance were evaluated. In addition to the basic F-16XL configuration several modifications to the baseline configuration were tested in the Langley 30- X 60-Foot Tunnel: 1) the notched area at the wing leading edge and fuselage juncture was removed resulting in a continuous 70 deg leading-edge sweep on the inboard portion of the wing; 2) an integral attached-flow leading-edge flap concept was added to the continuous leading edge; and 3) a deployable vortex flap concept was added to the continuous leading edge. The purpose of this report is simply to document the test configurations, test conditions, and data obtained in this investigation for future reference and analysis. No analysis is presented herein and the data only appear in tabulated format.
Conceptual approach study of a 200 watt per kilogram solar array
NASA Technical Reports Server (NTRS)
Stanhouse, R. W.; Fox, D.; Wilson, W.
1976-01-01
Solar array candidate configurations (flexible rollup, flexible flat-pact, semi-rigid panel, semi-rigid flat-pack) were analyzed with particular attention to the specific power (W/kg) requirement. Two of these configurations (flexible rollup and flexible flat-pack) are capable of delivering specific powers equal to or exceeding the baseline requirement of 200 W/kg. Only the flexible rollup is capable of in-flight retraction and subsequent redeployment. The wrap-around contact photovoltaic cell configuration has been chosen over the conventional cell. The demand for ultra high specific power forces the selection of ultra-thin cells and cover material. Based on density and mass range considerations, it was concluded that 13 micrometers of FEP Teflon is sufficient to protect the cell from a total proton fluency of 2(10 to the 12th power) particles/sq cm over a three-year interplanetary mission. The V-stiffened, lattice boom deployed, flexible substrate rollup array holds the greatest promise of meeting the baseline requirements set for this study.
Doppler radar sensor positioning in a fall detection system.
Liu, Liang; Popescu, Mihail; Ho, K C; Skubic, Marjorie; Rantz, Marilyn
2012-01-01
Falling is a common health problem for more than a third of the United States population over 65. We are currently developing a Doppler radar based fall detection system that already has showed promising results. In this paper, we study the sensor positioning in the environment with respect to the subject. We investigate three sensor positions, floor, wall and ceiling of the room, in two experimental configurations. Within each system configuration, subjects performed falls towards or across the radar sensors. We collected 90 falls and 341 non falls for the first configuration and 126 falls and 817 non falls for the second one. Radar signature classification was performed using a SVM classifier. Fall detection performance was evaluated using the area under the ROC curves (AUCs) for each sensor deployment. We found that a fall is more likely to be detected if the subject is falling toward or away from the sensor and a ceiling Doppler radar is more reliable for fall detection than a wall mounted one.