A scaling law for the local CHF on the external bottom side of a fully submerged reactor vessel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, F.B.; Haddad, K.H.; Liu, Y.C.
1997-02-01
A scaling law for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water has been developed from the results of an advanced hydrodynamic CHF model for pool boiling on a downward facing curved heating surface. The scaling law accounts for the effects of the size of the vessel, the level of liquid subcooling, the intrinsic properties of the fluid, and the spatial variation of the local critical heat flux along the heating surface. It is found that for vessels with diameters considerably larger than the characteristic size ofmore » the vapor masses, the size effect on the local critical heat flux is limited almost entirely to the effect of subcooling associated with the local liquid head. When the subcooling effect is accounted for separately, the local CHF limit is nearly independent of the vessel size. Based upon the scaling law developed in this work, it is possible to merge, within the experimental uncertainties, all the available local CHF data obtained for various vessel sizes under both saturated and subcooled boiling conditions into a single curve. Applications of the scaling law to commercial-size vessels have been made for various system pressures and water levels above the heated vessel. Over the range of conditions explored in this study, the local CHF limit is found to increase by a factor of two or more from the bottom center to the upper edge of the vessel. Meanwhile, the critical heat flux at a given angular position of the heated vessel is also found to increase appreciably with the system pressure and the water level.« less
NASA Astrophysics Data System (ADS)
Ruiz, Maritza
Thermal management of systems under high heat fluxes on the order of hundreds of W/cm2 is important for the safety, performance and lifetime of devices, with innovative cooling technologies leading to improved performance of electronics or concentrating solar photovoltaics. A novel, spiraling radial inflow microchannel heat sink for high flux cooling applications, using a single phase or vaporizing coolant, has demonstrated enhanced heat transfer capabilities. The design of the heat sink provides an inward swirl flow between parallel, coaxial disks that form a microchannel of 1 cm radius and 300 micron channel height with a single inlet and a single outlet. The channel is heated on one side through a conducting copper surface, and is essentially adiabatic on the opposite side to simulate a heat sink scenario for electronics or concentrated photovoltaics cooling. Experimental results on the heat transfer and pressure drop characteristics in the heat sink, using single phase water as a working fluid, revealed heat transfer enhancements due to flow acceleration and induced secondary flows when compared to unidirectional laminar fully developed flow between parallel plates. Additionally, thermal gradients on the surface are small relative to the bulk fluid temperature gain, a beneficial feature for high heat flux cooling applications. Heat flux levels of 113 W/cm2 at a surface temperature of 77 deg C were reached with a ratio of pumping power to heat rate of 0.03%. Analytical models on single phase flow are used to explore the parametric trends of the flow rate and passage geometry on the streamlines and pressure drop through the device. Flow boiling heat transfer and pressure drop characteristics were obtained for this heat sink using water at near atmospheric pressure as the working fluid for inlet subcooling levels ranging from 20 to 80 deg C and mean mass flux levels ranging from 184-716 kg/m. 2s. Flow enhancements similar to singlephase flow were expected, as well as enhancements due to increased buoyant forces on vapor bubbles resulting from centripetal acceleration in the flow which will tend to draw the vapor towards the outlet. This can also aid in the reduction of vapor obstruction of the flow. The flow was identified as transitioning through three regimes as the heat rate was increased: partial subcooled flow boiling, oscillating boiling and fully developed flow boiling. During partial subcooled flow boiling, both forced convective and nucleate boiling effects are important. During oscillating boiling, the system fluctuated between partial subcooled flow boiling and fully developed nucleate boiling. Temperature and pressure oscillations were significant in this regime and are likely due to bubble constriction of flow in the microchannel. This regime of boiling is generally undesirable due to the large oscillations in temperatures and pressure and design constraints should be established to avoid large oscillations from occurring. During fully developed flow boiling, water vapor rapidly leaves the surface and the flow does not sustain large oscillations. Reducing inlet subcooling levels was found to reduce the magnitude of oscillations in the oscillating boiling regime. Additionally, reduced inlet subcooling levels reduced the average surface temperature at the highest heat flux levels tested when heat transfer was dominated by nucleate boiling, yet increased the average surface temperatures at low heat flux levels when heat transfer was dominated by forced convection. Experiments demonstrated heat fluxes up to 301 W/cm. 2at an average surface temperature of 134 deg C under partial subcooled flow boiling conditions. At this peak heat flux, the system required a pumping power to heat rate ratio of 0.01%. This heat flux is 2.4 times the typical values for critical heat flux in pool boiling under similar conditions.
Net vapor generation point in boiling flow of trichlorotrifluoroethane at high pressures
NASA Technical Reports Server (NTRS)
Dougall, R. S.; Lippert, T. E.
1973-01-01
The conditions at which the void in subcooled boiling starts to undergo a rapid increase were studied experimentally. The experiments were performed in a 12.7 x 9.5 mm rectangular channel. Heating was from a 3.2 mm wide strip embedded in one wall. The pressure ranged from 9.45 to 20.7 bar, mass velocity from 600 to 7000 kg/sq m sec, and subcooling from 16 to 67 C. Photographs were used to determine when detached bubbles first appeared in the bulk flow. Measurements of bubble layer thickness along the wall were also made. Results showed that the point of net vapor generation is close to the occurrence of fully-developed boiling.
Subcooled forced convection boiling of trichlorotrifluoroethane
NASA Technical Reports Server (NTRS)
Dougall, R. S.; Panian, D. J.
1972-01-01
Experimental heat-transfer data were obtained for the forced-convection boiling of trichlorotrifluoroethane (R-113 or Freon-113) in a vertical annular test annular test section. The 97 data points obtained covered heat transfer by forced convection, local boiling, and fully-developed boiling. Correlating methods were obtained which accurately predicted the heat flux as a function of wall superheat (boiling curve) over the range of parameters studied.
Booster propulsion/vehicle impact study, 2
NASA Technical Reports Server (NTRS)
Johnson, P.; Satterthwaite, S.; Carson, C.; Schnackel, J.
1988-01-01
This is the final report in a study examining the impact of launch vehicles for various boost propulsion design options. These options included: differing boost phase engines using different combinations of fuels and coolants to include RP-1, methane, propane (subcooled and normal boiling point), and hydrogen; variable and high mixture ratio hydrogen engines; translating nozzles on boost phase engines; and cross feeding propellants from the booster to second stage. Vehicles examined included a fully reusable two stage cargo vehicle and a single stage to orbit vehicle. The use of subcooled propane as a fuel generated vehicles with the lowest total vehicle dry mass. Engines with hydrogen cooling generated only slight mass reductions from the reference, all-hydrogen vehicle. Cross feeding propellants generated the most significant mass reductions from the reference two stage vehicle. The use of high mixture ratio or variable mixture ratio hydrogen engines in the boost phase of flight resulted in vehicles with total dry mass 20 percent greater than the reference hydrogen vehicle. Translating nozzles for boost phase engines generated a heavier vehicle. Also examined were the design impacts on the vehicle and ground support subsystems when subcooled propane is used as a fuel. The most significant cost difference between facilities to handle normal boiling point versus subcooled propane is 5 million dollars. Vehicle cost differences were negligible. A significant technical challenge exists for properly conditioning the vehicle propellant on the ground and in flight when subcooled propane is used as fuel.
Sub-cooled liquid nitrogen cryogenic system with neon turbo-refrigerator for HTS power equipment
NASA Astrophysics Data System (ADS)
Yoshida, S.; Hirai, H.; Nara, N.; Ozaki, S.; Hirokawa, M.; Eguchi, T.; Hayashi, H.; Iwakuma, M.; Shiohara, Y.
2014-01-01
We developed a prototype sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The system consists of a neon turbo-Brayton refrigerator with a LN sub-cooler and LN circulation pump unit. The neon refrigerator has more than 2 kW cooling power at 65 K. The LN sub-cooler is a plate-fin type heat exchanger and is installed in a refrigerator cold box. In order to carry out the system performance tests, a dummy cryostat having an electric heater was set instead of a HTS power equipment. Sub-cooled LN is delivered into the sub-cooler by the LN circulation pump and cooled within it. After the sub-cooler, sub-cooled LN goes out from the cold box to the dummy cryostat, and comes back to the pump unit. The system can control an outlet sub-cooled LN temperature by adjusting refrigerator cooling power. The refrigerator cooling power is automatically controlled by the turbo-compressor rotational speed. In the performance tests, we increased an electric heater power from 200 W to 1300 W abruptly. We confirmed the temperature fluctuation was about ±1 K. We show the cryogenic system details and performance test results in this paper.
Parametric analyses of DEMO Divertor using two dimensional transient thermal hydraulic modelling
NASA Astrophysics Data System (ADS)
Domalapally, Phani; Di Caro, Marco
2018-05-01
Among the options considered for cooling of the Plasma facing components of the DEMO reactor, water cooling is a conservative option because of its high heat removal capability. In this work a two-dimensional transient thermal hydraulic code is developed to support the design of the divertor for the projected DEMO reactor with water as a coolant. The mathematical model accounts for transient 2D heat conduction in the divertor section. Temperature-dependent properties are used for more accurate analysis. Correlations for single phase flow forced convection, partially developed subcooled nucleate boiling, fully developed subcooled nucleate boiling and film boiling are used to calculate the heat transfer coefficients on the channel side considering the swirl flow, wherein different correlations found in the literature are compared against each other. Correlation for the Critical Heat Flux is used to estimate its limit for a given flow conditions. This paper then investigates the results of the parametric analysis performed, whereby flow velocity, diameter of the coolant channel, thickness of the coolant pipe, thickness of the armor material, inlet temperature and operating pressure affect the behavior of the divertor under steady or transient heat fluxes. This code will help in understanding the basic parameterś effect on the behavior of the divertor, to achieve a better design from a thermal hydraulic point of view.
1 ATM subcooled liquid nitrogen cryogenic system with GM-refrigerator for a HTS power transformer
NASA Astrophysics Data System (ADS)
Yoshida, S.; Ohashi, K.; Umeno, T.; Suzuki, Y.; Kamioka, Y.; Kimura, H.; Tsutsumi, K.; Iwakuma, M.; Funaki, K.; Bhono, T.; Yagi, Y.
2002-05-01
A subcooled liquid nitrogen cryogenic system with GM-refrigerators was developed. The system was operated successfully in a commercial distribution power grid for three consecutive weeks without additional liquid nitrogen supply. The system consists of two main units. One is a HTS transformer unit and the HTS transformer is installed in a G-FRP cryostat. The other one is a pump unit. The pump unit has a liquid nitrogen pump and two GM-refrigerators of 290 W at 64 K for 50 Hz operation in a stainless steel dewar. The refrigerator cold heads are immersed in liquid nitrogen and produce directly subcooled liquid nitrogen in the pump unit. Those two units are connected by transfer-tubes and 1 atmosphere (0.1 MPa) subcooled liquid nitrogen is circulated through the system. In the field test, the refrigerators were operated at 60 Hz and it took 12 hours to cool the transformer down to 70 K and 26 hours to 66 K. The refrigerator cold heads were controlled not to be below 64 K during operation. In spite of a heat generation by the HTS transformer, the subcooled liquid nitrogen temperature in the HTS transformer unit was kept lower than 68 K.
Critical heat flux in subcooled flow boiling
NASA Astrophysics Data System (ADS)
Hall, David Douglas
The critical heat flux (CHF) phenomenon was investigated for water flow in tubes with particular emphasis on the development of methods for predicting CHF in the subcooled flow boiling regime. The Purdue University Boiling and Two-Phase Flow Laboratory (PU-BTPFL) CHF database for water flow in a uniformly heated tube was compiled from the world literature dating back to 1949 and represents the largest CHF database ever assembled with 32,544 data points from over 100 sources. The superiority of this database was proven via a detailed examination of previous databases. The PU-BTPFL CHF database is an invaluable tool for the development of CHF correlations and mechanistic models that are superior to existing ones developed with smaller, less comprehensive CHF databases. In response to the many inaccurate and inordinately complex correlations, two nondimensional, subcooled CHF correlations were formulated, containing only five adjustable constants and whose unique functional forms were determined without using a statistical analysis but rather using the parametric trends observed in less than 10% of the subcooled CHF data. The correlation based on inlet conditions (diameter, heated length, mass velocity, pressure, inlet quality) was by far the most accurate of all known subcooled CHF correlations, having mean absolute and root-mean-square (RMS) errors of 10.3% and 14.3%, respectively. The outlet (local) conditions correlation was the most accurate correlation based on local CHF conditions (diameter, mass velocity, pressure, outlet quality) and may be used with a nonuniform axial heat flux. Both correlations proved more accurate than a recent CHF look-up table commonly employed in nuclear reactor thermal hydraulic computer codes. An interfacial lift-off, subcooled CHF model was developed from a consideration of the instability of the vapor-liquid interface and the fraction of heat required for liquid-vapor conversion as opposed to that for bulk liquid heating. Severe vapor effusion in an upstream wetting front lifts the vapor-liquid interface off the surface, triggering CHF. Since the model is entirely based on physical observations, it has the potential to accurately predict CHF for other fluids and flow geometries which are beyond the conditions for which it was validated.
Subcooling Cryogenic Propellants for Long Duration Space Exploration
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Canavan, Edgar; Johnson, Wesley; Kutter, Bernard; Shull, Jeff
2009-01-01
The use of cryogenic propellants such as hydrogen and oxygen is crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles with the flexibility to remain in orbit or travel in space for months, necessitating long-term storage of these cryogens. One powerful technique for easing the challenge of cryogenic fluid storage is to remove energy from tlie cryogenic propellant by isobaricly subcooling them below their normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced. After launch, even with the use of the best insulation systems, heat will leak into the cold cryogenic propellant tank. However, the large heat capacity available in highly subcooled cryogenic propellants allows them to absorb the energy that leaks into the tank until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be no loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot many months with minimal mass penalty. Subcooling technologies for cryogenic propellants would thus provide the Exploration Systems Mission Directorate with an enhanced level of mission flexibility. However, there are a few challenges associated with subcooling cryogenic propellants since compact subcooling ground support equipment has not been demonstrated. This paper explores the beneficial impact of subcooling cryogenic propellants on the launch pad for long-term cryogenic propellant storage in space and proposes a novel method for implementing subcooling of cryogenic propellants for spacecraft such as the Ares V Earth Departure Stage (EDS). Analysis indicates that with a careful strategy to handle the subcooled cryogen it would be possible to store cryogenic propellants in space for many months without venting. A concept for subcooling the cryogenic propellant relatively quickly and inexpensively on the launch pad - the thermodynamic cryogen subcooler (TCS) - will be presented. Important components of the TCS and an associated subcooled cryogen tank (SCT) will be discussed in this paper. Results from a preliminary thermodynamic model of the performance of a TCS for an EDS sized hydrogen tank will also be presented.
Interfacial condensation induced by sub-cooled liquid jet
NASA Astrophysics Data System (ADS)
Rame, Enrique; Balasubramaniam, R.
2016-11-01
When a sub-cooled liquid jet impinges on the free surface between a liquid and its vapor, vapor will condense at a rate dependent on the sub-cooling, the jet strength and fluid properties. In 1966 and during the examination of a different type of condensation flow, Shekriladeze found an approximate result, valid at large condensation rates, that decouples the flow in the liquid phase from that of the vapor, without putting it in the context of a formal asymptotic approximation. In this talk we will develop an asymptotic approximation that contains Shekriladze's result, and extend the calculations to the case when a non-condensable gas is present in the vapor phase.
Modeling of subcooling and solidification of phase change materials
NASA Astrophysics Data System (ADS)
Günther, Eva; Mehling, Harald; Hiebler, Stefan
2007-12-01
Phase change materials (PCM) are able to store thermal energy in small temperature intervals very efficiently due to their high latent heat. Particularly high storage capacity is found in salt hydrates. Salt hydrates however often show subcooling, thus inhibiting the release of the stored heat. In the state of the art simulations of PCM, the effect of subcooling is almost always neglected. This is a practicable approach for small subcooling, but it is problematic for subcooling in the order of the driving temperature gradient on unloading the storage. In this paper, we first present a new algorithm to simulate subcooling in a physically proper way. Then, we present a parametric study to demonstrate the main features of the algorithm and a comparison of computed and experimentally obtained data. The new algorithm should be particularly useful in simulating applications with low cooling rates, for example building applications.
NASA Astrophysics Data System (ADS)
Iwakuma, M.; Adachi, K.; Yun, K.; Yoshida, K.; Sato, S.; Suzuki, Y.; Umeno, T.; Konno, M.; Hayashi, H.; Eguchi, T.; Izumi, T.; Shiohara, Y.
2015-12-01
We developed a turbo-Brayton refrigerator with Ne gas as a working fluid for a 3 ϕ- 66/6.9kV-2MVA superconducting transformer with coated conductors which was bath-cooled with subcooled LN2. The two-stage compressor and expansion turbine had non-contact magnetic bearings for a long maintenance interval. In the future, we intend to directly install a heat exchanger into the Glass-Fiber-Reinforced-Plastics cryostat of a transformer and make a heat exchange between the working fluid gas and subcooled LN2. In this paper we investigate the behaviour of subcooled LN2 in a test cryostat, in which heater coils were arranged side by side with a flat plate finned-tube heat exchanger. Here a He turbo-Brayton refrigerator was used as a substitute for a Ne turbo-Brayton one. The pressure at the surface of LN2 in the cryostat was one atmosphere. Just under the LN2 surface, a stationary layer of LN2 was created over the depth of 20 cm and temperature dropped from 77 K to 65 K with depth while, in the lower level than that, a natural convection flow of LN2 was formed and temperature was almost uniform over 1 m depth. The boundary plane between the stationary layer and the natural convection region was visible.
Critical heat flux phenomena depending on pre-pressurization in transient heat input
NASA Astrophysics Data System (ADS)
Park, Jongdoc; Fukuda, Katsuya; Liu, Qiusheng
2017-07-01
The critical heat flux (CHF) levels that occurred due to exponential heat inputs for varying periods to a 1.0-mm diameter horizontal cylinder immersed in various liquids were measured to develop an extended database on the effect of various pressures and subcoolings by photographic study. Two main mechanisms of CHF were found. One mechanism is due to the time lag of the hydrodynamic instability (HI) which starts at steady-state CHF upon fully developed nucleate boiling, and the other mechanism is due to the explosive process of heterogeneous spontaneous nucleation (HSN) which occurs at a certain HSN superheat in originally flooded cavities on the cylinder surface. The incipience of boiling processes was completely different depending on pre-pressurization. Also, the dependence of pre-pressure in transient CHFs changed due to the wettability of boiling liquids. The objective of this work is to clarify the transient CHF phenomena due to HI or HSN by photographic.
Vapour phase motion in cryogenic systems containing superheated and subcooled liquids
NASA Astrophysics Data System (ADS)
Kirichenko, Yu. A.; Chernyakov, P. S.; Seregin, V. E.
The development of vent pipelines, and venting storage tanks for cryogenic liquids requires the knowledge of the law of motion as well as regularities of vapour content variation in the liquid and heat dissipation by the vapour phase. This is a theoretical study of the effect of superheating (subcooling) of the liquid, relative acceleration and reduced pressure upon the size and velocity of noninteracting vapour bubbles, moving in the liquid, and upon their resistance and heat transfer coefficients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, R.D.
Microconvective, instability, experimental, and correlational aspects of subcooled flow boiling critical heat flux (CHF) are summarized. The present understanding of CHF in subcooled flow boiling is reviewed and research directions that will permit the accommodation of higher heat fluxes are outlined. This survey (Parts I and II), which contains a representative coverage of the literature over the last 30 years, is concerned only with CHF in the subcooled flow boiling regime, and unless otherwise noted, all references to CHF are confined to that regime.
Condensation of vapor bubble in subcooled pool
NASA Astrophysics Data System (ADS)
Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.
2017-02-01
We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.
McCann, J.A.
1963-12-17
A system for detecting and measuring directly the subcooling margin in a liquid bulk coolant is described. A thermocouple sensor is electrically heated, and a small amount of nearly stagnant bulk coolant is heated to the boiling point by this heated thermocouple. The sequential measurement of the original ambient temperature, zeroing out this ambient temperature, and then measuring the boiling temperature of the coolant permits direct determination of the subcooling margin of the ambient liquid. (AEC)
STS propellant densification feasibility study data book
NASA Technical Reports Server (NTRS)
Fazah, M. M.
1994-01-01
The feasibility of using densification or subcooling with respect to standard temperature propellants on the Space Transportation System (STS) in order to achieve a payload gain is discussed in this report. The objective is to determine the magnitude of the payload gain and to identify any system impacts to the space shuttle on either flight systems or ground systems. Results show that a payload benefit can be obtained by subcooling the liquid hydrogen (LH2) from a nominal temperature of 36.4 R to 28.5 R and by subcooling the liquid oxygen (LO2) from a nominal temperature of 164 R to either 132.1 R or 141.4 R. When the propellants are subcooled to 28.5 R and 132.1 R for the LH2 and LO2, respectively, a maximum payload gain of 7,324 lb can be achieved, and when the propellants are subcooled to 28.5 R and 141.5 R for the LH2 and LO2, respectively, a maximum payload gain of 6,841 lb can be achieved. If the LH2 is subcooled to 28.5 R while the LH2 and LO2 remains at the nominal conditions, a maximum payload gain of 1,303 lb can be achieved.
Subcooling for Long Duration In-Space Cryogenic Propellant Storage
NASA Technical Reports Server (NTRS)
Mustafi, Shuvo; Johnson, Wesley; Kashani, Ali; Jurns, John; Kutter, Bernard; Kirk, Daniel; Shull, Jeff
2010-01-01
Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper.
Lumped Multi-Bubble Analysis of Injection Cooling System for Storage of Cryogenic Liquids
NASA Astrophysics Data System (ADS)
Saha, Pritam; Sandilya, Pavitra
2017-12-01
Storage of cryogenic liquids is a critical issue in many cryogenic applications. Subcooling of the liquid by bubbling a gas has been suggested to extend the storage period by reducing the boil-off loss. Liquid evaporation into the gas may cause liquid subcooling by extracting the latent heat of vaporization from the liquid. The present study aims at studying the factors affecting the liquid subcooling during gas injection. A lumped parameter model is presented to capture the effects of bubble dynamics (coalescence, breakup, deformation etc.) on the heat and mass transport between the gas and the liquid. The liquid subcooling has been estimated as a function of the key operating variables such as gas flow rate and gas injection temperature. Numerical results have been found to predict the change in the liquid temperature drop reasonably well when compared with the previously reported experimental results. This modelling approach can therefore be used in gauging the significance of various process variables on the liquid subcooling by injection cooling, as well as in designing and rating an injection cooling system.
Rankine cycle system and method
Ernst, Timothy C.; Nelson, Christopher R.
2014-09-09
A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.
New methods of subcooled water recognition in dew point hygrometers
NASA Astrophysics Data System (ADS)
Weremczuk, Jerzy; Jachowicz, Ryszard
2001-08-01
Two new methods of sub-cooled water recognition in dew point hygrometers are presented in this paper. The first one- impedance method use a new semiconductor mirror in which the dew point detector, the thermometer and the heaters were integrated all together. The second one an optical method based on a multi-section optical detector is discussed in the report. Experimental results of both methods are shown. New types of dew pont hydrometers of ability to recognized sub-cooled water were proposed.
Document describes the protocol used to determine the total load and refrigerant charge of stores that have placed all sub-cooling on a rack separate from all other commercial refrigeration equipment.
Summary of LO2/Ethanol OMS/RCS Technology and Advanced Development 99-2744
NASA Technical Reports Server (NTRS)
Curtis, Leslie A.; Hurlbert, Eric A.
1999-01-01
NASA is pursuing non-toxic propellant technologies applicable to RLV and Space Shuttle orbital maneuvering system (OMS) and reaction control system (RCS). The primary objectives of making advancements in an OMS/RCS system are improved safety, reliability, and reduced operations and maintenance cost, while meeting basic operational and performance requirements. An OMS/RCS has a high degree of direct interaction with the vehicle and crew and requires subsystem and components that are compatible with integration into the vehicle with regard to external mold-line, power, and thermal control. In July 1997, a Phase I effort for the technology and advanced development of an upgrade of the space shuttle was conducted to define the system architecture, propellant tank, feed system, RCS thrusters, and OMS engine. Phase I of the project ran from July 1997 to October 1998. Phase II is currently being planned for the development and test of full-scale prototype of the system in 1999 and 2000. The choice of pressure-fed liquid oxygen (LO2) and ethanol is the result of numerous trade studies conducted from 1980 to 1996. Liquid oxygen and ethanol are clean burning, high-density propellants that provide a high degree of commonality with other spacecraft subsystems including life support, power, and thermal control, and with future human exploration and development of space missions. The key to this pressure-fed system is the use of subcooled liquid oxygen at 350 psia. In this approach, there is 80 degrees R of subcooling, which means that boil-off will not occur until the temperature has risen 80 R. The sub-cooling results naturally from loading propellants at 163 R, which is the saturation temperature at 14.7 psia, and then pressurizing to 350 psia on the launch pad. Thermal insulation and conditioning techniques are then used to limit the LO2 temperature to 185 R maximum, and maintain the sub-cooling. The other key is the wide temperature range of ethanol, -173 F to +300 F, which can provide heat to gasify liquid oxygen or provide a good coolant.
NASA Astrophysics Data System (ADS)
Tirmizi, Shakeel H.; Gill, William N.
1989-06-01
The dynamics of spontaneous pattern formation are studied experimentally by observing and recording the evolution of ice crystal patterns which grow freely in a supercooled melt. The sequence of evolution to dendrites is recorded in real time using cine-micrography. In the range of subcoolings from 0.06 to 0.29°C, all the patterns evolved as follows: Smooth disk → Perturbed disk → Disk dendrite → Partially developed dendrite → Fully developed dendrite. The initial smooth disk, the main branch and the side branches all developed perturbations beyond a critical size which depends on the subcooling. The combined effect of the destabilizing thermal gradients ahead of the growing crystal and the stabilizing Gibbs-Thompson capillarity effect dictates the critical size of the unstable structures in terms of the mean curvature of the interface. Detailed analysis of the evolving patterns was done using digital image analysis on the PRIME computer to determine both the manner in which the dendritic growth process replicates itself and the role which the shape and the movement of the interface play in the pattern formation process. Total arc length ST, total area A and the complexity ratio ξ = ST⧸√ A of evolving patterns were computed as a function of time and undercooling for each crystal image. These results permitted us to make some comparisons with theoretical models on pattern evolution. Three distinct phases of evolution were identified: the initial phase when the crystal structure is smooth and free of any perturbations and the complexity ratio is almost a constant, an intermediate phase when the crystal structure develops perturbations which grow quickly in number and in size and the complexity ratio increases rapidly and a final phase when the pattern approaches that of a fully developed dendrite which, on a global scale grows in a shape-perserving manner and has a slowly increasing complexity ratio which seems to approach an asymptote. Two factors were found to be responsible for the symmetric dendritic patterns. These are: first, hexagonal symmetry due to the hexagonal closed packed structure, leads to strong anisotropy in molecular attachment kinetics and in surface free energy; second, the competition among side branches causes smaller side branches to melt when they are trapped between larger ones which generate latent heat and prevent the small branches from gaining access to the fresh cold fluid ahead of them. These two factors lead to a channelling effect which prevents the growth of perturbations from occurring randomly and thus directs the evolving crystal structure into patterns which are regular and reproducible. Theoretical models which are local in nature fail to take into account side branch competition, and this is one of their major weaknesses.
Cycle Design of Reverse Brayton Cryocooler for HTS Cable Cooling Using Exergy Analysis
NASA Astrophysics Data System (ADS)
Gupta, Sudeep Kumar; Ghosh, Parthasarathi
2017-02-01
The reliability and price of cryogenic refrigeration play an important role in the successful commercialization of High Temperature Superconducting (HTS) cables. For cooling HTS cable, sub-cooled liquid nitrogen (LN2) circulation system is used. One of the options to maintain LN2 in its sub-cooled state is by providing refrigeration with the help of Reverse Brayton Cryo-cooler (RBC). The refrigeration requirement is 10 kW for continuously sub-cooling LN2 from 72 K to 65 K for cooling 1 km length of HTS cable [1]. In this paper, a parametric evaluation of RBC for sub-cooling LN2 has been performed using helium as a process fluid. Exergy approach has been adopted for this analysis. A commercial process simulator, Aspen HYSYS® V8.6 has been used for this purpose. The critical components have been identified and their exergy destruction and exergy efficiency have been obtained for a given heat load condition.
High heat flux burnout in subcooled flow boiling
NASA Astrophysics Data System (ADS)
Celata, G. P.; Cumo, M.; Mariani, A.
1995-09-01
The paper reports the results of an experimental research carried out at the Heat Transfer Division of the Energy Department, C.R. Casaccia, on the thermal hydraulic characterization of subcooled flow boiling CHF under typical conditions of thermonuclear fusion reactors, i.e. high liquid velocity and subcooling. The experiment was carried out exploring the following parameters: channel diameter (from 2.5 to 8.0 mm), heated length (10 and 15 cm), liquid velocity (from 2 to 40 m/s), exit pressure (from atmospheric to 5.0 MPa), inlet temperature (from 30 to 80 °C), channel orientation (vertical and horizontal). A maximum CHF value of 60.6 MW/m2 has been obtained under the following conditions: T in=30°, p=2.5 MPa, u=40 m/s, D=2.5 mm (smooth channel) Turbulence promoters (helically coiled wires) have been employed to further enhance the CHF attainable with subcooled flow boiling. Helically coiled wires allow an increase of 50% of the maximum CHF obtained with smooth channels.
Noise analysis of nucleate boiling
NASA Technical Reports Server (NTRS)
Mcknight, R. D.; Ram, K. S.
1971-01-01
The techniques of noise analysis have been utilized to investigate nucleate pool boiling. A simple experimental setup has been developed for obtaining the power spectrum of a nucleate boiling system. These techniques were first used to study single bubbles, and a method of relating the two-dimensional projected size and the local velocity of the bubbles to the auto-correlation functions is presented. This method is much less time consuming than conventional methods of measurement and has no probes to disturb the system. These techniques can be used to determine the contribution of evaporation to total heat flux in nucleate boiling. Also, these techniques can be used to investigate the effect of various parameters upon the frequency response of nucleate boiling. The predominant frequencies of the power spectrum correspond to the frequencies of bubble generation. The effects of heat input, degree of subcooling, and liquid surface tension upon the power spectra of a boiling system are presented. It was found that the degree of subcooling has a more pronounced effect upon bubble size than does heat flux. Also the effect of lowering surface tension can be sufficient to reduce the effect of the degree of subcooling upon the size of the bubbles.
Forced Convection Heat Transfer of Subcooled Liquid Nitrogen in Horizontal Tube
NASA Astrophysics Data System (ADS)
Tatsumoto, H.; Shirai, Y.; Hata, K.; Kato, T.; Shiotsu, M.
2008-03-01
The knowledge of forced convection heat transfer of liquid hydrogen is important for the cooling design of a HTS superconducting magnet and a cold neutron moderator material. An experimental apparatus that could obtain forced flow without a pump was developed. As a first step of the study, the forced flow heat transfer of subcooled liquid nitrogen in a horizontal tube, instead of liquid hydrogen, was measured for the pressures ranging from 0.3 to 2.5 MPa. The inlet temperature was varied from 78 K to around its saturation temperature. The flow velocities were varied from 0.1 to 7 m/s. The heat transfer coefficients in the non-boiling region and the departure from nucleate boiling (DNB) heat fluxes were higher for higher flow velocity and higher subcooling. The measured values of Nu/Pr0.4 in the non-boiling region were proportional to Reynolds number (Re) to the power of 0.8. With a decrease in Re, Nu/Pr0.4 approached a constant value corresponding to that in a pool of liquid nitrogen. The correlation of DNB heat flux was derived that can describe the experimental data within ±15% difference.
NASA Technical Reports Server (NTRS)
Kim, Jungho
2004-01-01
Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. Recently, time and space resolved heat transfer data were obtained in both earth and low gravity environments using an array of microheaters varying in size between 100 microns to 700 microns. These heaters were operated in both constant temperature as well as constant heat flux mode. Heat transfer under nucleating bubbles in earth gravity were directly measured using a microheater array with 100 m resolution operated in constant temperature mode with low and high subcooled bulk liquid along with images from below and from the side. The individual bubble departure diameter and energy transfer were larger with low subcooling but the departure frequency increased at high subcooling, resulting in higher overall heat transfer. The bubble growth for both subcoolings was primarily due to energy transfer from the superheated liquid layer relatively little was due to wall heat transfer during the bubble growth process. Oscillating bubbles and sliding bubbles were also observed in highly subcooled boiling. Transient conduction and/or microconvection was the dominant heat transfer mechanism in the above cases. A transient conduction model was developed and compared with the experimental data with good agreement. Data was also obtained with the heater array operated in a constant heat flux mode and measuring the temperature distribution across the array during boiling. The instantaneous heat transfer into the substrate was numerically determined and subtracted from the supplied heat to obtain the wall to liquid heat flux.
D0 Silicon Upgrade: ASME Code and Pressure Calculations for Liquid Nitrogen Subcooler
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwazaki, Andrew; Leicht, Todd; /Fermilab
1995-10-04
Included in this engineering note are three separate calculation divisions. The first calculations are the determination of the required thickness of the LN{sub 2} subcooler flat head according to ASME code. This section includes Appendix A-C. The minimum plate thickness determined was 0.563 in. The actual thickness chosen in fabrication was a 3/4-inch plate milled to 0.594-inch at the bolt circle. Along with the plate thickness, this section calculates the required reinforcement area at the top plate penetrations. It was found that a 1/4-inch fillet weld at each penetration was adequate. The next set of calculations were done to provemore » that the subcooler internal pressure will always be less than 15 psig and therefore will not be classified as a pressure vessel. The subcooler is always open to a vent pipe. Appendix D calculations show that the vent pipe has a capacity of 1042 lbs/hr if 15 psig is present at the subcooler. It goes on to show that the inlet piping would at that flow rate, see a pressure drop of 104 psig. The maximum supply pressure of the LN{sub 2} storage dewar is 50 psig. Appendix E addresses required flow rates for steady state, loss of vacuum, or fire conditions. Page E9 shows a summary which states the maximum pressure would be 1.50 psig at fire conditions and internal pressure.« less
Investigation and mitigation of condensation induced water hammer by stratified flow experiments
NASA Astrophysics Data System (ADS)
Kadakia, Hiral J.
This research primarily focuses on the possibility of using stratified flow in preventing an occurrence of condensation induced water hammer (CIWH) in horizontal pipe involving steam and subcooled water. A two-phase flow loop simulating the passive safety systems of an advanced light water reactor was constructed and a series of stratified flow experiments were carried out involving a system of subcooled water, saturated water, and steam. Special instruments were designed to measure steam flow rate and subcooled liquid velocity. These experiments showed that when flow field conditions meet certain criteria CIWH does occur. Flow conditions used in experiments were typically observed in passive safety systems of an advanced light water cooled reactor. This research summarizes a) literature research and other experimental data that signify an occurrence of CIWH, b) experiments in an effort to show an occurrence of CIWH and the ability to prevent CIWH, c) qualitative and quantitative results to underline the mechanism of CIWH, d) experiments that show CIWH can be prevented under certain conditions, and e) guidelines for the safe operating conditions. Based on initial experiment results it was observed that Bernoulli's effect can play an important role in wave formation and instability. A separate effect table top experiment was constructed with plexi-glass. A series of entrance effect tests and stratified experiments were carried out with different fluids to study wave formation and wave bridging. Special test series experiments were carried out to investigate the presence of a saturated layer. The effect of subcooled water and steam flow on wedge length and depth were recorded. These experiments helped create a model which calculates wedge and depth of wedge for a given condition of steam and subcooled water. A very good comparison between the experiment results and the model was obtained. These experiments also showed that the presence of saturated layer can mitigate the CIWH. Flow conditions require to mitigate the CIWH must be such that subcooled water is laminar and steam flow rate is less than critical. Finally, a data bank of containing large number of experiments was created and guidelines for safe filling and draining of the system involving steam and subcooled water were created. Also several suggestions are provided to stop CIWH in case it does occur.
Performance of Upgraded Cooling System for Lhd Helical Coils
NASA Astrophysics Data System (ADS)
Hamaguchi, S.; Imagawa, S.; Obana, T.; Yanagi, N.; Moriuchi, S.; Sekiguchi, H.; Oba, K.; Mito, T.; Motojima, O.; Okamura, T.; Semba, T.; Yoshinaga, S.; Wakisaka, H.
2008-03-01
Helical coils of the Large Helical Device (LHD) are large scale superconducting magnets for heliotron plasma experiments. The helical coils had been cooled by saturated helium at 4.4 K, 120 kPa until 2005. An upgrade of the cooling system was carried out in 2006 in order to improve the cryogenic stability of the helical coils and then it has been possible to supply the coils with subcooled helium at 3.2 K, 120 kPa. A designed mass flow of the supplied subcooled helium is 50 g/s. The subcooled helium is generated at a heat exchanger in a saturated helium bath. A series of two centrifugal cold compressors with gas foil bearing is utilized to lower the helium pressure in the bath. The supplied helium temperature is regulated by rotational speed of the cold compressors and power of a heater in the bath. The mass flow of the supplied helium is also controlled manually by a supply valve and its surplus is evaporated by ten heaters at the outlet above the coils. In the present study, the performance of the cooling system has been investigated and a stable operating method has also developed. As the result, it was confirmed that the performance of the upgraded cooling system satisfies the requirements.
Preliminary Study of a Piston Pump for Cryogenic Fluids
NASA Technical Reports Server (NTRS)
Biermann, Arnold E.; Kohl, Robert C.
1959-01-01
Preliminary data are presented covering the performance of a low-speed, five-cylinder piston pump designed for handling boiling hydrogen. This pump was designed for a flow of 55 gallons per minute at 240 rpm with a discharge pressure of 135 pounds per square inch. Tests were made using JP-4 fuel, liquid nitrogen, and liquid hydrogen. Pump delivery and endurance characteristics were satisfactory for the range of operation covered. In connection with the foregoing pump development, the cavitation characteristics of a preliminary visual model, glass-cylinder pump and of a simple reciprocating disk were studied. Subcooling of approximately 0.60 F was obtained from the cavitation produced by reciprocating a disk in boiling nitrogen and in boiling water. The subcooling obtained in a similar manner with liquid hydrogen was somewhat less.
Determination of heat transfer coefficient for an interaction of sub-cooled gas and metal
NASA Astrophysics Data System (ADS)
Zaidi Sidek, Mohd; Syahidan Kamarudin, Muhammad
2016-02-01
Heat transfer coefficient (HTC) for a hot metal surface and their surrounding is one of the need be defined parameter in hot forming process. This study has been conducted to determine the HTC for an interaction between sub-cooled gas sprayed on a hot metal surface. Both experiments and finite element have been adopted in this work. Initially, the designated experiment was conducted to obtain temperature history of spray cooling process. Then, an inverse method was adopted to calculate the HTC value before we validate in a finite element simulation model. The result shows that the heat transfer coefficient for interaction of subcooled gas and hot metal surface is 1000 W/m2K.
Plate-fin Heat-exchangers for a 10 kW Brayton Cryocooler and a 1 km HTS Cable
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Gwak, Kyung Hyun; Jung, Seyong; Yang, Hyung Suk; Hwang, Si-Dole
Plate-fin heat exchangers (PFHX) are designed and fabricated for a cryogenic cooling system, serving for a 10 kW Brayton cryocooler and a 1 km HTS transmission cable under development in Korea. To achieve compactness and thermal efficiency at the same time, a recuperative HX for Brayton cycle and a sub-cooling HX of liquid nitrogen for HTS cable are designed as integrated parts. A key design feature is focused on the coldest part of sub-cooling HX, where the streams of liquid nitrogen and refrigerant (helium gas) are arranged as two-pass cross-flow so that the risk of freeze-out of liquid nitrogen can be reduced. Details of hardware PFHX design are presented and discussed towards its immediate application to the HTS cable system.
Prospects for Boiling of Subcooled Dielectric Liquids for Supercomputer Cooling
NASA Astrophysics Data System (ADS)
Zeigarnik, Yu. A.; Vasil'ev, N. V.; Druzhinin, E. A.; Kalmykov, I. V.; Kosoi, A. S.; Khodakov, K. A.
2018-02-01
It is shown experimentally that using forced-convection boiling of dielectric coolants of the Novec 649 Refrigerant subcooled relative to the saturation temperature makes possible removing heat flow rates up to 100 W/cm2 from modern supercomputer chip interface. This fact creates prerequisites for the application of dielectric liquids in cooling systems of modern supercomputers with increased requirements for their operating reliability.
Flow boiling with enhancement devices for cold plate coolant channel design
NASA Technical Reports Server (NTRS)
Boyd, Ronald D., Sr.; Smith, Alvin
1990-01-01
The use of flow boiling for thermal energy transport is intended to provide an alternative for accommodating higher heat fluxes in commercial space systems. The objectives are to: (1) examine the variations in both the mean and local (axial and circumferential) heat transfer coefficients for a circular coolant channel with either smooth walls, spiral fins, or both spiral fins and a twisted tape; (2) examine the effects of channel diameter and subcooling; and (3) develop an improved reduction analysis and/or suggest possible heat transfer correlation of the present data. Freon-11 is the working fluid. Two-dimensional (circumferential and axial) wall temperature distributions were measured for coolant channels with the above noted internal geometries. The flow regimes which are being studied are: (1) single phase; (2) subcooled flow boiling; and (3) stratified flow boiling. The inside diameter of all test sections is near 1.0 cm. Cicumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a mass velocity of 210 kg/sq m s, an exit pressure of 0.19 MPa (absolute), and an inlet subcooling of 20.8 C. Overall (averaged over the entire channel) heat transfer coefficients were compared for the above channel geometries. This comparison showed that the channel with large pitch spiral fins had higher heat transfer coefficients at all power levels.
Condensation on a noncollapsing vapor bubble in a subcooled liquid
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Simoneau, R. J.
1979-01-01
An experimental procedure is presented by which an estimate can be made of the condensation coefficient on a noncollapsing stationary vapor bubble in subcooled liquid nitrogen. Film boiling from a thin wire was used to generate vapor bubbles which remain fixed to the wire at their base. A balance was established between the evaporation in the thin annular region along the wire and the condensation in the vapor bubbles.
Assessment of correlations and models for the prediction of CHF in water subcooled flow boiling
NASA Astrophysics Data System (ADS)
Celata, G. P.; Cumo, M.; Mariani, A.
1994-01-01
The present paper provides an analysis of available correlations and models for the prediction of Critical Heat Flux (CHF) in subcooled flow boiling in the range of interest of fusion reactors thermal-hydraulic conditions, i.e. high inlet liquid subcooling and velocity and small channel diameter and length. The aim of the study was to establish the limits of validity of present predictive tools (most of them were proposed with reference to light water reactors (LWR) thermal-hydraulic studies) in the above conditions. The reference dataset represents almost all available data (1865 data points) covering wide ranges of operating conditions in the frame of present interest (0.1 less than p less than 8.4 MPa; 0.3 less than D less than 25.4 mm; 0.1 less than L less than 0.61 m; 2 less than G less than 90.0 Mg/sq m/s; 90 less than delta T(sub sub,in) less than 230 K). Among the tens of predictive tools available in literature four correlations (Levy, Westinghouse, modified-Tong and Tong-75) and three models (Weisman and Ileslamlou, Lee and Mudawar and Katto) were selected. The modified-Tong correlation and the Katto model seem to be reliable predictive tools for the calculation of the CHF in subcooled flow boiling.
Liquid Acquisition Device Testing with Sub-Cooled Liquid Oxygen
NASA Technical Reports Server (NTRS)
Jurns, John M.; McQuillen, John B.
2008-01-01
When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. Previous experimental test programs conducted at NASA have collected LAD data for a number of cryogenic fluids, including: liquid nitrogen (LN2), liquid oxygen (LOX), liquid hydrogen (LH2), and liquid methane (LCH4). The present work reports on additional testing with sub-cooled LOX as part of NASA s continuing cryogenic LAD development program. Test results extend the range of LOX fluid conditions examined, and provide insight into factors affecting predicting LAD bubble point pressures.
Subcooled Liquid Oxygen Cryostat for Magneto-Archimedes Particle Separation by Density
NASA Astrophysics Data System (ADS)
Hilton, D. K.; Celik, D.; Van Sciver, S. W.
2008-03-01
An instrument for the separation of particles by density (sorting) is being developed that uses the magneto-archimedes effect in liquid oxygen. With liquid oxygen strongly paramagnetic, the magneto-archimedes effect is an extension of diamagnetic levitation in the sense of increasing the effective buoyancy of a particle. The instrument will be able to separate ensembles of particles from 100 μm to 100 nm in size, and vertically map or mechanically deliver the separated particles. The instrument requires a column of liquid oxygen that is nearly isothermal, free of thermal convection, subcooled to prevent nucleate boiling, and supported against the strong magnetic field used. Thus, the unique cryostat design that meets these requirements is described in the present article. It consists in part of a column of liquid nitrogen below for cooling the liquid oxygen, with the liquid oxygen pressurized by helium gas to prevent nucleate boiling.
Rate correlation for condensation of pure vapor on turbulent, subcooled liquid
NASA Technical Reports Server (NTRS)
Brown, J. Steven; Khoo, Boo Cheong; Sonin, Ain A.
1990-01-01
An empirical correlation is presented for the condensation of pure vapor on a subcooled, turbulent liquid with a shear-free interface. The correlation expresses the dependence of the condensation rate on fluid properties, on the liquid-side turbulence (which is imposed from below), and on the effects of buoyancy in the interfacial thermal layer. The correlation is derived from experiments with steam and water, but under conditions which simulate typical cryogenic fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, R.D.
This paper reviews the present understanding of critical heat flux (CHF) in subcooled flow boiling and outlines research directions which will permit the accommodation of higher heat fluxes. This survey, which covers the last 30 years, is concerned only with CHF in the subcooled flow boiling regime and unless otherwise noted, all references to CHF will be confined to that regime. This paper (Part II) summarizes microconvective, instability, experimental and correlational aspects of CHF. Section II covers microconvection and instabilities, section III covers representative experimental work, and section IV summarizes and compares selected CHF correlations. Section V documents previous flowmore » visualization work and section VI contains conclusions and recommendations concerning problem areas and suggested research directions essential to the HHFCDP, which involves extending steady state and transient CHF towards 30 kW/cm/sup 2/.« less
A formal approach for the prediction of the critical heat flux in subcooled water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lombardi, C.
1995-09-01
The critical heat flux (CHF) in subcooled water at high mass fluxes are not yet satisfactory correlated. For this scope a formal approach is here followed, which is based on an extension of the parameters and the correlation used for the dryout prediction for medium high quality mixtures. The obtained correlation, in spite of its simplicity and its explicit form, yields satisfactory predictions, also when applied to more conventional CHF data at low-medium mass fluxes and high pressures. Further improvements are possible, if a more complete data bank will be available. The main and general open item is the definitionmore » of a criterion, depending only on independent parameters, such as mass flux, pressure, inlet subcooling and geometry, to predict whether the heat transfer crisis will result as a DNB or a dryout phenomenon.« less
Centaur Propellant Thermal Conditioning Study
NASA Technical Reports Server (NTRS)
Blatt, M. H.; Pleasant, R. L.; Erickson, R. C.
1976-01-01
A wicking investigation revealed that passive thermal conditioning was feasible and provided considerable weight advantage over active systems using throttled vent fluid in a Centaur D-1s launch vehicle. Experimental wicking correlations were obtained using empirical revisions to the analytical flow model. Thermal subcoolers were evaluated parametrically as a function of tank pressure and NPSP. Results showed that the RL10 category I engine was the best candidate for boost pump replacement and the option showing the lowest weight penalty employed passively cooled acquisition devices, thermal subcoolers, dry ducts between burns and pumping of subcooler coolant back into the tank. A mixing correlation was identified for sizing the thermodynamic vent system mixer. Worst case mixing requirements were determined by surveying Centaur D-1T, D-1S, IUS, and space tug vehicles. Vent system sizing was based upon worst case requirements. Thermodynamic vent system/mixer weights were determined for each vehicle.
Enthalpy restoration in geothermal energy processing system
Matthews, Hugh B.
1983-01-01
A geothermal deep well energy extraction system is provided of the general type in which solute-bearing hot water is pumped to the earth's surface from a relatively low temperature geothermal source by transferring thermal energy from the hot water to a working fluid for driving a primary turbine-motor and a primary electrical generator at the earth's surface. The superheated expanded exhaust from the primary turbine motor is conducted to a bubble tank where it bubbles through a layer of sub-cooled working fluid that has been condensed. The superheat and latent heat from the expanded exhaust of the turbine transfers thermal energy to the sub-cooled condensate. The desuperheated exhaust is then conducted to the condenser where it is condensed and sub-cooled, whereupon it is conducted back to the bubble tank via a barometric storage tank. The novel condensing process of this invention makes it possible to exploit geothermal sources which might otherwise be non-exploitable.
NASA Astrophysics Data System (ADS)
Mittermaier, M.; Ziegler, F.
2018-04-01
In this article we present a model describing a laminar film flow over a vertical isothermal plate whilst heat and mass transfer is occurring. We focus on a formulation where most common assumptions, such as constant property data and constant film thickness, have been cancelled. The hydrodynamic model results in longitudinal and transversal velocity components and their evolution in the entrance region. Heat and mass transfer occurs simultaneously and is modelled with respect to release of differential heat of solution as well as heat flow due to interdiffusion. The numerical solution is obtained by utilising a Newton-Raphson method to solve the finite difference formulation of the governing equations. Mass transfer across the film affects the development of both longitudinal and transversal velocity components. The hydrodynamics are modelled using a boundary layer approximation of the Navier-Stokes equations. The significance of simplifications on the hydrodynamic model are illustrated and discussed using a fully developed velocity profile (Nusselt flow) and a plug flow at the inlet for comparison. Even if a Nusselt profile is assumed, it develops further since mass is absorbed or desorbed. It is found that the onset of absorption occurs at shorter flow length when applying a plug flow at the inlet. If the film is initially in equilibrium, this results in a 9.3% increase in absorbed mass over a length of 0.03 m as compared with the Nusselt flow. A fluid with a viscosity five times the one of lithium bromide solution but sharing comparable properties apart from that, leads to lower overall heat and mass transfer rates. If the respective fluids are saturated at the inlet, the accumulated mass flux absorbed by lithium bromide solution is 2.2 times higher than the one absorbed by a high viscous fluid. However, when a plug flow is applied and the fluid is sub-cooled, ab initio the absorbed mass flux is slightly higher for a high viscous fluid. Assuming a sub-cooling of 3 K at the inlet, lithium bromide solution now only performs around 11% better as compared with a high viscous fluid over the considered length of 0.03 m. The code may be downloaded from: https://github.com/mittermaier/hmt.
Assessment of the operating characteristics of the SSME LOX turbopump pump-end bearing
NASA Technical Reports Server (NTRS)
New, L. S.; Tiller, B. K.
1984-01-01
A bearing/shaft model of the SSME LOX turbopump was developed using the SHABERTH bearing/shaft math modeling computer code. A previously developed bearing/shaft thermal model of the SSME LOX turbopump turbine and bearing was used in conjunction with SHABERTH to evaluate the thermomechanical operating characteristics of the LOX turbopump end bearings. Results show that for the two unmounted diametrical clearances evaluated (4.0 mils and 6.3 mils), the inboard pump end bearing supports about 81% of the isolator load for the small clearance and 77% of the isolator load for the larger clearance. Bearing clearance changes due to thermal effects were 40% for the 4.0 mil diametrical clearance case and 19% for the 6.3 mil clearance case evaluated. The thermal analysis included evaluation of bearing temperatures for a subcooled case and a saturated case. Results indicate that no drastic temperature change occurred between the two cases. Since the rolling element and race surfaces of the subcooled case were at temperatures sufficiently high enough to be vapor blanketed, exceeding saturation temperature at the bearing inlet did not increase surface temperatures greatly.
NASA Astrophysics Data System (ADS)
Vasiliev, N. V.; Zeigarnik, Yu A.; Khodakov, K. A.
2017-11-01
Experimentally studying of subcooled water boiling in rectangular channel electrically heated from one side was conducted. Flat surfaces, both smooth and coated by microarc oxidation technology, were used as heating surfaces. The tests were conducted at atmospheric pressure in the range of mass flow rate from 650 to 1300 kg/(m2 s) and water subcooling relative to saturation temperature from 23 to 75 °C. Using high-speed filming a change in the two-phase flow structure and its statistic characteristics (nucleation sites density, vapor bubble distribution by size, etc.) were studied. With an increase in the heat flux density (with the mass flow rate and subcooling being the same) and amount and size of the vapor bubbles increased also. At a relatively high heat flux density, non-spherical vapor agglomerates appeared at the heating surface as a result of coalescence of small bubbles. They originated in chaotic manner in arbitrary points of the heating surface and then after random evolution in form and size collapsed. The agglomerate size reached several millimeters and their duration of life was several milliseconds. After formation of large vapor agglomerates, with a further small increase in heat flux density a burnout of the heating surface occurred. In most cases the same effect took place if the large agglomerates were retained for several minutes.
Experimental study of condensate subcooling with the use of a model of an air-cooled condenser
NASA Astrophysics Data System (ADS)
Sukhanov, V. A.; Bezukhov, A. P.; Bogov, I. A.; Dontsov, N. Y.; Volkovitsky, I. D.; Tolmachev, V. V.
2016-01-01
Water-supply deficit is now felt in many regions of the world. This hampers the construction of new steam-turbine and combined steam-and-gas thermal power plants. The use of dry cooling systems and, specifically, steam-turbine air-cooled condensers (ACCs) expands the choice of sites for the construction of such power plants. The significance of condensate subcooling Δ t as a parameter that negatively affects the engineering and economic performance of steam-turbine plants is thereby increased. The operation and design factors that influence the condensate subcooling in ACCs are revealed, and the research objective is, thus, formulated properly. The indicated research was conducted through physical modeling with the use of the Steam-Turbine Air-Cooled Condenser Unit specialized, multipurpose, laboratory bench. The design and the combined schematic and measurement diagram of this test bench are discussed. The experimental results are presented in the form of graphic dependences of the condensate subcooling value on cooling ratio m and relative weight content ɛ' of air in steam at the ACC inlet at different temperatures of cooling air t ca ' . The typical ranges of condensate subcooling variation (4 ≤ Δ t ≤ 6°C, 2 ≤ Δ t ≤ 4°C, and 0 ≤ Δ t ≤ 2°C) are identified based on the results of analysis of the attained Δ t levels in the ACC and numerous Δ t reduction estimates. The corresponding ranges of cooling ratio variation at different temperatures of cooling air at the ACC inlet are specified. The guidelines for choosing the adjusted ranges of cooling ratio variation with account of the results of experimental studies of the dependences of the absolute pressure of the steam-air mixture in the top header of the ACC and the heat flux density on the cooling ratio at different temperatures of cooling air at the ACC inlet are given.
Calculation of Physicochemical Properties for Short- and Medium-Chain Chlorinated Paraffins
NASA Astrophysics Data System (ADS)
Glüge, Juliane; Bogdal, Christian; Scheringer, Martin; Buser, Andreas M.; Hungerbühler, Konrad
2013-06-01
Short- and medium-chain chlorinated paraffins are potential PBT chemicals (persistent, bioaccumulative, toxic) and short-chain chlorinated paraffins are under review for inclusion in the UNEP Stockholm Convention on Persistent Organic Pollutants. Despite their high production volume of more than one million metric tonnes per year, only few data on their physicochemical properties are available. We calculated subcooled-liquid vapor pressure, subcooled-liquid solubility in water and octanol, Henry's law constant for water and octanol, as well as the octanol-water partition coefficient with the property calculation methods COSMOtherm, SPARC, and EPI Suite™, and compared the results to experimental data from the literature. For all properties, good or very good agreement between calculated and measured data was obtained for COSMOtherm; results from SPARC were in good agreement with the measured data except for subcooled-liquid water solubility, whereas EPI Suite™ showed the largest discrepancies for all properties. After critical evaluation of the three property calculation methods, a final set of recommended property data for short- and medium-chain chlorinated paraffins was derived. The calculated property data show interesting relationships with chlorine content and carbon chain length. Increasing chlorine content does not cause pronounced changes in water solubility and octanol-water partition coefficient (KOW) as long as it is below 55%. Increasing carbon chain length leads to strong increases in KOW and corresponding decreases in subcooled-liquid water solubility. The present data set can be used in further studies to assess the environmental fate and human exposure of this relevant compound class.
Methods of Controlling the Loop Heat Pipe Operating Temperature
NASA Technical Reports Server (NTRS)
Ku, Jentung
2008-01-01
The operating temperature of a loop heat pipe (LHP) is governed by the saturation temperature of its compensation chamber (CC); the latter is in turn determined by the balance among the heat leak from the evaporator to the CC, the amount of subcooling carried by the liquid returning to the CC, and the amount of heat exchanged between the CC and ambient. The LHP operating temperature can be controlled at a desired set point by actively controlling the CC temperature. The most common method is to cold bias the CC and use electric heater power to maintain the CC set point temperature. The required electric heater power can be large when the condenser sink is very cold. Several methods have been developed to reduce the control heater power, including coupling block, heat exchanger and separate subcooler, variable conductance heat pipe, by-pass valve with pressure regulator, secondary evaporator, and thermoelectric converter. The paper discusses the operating principles, advantages and disadvantages of each method.
A Study of Nucleate Boiling with Forced Convection in Microgravity
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1999-01-01
The ultimate objective of basic studies of flow boiling in microgravity is to improve the understanding of the processes involved, as manifested by the ability to predict its behavior. This is not yet the case for boiling heat transfer even in earth gravity, despite the considerable research activity over the past 30 years. The elements that constitute the nucleate boiling process - nucleation, growth, motion, and collapse of the vapor bubbles (if the bulk liquid is subcooled) - are common to both pool and flow boiling. It is well known that the imposition of bulk liquid motion affects the vapor bubble behavior relative to pool boiling, but does not appear to significantly influence the heat transfer. Indeed, it has been recommended in the past that empirical correlations or experimental data of pool boiling be used for design purposes with forced convection nucleate boiling. It is anticipated that such will most certainly not be possible for boiling in microgravity, based on observations made with pool boiling in microgravity. In earth gravity buoyancy will act to remove the vapor bubbles from the vicinity of the heater surface regardless of how much the imposed bulk velocity is reduced, depending, of course, on the geometry of the system. Vapor bubbles have been observed to dramatically increase in size in pool boiling in microgravity, and the heat flux at which dryout took place was reduced considerably below what is generally termed the critical heat flux (CHF) in earth gravity, depending on the bulk liquid subcooling. However, at heat flux levels below dryout, the nucleate pool boiling process was enhanced considerably over that in earth gravity, in spite of the large vapor bubbles formed in microgravity and perhaps as a consequence. These large vapor bubbles tended to remain in the vicinity of the heater surface, and the enhanced heat transfer appeared to be associated with the presence of what variously has been referred to as a liquid microlayer between the bubble and the heater surface. The enhancement of the boiling process with low velocities in earth gravity for those orientations producing the formation of a liquid macrolayer described above, accompanied by "sliding" vapor bubbles, has been demonstrated. The enhancement was presented as a function of orientation, subcooling, and heated length, while a criterion for the heat transfer for mixed natural/forced convection nucleate boiling was given previously. A major unknown in the prediction and application of flow boiling heat transfer in microgravity is the upper limit of the heat flux for the onset of dryout (or critical heat flux - CHF), for given conditions of fluid-heater surfaces, including geometry, system pressure and bulk liquid subcooling. It is clearly understood that the behavior in microgravity will be no different than on earth with sufficiently high flow velocities, and would require no space experimentation. However, the boundary at which this takes place is still an unknown. Previous results of CHF measurements were presented for low velocity flow boiling at various orientations in earth gravity as a function of flow velocity and bulk liquid subcooling, along with preliminary measurements of bubble residence times on a flat heater surface. This showed promise as a parameter to be used in modeling the CHF, both in earth gravity and in microgravity. The objective of the work here is to draw attention to and show results of current modeling efforts for the CHF, with low velocities in earth gravity at different orientations and subcoolings. Many geometrical possibilities for a heater surface exist in flowing boiling, with boiling on the inner and outer surfaces of tubes perhaps being the most common. If the vapor bubble residence time on and departure size from the heater surface bear a relationship to the CHF, as results to be given indicate, it is important that visualization of and access to vapor bubble growth be conveniently available for research purposes. In addition, it is desirable to reduce the number of variables as much as possible in a fundamental study. These considerations dictated the use of a flat heater surface, which is rectangular in shape, 1.91 cm by 3.81 cm (0.75 x 1.5 inches), consisting either of a 400 Angstrom thick semi-transparent gold film sputtered on a quartz substrate which serves simultaneously as a heater and a resistance thermometer, or a copper substrate of the same size. The heater substrate is a disc which can be rotated so that the heated length in the flow direction can be changed from 1.91 to 3.81 cm (0.75 to 1.5 inches). The fluid is R-113, and the velocities can be varied between 0.5 cm/s and 60 cm/s. For a sufficiently low velocity the CHF can be modeled reasonably well at various orientations by the correlation for pool boiling corrected for the influence of bulk liquid subcooling, multiplied by the square root of q, the angle relative to horizontal. This arises from equating buoyancy and drag forces in the inverted positions where the vapor bubbles are held against the heater surface as they slide. A distortion of the measurements relative to pool boiling occurs as the flow velocity increases. In modeling this effect at different levels of subcooling it appeared appropriate to estimate the volumetric rate of vapor generation, using measurements of bubble frequency (or residence time), void fraction and average bubble boundary layer thickness. These were determined with the use of a platinum hot wire probe 0.025 mm in diameter by 1.3 mm long, applying a constant current to distinguish between contact with liquid or vapor. Two-dimensional spatial variations are obtained with a special mechanism to resolve displacements in increments of 0.025 mm. From such measurements it was determined that the fraction of the surface heat transfer resulting in evaporation varies inversely with the subcooling correction factor for the CHF. The measured inverse bubble residence time is normalized relative to that predicted for an infinite horizontal flat plate at the CHF, and is correlated well with the CHF normalized relative to that for pool boiling, for various orientation angles and subcooling levels. This correspondence is then combined with a normalizing factor for the energy flux leaving the heater surface at the CHF and the computed bubble radius at departure, determined from the balance between the outward velocity of the interface due to evaporation and the buoyance induced velocity of the center of mass of the bubble. The product of the CHF and the corresponding residence time was determined to be a constant for all orientations at a given bulk flow velocity and liquid subcooling, and must be determined empirically for each velocity and subcooling at present. It then becomes possible to predict the CHF for the different orientations, velocities, and subcoolings. These are compared with normalized measurements of the CHF for velocities ranging from 4 cm/s to 55 cm/s, subcoolings from 2.8 to 22.2 K, over orientations angles of 360 degrees.
NASA Technical Reports Server (NTRS)
Baker, Charles L.; Grob, Eric W.; McCarthy, Thomas V.; Nikitkin, Michael N.; Ancarrow, Walter C.
2003-01-01
The Geoscience Laser Altimetry System (GLAS) instrument which is the sole instrument on ICESat was launched on January 12, 2003. GLAS utilizes two actively controlled propylene Loop Heat Pipes (LHPs) as the core of its thermal system. The LHPs started quickly when the Dale Ohm starter heaters were powered and have as designed. The low control heater power and on-orbit tight temperature control appear independent of gravity effects when comparing ground testing to flight data. The use of coupling blocks was also unique to these LHPs. Their application reduced control heater power by reducing the subcooling from the radiator. The effectiveness in reducing subcooling of the coupler blocks decreased during flight from ground testing, but internal thermal isolation in the compensation chamber between the subcooled returning liquid increased in flight resulting in no net increase in control heater power versus ground measurements. Overall the application of LHPs in the thermal system for GLAS met instrument requirements and provided flexibility for the overall system as last minute requirements became known.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Weihuan; France, David M.; Yu, Wenhua
At present, single-phase liquid, forced convection cooled heat sinks with fins are used to cool power electronics in hybrid electric vehicles (HEVs). Although use of fins in the cooling channels increases heat transfer rates considerably, a second low-temperature radiator and associated pumping system are still required in HEVs. This additional cooling system adds weight and cost while decreasing the efficiency of HEVs. With the objective of eliminating this additional low-temperature radiator and pumping system in HEVs, an alternative cooling technology, subcooled boiling in the cooling channels, was investigated in the present study. Numerical heat transfer simulations were performed using subcooledmore » boiling in the power electronics cooling channels with the coolant supplied from the existing main engine cooling system. Results show that this subcooled boiling system is capable of removing 25% more heat from the power electronics than the conventional forced convection cooling technology, or it can reduce the junction temperature of the power electronics at the current heat removal rate. With the 25% increased heat transfer option, high heat fluxes up to 250 W/cm(2) (typical for wideband-gap semiconductor applications) are possible by using the subcooled boiling system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slovik, G.C.
1981-08-01
A new three region steam drum model has been developed. This model differs from previous works for it assumes the existence of three regions within the steam drum: a steam region, a mid region (assumed to be under saturation conditions at steady state), and a bottom region (having a mixed mean subcooled enthalpy).
Stability analysis of BWR nuclear-coupled thermal-hyraulics using a simple model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karve, A.A.; Rizwan-uddin; Dorning, J.J.
1995-09-01
A simple mathematical model is developed to describe the dynamics of the nuclear-coupled thermal-hydraulics in a boiling water reactor (BWR) core. The model, which incorporates the essential features of neutron kinetics, and single-phase and two-phase thermal-hydraulics, leads to simple dynamical system comprised of a set of nonlinear ordinary differential equations (ODEs). The stability boundary is determined and plotted in the inlet-subcooling-number (enthalpy)/external-reactivity operating parameter plane. The eigenvalues of the Jacobian matrix of the dynamical system also are calculated at various steady-states (fixed points); the results are consistent with those of the direct stability analysis and indicate that a Hopf bifurcationmore » occurs as the stability boundary in the operating parameter plane is crossed. Numerical simulations of the time-dependent, nonlinear ODEs are carried out for selected points in the operating parameter plane to obtain the actual damped and growing oscillations in the neutron number density, the channel inlet flow velocity, and the other phase variables. These indicate that the Hopf bifurcation is subcritical, hence, density wave oscillations with growing amplitude could result from a finite perturbation of the system even where the steady-state is stable. The power-flow map, frequently used by reactor operators during start-up and shut-down operation of a BWR, is mapped to the inlet-subcooling-number/neutron-density (operating-parameter/phase-variable) plane, and then related to the stability boundaries for different fixed inlet velocities corresponding to selected points on the flow-control line. The stability boundaries for different fixed inlet subcooling numbers corresponding to those selected points, are plotted in the neutron-density/inlet-velocity phase variable plane and then the points on the flow-control line are related to their respective stability boundaries in this plane.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucci, Matteo; Seong, Jee H.; Buongiorno, Jdacopo
Here we report on MIT’s THM work in Q4 2016 and Q1 2017. The goal of this project is to design, construct and execute tests of flow boiling critical heat flux (CHF) at high-pressure using high-resolution and high-speed video and infrared (IR) thermometry, to generate unique data to inform the development of and validate mechanistic boiling heat transfer and CHF models. In FY2016, a new test section was designed and fabricated. Data was collected at atmospheric conditions at 10, 25 and 50 K subcoolings, and three mass fluxes, i.e. 500, 750 and 1000 kg/m2/s. Starting in Q4 2016 and continuingmore » forward, new post-processing techniques have been developed to analyze the data collected. These new algorithms analyze the time-dependent temperature and heat flux distributions to calculate nucleation site density, nucleation frequency, growth and wait time, dry area fraction, and the complete heat flux partitioning. In Q1 2017 a new flow boiling loop was designed and constructed to support flow boiling tests up 10 bar pressure and 180 °C. Initial shakedown and testing has been completed. The flow loop and test section are now ready to begin high-pressure flow boiling testing.« less
Film Boiling Heat Transfer Properties of Liquid Hydrogen in Natural Convection
NASA Astrophysics Data System (ADS)
Horie, Y.; Shirai, Y.; Shiotsu, M.; Matsuzawa, T.; Yoneda, K.; Shigeta, H.; Tatsumoto, H.; Hata, K.; Naruo, Y.; Kobayashi, H.; Inatani, Y.
Film boiling heat transfer properties of LH2 for various pressures and subcooling conditions were measured by applying electric current to give an exponential heat input to a PtCo wire with a diameter of 1.2 mm submerged in LH2. The heated wire was set to be horizontal to the ground. The heat transfer coefficient in the film boiling region was higher for higher pressure and higher subcooling. The experimental results are compared with the equation of pool film boiling heat transfer. It is confirmed that the pool film boiling heat transfer coefficients in LH2 can be expressed by this equation.
NASA Astrophysics Data System (ADS)
Zell, M.; Straub, J.; Weinzierl, A.
1984-12-01
Experiments on subcooled nucleate pool boiling in microgravity were carried out to separate gravity driven effects on heat transfer within the boiling process. A ballistic trajectory by sounding rocket flight (TEXUS 5 and 10) achieved a gravity level of a/g = 0.0001 for 360 sec. For determination of geometrical effects on heat transport two different experimental configurations (platinum wire and flat plate) were employed. Boiling curves and bubble dynamics recorded by cinematography lead to gravity independent modelling of the boiling phenomena. The results ensure the applicability and high efficiency of nucleate pool boiling for heat exchangers in space laboratories.
Modeling of a Two-Phase Jet Pump with Phase Change, Shocks and Temperature-Dependent Properties
NASA Technical Reports Server (NTRS)
Sherif, S. A.
1998-01-01
One of the primary motivations behind this work is the attempt to understand the physics of a two-phase jet pump which constitutes part of a flow boiling test facility at NASA-Marshall. The flow boiling apparatus is intended to provide data necessary to design highly efficient two-phase thermal control systems for aerospace applications. The facility will also be capable of testing alternative refrigerants and evaluate their performance using various heat exchangers with enhanced surfaces. The test facility is also intended for use in evaluating single-phase performance of systems currently using CFC refrigerants. Literature dealing with jet pumps is abundant and covers a very wide array of application areas. Example application areas include vacuum pumps which are used in the food industry, power station work, and the chemical industry; ejector systems which have applications in the aircraft industry as cabin ventilators and for purposes of jet thrust augmentation; jet pumps which are used in the oil industry for oil well pumping; and steam-jet ejector refrigeration, to just name a few. Examples of work relevant to this investigation includes those of Fairuzov and Bredikhin (1995). While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the author apart from that of Anand (1992) who was able to account for condensation shocks. Thus, one of the objectives of this work is to model the dynamics of fluid interaction between a two-phase primary fluid and a subcooled liquid secondary fluid which is being injected employing atomizing spray injectors. The model developed accounts for phase transformations due to expansion, compression, and mixing. It also accounts for shock waves developing in the different parts of the jet pump as well as temperature and pressure dependencies of the fluid properties for both the primary two-phase mixture and the secondary subcooled liquid. The research effort on which this document partly reports described a relatively simple model capable of describing the performance of a two-phase flow jet pump. The model is based on the isentropic homogeneous expansion/compression hypothesis and is capable of fully incorporating the effects of shocks in both the mixing chamber and the throat/diffuser parts of the pump. The physical system chosen is identical to that experimentally tested by Fairuzov and Bredikhin (1995) and should therefore be relatively easy to validate.
Mei, Viung C.; Chen, Fang C.
1997-01-01
A refrigeration system having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle.
Mei, V.C.; Chen, F.C.
1997-04-22
A refrigeration system is described having a vapor compression cycle utilizing a liquid over-feeding operation with an integrated accumulator-expander-heat exchanger. Hot, high-pressure liquid refrigerant from the condenser passes through one or more lengths of capillary tubing substantially immersed in a pool liquid refrigerant in the accumulator-expander-heat exchanger for simultaneously sub-cooling and expanding the liquid refrigerant while vaporizing liquid refrigerant from the pool for the return thereof to the compressor as saturated vapor. The sub-cooling of the expanded liquid provides for the flow of liquid refrigerant into the evaporator for liquid over-feeding the evaporator and thereby increasing the efficiency of the evaporation cycle. 4 figs.
Experimental and numerical investigation of HyperVapotron heat transfer
NASA Astrophysics Data System (ADS)
Wang, Weihua; Deng, Haifei; Huang, Shenghong; Chu, Delin; Yang, Bin; Mei, Luoqin; Pan, Baoguo
2014-12-01
The divertor first wall and neutral beam injection (NBI) components of tokamak devices require high heat flux removal up to 20-30 MW m-2 for future fusion reactors. The water cooled HyperVapotron (HV) structure, which relies on internal grooves or fins and boiling heat transfer to maximize the heat transfer capability, is the most promising candidate. The HV devices, that are able to transfer large amounts of heat (1-20 MW m-2) efficiently, have therefore been developed specifically for this application. Until recently, there have been few attempts to observe the detailed bubble characteristics and vortex evolvement of coolant flowing inside their various parts and understand of the internal two-phase complex heat transfer mechanism behind the vapotron effect. This research builds the experimental facilities of HyperVapotron Loop-I (HVL-I) and Pressure Water HyperVapotron Loop-II (PWHL-II) to implement the subcooled boiling principle experiment in terms of typical flow parameters, geometrical parameters of test section and surface heat flux, which are similar to those of the ITER-like first wall and NBI components (EAST and MAST). The multiphase flow and heat transfer phenomena on the surface of grooves and triangular fins when the subcooled water flowed through were observed and measured with the planar laser induced fluorescence (PLIF) and high-speed photography (HSP) techniques. Particle image velocimetry (PIV) was selected to reveal vortex formation, the flow structure that promotes the vapotron effect during subcooled boiling. The coolant flow data for contributing to the understanding of the vapotron phenomenon and the assessment of how the design and operational conditions that might affect the thermal performance of the devices were collected and analysed. The subcooled flow boiling model and methods of HV heat transfer adopted in the considered computational fluid dynamics (CFD) code were evaluated by comparing the calculated wall temperatures with the experimentally measured values. It was discovered that the bubble and vortex characteristics in the HV are clearly heavily dependent on the internal geometry, flow conditions and input heat flux. The evaporation latent heat is the primary heat transfer mechanism of HV flow under the condition of high heat flux, and the heat transfer through convection is very limited. The percentage of wall heat flux going into vapour production is almost 70%. These relationships between the flow phenomena and thermal performance of the HV device are essential to study the mechanisms for the flow structure alterations for design optimization and improvements of the ITER-like devices' water cooling structure and plasma facing components for future fusion reactors.
Low-thrust chemical propulsion system propellant expulsion and thermal conditioning study
NASA Technical Reports Server (NTRS)
Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.
1982-01-01
Thermal conditioning systems for satisfying engine net positive suction pressure (NPSP) requirements, and propellant expulsion systems for achieving propellant dump during a return-to-launch site (RTLS) abort were studied for LH2/LO2 and LCH4/LO2 upper stage propellant combinations. A state-of-the-art thermal conditioning system employing helium injection beneath the liquid surface shows the lowest weight penalty for LO2 and LCH4. A technology system incorporating a thermal subcooler (heat exchanger) for engine NPSP results in the lowest weight penalty for the LH2 tank. A preliminary design of two state-of-the-art and two new technology systems indicates a weight penalty difference too small to warrant development of a LH2 thermal subcooler. Analysis results showed that the LH2/LO2 propellant expulsion system is optimized for maximum dump line diameters, whereas the LCH4/LO2 system is optimized for minimum dump line diameter (LCH4) and maximum dump line diameter (LO2). The primary uncertainty is the accurate determination of two-phase flow rates through the dump system; experimentation is not recommended because this uncertainty is not considered significant.
NASA Technical Reports Server (NTRS)
Schmidt, George R.
1994-01-01
The steady motion, thermal and free surface behavior of a volatile, wetting liquid in microgravity are studied using scaling and numerical techniques. The objective is to determine whether the thermocapillary and two-phase convection arising from thermodynamic nonequilibrium along the porous surfaces of spacecraft liquid acquisition devices could cause the retention failures observed with liquid hydrogen and heated vapor pressurant. Why these devices seem immune to retention loss when pressurized with heated helium or heated directly through the porous structure was also examined. Results show that highly wetting fluids exhibit large negative and positive dynamic pressure gradients towards the meniscus interline when superheated and subcooled, respectively. With superheating, the pressure variation and recoil force arising from liquid/vapor phase change exert the same influence on surface morphology and promote retention. With subcooling, however, the pressure distribution produces a suction that degrades mechanical equilibrium of the surface. This result indicates that thermocapillary-induced deformation arising from subcooling and condensation is the likely cause for retention loss. In addition, increasing the level of nonequilibrium by reducing accommodation coefficient suppresses deformation and explains why this failure mode does not occur in instances of direct screen heating or pressurization with a heated inert gas.
Effects of Engineered Wettability on the Efficiency of Dew Collection.
Gerasopoulos, Konstantinos; Luedeman, William L; Ölçeroglu, Emre; McCarthy, Matthew; Benkoski, Jason J
2018-01-31
Surface wettability plays an important role in dew collection. Nucleation is faster on hydrophilic surfaces, while droplets slide more readily on hydrophobic surfaces. Plants and animals in coastal desert environments appear to overcome this trade-off through biphilic surfaces with patterned wettability. In this study, we investigate the effects of millimeter-scale wettability patterns, mimicking those of the Stenocara beetle, on the rate of water collection from humid air. The rate of water collection per unit area is measured as a function of subcooling (ΔT = 1, 7, and 27 °C) and angle of inclination (from 10° to 90°). It is then compared for superbiphilic, hydrophilic, hydrophobic, and surperhydrophobic surfaces. For large subcooling, neither wettability nor tilt angle has a significant effect because the rate of condensation is so great. For 1 °C subcooling and large angles, hydrophilic surfaces perform best because condensation is the rate-limiting step. For low angles of inclination, superhydrophobic samples are best because droplet sliding is the rate-limiting step. Superbiphilic surfaces, in contrast to their superior fog collecting capabilities, generally collected dew at the slowest rate due to their inherent contact angle hysteresis. Theoretical considerations suggest that this finding may apply more generally to surfaces with patterned wettability.
Extension of Generalized Fluid System Simulation Program's Fluid Property Database
NASA Technical Reports Server (NTRS)
Patel, Kishan
2011-01-01
This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.
Critical heat flux (CHF) phenomenon on a downward facing curved surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, F.B.; Haddad, K.H.; Liu, Y.C.
1997-06-01
This report describes a theoretical and experimental study of the boundary layer boiling and critical heat flux phenomena on a downward facing curved heating surface, including both hemispherical and toroidal surfaces. A subscale boundary layer boiling (SBLB) test facility was developed to measure the spatial variation of the critical heat flux and observe the underlying mechanisms. Transient quenching and steady-state boiling experiments were performed in the SBLB facility under both saturated and subcooled conditions to obtain a complete database on the critical heat flux. To complement the experimental effort, an advanced hydrodynamic CHF model was developed from the conservation lawsmore » along with sound physical arguments. The model provides a clear physical explanation for the spatial variation of the CHF observed in the SBLB experiments and for the weak dependence of the CHF data on the physical size of the vessel. Based upon the CHF model, a scaling law was established for estimating the local critical heat flux on the outer surface of a heated hemispherical vessel that is fully submerged in water. The scaling law, which compares favorably with all the available local CHF data obtained for various vessel sizes, can be used to predict the local CHF limits on large commercial-size vessels. This technical information represents one of the essential elements that is needed in assessing the efficacy of external cooling of core melt by cavity flooding as a severe accident management strategy. 83 figs., 3 tabs.« less
Cooling Performance of a Partially-Confined FC-72 Spray: The Effect of Dissolved Air (Postprint)
2007-01-01
plate FC = FC-72 fluid htr = heater conductive layer int = interface between heater substrate and insulating support post m = measured s = heater... microporous enhanced surface and a plain reference surface, and developed correlations for nucleate boiling and CHF. The results of the experiment...8Rainey, K. N., You, S. M., and Lee, S., “Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer from Microporous Surfaces
NASA Astrophysics Data System (ADS)
Funaki, K.; Iwakuma, M.; Kajikawa, K.; Takeo, M.; Suehiro, J.; Hara, M.; Yamafuji, K.; Konno, M.; Kasagawa, Y.; Okubo, K.; Yasukawa, Y.; Nose, S.; Ueyama, M.; Hayashi, K.; Sato, K.
We have designed and constructed a 500 kVA-class oxide-superconducting power transformer. The windings are cooled by liquid nitrogen or subcooled nitrogen in a G-FRP cryostat of 785 mm in diameter and 1210 mm in height, that has a room-temperature space for an iron core with the diameter of 314 mm. The primary and secondary windings are three-strand and six-strand parallel conductors of a Bi-2223 multifilamentary tape with silver sheath, respectively. The strand 0.22 mm thick and 3.5 mm wide has 61 filaments with no twisting. The ratio of superconductor is 0.284. In the parallel conductors, the strands are transposed five times in each layer for a uniform current distribution among them. It was proved that the transformer has the rated capacity of 500 kVA by means of two-h short-circuit test and half-h no-load test in liquid nitrogen of 77 K. The efficiency is estimated as 99.1% from a core loss of 2.3 kW and a thermal load of 2.2 kW in coolant. The latter is composed of AC losses in windings and heat leakage from the cryostat and current leads, and is multiplied by a refrigeration penalty of liquid nitrogen, 20. Load test was also performed up to 500 kVA. The transformer was furthermore operated in subcooled nitrogen at 66 K with no quenching up to a critical level, that is equivalent to 800 kVA. The efficiency estimated was improved to 99.3% in subcooled nitrogen. Measured a.c. loss in both windings are well explained by a theoretical prediction with the "critical state model". We also discuss prospective applications of the parallel conductors composed of advanced HTS multifilamentary tapes to a.c. windings with large current capacity.
Analysis of Screen Channel LAD Bubble Point Tests in Liquid Methane at Elevated Temperature
NASA Technical Reports Server (NTRS)
Hartwig, Jason; McQuillen, John
2012-01-01
This paper examines the effect of varying the liquid temperature and pressure on the bubble point pressure for screen channel Liquid Acquisition Devices in cryogenic liquid methane using gaseous helium across a wide range of elevated pressures and temperatures. Testing of a 325 x 2300 Dutch Twill screen sample was conducted in the Cryogenic Components Lab 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. Test conditions ranged from 105 to 160K and 0.0965 - 1.78 MPa. Bubble point is shown to be a strong function of the liquid temperature and a weak function of the amount of subcooling at the LAD screen. The model predicts well for saturated liquid but under predicts the subcooled data.
Sliding bubbles on a hot horizontal wire in a subcooled bath
NASA Astrophysics Data System (ADS)
Duchesne, Alexis; Dubois, Charles; Caps, Hervé
2015-11-01
When a wire is heated up to the boiling point in a liquid bath some bubbles will nucleate on the wire surface. Traditional nucleate boiling theory predicts that bubbles generate from active nucleate site, grow up and depart from the heating surface due to buoyancy and inertia. However, an alternative scenario is presented in the literature for a subcooled bath: bubbles slide along the horizontal wire before departing. New experiments were performed by using a constantan wire and different liquids, varying the injected power. Silicone oil, water and even liquid nitrogen were tested in order to vary wetting conditions, liquid viscosities and surface tensions. We explored the influence of the wire diameter and of the subcooled bath temperature. We observed, of course, sliding motion, but also a wide range of behaviors from bubbles clustering to film boiling. We noticed that bubbles could change moving sense, especially when encountering with another bubble. The bubble speed is carefully measured and can reach more than 100 mm/s for a millimetric bubble. We investigated the dependence of the speed on the different parameters and found that this speed is, for a given configuration, quite independent of the injected power. We understand these phenomena in terms of Marangoni effects. This project has been financially supported by ARC SuperCool contract of the University of Liège.
Refrigeration system having standing wave compressor
Lucas, Timothy S.
1992-01-01
A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.
NASA Astrophysics Data System (ADS)
Kanin, P. K.; Ryazantsev, V. A.; Lexin, M. A.; Zabirov, A. R.; Yagov, V. V.
2018-03-01
New experimental data on heat transfer in pool film boiling of subcooled ethanol-water mixtures at spherical surfaces are considered. The water solutions with ethanol mass fraction from 10 to 91% and temperature of liquid 50°C were examined. All the experiments were conducted under atmospheric pressure, using the stainless steel sphere of 39 mm in diameter as a cooled body. The sphere was heated up to 450-750°C, depending on ethanol concentration, and immersed into the experimental vessel with subcooled mixture. As it is expected, boiling heat transfer intensifies with ethanol concentration decrease, and duration of cooling decreases. It means that stable film boiling duration decreases, and earlier transition to intensive heat transfer regime occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boreyko, Jonathan B; Collier, Pat
Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an inter-drop frost wave. The growth of this inter-drop frost front is shown to be up to three times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effectmore » dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of inter-drop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an inter-drop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser was found to be superior to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by minimizing the success of interdrop ice bridge formation.« less
Delayed frost growth on jumping-drop superhydrophobic surfaces.
Boreyko, Jonathan B; Collier, C Patrick
2013-02-26
Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.
Predictions of Critical Heat Flux in Annular Pipes with TRACEv4.160 code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasiulevicius, Audrius; Macian-Juan, Rafael
2006-07-01
This paper presents the assessment of TRACE (version v4.160) against the Critical Heat Flux (CHF) experiments in annular tubes performed at the Royal Institute of Technology (KTH) in Stockholm, Sweden. The experimental database includes data for coolant mass fluxes between 250 and 2500 kg/m{sup 2}s and inlet subcooling of 10 and 40 K at a pressure of 70 bar. The work presented in this paper supplements the calculations of single round tube experiments carried out earlier and provides a broader scope of validated geometries. In addition to the Biasi and CISE-GE CHF correlations available in the code, a number ofmore » experimental points at low flow conditions are available for the annular geometry experiments, which also permitted the assessment of the Biasi/Zuber CHF correlation used in TRACE v4.160 for low flow conditions. Experiments with different axial power distribution were simulated and the effects of the axial power profile and the coolant inlet subcooling on the TRACE predictions were investigated. The results of this work show that the Biasi/Zuber correlation provides good estimation of the CHF at 70 bar, and, for the same conditions, the simulation of the annular experiments resulted in the calculation of lower CHF values compared to single-tube experiments. The analysis of the performance of the standard TRACE CHF correlations shows that the CISE-GE correlation yields critical qualities (quality at CHF) closer to the experimental values at 70 bar than the Biasi correlation for annular flow conditions. Regarding the power profile, the results of the TRACE calculations seem to be very sensitive to its shape, since, depending on the profile, different accuracies in the predictions were noted while other system conditions remained constant. The inlet coolant subcooling was also an important factor in the accuracy of TRACE CHF predictions. Thus, an increase in the inlet subcooling led to a clear improvement in the estimation of the critical quality with both Biasi and CISE-GE correlations. To complement the work, three additional CHF correlations were implemented in TRACE v4.160, namely the Bowring, Tong W-3 and Levitan-Lantsman CHF models, in order to assess the applicability of these correlations to simulate the CHF in annular tubes. The improvement of CHF predictions for low coolant mass flows (up to 1500 kg/m{sup 2}s) is noted when applying Bowring CHF correlation. However, the increase in the inlet subcooling increases the error in predicted critical quality with the Bowring correlation. The Levitan-Lantsman and Tong-W-3 correlations provide results similar to the Biasi model. Therefore, the most correct CHF predictions among the investigated correlations were obtained using CISE-GE model in the standard TRAC v4.160 code. (authors)« less
Investigation of Critical Heat Flux in Reduced Gravity Using Photomicrographic Techniques
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Zhang, Hui
2003-01-01
Experiments were performed to examine the effects of body force on flow boiling critical heat flux (CHF). FC-72 was boiled along one wall of a transparent rectangular flow channel that permitted photographic study of the vapor-liquid interface just prior to CHF. High-speed video imaging techniques were used to identify dominant CHF mechanisms corresponding to different flow orientations and liquid velocities. Six different CHF regimes were identified: Wavy Vapor Layer, Pool Boiling, Stratification, Vapor Counterflow, Vapor Stagnation, and Separated Concurrent Vapor Flow. CHF showed significant sensitivity to orientation for flow velocities below 0.2 m/s, where extremely low CHF values where measured, especially with downward-facing heated wall and downflow orientations. High flow velocities dampened the effects of orientation considerably. The CHF data were used to assess the suitability of previous CHF models and correlations. It is shown the Interfacial Lift-off Model is very effective at predicting CHF for high velocities at all orientations. The flooding limit, on the other hand, is useful at estimating CHF at low velocities and for downflow orientations. A new method consisting of three dimensionless criteria is developed for determining the minimum flow velocity required to overcome body force effects on near-saturated flow boiling CHF. Vertical upflow boiling experiments were performed in pursuit of identifying the trigger mechanism for subcooled flow boiling CHF. While virtually all prior studies on flow boiling CHF concern the prediction or measurement of conditions that lead to CHF, this study was focused on events that take place during the CHF transient. High-speed video imaging and photomicrographic techniques were used to record the transient behavior of interfacial features from the last steady-state power level before CHF until the moment of power cut-off following CHF. The video records show the development of a wavy vapor layer which propagates along the heated wall, permitting cooling prior to CHF only in wetting fronts corresponding to the wave troughs. Image analysis software was developed to estimate void fraction from the individual video images. The void fraction records for subcooled flow boiling show the CHF transient is accompanied by gradual lift-off of wetting fronts culminating in some maximum vapor layer mean thickness, following which the vapor layer begins to thin down as the transition to film boiling ensues. This study proves the Interfacial Lift-off Model, which has been validated for near-saturated flow boiling CHF, is equally valid for subcooled conditions.
Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions
NASA Astrophysics Data System (ADS)
Le Corre, Jean-Marie
Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate the post-DNB heater temperature up to the point of heater melting. Validation of the proposed model was performed using detailed measured wall boiling parameters near CHF, thereby bypassing most needed constitutive relations. It was found that under limiting nucleation conditions; a peak wall temperature at the time of bubble departure can be reached at CHF preventing wall cooling by quenching. The simulations show that the resulting dry patch can survive the surrounding quenching event, preventing further nucleation and leading to a fast heater temperature increase. For more practical applications, the model was applied at known CHF conditions in simple geometry coupled with one-dimensional and three-dimensional (CFD) codes. It was found that, in the case where CHF occurs under bubbly flow conditions, the local wall superheat underneath nucleating bubbles is predicted to reach the Leidenfrost temperature. However, a better knowledge of statistical variations in wall boiling parameters would be necessary to correctly capture the CHF trends with mass flux (or Weber number). In addition, consideration of relevant parameter influences on the Leidenfrost temperature and consideration of interfacial microphysics at the wall would allow improved simulation of the wall rewetting prevention and subsequent dry patch spreading.
NASA Technical Reports Server (NTRS)
Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Schnell, A.
2011-01-01
NASA s Marshall Space Flight Center (MSFC) conducted liquid methane (LCH4) testing in November 2006 using the multipurpose hydrogen test bed (MHTB) outfitted with a spray-bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with subcooled LCH4 that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 W to 420 W at a fill level of approximately 90%. During an updated evaluation of the data, it was noted that as the fluid passed through the Joule Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This paper describes the observed thermodynamic conditions that correspond with metastability and effects on TVS performance.
NASA Technical Reports Server (NTRS)
Simoneau, R. J.
1975-01-01
Choked flow rates and axial pressure distributions were measured for subcooled nitrogen in a converging-diverging nozzle with a constant area section in the throat region. Stagnation pressures ranged from slightly above saturation to twice the thermodynamic critical pressure. Stagnation temperatures ranged from 0.75 to 1.03 times the thermodynamic critical temperature. The choking plane is at the divergence end of the constant area throat section. At high stagnation pressures the fluid stays liquid well into the constant area throat region; at near saturation stagnation pressures it appears that vaporization occurs at or before the entrance to the constant area throat region. The throat-to-stagnation pressure ratio data exhibits an anomalous flat region, and this anomaly is related to the two-phase process. The fluid is metastably all liquid below the saturation pressure.
Flash crystallization kinetics of methane (sI) hydrate in a thermoelectrically-cooled microreactor.
Chen, Weiqi; Pinho, Bruno; Hartman, Ryan L
2017-09-12
The crystallization kinetics of methane (sI) hydrate were investigated in a thermoelectrically-cooled microreactor with in situ Raman spectroscopy. Step-wise and precise control of the temperature allowed acquisition of reproducible data within minutes, while the nucleation of methane hydrates can take up to 24 h in traditional batch reactors. The propagation rates of methane hydrate (from 3.1-196.3 μm s -1 ) at the gas-liquid interface were measured for different Reynolds' numbers (0.7-68.9), pressures (30.0-80.9 bar), and sub-cooling temperatures (1.0-4.0 K). The precise measurement of the propagation rates and their subsequent analyses revealed a transition from mixed heat-transfer-crystallization-rate-limited to mixed heat-transfer-mass-transfer-crystallization-rate-limited kinetics. A theoretical model, based on heat transfer, mass transfer, and intrinsic crystallization kinetics, was derived for the first time to understand the non-linear relationship between the propagation rate and sub-cooling temperature. The molecular diffusivity of methane within a stagnant film (ahead of the propagation front) was discovered to follow Stokes-Einstein, while calculated Hatta (0.50-0.68), Lewis (128-207), and beta (0.79-116) numbers also confirmed that the diffusive flux influences crystal growth. Understanding methane hydrate crystal growth is important to the atmospheric, oceanic, and planetary sciences and to energy production, storage, and transportation. Our discoveries could someday advance the science of other multiphase, high-pressure, and sub-cooled crystallizations.
NASA Astrophysics Data System (ADS)
Woo, Kyoungsuk
Two-phase natural circulation loops are unstable at low pressure operating conditions. New reactor design relying on natural circulation for both normal and abnormal core cooling is susceptible to different types of flow instabilities. In contrast to forced circulation boiling water reactor (BWR), natural circulation BWR is started up without recirculation pumps. The tall chimney placed on the top of the core makes the system susceptible to flashing during low pressure start-up. In addition, the considerable saturation temperature variation may induce complicated dynamic behavior driven by thermal non-equilibrium between the liquid and steam. The thermal-hydraulic problems in two-phase natural circulation systems at low pressure and low power conditions are investigated through experimental methods. Fuel heat conduction, neutron kinetics, flow kinematics, energetics and dynamics that govern the flow behavior at low pressure, are formulated. A dimensionless analysis is introduced to obtain governing dimensionless groups which are groundwork of the system scaling. Based on the robust scaling method and start-up procedures of a typical natural circulation BWR, the simulation strategies for the transient with and without void reactivity feedback is developed. Three different heat-up rates are applied to the transient simulations to study characteristics of the stability during the start-up. Reducing heat-up rate leads to increase in the period of flashing-induced density wave oscillation and decrease in the system pressurization rate. However, reducing the heat-up rate is unable to completely prevent flashing-induced oscillations. Five characteristic regions of stability are discovered at low pressure conditions. They are stable single-phase, flashing near the separator, intermittent oscillation, sinusoidal oscillation and low subcooling stable regions. Stability maps were acquired for system pressures ranging 100 kPa to 400 kPa. According to experimental investigation, the flow becomes stable below a certain heat flux regardless of the inlet subcooling at the core and system pressure. At higher heat flux, unstable phenomena were indentified within a certain range of inlet subcooling. The unstable region diminishes as the system pressure increases. In natural circulation BWRs, the significant gravitational pressure drop over the tall chimney section induces a Type-I instability. The Type-I instability becomes especially important during low power and pressure conditions during reactor start-up. Under these circumstances the effect of pressure variations on the saturation enthalpy becomes significant. An experimental study shows that the flashing phenomenon in the adiabatic chimney section is dominant during the start-up of a natural circulation BWR. Since flashing occurs outside the core, nuclear feedback effects on the stability are small. Furthermore, the thermal-hydraulic oscillation period is much longer than power fluctuation period caused by void reactivity feedback. In the natural circulation system increasing the inlet restriction reduces the natural circulation flow rate, shifting the unstable region to higher inlet subcooling.
Pool boiling from rotating and stationary spheres in liquid nitrogen
NASA Technical Reports Server (NTRS)
Cuan, Winston M.; Schwartz, Sidney H.
1988-01-01
Results are presented for a preliminary experiment involving saturated pool boiling at 1 atm from rotating 2 and 3 in. diameter spheres which were immersed in liquid nitrogen (LN2). Additional results are presented for a stationary, 2 inch diameter sphere, quenched in LN2, which were obtained utilizing a more versatile and complete experimental apparatus that will eventually be used for additional rotating sphere experiments. The speed for the rotational tests was varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere. The average Nusselt number over the cooling period was plotted against the rotational Reynolds number. Stationary sphere results included local boiling heat transfer coefficients at different latitudinal locations, for various pressure and subcooling levels.
Description of Liquid Nitrogen Experimental Test Facility
NASA Technical Reports Server (NTRS)
Jurns, John M.; Jacobs, Richard E.; Saiyed, Naseem H.
1991-01-01
The Liquid Nitrogen Test Facility is a unique test facility for ground-based liquid nitrogen experimentation. The test rig consists of an insulated tank of approximately 12.5 cubic ft in volume, which is supplied with liquid nitrogen from a 300 gal dewar via a vacuum jacketed piping system. The test tank is fitted with pressure and temperature measuring instrumentation, and with two view ports which allow visual observation of test conditions. To demonstrate the capabilities of the facility, the initial test program is briefly described. The objective of the test program is to measure the condensation rate by injecting liquid nitrogen as a subcooled spray into the ullage of a tank 50 percent full of liquid nitrogen at saturated conditions. The condensation rate of the nitrogen vapor on the subcooled spray can be analytically modeled, and results validated and corrected by experimentally measuring the vapor condensation on liquid sprays.
Description of liquid nitrogen experimental test facility
NASA Technical Reports Server (NTRS)
Jurns, J. M.; Jacobs, R. E.; Saiyed, N. H.
1992-01-01
The Liquid Nitrogen Test Facility is a unique test facility for ground-based liquid nitrogen experimentation. The test rig consists of an insulated tank of approximately 12.5 cubic ft in volume, which is supplied with liquid nitrogen from a 300 gal dewar via a vacuum jacketed piping system. The test tank is fitted with pressure and temperature measuring instrumentation, and with two view ports which allow visual observation of test conditions. To demonstrate the capabilities of the facility, the initial test program is briefly described. The objective of the test program is to measure the condensation rate by injecting liquid nitrogen as a subcooled spray into the ullage of a tank 50 percent full of liquid nitrogen at saturated conditions. The condensation rate of the nitrogen vapor on the subcooled spray can be analytically modeled, and results validated and corrected by experimentally measuring the vapor condensation on liquid sprays.
Method and apparatus of cryogenic cooling for high temperature superconductor devices
Yuan, Xing; Mine, Susumu
2005-02-15
A method and apparatus for providing cryogenic cooling to HTS devices, in particular those that are used in high-voltage electric power applications. The method involves pressurizing liquid cryogen to above one atmospheric pressure to improve its dielectric strength, while sub-cooling the liquid cryogen to below its saturation temperature in order to improve the performance of the HTS components of the device. An apparatus utilizing such a cooling method consists of a vessel that contains a pressurized gaseous cryogen region and a sub-cooled liquid cryogen bath, a liquid cryogen heating coupled with a gaseous cryogen venting scheme to maintain the pressure of the cryogen to a value in a range that corresponds to optimum dielectric strength of the liquid cryogen, and a cooling system that maintains the liquid cryogen at a temperature below its boiling point to improve the performance of HTS materials used in the device.
Sun, Lili; Zhou, Liping; Yu, Yu; Lan, Yukun; Li, Zhiliang
2007-01-01
Polychlorinated diphenyl ethers (PCDEs) have received more and more concerns as a group of ubiquitous potential persistent organic pollutants (POPs). By using molecular electronegativity distance vector (MEDV-4), multiple linear regression (MLR) models are developed for sub-cooled liquid vapor pressures (P(L)), n-octanol/water partition coefficients (K(OW)) and sub-cooled liquid water solubilities (S(W,L)) of 209 PCDEs and diphenyl ether. The correlation coefficients (R) and the leave-one-out cross-validation (LOO) correlation coefficients (R(CV)) of all the 6-descriptor models for logP(L), logK(OW) and logS(W,L) are more than 0.98. By using stepwise multiple regression (SMR), the descriptors are selected and the resulting models are 5-descriptor model for logP(L), 4-descriptor model for logK(OW), and 6-descriptor model for logS(W,L), respectively. All these models exhibit excellent estimate capabilities for internal sample set and good predictive capabilities for external samples set. The consistency between observed and estimated/predicted values for logP(L) is the best (R=0.996, R(CV)=0.996), followed by logK(OW) (R=0.992, R(CV)=0.992) and logS(W,L) (R=0.983, R(CV)=0.980). By using MEDV-4 descriptors, the QSPR models can be used for prediction and the model predictions can hence extend the current database of experimental values.
Recent Advances and Applications in Cryogenic Propellant Densification Technology
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
2000-01-01
This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.
A variety of dynamical features of sliding bubbles and their impact on wall heat transfer were observed at subcooled flow boiling conditions in a vertical square test channel. Among the wide range of parameters observed, we particularly focus in this paper on (i) the sliding bubbles’ effect on wall heat transfer (supplemantry discussion to the authors’ previous work in Yoo et al. (2016a,b)) and (ii) the wall area influenced by sliding bubbles in subcooled boiling flow. At first, this study reveals that the degree of wall heat transfer improvement due to sliding bubbles depended less on the wall superheat conditionmore » as the mass flux increased. Also, the sliding bubble trajectory was found to be one of the critical factors in order to properly describe the wall heat transfer associated with sliding bubbles. In particular, the wall area influenced by sliding bubbles depended strongly on both sliding bubble trajectory and sliding bubble size; the sliding bubble trajectory was also observed to be closely related to the sliding bubble size. Importantly, these results indicate the limitation of current approach in CFD analyses especially for the wall area of bubble influence. In addition, the analyses on the temporal fraction of bubbles’ residence (FR) along the heated wall show that the sliding bubbles typically travel through narrow path with high frequency while the opposite was observed downstream. That is, both FR and sliding bubble trajectory depended substantially on the distance from nucleation site, which is expected to be similar for the quenching heat transfer mode induced by sliding bubbles.« less
Boiling incipience and convective boiling of neon and nitrogen
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1977-01-01
Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of + or - 15 percent.
Controlling energy costs in refrigeration systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vig, R.
1984-08-09
Altering the operating conditions of components in a refrigeration system can have a significant effect on energy consumption. The ramifications of superheating the gas at the evaporator, subcooling the liquid at the condenser, lowering the condensing pressure, and raising the suction temperature should be examined.
NASA Astrophysics Data System (ADS)
Vyatkin, V. S.; Ivanov, Y. V.; Watanabe, H.; Chikumoto, N.; Yamaguchi, S.
2017-07-01
Cooling of the long HTS power transmission lines performs by pumping of subcooled liquid nitrogen (LN2) along the cable. The temperature of LN2 along the cable increases due to the heat losses of the cryostat and heat generation in the HTS cable. The experiment using test cable line in Ishikari shows that flow rate of 35 L/min retains increasing of LN2 temperature by 1 K per 1 km of length. The technology when the back flow of LN2 cools the radiation shield surrounding the cable pipe is also applied in Ishikari-2 project. In this case the ambient heat flow into cable pipe is 50 times less than that without radiation shield. Back flow of LN2 removes almost all heat coming from the environment. When transport current is close to the critical value the Joule heat of HTS cable is significant. This heat additionally increases the temperature of LN2 flowing along the HTS cable. Near the outlet the temperature of HTS cable is maximal and the local critical current is minimal. The current matching critical current criterion of average electrical field of E 0 = 10-4 V/m provides the voltage drop and significant Joule heat at the hot end of the cable. It can lead the damage of the cable. The present work contains analysis of temperature distribution along the cable and the way to achieve the fail-safe operation of long HTS cable cooled by subcooled LN2. We also performed extrapolation of obtained results for several times longer cable lines by decreasing the LN2 flow rate.
A Densified Liquid Methane Delivery System for the Altair Ascent Stage
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.; Johnson, Wesley L.; Smudde, Todd D.; Femminineo, Mark F.; Schnell, Andrew R.
2010-01-01
The Altair Lunar Lander is currently carrying options for both cryogenic and hypergolic ascent stage propulsion modules. The cryogenic option uses liquid methane and liquid oxygen to propel Altair from the lunar surface back to rendezvous with the Orion command module. Recent studies have determined that the liquid methane should be densified by subcooling it to 93 K in order to prevent over-pressurization of the propellant tanks during the 210 day stay on the lunar surface. A trade study has been conducted to determine the preferred method of producing; loading, and maintaining the subcooled, densified liquid methane onboard Altair from a ground operations perspective. The trade study took into account the limitations in mass for the launch vehicle and the mobile launch platform as well as the historical reliability of various components and their thermal efficiencies. Several unique problems were encountered, namely delivering a small amount of a cryogenic propellant to a flight tank that is positioned over 350 ft above the launch pad as well as generating the desired delivery temperature of the methane at 93 K which is only 2.3 K above the methane triple point of 90.7 K. Over 20 methods of subcooled liquid methane production and delivery along with the associated system architectures were investigated to determine the best solutions to the problem. The top four cryogenic processing solutions were selected for further evaluation and detailed thermal modeling. This paper describes the results of the preliminary trade analysis of the 20 plus methane densification methods considered. The results of the detailed analysis will be briefed to the Altair Project Office and their propulsion team as well as the Ground Operations Project Office before the down-select is made between cryogenic and hypergolic ascent stages in August 2010.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwang-Won, Lee; Sang-Yong, Lee
1995-09-01
A mechanistic model for forced convective transition boiling has been developed to investigate transition boiling mechanisms and to predict transition boiling heat flux realistically. This model is based on a postulated multi-stage boiling process occurring during the passage time of the elongated vapor blanket specified at a critical heat flux (CHF) condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling characterized by themore » frequent touches of the interface and the heated wall. The total heat transfer rates after the DNB is weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. The parametric effects of pressure, mass flux, inlet subcooling on the transition boiling heat transfer are also investigated. From these comparisons, it can be seen that this model can identify the crucial mechanisms of forced convective transition boiling, and that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are well predicted at low qualities/high pressures near 10 bar. In future, this model will be improved in the unstable film boiling stage and generalized for high quality and low pressure situations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Jun Soo
The bubble departure diameter and bubble release frequency were obtained through the analysis of TAMU subcooled flow boiling experimental data. The numerous images of bubbles at departure were analyzed for each experimental condition to achieve the reliable statistics of the measured bubble parameters. The results are provided in this report with simple discussion.
New observations and insights into the morphology and growth kinetics of hydrate films.
Li, Sheng-Li; Sun, Chang-Yu; Liu, Bei; Li, Zhi-Yun; Chen, Guang-Jin; Sum, Amadeu K
2014-02-19
The kinetics of film growth of hydrates of methane, ethane, and methane-ethane mixtures were studied by exposing a single gas bubble to water. The morphologies, lateral growth rates, and thicknesses of the hydrate films were measured for various gas compositions and degrees of subcooling. A variety of hydrate film textures was revealed. The kinetics of two-dimensional film growth was inferred from the lateral growth rate and initial thickness of the hydrate film. A clear relationship between the morphology and film growth kinetics was observed. The shape of the hydrate crystals was found to favour heat or mass transfer and favour further growth of the hydrate film. The quantitative results on the kinetics of film growth showed that for a given degree of subcooling, the initial film thicknesses of the double hydrates were larger than that of pure methane or ethane hydrate, whereas the thickest hydrate film and the lowest lateral growth rate occurred when the methane mole fraction was approximately 0.6.
New Observations and Insights into the Morphology and Growth Kinetics of Hydrate Films
Li, Sheng-Li; Sun, Chang-Yu; Liu, Bei; Li, Zhi-Yun; Chen, Guang-Jin; Sum, Amadeu K.
2014-01-01
The kinetics of film growth of hydrates of methane, ethane, and methane-ethane mixtures were studied by exposing a single gas bubble to water. The morphologies, lateral growth rates, and thicknesses of the hydrate films were measured for various gas compositions and degrees of subcooling. A variety of hydrate film textures was revealed. The kinetics of two-dimensional film growth was inferred from the lateral growth rate and initial thickness of the hydrate film. A clear relationship between the morphology and film growth kinetics was observed. The shape of the hydrate crystals was found to favour heat or mass transfer and favour further growth of the hydrate film. The quantitative results on the kinetics of film growth showed that for a given degree of subcooling, the initial film thicknesses of the double hydrates were larger than that of pure methane or ethane hydrate, whereas the thickest hydrate film and the lowest lateral growth rate occurred when the methane mole fraction was approximately 0.6. PMID:24549241
Low gravity quenching of hot tubes with cryogens
NASA Technical Reports Server (NTRS)
Antar, Basil N.; Collins, Frank G.; Kawaji, M.
1992-01-01
An experimental proceedure for examining flow boiling in low gravity environment is presented. The proceedure involves both ground based and KC-135 flight experiments. Two experimental apparati were employed, one for studying subcooled liquid boiling and another for examining saturated liquid boiling. For the saturated flow experiments, liquid nitrogen was used while freon 113 was used for the subcooled flow experiments. The boiling phenomenon was investigated in both cases using flow visualization techniques as well as tube wall temperature measurements. The flow field in both cases was established by injecting cold liquid in a heated tube whose temperature was set above the saturation values. The tubes were both vertically and horizontally supported with the liquid injected from the lower end of the tube. The results indicate substantial differences in the flow patterns established during boiling between the ground based, (1-g), experiments and the flight experiments, (low-g). These differences in the flow patterns will be discussed and some explanations will be offered.
Liquid Nitrogen Subcooler Pressure Vessel Engineering Note
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rucinski, R.; /Fermilab
1997-04-24
The normal operating pressure of this dewar is expected to be less than 15 psig. This vessel is open to atmospheric pressure thru a non-isolatable vent line. The backpressure in the vent line was calculated to be less than 1.5 psig at maximum anticipated flow rates.
Droplet Evaporator For High-Capacity Heat Transfer
NASA Technical Reports Server (NTRS)
Valenzuela, Javier A.
1993-01-01
Proposed heat-exchange scheme boosts heat transfer per unit area. Key component is generator that fires uniform size droplets of subcooled liquid at hot plate. On impact, droplets spread out and evaporate almost instantly, removing heat from plate. In practice, many generator nozzles arrayed over evaporator plate.
On a phase transition for semitransparent materials in terms of the Stefan problem
NASA Astrophysics Data System (ADS)
Rubtsov, N. A.; Sleptsov, S. D.
2017-01-01
The paper deals with justification of the formula for the latent heat of phase transition of the first kind, taking into account superheating and subcooling of the formed two-phase system, in application to the solution of Stefan problem in semitransparent materials.
Non-Toxic Orbiter Maneuvering System (OMS) and Reaction Control System
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; Nicholson, Leonard S. (Technical Monitor)
1999-01-01
NASA is pursuing the technology and advanced development of a non-toxic (NT) orbital maneuvering system (OMS) and reaction control system (RCS) for shuttle upgrades, RLV, and reusable first stages. The primary objectives of the shuttle upgrades program are improved safety, improved reliability, reduced operations time and cost, improved performance or capabilities, and commonality with future space exploration needs. Non-Toxic OMS/RCS offers advantages in each of these categories. A non-toxic OMS/RCS eliminates the ground hazards and the flight safety hazards of the toxic and corrosive propellants. The cost savings for ground operations are over $24M per year for 7 flights, and the savings increase with increasing flight rate up to $44M per year. The OMS/RCS serial processing time is reduced from 65 days to 13 days. The payload capability can be increased up to 5100 Ibms. The non-toxic OMS/RCS also provides improved space station reboost capability up to 20 nautical miles over the current toxic system of 14 nautical miles. A NT OMS/RCS represents a clear advancement in the SOA over MMH/NTO. Liquid oxygen and ethanol are clean burning, high-density propellants that provide a high degree of commonality with other spacecraft subsystems including life support, power, and thermal control, and with future human exploration and development of space missions. The simple and reliable pressure-fed design uses sub-cooled liquid oxygen at 250 to 350 psia, which allows a propellant to remain cryogenic for longer periods of time. The key technologies are thermal insulation and conditioning techniques are used to maintain the sub-cooling. Phase I successfully defined the system architecture, designed an integrated OMS/RCS propellant tank, analyzed the feed system, built and tested the 870 lbf RCS thrusters, and tested the 6000 lbf OMS engine. Phase 11 is currently being planned for the development and test of full-scale prototype of the system in 1999 and 2000
A Theoretical Study of Flow Structure and Radiation for Multiphase Turbulent Diffusion Flames
1990-03-01
density function. According to the axial void fraction profile in Fig. 24, the flame length (the total penetration length) extends to x/d=150. By referring...temperature because of subcooling effect. Decreasing liquid temperature will increase condensation which in turn reduces the flame length as defined by
Forced Convection Boiling and Critical Heat Flux of Ethanol in Electrically Heated Tube Tests
NASA Technical Reports Server (NTRS)
Meyer, Michael L.; Linne, Diane L.; Rousar, Donald C.
1998-01-01
Electrically heated tube tests were conducted to characterize the critical heat flux (transition from nucleate to film boiling) of subcritical ethanol flowing at conditions relevant to the design of a regeneratively cooled rocket engine thrust chamber. The coolant was SDA-3C alcohol (95% ethyl alcohol, 5% isopropyl alcohol by weight), and tests were conducted over the following ranges of conditions: pressure from 144 to 703 psia, flow velocities from 9.7 to 77 ft/s, coolant subcooling from 33 to 362 F, and critical heat fluxes up to 8.7 BTU/in(exp 2)/sec. For the data taken near 200 psia, critical heat flux was correlated as a function of the product of velocity and fluid subcooling to within +/- 20%. For data taken at higher pressures, an additional pressure term is needed to correlate the critical heat flux. It was also shown that at the higher test pressures and/or flow rates, exceeding the critical heat flux did not result in wall burnout. This result may significantly increase the engine heat flux design envelope for higher pressure conditions.
The influence of liquid/vapor phase change onto the Nusselt number
NASA Astrophysics Data System (ADS)
Popescu, Elena-Roxana; Colin, Catherine; Tanguy, Sebastien
2017-11-01
In spite of its significant interest in various fields, there is currently a very few information on how an external flow will modify the evaporation or the condensation of a liquid surface. Although most applications involve turbulent flows, the simpler configuration where a laminar superheated or subcooled vapor flow is shearing a saturated liquid interface has still never been solved. Based on a numerical approach, we propose to characterize the interaction between a laminar boundary layer of a superheated or subcooled vapor flow and a static liquid pool at saturation temperature. By performing a full set of simulations sweeping the parameters space, correlations are proposed for the first time on the Nusselt number depending on the dimensionless numbers that characterize both vaporization and condensation. As attended, the Nusselt number decreases or increases in the configurations involving respectively vaporization or condensation. More unexpected is the behaviour of the friction of the vapor flow on the liquid pool, for which we report that it is weakly affected by the phase change, despite the important variation of the local flow structure due to evaporation or condensation.
Analysis of water microdroplet condensation on silicon surfaces
NASA Astrophysics Data System (ADS)
Honda, Takuya; Fujimoto, Kenya; Yoshimoto, Yuta; Mogi, Katsuo; Kinefuchi, Ikuya; Sugii, Yasuhiko; Takagi, Shu; Univ. of Tokyo Team; Tokyo Inst. of Tech. Team
2016-11-01
We observed the condensation process of water microdroplets on flat silicon (100) surfaces by means of the sequential visualization of the droplets using an environmental scanning electron microscope. As previously reported for nanostructured surfaces, the condensation process of water microdroplets on the flat silicon surfaces also exhibits two modes: the constant base (CB) area mode and the constant contact angle (CCA) mode. In the CB mode, the contact angle increases with time while the base diameter is constant. Subsequently, in the CCA mode, the base diameter increases with time while the contact angle remains constant. The dropwise condensation model regulated by subcooling temperature does not reproduce the experimental results. Because the subcooling temperature is not constant in the case of a slow condensation rate, this model is not applicable to the condensation of the long time scale ( several tens of minutes). The contact angle of water microdroplets ( several μm) tended to be smaller than the macro contact angle. Two hypotheses are proposed as the cause of small contact angles: electrowetting and the coalescence of sub- μm water droplets.
NASA Astrophysics Data System (ADS)
Matsumoto, T.; Shirai, Y.; Shiotsu, M.; Fujita, K.; Kainuma, T.; Tatsumoto, H.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.
2017-12-01
Liquid hydrogen has excellent physical properties, high latent heat and low viscosity of liquid, as a coolant for superconductors like MgB2. The knowledge of Departure from Nucleate Boiling (DNB) heat flux of liquid hydrogen is necessary for designing and cooling analysis of high critical temperature superconducting devices. In this paper, DNB heat fluxes of liquid hydrogen were measured under saturated and subcooled conditions at absolute pressures of 400, 700 and 1100 kPa for various flow velocities. Two wire test heaters made by Pt-Co alloy with the length of 200 mm and the diameter of 0.7 mm were used. And these round heaters were set in central axis of a flow channel made of Fiber Reinforced Plastic (FRP) with inner diameters of 8 mm and 12 mm. These test bodies were vertically mounted and liquid hydrogen flowed upward through the channel. From these experimental values, the correlations of DNB heat flux under saturated and subcooled conditions are presented in this paper.
NASA Astrophysics Data System (ADS)
Yamashiro, Hikaru; Nakashima, Ryou
The effects of ultrasonic vibration on heat transfer characteristics of lithium bromide aqueous solution under the reduced pressures are studied experimentally. Pool boiling curves on horizontal smooth tube are obtained using distilled water and 50 % LiBr aqueous solution as test liquids. The system pressure p is varied from 12 to 101 kPa and the liquid subcooling ΔTsub ranges from 0 to 70 K. The frequency of ultrasonic vibration vi s set at 24 and 44 kHz, and the power input to the vibrator P is varied from 0 to 35 W. The wall superheat at the boiling incipience is found to decrease with increasing P, and the nucleate boiling curve shifts toward the lower wall temperature region. However, the effect of P is not found to be very significant in the high heat flux region, especially in the case of small liquid subcooling. Ultrasonic vibration is also found to improve the nucleate boiling heat transfer coefficient by up to a maximum of 3.5 times and to prevent crystallization of the solution and precipitation of additives.
NASA Astrophysics Data System (ADS)
Jin, Lingxue; Lee, Cheonkyu; Baek, Seungwhan; Jeong, Sangkwon
2018-07-01
Liquid nitrogen (LN2) is commonly used as the coolant of a high temperature superconductor (HTS) power cable. The LN2 is continuously cooled by a subcooler to maintain an appropriate operating temperature of the cable. This paper proposes two Joule-Thomson (JT) refrigeration cycles for subcooling the LN2 coolant by using nitrogen itself as the working fluid. Additionally, an innovative HTS cooling cycle, of which the cable coolant and the refrigerant are unified and supplied from the same source, is suggested and analyzed in detail. Among these cycles, the highest COP is obtained in the JT cycle with a vacuum pump (Cycle A) which is 0.115 at 78 K, and the Carnot efficiency is 32.8%. The integrated HTS cooling cycle (Cycle C) can reach the maximum COP of 0.087, and the Carnot efficiency of 24.8%. Although Cycle C has a relatively low cycle efficiency when compared to that of the separated refrigeration cycle, it can be a good alternative in engineering applications, because the assembled hardware has few machinery components in a more compact configuration than the other cycles.
NASA Technical Reports Server (NTRS)
Tomsik, Thomas M.
2002-01-01
Propellant densification has been identified as a critical technology in the development of single-stage-to-orbit reusable launch vehicles. Technology to create supercooled high-density liquid oxygen (LO2) and liquid hydrogen (LH2) is a key means to lowering launch vehicle costs. The densification of cryogenic propellants through subcooling allows 8 to 10 percent more propellant mass to be stored in a given unit volume, thereby improving the launch vehicle's overall performance. This allows for higher propellant mass fractions than would be possible with conventional normal boiling point cryogenic propellants, considering the normal boiling point of LO2 and LH2.
NASA Technical Reports Server (NTRS)
Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.
2007-01-01
Due to its high specific impulse and favorable thermal properties for storage, liquid methane (LCH4) is being considered as a candidate propellant for exploration architectures. In order to gain an -understanding of any unique considerations involving micro-gravity pressure control with LCH4, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the performance of a spray-bar thermodynamic vent system (TVS) with subcooled LCH4 and gaseous helium (GHe) pressurant. Thirteen days of testing were performed in November 2006, with total tank heat leak conditions of about 715 W and 420 W at a fill level of approximately 90%. The TVS system was used to subcool the LCH4 to a liquid saturation pressure of approximately 55.2 kPa before the tank was pressurized with GHe to a total pressure of 165.5 kPa. A total of 23 TVS cycles were completed. The TVS successfully controlled the ullage pressure within a prescribed control band but did not maintain a stable liquid saturation pressure. This was likely. due to a TVS design not optimized for this particular propellant and test conditions, and possibly due to a large artificially induced heat input directly into the liquid. The capability to reduce liquid saturation pressure as well as maintain it within a prescribed control band, demonstrated that the TVS could be used to seek and maintain a desired liquid inlet temperature for an engine (at a cost of propellant lost through the TVS vent). One special test was conducted at the conclusion of the planned test activities. Reduction of the tank ullage pressure by opening the Joule-Thomson valve (JT) without operating the pump was attempted. The JT remained open for over 9300 seconds, resulting in an ullage pressure reduction of 30 kPa. The special test demonstrated the feasibility of using the JT valve for limited ullage pressure reduction in the event of a pump failure.
Experiments on the effects of nanoparticles on subcooled nucleate pool boiling
NASA Astrophysics Data System (ADS)
Kangude, Prasad; Bhatt, Dhairya; Srivastava, Atul
2018-05-01
The effect of nanoparticles on a single bubble-based nucleate pool boiling phenomenon under subcooled conditions has been studied. Water (as the base fluid) and two different concentrations of water-silica nanofluids (0.005% and 0.01% V/V) have been employed as the working fluids. The boiling experiments have been conducted in a specially designed chamber, wherein an ITO-coated heater substrate has been used to induce single bubble nucleation. Measurements have been performed in a completely non-intrusive manner using one of the refractive index-based diagnostics techniques, namely, rainbow schlieren deflectometry. Thus, the thermal gradients prevailing in the boiling chamber have directly been mapped as a two-dimensional distribution of hue values that are recorded in the form of rainbow schlieren images. The schlieren-based measurements clearly revealed the plausible influence of nanoparticles on the strength of temperature gradients prevailing in the boiling chamber. As compared to the base fluid, the experiments with dilute nanofluids showed that the suspended nanoparticles tend to diffuse (homogenize) the strength of temperature gradients, both in the vicinity of the heated substrate and in the thermal boundary layer enveloping the vapor bubble. An overall reduction in the bubble volume and dynamic contact angle was seen with increasing concentrations of dilute nanofluids. In addition, the vapor bubble was found to assume a more spherical shape at higher concentrations of dilute nanofluids in comparison to its shape with water-based experiments. Clear oscillations of the vapor bubble in the subcooled pool of liquids (water and/or nanofluids) were observed, the frequency of which was found to be significantly reduced as the nanoparticle concentration was increased from 0% (water) to 0.01% (V/V). A force balance analysis has been performed to elucidate the plausible mechanisms explaining the observed trends of the oscillation frequencies of the vapor bubble.
Moisture Separator Reheater for NPP Turbines
NASA Astrophysics Data System (ADS)
Manabe, Jun; Kasahara, Jiro
This paper introduces the development of the current model Moisture Separator Reheater (MSR) for nuclear power plant (NPP) turbines, commercially placed in service in the period 1984-1997, focusing on the mist separation performance of the MSR along with drainage from heat exchanger tubes. A method of predicting the mist separation performance was devised first based on the observation of mist separation behaviors under an air-water test. Then the method was developed for the application to predict under the steam conditions, followed by the verification in comparison with the actual results of a steam condition test. The instability of tube drainage associated with both sub-cooling and temperature oscillation might adversely affect the seal welding of tubes to tube sheet due to thermal fatigue. The instability was measured on an existing unit to clarify behaviors and the development of a method to suppress them. Both methods were applied to newly constructed units and the effectiveness of the methods was demonstrated.
NASA Technical Reports Server (NTRS)
Merino, F.; Wakabayashi, I.; Pleasant, R. L.; Hill, M.
1982-01-01
Preferred techniques for providing abort pressurization and engine feed system net positive suction pressure (NPSP) for low thrust chemical propulsion systems (LTPS) were determined. A representative LTPS vehicle configuration is presented. Analysis tasks include: propellant heating analysis; pressurant requirements for abort propellant dump; and comparative analysis of pressurization techniques and thermal subcoolers.
Enhancement of Boiling Heat Transfer in Di-Electric Fluids
1991-09-01
working fluid of R-I13. Maddox and Mudawar [Ref. 8] studied the effect of subcooling and surface aug- mentation on values of Critical Heat Flux (CHF). They...Enhanced Surfaces to Dielectric Fluids," A SME Journal of Heat Transfer, v.104, pp.292-299, May 1982. 8. Maddox D.E., and Mudawar ,I., "Single and Two
Burnout in the horizontal tubes of a furnace waterwall panel
NASA Astrophysics Data System (ADS)
Kamenetskii, B. Ya.
2009-08-01
An experimental study of heat transfer that occurs in tubes nonuniformly heated over the perimeter at low velocities of subcooled water flowing in them is presented. Experiments with unsteady supply of heat made it possible to determine heat fluxes under burnout conditions. Unusually low values of critical heat fluxes were obtained under such conditions.
Centaur propellant acquisition system study
NASA Technical Reports Server (NTRS)
Blatt, M. H.; Walter, M. D.
1975-01-01
A study was performed to determine the desirability of replacing the hydrogen peroxide settling system on the Centaur D-1S with a capillary acquisition system. A comprehensive screening was performed to select the most promising capillary device fluid acquisition, thermal conditioning, and fabrication techniques. Refillable start baskets and bypass feed start tanks were selected for detailed design. Critical analysis areas were settling and refilling, start sequence development with an initially dry boost pump, and cooling the fluid delivered to the boost pump in order to provide necessary net position suction head (NPSH). Design drawings were prepared for the start basket and start tank concepts for both LO2 and LH2 tanks. System comparisons indicated that the start baskets using wicking for thermal conditioning, and thermal subcooling for boost pump NPSH, are the most desirable systems for future development.
Centaur propellant acquisition system
NASA Technical Reports Server (NTRS)
Blatt, M. H.; Aydelott, J. C.
1975-01-01
The desirability of replacing the hydrogen peroxide settling system of the Centaur D-1S with a capillary acquisition system was evaluated. A comprehensive screening was performed to select the most promising capillary device fluid acquisition, thermal conditioning, and fabrication techniques. Refillable start baskets and bypass feed start tanks were selected for detailed design. Critical analysis areas were settling and refilling, start sequence development with an initially dry boost pump, and cooling the fluid delivered to the boost pump to provide the necessary net positive suction head (NPSH). Design drawings were prepared for start basket and start tank concepts for both the liquid oxygen and liquid hydrogen tanks. System comparisons indicated that the start baskets using wicking flow for thermal conditioning, and thermal subcooling for providing boost pump NPSH, are the most desirable systems for future Centaur acquisition system development.
Numerical study on the flow and heat transfer characteristics of slush nitrogen in a corrugated pipe
NASA Astrophysics Data System (ADS)
Li, Y. J.; Wu, S. Q.; Jin, T.
2017-12-01
Slush nitrogen has lower temperature, higher density and higher heat capacity than that of liquid nitrogen at normal boiling point. It is considered to be a potential coolant for high-temperature superconductive cables (HTS) that would decrease nitrogen consumption and storage cost. The corrugated pipe can help with the enhancement of heat transfer and flexibility of the coolants for HTS cables. In this paper, a 3-D Euler-Euler two-fluid model has been developed to study the flow and heat transfer characteristics of slush nitrogen in a horizontal helically corrugated pipe. By comparing with the empirical formula for pressure drop, the numerical model is confirmed to be effective for the prediction of slush nitrogen flow in corrugated pipes. The flow and heat transfer characteristics of slush nitrogen in a horizontal pipe at various working conditions (inlet solid fraction of 0-20%, inlet velocity of 0-3 m/s, heat flux of 0-12 kW/m2) have been analyzed. The friction factor of slush nitrogen is lower than that of subcooled liquid nitrogen when the slush Reynolds number is higher than 4.2×104. Moreover, the heat transfer coefficient of slush nitrogen flow in the corrugated pipe is higher than that of subcooled liquid nitrogen at velocities which is higher than that 1.76 m/s, 0.91 m/s and 0.55 m/s for slush nitrogen with solid fraction of 5%, 10% and 20%, respectively. The slush nitrogen has been confirmed to have better heat transfer performance and lower pressure drop instead of using liquid nitrogen flowing through a helically corrugated pipe.
Gauging Systems Monitor Cryogenic Liquids
NASA Technical Reports Server (NTRS)
2009-01-01
Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.
Boiling Heat-Transfer Processes and Their Application in the Cooling of High Heat Flux Devices
1993-06-01
1991, pp. 395-397. 385. Galloway, J. E. and Mudawar , 1. "Critical Heat Flux Enhancement by Means of Liquid Subcooling and Centrifugal Force Induced...Flow Boiling Heat Transfer for a Spirally Fluted Tube." Heat Tran~ler Engineering, Vol. 13, No.1, 1992, pp. 42-52. 390. Willingham, T. C. and Mudawar
Gas hydrate cool storage system
Ternes, Mark P.; Kedl, Robert J.
1985-01-01
This invention is a process for formation of a gas hydrate to be used as a cool storage medium using a refrigerant in water. Mixing of the immiscible refrigerant and water is effected by addition of a surfactant and agitation. The difficult problem of subcooling during the process is overcome by using the surfactant and agitation and performance of the process significantly improves and approaches ideal.
The conventional Junge-Pankow adsorption model uses the sub-cooled liquid vapor pressure (pLo) as a correlation parameter for gas/particle interactions. An alternative is the octanol-air partition coefficient (Koa) absorption model. Log-log plots of the particle-gas partition c...
Effect of force fields on pool boiling flow patterns in normal and reduced gravity
NASA Astrophysics Data System (ADS)
di Marco, P.; Grassi, W.
2009-05-01
This paper reports the observations of boiling flow patterns in FC-72, performed during a microgravity experiment, recently flown aboard of Foton-M2 satellite, in some instances with the additional aid of an electrostatic field to replace the buoyancy force. The heater consisted of a flat plate, 20 × 20 mm2, directly heated by direct current. Several levels of liquid subcooling (from 20 to 6 K) and heat fluxes up to 200 kW/m2 were tested. A complete counterpart test, carried out on ground before the mission, allowed direct comparison with terrestrial data. The void fraction in microgravity revealed much larger than in normal gravity condition: this may be attributed to increased bubble coalescence that hinders vapor condensation in the bulk of the subcooled fluid. In several cases, an oscillatory boiling behavior was detected, leading to periodical variation of average wall overheating of some degrees. The electric field confirmed to be very effective, even at low values of applied voltage, in reducing bubble size, thus improving their condensation rate in the bulk fluid, and in enhancing heat transfer performance, suppressing the boiling oscillations and preventing surface dryout.
Heat pump system with selective space cooling
Pendergrass, J.C.
1997-05-13
A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve. 4 figs.
Heat pump system with selective space cooling
Pendergrass, Joseph C.
1997-01-01
A reversible heat pump provides multiple heating and cooling modes and includes a compressor, an evaporator and heat exchanger all interconnected and charged with refrigerant fluid. The heat exchanger includes tanks connected in series to the water supply and a condenser feed line with heat transfer sections connected in counterflow relationship. The heat pump has an accumulator and suction line for the refrigerant fluid upstream of the compressor. Sub-cool transfer tubes associated with the accumulator/suction line reclaim a portion of the heat from the heat exchanger. A reversing valve switches between heating/cooling modes. A first bypass is operative to direct the refrigerant fluid around the sub-cool transfer tubes in the space cooling only mode and during which an expansion valve is utilized upstream of the evaporator/indoor coil. A second bypass is provided around the expansion valve. A programmable microprocessor activates the first bypass in the cooling only mode and deactivates the second bypass, and vice-versa in the multiple heating modes for said heat exchanger. In the heating modes, the evaporator may include an auxiliary outdoor coil for direct supplemental heat dissipation into ambient air. In the multiple heating modes, the condensed refrigerant fluid is regulated by a flow control valve.
Large-scale boiling experiments of the flooded cavity concept for in-vessel core retention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, T.Y.; Slezak, S.E.; Bentz, J.H.
1994-03-01
This paper presents results of ex-vessel boiling experiments performed in the CYBL (CYlindrical BoiLing) facility. CYBL is a reactor-scale facility for confirmatory research of the flooded cavity concept for accident management. CYBL has a tank-within-a-tank design; the inner tank simulates the reactor vessel and the outer tank simulates the reactor cavity. Experiments with uniform and edge-peaked heat flux distributions up to 20 W/cm{sup 2} across the vessel bottom were performed. Boiling outside the reactor vessel was found to be subcooled nucleate boiling. The subcooling is mainly due to the gravity head which results from flooding the sides of the reactormore » vessel. The boiling process exhibits a cyclic pattern with four distinct phases: direct liquid/solid contact, bubble nucleation and growth, coalescence, and vapor mass dispersion (ejection). The results suggest that under prototypic heat load and heat flux distributions, the flooded cavity in a passive pressurized water reactor like the AP-600 should be capable of cooling the reactor pressure vessel in the central region of the lower head that is addressed by these tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maagd, P.G.J. de; Opperhuizen, A.; Sijm, D.T.H.M.
Aqueous solubilities, n-octanol/water partition coefficients (K{sub ow}S), and Henry`s law constants were determined for a range of polycyclic aromatic hydrocarbons (PAHs) using a generator-column, slow-stirring, and gas-purge method, respectively. The currently obtained data were compared to available literature data. For seven of the PAHs no K{sub ow}S previously were determined with the slow-stirring method. For four of the PAHs the present study reports the first experimental Henry`s law constants. Relationships between subcooled liquid solubilities, K{sub ow}S, and Henry`s law constants as a function of molar volume are discussed. A consistent data set was obtained, for which an excellent correlation wasmore » found between subcooled liquid solubility and molar volume. A linear fit did not accurately describe the relationship between log K{sub ow} and molar volume. This is probably due to a decreasing solubility in n-octanol with increasing molar volume. Finally, a high correlation was found between Henry`s law constant and molar volume. The presently obtained dataset can be used to predict the fate and behavior of unsubstituted homocyclic PAHs.« less
Boiling incipience and convective boiling of neon and nitrogen
NASA Technical Reports Server (NTRS)
Papell, S. S.; Hendricks, R. C.
1977-01-01
Forced convection and subcooled boiling heat transfer data for liquid nitrogen and liquid neon were obtained in support of a design study for a 30 tesla cryomagnet cooled by forced convection of liquid neon. This design precludes nucleate boiling in the flow channels as they are too small to handle vapor flow. Consequently, it was necessary to determine boiling incipience under the operating conditions of the magnet system. The cryogen data obtained over a range of system pressures, fluid flow rates, and applied heat fluxes were used to develop correlations for predicting boiling incipience and convective boiling heat transfer coefficients in uniformly heated flow channels. The accuracy of the correlating equations was then evaluated. A technique was also developed to calculate the position of boiling incipience in a uniformly heated flow channel. Comparisons made with the experimental data showed a prediction accuracy of plus or minus 15 percent
Implicitly solving phase appearance and disappearance problems using two-fluid six-equation model
Zou, Ling; Zhao, Haihua; Zhang, Hongbin
2016-01-25
Phase appearance and disappearance issue presents serious numerical challenges in two-phase flow simulations using the two-fluid six-equation model. Numerical challenges arise from the singular equation system when one phase is absent, as well as from the discontinuity in the solution space when one phase appears or disappears. In this work, a high-resolution spatial discretization scheme on staggered grids and fully implicit methods were applied for the simulation of two-phase flow problems using the two-fluid six-equation model. A Jacobian-free Newton-Krylov (JFNK) method was used to solve the discretized nonlinear problem. An improved numerical treatment was proposed and proved to be effectivemore » to handle the numerical challenges. The treatment scheme is conceptually simple, easy to implement, and does not require explicit truncations on solutions, which is essential to conserve mass and energy. Various types of phase appearance and disappearance problems relevant to thermal-hydraulics analysis have been investigated, including a sedimentation problem, an oscillating manometer problem, a non-condensable gas injection problem, a single-phase flow with heat addition problem and a subcooled flow boiling problem. Successful simulations of these problems demonstrate the capability and robustness of the proposed numerical methods and numerical treatments. As a result, volume fraction of the absent phase can be calculated effectively as zero.« less
114. WEST SIDE OF LIQUID OXYGEN CONTROL ROOM (205). LIQUID ...
114. WEST SIDE OF LIQUID OXYGEN CONTROL ROOM (205). LIQUID NITROGEN (LN2) SUBCOOLER ON LEFT; SKID 8, LIQUID OXYGEN CONTROLLER FOR SWITCHING BETWEEN RAPID-LOAD AND TOPPING ON RIGHT. LIQUID OXYGEN LINE FROM SKID 9A AT RIGHT EDGE OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yooa, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.
In this second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubbles’ characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles. Our results showed that slidingmore » bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., ur<0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size. Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. Particularly, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel.« less
Yooa, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.
2016-04-28
In this second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubbles’ characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles. Our results showed that slidingmore » bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., ur<0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size. Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. Particularly, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel.« less
Paz, Concepción; Conde, Marcos; Porteiro, Jacobo; Concheiro, Miguel
2017-01-01
This work introduces the use of machine vision in the massive bubble recognition process, which supports the validation of boiling models involving bubble dynamics, as well as nucleation frequency, active site density and size of the bubbles. The two algorithms presented are meant to be run employing quite standard images of the bubbling process, recorded in general-purpose boiling facilities. The recognition routines are easily adaptable to other facilities if a minimum number of precautions are taken in the setup and in the treatment of the information. Both the side and front projections of subcooled flow-boiling phenomenon over a plain plate are covered. Once all of the intended bubbles have been located in space and time, the proper post-process of the recorded data become capable of tracking each of the recognized bubbles, sketching their trajectories and size evolution, locating the nucleation sites, computing their diameters, and so on. After validating the algorithm’s output against the human eye and data from other researchers, machine vision systems have been demonstrated to be a very valuable option to successfully perform the recognition process, even though the optical analysis of bubbles has not been set as the main goal of the experimental facility. PMID:28632158
Wen, Rongfu; Xu, Shanshan; Zhao, Dongliang; Lee, Yung-Cheng; Ma, Xuehu; Yang, Ronggui
2017-12-27
Self-propelled droplet jumping on nanostructured superhydrophobic surfaces is of interest for a variety of industrial applications including self-cleaning, water harvesting, power generation, and thermal management systems. However, the uncontrolled nucleation-induced Wenzel state of condensed droplets at large surface subcooling (high heat flux) leads to the formation of unwanted large pinned droplets, which results in the flooding phenomenon and greatly degrades the heat transfer performance. In this work, we present a novel strategy to manipulate droplet behaviors during the process from the droplet nucleation to growth and departure through a combination of spatially controlling initial nucleation for mobile droplets by closely spaced nanowires and promoting the spontaneous outward movement of droplets for rapid removal using micropatterned nanowire arrays. Through the optical visualization experiments and heat transfer tests, we demonstrate greatly improved condensation heat transfer characteristics on the hierarchical superhydrophobic surface including the higher density of microdroplets, smaller droplet departure radius, 133% wider range of surface subcooling for droplet jumping, and 37% enhancement in critical heat flux for jumping droplet condensation, compared to the-state-of-art jumping droplet condensation on nanostructured superhydrophobic surfaces. The excellent water repellency of such hierarchical superhydrophobic surfaces can be promising for many potential applications, such as anti-icing, antifogging, water desalination, and phase-change heat transfer.
Heat transfer and pressure drop of condensation of hydrocarbons in tubes
NASA Astrophysics Data System (ADS)
Fries, Simon; Skusa, Severin; Luke, Andrea
2018-03-01
The heat transfer coefficient and pressure drop are investigated for propane. Two different mild steel plain tubes and saturation pressures are considered for varying mass flux and vapour quality. The pressure drop is compared to the Friedel-Correlation with two different approaches to determine the friction factor. The first is calculation as proposed by Friedel and the second is through single phase pressure drop investigations. For lower vapour qualities the experimental results are in better agreement with the approach of the calculated friction factor. For higher vapour qualities the experimental friction factor is more precise. The pressure drop increases for a decreasing tube diameter and saturation pressure. The circumferential temperature profile and heat transfer coefficients are shown for a constant vapour quality at varying mass fluxes. The subcooling is highest for the bottom of the tube and lowest for the top. The average subcooling as well as the circumferential deviation decreases for rising mass fluxes. The averaged heat transfer coefficients are compared to the model proposed by Thome and Cavallini. The experimental results are in good agreement with both correlations, however the trend is better described with the correlation from Thome. The experimental heat transfer coefficients are under predicted by Thome and over predicted by Cavallini.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Rongfu; Xu, Shanshan; Zhao, Dongliang
Self-propelled droplet jumping on nanostructured superhydrophobic surfaces is of interest for a variety of industrial applications including self-cleaning, water harvesting, power generation, and thermal management systems. However, the uncontrolled nucleation-induced Wenzel state of condensed droplets at large surface subcooling (high heat flux) leads to the formation of unwanted large pinned droplets, which results in the flooding phenomenon and greatly degrades the heat transfer performance. In this work, we present a novel strategy to manipulate droplet behaviors during the process from the droplet nucleation to growth and departure through a combination of spatially controlling initial nucleation for mobile droplets by closelymore » spaced nanowires and promoting the spontaneous outward movement of droplets for rapid removal using micropatterned nanowire arrays. Through the optical visualization experiments and heat transfer tests, we demonstrate greatly improved condensation heat transfer characteristics on the hierarchical superhydrophobic surface including the higher density of microdroplets, smaller droplet departure radius, 133% wider range of surface subcooling for droplet jumping, and 37% enhancement in critical heat flux for jumping droplet condensation, compared to the-state-of-art jumping droplet condensation on nanostructured superhydrophobic surfaces. The excellent water repellency of such hierarchical superhydrophobic surfaces can be promising for many potential applications, such as anti-icing, antifogging, water desalination, and phase-change heat transfer.« less
Fugacity ratio estimations for high-melting rigid aromatic compounds.
Van Noort, Paul C M
2004-07-01
Prediction of the environmental fate of organic compounds requires knowledge of their tendency to stay in the gas and water phase. Vapor pressure and aqueous solubility are commonly used descriptors for these processes. Depending on the type of distribution process, values for either the pure solid state or the (subcooled) liquid state have to be used. Values for the (subcooled) liquid state can be calculated from those for the solid state, and vice versa, using the fugacity ratio. Fugacity ratios are usually calculated from the entropy of fusion and the melting point. For polycyclic aromatic hydrocarbons, chlorobenzenes, chlorodibenzofuranes, and chlorodibenzo(p)dioxins, fugacity ratios calculated using experimental entropies of fusion were systematically less than those obtained from a thermodynamically more rigorous approach using heat capacity data. The deviation was more than 1 order of magnitude at the highest melting point. The use of a universal value for the entropy of fusion of 56 J/molK resulted in either over or underestimation by up to more than 1 order of magnitude. A simple correction factor, based on the melting point only, was derived. This correction factor allowed the fugacity ratios to be estimated from experimental entropies of fusion and melting point with an accuracy better than 0.1-0.2 log units. Copyright 2004 Elsevier Ltd.
Pectin as an Extraordinary Natural Kinetic Hydrate Inhibitor
Xu, Shurui; Fan, Shuanshi; Fang, Songtian; Lang, Xuemei; Wang, Yanhong; Chen, Jun
2016-01-01
Pectin as a novel natural kinetic hydrate inhibitor, expected to be eco-friendly and sufficiently biodegradable, was studied in this paper. The novel crystal growth inhibition (CGI) and standard induction time methods were used to evaluate its effect as hydrate inhibitor. It could successfully inhibit methane hydrate formation at subcooling temperature up to 12.5 °C and dramatically slowed the hydrate crystal growth. The dosage of pectin decreased by 66% and effective time extended 10 times than typical kinetic inhibitor. Besides, its maximum growth rate was no more than 2.0%/h, which was far less than 5.5%/h of growth rate for PVCap at the same dosage. The most prominent feature was that it totally inhibited methane hydrate crystal rapid growth when hydrate crystalline occurred. Moreover, in terms of typical natural inhibitors, the inhibition activity of pectin increased 10.0-fold in induction time and 2.5-fold in subcooling temperature. The extraordinary inhibition activity is closely related to its hydrogen bonding interaction with water molecules and the hydrophilic structure. Finally, the biodegradability and economical efficiency of pectin were also taken into consideration. The results showed the biodegradability improved 75.0% and the cost reduced by more than 73.3% compared to typical commercial kinetic inhibitors. PMID:26996773
Thermocapillary flow with evaporation and condensation at low gravity. Part 2: Deformable surface
NASA Technical Reports Server (NTRS)
Schmidt, G. R.; Chung, T. J.; Nadarajah, A.
1995-01-01
The free surface behavior of a volatile wetting liquid at low gravity is studied using scaling and numerical techniques. An open cavity model, which was applied in part 1 to investigate fluid flow and heat transfer in non-deforming pores, is used to evaluate the influence of convection on surface morphology with length scales and subcooling/superheating limits of 1 less than or equal to D less than or equal to 10(exp 2) microns and approximately 1 K, respectively. Results show that the menisci shapes of highly wetting fluids are sensitive to thermocapillary flow and to a lesser extent the recoil force associated with evaporation and condensation. With subcooling, thermocapillarity produces a suction about the pore centerline that promotes loss of mechanical equilibrium, while condensation exerts an opposing force that under some conditions offsets this destabilizing influence. With superheating, thermocapillarity and evaporation act in the same direction and mutually foster surface stability. All of these trends are magnified by high capillary and Biot numbers, and the stronger circulation intensities associated with small contact angles. These phenomena strongly depend on the thermal and interfacial equilibrium between the liquid and vapor, and have important ramifications for systems designed to maintain a pressure differential across a porous surface.
Wen, Rongfu; Xu, Shanshan; Zhao, Dongliang; ...
2017-12-07
Self-propelled droplet jumping on nanostructured superhydrophobic surfaces is of interest for a variety of industrial applications including self-cleaning, water harvesting, power generation, and thermal management systems. However, the uncontrolled nucleation-induced Wenzel state of condensed droplets at large surface subcooling (high heat flux) leads to the formation of unwanted large pinned droplets, which results in the flooding phenomenon and greatly degrades the heat transfer performance. In this work, we present a novel strategy to manipulate droplet behaviors during the process from the droplet nucleation to growth and departure through a combination of spatially controlling initial nucleation for mobile droplets by closelymore » spaced nanowires and promoting the spontaneous outward movement of droplets for rapid removal using micropatterned nanowire arrays. Through the optical visualization experiments and heat transfer tests, we demonstrate greatly improved condensation heat transfer characteristics on the hierarchical superhydrophobic surface including the higher density of microdroplets, smaller droplet departure radius, 133% wider range of surface subcooling for droplet jumping, and 37% enhancement in critical heat flux for jumping droplet condensation, compared to the-state-of-art jumping droplet condensation on nanostructured superhydrophobic surfaces. The excellent water repellency of such hierarchical superhydrophobic surfaces can be promising for many potential applications, such as anti-icing, antifogging, water desalination, and phase-change heat transfer.« less
Interfacial area transport of steam-water two-phase flow in a vertical annulus at elevated pressures
NASA Astrophysics Data System (ADS)
Ozar, Basar
Analysis of accident scenarios in nuclear reactors are done by using codes such as TRACE and RELAP5. Large oscillations in the core void fraction are observed in calculations of advanced passive light water reactors (ALWRs), especially during the low pressure long-term cooling phase. These oscillations are attributed to be numerical in nature and served to limit the accuracy as well as the credibility of the calculations. One of the root causes of these unphysical oscillations is determined to be flow regime transitions caused by the usage of static flow regime maps. The interfacial area transport equation was proposed earlier in order to address these issues. Previous research successfully developed the foundation of the interfacial area transport equation and the experimental techniques needed for the measurement of interfacial area, bubble diameters and velocities. In the past, an extensive database has been then generated for adiabatic air-water conditions in vertical upward and downward bubbly-churn turbulent flows in pipes. Using this database, mechanistic models for the creation (bubble breakup) and destruction (bubble coalescence) of interfacial area have been developed for the bubblyslug flow regime transition. However, none of these studies investigated the effect of phase change. To address this need, a heated annular test section was designed and constructed. The design relied on a three level scaling approach: geometric scaling; hydrodynamic scaling; thermal scaling. The test section consisted of a heated and unheated section in order to study the sub-cooled boiling and bulk condensation/flashing and evaporation phenomena, respectively. Steam-water two-phase flow tests were conducted under sub-cooled boiling conditions in the heated section and with sub-cooled/super-heated bulk liquid in the unheated section. The modeling of interfacial area transport equation with phase change effects was introduced and discussed. Constitutive relations, which took phase change effects into account, for interfacial area transport equation were proposed and implemented. Effects of these constitutive relations on the prediction capability of the transport equation were discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anh Bui; Nam Dinh; Brian Williams
In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Suchmore » sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable quantitative assessment of the CASL modeling of Crud-Induced Power Shift (CIPS) phenomenon, in particular, and the CASL advanced predictive capabilities, in general. This report is prepared for the Department of Energy’s Consortium for Advanced Simulation of LWRs program’s VUQ Focus Area.« less
Untermyer, S.
1962-04-10
A boiling reactor having a reactivity which is reduced by an increase in the volume of vaporized coolant therein is described. In this system unvaporized liquid coolant is extracted from the reactor, heat is extracted therefrom, and it is returned to the reactor as sub-cooled liquid coolant. This reduces a portion of the coolant which includes vaporized coolant within the core assembly thereby enhancing the power output of the assembly and rendering the reactor substantially self-regulating. (AEC)
Recent Progress in Electrical Insulation Techniques for HTS Power Apparatus
NASA Astrophysics Data System (ADS)
Hayakawa, Naoki; Kojima, Hiroki; Hanai, Masahiro; Okubo, Hitoshi
This paper describes the electrical insulation techniques at cryogenic temperatures, i.e. Cryodielectrics, for HTS power apparatus, e.g. HTS power transmission cables, transformers, fault current limiters and SMES. Breakdown and partial discharge characteristics are discussed for different electrical insulation configurations of LN2, sub-cooled LN2, solid, vacuum and their composite insulation systems. Dynamic and static insulation performances with and without taking account of quench in HTS materials are also introduced.
NASA Astrophysics Data System (ADS)
Galvan, Manuel de Jesus
In the past years, hydrocarbon fuels have been the focus of attention as the interest in developing reusable, high-performing liquid rocket engines has grown. Liquid methane (LCH4) has been of particular interest because of the cost, handling, and storage advantages that it presents when compared to currently used propellants. Deep space exploration requires thrusters that can operate reliably during long-duration missions. One of the challenges in the development of a reliable engine has been providing adequate combustion chamber cooling to prevent engine failure. Regenerative (regen) cooling has presented itself as an appealing option because it provides improved cooling and engine efficiency over other types of cooling, such as film or dump cooling. Due to limited availability of experimental sub-critical liquid methane cooling data for pressure-fed regen engine design, there has been an interest in studying the heat transfer characteristics of the propellant. For this reason, recent experimental studies at the Center for Space Exploration Technology Research (cSETR) at the University of Texas at El Paso (UTEP) have focused on investigating the heat transfer characteristics of sub-critical CH4 flowing through smooth sub-scale cooling channels. In addition to investigating smooth channels, the cSETR has conducted experiments to investigate the effects of internal longitudinal fins on the heat transfer of methane. To conduct the experiments, the cSETR developed a conduction-based thermal concentrator known as the High Heat Flux Test Facility (HHFTF) in which the channels are heated. In this study, a smooth channel and three channels with longitudinal fins all with cross sectional geometries of 3.2 mm x 3.2 mm were tested. The Nusselt numbers ranged from 70 and 510, and Reynolds numbers were between 50,000 and 128,000. Sub-cooled film-boiling phenomena were discovered in the data pertaining to the smooth and two finned channels. Sub-cooled film-boiling was not observed in the channel that had the fins with the highest height. Film-boiling onset at Critical Heat Flux (CHF) was correlated to a Boiling Number (Bo) of approximately 0.1 for the channels studies. Convective Nusselt number follows predicted trends for Reynolds number with a wall temperature correction factor for both the boiling and non-boiling regimes.
Development of a low temperature phase change material package. [for spacecraft thermal control
NASA Technical Reports Server (NTRS)
Brennan, P. J.; Suelau, H. J.; Mcintosh, R.
1977-01-01
Test data obtained for a low temperature phase change material (PCM) canisters are presented. The canister was designed to provide up to 30 w-hrs of storage capacity at approximately -90 C with an overall thermal conductance which is greater than 8 w/deg C. N-heptane which is an n-paraffin and has a -90.6 C freezing point was used as the working fluid. The canister was fabricated from aluminum and has an aluminum honeycomb core. Its void volume permits service temperatures up to 70 C. Results obtained from component and system's tests indicate well defined melting and freezing points which are repeatable and within 1 C of each other. Subcooling effects are less than 0.5 C and are essentially negligible. Measured storage capacities are within 94 to 88% the theoretical.
Bearing tester data compilation, analysis, and reporting and bearing math modeling
NASA Technical Reports Server (NTRS)
1986-01-01
A test condition data base was developed for the Bearing and Seal Materials Tester (BSMT) program which permits rapid retrieval of test data for trend analysis and evaluation. A model was developed for the Space shuttle Main Engine (SSME) Liquid Oxygen (LOX) turbopump shaft/bearing system. The model was used to perform parametric analyses to determine the sensitivity of bearing operating characteristics and temperatures to variations in: axial preload, contact friction, coolant flow and subcooling, heat transfer coefficients, outer race misalignments, and outer race to isolator clearances. The bearing program ADORE (Advanced Dynamics of Rolling Elements) was installed on the UNIVAC 1100/80 computer system and is operational. ADORE is an advanced FORTRAN computer program for the real time simulation of the dynamic performance of rolling bearings. A model of the 57 mm turbine-end bearing is currently being checked out. Analyses were conducted to estimate flow work energy for several flow diverter configurations and coolant flow rates for the LOX BSMT.
NASA Astrophysics Data System (ADS)
Tatsumoto, H.; Shirai, Y.; Shiotsu, M.; Hata, K.; Kobayashi, H.; Naruo, Y.; Inatani, Y.; Kato, T.; Futakawa, M.; Kinoshita, K.
2010-06-01
A thermal-hydraulics experimental system of liquid hydrogen was developed in order to investigate the forced flow heat transfer characteristics in the various cooling channels for wide ranges of subcoolings, flow velocities, and pressures up to supercritical. A main tank is connected to a sub tank through a hydrogen transfer line with a control valve. A channel heater is located at one end of the transfer line in the main tank. Forced flow through the channel is produced by adjusting the pressure difference between the tanks and the valve opening. The mass flow rate is measured from the weight change of the main tank. For the explosion protection, electrical equipments are covered with a nitrogen gas blanket layer and a remote control system was established. The first cryogenic performance tests confirmed that the experimental system had satisfied with the required performances. The forced convection heat transfer characteristics was successfully measured at the pressure of 0.7 MPa for various flow velocities.
Study of liquid and vapor flow into a Centaur capillary device
NASA Technical Reports Server (NTRS)
Blatt, M. H.; Risberg, J. A.
1979-01-01
The following areas of liquid and vapor flow were analyzed and experimentally evaluated; 1) the refilling of capillary devices with settled liquid, and 2) vapor flow across wetted screens. These investigations resulted in: 1) the development of a versatile computer program that was successfully correlated with test data and used to predict Centaur D-1S LO2 and LH2 start basket refilling; 2) the development of a semi-empirical model that was only partially correlated with data due to difficulties in obtaining repeatable test results. Also, a comparison was made to determine the best propellant management system for the Centaur D-1S vehicle. The comparison identified the basline Centaur D-1S system (using pressurization, boost pumps and propellant settling) as the best candidate based on payload weight penalty. However, other comparison criteria and advanced mission condition were identified where pressure fed systems, thermally subcooled boost pumps and capillary devices would be selected as attractive alternatives.
Heat Transfer Enhancement due to Bubble Pumping in FC-72 Near the Saturation Temperature
1991-03-01
boiling, (2) reducing wall superheat during nucleate boiling and (3) enhancing critical heat flux ( Mudawar , 1990) . Since the heat transfer potential of...flux from a simulated electronic chip attached to the wall of a vertical rectangular channel was determined by Mudawar and Madox (1988). They concluded...Surface Boiling," Industrial and Engineering Chemistry, vol. 41, No. 9, 1949. Mudawar , I., and D.E. Maddox, Critical Heat Flux in Subcooled Flow Boiling
2013-09-01
heat transfer coefficients due to the high heat of vapor- ization. Many authors ([ Mudawar (2001)], [ Mudawar and Bowers (1999)] and [Kandlikar (2005...Letters, 95, (2005), 1. [Rosales and Meneveau (2006)] C. Rosales and C. Meneveau. Physics of Fluids, 18, (2006), 075104. [ Mudawar and Bowers (1999)] I... Mudawar and M.B. Bowers, Ultra-high crit- ical heat flux (CHF) for subcooled water flow boiling-I: CHF data and parametric effects for small
The Effect of Dissolved Air on the Cooling Performance of a Partially Confined FC-72 Spray
2008-07-01
95 iv LIST OF FIGURES Figure 1: Heat transfer coefficients: various processes and coolants ( Mudawar , 2001) .....1 Figure 2...various processes and coolants ( Mudawar , 2001). 2 In two-phase cooling a phase change of liquid to vapor, or boiling, occurs. The boiling...possible in flow boiling is also affected by the velocity of the flow and the amount of subcooling of the fluid ( Mudawar and Maddox, 1989). One highly
Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.; Vandresar, N. T.
1994-01-01
Experiments have been conducted to investigate the effect of fluid mixing on the depressurization of a large liquid hydrogen storage tank. The test tank is approximately ellipsoidal, having a volume of 4.89 m(exp 3) and an average wall heat flux of 4.2 W/m(exp 2) due to external heat input. A mixer unit was installed near the bottom of the tank to generate an upward directed axial jet flow normal to the liquid-vapor interface. Mixing tests were initiated after achieving thermally stratified conditions in the tank either by the introduction of hydrogen gas into the tank or by self-pressurization due to ambient heat leak through the tank wall. The subcooled liquid jet directed towards the liquid-vapor interface by the mixer induced vapor condensation and caused a reduction in tank pressure. Tests were conducted at two jet submergence depths for jet Reynolds numbers from 80,000 to 495,000 and Richardson numbers from 0.014 to 0.52. Results show that the rate of tank pressure change is controlled by the competing effects of subcooled jet flow and the free convection boundary layer flow due to external tank wall heating. It is shown that existing correlations for mixing time and vapor condensation rate based on small scale tanks may not be applicable to large scale liquid hydrogen systems.
NASA Astrophysics Data System (ADS)
Shibahara, Makoto; Fukuda, Katsuya; Liu, Qiusheng; Hata, Koichi
2018-02-01
The heat transfer characteristics of forced convection for subcooled water in small tubes were clarified using the commercial computational fluid dynamic (CFD) code, PHENICS ver. 2013. The analytical model consists of a platinum tube (the heated section) and a stainless tube (the non-heated section). Since the platinum tube was heated by direct current in the authors' previous experiments, a uniform heat flux with the exponential function was given as a boundary condition in the numerical simulation. Two inner diameters of the tubes were considered: 1.0 and 2.0 mm. The upward flow velocities ranged from 2 to 16 m/s and the inlet temperature ranged from 298 to 343 K. The numerical results showed that the difference between the surface temperature and the bulk temperature was in good agreement with the experimental data at each heat flux. The numerical model was extended to the liquid sublayer analysis for the CHF prediction and was evaluated by comparing its results with the experimental data. It was postulated that the CHF occurs when the fluid temperature near the heated wall exceeds the saturated temperature, based on Celata et al.'s superheated layer vapor replenishment (SLVR) model. The suggested prediction method was in good agreement with the experimental data and with other CHF data in literature within ±25%.
Bearing tester data compilation analysis, and reporting and bearing math modeling
NASA Technical Reports Server (NTRS)
Cody, J. C.
1986-01-01
Integration of heat transfer coefficients, modified to account for local vapor quality, into the 45 mm bearing model has been completed. The model has been evaluated with two flow rates and subcooled and saturated coolant. The evaluation showed that by increasing the flow from 3.6 to 7.0 lbs/sec the average ball temperature was decreased by 102 F, using a coolant temperature of -230 F. The average ball temperature was decreased by 63 F by decreasing the inlet coolant temperature from saturated to -230 F at a flow rate of 7.0 lbs/sec. Since other factors such as friction, cage heating, etc., affect bearing temperatures, the above bearing temperature effects should be considered as trends and not absolute values. The two phase heat transfer modification has been installed in the 57 mm bearing model and the effects on bearing temperatures have been evaluated. The average ball temperature was decreased by 60 F by increasing the flow rate from 4.6 to 9.0 lbs/sec for the subcooled case. By decreasing the inlet coolant temperature from saturation to -24 F, the average ball temperature was decreased 57 F for a flow rate of 9.0 lbs/sec. The technique of relating the two phase heat transfer coefficient to local vapor quality will be applied to the tester model and compared with test data.
Acoustically-Enhanced Direct Contact Vapor Bubble Condensation
NASA Astrophysics Data System (ADS)
Boziuk, Thomas; Smith, Marc; Glezer, Ari
2017-11-01
Rate-limited, direct contact vapor condensation of vapor bubbles that are formed by direct steam injection through a nozzle in a quiescent subcooled liquid bath is accelerated using ultrasonic (MHz-range) actuation. A submerged, low power actuator produces an acoustic beam whose radiation pressure deforms the liquid-vapor interface, leading to the formation of a liquid spear that penetrates the vapor bubble to form a vapor torus with a significantly larger surface area and condensation rate. Ultrasonic focusing along the spear leads to the ejection of small, subcooled droplets through the vapor volume that impact the vapor-liquid interface and further enhance the condensation. High-speed Schlieren imaging of the formation and collapse of the vapor bubbles in the absence and presence of actuation shows that the impulse associated with the collapse of the toroidal volume leads to the formation of a turbulent vortex ring in the liquid phase. Liquid motions near the condensing vapor volume are investigated in the absence and presence of acoustic actuation using high-magnification PIV and show the evolution of a liquid jet through the center of the condensing toroidal volume and the formation and advection of vortex ring structures whose impulse appear to increase with temperature difference between the liquid and vapor phases. High-speed image processing is used to assess the effect of the actuation on the temporal and spatial variations in the characteristic scales and condensation rates of the vapor bubbles.
Kholmanov, Iskandar; Kim, Jaehyun; Ou, Eric; Ruoff, Rodney S; Shi, Li
2015-12-22
Continuous ultrathin graphite foams (UGFs) have been actively researched recently to obtain composite materials with increased thermal conductivities. However, the large pore size of these graphitic foams has resulted in large thermal resistance values for heat conduction from inside the pore to the high thermal conductivity graphitic struts. Here, we demonstrate that the effective thermal conductivity of these UGF composites can be increased further by growing long CNT networks directly from the graphite struts of UGFs into the pore space. When erythritol, a phase change material for thermal energy storage, is used to fill the pores of UGF-CNT hybrids, the thermal conductivity of the UGF-CNT/erythritol composite was found to increase by as much as a factor of 1.8 compared to that of a UGF/erythritol composite, whereas breaking the UGF-CNT bonding in the hybrid composite resulted in a drop in the effective room-temperature thermal conductivity from about 4.1 ± 0.3 W m(-1) K(-1) to about 2.9 ± 0.2 W m(-1) K(-1) for the same UGF and CNT loadings of about 1.8 and 0.8 wt %, respectively. Moreover, we discovered that the hybrid structure strongly suppresses subcooling of erythritol due to the heterogeneous nucleation of erythritol at interfaces with the graphitic structures.
Direct measurements of the interactions between clathrate hydrate particles and water droplets.
Liu, Chenwei; Li, Mingzhong; Zhang, Guodong; Koh, Carolyn A
2015-08-14
Clathrate hydrate particle agglomeration is often considered to be one of the key limiting factors in plug formation. The hydrate particle-water interaction can play a critical role in describing hydrate agglomeration, yet is severely underexplored. Therefore, this work investigates the interactions between water droplets and cyclopentane hydrate particles using a micromechanical force (MMF) apparatus. Specifically, the effect of contact time, temperature/subcooling, contact area, and the addition of Sorbitane monooleate (Span 80) surfactant on the water droplet-hydrate particle interaction behavior are studied. The measurements indicate that hydrate formation during the measurement would increase the water-hydrate interaction force significantly. The results also indicate that the contact time, subcooling and concentration of cyclopentane, which determine the hydrate formation rate and hydrate amount, will affect the hydrate-water interaction force. In addition, the interaction forces also increase with the water-hydrate contact area. The addition of Span 80 surfactant induces a change in the hydrate morphology and renders the interfaces stable versus unstable (leading to coalescence), and the contact force can affect the hydrate-water interaction behavior significantly. Compared with the hydrate-hydrate cohesion force (measured in cyclopentane), the hydrate-water adhesion force is an order of magnitude larger. These new measurements can help to provide new and critical insights into the hydrate agglomeration process and potential strategies to control this process.
Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.
MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad
2007-04-15
The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.
A Mechanistic Study of Nucleate Boiling Heat Transfer Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Dhir, V. K.; Hasan, M. M.
2000-01-01
Experimental studies of growth and detachment processes of a single bubble and multiple bubbles formed on a heated surface have been conducted in the parabola flights of KC-135 aircraft. Distilled water and PF5060 were used as the test liquids. A micro-fabricated test surface was designed and built. Artificial cavities of diameters 10 microns, 7 microns and 4 microns were made on a thin polished Silicon wafer that was electrically heated by a number of small heating elements on the back side in order to control the surface superheat. Bubble growth period, bubble size and shape from nucleation to departure were measured under subcooled and saturation conditions. Significantly larger bubble departure diameters and bubble growth periods than those at earth normal gravity were observed. Bubble departure diameters as large as 20 mm for water and 6 mm for PF5060 were observed as opposed to about 3 mm for water and less than 1 mm for PF5060 at earth normal gravity respectively. It is found that the bubble departure diameter can be approximately related to the gravity level through the relation D(sub d) proportional 1/g(exp 1/2). For water,the effect of wall superheat and liquid subcooling on bubble departure diameter is found to be small.The growth periods are found to be very sensitive to liquid subcooling at a given wall superheat. However,the preliminary results of single bubble dynamics using PF5060 showed that the departure diameter increases when wall superheat is elevated at the same gravity and subcooling. Growth period of single bubbles in water has been found to vary as t(sub g) proportional g(exp -.93). For water, when the magnitude of horizontal gravitational components was comparable to that of gravity normal to the surface, single bubbles slid along the heater surface and departed with smaller diameter at the same gravity level in the direction normal to the surface. For PF5060, even a very small horizontal gravitational component caused the sliding of bubble along the surface. The numerical simulation has been carried out by solving under the condition of axisymmetry, the mass, momentum, and energy equations for the vapor and the liquid phases. In the model the contribution of micro-layer has been included and instantaneous shape of the evolving vapor-liquid interface is determined from the analysis. Consistent with the experimental results, it is found that effect of reduced gravity is to stretch the growth period and bubble diameter It is found that effect of reduced gravity is to stretch the growth period and bubble diameter at departure. The numerical simulations are in good agreement with the experimental data for both the departure diameters and the growth periods. In the study on dynamics of multiple bubbles, horizontal merger of 2,3 4,and 5 bubbles was observed. It is found that after merger of 2 and 3 bubbles the equivalent diameter of the detached bubble is smaller than that of a single bubble departing at the same gravity level. During and after bubble merger, liquid still fills the space between the vapor stems so as to form mushroom type bubbles. The experimental and numerical studies conducted so far have brought us a step closer to prediction of nucleate boiling heat fluxes under low gravity conditions. Preparations for a space flight are continuing.
Moisture separator reheater failure prevention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilcrest, J.D.; Mollerus, F.J.
1983-01-01
Moisture separator reheaters (MSRs) are used in many nuclear plants between the HP and LP turbines to remove moisture and provide some superheat, thereby improving the plant heat rate. Many of the operating MSRs have experienced problems of the following types: flow induced vibration, condensate subcooling oscillation, excessive U-tube leg ..delta..T, and shroud buckling. Although MSR vendors have made modifications to reduce these problems, the problems have not been completely solved. Further improvements in both MSR design and operation are needed. This paper discusses the necessary improvements.
A Review of Boiling Heat Transfer Processes at High Heat Flux
1991-04-01
Hydrogen on Burnout for Water Flowing Vertically Upward in Round Tubes at 2000 psia," WAPD - TH-318, April 1957. 100. Doroschuck, V. E. and Lantsman, F. P...34Forced-Convection Heat Transfer Burnout Studies for Water in Rectangular Channels and Round Tubes at Pressures above 500 psia," USAEC Rept. WAPD ...Volumes in Subcooled Boiling Systems, ASME Paper 58-HT-19, 1958. 264 . Core, T. C. and Sato, K., "Determination of Burnout Limits of Polyphenyl Coolants
NASA Technical Reports Server (NTRS)
Cygnarowicz, Thomas A.; Schein, Michael E.; Lindauer, David A.; Scarlotti, Roger; Pederson, Robert
1990-01-01
A solid argon cooler (SAC) for attached Shuttle payloads has been developed and qualified to meet the need for low cost cooling of flight instruments to the temperature range of 60-120 K. The SACs have been designed and tested with the intent of flying them up to five times. Two coolers, as part of the Broad Band X-ray Telescope (BBXRT) instrument on the ASTRO-1 payload, are awaiting launch on Space Shuttle mission STS-35. This paper describes the design, testing and performance of the SAC and its vacuum maintenance system (VMS), used to maintain the argon as a solid during launch delays of up to 5 days. BBXRT cryogen system design features used to satisfy Shuttle safety requirements are discussed, along with SAC ground servicing equipment (GSE) and procedures used to fill, freeze and subcool the argon.
Design and test of a pumped two-phase mounting plate. [for spacecraft thermal control systems
NASA Technical Reports Server (NTRS)
Grote, M. G.; Swanson, T. D.
1985-01-01
The design, fabrication, and testing of the full-scale development unit of a pumped two-phase mounting plate (TPMP) used in advanced two-phase spacecraft thermal control systems are described. The mounting plate is tested with R-11 in the evaporator mode for total heat loads of over 3000 watts and local heat fluxes over 4 W/sq cm, and in the condenser mode with condenser loads from 60 to 400 watts and inlet qualities from 8 to 94 percent. The calculated heat-transfer coefficients are between 0.66 and 1.0 W/sq cm/C and are nearly independent of the flow rate and heat load except at very low heat loads. It is shown that the TPMP can be run with inlet conditions down to 22 C subcooling without any significant gradients in the plate and that it performs well with nonuniform heat fluxes.
New application of plate-fin heat exchanger with regenerative cryocoolers
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Gwak, Kyung Hyun
2015-09-01
A design idea is newly proposed and investigated for the application of plate-fin heat exchanger (PFHX) with regenerative cryocoolers. The role of this heat exchanger is to effectively absorb heat from the stream of coolant and deliver it to the cold-head of a cryocooler. While various types of tubular HX's have been developed so far, a small PFHX could be more useful for this purpose by taking advantage of compactness and design flexibility. In order to confirm the feasibility and effectiveness, a prototype of aluminum-brazed PFHX is designed, fabricated, and tested with a single-stage GM cryocooler in experiments for subcooling liquid nitrogen from 78 K to 65-70 K. The results show that the PFHX is 30-50% more effective in cooling rate than the tubular HX's. Several potential applications of PFHX are presented and discussed with specific design concepts.
Submicron Dropwise Condensation under Superheated and Rarefied Vapor Condition
Anand, Sushant; Son, Sang Young
2010-01-01
Phase change accompanying conversion of a saturated or superheated vapor in presence of subcooled surfaces is one of the most common occurring phenomena in nature. The mode of phase change which follows such a transformation is dependent upon surface properties like as of contact angle and thermodynamic conditions of the system. In present studies, an experimental approach is used to study the physics behind droplet growth on a partially wetting surface. Superheated vapor at low pressures of 4–5 torr was condensed on subcooled silicon surface with static contact angle as of 60° in absence of non-condensable gases, and the condensation process monitored using Environmental Scanning Electron Microscope (ESEM) with submicroscopic spatial resolution. The condensation process was analyzed in the form of size growth of isolated droplets for before a coalescence event ended the regime of single droplet growth. Droplet growth obtained as a function of time reveals that the rate of growth decreases as the droplet increases in size. This behavior is indicative of an overall droplet growth law existing over larger time scales of which the current observations in their brief time intervals could be fitted in. A theoretical model based on kinetic theory further support the experimental observations indicating a mechanism where growth occurs by interfacial mass transport directly on condensing droplet surface. Evidence was also found which establishes the presence of submicroscopic droplets nucleating and growing in between microscopic droplets for partially wetting case. PMID:20942412
NASA Astrophysics Data System (ADS)
Ueno, Ichiro; Ando, Jun; Horiuchi, Kazuna; Saiki, Takahito; Kaneko, Toshihiro
2016-11-01
Microbubble emission boiling (MEB) produces a higher heat flux than critical heat flux (CHF) and therefore has been investigated in terms of its heat transfer characteristics as well as the conditions under which MEB occurs. Its physical mechanism, however, is not yet clearly understood. We carried out a series of experiments to examine boiling on horizontal circular heated surfaces of 5 mm and of 10 mm in diameter, in a subcooled pool, paying close attention to the transition process to MEB. High-speed observation results show that, in the MEB regime, the growth, condensation, and collapse of the vapor bubbles occur within a very short time. In addition, a number of fine bubbles are emitted from the collapse of the vapor bubbles. By tracking these tiny bubbles, we clearly visualize that the collapse of the vapor bubbles drives the liquid near the bubbles towards the heated surface, such that the convection field around the vapor bubbles under MEB significantly differs from that under nucleate boiling. Moreover, the axial temperature gradient in a heated block (quasi-heat flux) indicates a clear difference between nucleate boiling and MEB. A combination of quasi-heat flux and the measurement of the behavior of the vapor bubbles allows us to discuss the transition to MEB. This work was financially supported by the 45th Research Grant in Natural Sciences from The Mitsubishi Foundation (2014 - 2015), and by Research Grant for Boiler and Pressurized Vessels from The Japan Boiler Association (2016).
Momentum effects in steady nucleate pool boiling during microgravity.
Merte, Herman
2004-11-01
Pool boiling experiments were conducted in microgravity on five space shuttle flights, using a flat plate heater consisting of a semitransparent thin gold film deposited on a quartz substrate that also acted as a resistance thermometer. The test fluid was R-113, and the vapor bubble behavior at the heater surface was photographed from beneath as well as from the side. Each flight consisted of a matrix of three levels of heat flux and three levels of subcooling. In 26 of the total of 45 experiments conditions of steady-state pool boiling were achieved under certain combinations of heat flux and liquid subcooling. In many of the 26 cases, it was observed from the 16-mm movie films that a large vapor bubble formed, remaining slightly removed from the heater surface, and that subsequent vapor bubbles nucleate and grow on the heater surface. Coalescence occurs upon making contact with the large bubble, which thus acts as a vapor reservoir. Recently, measurements of the frequencies and sizes of the small vapor bubbles as they coalesced with the large bubble permitted computation of the associated momentum transfer. The transient forces obtained are presented here. Where these arise from the conversion of the surface energy in the small vapor bubble to kinetic energy acting away from the solid heater surface, they counter the Marangoni convection due to the temperature gradients normal to the heater surface. This Marangoni convection would otherwise impel the large vapor bubble toward the heater surface and result in dryout and unsteady heat transfer.
Research on resistance characteristics of YBCO tape under short-time DC large current impact
NASA Astrophysics Data System (ADS)
Zhang, Zhifeng; Yang, Jiabin; Qiu, Qingquan; Zhang, Guomin; Lin, Liangzhen
2017-06-01
Research of the resistance characteristics of YBCO tape under short-time DC large current impact is the foundation of the developing DC superconducting fault current limiter (SFCL) for voltage source converter-based high voltage direct current system (VSC-HVDC), which is one of the valid approaches to solve the problems of renewable energy integration. SFCL can limit DC short-circuit and enhance the interrupting capabilities of DC circuit breakers. In this paper, under short-time DC large current impacts, the resistance features of naked tape of YBCO tape are studied to find the resistance - temperature change rule and the maximum impact current. The influence of insulation for the resistance - temperature characteristics of YBCO tape is studied by comparison tests with naked tape and insulating tape in 77 K. The influence of operating temperature on the tape is also studied under subcooled liquid nitrogen condition. For the current impact security of YBCO tape, the critical current degradation and top temperature are analyzed and worked as judgment standards. The testing results is helpful for in developing SFCL in VSC-HVDC.
2012-11-01
W., and Mudawar , I., "Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks," International Journal of Heat and...Mass Transfer, Vol. 47, No. 10-11, 2004, pp. 2045-2059. 3 Zhang, H., Mudawar , I., and Hasan, M. M., "Photographic Study of High-Flux Subcooled Flow...component Fow in Pipes," Chemical Engineering Progress, Vol. 45, 1949, pp. 39-48. 34 Qu, W., and Mudawar , I., "Measurement and Prediction of Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.
A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.
NASA Astrophysics Data System (ADS)
Gao, Le; Bhavnani, Sushil H.
2017-10-01
A saw-toothed shaped microchannel heat sink is investigated for enhancing flow boiling heat transfer. Tests are conducted at mass fluxes of 444-1776 kg/m2 s and an inlet subcooling of 15 °C. The effects of channel geometry on boiling curves, flow patterns, pressure drops, and heat transfer coefficient are discussed in this letter. It is found that heat transfer performance is enhanced by up to 50% especially at heat flux levels associated with the current generation of microprocessors.
Engine for the next-generation launcher
NASA Astrophysics Data System (ADS)
Beichel, Rudi; Grey, Jerry
1995-05-01
The proposed dual-fuel/dual-expansion engine for the Reusable Launch Vehicle (RLV) could solve the vehicle's need for a high-performance, lightweight, low-cost, maintainable engine. The features that make dual-fuel/dual-expansion engine a prime candidate for RLV include oxygen-rich combustion, high-pressure staged-combustion cycle and dual-fuel operation. Cost-reducing, reliability-enhancing innovations such as the elimination of regenerative cooling, elimination of gimbaling and replacement of kerosene-based hydrocarbon fuel by subcooled propane have also made the this type of engine an attractive option.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Il S.; Yu, Yong H.; Son, Hyoung M.
2006-07-01
An experimental study is performed to investigate the natural convection heat transfer characteristics with subcooled coolant to create engineering database for basic applications in a lead alloy cooled reactor. Tests are performed in the ALTOS (Applied Liquid-metal Thermal Operation Study) apparatus as part of MITHOS (Metal Integrated Thermo Hydrodynamic Operation System). A relationship is determined between the Nusselt number Nu and the Rayleigh number Ra in the liquid metal rectangular pool. Results are compared with correlations and experimental data in the literature. Given the similar Ra condition, the present test results for Nu of the liquid metal pool with topmore » subcooling are found to be similar to those predicted by the existing correlations or experiments. The current test results are utilized to develop natural convection heat transfer correlations applicable to low Prandtl number Pr fluids that are heated from below and cooled by the external coolant above. Results from this study are slated to be used in designing BORIS (Battery Optimized Reactor Integral System), a small lead cooled modular fast reactor for deployment at remote sites cycled with MOBIS (Modular Optimized Brayton Integral System) for electricity generation, tied with NAVIS (Naval Application Vessel Integral System) for ship propulsion, joined with THAIS (Thermochemical Hydrogen Acquisition Integral System) for hydrogen production, and coupled with DORIS (Desalination Optimized Reactor Integral System) for seawater desalination. Tests are performed with Wood's metal (Pb-Bi-Sn-Cd) filling a rectangular pool whose lower surface is heated and upper surface cooled by forced convection of water. The test section is 20 cm long, 11.3 cm high and 15 cm wide. The simulant has a melting temperature of 78 deg. C. The constant temperature and heat flux condition was realized for the bottom heating once the steady state had been met. The test parameters include the heated bottom surface temperature of the liquid metal pool, the input power to the bottom surface of the section, and the coolant temperature. (authors)« less
Investigation of saturated critical heat flux in a single, uniformly heated microchannel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wojtan, Leszek; Revellin, Remi; Thome, John R.
2006-08-15
A series of tests have been performed to determine the saturated critical heat flux (CHF) in 0.5 and 0.8mm internal diameter microchannel tubes as a function of refrigerant mass velocity, heated length, saturation temperature and inlet liquid subcooling. The tested refrigerants were R-134a and R-245fa and the heated length of microchannel was varied between 20 and 70mm. The results show a strong dependence of CHF on mass velocity, heated length and microchannel diameter but no influence of liquid subcooling (2-15{sup o}C) was observed. The experimental results have been compared to the well-known CHF single-channel correlation of Y. Katto and H.more » Ohno [An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes, Int. J. Heat and Mass Transfer 27 (9) (1984) 1641-1648] and the multichannel correlation of W. Qu and I. Mudawar [Measurement and correlation of critical heat flux in two-phase microchannel heat sinks, Int. J. Heat and Mass Transfer 47 (2004) 2045-2059]. The comparison shows that the correlation of Katto-Ohno predicts microchannel data with a mean absolute error of 32.8% with only 41.2% of the data falling within a +/-15% error band. The correlation of Qu and Mudawar shows the same trends as the CHF data but significantly overpredicts them. Based on the present experimental data, a new microscale version of the Katto-Ohno correlation for the prediction of CHF during saturated boiling in microchannels has been proposed. (author)« less
Analysis and optimisation of a mixed fluid cascade (MFC) process
NASA Astrophysics Data System (ADS)
Ding, He; Sun, Heng; Sun, Shoujun; Chen, Cheng
2017-04-01
A mixed fluid cascade (MFC) process that comprises three refrigeration cycles has great capacity for large-scale LNG production, which consumes a great amount of energy. Therefore, any performance enhancement of the liquefaction process will significantly reduce the energy consumption. The MFC process is simulated and analysed by use of proprietary software, Aspen HYSYS. The effect of feed gas pressure, LNG storage pressure, water-cooler outlet temperature, different pre-cooling regimes, liquefaction, and sub-cooling refrigerant composition on MFC performance are investigated and presented. The characteristics of its excellent numerical calculation ability and the user-friendly interface of MATLAB™ and powerful thermo-physical property package of Aspen HYSYS are combined. A genetic algorithm is then invoked to optimise the MFC process globally. After optimisation, the unit power consumption can be reduced to 4.655 kW h/kmol, or 4.366 kW h/kmol on condition that the compressor adiabatic efficiency is 80%, or 85%, respectively. Additionally, to improve the process further, with regards its thermodynamic efficiency, configuration optimisation is conducted for the MFC process and several configurations are established. By analysing heat transfer and thermodynamic performances, the configuration entailing a pre-cooling cycle with three pressure levels, liquefaction, and a sub-cooling cycle with one pressure level is identified as the most efficient and thus optimal: its unit power consumption is 4.205 kW h/kmol. Additionally, the mechanism responsible for the weak performance of the suggested liquefaction cycle configuration lies in the unbalanced distribution of cold energy in the liquefaction temperature range.
Criteria for approximating certain microgravity flow boiling characteristics in Earth gravity.
Merte, Herman; Park, Jaeseok; Shultz, William W; Keller, Robert B
2002-10-01
The forces governing flow boiling, aside from system pressure, are buoyancy, liquid momentum, interfacial surface tensions, and liquid viscosity. Guidance for approximating certain aspects of the flow boiling process in microgravity can be obtained in Earth gravity research by the imposition of a liquid velocity parallel to a flat heater surface in the inverted position, horizontal, or nearly horizontal, by having buoyancy hold the heated liquid and vapor formed close to the heater surface. Bounds on the velocities of interest are obtained from several dimensionless numbers: a two-phase Richardson number, a two-phase Weber number, and a Bond number. For the fluid used in the experimental work here, liquid velocities in the range U = 5-10cm/sec are judged to be critical for changes in behavior of the flow boiling process. Experimental results are presented for flow boiling heat transfer, concentrating on orientations that provide the largest reductions in buoyancy parallel to the heater surface, varying +/-5 degrees from facing horizontal downward. Results are presented for velocity, orientation, and subcooling effects on nucleation, dryout, and heat transfer. Two different heater surfaces were used: a thin gold film on a polished quartz substrate, acting as a heater and resistance thermometer, and a gold-plated copper heater. Both transient and steady measurements of surface heat flux and superheat were made with the quartz heater; only steady measurements were possible with the copper heater. R-113 was the fluid used; the velocity varied over the interval 4-16cm/sec; bulk liquid subcooling varied over 2-20 degrees C; heat flux varied over 4-8W/cm(2).
Patterned Polymer Coatings Increase the Efficiency of Dew Harvesting.
Al-Khayat, Omar; Hong, Jun Ki; Beck, David M; Minett, Andrew I; Neto, Chiara
2017-04-19
Micropatterned polymer surfaces, possessing both topographical and chemical characteristics, were prepared on three-dimensional copper tubes and used to capture atmospheric water. The micropatterns mimic the structure on the back of a desert beetle that condenses water from the air in a very dry environment. The patterned coatings were prepared by the dewetting of thin films of poly-4-vinylpyridine (P4VP) on top of polystyrene films (PS) films, upon solvent annealing, and consist of raised hydrophilic bumps on a hydrophobic background. The size and density distribution of the hydrophilic bumps could be tuned widely by adjusting the initial thickness of the P4VP films: the diameter of the produced bumps and their height could be varied by almost 2 orders of magnitude (1-80 μm and 40-9000 nm, respectively), and their distribution density could be varied by 5 orders of magnitude. Under low subcooling conditions (3 °C), the highest rate of water condensation was measured on the largest (80 μm diameter) hydrophilic bumps and was found to be 57% higher than that on flat hydrophobic films. These subcooling conditions are achieved spontaneously in dew formation, by passive radiative cooling of a surface exposed to the night sky. In effect, the pattern would result in a larger number of dewy nights than a flat hydrophobic surface and therefore increases water capture efficiency. Our approach is suited to fabrication on a large scale, to enable the use of the patterned coatings for water collection with no external input of energy.
Development of an Efficient Meso- scale Multi-phase Flow Solver in Nuclear Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Taehun
2015-10-20
The proposed research aims at formulating a predictive high-order Lattice Boltzmann Equation for multi-phase flows relevant to nuclear energy related application - namely, saturated and sub-cooled boiling in reactors, and liquid- liquid mixing and extraction for fuel cycle separation. An efficient flow solver will be developed based on the Finite Element based Lattice Boltzmann Method (FE- LBM), accounting for phase-change heat transfer and capable of treating multiple phases over length scales from the submicron to the meter. A thermal LBM will be developed in order to handle adjustable Prandtl number, arbitrary specific heat ratio, a wide range of temperature variations,more » better numerical stability during liquid-vapor phase change, and full thermo-hydrodynamic consistency. Two-phase FE-LBM will be extended to liquid–liquid–gas multi-phase flows for application to high-fidelity simulations building up from the meso-scale up to the equipment sub-component scale. While several relevant applications exist, the initial applications for demonstration of the efficient methods to be developed as part of this project include numerical investigations of Critical Heat Flux (CHF) phenomena in nuclear reactor fuel bundles, and liquid-liquid mixing and interfacial area generation for liquid-liquid separations. In addition, targeted experiments will be conducted for validation of this advanced multi-phase model.« less
Design and development of a direct injection system for cryogenic engines
NASA Astrophysics Data System (ADS)
Mutumba, Angela; Cheeseman, Kevin; Clarke, Henry; Wen, Dongsheng
2018-04-01
The cryogenic engine has received increasing attention due to its promising potential as a zero-emission engine. In this study, a new robust liquid nitrogen injection system was commissioned and set up to perform high-pressure injections into an open vessel. The system is used for quasi-steady flow tests used for the characterisation of the direct injection process for cryogenic engines. An electro-hydraulic valve actuator provides intricate control of the valve lift, with a minimum cycle time of 3 ms and a frequency of up to 20 Hz. With additional sub-cooling, liquid phase injections from 14 to 94 bar were achieved. Results showed an increase in the injected mass with the increase in pressure, and decrease in temperature. The injected mass was also observed to increases linearly with the valve lift. Better control of the injection process, minimises the number of variables, providing more comparable and repeatable sets of data. Implications of the results on the engine performance were also discussed.
NASA Technical Reports Server (NTRS)
Hammock, William R., Jr.; Cota, Phillip E., Jr.; Rosenbaum, Bernard J.; Barrett, Michael J.
1991-01-01
Standard leak detection methods at ambient temperature have been developed in order to prevent excessive leakage from the Space Shuttle liquid oxygen and liquid hydrogen Main Propulsion System. Unacceptable hydrogen leakage was encountered on the Columbia and Atlantis flight vehicles in the summer of 1990 after the standard leak check requirements had been satisfied. The leakage was only detectable when the fuel system was exposed to subcooled liquid hydrogen during External Tank loading operations. Special instrumentation and analytical tools were utilized during a series of propellant tanking tests in order to identify the sources of the hydrogen leakage. After the leaks were located and corrected, the physical characteristics of the leak sources were analyzed in an effort to understand how the discrepancies were introduced and why the leakage had evaded the standard leak detection methods. As a result of the post-leak analysis, corrective actions and leak detection improvements have been implemented in order to preclude a similar incident.
Determination of the Accomodation Coefficient Using Vapor/Gas Bubble Dynamics in an Acoustic Field
NASA Technical Reports Server (NTRS)
Gumerov, Nail A.
1999-01-01
Non-equilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum, in processing of molten metals, and in vapor explosions. The rate at which such a phase transformation occurs, Xi, can be described by the Hertz-Knudsen-Langmuir formula. More than one century of the history of the accommodation coefficient measurements shows many problems with its determination. This coefficient depends on the temperature, is sensitive to the conditions at the interface, and is influenced by small amounts of impurities. Even recent measurements of the accommodation coefficient for water (Hagen et al, 1989) showed a huge variation in Beta from 1 for 1 micron droplets to 0.006 for 15 micron droplets. Moreover, existing measurement techniques for the accommodation coefficient are complex and expensive. Thus development of a relatively inexpensive and reliable technique for measurement of the accommodation coefficient for a wide range of substances and temperatures is of great practical importance.
NASA Astrophysics Data System (ADS)
Soares, Nelson
The improvement of the energy efficiency of buildings during their operational phase is an active area of research. The markets are looking for new technologies, namely new thermal energy storage (TES) systems, which can be used to reduce buildings' dependency on fossil fuels, to make use of renewable energy sources and to contribute to match energy supply and demand efficiently. The main goals of this thesis are: (i) to evaluate the heat transfer with solid-liquid phase-change through small TES units filled with phase-change materials (PCMs), providing experimental data to be used in the design of new TES systems for buildings and in the validation of numerical models, and (ii) to provide some guidelines for the incorporation of PCM-drywalls in buildings aiming to reduce the energy demand for heating and cooling by making use of the latent heat from the phase-change processes of PCMs. The first part of this thesis refers to the experimental study of the heat transfer through a vertical stack of metallic rectangular cavities filled with different PCMs (a microencapsulated and a free-form PCM). The research carried out aims: (i) to analyze the melting and solidification processes of the PCM within the enclosures, (ii) to evaluate the influence of the aspect ratio of the cavities on the heat transfer and (iii) to discuss which type of PCM is better for specific cases. As a result, a big amount of experimental data for benchmarking and validation of numerical models is made available to the scientific community. Moreover, the results allow discussing which arrangement of the TES unit is better for specific applications considering the thermal regulation effect during charging, the influence of subcooling during discharging, and the influence of natural convection during both processes. It is shown that the effect of natural convection in the free-form PCM must be considered in any simulation to better describe the charging process. During discharging, subcooling must also be considered. On the contrary, the effect of natural convection and subcooling can be neglected when considering the microencapsulated PCM. The second part of this thesis concentrates on the dynamic simulation of energy in buildings considering the latent heat from PCMs' phase-change processes. The energy system under investigation is extended to an air-conditioned residential single-zone room. The main goals are: (i) to develop a holistic methodology to optimize the incorporation of PCM-drywalls in different typologies of construction and (ii) to provide guidelines for the incorporation of PCM-drywalls in different climates. Two studies are carried out: (i) a multi-dimensional optimization study combining EnergyPlus and GenOpt tools to optimize the incorporation of PCM-drywalls in lightweight steel-framed (LSF) residential buildings in Europe, and (ii) an EnergyPlus-based parametric study to optimize the incorporation of PCM-drywalls in heavyweight residential buildings in Kuwait. It is shown that an optimum PCM-drywall solution can be found for each European climate and that the incorporation of PCM-drywalls can contribute for heating and cooling energy savings in LSF construction. The results show that PCM-drywalls are particularly interesting for LSF construction in Mediterranean climates leading to higher energy savings. PCM-drywalls can also be used to reduce the annual energy demand for cooling in Kuwait by almost 5%.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0747] Fully Developed Claim (Fully Developed Claims--Applications for Compensation, Pension, DIC, Death Pension, and/or Accrued Benefits); Correction AGENCY: Veterans Benefits Administration, Department of Veterans Affairs. ACTION: Notice; correction...
Coal liquefaction quenching process
Thorogood, Robert M.; Yeh, Chung-Liang; Donath, Ernest E.
1983-01-01
There is described an improved coal liquefaction quenching process which prevents the formation of coke with a minimum reduction of thermal efficiency of the coal liquefaction process. In the process, the rapid cooling of the liquid/solid products of the coal liquefaction reaction is performed without the cooling of the associated vapor stream to thereby prevent formation of coke and the occurrence of retrograde reactions. The rapid cooling is achieved by recycling a subcooled portion of the liquid/solid mixture to the lower section of a phase separator that separates the vapor from the liquid/solid products leaving the coal reactor.
Liquid over-feeding air conditioning system and method
Mei, Viung C.; Chen, Fang C.
1993-01-01
A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.
Process of making cryogenically cooled high thermal performance crystal optics
Kuzay, Tuncer M.
1992-01-01
A method for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N.sub.2 is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation.
Process of making cryogenically cooled high thermal performance crystal optics
Kuzay, T.M.
1992-06-23
A method is disclosed for constructing a cooled optic wherein one or more cavities are milled, drilled or formed using casting or ultrasound laser machining techniques in a single crystal base and filled with porous material having high thermal conductivity at cryogenic temperatures. A non-machined strain-free single crystal can be bonded to the base to produce superior optics. During operation of the cooled optic, N[sub 2] is pumped through the porous material at a sub-cooled cryogenic inlet temperature and with sufficient system pressure to prevent the fluid bulk temperature from reaching saturation. 7 figs.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0747] Proposed Information Collection (Fully Developed Claim (Fully Developed Claims--Applications for Compensation, Pension, DIC, Death Pension, and/or... Claims--Applications for Compensation, Pension, DIC, Death Pension, and/or Accrued Benefits, VA Forms 21...
Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line
Gaul, Christopher J.
2001-01-01
The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.
Investigation of Spray Cooling Schemes for Dynamic Thermal Management
NASA Astrophysics Data System (ADS)
Yata, Vishnu Vardhan Reddy
This study aims to investigate variable flow and intermittent flow spray cooling characteristics for efficiency improvement in active two-phase thermal management systems. Variable flow spray cooling scheme requires control of pump input voltage (or speed), while intermittent flow spray cooling scheme requires control of solenoid valve duty cycle and frequency. Several testing scenarios representing dynamic heat load conditions are implemented to characterize the overall performance of variable flow and intermittent flow spray cooling cases in comparison with the reference, steady flow spray cooling case with constant flowrate, continuous spray cooling. Tests are conducted on a small-scale, closed loop spray cooling system featuring a pressure atomized spray nozzle. HFE-7100 dielectric liquid is selected as the working fluid. Two types of test samples are prepared on 10 mm x 10 mm x 2 mm copper substrates with matching size thick film resistors attached onto the opposite side, to generate heat and simulate high heat flux electronic devices. The test samples include: (i) plain, smooth surface, and (ii) microporous surface featuring 100 ?m thick copper-based coating prepared by dual stage electroplating technique. Experimental conditions involve HFE-7100 at atmospheric pressure and 30°C and 10°C subcooling. Steady flow spray cooling tests are conducted at flow rates of 2-5 ml/cm2.s, by controlling the heat flux in increasing steps, and recording the corresponding steady-state temperatures to obtain cooling curves in the form of surface superheat vs. heat flux. Variable flow and intermittent flow spray cooling tests are done at selected flowrate and subcooling conditions to investigate the effects of dynamic flow conditions on maintaining the target surface temperatures defined based on reference steady flow spray cooling performance.
May, Eric F; Lim, Vincent W; Metaxas, Peter J; Du, Jianwei; Stanwix, Paul L; Rowland, Darren; Johns, Michael L; Haandrikman, Gert; Crosby, Daniel; Aman, Zachary M
2018-03-13
Gas hydrate formation is a stochastic phenomenon of considerable significance for any risk-based approach to flow assurance in the oil and gas industry. In principle, well-established results from nucleation theory offer the prospect of predictive models for hydrate formation probability in industrial production systems. In practice, however, heuristics are relied on when estimating formation risk for a given flowline subcooling or when quantifying kinetic hydrate inhibitor (KHI) performance. Here, we present statistically significant measurements of formation probability distributions for natural gas hydrate systems under shear, which are quantitatively compared with theoretical predictions. Distributions with over 100 points were generated using low-mass, Peltier-cooled pressure cells, cycled in temperature between 40 and -5 °C at up to 2 K·min -1 and analyzed with robust algorithms that automatically identify hydrate formation and initial growth rates from dynamic pressure data. The application of shear had a significant influence on the measured distributions: at 700 rpm mass-transfer limitations were minimal, as demonstrated by the kinetic growth rates observed. The formation probability distributions measured at this shear rate had mean subcoolings consistent with theoretical predictions and steel-hydrate-water contact angles of 14-26°. However, the experimental distributions were substantially wider than predicted, suggesting that phenomena acting on macroscopic length scales are responsible for much of the observed stochastic formation. Performance tests of a KHI provided new insights into how such chemicals can reduce the risk of hydrate blockage in flowlines. Our data demonstrate that the KHI not only reduces the probability of formation (by both shifting and sharpening the distribution) but also reduces hydrate growth rates by a factor of 2.
Ignition Characterization Tests of the LOX/Ethanol Propellant Combination
NASA Technical Reports Server (NTRS)
Popp, Christopher G.; Robinson, Philip J.; Veith, Eric M.
2004-01-01
A series of contracts have been issued by the Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) to explore candidate technologies considered to be important for the Next Generation Launch Technology (NGLT) effort. One aspect of the NGLT effort is to explore the potential of incorporating non-toxic propellants for Reaction Control Subsystems (RCS). Contract NAS8-01109 has been issued to Aerojet to develop a dual thrust Reaction Control Engine (RCE) that utilizes liquid oxygen and ethanol as the propellants. The dual thrust RCE incorporates a primary thrust level of 870 lbf, and a vernier thrust level of 10 - 30 lbf. Aerojet has designed and tested a workhorse LOX igniter to determine LOX/Ethanol ignition characteristics as part of a risk mitigation effort for the dual thrust RCE design. The objective of the ignition testing was to demonstrate successfid ignition from GOX to LOX, encompassing potential two-phase flow conditions. The workhorse igniter was designed to accommodate the full LOX design flowrate, as well as a reduced GOX flowrate. It was reasoned that the initial LOX flow through the igniter would flash to GOX due to the inherent heat stored in the hardware, causing a reduced oxygen flowrate because of a choked, or sonic, flow condition through the injection elements. As LOX flow continued, the inherent heat of the test hardware would be removed and the hardware would chill-in, with the injected oxygen flow transitioning from cold GOX through two-phase flow to subcooled LOX. Pressure and temperature instrumentation permitted oxygen state points to be determined, and gas-side igniter chamber thermocouples provided chamber thermal profile characteristics. The cold flow chamber pressure (P(sub c)) for each test was determined and coupled with the igniter chamber diameter (D(sub c)) to calculate the characteristic quench parameter (P(sub c) x D(sub c)), which was plotted as a function of core mixture ratio, MR(sub c). Ignition limits were determined over a broad range of valve inlet conditions, and ignition was demonstrated with oxygen inlet conditions that ranged from subcooled 173 R LOX to 480 R GQX. Once ignited at cold GOX conditions, combustion was continuous as the hardware chilled in and the core mixture ratio transitioned from values near 1.0 to over 12.5.
Posttest TRAC-PD2/MOD1 predictions for FLECHT SEASET test 31504. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booker, C.P.
TRAC-PD2/MOD1 is a publicly released version of TRAC that is used primarily to analyze large-break loss-of-coolant accidents in pressurized-water reactors (PWRs). TRAC-PD2 can calculate, among other things, reflood phenomena. TRAC posttest predictions are compared with test 31504 reflood data from the Full-Length Emergency Core Heat Transfer (FLECHT) System Effects and Separate Effects Tests (SEASET) facility. A false top-down quench is predicted near the top of the core and the subcooling is underpredicted at the bottom of the core. However, the overall TRAC predictions are good, especially near the center of the core.
Supercritical convection, critical heat flux, and coking characteristics of propane
NASA Technical Reports Server (NTRS)
Rousar, D. C.; Gross, R. S.; Boyd, W. C.
1984-01-01
The heat transfer characteristics of propane at subcritical and supercritical pressure were experimentally evaluated using electrically heated Monel K-500 tubes. A design correlation for supercritical heat transfer coefficient was established using the approach previously applied to supercritical oxygen. Flow oscillations were observed and the onset of these oscillations at supercritical pressures was correlated with wall-to-bulk temperature ratio and velocity. The critical heat flux measured at subcritical pressure was correlated with the product of velocity and subcooling. Long duration tests at fixed heat flux conditions were conducted to evaluate coking on the coolant side tube wall and coking rates comparable to RP-1 were observed.
The mixing of particle clouds plunging into water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angelini, S.; Theofanous, T.G.; Yuen, W.W.
This work addresses certain fundamental aspects of the premixing phase of steam explosions, At issue are the multifield interaction aspects under highly transient, multidimensional conditions, and in presence of strong phase changes. They are addressed in an experiment (the MAGICO-2000) involving well-characterized particle clouds mixing with water, and detailed measurements on both external and internal characteristics of the mixing zone. Both cold and hot (up to 1500{degrees}C) particle clouds are considered in conjunction with saturated and subcooled water pools. The PMALPHA code is used as an aid in interpreting the experimental results, and the exercise reveals good predictive capabilities formore » it.« less
Liquid over-feeding air conditioning system and method
Mei, V.C.; Chen, F.C.
1993-09-21
A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.
Experimental Simulation of Turbine-Exhaust Oxygen Recovery
NASA Technical Reports Server (NTRS)
Clark, Jim A.; Branch, Ryan W.
2004-01-01
In some liquid-propellant rocket engines, the liquid-oxygen boost pump is driven by a turbine that is powered by high-pressure gaseous oxygen. Once it exits the turbine, this gaseous oxygen can be salvaged by injecting it into the subcooled liquid oxygen exiting the boost pump. If the main LOX pump is to function correctly under these circumstances, complete condensation of the gaseous oxygen must quickly follow its injection into the boost-pump discharge. The current investigation uses steam and water in a simple rig that allows the condensation process to be visualized and quantified. This paper offers dimensionless-parameter correlations of the data and trends observed.
Gas-Liquid Flows and Phase Separation
NASA Technical Reports Server (NTRS)
McQuillen, John
2004-01-01
Common issues for space system designers include:Ability to Verify Performance in Normal Gravity prior to Deployment; System Stability; Phase Accumulation & Shedding; Phase Separation; Flow Distribution through Tees & Manifolds Boiling Crisis; Heat Transfer Coefficient; and Pressure Drop.The report concludes:Guidance similar to "A design that operates in a single phase is less complex than a design that has two-phase flow" is not always true considering the amount of effort spent on pressurizing, subcooling and phase separators to ensure single phase operation. While there is still much to learn about two-phase flow in reduced gravity, we have a good start. Focus now needs to be directed more towards system level problems .
NASA Astrophysics Data System (ADS)
Gavrilov, A. V.; Kritskii, V. G.; Rodionov, Yu. A.; Berezina, I. G.
2013-07-01
Certain features of the effect of boric acid in the reactor coolant of nuclear power installations equipped with a VVER-440 reactor on mass transfer in the reactor core are considered. It is determined that formation of boric acid polyborate complexes begins under field conditions at a temperature of 300°C when the boric acid concentration is equal to around 0.065 mol/L (4 g/L). Operations for decontaminating the reactor coolant system entail a growth of corrosion product concentration in the coolant, which gives rise to formation of iron borates in the zones where subcooled boiling of coolant takes place and to the effect of axial offset anomalies. A model for simulating variation of pressure drop in a VVER-440 reactor's core that has invariable parameters during the entire fuel campaign is developed by additionally taking into account the concentrations of boric acid polyborate complexes and the quantity of corrosion products (Fe, Ni) represented by the ratio of their solubilities.
NASA Astrophysics Data System (ADS)
Gill, Jatinder; Singh, Jagdev
2018-07-01
In this work, an experimental investigation is carried out with R134a and LPG refrigerant mixture for depicting mass flow rate through straight and helical coil adiabatic capillary tubes in a vapor compression refrigeration system. Various experiments were conducted under steady-state conditions, by changing capillary tube length, inner diameter, coil diameter and degree of subcooling. The results showed that mass flow rate through helical coil capillary tube was found lower than straight capillary tube by about 5-16%. Dimensionless correlation and Artificial Neural Network (ANN) models were developed to predict mass flow rate. It was found that dimensionless correlation and ANN model predictions agreed well with experimental results and brought out an absolute fraction of variance of 0.961 and 0.988, root mean square error of 0.489 and 0.275 and mean absolute percentage error of 4.75% and 2.31% respectively. The results suggested that ANN model shows better statistical prediction than dimensionless correlation model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dursch, Thomas J.; Ciontea, Monica A.; Radke, Clayton J.
2011-12-01
Nucleation and growth of ice in the fibrous gas-diffusion layer (GDL) of a proton-exchange membrane fuel cell (PEMFC) are studied using isothermal differential scanning calorimetry (DSC). Isothermal crystallization rates and pseudo-steady-state nucleation rates are obtained as a function of subcooling from heat-flow and induction-time measurements. Kinetics of ice nucleation and growth are studied at two polytetrafluoroethylene (PTFE) loadings (0 and 10 wt %) in a commercial GDL for temperatures between 240 and 273 K. A nonlinear ice-crystallization rate expression is developed using Johnson–Mehl–Avrami–Kolmogorov (JMAK) theory, in which the heat-transfer-limited growth rate is determined from the moving-boundary Stefan problem. Induction timesmore » follow a Poisson distribution and increase upon addition of PTFE, indicating that nucleation occurs more slowly on a hydrophobic fiber than on a hydrophilic fiber. The determined nucleation rates and induction times follow expected trends from classical nucleation theory. Finally, a validated rate expression is now available for predicting ice-crystallization kinetics in GDLs.« less
NASA Astrophysics Data System (ADS)
Punia, Sanjeev Singh; Singh, Jagdev
2015-11-01
This paper presents an experimental investigation for the flow of liquefied petroleum gas (LPG) as a refrigerant inside an adiabatic helically coiled capillary tube in vapour compression refrigeration system. The effect of various geometric parameters and operating conditions like capillary tube inner diameter, length of capillary tube, coil diameter and different inlet subcoolings on the mass flow rate of LPG through the helical coiled capillary tube geometry has been investigated. It has been established that the coil diameter significantly influences the mass flow rate of LPG through the adiabatic helical capillary tube. It has been concluded that the effect of coiling of capillary tube reduces the mass flow rate by 5-12 % as compared to those of the straight capillary tube operating under similar conditions. The data obtained from the experiments are analyzed and a dimensionless correlation has been developed. The proposed correlation predicts that more than 90 % of experimental data which is in agreement with measured data in an error band of ±10 %.
NASA Technical Reports Server (NTRS)
Ray, David M.; Greene, Nathanael J.; Revilock, Duane; Sneddon, Kirk; Anselmo, Estelle
2008-01-01
Development tests were conducted to evaluate the performance of 2 COPV designs at cryogenic temperatures. This allows for risk reductions for critical components for a Gaseous Helium (GHe) Pressurization Subsystem for an Advanced Propulsion System (APS) which is being proposed for NASA s Constellation project and future exploration missions. It is considered an advanced system since it uses Liquid Methane (LCH4) as the fuel and Liquid Oxygen (LO2) as the oxidizer for the propellant combination mixture. To avoid heating of the propellants to prevent boil-off, the GHe will be stored at subcooled temperatures equivalent to the LO2 temperature. Another advantage of storing GHe at cryogenic temperatures is that more mass of the pressurized GHe can be charged in to a vessel with a smaller volume, hence a smaller COPV, and this creates a significant weight savings versus gases at ambient temperatures. The major challenge of this test plan is to verify that a COPV can safely be used for spacecraft applications to store GHe at a Maximum Operating Pressure (MOP) of 4,500 psig at 140R to 160R (-320 F to -300 F). The COPVs for these tests were provided by ARDE , Inc. who developed a resin system to use at cryogenic conditions and has the capabilities to perform high pressure testing with LN2.
Determination of the Accommodation Coefficient Using Vapor/gas Bubble Dynamics in an Acoustic Field
NASA Technical Reports Server (NTRS)
Gumerov, Nail A.; Hsiao, Chao-Tsung; Goumilevski, Alexei G.; Allen, Jeff (Technical Monitor)
2001-01-01
Nonequilibrium liquid/vapor phase transformations can occur in superheated or subcooled liquids in fast processes such as in evaporation in a vacuum. The rate at which such a phase transformation occurs depends on the "condensation" or "accommodation" coefficient, Beta, which is a property of the interface. Existing measurement techniques for Beta are complex and expensive. The development of a relatively inexpensive and reliable technique for measurement of Beta for a wide range of substances and temperatures is of great practical importance. The dynamics of a bubble in an acoustic field strongly depends on the value of Beta. It is known that near the saturation temperature, small vapor bubbles grow under the action of an acoustic field due to "rectified heat transfer." This finding can be used as the basis for an effective measurement technique of Beta. We developed a theory of vapor bubble behavior in an isotropic acoustic wave and in a plane standing acoustic wave. A numerical code was developed which enables simulation of a variety of experimental situations and accurately takes into account slowly evolving temperature. A parametric study showed that the measurement of Beta can be made over a broad range of frequencies and bubble sizes. We found several interesting regimes and conditions which can be efficiently used for measurements of Beta. Measurements of Beta can be performed in both reduced and normal gravity environments.
Hot-Fire Testing of 100 LB(sub F) LOX/LCH4 Reaction Control Engine at Altitude Conditions
NASA Technical Reports Server (NTRS)
Marshall, William M.; Kleinhenz, Julie E.
2010-01-01
Liquid oxygen/liquid methane (LO2/LCH4 ) has recently been viewed as a potential green propulsion system for both the Altair ascent main engine (AME) and reaction control system (RCS). The Propulsion and Cryogenic Advanced Development Project (PCAD) has been tasked by NASA to develop these green propellant systems to enable safe and cost effective exploration missions. However, experience with LO2/LCH4 as a propellant combination is limited, so testing of these systems is critical to demonstrating reliable ignition and performance. A test program of a 100 lb f reaction control engine (RCE) is underway at the Altitude Combustion Stand (ACS) of the NASA Glenn Research Center, with a focus on conducting tests at altitude conditions. These tests include a unique propellant conditioning feed system (PCFS) which allows for the inlet conditions of the propellant to be varied to test warm to subcooled liquid propellant temperatures. Engine performance, including thrust, c* and vacuum specific impulse (I(sub sp,vac)) will be presented as a function of propellant temperature conditions. In general, the engine performed as expected, with higher performance at warmer propellant temperatures but better efficiency at lower propellant temperatures. Mixture ratio effects were inconclusive within the uncertainty bands of data, but qualitatively showed higher performance at lower ratios.
Thermal State-of-Charge in Solar Heat Receivers
NASA Technical Reports Server (NTRS)
Hall, Carsie A., Jr.; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.
1998-01-01
A theoretical framework is developed to determine the so-called thermal state-of-charge (SOC) in solar heat receivers employing encapsulated phase change materials (PCMS) that undergo cyclic melting and freezing. The present problem is relevant to space solar dynamic power systems that would typically operate in low-Earth-orbit (LEO). The solar heat receiver is integrated into a closed-cycle Brayton engine that produces electric power during sunlight and eclipse periods of the orbit cycle. The concepts of available power and virtual source temperature, both on a finite-time basis, are used as the basis for determining the SOC. Analytic expressions for the available power crossing the aperture plane of the receiver, available power stored in the receiver, and available power delivered to the working fluid are derived, all of which are related to the SOC through measurable parameters. Lower and upper bounds on the SOC are proposed in order to delineate absolute limiting cases for a range of input parameters (orbital, geometric, etc.). SOC characterization is also performed in the subcooled, two-phase, and superheat regimes. Finally, a previously-developed physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) system is used in order to predict the SOC as a function of measurable parameters.
NASA Astrophysics Data System (ADS)
Nowak, Bernard; Życzkowski, Piotr; Łuczak, Rafał
2017-03-01
The authors of this article dealt with the issue of modeling the thermodynamic and thermokinetic properties (parameters) of refrigerants. The knowledge of these parameters is essential to design refrigeration equipment, to perform their energy efficiency analysis, or to compare the efficiency of air refrigerators using different refrigerants. One of the refrigerants used in mine air compression refrigerators is R407C. For this refrigerant, 23 dependencies were developed, determining its thermodynamic and thermokinetic parameters in the states of saturated liquid, dry saturated vapour, superheated vapor, subcooled liquid, and in the two-phase region. The created formulas have been presented in Tables 2, 5, 8, 10 and 12, respectively. It should be noted that the scope of application of these formulas is wider than the range of changes of that refrigerant during the normal operation of mine refrigeration equipment. The article ends with the statistical verification of the developed dependencies. For this purpose, for each model correlation coefficients and coefficients of determination were calculated, as well as absolute and relative deviations between the given values from the program REFPROP 7 (Lemmon et al., 2002) and the calculated ones. The results of these calculations have been contained in Tables 14 and 15.
Simulation of an ammonia-water heat pump water heater with combustion products-driven evaporator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Blanco, Horacio; Gluesenkamp, K.; Ally, Moonis Raza
Here, the objective of this work is to simulate a single effct (SE) ammonia-water heat pump for domestic water heating, with innovative aspects for cycle simulation and eventual implementation. Seasonal temperature variations demand verfication of distillation column viability. For the given application and temperature ranges, it is found that some variables need to be controlled if the same column is to be used all year round. In addition, a number of simplifications are considered in this work: an advanced evaporator requireing minimal gas flow and surface area, subcooling at two crucial spots of the cycle and the viability of somemore » pump designs to assuage cavitation issues.« less
Simulation of an ammonia-water heat pump water heater with combustion products-driven evaporator
Perez-Blanco, Horacio; Gluesenkamp, K.; Ally, Moonis Raza
2016-12-19
Here, the objective of this work is to simulate a single effct (SE) ammonia-water heat pump for domestic water heating, with innovative aspects for cycle simulation and eventual implementation. Seasonal temperature variations demand verfication of distillation column viability. For the given application and temperature ranges, it is found that some variables need to be controlled if the same column is to be used all year round. In addition, a number of simplifications are considered in this work: an advanced evaporator requireing minimal gas flow and surface area, subcooling at two crucial spots of the cycle and the viability of somemore » pump designs to assuage cavitation issues.« less
The Heat and Mass Transfer Processes at the Cooling of Strong Heated Sphere in a Cold Liquid
NASA Astrophysics Data System (ADS)
Puzina, Yu Yu
2017-10-01
Some new experimental results of continuum mechanics problems in two-phase systems are described. The processes of heat and mass transfer during cooling of strong heated sphere in the subcooled liquid are studied. Due to high level of heater temperature the stable vapor film is formed on the sphere surface. Calculation of steady-state transport processes at vapor - water interface is carried out using methods of molecular-kinetic theory. Heat transfer in vapor by thermal conductivity and natural convection in liquid are considered. Pressure balance is provided by hydrostatic pressure and non-equilibrium boundary condition. The results of the calculations are analyzed by comparison with previous data and experimental results.
NASA Technical Reports Server (NTRS)
Cuan, Winston M.; Schwartz, Sidney H.
1988-01-01
Results are presented for a preliminary experiment involving a saturated pool boiling at 1 atm from rotating 2 and 3 inch diameter spheres which were immersed in LN2. Additional results are presented for a stationary 2 inch diameter sphere quenched in LN2, which were obtained with a more versatile and complete experimental apparatus. The speed of the rotational tests varied from 0 to 10,000 rpm. The stationary experiments parametrically varied pressure and subcooling levels from 0 to 600 psig and from 0 to 50 F, respectively. During the rotational tests, a high speed photographic analysis was undertaken to measure the thickness of the vapor film surrounding the sphere.
A visual study of radial inward choked flow of liquid nitrogen.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Simoneau, R. J.; Hsu, Y. Y.
1973-01-01
Data and high speed movies were acquired on pressurized subcooled liquid nitrogen flowing radially inward through a 0.0076 cm gap. The stagnation pressure ranged from 0.7 to 4 MN/sq m. Steady radial inward choked flow appears equivalent to steady choked flow through axisymmetric nozzles. Transient choked flows through the radial gap are not uniform and the discharge pattern appears as nonuniform impinging jets. The critical mass flow rate data for the transient case appear different from those for the steady case. On the mass flow rate vs pressure map, the slope and separation of the isotherms appear to be less for transient than for steady radial choked flow.
Flow reversal and thermal limit in a heated rectangular channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, L.Y.; Tichler, P.R.; Yang, B.W.
The thermal limit in a vertical rectangular channel was determined in a series of experiments whereby the internal coolant underwent a change in flow direction from forced downflow to upward natural circulation. The tests were designed to simulate the flow reversal transient in the High Flux Beam Reactor. A number of parameters were varied in the flow reversal experiments to examine their effects on the thermal limit. Among the parameters varied were the rate of flow coastdown, inlet subcooling, water level in the upper plenum, bypass ratio (ratio of initial flow through the heated section to initial flow through themore » bypass orifice), and single- verses double-sided heating.« less
Novel load responsive multilayer insulation with high in-atmosphere and on-orbit thermal performance
NASA Astrophysics Data System (ADS)
Dye, S.; Kopelove, A.; Mills, G. L.
2012-04-01
Aerospace cryogenic systems require lightweight, high performance thermal insulation to preserve cryopropellants both pre-launch and on-orbit. Current technologies have difficulty meeting all requirements, and advances in insulation would benefit cryogenic upper stage launch vehicles, LH2 fueled aircraft and ground vehicles, and provide capabilities for sub-cooled cryogens for space-borne instruments and orbital fuel depots. This paper reports the further development of load responsive multilayer insulation (LRMLI) that has a lightweight integrated vacuum shell and provides high thermal performance both in-air and on-orbit. LRMLI is being developed by Quest Product Development and Ball Aerospace under NASA contract, with prototypes designed, built, installed and successfully tested. A 3-layer LRMLI blanket (0.63 cm thick, 77 K cold, 295 K hot) had a measured heat leak of 6.6 W/m2 in vacuum and 40.6 W/m2 in air at one atmosphere. In-air LRMLI has an 18× advantage over Spray On Foam Insulation (SOFI) in heat leak per thickness and a 16× advantage over aerogel. On-orbit LRMLI has a 78× lower heat leak than SOFI per thickness and 6× lower heat leak than aerogel. The Phase II development of LRMLI is reported with a modular, flexible, thin vacuum shell and improved on-orbit performance. Structural and thermal analysis and testing results are presented. LRMLI mass and thermal performance is compared to SOFI, aerogel and MLI over SOFI.
NASA Astrophysics Data System (ADS)
Zhang, Yonghai; Liu, Bin; Zhao, Jianfu; Deng, Yueping; Wei, Jinjia
2018-06-01
The flow boiling heat transfer characteristics of subcooled air-dissolved FC-72 on a smooth surface (chip S) were studied in microgravity by utilizing the drop tower facility in Beijing. The heater, with dimensions of 40 × 10 × 0.5 mm3 (length × width × thickness), was combined with two silicon chips with the dimensions of 20 × 10 × 0.5 mm3. High-speed visualization was used to supplement observation in the heat transfer and vapor-liquid two-phase flow characteristics. In the low and moderate heat fluxes region, the flow boiling of chip S at inlet velocity V = 0.5 m/s shows almost the same regulations as that in pool boiling. All the wall temperatures at different positions along the heater in microgravity are slightly lower than that in normal gravity, which indicates slight heat transfer enhancement. However, in the high heat flux region, the pool boiling of chip S shows much evident deterioration of heat transfer compared with that of flow boiling in microgravity. Moreover, the bubbles of flow boiling in microgravity become larger than that in normal gravity due to the lack of buoyancy Although the difference of the void fraction in x-y plain becomes larger with increasing heat flux under different gravity levels, it shows nearly no effect on heat transfer performance except for critical heat flux (CHF). Once the void fraction in y-z plain at the end of the heater equals 1, the vapor blanket will be formed quickly and transmit from downstream to upstream along the heater, and CHF occurs. Thus, the height of channel is an important parameter to determine CHF in microgravity at a fixed velocity. The flow boiling of chip S at inlet velocity V = 0.5 m/s shows higher CHF than that of pool boiling because of the inertia force, and the CHF under microgravity is about 78-92% of that in normal gravity.
Dual-energy-X-ray imaging to measure phase volume fractions in a transient multiphase flow
NASA Astrophysics Data System (ADS)
Loewen, Eric Paul
1999-12-01
The objective of this research was to visualize the pre-mixing phase of a fuel-coolant interaction (FCI) by using combinations of high-speed cinematography and dual energy X-ray imaging to identify and quantify the spatial and temporal characteristics of the three FCI phases---metal (fuel), liquid (coolant water), and voids (generated steam). (1) The high-speed cinematography imaging subsystem and the low-energy X-ray imaging subsystem provided visual photographs and distinguished generated voids from water. (2) The high-energy X-Ray imaging subsystem provided additional discernment of metal from water and vapor. This is the first time that dynamic dual X-ray images have been provided with quantitative results. The data provide new information concerning the melt fractions, melt jet configuration, melt jet velocity, and qualitative spatial and temporal quantification of the pre-mixing event. This information provides new insight into the FCI phenomenon that could not have been deduced from visible-light imaging or other instrumentation such as thermocouples, void sensors, or pressure transmitters. Significant findings include: (1) the fuel column (molten Pb jet) penetrated deeply (<7 cm) into the coolant (water) while maintaining its columnar shape. (2) Energetic FCIs occurred (and were imaged) below the melt-coolant interface temperature equal to the homogenous nucleation temperature (310°C). (3) The molten jet breakup was observed to be caused by hydrodynamic forces. (4) The Pb/water thermal interaction zone was imaged over melt temperatures from 330°C to 640°C and coolant subcooling of 4°C to 80°C. (5) The interface regions between the molten Pb and coolant was observed to grow with decreasing coolant subcooling. This imaging process can be applied to further study of the FCI phenomena at other test facilities. It can also be applied for observation of other two- or three-phase flow phenomena previously opaque to conventional imaging systems.
Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface
NASA Astrophysics Data System (ADS)
He, Xiaoxia; Shen, Yan; Hung, Francisco R.; Santiso, Erik E.
2016-12-01
Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim+][Cl-] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ˜85 kcal/mol to form a critical nucleus of size ˜3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (˜49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (˜3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (˜4.8 × 1011 cm-3 s-1) is about one order of magnitude faster than the homogeneous rate (˜6.6 × 1010 cm-3 s-1). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide glasses).
Heterogeneous nucleation from a supercooled ionic liquid on a carbon surface.
He, Xiaoxia; Shen, Yan; Hung, Francisco R; Santiso, Erik E
2016-12-07
Classical molecular dynamics simulations were used to study the nucleation of the crystal phase of the ionic liquid [dmim + ][Cl - ] from its supercooled liquid phase, both in the bulk and in contact with a graphitic surface of D = 3 nm. By combining the string method in collective variables [Maragliano et al., J. Chem. Phys. 125, 024106 (2006)], with Markovian milestoning with Voronoi tessellations [Maragliano et al., J. Chem. Theory Comput. 5, 2589-2594 (2009)] and order parameters for molecular crystals [Santiso and Trout, J. Chem. Phys. 134, 064109 (2011)], we computed minimum free energy paths, the approximate size of the critical nucleus, the free energy barrier, and the rates involved in these nucleation processes. For homogeneous nucleation, the subcooled liquid phase has to overcome a free energy barrier of ∼85 kcal/mol to form a critical nucleus of size ∼3.6 nm, which then grows into the monoclinic crystal phase. This free energy barrier becomes about 42% smaller (∼49 kcal/mol) when the subcooled liquid phase is in contact with a graphitic disk, and the critical nucleus formed is about 17% smaller (∼3.0 nm) than the one observed for homogeneous nucleation. The crystal formed in the heterogeneous nucleation scenario has a structure that is similar to that of the bulk crystal, with the exception of the layers of ions next to the graphene surface, which have larger local density and the cations lie with their imidazolium rings parallel to the graphitic surface. The critical nucleus forms near the graphene surface separated only by these layers of ions. The heterogeneous nucleation rate (∼4.8 × 10 11 cm -3 s -1 ) is about one order of magnitude faster than the homogeneous rate (∼6.6 × 10 10 cm -3 s -1 ). The computed free energy barriers and nucleation rates are in reasonable agreement with experimental and simulation values obtained for the homogeneous and heterogeneous nucleation of other systems (ice, urea, Lennard-Jones spheres, and oxide glasses).
Dryout and Rewetting in the Pool Boiling Experiment Flown on STS-72 (PBE-2 B) and STS-77 (PBE-2 A)
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.; Lee, Ho Sung; Keller, Robert B.
1998-01-01
Experiments were conducted in the microgravity of space in which a pool of liquid (R-113), initially at a precisely defined pressure and temperature, is subjected to a step imposed heat flux from a semi-transparent thin-film heater forming part of one wall of the container such that boiling is initiated and maintained for a defined period of time at a constant pressure level. A total of nine tests were conducted at three levels of heat flux and three levels of subcooling in each of the two space experiments in a GAS canister on the STS-77, -72, respectively. Three (3) modes of propagation of boiling across the heater surface and subsequent vapor bubble growths were observed, in addition to the two (2) modes observed in the previous microgravity pool boiling space flights on STS-47, -57, and -60. Of particular interest were the extremely dynamic or "explosive" growths, which were determined to be the consequence of the large increase in the liquid-vapor interface area associated with the appearance of a corrugated or rough interface. Predictions of circumstances for its onset have been carried out. Assumptions were necessary regarding the character of disturbances necessary for the instabilities to grow. Also, a new vapor bubble phenomena was observed in which small vapor bubbles migrated toward a larger bubble, eventually coalescing with this larger bubble. The heat transfer was enhanced approximately 30% as a result of these migrating bubbles, which is believed to be a vapor bubble manifestation of Marangoni convection and/or molecular momentum effects, sometimes referred to as vapor recoil. The circumstances of heat flux and liquid subcooling necessary to produce heater surface dryout for an initially stagnant liquid subjected to an imposed heat flux have been more closely identified.
NASA Technical Reports Server (NTRS)
Melcher, J. C.; Morehead, Robert L.
2014-01-01
The Project Morpheus liquid oxygen (LOX) / liquid methane rocket engines demonstrated acousticcoupled combustion instabilities during sea-level ground-based testing at the NASA Johnson Space Center (JSC) and Stennis Space Center (SSC). High-amplitude, 1T, 1R, 1T1R (and higher order) modes appear to be triggered by injector conditions. The instability occurred during the Morpheus-specific engine ignition/start sequence, and did demonstrate the capability to propagate into mainstage. However, the instability was never observed to initiate during mainstage, even at low power levels. The Morpheus main engine is a JSC-designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. Two different engine designs, named HD4 and HD5, and two different builds of the HD4 engine all demonstrated similar instability characteristics. Through the analysis of more than 200 hot fire tests on the Morpheus vehicle and SSC test stand, a relationship between ignition stability and injector/chamber pressure was developed. The instability has the distinct characteristic of initiating at high relative injection pressure drop (dP) at low chamber pressure (Pc); i.e., instabilities initiated at high dP/Pc at low Pc during the start sequence. The high dP/Pc during start results during the injector /chamber chill-in, and is enhanced by hydraulic flip in the injector orifice elements. Because of the fixed mixture ratio of the existing engine design (the main valves share a common actuator), it is not currently possible to determine if LOX or methane injector dP/Pc were individual contributors (i.e., LOX and methane dP/Pc typically trend in the same direction within a given test). The instability demonstrated initiation characteristic of starting at or shortly after methane injector chillin. Colder methane (e.g., sub-cooled) at the injector inlet prior to engine start was much more likely to result in an instability. A secondary effect of LOX sub-cooling was also possibly observed; greater LOX sub- cooling improved stability. Some tests demonstrated a low-amplitude 1L-1T instability prior to LOX injector chill-in. The Morpheus main engine also demonstrated chug instabilities during some engine shutdown sequences on the flight vehicle and SSC test stand. The chug instability was also infrequently observed during the startup sequence. The chug instabilities predictably initiated at low dP/Pc at low Pc. The chug instabilities were always self-limiting; startup chug instabilities terminated during throttle-up and shutdown chug instabilities decayed by shutdown termination.
Test program, helium II orbital resupply coupling
NASA Technical Reports Server (NTRS)
Hyatt, William S.
1991-01-01
The full scope of this program was to have included development tests, design and production of custom test equipment and acceptance and qualification testing of prototype and protoflight coupling hardware. This program was performed by Ball Aerospace Systems Division, Boulder, Colorado until its premature termination in May 1991. Development tests were performed on cryogenic face seals and flow control devices at superfluid helium (He II) conditions. Special equipment was developed to allow quantified leak detection at large leak rates up to 8.4 x 10(exp -4) SCCS. Two major fixtures were developed and characterized: The Cryogenic Test Fixture (CTF) and the Thermal Mismatch Fixture (Glovebox). The CTF allows the coupling hardware to be filled with liquid nitrogen (LN2), liquid helium (LHe) or sub-cooled liquid helium when hardware flow control valves are either open or closed. Heat leak measurements, internal and external helium leakage measurements, cryogenic proof pressure tests and external load applications are performed in this fixture. Special reusable MLI closures were developed to provide repeatable installations in the CTF. The Thermal Mismatch Fixture allows all design configurations of coupling hardware to be engaged and disengaged while measuring applied forces and torques. Any two hardware components may be individually thermally preconditioned within the range of 117 deg K to 350 deg K prior to engage/disengage cycling. This verifies dimensional compatibility and operation when thermally mismatched. A clean, dry GN2 atmosphere is maintained in the fixture at all times. The first shipset of hardware was received, inspected and cycled at room temperature just prior to program termination.
Walks of bubbles on a hot wire in a liquid bath
NASA Astrophysics Data System (ADS)
Duchesne, A.; Caps, H.
2017-05-01
When a horizontal resistive wire is heated up to the boiling point in a subcooled liquid bath, some vapor bubbles nucleate on its surface. The traditional nucleate boiling theory predicts that bubbles generated from active nucleate sites grow up and depart from the heating surface due to buoyancy and inertia. However, we observed here a different behavior: the bubbles slide along the heated wire. In this situation, unexpected regimes are observed; from the simple sliding motion to bubble clustering. We noticed that bubbles could rapidly change their moving direction and may also interact. Finally, we propose an interpretation for both the attraction between the bubbles and the wire and for the motion of the bubbles on the wire in terms of Marangoni effects.
Bubble Point Measurements with Liquid Methane of a Screen Capillary Liquid Acquisition Device
NASA Technical Reports Server (NTRS)
Jurns, John M.; McQuillen, John B.
2009-01-01
Liquid acquisition devices (LADs) can be utilized within a propellant tank in space to deliver single-phase liquid to the engine in low gravity. One type of liquid acquisition device is a screened gallery whereby a fine mesh screen acts as a bubble filter and prevents the gas bubbles from passing through until a crucial pressure differential condition across the screen, called the bubble point, is reached. This paper presents data for LAD bubble point data in liquid methane (LCH4) for stainless steel Dutch twill screens with mesh sizes of 325 by 2300 and 200 by 1400 wires per inch. Data is presented for both saturated and sub-cooled LCH4, and is compared with predicted values.
Detection of vapor nanobubbles by small angle neutron scattering (SANS)
NASA Astrophysics Data System (ADS)
Popov, Emilian; He, Lilin; Dominguez-Ontiveros, Elvis; Melnichenko, Yuri
2018-04-01
Experiments using boiling water on untreated (roughness 100-300 nm) metal surfaces using small-angle neutron scattering (SANS) show the appearance of structures that are 50-70 nm in size when boiling is present. The scattering signal disappears when the boiling ceases, and no change in the signal is detected at any surface temperature condition below saturation. This confirms that the signal is caused by vapor nanobubbles. Two boiling regimes are evaluated herein that differ by the degree of subcooling (3-10 °C). A polydisperse spherical model with a log-normal distribution fits the SANS data well. The size distribution indicates that a large number of nanobubbles exist on the surface during boiling, and some of them grow into large bubbles.
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)
1992-01-01
The present conference discusses such space nuclear power (SNP) issues as current design trends for SDI applications, ultrahigh heat-flux systems with curved surface subcooled nucleate boiling, design and manufacturing alternatives for low cost production of SNPs, a lightweight radioisotope heater for the Galileo mission, compatible materials for uranium fluoride-based gas core SNPs, Johnson noise thermometry for SNPs, and uranium nitride/rhenium compatibility studies for the SP-100 SNP. Also discussed are system issues in antimatter energy conversion, the thermal design of a heat source for a Brayton cycle radioisotope power system, structural and thermal analyses of an isotope heat source, a novel plant protection strategy for transient reactors, and beryllium toxicity.
Buoyancy effects on the vapor condensation rate on a horizontal liquid surface
NASA Technical Reports Server (NTRS)
Hasan, Mohammad M.; Lin, Chin-Shun
1989-01-01
The results are presented of a numerical study of the effects of buoyancy on the direct condensation of saturated or nearly saturated vapor on a horizontal liquid surface in a cylindrical tank. The liquid motion beneath the liquid-vapor interface is induced by an axisymmetric laminar jet of subcooled liquid. Analysis and numerical results show that the dominant parameter which determines the influence of buoyancy on the condensation rate is the Richardson number. However, the effect of buoyancy on the condensation rate cannot be quantified in terms of the Richardson number alone. The critical value of the Richardson number below which the condensation rate is not significantly reduced depends on the Reynolds number as well as the Prandtl number.
Cooling the vertical surface by conditionally single pulses
NASA Astrophysics Data System (ADS)
Karpov, Pavel; Nazarov, Alexander; Serov, Anatoly; Terekhov, Victor
2017-10-01
You Sprays with periodic supply of the droplet phase have great opportunities to control the heat exchange processes. Varying pulse duration and frequency of their repetition, we can achieve the optimal conditions of evaporative cooling with minimization of the liquid flow rate. The paper presents experimental data on studying local heat transfer on a large subcooled surface, obtained on the original setup with multinozzle controlled system of impact irrigation by the gas-droplet flow. A contribution to intensification of the spray parameters (flow rate, pulse duration, repetition frequency) per a growth of integral heat transfer was studied. Data on instantaneous distribution of the heat flux value helped us to describe the processes occurring on the studied surface. These data could describe the regime of "island" film cooling.
Fabrication and testing of microchannel heat exchangers
NASA Astrophysics Data System (ADS)
Cuta, Judith M.; Bennett, Wendy D.; McDonald, Carolyn E.; Ravigururajan, T. S.
1995-09-01
Micro-channel heat-exchanger test articles were fabricated and performance tested. The heat exchangers are being developed for innovative applications, and have been shown to be capable of handling heat loads of up to 100 W/cm2. The test articles were fabricated to represent two different designs for the micro-channel portion of the heat exchanger. One design consists of 166 micro-channels etched in silicon substrate, and a second design consists of 54 micro-channels machined in copper substrate. The devices were tested in an experimental loop designed for performance testing in single- and two-phase flow with water and R124. Pressure and liquid subcooling can be regulated over the range of interest, and a secondary heat removal loop provides stable loop performance for steady-state tests. The selected operating pressures are approximately 0.344 MPa for distilled water and 0.689 MPa for R124. The temperature ranges are 15.5 to 138 C for distilled water and 15.5 to 46 C for R-124. The mass flow range 7.6 X 10-8 to 7.6 X 10MIN5 kg/min for both distilled water and R124.
Mixing and transient interface condensation of a liquid hydrogen tank
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.; Nyland, T. W.
1993-01-01
Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m length. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. Mixing tests began with the tank pressures at which the thermal stratification results in 4.9-6.2 K liquid subcooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed and expressed as functions of system and buoyancy parameters. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.
TRACE/PARCS Analysis of ATWS with Instability for a MELLLA+BWR/5
L. Y. Cheng; Baek, J. S.; Cuadra, A.; ...
2016-06-06
A TRACE/PARCS model has been developed to analyze anticipated transient without SCRAM (ATWS) events for a boiling water reactor (BWR) operating in the maximum extended load line limit analysis-plus (MELLLA+) expanded operating domain. The MELLLA+ domain expands allowable operation in the power/flow map of a BWR to low flow rates at high power conditions. Such operation exacerbates the likelihood of large amplitude power/flow oscillations during certain ATWS scenarios. The analysis shows that large amplitude power/flow oscillations, both core-wide and out-of-phase, arise following the establishment of natural circulation flow in the reactor pressure vessel (RPV) after the trip of the recirculationmore » pumps and an increase in core inlet subcooling. The analysis also indicates a mechanism by which the fuel may experience heat-up that could result in localized fuel damage. TRACE predicts the heat-up to occur when the cladding surface temperature exceeds the minimum stable film boiling temperature after periodic cycles of dryout and rewet; and the fuel becomes “locked” into a film boiling regime. Further, the analysis demonstrates the effectiveness of the simulated manual operator actions to suppress the instability.« less
NASA Technical Reports Server (NTRS)
Papell, S. S.
1972-01-01
Buoyancy effects on the critical heat flux and general data trends for a liquid nitrogen internal flow system were determined by comparison of upflow and downflow data under identical test conditions. The test section had a 1.28 cm diameter flow passage and a 30.5 cm heated length which was subjected to uniform heat fluxes through resistance heating. Test conditions covered a range of pressures from 3.4 to 10.2 atm, inlet velocities from 0.23 to 3.51 m/sec, with the liquid nitrogen temperature at saturated inlet conditions. Data comparisons showed that the critical heat flux for downflow could be up to 36 percent lower than for upflow. A nonmonotonic relationship between the critical heat flux and velocity was determined for upflow but not for downflow. A limiting inlet velocity of 4.12 m/sec was determined to be the minimum velocity required to completely suppress the influence of buoyancy on the critical heat flux for this saturated inlet flow system. A correlation of this limiting fluid velocity is presented that was developed from previously published subcooled liquid nitrogen data and the saturated data of this investigation.
Status and Design Concepts for the Hydrogen On-Orbit Storage and Supply Experiment
NASA Technical Reports Server (NTRS)
Chato, David J.; VanDyke, Melissa; Batty, J. Clair; Schick, Scott
1998-01-01
This paper studies concepts for the Hydrogen On-Orbit Storage and Supply Experiment (HOSS). HOSS is a space flight experiment whose objectives are: Show stable gas supply for storage and direct gain solar-thermal thruster designs; and evaluate and compare low-g performance of active and passive pressure control via a thermodynamic vent system (TVS) suitable for solar-thermal upper stages. This paper shows that the necessary experimental equipment for HOSS can be accommodated in a small hydrogen dewar of 36 to 80 liter. Thermal designs for these dewars which meet the on-orbit storage requirements can be achieved. Furthermore ground hold insulation and shielding concepts are achieved which enable storing initially subcooled liquid hydrogen in these small dewars without venting in excess of 144 hours.
NASA Astrophysics Data System (ADS)
Ishimoto, Jun; Abe, Haruto; Ochiai, Naoya
The fundamental characteristics of the cryogenic single-component micro-nano solid nitrogen (SN2) particle production using super adiabatic Laval nozzle and its application to the physical photo resist removal-cleaning technology are investigated by a new type of integrated measurement coupled computational technique. As a result of present computation, it is found that high-speed ultra-fine SN2 particles are continuously generated due to the freezing of liquid nitrogen (LN2) droplets induced by rapid adiabatic expansion of transonic subcooled two-phase nitrogen flow passing through the Laval nozzle. Furthermore, the effect of SN2 particle diameter, injection velocity, and attack angle to the wafer substrate on resist removal-cleaning performance is investigated in detail by integrated measurement coupled computational technique.
Length and time for development of laminar flow in tubes following a step increase of volume flux
NASA Astrophysics Data System (ADS)
Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.
2015-01-01
Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this level of description, the numerical results reveal interaction between the effects of space and time development and nonlinear Reynolds number effects.
Dropwise condensation dynamics in humid air
NASA Astrophysics Data System (ADS)
Castillo Chacon, Julian Eduardo
Dropwise condensation of atmospheric water vapor is important in multiple practical engineering applications. The roles of environmental factors and surface morphology/chemistry on the condensation dynamics need to be better understood to enable efficient water-harvesting, dehumidication, and other psychrometric processes. Systems and surfaces that promote faster condensation rates and self-shedding of condensate droplets could lead to improved mass transfer rates and higher water yields in harvesting applications. The thesis presents the design and construction of an experimental facility that allows visualization of the condensation process as a function of relative humidity. Dropwise condensation experiments are performed on a vertically oriented, hydrophobic surface at a controlled relative humidity and surface subcooling temperature. The distribution and growth of water droplets are monitored across the surface at different relative humidities (45%, 50%, 55%, and 70%) at a constant surface subcooling temperature of 15 °C below the ambient temperature. The droplet growth dynamics exhibits a strong dependency on relative humidity in the early stages during which there is a large population of small droplets on the surface and single droplet growth dominates over coalescence effects. At later stages, the dynamics of droplet growth is insensitive to relative humidity due to the dominance of coalescence effects. The overall volumetric rate of condensation on the surface is also assessed as a function of time and ambient relative humidity. Low relative humidity conditions not only slow the absolute rate of condensation, but also prolong an initial transient regime over which the condensation rate remains significantly below the steady-state value. The current state-of-the-art in dropwise condensation research indicates the need for systematic experimental investigations as a function of relative humidity. The improved understanding of the relative humidity effects on the growth of single and distributed droplets offered in this thesis can improve the prediction of heat and mass transfer during dropwise condensation of humid air under differing environmental conditions. This knowledge can be used to engineer condenser systems and surfaces that are adapted for local ambient relative humidity and temperature conditions.
FCI experiments in the corium/water system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huhtiniemi, I.; Hohmann, H.; Magallon, D.
The KROTOS fuel coolant interaction (FCI) tests aim at providing benchmark data to examine the effect of fuel/coolant initial conditions and mixing on explosion energetics. Experiments, fundamental in nature, are performed in well-controlled geometries and are complementary to the FARO large scale tests. Recently, a new test series was started using 3 kg of prototypical core material (80 w/o UO{sub 2}, 20 w/o ZrO{sub 2}) which was poured into a water column of {le} 1.25 m in height (95 mm and 200 mm in diameter) under 0.1 MPa ambient pressure. Four tests have been performed in the test section ofmore » 95 mm in diameter (ID) with different subcooling levels (10-80K) and with and without an external trigger. Additionally, one test has been performed with a test section of 200 mm in diameter (ID) and with an external trigger. No spontaneous or triggered energetic FCIs (steam explosions) have been observed in these corium tests. This is in sharp contrast with the steam explosions observed in the previously reported Al{sub 2}O{sub 3} test series which had the same initial conditions of ambient pressure and subcooling. The post-test analysis of the corium experiments indicated that strong vaporisation at the melt/water contact led to a partial expulsion of the melt from the test section into the pressure vessel. In order to avoid this and to obtain a good penetration and premixing os the corium melt, an additional test has been performed with a larger diameter test section. In all the UO{sub 2}-ZrO{sub 2} tests an efficient quenching process (0.7-1.2 MW/kg-melt) with total fuel fragmentation (mass mean diameter 1.4-2.5 mm) was observed. Results from Al{sub 2}O{sub 3} tests under the same initial conditions are also presented for further confirmation of the observed differences in behaviour between Al{sub 2}O{sub 3} and UO{sub 2}-ZrO{sub 2} melts.« less
NASA Astrophysics Data System (ADS)
Booth, A. M.; Topping, D. O.; McFiggans, G. B.; Garforth, A.; Percival, C. J.
2009-12-01
Aerosol particles influence climate directly through the scattering and absorbing radiation and indirectly through their role as cloud condensation nuclei (CCN). Traditionally, models aiming to capture the behaviour of aerosols in the atmosphere have concentrated on the role of inorganic compounds. However, organic components, covering a huge range of chemical and physical properties (Jacobson et.al., 2000), may constitute a significant fraction depending on location (Houghton et.al., 2001). Knowledge of pure component vapour pressures is essential for calculations of gas/particle partitioning. There are many methods of estimating vapour pressures but most of the experimental data collected to date has been for intermediate or high pressure compounds (and often measured at temperatures considerably above ambient) and the proportion of experimental data for low (less than 100Pa) vapour pressure compounds has been very small. Hence the datasets used for developing the estimation methods have reflected this bias in addition to the fact that components studied tend to have one or two functional groups at the most. Thus it is unsurprising that some of the estimation methods can give errors in vapour pressure of several orders of magnitude for multifunctional compounds at ambient temperatures. Knudsen Effusion Mass Spectrometer (KEMS) has been used to measure solid state vapour pressures for multifunctional organic compounds based on dicarboxylic acids (Booth et al 2009). In the atmosphere these compounds are likely to exist in the sub-cooled state so Differential Scanning Calorimetry (DSC) was used to obtain thermochemical data to effect a correction between solid and sub-cooled vapour pressures. The group contribution method of Nanoolal and co-workers (Nanoolal et al., 2008) is one of the best predictive methods in terms of reproducing available low volatility vapour pressure data (barley et al., 2009). The Nanoolal method relies on the use of primary and secondary functional groups and interaction parameters, derived from experimental data, to reliably predict boiling points and vapour pressures. A sensitivity study was undertaken to establish the impact of the new experimentally determined vapour pressures on partitioning models. Jacobson, M.C., et al. Rev Geophys, 38 (2), 267-294, 2000. Houghton et al. Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the IPCC., 881 pp., Cambridge University Press, 2001. Johnson, D. , et al. Atmo. Chem. Phys., Vol. 6, 419-431, 2006 Yu, J. Z., et al. J Atmos Chem. 34, 207-258, 1999 Booth, A.M. et al Atmos. Meas. Tech.,2,355-361, 2009 Nanoolal, Y. et al Fluid Phase Equilibria, 269,117-133., 2008. Barley, M. et al Atmos. Chem. Phys., -,to be submitted.
Grant, Sharon; Schacht, Veronika J; Escher, Beate I; Hawker, Darryl W; Gaus, Caroline
2016-03-15
Freely dissolved aqueous concentration and chemical activity are important determinants of contaminant transport, fate, and toxic potential. Both parameters are commonly quantified using Solid Phase Micro-Extraction (SPME) based on a sorptive polymer such as polydimethylsiloxane (PDMS). This method requires the PDMS-water partition constants, KPDMSw, or activity coefficient to be known. For superhydrophobic contaminants (log KOW >6), application of existing methods to measure these parameters is challenging, and independent measures to validate KPDMSw values would be beneficial. We developed a simple, rapid method to directly measure PDMS solubilities of solid contaminants, SPDMS(S), which together with literature thermodynamic properties was then used to estimate KPDMSw and activity coefficients in PDMS. PDMS solubility for the test compounds (log KOW 7.2-8.3) ranged over 3 orders of magnitude (4.1-5700 μM), and was dependent on compound class. For polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (PCDDs), solubility-derived KPDMSw increased linearly with hydrophobicity, consistent with trends previously reported for less chlorinated congeners. In contrast, subcooled liquid PDMS solubilities, SPDMS(L), were approximately constant within a compound class. SPDMS(S) and KPDMSw can therefore be predicted for a compound class with reasonable robustness based solely on the class-specific SPDMS(L) and a particular congener's entropy of fusion, melting point, and aqueous solubility.
Development of a wet vapor homogeneous liquid metal MHD power system
NASA Astrophysics Data System (ADS)
1989-04-01
During the period covered by this report (October 1988 to March 1989), the following work was done: the mixing stream condensation process was analyzed, and a theoretical model for simulating this process was modified. A parametric study is being conducted at the present time; the separation processes were analyzed; and the experimental system was specified and its design is at present in an advanced stage. The mixing stream condensation process was analyzed. For the parameters defined in the SOW of this project the process was found to be a mist flow direct contact condensation, where the hot gas mixture consisting of inert gas and vapor is the continuous phase, and the subcooled liquid on which the vapor is condensed if the droplets dispersed phase. Two possibilities of creating the mist flow were considered. The first, injecting the cold Liquid Metal (LM) into the Mixing Streams Condenser (MSC) entrance as a jet and breaking it into LM fragments and the fragments into droplets by momentum transfer breakup mechanism. The second, atomizing the cooled LM stream into little droplets (approximately 100 micrometers in diameter) and accelerating them by the gas. The second possibility was preferred due to its much higher heat and mass transfer surface and coefficients relative to the first one.
Modeling Cyclic Phase Change and Energy Storage in Solar Heat Receivers
NASA Technical Reports Server (NTRS)
Hall, Carsie A., III; Glakpe, Emmanuel K.; Cannon, Joseph N.; Kerslake, Thomas W.
1997-01-01
Numerical results pertaining to cyclic melting and freezing of an encapsulated phase change material (PCM), integrated into a solar heat receiver, have been reported. The cyclic nature of the present melt/freeze problem is relevant to latent heat thermal energy storage (LHTES) systems used to power solar Brayton engines in microgravity environments. Specifically, a physical and numerical model of the solar heat receiver component of NASA Lewis Research Center's Ground Test Demonstration (GTD) project was developed and results compared with available experimental data. Multi-conjugate effects such as the convective fluid flow of a low-Prandtl-number fluid, coupled with thermal conduction in the phase change material, containment tube and working fluid conduit were accounted for in the model. A single-band thermal radiation model was also included to quantify reradiative energy exchange inside the receiver and losses through the aperture. The eutectic LiF-CaF2 was used as the phase change material (PCM) and a mixture of He/Xe was used as the working fluid coolant. A modified version of the computer code HOTTube was used to generate results for comparisons with GTD data for both the subcooled and two-phase regimes. While qualitative trends were in close agreement for the balanced orbit modes, excellent quantitative agreement was observed for steady-state modes.
NASA Astrophysics Data System (ADS)
Topping, D.; Barley, M. H.; Bane, M.; Higham, N.; Aumont, B.; McFiggans, G.
2015-11-01
In this paper we describe the development and application of a new web based facility, UManSysProp (http://umansysprop.seaes.manchester.ac.uk), for automating predictions of molecular and atmospheric aerosol properties. Current facilities include: pure component vapour pressures, critical properties and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic-organic liquid systems; hygroscopic growth factors and CCN activation potential of mixed inorganic/organic aerosol particles; absorptive partitioning calculations with/without a treatment of non-ideality. The aim of this new facility is to provide a single point of reference for all properties relevant to atmospheric aerosol that have been checked for applicability to atmospheric compounds where possible. The group contribution approach allows users to upload molecular information in the form of SMILES strings and UManSysProp will automatically extract the relevant information for calculations. Built using open source chemical informatics, and hosted at the University of Manchester, the facilities are provided via a browser and device-friendly web-interface, or can be accessed using the user's own code via a JSON API. In this paper we demonstrate its use with specific examples that can be simulated using the web-browser interface.
NASA Technical Reports Server (NTRS)
Kartuzova, O.; Kassemi, M.
2016-01-01
A CFD model for simulating pressure control in cryogenic storage tanks through the injection of a subcooled liquid into the ullage is presented and applied to the 1g MHTB spray bar cooling experiments. An Eulerian-Lagrangian approach is utilized to track the spray droplets and capture the interaction between the discrete droplets and the continuous ullage phase. The spray model is coupled with the VOF model by performing particle tracking in the ullage, removing particles from the ullage when they reach the interface, and then adding their contributions to the liquid. A new model for calculating the droplet-ullage heat and mass transfer is developed. In this model, a droplet is allowed to warm up to the saturation temperature corresponding to the ullage vapor pressure, after which it evaporates while remaining at the saturation temperature. The droplet model is validated against the results of the MHTB spray-bar cooling experiments with 50% and 90% tank fill ratios. The predictions of the present T-sat based model are compared with those of a previously developed kinetic-based droplet mass transfer model. The predictions of the two models regarding the evolving tank pressure and temperature distributions, as well as the droplets' trajectories and temperatures, are examined and compared in detail. Finally, the ullage pressure and local vapor and liquid temperature evolutions are validated against the corresponding data provided by the MHTB spray bar mixing experiment.
Effect of dynamic load on water flow boiling CHF in rectangular channels
NASA Astrophysics Data System (ADS)
Zhang, Zhao; Song, Baoyin; Li, Gang; Cao, Xi
2018-06-01
Experimental investigation into flow boiling critical heat flux (CHF) characteristics in narrow rectangular channels was performed under rotating state using distilled water as working fluids. The effects of mass velocity, inlet temperature and heating orientation on CHF under dynamic load were analyzed and discussed in this paper. The results show that the dynamic load obviously influences the CHF through enhancing two-phase mixing up and bubble separating. The greater the dynamic load, the higher the CHF values. The CHF values increase with the increase of mass velocity and inlet subcooling in the experimental range. The magnitude of CHF increase with the dynamic load for bottom heating is greater than that for up heating. The present study and its newly correlation may provide some technical supports in designing the airborne vapor cycle system.
Review of the BACKONE equation of state and its applications
NASA Astrophysics Data System (ADS)
Lai, Ngoc Anh; Phan, Thi Thu Huong
2017-06-01
This paper presents a review of the BACKONE equation of state (EOS) and its various applications in the study of pure fluid and mixtures as refrigerants, working fluids, natural gases and the study of heat pumps, refrigeration cycles, organic Rankine cycles, trilateral cycles and power flash cycles. It also presents an accurate parameterisation of the BACKONE EOS for the low global warming potential working fluid 3,3,3-trifluoropropene (HFO-1243zf). The average absolute deviations (AAD) between experimental vapour pressure and saturated liquid density data from those of the BACKONE EOS are 0.12% and 0.08%, respectively. The BACKONE EOS for HFO-1243zf also predicts thermodynamic data accurately. The AAD between the BACKONE predicted values and experimental data are 0.20% for sub-cooled liquid density and 0.56% for gaseous pressure.
NASA Technical Reports Server (NTRS)
Nelson, L. S.; Blander, M.; Keil, K.; Skaggs, S. R.
1972-01-01
Chondrule-like spherules were formed from individual freely falling subcooled droplets of alumina, enstatite, forsterite, enstatite-albite and forsterite-albite mixtures that had been melted with a focused continuous CO2 laser beam. Their textures (rimmed, excentro-radial, barred, glassy) are strikingly similar to those of many meteoritic chondrules. It is suggested that the phenomena associated with rapid crystallization from the supercooled melt are responsible for the various textures observed in the artificial spherules as well as in similar meteoritic chondrules. It is suggested that the textures observed would also result from rapid crystallization of relatively slowly cooling molten droplets that may have been produced in larger scale events, including condensation from a nebula of solar composition and solidification in an ambient medium of high temperature.
Thermodynamic design of 10 kW Brayton cryocooler for HTS cable
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Park, C. W.; Yang, H. S.; Sohn, Song Ho; Lim, Ji Hyun; Oh, S. R.; Hwang, Si Dole
2012-06-01
Thermodynamic design of Brayton cryocooler is presented as part of an ongoing governmental project in Korea, aiming at 1 km HTS power cable in the transmission grid. The refrigeration requirement is 10 kW for continuously sub-cooling liquid nitrogen from 72 K to 65 K. An ideal Brayton cycle for this application is first investigated to examine the fundamental features. Then a practical cycle for a Brayton cryocooler is designed, taking into account the performance of compressor, expander, and heat exchangers. Commercial software (Aspen HYSYS) is used for simulating the refrigeration cycle with real fluid properties of refrigerant. Helium is selected as a refrigerant, as it is superior to neon in thermodynamic efficiency. The operating pressure and flow rate of refrigerant are decided with a constraint to avoid the freezing of liquid nitrogen
Combined refrigeration system with a liquid pre-cooling heat exchanger
Gaul, Christopher J.
2003-07-01
A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.
Treatment of TNT red water by layer melt crystallization.
Jo, Jeong-Hyeon; Ernest, Takyi; Kim, Kwang-Joo
2014-09-15
Treatment of the red water, which is wastewater of 2,4,6- trinitrotoluene (TNT) manufacturing process has been explored using ice crystallization. This study focuses on the formation of ice crystals from the red water in a layer crystallizer under various operating conditions. Among the parameters which affect layer crystallization, attention was given to cooling rate, cooling temperature, sweating rate and concentration of the red water. The study highlights the effect of subcooling and growth rate on purity of the ice crystalline layers produced. After sweating, the COD value of crystalline ice layer was significantly reduced from 10,000 mg/L to below 20mg/L. Most organic contaminants were removed in sweating fractions of 0.5. Eventually, the red water was treated by layer crystallization combined with the sweating process. Copyright © 2014 Elsevier B.V. All rights reserved.
FULLY COUPLED "ONLINE" CHEMISTRY WITHIN THE WRF MODEL
A fully coupled "online" Weather Research and Forecasting/Chemistry (WRF/Chem) model has been developed. The air quality component of the model is fully consistent with the meteorological component; both components use the same transport scheme (mass and scalar preserving), the s...
IDEAS and App Development Internship in Hardware and Software Design
NASA Technical Reports Server (NTRS)
Alrayes, Rabab D.
2016-01-01
In this report, I will discuss the tasks and projects I have completed while working as an electrical engineering intern during the spring semester of 2016 at NASA Kennedy Space Center. In the field of software development, I completed tasks for the G-O Caching Mobile App and the Asbestos Management Information System (AMIS) Web App. The G-O Caching Mobile App was written in HTML, CSS, and JavaScript on the Cordova framework, while the AMIS Web App is written in HTML, CSS, JavaScript, and C# on the AngularJS framework. My goals and objectives on these two projects were to produce an app with an eye-catching and intuitive User Interface (UI), which will attract more employees to participate; to produce a fully-tested, fully functional app which supports workforce engagement and exploration; to produce a fully-tested, fully functional web app that assists technicians working in asbestos management. I also worked in hardware development on the Integrated Display and Environmental Awareness System (IDEAS) wearable technology project. My tasks on this project were focused in PCB design and camera integration. My goals and objectives for this project were to successfully integrate fully functioning custom hardware extenders on the wearable technology headset to minimize the size of hardware on the smart glasses headset for maximum user comfort; to successfully integrate fully functioning camera onto the headset. By the end of this semester, I was able to successfully develop four extender boards to minimize hardware on the headset, and assisted in integrating a fully-functioning camera into the system.
Ignition Characterization Test Results for the LO2/Ethanol Propellant Combination
NASA Technical Reports Server (NTRS)
Popp, Christopher G.; Robinson, Phillip J.; Veith, Eric M.
2006-01-01
A series of contracts were issued by the Marshall Space Flight Center (MSFC) of the National Aeronautics and Space Administration (NASA) under the auspices of the Exploration Systems Mission Directorate to develop and expand the maturity of candidate technologies considered to be important for future space exploration. One such technology was to determine the viability of incorporating non-toxic propellants for Reaction Control Subsystems (RCS). Contract NAS8-01109 was issued to Aerojet to develop a dual thrust Reaction Control Engine (RCE) that utilized liquid oxygen and ethanol as the propellants. The dual thrust RCE incorporated a primary thrust level of 870 lbf, and a vernier thrust level of 10 - 30 lbf. The preferred RCS approach for the dual thrust RCE was to utilize pressure-fed liquid oxygen (LOX) and ethanol propellants; however, previous dual thrust feasibility testing incorporated GOX/Ethanol igniters as opposed to LOX/Ethanol igniters in the design. GOX/Ethanol was easier to ignite, but this combination had system design implications of providing GOX for the igniters. A LOX/Ethanol igniter was desired; however, extensive LOX/Ethanol ignition data over the anticipated operating range for the dual thrust RCE did not exist. Therefore, Aerojet designed and tested a workhorse LOX igniter to determine LOX/Ethanol ignition characteristics as part of a risk mitigation effort for the dual thrust RCE design. LOX, encompassing potential two-phase flow conditions anticipated being present in real mission applications. A workhorse igniter was designed to accommodate the hll LOX design flowrate, as well as a reduced GOX flowrate. It was reasoned that the initial LOX flow through the igniter would flash to GOX due to the latent heat stored in the hardware, causing a reduced oxygen flowrate because of a choked, or sonic, flow condition through the injection elements. As LOX flow continued, the hardware would chill-in, with the injected oxygen flow transitioning from cold GOX through two-phase flow to subcooled LOX. permitted oxygen state points to be determined in the igniter oxidizer manifold, and gas-side igniter chamber thermocouples provided chamber thermal profile characteristics. The cold flow chamber pressure (P(sub c)) for each test was determined and coupled with the igniter chamber diameter (D(sub c)) to calculate the characteristic quench parameter (P(sub c) x D(sub c)), which was plotted as a function of core mixture ratio, m. Ignition limits were determined over a broad range of valve inlet conditions, and ignition was demonstrated with oxygen inlet conditions that ranged from subcooled 210 R LOX to 486 R GOX. Once ignited at cold GOX conditions, combustion was continuous as the hardware chilled in and the core mixture ratio transitioned from values near 1.0 to over 12.5. Pulsing is required in typical RCS engines; therefore, the workhorse igniter was pulse tested to verify the ability to provide the required ignition for a pulsing RCE. The minimum electrical pulse width (EPW) of the dual thrust RCE was 0.080 seconds.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-30
... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0747] Agency Information Collection (Fully Developed Claims) (Applications for Compensation; Applications for Pension; Applications for DIC, Death... (Applications for Compensation; Applications for Pension; Applications for DIC, Death Pension, and/or Accrued...
NASA Astrophysics Data System (ADS)
Horimoto, Yasufumi; Simonet-Davin, Gabriel; Katayama, Atsushi; Goto, Susumu
2018-04-01
We experimentally investigate the flow transition to developed turbulence in a precessing spheroid with a small ellipticity. Fully developed turbulence appears through a subcritical transition when we fix the Reynolds number (the spin rate) and gradually increase the Poincaré number (the precession rate). In the transitional range of the Poincaré number, two qualitatively different turbulent states (i.e., fully developed turbulence and quiescent turbulence with a spin-driven global circulation) are stable and they are connected by a hysteresis loop. This discontinuous transition is in contrast to the continuous transition in a precessing sphere, for which neither bistable turbulent states nor hysteresis loops are observed. The small ellipticity of the container makes the global circulation of the confined fluid more stable, and it requires much stronger precession of the spheroid, than a sphere, for fully developed turbulence to be sustained. Nevertheless, once fully developed turbulence is sustained, its flow structures are almost identical in the spheroid and sphere. The argument [Lorenzani and Tilgner, J. Fluid Mech. 492, 363 (2003), 10.1017/S002211200300572X; Noir et al., Geophys. J. Int. 154, 407 (2003), 10.1046/j.1365-246X.2003.01934.x] on the basis of the analytical solution [Busse, J. Fluid Mech. 33, 739 (1968), 10.1017/S0022112068001655] of the steady global circulation in a weak precession range well describes the onset of the fully developed turbulence in the spheroid.
Fully integrated biochip platforms for advanced healthcare.
Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni
2012-01-01
Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.
Fully Integrated Biochip Platforms for Advanced Healthcare
Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni
2012-01-01
Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications. PMID:23112644
NASA Astrophysics Data System (ADS)
Nishikata, Daisuke; Ali, Mohammad Alimudin Bin Mohd; Hosoda, Kento; Matsumoto, Hiroshi; Nakamura, Kazuyuki
2018-04-01
A 36-bit × 32-entry fully digital ternary content addressable memory (TCAM) using the ratioless static random access memory (RL-SRAM) technology and fully complementary hierarchical-AND matching comparators (HAMCs) was developed. Since its fully complementary and digital operation enables the effect of device variabilities to be avoided, it can operate with a quite low supply voltage. A test chip incorporating a conventional TCAM and a proposed 24-transistor ratioless TCAM (RL-TCAM) cells and HAMCs was developed using a 0.18 µm CMOS process. The minimum operating voltage of 0.25 V of the developed RL-TCAM, which is less than half of that of the conventional TCAM, was measured via the conventional CMOS push–pull output buffers with the level-shifting and flipping technique using optimized pull-up voltage and resistors.
DOT National Transportation Integrated Search
2009-02-01
The Office of Special Investigations at Iowa Department of Transportation (DOT) collects FWD data on regular basis to evaluate pavement structural conditions. The primary objective of this study was to develop a fully-automated software system for ra...
Advanced Mating System Development for Space Applications
NASA Technical Reports Server (NTRS)
Lewis, James L.
2004-01-01
This slide presentation reviews the development of space flight sealing and the work required for the further development of a dynamic interface seal for the use on space mating systems to support a fully androgynous mating interface. This effort has resulted in the advocacy of developing a standard multipurpose interface for use with all modern modular space architecture. This fully androgynous design means a seal-on-seal (SOS) system.
NASA Technical Reports Server (NTRS)
Sherif, S.A.; Hunt, P. L.; Holladay, J. B.; Lear, W. E.; Steadham, J. M.
1998-01-01
Jet pumps are devices capable of pumping fluids to a higher pressure by inducing the motion of a secondary fluid employing a high speed primary fluid. The main components of a jet pump are a primary nozzle, secondary fluid injectors, a mixing chamber, a throat, and a diffuser. The work described in this paper models the flow of a two-phase primary fluid inducing a secondary liquid (saturated or subcooled) injected into the jet pump mixing chamber. The model is capable of accounting for phase transformations due to compression, expansion, and mixing. The model is also capable of incorporating the effects of the temperature and pressure dependency in the analysis. The approach adopted utilizes an isentropic constant pressure mixing in the mixing chamber and at times employs iterative techniques to determine the flow conditions in the different parts of the jet pump.
System for cooling hybrid vehicle electronics, method for cooling hybrid vehicle electronics
France, David M.; Yu, Wenhua; Singh, Dileep; Zhao, Weihuan
2017-11-21
The invention provides a single radiator cooling system for use in hybrid electric vehicles, the system comprising a surface in thermal communication with electronics, and subcooled boiling fluid contacting the surface. The invention also provides a single radiator method for simultaneously cooling electronics and an internal combustion engine in a hybrid electric vehicle, the method comprising separating a coolant fluid into a first portion and a second portion; directing the first portion to the electronics and the second portion to the internal combustion engine for a time sufficient to maintain the temperature of the electronics at or below 175.degree. C.; combining the first and second portion to reestablish the coolant fluid; and treating the reestablished coolant fluid to the single radiator for a time sufficient to decrease the temperature of the reestablished coolant fluid to the temperature it had before separation.
Experimental Studies of Liquefaction and Densification of Liquid Oxygen
NASA Technical Reports Server (NTRS)
Partridge, Jonathan Koert
2010-01-01
The propellant combination that offers optimum performance is very reactive with a low average molecular weight of the resulting combustion products. Propellant combinations such as oxygen and hydrogen meet the above criteria, however, the propellants in gaseous form require large propellant tanks due to the low density of gas. Thus, rocketry employs cryogenic refrigeration to provide a more dense propellant stored as a liquid. In addition to propellant liquefaction, cryogenic refrigeration can also conserve propellant and provide propellant subcooling and propellant densification. Previous studies analyzed vapor conditioning of a cryogenic propellant, with the vapor conditioning by either a heat exchanger position in the vapor or by using the vapor in a refrigeration cycle as the working fluid. This study analyzes the effects of refrigeration heat exchanger located in the liquid of the common propellant oxidizer, liquid oxygen. This study predicted and determined the mass condensation rate and heat transfer coefficient for liquid oxygen.
Creating nanoscale emulsions using condensation.
Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K
2017-11-08
Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boreyko, Jonathan B.; Srijanto, Bernadeta R.; Nguyen, Trung Dac
Water suspended on chilled superhydrophobic surfaces exhibits delayed freezing; however, the interdrop growth of frost through subcooled condensate forming on the surface seems unavoidable in humid environments. It is therefore of great practical importance to determine whether facile defrosting is possible on superhydrophobic surfaces. Here in this paper, we report that nanostructured superhydrophobic surfaces promote the growth of frost in a suspended Cassie state, enabling its dynamic removal upon partial melting at low tilt angles (<15°). The dynamic removal of the melting frost occurred in two stages: spontaneous dewetting followed by gravitational mobilization. This dynamic defrosting phenomenon is driven bymore » the low contact angle hysteresis of the defrosted meltwater relative to frost on microstructured superhydrophobic surfaces, which forms in the impaled Wenzel state. Dynamic defrosting on nanostructured superhydrophobic surfaces minimizes the time, heat, and gravitational energy required to remove frost from the surface, and is of interest for a variety of systems in cold and humid environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fincke, J.R.; Swank, W.D.; Haggard, D.C.
This paper describes the experimental demonstration of a process for the direct plasma reduction of depleted uranium hexafluoride to uranium metal. The process exploits the large departures from equilibrium that can be achieved in the rapid supersonic expansion of a totally dissociated and partially ionized mixture of UF{sub 6}, Ar, He, and H{sub 2}. The process is based on the rapid condensation of subcooled uranium vapor and the relatively slow rate of back reaction between metallic uranium and HF to F{sub 2} to reform stable fluorides. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogenmore » which persists throughout the expansion process. Atomic hydrogen shifts the equilibrium composition by inhibiting the reformation of uranium-fluorine compounds. This process has the potential to reduce the cost of reducing UF{sub 6} to uranium metal with the added benefit of being a virtually waste free process. The dry HF produced is a commodity which has industrial value.« less
Numerical Simulation of Liquid Nitrogen Chilldown of a Vertical Tube
NASA Technical Reports Server (NTRS)
Darr, Samuel; Hu, Hong; Schaeffer, Reid; Chung, Jacob; Hartwig, Jason; Majumdar, Alok
2015-01-01
This paper presents the results of a one-dimensional numerical simulation of the transient chilldown of a vertical stainless steel tube with liquid nitrogen. The direction of flow is downward (with gravity) through the tube. Heat transfer correlations for film, transition, and nucleate boiling, as well as critical heat flux, rewetting temperature, and the temperature at the onset of nucleate boiling were used to model the convection to the tube wall. Chilldown curves from the simulations were compared with data from 55 recent liquid nitrogen chilldown experiments. With these new correlations the simulation is able to predict the time to rewetting temperature and time to onset of nucleate boiling to within 25% for mass fluxes ranging from 61.2 to 1150 kg/(sq m s), inlet pressures from 175 to 817 kPa, and subcooled inlet temperatures from 0 to 14 K below the saturation temperature.
Design, Fabrication, and Testing of an Auxiliary Cooling System for Jet Engines
NASA Technical Reports Server (NTRS)
Leamy, Kevin; Griffiths, Jim; Andersen, Paul; Joco, Fidel; Laski, Mark; Balser, Jeffrey (Technical Monitor)
2001-01-01
This report summarizes the technical effort of the Active Cooling for Enhanced Performance (ACEP) program sponsored by NASA. It covers the design, fabrication, and integrated systems testing of a jet engine auxiliary cooling system, or turbocooler, that significantly extends the use of conventional jet fuel as a heat sink. The turbocooler is designed to provide subcooled cooling air to the engine exhaust nozzle system or engine hot section. The turbocooler consists of three primary components: (1) a high-temperature air cycle machine driven by engine compressor discharge air, (2) a fuel/ air heat exchanger that transfers energy from the hot air to the fuel and uses a coating to mitigate fuel deposits, and (3) a high-temperature fuel injection system. The details of the turbocooler component designs and results of the integrated systems testing are documented. Industry Version-Data and information deemed subject to Limited Rights restrictions are omitted from this document.
Why solidification has an S-shaped history
Bejan, A.; Lorente, S.; Yilbas, B. S.; Sahin, A. Z.
2013-01-01
Here we show theoretically that the history of solid growth during “rapid” solidification must be S-shaped, in accord with the constructal law of design in nature. In the beginning the rate of solidification increases and after reaching a maximum it decreases monotonically as the volume of solid tends toward a plateau. The S-history is a consequence of four configurations for the flow of heat from the solidification front to the subcooled surroundings, in this chronological order: solid spheres centered at nucleation sites, needles that invade longitudinally, radial growth by conduction, and finally radial lateral conduction to interstices that are warming up. The solid volume (Bs) vs time (t) is an S-curve because it is a power law of type Bs ~ tn where the exponent n first increases and then decreases in time (n = 3/2, 2, 1, …). The initial portion of the S curve is not an exponential.
Condensation induced water hammer driven sterilization
Kullberg, Craig M.
2004-05-11
A method and apparatus (10) for treating a fluid or materials therein with acoustic energy has a vessel (14) for receiving the fluid with inner walls shaped to focus acoustic energy to a target zone within the vessel. One or more nozzles (26) are directed into the vessel (14) for injecting a condensable vapor, such as steam, into the vessel (14). The system may include a steam source (18) for providing steam as the condensable vapor from an industrial waste heat source. Steam drums (88) are disposed between the steam source (18) and nozzles (26) to equalize and distribute the vapor pressure. A cooling source (30) provides a secondary fluid for maintaining the liquid in the vessel (14) in subcooled conditions. A heating jacket (32) surrounds the vessel (14) to heat the walls of the vessel (14) and prevent biological growth thereon. A pressurizer (33) may operate the system at elevated pressures.
Direct numerical simulation of reactor two-phase flows enabled by high-performance computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.
Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent researchmore » progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-29
... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0747] Agency Information Collection (Fully Developed Claims) (Applications for Compensation; Applications for Pension; Applications for DIC, Death..., Death Pension, and/or Accrued Benefits, VA Form 21-534EZ. OMB Control Number: 2900-0747. Type of Review...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
... DEPARTMENT OF VETERANS AFFAIRS [OMB Control No. 2900-0747] Proposed Information Collection (Fully Developed Claims) (Applications for Compensation; Applications for Pension; Applications for DIC, Death..., Death Pension, and/or Accrued Benefits, VA Form 21-534EZ. OMB Control Number: 2900-0747. Type of Review...
Recent Patents on Nano-Enhanced Materials for Use in Thermal Energy Storage (TES).
Ferrer, Gerard; Barreneche, Camila; Solé, Aran; Juliá, José Enrique; Cabeza, Luisa F
2017-07-10
Thermal energy storage (TES) systems using phase change materials (PCM) have been lately studied and are presented as one of the key solutions for the implementation of renewable energies. These systems take advantage of the latent heat of phase change of PCM during their melting/ solidification processes to store or release heat depending on the needs and availability. Low thermal conductivity and latent heat are the main disadvantages of organic PCM, while corrosion, subcooling and thermal stability are the prime problems that inorganic PCM present. Nanotechnology can be used to overcome these drawbacks. Nano-enhanced PCM are obtained by the dispersion of nanoparticles in the base material and thermal properties such as thermal conductivity, viscosity and specific heat capacity, within others, can be enhanced. This paper presents a review of the patents regarding the obtaining of nano-enhanced materials for thermal energy storage (TES) in order to realize the development nanotechnologies have gained in the TES field. Patents regarding the synthesis methods to obtain nano-enhanced phase materials (NEPCM) and TES systems using NEPCM have been found and are presented in the paper. The few existing number of patents found is a clear indicator of the recent and thus low development nanotechnology has in the TES field so far. Nevertheless, the results obtained with the reviewed inventions already show the big potential that nanotechnology has in TES and denote a more than probable expansion of its use in the next years. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Topping, David; Barley, Mark; McFiggans, Gordon; Aumont, Bernard
2016-04-01
The many thousands of individual aerosol components ensure that explicit manual calculation of properties that influence their environmental impacts is laborious and time-consuming. The emergence of explicit automatic mechanism generation techniques, including up to many millions of individual gas phase products as aerosol precursors, renders manual calculations impossible and automation is necessary. It can be difficult to establish what factors are responsible for the outcome of a model prediction. This is particularly true when the number of components might be high in, for example, SOA mass partitioning simulations. It then becomes difficult for others in the community to assess the results presented. This might be complicated by the need to include pure component vapour pressures or activity coefficient predictions for a wide range of highly multifunctional compounds. It isn't clear to what extent replication of results is ever achieved for a range of aerosol simulations. Whilst this might also be an issue with results from instrumentation, the development of community driven software at least enables modellers to tackle this problem directly. Here we describe the development and application of a new web based facility, UManSysProp, to tackle such issues. Current facilities include: pure component vapour pressures, critical properties and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic-organic liquid systems; hygroscopic growth factors and CCN activation potential of mixed inorganic/organic aerosol particles with associated Kappa-Kohler values; absorptive partitioning calculations with/without a treatment of non-ideality. The website can be found here: http://umansysprop.seaes.manchester.ac.uk/
NASA Astrophysics Data System (ADS)
Topping, David; Barley, Mark; Bane, Michael K.; Higham, Nicholas; Aumont, Bernard; Dingle, Nicholas; McFiggans, Gordon
2016-03-01
In this paper we describe the development and application of a new web-based facility, UManSysProp (http://umansysprop.seaes.manchester.ac.uk), for automating predictions of molecular and atmospheric aerosol properties. Current facilities include pure component vapour pressures, critical properties, and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic-organic liquid systems; hygroscopic growth factors and CCN (cloud condensation nuclei) activation potential of mixed inorganic-organic aerosol particles; and absorptive partitioning calculations with/without a treatment of non-ideality. The aim of this new facility is to provide a single point of reference for all properties relevant to atmospheric aerosol that have been checked for applicability to atmospheric compounds where possible. The group contribution approach allows users to upload molecular information in the form of SMILES (Simplified Molecular Input Line Entry System) strings and UManSysProp will automatically extract the relevant information for calculations. Built using open-source chemical informatics, and hosted at the University of Manchester, the facilities are provided via a browser and device-friendly web interface, or can be accessed using the user's own code via a JSON API (application program interface). We also provide the source code for all predictive techniques provided on the site, covered by the GNU GPL (General Public License) license to encourage development of a user community. We have released this via a Github repository (doi:10.5281/zenodo.45143). In this paper we demonstrate its use with specific examples that can be simulated using the web-browser interface.
Temperature fluctuations in fully-developed turbulent channel flow with heated upper wall
NASA Astrophysics Data System (ADS)
Bahri, Carla; Mueller, Michael; Hultmark, Marcus
2013-11-01
The interactions and scaling differences between the velocity field and temperature field in a wall-bounded turbulent flow are investigated. In particular, a fully developed turbulent channel flow perturbed by a step change in the wall temperature is considered with a focus on the details of the developing thermal boundary layer. For this specific study, temperature acts as a passive scalar, having no dynamical effect on the flow. A combination of experimental investigation and direct numerical simulation (DNS) is presented. Velocity and temperature data are acquired with high accuracy where, the flow is allowed to reach a fully-developed state before encountering a heated upper wall at constant temperature. The experimental data is compared with DNS data where simulations of the same configuration are conducted.
ERIC Educational Resources Information Center
Croxton, Rebecca A.
2015-01-01
This study explores how factors relating to fully online Master of Library and Information Studies (MLIS) students' connectedness with peers and faculty may impact their professional identity development as library and information studies professionals. Participants include students enrolled in a fully online MLIS degree program in the…
Ventless pressure control of two-phase propellant tanks in microgravity.
Kassemi, Mohammad; Panzarella, Charles H
2004-11-01
This work studies pressurization and pressure control of a large liquid hydrogen storage tank. A finite element model is developed that couples a lumped thermodynamic formulation for the vapor region with a complete solution of the Navier-Stokes and energy equations for the flow and temperature fields in the liquid. Numerical results show that buoyancy effects are strong, even in microgravity, and can reposition a vapor bubble that is initially at the center of the tank to a region near the tank wall in a relatively short time. Long-term tank pressurization with the vapor bubble at the tank wall shows that after an initial transient lasting about a week, the final rate of pressure increase agrees with a purely thermodynamic analysis of the entire tank. However, the final pressure levels are quite different from thermodynamic predictions. Numerical results also show that there is significant thermal stratification in the liquid due to the effects of natural convection. A subcooled jet is used to provide simultaneous cooling and mixing in order to bring the tank pressure back down to its initial value. Three different jet speeds are examined. Although the lowest jet speed is ineffective at controlling the pressure because of insufficient penetration into the liquid region, the highest jet speed is shown to be quite effective at disrupting thermal stratification and reducing the tank pressure in reasonable time.
Ventless pressure control of two-phase propellant tanks in microgravity
NASA Technical Reports Server (NTRS)
Kassemi, Mohammad; Panzarella, Charles H.
2004-01-01
This work studies pressurization and pressure control of a large liquid hydrogen storage tank. A finite element model is developed that couples a lumped thermodynamic formulation for the vapor region with a complete solution of the Navier-Stokes and energy equations for the flow and temperature fields in the liquid. Numerical results show that buoyancy effects are strong, even in microgravity, and can reposition a vapor bubble that is initially at the center of the tank to a region near the tank wall in a relatively short time. Long-term tank pressurization with the vapor bubble at the tank wall shows that after an initial transient lasting about a week, the final rate of pressure increase agrees with a purely thermodynamic analysis of the entire tank. However, the final pressure levels are quite different from thermodynamic predictions. Numerical results also show that there is significant thermal stratification in the liquid due to the effects of natural convection. A subcooled jet is used to provide simultaneous cooling and mixing in order to bring the tank pressure back down to its initial value. Three different jet speeds are examined. Although the lowest jet speed is ineffective at controlling the pressure because of insufficient penetration into the liquid region, the highest jet speed is shown to be quite effective at disrupting thermal stratification and reducing the tank pressure in reasonable time.
Dynamics of the Molten Contact Line
NASA Technical Reports Server (NTRS)
Sonin, Ain A.; Schiaffino, Stefano
1996-01-01
In contrast to the ordinary contact line problem, virtually no information is available on the similar problem associated with a molten material spreading on a solid which is below the melt's fusion point. The latter is a more complex problem which heat transfer and solidification take place simultaneously with spreading, and requires answers not only for the hot melt's advance speed over the cold solid as a function of contact angle, but also for how one is to predict the point of the molten contact line's arrest by freezing. This issues are of importance in evolving methods of materials processing. The purpose of our work is to develop, based on both experiments and theory, an understanding of the dynamic processes that occur when a molten droplet touches a subcooled solid, spreads partly over it by capillary action, and freezes. We seek answers to the following basic questions. First, what is the relationship between the melt's contact line speed and the apparent (dynamic) contact angle? Secondly, at what point will the contact line modon be arrested by freezing? The talk will describe three components of our work: (1) deposition experiments with small molten droplets; (2) investigation of the dynamics of the molten contact line by means of a novel forced spreading method; and (3) an attempt to provide a theoretical framework for answering the basic questions posed above.
NASA Astrophysics Data System (ADS)
Nigodjuk, V. E.; Sulinov, A. V.
2018-01-01
The article presents the results of experimental studies of hydrodynamics and those of loobman single-phase and two-phase flows in capillary nozzle elements propellant thrusters and the proposed method of their calculation. An experimental study was performed in capillaries with a sharp entrance edge of the internal diameter of 0.16 and 0.33 mm and a relative length 188 and 161, respectively, in pouring distilled water and acetone in the following range of parameters Reynolds number Re = (0,3 ... 10) · 103, Prandtl number Pr = (2 ... 10), pressure p = (0,1 ... 0,3) MPa, the heat flux q = (0...2)×106 W/m2, the difference of temperature under-heating of liquid Δtn = (5 ... 80)K. The dependences for calculation of single phase boundaries, the undeveloped and the developed surface of the bubble and film key singing of subcooled liquid. It is shown theoretically and experimentally confirmed the virtual absence of areas of undeveloped nucleate boiling in laminar flow. The dependence for calculation of hydraulic resistance and heat transfer in the investigated areas of current. It is shown that in the region of nucleate boiling surface in the flow in capillary tubes, influence of the formed vapor phase on the hydrodynamics and heat transfer substantially higher than in larger diameter pipes.
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam;
2013-01-01
Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and Critical Heat Flux (CHF) phenomena.
ERIC Educational Resources Information Center
Rutherford, Teomara; Kibrick, Melissa; Burchinal, Margaret; Richland, Lindsey; Conley, AnneMarie; Osborne, Keara; Schneider, Stephanie; Duran, Lauren; Coulson, Andrew; Antenore, Fran; Daniels, Abby; Martinez, Michael E.
2010-01-01
This paper describes the background, methodology, preliminary findings, and anticipated future directions of a large-scale multi-year randomized field experiment addressing the efficacy of ST Math [Spatial-Temporal Math], a fully-developed math curriculum that uses interactive animated software. ST Math's unique approach minimizes the use of…
Must a Developed Democratic State Fully Resource Any Tertiary Education for Its Citizens?
ERIC Educational Resources Information Center
Scholes, Vanessa
2014-01-01
This article takes a parsimonious conception of a developed State operating under a minimalist conception of democracy and asks whether such a State must fully resource any tertiary (post-compulsory) education for its citizens A key public policy barrier to arguing an absolute obligation for the State to resource any tertiary education is…
Rough-pipe flows and the existence of fully developed turbulence
NASA Astrophysics Data System (ADS)
Gioia, G.; Chakraborty, Pinaki; Bombardelli, Fabián A.
2006-03-01
It is widely believed that at high Reynolds number (Re) all turbulent flows approach a limiting state of "fully developed turbulence" in which the statistics of the velocity fluctuations are independent of Re. Nevertheless, direct measurements of the velocity fluctuations have failed to yield firm empirical evidence that even the second-order structure function becomes independent of Re at high Re, let alone structure functions of higher order. Here we relate the friction coefficient (f) of rough-pipe flows to the second-order structure function. Then we show that in light of experimental measurements of f our results yield unequivocal evidence that the second-order structure function becomes independent of Re at high Re, compatible with the existence of fully developed turbulence.
The initial instability and finite-amplitude stability of alternate bars in straight channels
Nelson, J.M.
1990-01-01
The initial instability and fully developed stability of alternate bars in straight channels are investigated using linearized and nonlinear analyses. The fundamental instability leading to these features is identified through a linear stability analysis of the equations governing the flow and sediment transport fields. This instability is explained in terms of topographically induced steering of the flow and the associated pattern of erosion and deposition on the bed. While the linear theory is useful for examining the instability mechanism, this approach is shown to yield relatively little information about well-developed alternate bars and, specifically, the linear analysis is shown to yield poor predictions of the fully developed bar wavelength. A fully nonlinear approach is presented that permits computation of the evolution of these bed features from an initial perturbation to their fully developed morphology. This analysis indicates that there is typically substantial elongation of the bar wavelength during the evolution process, a result that is consistent with observations of bar development in flumes and natural channels. The nonlinear approach demonstrates that the eventual stability of these features is a result of the interplay between topographic steering effects, secondary flow production as a result of streamline curvature, and gravitationally induced modifications of sediment fluxes over a sloping bed. ?? 1990.
NASA Astrophysics Data System (ADS)
Farsiani, Yasaman; Elbing, Brian
2015-11-01
Adding trace amounts of long chain polymers into a liquid flow is known to reduce skin friction drag by up to 80%. While polymer drag reduction (PDR) has been successfully implemented in internal flows, diffusion and degradation have limited its external flow applications. A weakness in many previous PDR studies is that there was no characterization of the polymer being injected into the turbulent boundary layer, which can be accomplished by testing a sample in a pressure-drop tube. An implicit assumption in polymer characterization is that the flow is fully developed at the differential pressure measurement. While available data in the literature shows that the entry length to achieve fully developed flow increases with polymeric solutions, it is unclear how long is required to achieve fully developed flow for non-Newtonian turbulent flows. In the present study, the pressure-drop is measured across a 1.05 meter length section of a 1.04 cm inner diameter pipe. Differential pressure is measured with a pressure transducer for different entry lengths, flow and polymer solution properties. This presentation will present preliminary data on the required entrance length as well as characterization of polymer solution an estimate of the mean molecular weight.
Fully developed turbulence in slugs of pipe flows
NASA Astrophysics Data System (ADS)
Cerbus, Rory; Liu, Chien-Chia; Sakakibara, Jun; Gioia, Gustavo; Chakraborty, Pinaki
2015-11-01
Despite over a century of research, transition to turbulence in pipe flows remains a mystery. In theory the flow remains laminar for arbitrarily large Reynolds number, Re. In practice, however, the flow transitions to turbulence at a finite Re whose value depends on the disturbance, natural or artificial, in the experimental setup. The flow remains in the transition state for a range of Re ~ 0 (1000) ; for larger Re the flow becomes fully developed. The transition state for Re > 3000 consists of axially segregated regions of laminar and turbulent patches. These turbulent patches, known as slugs, grow as they move downstream. Their lengths span anywhere between a few pipe diameters to the whole length of the pipe. Here we report Stereo Particle Image Velocimetry measurements in the cross-section of the slugs. Notwithstanding the continuous growth of the slugs, we find that the mean velocity and stress profiles in the slugs are indistinguishable from that of statistically-stationary fully-developed turbulent flows. Our results are independent of the length of the slugs. We contrast our results with the well-known work of Wygnanski & Champagne (1973), whose measurements, we argue, are insufficient to draw a clear conclusion regarding fully developed turbulence in slugs.
Research and Development of Fully Automatic Alien Smoke Stack and Packaging System
NASA Astrophysics Data System (ADS)
Yang, Xudong; Ge, Qingkuan; Peng, Tao; Zuo, Ping; Dong, Weifu
2017-12-01
The problem of low efficiency of manual sorting packaging for the current tobacco distribution center, which developed a set of safe efficient and automatic type of alien smoke stack and packaging system. The functions of fully automatic alien smoke stack and packaging system adopt PLC control technology, servo control technology, robot technology, image recognition technology and human-computer interaction technology. The characteristics, principles, control process and key technology of the system are discussed in detail. Through the installation and commissioning fully automatic alien smoke stack and packaging system has a good performance and has completed the requirements for shaped cigarette.
Fully automated MR liver volumetry using watershed segmentation coupled with active contouring.
Huynh, Hieu Trung; Le-Trong, Ngoc; Bao, Pham The; Oto, Aytek; Suzuki, Kenji
2017-02-01
Our purpose is to develop a fully automated scheme for liver volume measurement in abdominal MR images, without requiring any user input or interaction. The proposed scheme is fully automatic for liver volumetry from 3D abdominal MR images, and it consists of three main stages: preprocessing, rough liver shape generation, and liver extraction. The preprocessing stage reduced noise and enhanced the liver boundaries in 3D abdominal MR images. The rough liver shape was revealed fully automatically by using the watershed segmentation, thresholding transform, morphological operations, and statistical properties of the liver. An active contour model was applied to refine the rough liver shape to precisely obtain the liver boundaries. The liver volumes calculated by the proposed scheme were compared to the "gold standard" references which were estimated by an expert abdominal radiologist. The liver volumes computed by using our developed scheme excellently agreed (Intra-class correlation coefficient was 0.94) with the "gold standard" manual volumes by the radiologist in the evaluation with 27 cases from multiple medical centers. The running time was 8.4 min per case on average. We developed a fully automated liver volumetry scheme in MR, which does not require any interaction by users. It was evaluated with cases from multiple medical centers. The liver volumetry performance of our developed system was comparable to that of the gold standard manual volumetry, and it saved radiologists' time for manual liver volumetry of 24.7 min per case.
Large Eddy Simulation in a Channel with Exit Boundary Conditions
NASA Technical Reports Server (NTRS)
Cziesla, T.; Braun, H.; Biswas, G.; Mitra, N. K.
1996-01-01
The influence of the exit boundary conditions (vanishing first derivative of the velocity components and constant pressure) on the large eddy simulation of the fully developed turbulent channel flow has been investigated for equidistant and stretched grids at the channel exit. Results show that the chosen exit boundary conditions introduce some small disturbance which is mostly damped by the grid stretching. The difference between the fully developed turbulent channel flow obtained with LES with periodicity condition and the inlet and exit and the LES with fully developed flow at the inlet and the exit boundary condition is less than 10% for equidistant grids and less than 5% for the case grid stretching. The chosen boundary condition is of interest because it may be used in complex flows with backflow at exit.
1990-05-01
of static and dynamic resource allocation . * Develop a wide-spectrum requirements engineering language that meets the objectives defined in this...within the next few years. The TrCP Panel will closely monitor future developments in this area, and will fully consider this suggestion. Chairman...experience has shown that, especially for large and complex system developments , it is rare that the true needs of all stakeholders are fully stated
NASA Astrophysics Data System (ADS)
Shi, Shanbin
The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal-hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural circulation flow instability, the quasi-steady tests are performed using the test facility installed with preheater and subcooler. The effects of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback are investigated in the quasi-steady state tests. The stability boundaries are determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. In order to predict the stability boundary theoretically, linear stability analysis in the frequency domain is performed at four sections of the loop. The flashing in the chimney is considered as an axially uniform heat source. The dimensionless characteristic equation of the pressure drop perturbation is obtained by considering the void fraction effect and outlet flow resistance in the chimney section. The flashing boundary shows some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium is recommended to improve the accuracy of flashing instability boundary.
1990-05-01
static and dynamic resource allocation . " Develop a wide-spectrum requirements engineering language that meets the objectives defined in this section...workshop within the next few years. The TTCP Panel will closely monitor future developments in this area, and will fully consider this suggestion. seph C...for large and complex system developments , it is rare that the true needs of all stakeholders are fully stated and understood from the outset
2008-04-01
Hot Working of Titanium 5a. CONTRACT NUMBER F33615-03-D-5801-0043 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61202F 6 . AUTHOR(S) A.A...micrographs and thus to correlate microstructural features and texture data [3- 6 ]. For instance, Germain, et al. [3, 4 ] linked local orientations...microstructures can be developed in alpha/beta titanium alloys by TMP [2- 4 ], namely, fully lamellar, fully equiaxed, and duplex (bi-modal). A mixture
Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets
NASA Astrophysics Data System (ADS)
Kuo, Cheng-Ling; Chou, J. K.; Tsai, L. Y.; Chen, A. B.; Su, H. T.; Hsu, R. R.; Cummer, S. A.; Frey, H. U.; Mende, S. B.; Takahashi, Y.; Lee, L. C.
2009-04-01
This article reports the first high time resolution measurements of gigantic jets from the Imager of Sprites and Upper Atmospheric Lightning (ISUAL) experiment. The velocity of the upward propagating fully developed jet stage of the gigantic jets was ˜107 m s-1, which is similar to that observed for downward sprite streamers. Analysis of spectral ratios for the fully developed jet emissions gives a reduced E field of 400-655 Td and average electron energy of 8.5-12.3 eV. These values are higher than those in the sprites but are similar to those predicted by streamer models, which implies the existence of streamer tips in fully developed jets. The gigantic jets studied here all contained two distinct photometric peaks. The first peak is from the fully developed jet, which steadily propagates from the cloud top (˜20 km) to the lower ionosphere at ˜90 km. We suggest that the second photometric peak, which occurs ˜1 ms after the first peak, is from a current wave or potential wave-enhanced emissions that originate at an altitude of ˜50 km and extend toward the cloud top. We propose that the fully developed jet serves as an extension of the local ionosphere and produces a lowered ionosphere boundary. As the attachment processes remove the charges, the boundary of the local ionosphere moves up. The current in the channel persists and its contact point with the ionosphere moves upward, which produces the upward surging trailing jets. Imager and photometer data indicate that the lightning activity associated with the gigantic jets likely is in-cloud, and thus the initiation of the gigantic jets is not directly associated with cloud-to-ground discharges.
Supersonic/Hypersonic Correlations for In-Cavity Transition and Heating Augmentation
NASA Technical Reports Server (NTRS)
Everhart, Joel L.
2011-01-01
Laminar-entry cavity heating data with a non-laminar boundary layer exit flow have been retrieved from the database developed at Mach 6 and 10 in air on large flat plate models for the Space Shuttle Return-To-Flight Program. Building on previously published fully laminar and fully turbulent analysis methods, new descriptive correlations of the in-cavity floor-averaged heating and endwall maximum heating have been developed for transitional-to-turbulent exit flow. These new local-cavity correlations provide the expected flow and geometry conditions for transition onset; they provide the incremental heating augmentation induced by transitional flow; and, they provide the transitional-to-turbulent exit cavity length. Furthermore, they provide an upper application limit for the previously developed fully-laminar heating correlations. An example is provided that demonstrates simplicity of application. Heating augmentation factors of 12 and 3 above the fully laminar values are shown to exist on the cavity floor and endwall, respectively, if the flow exits in fully tripped-to-turbulent boundary layer state. Cavity floor heating data in geometries installed on the windward surface of 0.075-scale Shuttle wind tunnel models have also been retrieved from the boundary layer transition database developed for the Return-To-Flight Program. These data were independently acquired at Mach 6 and Mach 10 in air, and at Mach 6 in CF4. The correlation parameters for the floor-averaged heating have been developed and they offer an exceptionally positive comparison to previously developed laminar-cavity heating correlations. Non-laminar increments have been extracted from the Shuttle data and they fall on the newly developed transitional in-cavity correlations, and they are bounded by the 95% correlation prediction limits. Because the ratio of specific heats changes along the re-entry trajectory, turning angle into a cavity and boundary layer flow properties may be affected, raising concerns regarding the application validity of the heating augmentation predictions.
Gu, Wenwen; Chen, Ying; Li, Yu
2017-08-01
Based on the experimental subcooled liquid vapor pressures (P L ) of 17 polychlorinated naphthalene (PCN) congeners, one type of three-dimensional quantitative structure-activity relationship (3D-QSAR) models, comparative molecular similarity indices analysis (CoMSIA), was constructed with Sybyl software. Full factor experimental design was used to obtain the final regulation scheme for PCN, and then carry out modification of PCN-2 to significantly lower its P L . The contour maps of CoMSIA model showed that the migration ability of PCN decreases when the Cl atoms at the 2-, 3-, 4-, 5-, 6-, 7- and 8-positions of PCNs are replaced by electropositive groups. After modification of PCN-2, 12 types of new modified PCN-2 compounds were obtained with lnP L values two orders of magnitude lower than that of PCN-2. In addition, there are significant differences between the calculated total energies and energy gaps of the new modified compounds and those of PCN-2.
A study of forced convection boiling under reduced gravity
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1992-01-01
This report presents the results of activities conducted over the period 1/2/85-12/31/90, in which the study of forced convection boiling under reduced gravity was initiated. The study seeks to improve the understanding of the basic processes that constitute forced convection boiling by removing the buoyancy effects which may mask other phenomena. Specific objectives may also be expressed in terms of the following questions: (1) what effects, if any, will the removal of body forces to the lowest possible levels have on the forced convection boiling heat transfer processes in well-defined and meaningful circumstances? (this includes those effects and processes associated with the nucleation or onset of boiling during the transient increase in heater surface temperature, as well as the heat transfer and vapor bubble behaviors with established or steady-state conditions); and (2) if such effects are present, what are the boundaries of the relevant parameters such as heat flux, heater surface superheat, fluid velocity, bulk subcooling, and geometric/orientation relationships within which such effects will be produced?
Light scattering methods to test inorganic PCMs for application in buildings
NASA Astrophysics Data System (ADS)
De Paola, M. G.; Calabrò, V.; De Simone, M.
2017-10-01
Thermal performance and stability over time are key parameters for the characterization and application of PCMs in the building sector. Generally, inorganic PCMs are dispersions of hydrated salts and additives in water that counteract phase segregation phenomena and subcooling. Traditional methods or in “house” methods can be used for evaluating thermal properties, while stability can be estimated over time by using optical techniques. By considering this double approach, in this work thermal and structural analyses of Glauber salt based composite PCMs are conducted by means of non-conventional equipment: T-history method (thermal analysis) and Turbiscan (stability analysis). Three samples with the same composition (Glauber salt with additives) were prepared by using different sonication times and their thermal performances were compared by testing both the thermal cycling and the thermal properties. The stability of the mixtures was verified by the identification of destabilization phenomena, the evaluation of the migration velocities of particles and the estimation of variation of particle size.
Condensation Dynamics on Mimicked Metal Matrix Hydrophobic Nanoparticle-Composites
NASA Astrophysics Data System (ADS)
Damle, Viraj; Sun, Xiaoda; Rykaczewski, Konrad
2014-11-01
Use of hydrophobic surfaces promotes condensation in the dropwise mode, which is significantly more efficient than the common filmwise mode. However, limited longevity of hydrophobic surface modifiers has prevented their wide spread use in industry. Recently, metal matrix composites (MMCs) having microscale hydrophobic heterogeneities dispersed in hydrophilic metal matrix have been proposed as durable and self-healing alternative to hydrophobic surface coatings interacting with deposited water droplets. While dispersion of hydrophobic microparticles in MMC is likely to lead to surface flooding during condensation, the effect of dispersion of hydrophobic nanoparticles (HNPs) with size comparable to water nuclei critical radii and spacing is not obvious. To this end, we fabricated highly ordered arrays of Teflon nanospheres on silicon substrates that mimic the top surface of the MMCs with dispersed HNPs. We used light and electron microscopy to observe breath figures resulting from condensation on these surfaces at varied degrees of subcooling. Here, we discuss the relation between the droplet size distribution, Teflon nanosphere diameter and spacing, and condensation mode. KR acknowledges startup funding from ASU.
Superfluid high REynolds von Kármán experiment.
Rousset, B; Bonnay, P; Diribarne, P; Girard, A; Poncet, J M; Herbert, E; Salort, J; Baudet, C; Castaing, B; Chevillard, L; Daviaud, F; Dubrulle, B; Gagne, Y; Gibert, M; Hébral, B; Lehner, Th; Roche, P-E; Saint-Michel, B; Bon Mardion, M
2014-10-01
The Superfluid High REynolds von Kármán experiment facility exploits the capacities of a high cooling power refrigerator (400 W at 1.8 K) for a large dimension von Kármán flow (inner diameter 0.78 m), which can work with gaseous or subcooled liquid (He-I or He-II) from room temperature down to 1.6 K. The flow is produced between two counter-rotating or co-rotating disks. The large size of the experiment allows exploration of ultra high Reynolds numbers based on Taylor microscale and rms velocity [S. B. Pope, Turbulent Flows (Cambridge University Press, 2000)] (Rλ > 10000) or resolution of the dissipative scale for lower Re. This article presents the design and first performance of this apparatus. Measurements carried out in the first runs of the facility address the global flow behavior: calorimetric measurement of the dissipation, torque and velocity measurements on the two turbines. Moreover first local measurements (micro-Pitot, hot wire,…) have been installed and are presented.
Numerical Study of Unsteady Flow in Centrifugal Cold Compressor
NASA Astrophysics Data System (ADS)
Zhang, Ning; Zhang, Peng; Wu, Jihao; Li, Qing
In helium refrigeration system, high-speed centrifugal cold compressor is utilized to pumped gaseous helium from saturated liquid helium tank at low temperature and low pressure for producing superfluid helium or sub-cooled helium. Stall and surge are common unsteady flow phenomena in centrifugal cold compressors which severely limit operation range and impact efficiency reliability. In order to obtain the installed range of cold compressor, unsteady flow in the case of low mass flow or high pressure ratio is investigated by the CFD. From the results of the numerical analysis, it can be deduced that the pressure ratio increases with the decrease in reduced mass flow. With the decrease of the reduced mass flow, backflow and vortex are intensified near the shroud of impeller. The unsteady flow will not only increase the flow loss, but also damage the compressor. It provided a numerical foundation of analyzing the effect of unsteady flow field and reducing the flow loss, and it is helpful for the further study and able to instruct the designing.
Calcium-aluminum-rich inclusions in the Allende meteorite - Evidence for a liquid origin
NASA Technical Reports Server (NTRS)
Blander, M.; Fuchs, L. H.
1975-01-01
We have made a detailed examination of the mineralogy, textures, and assemblages of six calcium-aluminum-rich inclusions (CAI) in the Allende meteorite. They can be classified into four types - hibonite-bearing, fassaite- and olivine-bearing, feldspathoid-bearing and fassaite-bearing CAI that are hibonite and olivine free. Examples of each type appear to have crystallized from a liquid rather than by agglomeration of solid nebular condensates. Some lines of evidence for a liquid origin are the presence of spherical and ovoid shapes and rims containing minerals that are more refractory than minerals inside the inclusion. Thermodynamic calculations and comparisons with liquidus phase diagrams indicate that the CAI could have been produced by direct condensation to metastable subcooled liquids that subsequently crystallized or by remelting of an equilibrium high-temperature condensate by impact. The diopside rims in some hibonite-bearing CAI and the paucity of metal in fassaite-olivine-bearing CAI are more consistent with direct condensation of a liquid.
Three-Dimensional Superhydrophobic Nanowire Networks for Enhancing Condensation Heat Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ronggui; Wen, Rongfu; Xu, Shanshan
Spontaneous droplet jumping on nanostructured surfaces can potentially enhance condensation heat transfer by accelerating droplet removal. However, uncontrolled nucleation in the micro-defects of nanostructured superhydrophobic surfaces could lead to the formation of large pinned droplets, which greatly degrades the performance. Here, we experimentally demonstrate for the first time stable and efficient jumping droplet condensation on a superhydrophobic surface with three-dimensional (3D) copper nanowire networks. Due to the formation of interconnections among nanowires, the micro-defects are eliminated while the spacing between nanowires is reduced, which results in the formation of highly mobile droplets. By preventing flooding on 3D nanowire networks, wemore » experimentally demonstrate a 100% higher heat flux compared with that on the state-of-the-art hydrophobic surface over a wide range of subcooling (up to 28 K). The remarkable water repellency of 3D nanowire networks can be applied to a broad range of water-harvesting and phase-change heat transfer applications.« less
Two-phase flow research using the DC-9/KC-135 apparatus
NASA Technical Reports Server (NTRS)
McQuillen, John B.; Neumann, Eric S.; Shoemaker, J. Michael
1996-01-01
Low-gravity gas-liquid flow research can be conducted aboard the NASA Lewis Research Center DC-9 or the Johnson Space Center KC-135. Air and water solutions serve as the test liquids in cylindrical test sections with constant or variable inner diameters of approximately 2.54 cm and lengths of up to 3.0 m. Superficial velocities range from 0.1 to 1.1 m/sec for liquids and from 0.1 to 25 m/sec for air. Flow rate, differential pressure, void fraction, film thickness, wall shear stress, and acceleration data are measured and recorded at data rates of up to 1000 Hz throughout the 20-sec duration of the experiment. Flow is visualized with a high-speed video system. In addition, the apparatus has a heat-transfer capability whereby sensible heat is transferred between the test-section wall and a subcooled liquid phase so that the heat-transfer characteristics of gas-liquid two-phase flows can be determined.
Superfluid high REynolds von Kármán experiment
NASA Astrophysics Data System (ADS)
Rousset, B.; Bonnay, P.; Diribarne, P.; Girard, A.; Poncet, J. M.; Herbert, E.; Salort, J.; Baudet, C.; Castaing, B.; Chevillard, L.; Daviaud, F.; Dubrulle, B.; Gagne, Y.; Gibert, M.; Hébral, B.; Lehner, Th.; Roche, P.-E.; Saint-Michel, B.; Bon Mardion, M.
2014-10-01
The Superfluid High REynolds von Kármán experiment facility exploits the capacities of a high cooling power refrigerator (400 W at 1.8 K) for a large dimension von Kármán flow (inner diameter 0.78 m), which can work with gaseous or subcooled liquid (He-I or He-II) from room temperature down to 1.6 K. The flow is produced between two counter-rotating or co-rotating disks. The large size of the experiment allows exploration of ultra high Reynolds numbers based on Taylor microscale and rms velocity [S. B. Pope, Turbulent Flows (Cambridge University Press, 2000)] (Rλ > 10000) or resolution of the dissipative scale for lower Re. This article presents the design and first performance of this apparatus. Measurements carried out in the first runs of the facility address the global flow behavior: calorimetric measurement of the dissipation, torque and velocity measurements on the two turbines. Moreover first local measurements (micro-Pitot, hot wire,…) have been installed and are presented.
Micro-bubble emission boiling with the cavitation bubble blow pit
Inada, Shigeaki; Shinagawa, Kazuaki; Illias, Suhaimi Bin; Sumiya, Hiroyuki; Jalaludin, Helmisyah A.
2016-01-01
The miniaturization boiling (micro-bubble emission boiling [MEB]) phenomenon, with a high heat removal capacity that contributes considerably to the cooling of the divertor of the nuclear fusion reactor, was discovered in the early 1980s. Extensive research on MEB has been performed since its discovery. However, the progress of the application has been delayed because the generation mechanism of MEB remains unclear. Reasons for this lack of clarity include the complexity of the phenomenon itself and the high-speed phase change phenomenon in which boiling and condensation are rapidly generated. In addition, a more advanced thermal technique is required to realize the MEB phenomenon at the laboratory scale. To the authors’ knowledge, few studies have discussed the rush mechanism of subcooled liquid to the heating surface, which is critical to elucidating the mechanism behind MEB. This study used photographic images to verify that the cavitation phenomenon spreads to the inside of the superheated liquid on the heating surface and thus clarify the mechanism of MEB. PMID:27628271
Boiling Experiment Facility for Heat Transfer Studies in Microgravity
NASA Technical Reports Server (NTRS)
Delombard, Richard; McQuillen, John; Chao, David
2008-01-01
Pool boiling in microgravity is an area of both scientific and practical interest. By conducting tests in microgravity, it is possible to assess the effect of buoyancy on the overall boiling process and assess the relative magnitude of effects with regards to other "forces" and phenomena such as Marangoni forces, liquid momentum forces, and microlayer evaporation. The Boiling eXperiment Facility is now being built for the Microgravity Science Glovebox that will use normal perfluorohexane as a test fluid to extend the range of test conditions to include longer test durations and less liquid subcooling. Two experiments, the Microheater Array Boiling Experiment and the Nucleate Pool Boiling eXperiment will use the Boiling eXperiment Facility. The objectives of these studies are to determine the differences in local boiling heat transfer mechanisms in microgravity and normal gravity from nucleate boiling, through critical heat flux and into the transition boiling regime and to examine the bubble nucleation, growth, departure and coalescence processes. Custom-designed heaters will be utilized to achieve these objectives.
Ma, Wan-Li; Sun, De-Zhi; Shen, Wei-Guo; Yang, Meng; Qi, Hong; Liu, Li-Yan; Shen, Ji-Min; Li, Yi-Fan
2011-07-01
A comprehensive sampling campaign was carried out to study atmospheric concentration of polycyclic aromatic hydrocarbons (PAHs) in Beijing and to evaluate the effectiveness of source control strategies in reducing PAHs pollution after the 29th Olympic Games. The sub-cooled liquid vapor pressure (logP(L)(o))-based model and octanol-air partition coefficient (K(oa))-based model were applied based on each seasonal dateset. Regression analysis among log K(P), logP(L)(o) and log K(oa) exhibited high significant correlations for four seasons. Source factors were identified by principle component analysis and contributions were further estimated by multiple linear regression. Pyrogenic sources and coke oven emission were identified as major sources for both the non-heating and heating seasons. As compared with literatures, the mean PAH concentrations before and after the 29th Olympic Games were reduced by more than 60%, indicating that the source control measures were effective for reducing PAHs pollution in Beijing. Copyright © 2011 Elsevier Ltd. All rights reserved.
A technique for sexing fully developed embryos and early-instar larvae of the gypsy moth
Gilbert Levesque
1963-01-01
Because variation in sex ratio is an important factor in the population dynamics of the gypsy moth (Porthetria dispar), it is necessary to have some means of determining the ratio of males to females in a population at the beginning of the larval period as well as in the later stages. For determining the sex of fully developed embryos and early-...
Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine
NASA Technical Reports Server (NTRS)
Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam
2012-01-01
A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.
Foreign Police Development: The Third Time’s the Charm
2010-02-10
inclusive concept of a standing Interagency Task Force ( IATF ) headquarters, which would deploy on short notice as part of a combatant command’s...COCOM) combined joint task force (CJTF). In this case, the President would appoint a senior civilian to lead the IATF and its fully integrated civil...agencies in support seems the most practical, flexible, and cost-effective. Part of that IATF would be a fully integrated police development team
Investigation of Fully Three-Dimensional Helical RF Field Effects on TWT Beam/Circuit Interaction
NASA Technical Reports Server (NTRS)
Kory, Carol L.
2000-01-01
A fully three-dimensional (3D), time-dependent, helical traveling wave-tube (TWT) interaction model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA. The model includes a short section of helical slow-wave circuit with excitation fed by RF input/output couplers, and electron beam contained by periodic permanent magnet (PPM) focusing. All components of the model are simulated in three dimensions allowing the effects of the fully 3D helical fields on RF circuit/beam interaction to be investigated for the first time. The development of the interaction model is presented, and predicted TWT performance using 2.5D and 3D models is compared to investigate the effect of conventional approximations used in TWT analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buongiorno, Jacopo; Hu, Lin-wen
2009-07-31
Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interestmore » in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (≤ 0.1 % by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ±20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m2s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation site density changes, but no definitive correlation between the nucleation site density and the heat transfer coefficient data could be found. Wettability of the surface was substantially increased for heater coupons boiled in alumina and zinc oxide nanofluids, and such wettability increase seems to correlate reasonably well with the observed marked CHF enhancement for the respective nanofluids. Interpretation of the experimental data was conducted in light of the governing surface parameters (surface area, contact angle, roughness, thermal conductivity) and existing models. It was found that no single parameter could explain the observed HTC or CHF phenomena.« less
NASA Astrophysics Data System (ADS)
Yeom, Hwasung
Experimental results investigating the feasibility of zirconium-silicide coating for accident tolerance of LWR fuel cladding coating was presented. The oxidation resistance of ZrSi2 appeared to be superior to bare Zircaloy-4 in high temperature air. It was shown that micro- and nanostructures consisting of alternating SiO2 and ZrO2 evolved during transient oxidation of ZrSi2, which was explained by spinodal phase decomposition of Zr-Si-O oxide. Coating optimization regarding oxidation resistance was performed mainly using magnetron sputter deposition method. ZrSi 2 coatings ( 3.9 microm) showed improvement of almost two orders of magnitude when compared to bare Zircaloy-4 after air-oxidation at 700 °C for 20-hours. Pre-oxidation of ZrSi2 coating at 700 °C for 5 h significantly mitigated oxygen diffusion in air-oxidation tests at 1000 °C for 1-hour and 1200 °C for 10-minutes. The ZrSi2 coating with the pre-oxidation was found to be the best condition to prevent oxide formation in Zircaloy-4 substrate in the steam condition even if the top surface of the coating was degraded by formation of zirconium-rich oxide layer. Only the ZrSiO4 phase, formed by exposing the ZrSi2 coating at 1400 °C in air, allowed for immobilization of silicon species in the oxide scale in the aqueous environments. A quench test facility was designed and built to study transient boiling heat transfer of modified Zircaloy-4 surfaces (e.g., roughened surfaces, oxidized surfaces, ZrSi2 coated surfaces) at various system conditions (e.g., elevated pressures and water subcooling). The minimum film boiling temperature increased with increasing system pressure and water subcooling, consistent with past literature. Quenching behavior was affected by the types of surface modification regardless of the environmental conditions. Quenching heat transfer was improved by the ZrSi 2 coating, a degree of surface oxidation (deltaox = 3 to 50 microm), and surface roughening (Ra 20 microm). A plausible hypothesis based on transient heat conduction models for liquid-solid contact in quenching process was proposed to explain the enhanced quenching performance. The theoretical model incorporated localized temperature behavior on superheated surface and elucidated bubble dynamics qualitatively, and predicts minimum film boiling temperature of oxidized Zirc-4 surfaces, which were in good agreement with experimental data.
Report: EPA Has Not Fully Implemented a National Emergency Response Equipment Tracking System
Report #11-P-0616, September 13, 2011. Although EPA spent $2.8 million as of October 2010 to develop and implement an EMP emergency equipment tracking module, EPA has not fully implemented the module, and the module suffers from operational issues.
DOT National Transportation Integrated Search
2009-08-01
The Federal Railroad Administration tasked the Volpe Center with developing a methodology for determining the avoidable and fully allocated costs of Amtrak routes. Avoidable costs are costs that would not be incurred if an Amtrak route were discontin...
DOT National Transportation Integrated Search
2009-08-01
The Federal Railroad Administration tasked the Volpe Center with developing a methodology for determining the avoidable and fully allocated costs of Amtrak routes. Avoidable costs are costs that would not be incurred if an Amtrak route were discontin...
DOT National Transportation Integrated Search
2009-08-01
The Federal Railroad Administration tasked the Volpe Center with developing a methodology for determining the avoidable and fully allocated costs of Amtrak routes. Avoidable costs are costs that would not be incurred if an Amtrak route were discontin...
Application of Artificial Intelligence to Improve Aircraft Survivability.
1985-12-01
may be as smooth and effective as possible. 3. Fully Automatic Digital Engine Control ( FADEC ) Under development at the Naval Weapons Center, a major...goal of the FADEC program is to significantly reduce engine vulnerability by fully automating the regulation of engine controls. Given a thrust
Fully automated urban traffic system
NASA Technical Reports Server (NTRS)
Dobrotin, B. M.; Hansen, G. R.; Peng, T. K. C.; Rennels, D. A.
1977-01-01
The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible.
Curriculum Development: A Philosophical Model.
ERIC Educational Resources Information Center
Bruening, William H.
Presenting models based on the philosophies of Carl Rogers, John Dewey, Erich Fromm, and Jean-Paul Sartre, this paper proposes a philosophical approach to education and concludes with pragmatic suggestions concerning teaching based on a fully-functioning-person model. The fully-functioning person is characterized as being open to experience,…
Personalized Learning and the Ultraversity Experience
ERIC Educational Resources Information Center
Powell, Stephen; Tindal, Ian; Millwood, Richard
2008-01-01
This paper describes a model of personalized work-integrated learning that is collaborative in nature, uses emerging Internet technologies and is accessed fully online. The Ultraversity project was set up by Ultralab at Anglia Ruskin University to develop a fully online, 3-year duration, undergraduate degree program with an emphasis on action…
Modified Fully Utilized Design (MFUD) Method for Stress and Displacement Constraints
NASA Technical Reports Server (NTRS)
Patnaik, Surya; Gendy, Atef; Berke, Laszlo; Hopkins, Dale
1997-01-01
The traditional fully stressed method performs satisfactorily for stress-limited structural design. When this method is extended to include displacement limitations in addition to stress constraints, it is known as the fully utilized design (FUD). Typically, the FUD produces an overdesign, which is the primary limitation of this otherwise elegant method. We have modified FUD in an attempt to alleviate the limitation. This new method, called the modified fully utilized design (MFUD) method, has been tested successfully on a number of designs that were subjected to multiple loads and had both stress and displacement constraints. The solutions obtained with MFUD compare favorably with the optimum results that can be generated by using nonlinear mathematical programming techniques. The MFUD method appears to have alleviated the overdesign condition and offers the simplicity of a direct, fully stressed type of design method that is distinctly different from optimization and optimality criteria formulations. The MFUD method is being developed for practicing engineers who favor traditional design methods rather than methods based on advanced calculus and nonlinear mathematical programming techniques. The Integrated Force Method (IFM) was found to be the appropriate analysis tool in the development of the MFUD method. In this paper, the MFUD method and its optimality are presented along with a number of illustrative examples.
Experimental Study of Combined Forced and Free Laminar Convection in a Vertical Tube
NASA Technical Reports Server (NTRS)
Hallman, Theodore M.
1961-01-01
An apparatus was built to verify an analysis of combined forced and free convection in a vertical tube with uniform wall heat flux and to determine the limits of the analysis. The test section was electrically heated by resistance heating of the tube wall and was instrumented with thermocouples in such a way that detailed thermal entrance heat-transfer coefficients could be obtained for both upflow and downflow and any asymmetry in wall temperature could be detected. The experiments showed that fully developed heat-transfer results, predicted by a previous analysis, were confirmed over the range of Rayleigh numbers investigated. The concept of "locally fully developed" heat transfer was established. This concept involves the assumption that the fully developed heat-transfer analysis can be applied locally even though the Rayleigh number is varying along the tube because of physical-property variations with temperature. Thermal entrance region data were obtained for pure forced convection and for combined forced and free convection. The analysis of laminar pure forced convection in the thermal entrance region conducted by Siegel, Sparrow, and Hallman was experimentally confirmed. A transition to an eddy motion, indicated by a fluctuation in wall temperature was found in many of the upflow runs. A stability correlation was found. The fully developed Nusselt numbers in downflow were below those for pure forced convection but fell about 10 percent above the analytical curve. Quite large circumferential variations in wall temperature were observed in downflow as compaired with those encountered in upflow, and the fully developed Nussalt numbers reported are based on average wall temperatures determined by averaging the readings of two diametrically opposite wall thermocouples at each axial position. With larger heating rates in downflow the wall temperature distributions strongly suggested a cell flow near the bottom. At still larger heating rates the wall temperatures varied in a periodic way.
Metabolome Profiling of Partial and Fully Reprogrammed Induced Pluripotent Stem Cells.
Park, Soon-Jung; Lee, Sang A; Prasain, Nutan; Bae, Daekyeong; Kang, Hyunsu; Ha, Taewon; Kim, Jong Soo; Hong, Ki-Sung; Mantel, Charlie; Moon, Sung-Hwan; Broxmeyer, Hal E; Lee, Man Ryul
2017-05-15
Acquisition of proper metabolomic fate is required to convert somatic cells toward fully reprogrammed pluripotent stem cells. The majority of induced pluripotent stem cells (iPSCs) are partially reprogrammed and have a transcriptome different from that of the pluripotent stem cells. The metabolomic profile and mitochondrial metabolic functions required to achieve full reprogramming of somatic cells to iPSC status have not yet been elucidated. Clarification of the metabolites underlying reprogramming mechanisms should enable further optimization to enhance the efficiency of obtaining fully reprogrammed iPSCs. In this study, we characterized the metabolites of human fully reprogrammed iPSCs, partially reprogrammed iPSCs, and embryonic stem cells (ESCs). Using capillary electrophoresis time-of-flight mass spectrometry-based metabolomics, we found that 89% of analyzed metabolites were similarly expressed in fully reprogrammed iPSCs and human ESCs (hESCs), whereas partially reprogrammed iPSCs shared only 74% similarly expressed metabolites with hESCs. Metabolomic profiling analysis suggested that converting mitochondrial respiration to glycolytic flux is critical for reprogramming of somatic cells into fully reprogrammed iPSCs. This characterization of metabolic reprogramming in iPSCs may enable the development of new reprogramming parameters for enhancing the generation of fully reprogrammed human iPSCs.
The Effect of Pressure Pulsations and Vibrations on Fully Developed Pipe Flow
1981-08-01
38 4.2 Fluid Response to a Fluttering Valve ..................................... 46 5.0 C O N C L U S I O N... valves , it is known from analysis (Refs. 1 through 4) and has been demonstrated experimentally (Refs. 5 through 8) that flow pulsations may (1...fully developed flow in a tube. 19 A E D C- TF1 -80-31 on the basis of hot-wire studies that the exchange process was altered but presented no
NASA Technical Reports Server (NTRS)
Klebanoff, P S; Diehl, Z W
1952-01-01
Report gives an account of an investigation conducted to determine the feasibility of artificially thickening a turbulent boundary layer on a flat plate. A description is given of several methods used to thicken artificially the boundary layer. It is shown that it is possible to do substantial thickening and obtain a fully developed turbulent boundary layer, which is free from any distortions introduced by the thickening process, and, as such, is a suitable medium for fundamental research.
Machine Learning Technique to Find Quantum Many-Body Ground States of Bosons on a Lattice
NASA Astrophysics Data System (ADS)
Saito, Hiroki; Kato, Masaya
2018-01-01
We have developed a variational method to obtain many-body ground states of the Bose-Hubbard model using feedforward artificial neural networks. A fully connected network with a single hidden layer works better than a fully connected network with multiple hidden layers, and a multilayer convolutional network is more efficient than a fully connected network. AdaGrad and Adam are optimization methods that work well. Moreover, we show that many-body ground states with different numbers of particles can be generated by a single network.
Equipment for fully homologous bulb turbine model testing in Laval University
NASA Astrophysics Data System (ADS)
R, Fraser; D, Vallée; Y, Jean; C, Deschênes
2014-03-01
Within the context of liberalisation of the energy market, hydroelectricity remains a first class source of clean and renewable energy. Combining the growing demand of energy, its increasing value and the appreciation associated to the sustainable development, low head sites formerly considered as non-profitable are now exploitable. Bulb turbines likely to equip such sites are traditionally developed on model using right angle transmission leading to piers enlargement for power take off shaft passage, thus restricting possibilities to have fully homologous hydraulic passages. Aiming to sustain good quality development on fully homologous scale model of bulb turbines, the Hydraulic Machines Laboratory (LAMH) of Laval University has developed a brake with an enhanced power to weight ratio. This powerful brake is small enough to be located in the bulb shell while dissipating power without mandatory test head reduction. This paper first presents the basic technology of this brake and its application. Then both its main performance capabilities and dimensional characteristics will be detailed. The instrumentation used to perform accurate measurements will be finally presented.
Two High Schools and the Road to Full Inclusion: A Comparison Study
ERIC Educational Resources Information Center
Pierson, Melinda R.; Howell, Erica J.
2013-01-01
This article documents a roadmap for developing fully inclusive school sites at the secondary level. Full inclusion is defined as placement in the general education classroom for all students with disabilities. Specifically, two large high schools located in suburban areas attempted to fully include over 300 students identified as needing special…
NASA Technical Reports Server (NTRS)
Bennett, James; Hall, Philip
1988-01-01
There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmien-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poiseuille flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.
NASA Technical Reports Server (NTRS)
Bennett, James; Hall, Philip
1986-01-01
There are many flows of practical importance where both Tollmien-Schlichting waves and Taylor-Goertler vortices are possible causes of transition to turbulence. The effect of fully nonlinear Taylor-Goertler vortices on the growth of small amplitude Tollmien-Schlichting waves is investigated. The basic state considered is the fully developed flow between concentric cylinders driven by an azimuthal pressure gradient. It is hoped that an investigation of this problem will shed light on the more complicated external boundary layer problem where again both modes of instability exist in the presence of concave curvature. The type of Tollmein-Schlichting waves considered have the asymptotic structure of lower branch modes of plane Poisseulle flow. Whilst instabilities at lower Reynolds number are possible, the latter modes are simpler to analyze and more relevant to the boundary layer problem. The effect of fully nonlinear Taylor-Goertler vortices on both two-dimensional and three-dimensional waves is determined. It is shown that, whilst the maximum growth as a function of frequency is not greatly affected, there is a large destabilizing effect over a large range of frequencies.
A near-wall turbulence model and its application to fully developed turbulent channel and pipe flows
NASA Technical Reports Server (NTRS)
Kim, S.-W.
1988-01-01
A near wall turbulence model and its incorporation into a multiple-time-scale turbulence model are presented. In the method, the conservation of mass, momentum, and the turbulent kinetic energy equations are integrated up to the wall; and the energy transfer rate and the dissipation rate inside the near wall layer are obtained from algebraic equations. The algebraic equations for the energy transfer rate and the dissipation rate inside the near wall layer were obtained from a k-equation turbulence model and the near wall analysis. A fully developed turbulent channel flow and fully developed turbulent pipe flows were solved using a finite element method to test the predictive capability of the turbulence model. The computational results compared favorably with experimental data. It is also shown that the present turbulence model could resolve the over shoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.
NASA Astrophysics Data System (ADS)
Yang, T.; Wang, L.
A numerical study is made on the fully developed bifurcation structure and stability of forced convection in a rotating curved duct of square cross-section. Solution structure is determined as variation of a parameter that indicates the effect of rotation (Coriolis-force-driven multiplicity). Three solutions for the flows in a stationary curved duct obtained in the work of Yang and Wang [1] are used as initial solutions of continuation calculations to unfold the solution branches. Twenty-one solution branches are found comparing with five obtained by Selmi and Nandakumar [2]. Dynamic responses of the multiple solutions to finite random disturbances are examined by the direct transient computation. Results show that characteristics of physically realizable fully developed flows changes significantly with variation of effect of rotation. Fourteen sub-ranges are identified according to characteristics of physically realizable solutions. As rotation effect changes, possible physically realizable fully-developed flows can be stable steady 2-cell state, stable multi-cell state, temporal periodic oscillation between symmetric/asymmetric 2-cell/4-cell flows, temporal oscillation with intermittency, temporal chaotic oscillation and temporal oscillation with pseudo intermittency. Among these possible physically realizable fully developed flows, stable multi-cell state and stable steady 2-cell state exist as dual stable. And oscillation with pseudo intermittency is a new phenomenon. In addition to the temporal oscillation with intermittency, sudden shift from stationary stable solution to temporal chaotic oscillation is identified to be another way of onset of chaos.
Jonsson, J.E.; Afton, A.D.; Homberger, D.G.; Henk, W.G.; Alisauskas, R.T.
2006-01-01
Most birds develop brood patches before incubation; epidermis and dermis in the brood patch region thicken, and the dermal connective tissue becomes increasingly vascularized and infiltrated by leukocytes. However, current dogma states that waterfowl incubate without modifications of skin within the brood patch region. The incubation periods of lesser snow geese (Chen caerulescens caerulescens; hereafter called snow geese) and Ross's geese (C. rossii) are 2-6 days shorter than those of other goose species; only females incubate. Thus, we hypothesized that such short incubation periods would require fully developed brood patches for sufficient heat transfer from incubating parents to eggs. We tested this hypothesis by analyzing the skin histology of abdominal regions of snow and Ross's geese collected at Karrak Lake, Nunavut, Canada. For female snow geese, we found that epidermis and dermis had thickened and vascularization of dermis was 14 times greater, on average, than that observed in males (n=5 pairs). Our results for Ross's geese (n=5 pairs) were more variable, wherein only one of five female Ross's geese fully developed a brood patch. Our results are consistent with three hypotheses about brood patch development and its relationship with different energetic cost-benefit relationships, resulting from differences in embryonic development and body size. ?? Springer-Verlag 2006.
Developing Fully Online Pre-Service Music and Arts Education Courses
ERIC Educational Resources Information Center
Lierse, Sharon
2015-01-01
Charles Darwin University (CDU) offers education courses for students who want to teach in Australian schools. The university is unique due to its geographic location, proximity to Asia and its high Indigenous population compared to the rest of the country. Many courses are offered fully online including music education for pre-service teachers.…
The Role of Faculty in the Effectiveness of Fully Online Programs
ERIC Educational Resources Information Center
Al-Salman, Sami M.
2013-01-01
The enormous growth of online learning creates the need to develop a set of standards and guidelines for fully online programs. While many guidelines do exist, web-based programs still fall short in the recognition, adoption, or the implementation of these standards. One consequence is the high attrition rates associated with web-based distance…
Development and Application of Agglomerated Multigrid Methods for Complex Geometries
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.
2010-01-01
We report progress in the development of agglomerated multigrid techniques for fully un- structured grids in three dimensions, building upon two previous studies focused on efficiently solving a model diffusion equation. We demonstrate a robust fully-coarsened agglomerated multigrid technique for 3D complex geometries, incorporating the following key developments: consistent and stable coarse-grid discretizations, a hierarchical agglomeration scheme, and line-agglomeration/relaxation using prismatic-cell discretizations in the highly-stretched grid regions. A signi cant speed-up in computer time is demonstrated for a model diffusion problem, the Euler equations, and the Reynolds-averaged Navier-Stokes equations for 3D realistic complex geometries.
New controlled environment vitrification system for preparing wet samples for cryo-SEM.
Ge, H; Suszynski, W J; Davis, H T; Scriven, L E
2008-01-01
A new controlled environment vitrification system (CEVS) has been designed and constructed to facilitate examination by cryogenic scanning electron microscopy (Cryo-SEM) of initial suspension state and of microstructure development in latex, latex-composite and other coatings while they still contain solvent. The new system has a main chamber with provisions for coating as well as drying, and for well-controlled plunging into cryogen. An added subsidiary chamber holds samples for drying or annealing over minutes to days before they are returned to the main chamber and plunged from it. In the main chamber, samples are blade-coated on 5 x 7 mm pieces of silicon wafer and held at selected temperature and humidity for successively longer times, either there or after transfer along a rail into the subsidiary chamber. They are then placed in the sample holder mounted on the plunge rod, so as to permit adjustment of the sample's attitude when it plunges, at controlled speed, into liquid ethane at its freezing point, to a chosen depth, in order to solidify the sample without significant shear or freezing artifacts. The entries of plunging samples and related sample holders into liquid ethane were recorded with a high-speed, high-resolution Photron digital camera. The data were interpreted with a new hypothesis about the width of the band of extremely rapid cooling by deeply subcooled nucleate boiling below the line of entry. Complementary cryo-SEM images revealed that the freezing rate and surface shearing of a sample need to be balanced by adjusting the plunging attitude.
Mixing and transient interface condensation of a liquid hydrogen tank
NASA Technical Reports Server (NTRS)
Lin, C. S.; Hasan, M. M.; Nyland, T. W.
1993-01-01
Experiments were conducted to investigate the effect of axial jet-induced mixing on the pressure reduction of a thermally stratified liquid hydrogen tank. The tank was nearly cylindrical, having a volume of about 0.144 cu m with 0.559 m in diameter and 0.711 m long. A mixer/pump unit, which had a jet nozzle outlet of 0.0221 m in diameter was located 0.178 m from the tank bottom and was installed inside the tank to generate the axial jet mixing and tank fluid circulation. The liquid fill and jet flow rate ranged from 42 to 85 percent (by volume) and 0.409 to 2.43 cu m/hr, respectively. Mixing tests began with the tank pressure ranging from 187.5 to 238.5 kPa at which the thermal stratification results in 4.9 to 6.2 K liquid sub cooling. The mixing time and transient vapor condensation rate at the liquid-vapor interface are determined. Two mixing time correlations, based on the thermal equilibrium and pressure equilibrium, are developed. Both mixing time correlations are expressed as functions of system and buoyancy parameters and compared well with other experimental data. The steady state condensation rate correlation of Sonin et al. based on steam-water data is modified and expressed as a function of jet subcooling. The limited liquid hydrogen data of the present study shows that the modified steady state condensation rate correlation may be used to predict the transient condensation rate in a mixing process if the instantaneous values of jet sub cooling and turbulence intensity at the interface are employed.
Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 3 of 4
NASA Technical Reports Server (NTRS)
1996-01-01
The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 3 of 4.
Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 4 of 4
NASA Technical Reports Server (NTRS)
1996-01-01
The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 4 of 4.
Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 1 of 4
NASA Technical Reports Server (NTRS)
1996-01-01
The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 1 of 4.
Tank Pressure Control Experiment: Thermal Phenomena in Microgravity. Video 2 of 4
NASA Technical Reports Server (NTRS)
1996-01-01
The report presents the results of the flight experiment Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP) performed in the microgravity environment of the space shuttle. TPCE/TP, flown on the Space Transportation System STS-52, was a second flight of the Tank Pressure Control Experiment (TPCE). The experiment used Freon 113 at near saturation conditions. The test tank was filled with liquid to about 83 percent by volume. The experiment consisted of 21 tests. Each test generally started with a heating phase to increase the tank pressure and to develop temperature stratification in the fluid, followed by a fluid mixing phase for the tank pressure reduction and fluid temperature equilibration. The heating phase provided pool boiling data from large (relative to bubble sizes) heating surfaces (0.1046 m by 0.0742 m) at low heat fluxes (0.23 to 1.16 kW/m(exp 2)). The system pressure and the bulk liquid subcooling varied from 39 to 78 kPa and 1 to 3 deg C, respectively. The boiling process during the entire heating period, as well a jet-induced mixing process for the first 2 min. of the mixing period, was also recorded on video. Analyses of data from the two flight experiments (TPCE and TPCE/TP) and their comparison with the results obtained in drop tower experiments suggest that as Bond number approaches zero the flow pattern produced by an axial jet and the mixing time can be predicted by the Weber number. This is video 2 of 4.
Development of a Novel and Rapid Fully Automated Genetic Testing System.
Uehara, Masayuki
2016-01-01
We have developed a rapid genetic testing system integrating nucleic acid extraction, purification, amplification, and detection in a single cartridge. The system performs real-time polymerase chain reaction (PCR) after nucleic acid purification in a fully automated manner. RNase P, a housekeeping gene, was purified from human nasal epithelial cells using silica-coated magnetic beads and subjected to real-time PCR using a novel droplet-real-time-PCR machine. The process was completed within 13 min. This system will be widely applicable for research and diagnostic uses.
Controlled formation of cyclopentane hydrate suspensions via capillary-driven jet break-up
NASA Astrophysics Data System (ADS)
Geri, Michela; McKinley, Gareth
2017-11-01
Clathrate hydrates are crystalline compounds that form when a lattice of hydrogen-bonded water molecules is filled by guest molecules sequestered from an adjacent gas or liquid phase. Being able to rapidly produce and transport synthetic hydrates is of great interest given their significant potential as a clean energy source and safe option for hydrogen storage. We propose a new method to rapidly produce cyclopentane hydrate suspensions at ambient pressure with tunable particle size distribution by taking advantage of the Rayleigh-Plateau instability to form a mono-disperse stream of droplets during the controlled break-up of a water jet. The droplets are immediately frozen into ice particles through immersion in a subcooled reservoir and converted into hydrates with a dramatic reduction in the nucleation induction time. By measuring the evolution of the rheological properties with time, we monitor the process of hydrates formation via surface crystallization and agglomeration with different droplet size distributions. This new method enables us to gain new insights into hydrate formation and transport which was previously hindered by uncontrolled droplet formation and hydrate nucleation processes. MITei Chevron Fellowship.
Crystal growth kinetics of triblock Janus colloids
NASA Astrophysics Data System (ADS)
Reinhart, Wesley F.; Panagiotopoulos, Athanassios Z.
2018-03-01
We measure the kinetics of crystal growth from a melt of triblock Janus colloids using non-equilibrium molecular dynamics simulations. We assess the impact of interaction anisotropy by systematically varying the size of the attractive patches from 40% to 100% coverage, finding substantially different growth behaviors in the two limits. With isotropic particles, the interface velocity is directly proportional to the subcooling, in agreement with previous studies. With highly anisotropic particles, the growth curves are well approximated by using a power law with exponent and prefactor that depend strongly on the particular surface geometry and patch fraction. This nonlinear growth appears correlated to the roughness of the solid-liquid interface, with the strongest growth inhibition occurring for the smoothest crystal faces. We conclude that crystal growth for patchy particles does not conform to the typical collision-limited mechanism, but is instead an activated process in which the rate-limiting step is the collective rotation of particles into the proper orientation. Finally, we show how differences in the growth kinetics could be leveraged to achieve kinetic control over polymorph growth, either enhancing or suppressing metastable phases near solid-solid coexistence lines.
Screen channel liquid acquisition device outflow tests in liquid hydrogen
NASA Astrophysics Data System (ADS)
Hartwig, J. W.; Chato, D. J.; McQuillen, J. B.; Vera, J.; Kudlac, M. T.; Quinn, F. D.
2014-11-01
This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325 × 2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3-24.2 K), pressures (100-350 kPa), and flow rates (0.010-0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.
NASA Technical Reports Server (NTRS)
Gokoglu, S. A.
1987-01-01
The simultaneous presence of aerosol particles and condensible vapors in a saturated boundary layer which may affect deposition rates to subcooled surfaces because of vapor-particle interactions is discussed. Scavenging of condensible vapors by aerosol particles may lead to increased particle size and decreased vapor mass fraction, which alters both vapor and particle deposition rates. Particles, if sufficiently concentrated, may also coagulate. Criteria are provided to assess the significance of such phenomena when particles are already present in the mainstream and are not created inside the boundary layer via homogeneous nucleation. It is determined that there is direct proportionality with: (1) the mass concentration of both condensible vapors and aerosol particles; and (2) the square of the boundary layer thickness to particle diameter ratio (delta d sub p) square. Inverse proportionality was found for mainstream to surface temperature difference if thermophoresis dominates particle transport. It is concluded that the square of the boundary layer thickness to particle diameter ratio is the most critical factor to consider in deciding when to neglect vapor-particle interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, Michael; Wu, Qiao
2015-04-30
This report is a preliminary document presenting an overview of the Critical Heat Flux (CHF) phenomenon, the High Pressure Critical Heat Flux facility (HPCHF), preliminary CHF data acquired, and the future direction of the research. The HPCHF facility has been designed and built to study CHF at high pressure and low mass flux ranges in a rod bundle prototypical of conceptual Small Modular Reactor (SMR) designs. The rod bundle is comprised of four electrically heated rods in a 2x2 square rod bundle with a prototypic chopped-cosine axial power profile and equipped with thermocouples at various axial and circumferential positions embeddedmore » in each rod for CHF detection. Experimental test parameters for CHF detection range from pressures of ~80 – 160 bar, mass fluxes of ~400 – 1500 kg/m2s, and inlet water subcooling from ~30 – 70°C. The preliminary data base established will be further extended in the future along with comparisons to existing CHF correlations, models, etc. whose application ranges may be applicable to the conditions of SMRs.« less
NASA Technical Reports Server (NTRS)
Gokoglu, S. A.
1986-01-01
The simultaneous presence of aerosol particles and condensible vapors in a saturated boundary layer which may affect deposition rates to subcooled surfaces because of vapor-particle interactions is discussed. Scavenging of condensible vapors by aerosol particles may lead to increased particle size and decreased vapor mass fraction, which alters both vapor and particle deposition rates. Particles, if sufficiently concentrated, may also coagulate. Criteria are provided to assess the significance of such phenomena when particles are already present in the mainstream and are not created inside the boundary layer via homogeneous nucleation. It is determined that there is direct proportionality with: (1) the mass concentration of both condensible vapors and aerosol particles; and (2) the square of the boundary layer thickness to particle diameter ratio (delta d sub p) square. Inverse proportionality was found for mainstream to surface temperature difference if thermophoresis dominates particle transport. It is concluded that the square of the boundary layer thickness to particle diameter ratio is the most critical factor to consider in deciding when to neglect vapor-particle interactions.
Screening reactor steam/water piping systems for water hammer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffith, P.
1997-09-01
A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greatermore » than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made.« less
Screen Channel Liquid Acquisition Device Outflow Tests in Liquid Hydrogen
NASA Technical Reports Server (NTRS)
Hartwig, Jason W.; Chato, David J.; McQuillen, J. B.; Vera, J.; Kudlac, M. T.; Quinn, F. D.
2013-01-01
This paper presents experimental design and test results of the recently concluded 1-g inverted vertical outflow testing of two 325x2300 full scale liquid acquisition device (LAD) channels in liquid hydrogen (LH2). One of the channels had a perforated plate and internal cooling from a thermodynamic vent system (TVS) to enhance performance. The LADs were mounted in a tank to simulate 1-g outflow over a wide range of LH2 temperatures (20.3 - 24.2 K), pressures (100 - 350 kPa), and flow rates (0.010 - 0.055 kg/s). Results indicate that the breakdown point is dominated by liquid temperature, with a second order dependence on mass flow rate through the LAD. The best performance is always achieved in the coldest liquid states for both channels, consistent with bubble point theory. Higher flow rates cause the standard channel to break down relatively earlier than the TVS cooled channel. Both the internal TVS heat exchanger and subcooling the liquid in the propellant tank are shown to significantly improve LAD performance.
NASA Astrophysics Data System (ADS)
Strąk, Kinga; Maciejewska, Beata; Piasecka, Magdalena
2018-06-01
In this paper, the solution of the two-dimensional inverse heat transfer problem with the use of the Beck method coupled with the Trefftz method is proposed. This method was applied for solving an inverse heat conduction problem. The aim of the calculation was to determine the boiling heat transfer coefficient on the basis of temperature measurements taken by infrared thermography. The experimental data of flow boiling heat transfer in a single vertical minichannel of 1.7 mm depth, heated asymmetrically, were used in calculations. The heating element for two refrigerants (FC-72 and HFE-7100, 3M) flowing in the minichannel was the plate enhanced on the side contacting with the fluid. The analysis of the results was performed on the basis of experimental series obtained for the same heat flux and two different mass flow velocities. The results were presented as infrared thermographs, heated wall temperature and heat transfer coefficient as a function of the distance from the minichannel inlet. The results was discussed for the subcooled and saturated boiling regions separately.
van Noort, Paul C M
2009-06-01
Fugacity ratios of organic compounds are used to calculate (subcooled) liquid properties, such as solubility or vapour pressure, from solid properties and vice versa. They can be calculated from the entropy of fusion, the melting temperature, and heat capacity data for the solid and the liquid. For many organic compounds, values for the fusion entropy are lacking. Heat capacity data are even scarcer. In the present study, semi-empirical compound class specific equations were derived to estimate fugacity ratios from molecular weight and melting temperature for polycyclic aromatic hydrocarbons and polychlorinated benzenes, biphenyls, dibenzo[p]dioxins and dibenzofurans. These equations estimate fugacity ratios with an average standard error of about 0.05 log units. In addition, for compounds with known fusion entropy values, a general semi-empirical correction equation based on molecular weight and melting temperature was derived for estimation of the contribution of heat capacity differences to the fugacity ratio. This equation estimates the heat capacity contribution correction factor with an average standard error of 0.02 log units for polycyclic aromatic hydrocarbons, polychlorinated benzenes, biphenyls, dibenzo[p]dioxins and dibenzofurans.
NASA Technical Reports Server (NTRS)
Havens, Vance; Ragaller, Dana
1988-01-01
Management of two-phase fluid and control of the heat transfer process in microgravity is a technical challenge that must be addressed for an orbital Organic Rankine Cycle (ORC) application. A test program was performed in 1-g that satisfactorily demonstrated the two-phase management capability of the rotating fluid management device (RFMD) and shear-flow condenser. Operational tests of the RFMD and shear flow condenser in adverse gravity orientations, confirmed that the centrifugal forces in the RFMD and the shear forces in the condenser were capable of overcoming gravity forces. In a microgravity environment, these same forces would not have to compete against gravity and would therefore be dominant. The specific test program covered the required operating range of the Space Station Solar Dynamic Rankine Cycle power system. Review of the test data verified that: fluid was pumped from the RFMD in all attitudes; subcooled states in the condenser were achieved; condensate was pushed uphill against gravity; and noncondensible gases were swept through the condenser.
Wang, Thanh; Han, Shanlong; Yuan, Bo; Zeng, Lixi; Li, Yingming; Wang, Yawei; Jiang, Guibin
2012-12-01
Short chain chlorinated paraffins (SCCPs) are semi-volatile chemicals that are considered persistent in the environment, potential toxic and subject to long-range transport. This study investigates the concentrations and gas-particle partitioning of SCCPs at an urban site in Beijing during summer and wintertime. The total atmospheric SCCP levels ranged 1.9-33.0 ng/m(3) during wintertime. Significantly higher levels were found during the summer (range 112-332 ng/m(3)). The average fraction of total SCCPs in the particle phase (ϕ) was 0.67 during wintertime but decreased significantly during the summer (ϕ = 0.06). The ten and eleven carbon chain homologues with five to eight chlorine atoms were the predominant SCCP formula groups in air. Significant linear correlations were found between the gas-particle partition coefficients and the predicted subcooled vapor pressures and octanol-air partition coefficients. The gas-particle partitioning of SCCPs was further investigated and compared with both the Junge-Pankow adsorption and K(oa)-based absorption models. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of clathrate hydrate formation and decomposition on NMR parameters in THF-D2O solution.
Rousina-Webb, Alexander; Leek, Donald M; Ripmeester, John
2012-06-28
The NMR spin-lattice relaxation time (T(1)), spin-spin relaxation time (T(2)) and the diffusion coefficient D were measured for (1)H in a 1:17 mol % solution of tetrahydrofuran (THF) in D(2)O. The aim of the work was to clarify some earlier points raised regarding the utility of these measurements to convey structural information on hydrate formation and reformation. A number of irregularities in T(1) and T(2) measurements during hydrate processes reported earlier are explained in terms of the presence of interfaces and possible temperature gradients. We observe that T(1) and T(2) in solution are exactly the same before and after hydrate formation, thus confirming that the solution is isotropic. This is inconsistent with the presence of memory effects, at least those that may affect the dynamics to which T(1) and T(2) are sensitive. The measurement of the diffusion coefficient for a number of hours in the subcooled solution before nucleation proved invariant with time, again suggesting that the solution remains isotropic without affecting the guest dynamics and diffusion.
Crystallographic effects during radiative melting of semitransparent materials
NASA Astrophysics Data System (ADS)
Webb, B. W.; Viskanta, R.
1987-10-01
Experiments have been performed to illustrate crystallogrpahic effects during radiative melting of unconfined vertical layers of semitransparent material. Radiative melting of a polycrystalline paraffin was performed and the instantaneous layer weight and transmittance were measured using a cantilever beam technique and thermopile radiation detector, respectively. The effects of radiative flux, initial solid subcooling, spectral distribution of the irradiation, and crystal structure of the solid as determined qualitatively by the sample solidification rate were studied. Experimental results show conclusively the dominant influence of cystallographic effects in the form of multiple internal scattering of radiation during the melting process. A theoretical model is formulated to predict the melting rate of the material. Radiation transfer is treated by solving the one-dimensional radiative transfer equation for an absorbing-scattering medium using the discrete ordinates method. Melting rate and global layer reflectance as predicted by the model agree well with experimental data. Parametric studies conducted with the model illustrate the sensitivity of the melting behavior to such variables as incident radiative flux, initial layer opacity (material extinction coefficient), and scattering asymmetry factor.
Tian, Chaorui; Yuan, Xueli; Jindra, Peter T.; Bagley, Jessamyn; Sayegh, Mohamed H.; Iacomini, John
2010-01-01
Induction of transplantation tolerance has the potential to allow for allograft acceptance without the need for life-long immunosuppression. Here we describe a novel approach that uses delivery of alloantigen by mature T cells to induce tolerance to fully allogeneic cardiac grafts. Adoptive transfer of mature alloantigen-expressing T cells into myeloablatively conditioned mice results in long-term acceptance of fully allogeneic heart transplants without evidence of chronic rejection. Since myeloablative conditioning is clinically undesirable we further demonstrated that adoptive transfer of mature alloantigen-expressing T cells alone into mice receiving non-myeloablative conditioning resulted in long-term acceptance of fully allogeneic heart allografts with minimal evidence of chronic rejection. Mechanistically, tolerance induction involved both deletion of donor-reactive host T cells and the development of regulatory T cells. Thus, delivery of alloantigen by mature T cells induces tolerance to fully allogeneic organ allografts in non-myeloablatively conditioned recipients, representing a novel approach for tolerance induction in transplantation. PMID:20452826
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turinsky, Paul J., E-mail: turinsky@ncsu.edu; Kothe, Douglas B., E-mail: kothe@ornl.gov
The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear powermore » industry that M&S can assist in addressing. To date CASL has developed a multi-physics “core simulator” based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M&S capabilities, which is in progress, will assist in addressing long-standing and future operational and safety challenges of the nuclear industry. - Highlights: • Complexity of physics based modeling of light water reactor cores being addressed. • Capability developed to help address problems that have challenged the nuclear power industry. • Simulation capabilities that take advantage of high performance computing developed.« less
Casaletto, Kaitlin B; Umlauf, Anya; Marquine, Maria; Beaumont, Jennifer L; Mungas, Daniel; Gershon, Richard; Slotkin, Jerry; Akshoomoff, Natacha; Heaton, Robert K
2016-03-01
Hispanics are the fastest growing ethnicity in the United States, yet there are limited well-validated neuropsychological tools in Spanish, and an even greater paucity of normative standards representing this population. The Spanish NIH Toolbox Cognition Battery (NIHTB-CB) is a novel neurocognitive screener; however, the original norms were developed combining Spanish- and English-versions of the battery. We developed normative standards for the Spanish NIHTB-CB, fully adjusting for demographic variables and based entirely on a Spanish-speaking sample. A total of 408 Spanish-speaking neurologically healthy adults (ages 18-85 years) and 496 children (ages 3-7 years) completed the NIH Toolbox norming project. We developed three types of scores: uncorrected based on the entire Spanish-speaking cohort, age-corrected, and fully demographically corrected (age, education, sex) scores for each of the seven NIHTB-CB tests and three composites (Fluid, Crystallized, Total Composites). Corrected scores were developed using polynomial regression models. Demographic factors demonstrated medium-to-large effects on uncorrected NIHTB-CB scores in a pattern that differed from that observed on the English NIHTB-CB. For example, in Spanish-speaking adults, education was more strongly associated with Fluid scores, but showed the strongest association with Crystallized scores among English-speaking adults. Demographic factors were no longer associated with fully corrected scores. The original norms were not successful in eliminating demographic effects, overestimating children's performances, and underestimating adults' performances on the Spanish NIHTB-CB. The disparate pattern of demographic associations on the Spanish versus English NIHTB-CB supports the need for distinct normative standards developed separately for each population. Fully adjusted scores presented here will aid in more accurately characterizing acquired brain dysfunction among U.S. Spanish-speakers.
Partial connectivity increases cultural accumulation within groups.
Derex, Maxime; Boyd, Robert
2016-03-15
Complex technologies used in most human societies are beyond the inventive capacities of individuals. Instead, they result from a cumulative process in which innovations are gradually added to existing cultural traits across many generations. Recent work suggests that a population's ability to develop complex technologies is positively affected by its size and connectedness. Here, we present a simple computer-based experiment that compares the accumulation of innovations by fully and partially connected groups of the same size in a complex fitness landscape. We find that the propensity to learn from successful individuals drastically reduces cultural diversity within fully connected groups. In comparison, partially connected groups produce more diverse solutions, and this diversity allows them to develop complex solutions that are never produced in fully connected groups. These results suggest that explanations of ancestral patterns of cultural complexity may need to consider levels of population fragmentation and interaction patterns between partially isolated groups.
Fully CMOS-compatible titanium nitride nanoantennas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briggs, Justin A., E-mail: jabriggs@stanford.edu; Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305; Naik, Gururaj V.
CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements onmore » plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.« less
Partial connectivity increases cultural accumulation within groups
Boyd, Robert
2016-01-01
Complex technologies used in most human societies are beyond the inventive capacities of individuals. Instead, they result from a cumulative process in which innovations are gradually added to existing cultural traits across many generations. Recent work suggests that a population’s ability to develop complex technologies is positively affected by its size and connectedness. Here, we present a simple computer-based experiment that compares the accumulation of innovations by fully and partially connected groups of the same size in a complex fitness landscape. We find that the propensity to learn from successful individuals drastically reduces cultural diversity within fully connected groups. In comparison, partially connected groups produce more diverse solutions, and this diversity allows them to develop complex solutions that are never produced in fully connected groups. These results suggest that explanations of ancestral patterns of cultural complexity may need to consider levels of population fragmentation and interaction patterns between partially isolated groups. PMID:26929364
NASA Technical Reports Server (NTRS)
Denier, James P.; Hall, Philip
1992-01-01
The development of fully nonlinear Goertler vortices in high Reynolds number flow in a symmetrically constricted channel is investigated. Attention is restricted to the case of 'strongly' constricted channels considered by Smith and Daniels (1981) for which the scaled constriction height is asymptotically large. Such flows are known to develop a Goldstein singularity and subsequently become separated at some downstream station past the point of maximum channel constriction. It is shown that these flows can support fully nonlinear Goertler vortices, of the form elucidated by Hall and Lakin (1988), for constrictions which have an appreciable region of local concave curvature upstream of the position at which separation occurs. The effect on the onset of separation due to the nonlinear Goertler modes is discussed. A brief discussion of other possible nonlinear states which may also have a dramatic effect in delaying (or promoting) separation is given.
Fully Ceramic Microencapsulated Fuel Development for LWR Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Lance Lewis; Besmann, Theodore M; Terrani, Kurt A
2012-01-01
The concept, fabrication, and key feasibility issues of a new fuel form based on the microencapsulated (TRISO-type) fuel which has been specifically engineered for LWR application and compacted within a SiC matrix will be presented. This fuel, the so-called fully ceramic microencapsulated fuel is currently undergoing development as an accident tolerant fuel for potential UO2 replacement in commercial LWRs. While the ability of this fuel to facilitate normal LWR cycle performance is an ongoing effort within the program, this will not be a focus of this paper. Rather, key feasibility and performance aspects of the fuel will be presented includingmore » the ability to fabricate a LWR-specific TRISO, the need for and route to a high thermal conductivity and fully dense matrix that contains neutron poisons, and the performance of that matrix under irradiation and the interaction of the fuel with commercial zircaloy clad.« less
Yokota, Yudai; Fukasawa, Mitsuharu; Takano, Shinichi; Kadokura, Makoto; Shindo, Hiroko; Takahashi, Ei; Hirose, Sumio; Kawakami, Satoshi; Fukasawa, Yoshimitsu; Sato, Tadashi; Enomoto, Nobuyuki
2017-10-11
Self-expandable metal stents (SEMSs) are widely used for malignant biliary obstructions. Nitinol-covered SEMSs have been developed to improve stent patency. Currently, SEMSs may be uncovered, partially covered, or fully covered; however, there is no consensus on the best stent type for the management of malignant distal biliary obstruction (MDBO). Patients with unresectable MDBO receiving SEMS (Wallflex™) were retrospectively analyzed. Time to recurrent biliary obstruction (TRBO) and survival time were compared among the three types of SEMSs. Univariate and multivariate analyses were performed to identify risk factors for stent dysfunction. In total, 101 patients received SEMSs for unresectable MDBO (44 uncovered, 28 partially covered, and 29 fully covered SEMSs). Median survival time was 200, 168, and 276 days in the uncovered, partially covered, and fully covered SEMSs groups, respectively. There were no differences in survival among the three groups. Median TRBO was 199, 444, and 194 days in the uncovered, partially covered, and fully covered SEMSs groups, respectively. Partially covered SEMSs had longer TRBO than uncovered (p = 0.013) and fully covered (p = 0.010) SEMSs. Tumor ingrowth occurred only with uncovered SEMSs and stent migration occurred only with fully covered SEMSs. Multivariate analyses confirmed that partially covered SEMSs have lower risk of dysfunction. Partially covered SEMSs with a proximal uncovered flared end have longer patency than uncovered and fully covered SEMSs by preventing tumor ingrowth and stent migration.
Development Of Advanced Welding Control System
NASA Technical Reports Server (NTRS)
1990-01-01
Report describes development of next-generation control system for variable-polarity plasma arc (VPPA) welding. When fully developed, system expected to incorporate advanced sensors and adaptive control of position of and current in welding torch.
Exergy Analysis for Energy Systems
2006-09-01
Webb, The effect of viscous dissipation in thermally fully- developed electro-osmotic heat transfer in microchannels, International Journal of Heat...electro-osmotic heat transfer in microchannel, International Journal of Heat & Mass Transfer 46(2003)1359–1369 [19] D. Maynes, B. Webb, Fully...AFRL-VA-WP-TM-2007-3095 EXERGY ANALYSIS FOR ENERGY SYSTEMS Dr. Rama S.R. Gorla Gorla Consultants, Inc. SEPTEMBER 2006 Final
Naval Surface Warfare Center Carderock Division, Technical Digest
2001-12-01
Survivability Systems: An Overview Fred J. Fisch 139 Modeling and Simulation of Weapons Effects on Ships Robert R. Wunderlick 143 Intelligent Networks ...communications capability of forces afloat to support emerging network -centric warfare doc- trines. Stealth, for our next generation of warships...fully-inte- grated, fully- networked electronic countermeasures system, developed in parallel and in close coordination with sister systems. An
ERIC Educational Resources Information Center
Sato, Eriko; Chen, Julian Cheng Chiang; Jourdain, Sarah
2017-01-01
The development of distance learning courses for less commonly taught languages (LCTLs) often meets with instructional challenges, especially for Asian LCTLs with their distinct non-Roman characters and structures. This study documents the implementation of a fully online, elementary Japanese course at Stony Brook University. The curriculum was…
ERIC Educational Resources Information Center
Halligan, Fredrica R.; Pohl, Jonathan A.; Smith, M. Katrina
2006-01-01
College students who are no longer fully adolescent and not yet fully adult are frequently at risk for developing habits of excessive alcohol use, with consequent poor study habits and aberrant socialization patterns. "Weeding out" such trends is the work of prevention programs on campus. "Seeding" with other pro-social norms becomes the second…
Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots.
Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Kim, Hojin; Rao, Zhoulyu; Li, Yuhang; Chen, Weiqiu; Song, Jizhou; Verduzco, Rafael; Yu, Cunjiang
2018-03-01
Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Osborne Reynolds pipe flow: direct numerical simulation from laminar to fully-developed turbulence
NASA Astrophysics Data System (ADS)
Adrian, R. J.; Wu, X.; Moin, P.; Baltzer, J. R.
2014-11-01
Osborne Reynolds' pipe experiment marked the onset of modern viscous flow research, yet the detailed mechanism carrying the laminar state to fully-developed turbulence has been quite elusive, despite notable progress related to dynamic edge-state theory. Here, we continue our direct numerical simulation study on this problem using a 250R long, spatially-developing pipe configuration with various Reynolds numbers, inflow disturbances, and inlet base flow states. For the inlet base flow, both fully-developed laminar profile and the uniform plug profile are considered. Inlet disturbances consist of rings of turbulence of different width and radial location. In all the six cases examined so far, energy norms show exponential growth with axial distance until transition after an initial decay near the inlet. Skin-friction overshoots the Moody's correlation in most, but not all, the cases. Another common theme is that lambda vortices amplified out of susceptible elements in the inlet disturbances trigger rapidly growing hairpin packets at random locations and times, after which infant turbulent spots appear. Mature turbulent spots in the pipe transition are actually tight concentrations of hairpin packets looking like a hairpin forest. The plug flow inlet profile requires much stronger disturbances to transition than the parabolic profile.
Correlation of glucosinolate content to myrosinase activity in horseradish (Armoracia rusticana).
Li, Xian; Kushad, Mosbah M
2004-11-17
Fully developed horseradish (Armoracia rusticana Gaertn., Mey., & Scherb.) roots from 27 accessions and leaves from a subset of 9 accessions were evaluated for glucosinolates and myrosinase enzyme activity. Eight different glucosinolates were detected (based on HPLC retention times as desulfoglucosinolates) in both root and leaf tissues. The sum of these glucosinolates, referred to as total, ranged from 2 to 296 micromol g(-1) of dry weight (DW) in both tissues. Four glucosinolates (sinigrin, glucobrassicin, neoglucobrassicin, and gluconasturtiin) were detected in major quantities. In fully developed roots, sinigrin concentration represented approximately 83%, gluconasturtiin approximately 11%, and glucobrassicin approximately 1% of the total glucosinolates. Approximately the same proportions of individual glucosinolates appeared in fully developed leaves, except that glucobrassicin was substituted by neoglucobrassicin and gluconasturtiin concentration was significantly lower (<1%). At least four other glucosinolates were detected in very small quantities (<1%) in both roots and leaves. Myrosinase (beta-thioglucoside glucohydrolase, EC 3.2.3.1) is the enzyme responsible for the hydrolysis of the parent glucosinolates into biologically active products. Very little is known about myrosinase activity and the correlation of its activity to total and individual glucosinolates in plant tissues. Significant differences in myrosinase activity were detected between the roots and leaves, ranging from 1.2 to 57.1 units g(-1) of DW. Data showed no correlation between myrosinase activity and total and/or individual glucosinolates in the roots. However, in the leaves, significant correlations were found between myrosinase activity and total glucosinolates (0.78 at P = 0.01) and between myrosinase activity and sinigrin (0.80 at P = 0.01). Glucosinolates content and myrosinase activity were also correlated in young and fully developed roots and leaves and during tissue crushing. Glucobrassicin concentration in the roots and neoglucobrassicin concentration in the leaves were significantly higher in young than in fully developed tissue. Crushing of the tissue resulted in rapid hydrolysis of sinigrin and glucobrassicin, as expected, from the presence of myrosinase. Likewise, myrosinase activity declined rapidly after crushing, perhaps due to inactivation by the reaction products and/or the depletion of its substrates.
Design and Implementation of the PMS Module for ’Argos’
1989-12-01
designing , and implementing a fully workable Planned Maintenance System (PMS). This implementation demonstrates both the capabilities and benefits such a...analyzing, designing , and implementing a fully workable Planned Maintenance System (PMS). This implementation demonstrates both the capabilities and... design and implementation. PMS is the system developed by the navy to provide each ship, department, and supervisor with the tools needed to plan
Surface tension effects on fully developed liquid layer flow over a convex corner
NASA Astrophysics Data System (ADS)
Bhatti, Ifrah; Farid, Saadia; Ullah, Saif; Riaz, Samia; Faryad, Maimoona
2018-04-01
This investigation deals with the study of fully developed liquid layer flow along with surface tension effects, confronting a convex corner in the direction of fluid flow. At the point of interaction, the related equations are formulated using double deck structure and match asymptotic techniques. Linearized solutions for small angle are obtained analytically. The solutions corresponding to similar flow neglecting surface tension effects are also recovered as special case of our general solutions. Finally, the influence of pertinent parameters on the flow, as well as a comparison between models, are shown by graphical illustration.
Fenna, D
1977-09-01
For nearly two decades, the development of computerized information systems has struggled for acceptable compromises between the unattainable "total system" and the unacceptable separate applications. Integration of related applications is essential if the computer is to be exploited fully, yet relative simplicity is necessary for systems to be implemented in a reasonable time-scale. This paper discusses a system being progressively developed from minimal beginnings but which, from the outset, had a highly flexible and fully integrated system basis. The system is for batch processing, but can accommodate on-line data input; it is similar in its approach to many transaction-processing real-time systems.
The fully integrated biomedical engineering programme at Eindhoven University of Technology.
Slaaf, D W; van Genderen, M H P
2009-05-01
The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a bachelor-master's programme with two different master's degrees: Master's Degree in Biomedical Engineering and Master's Degree in Medical Engineering. Recently, the programme has adopted semester programming, has included a major and minor in the bachelor's degree phase, and a true bachelor's degree final project. Details about the programme and data about where graduates find jobs are provided in this paper.
Effect of rib angle on local heat/mass transfer distribution in a two-pass rib-roughened channel
NASA Technical Reports Server (NTRS)
Chandra, P. R.; Han, J. C.; Lau, S. C.
1987-01-01
The naphthalene sublimation technique is used to investigate the heat transfer characteristics of turbulent air flow in a two-pass channel. A test section that resembles the internal cooling passages of gas turbine airfoils is employed. The local Sherwood numbers on the ribbed walls were found to be 1.5-6.5 times those for a fully developed flow in a smooth square duct. Depending on the rib angle-of-attack and the Reynolds number, the average ribbed-wall Sherwood numbers were 2.5-3.5 times higher than the fully developed values.
Miniaturized Ka-Band Dual-Channel Radar
NASA Technical Reports Server (NTRS)
Hoffman, James P.; Moussessian, Alina; Jenabi, Masud; Custodero, Brian
2011-01-01
Smaller (volume, mass, power) electronics for a Ka-band (36 GHz) radar interferometer were required. To reduce size and achieve better control over RFphase versus temperature, fully hybrid electronics were developed for the RF portion of the radar s two-channel receiver and single-channel transmitter. In this context, fully hybrid means that every active RF device was an open die, and all passives were directly attached to the subcarrier. Attachments were made using wire and ribbon bonding. In this way, every component, even small passives, was selected for the fabrication of the two radar receivers, and the devices were mounted relative to each other in order to make complementary components isothermal and to isolate other components from potential temperature gradients. This is critical for developing receivers that can track each other s phase over temperature, which is a key mission driver for obtaining ocean surface height. Fully hybrid, Ka-band (36 GHz) radar transmitter and dual-channel receiver were developed for spaceborne radar interferometry. The fully hybrid fabrication enables control over every aspect of the component selection, placement, and connection. Since the two receiver channels must track each other to better than 100 millidegrees of RF phase over several minutes, the hardware in the two receivers must be "identical," routed the same (same line lengths), and as isothermal as possible. This level of design freedom is not possible with packaged components, which include many internal passive, unknown internal connection lengths/types, and often a single orientation of inputs and outputs.
NASA Astrophysics Data System (ADS)
Turinsky, Paul J.; Kothe, Douglas B.
2016-05-01
The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics ;core simulator; based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M&S capabilities, which is in progress, will assist in addressing long-standing and future operational and safety challenges of the nuclear industry.
NASA Technical Reports Server (NTRS)
Bamberger, Helmut H.; Robinson, R. Craig; Jurns, John M.; Grasl, Steven J.
2011-01-01
Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions.
NASA Astrophysics Data System (ADS)
He, Xiaoming; Fowler, Alex; Toner, Mehmet
2006-10-01
In this study, the free volume models, originally developed for large molecular weight polymer-solvent systems, were used to study the water activity and mobility in solutions of four small molecular weight cryo-/lyoprotectants, viz., glycerol, a monosaccharide (fructose), and two disaccharides (sucrose and trehalose). The free volume model parameters were determined by fitting the models to available experimental data using a nonlinear optimization procedure. It was found that free volume models could accurately predict the available experimental data, which suggests that the free volume models might be generally applicable to aqueous solutions of small molecular weight cryo-/lyoprotectants. Furthermore, several models for estimating the mutual diffusion coefficient were tested using available experimental data for aqueous solutions of glycerol and a better method to estimate the mutual diffusion coefficient was proposed. Free volume models were used to predict and analyze the water activity and mobility in solutions of four cryo-/lyoprotectants under conditions frequently encountered in cryo-/lyopreservation applications. It was found that the water mobility in the glassy state of the above four solutions is essentially negligible in the case of cryopreservation with storage temperature lower than -110°C. However, the water mobility in a glass at higher temperature (>-80°C) may be significant. As a result, a subcooling of up to 50°C may be necessary for the long-term cryo-/lyopreservation of biomaterials depending on the water content and the type of cryo-/lyoprotectants. It was further shown that trehalose might be the best of the four protectants studied for lyopreservation (water mass fraction ⩽0.1) when the storage temperature is above the room temperature. The results from this study might be useful for the development of more effective protocols for both cryopreservation and lyopreservation of living cells and other biomaterials.
Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang
2016-12-01
To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Chemical evolution of multicomponent aerosol particles during evaporation
NASA Astrophysics Data System (ADS)
Zardini, Alessandro; Riipinen, Ilona; Pagels, Joakim; Eriksson, Axel; Worsnop, Douglas; Switieckli, Erik; Kulmala, Markku; Bilde, Merete
2010-05-01
Atmospheric aerosol particles have an important but not well quantified effect on climate and human health. Despite the efforts made in the last decades, the formation and evolution of aerosol particles in the atmosphere is still not fully understood. The uncertainty is partly due to the complex chemical composition of the particles which comprise inorganic and organic compounds. Many organics (like dicarboxylic acids) can be present both in the gas and in the condensed phase due to their low vapor pressure. Clearly, an understanding of this partition is crucial to address any other issue in atmospheric physics and chemistry. Moreover, many organics are water soluble, and their influence on the properties of aqueous solution droplets is still poorly characterized. The solid and sub-cooled liquid state vapor pressures of some organic compounds have been previously determined by measuring the evaporation rate of single-compound crystals [1-3] or binary aqueous droplets [4-6]. In this work, we deploy the HTDMA technique (Hygroscopicity Tandem Differential Mobility Analyzer) coupled with a 3.5m laminar flow-tube and an Aerosol Mass Spectrometer (AMS) for determining the chemical evolution during evaporation of ternary droplets made of one dicarboxylic acid (succinic acid, commonly found in atmospheric samples) and one inorganic compound (sodium chloride or ammonium sulfate) in different mixing ratios, in equilibrium with water vapor at a fixed relative humidity. In addition, we investigate the evaporation of multicomponent droplets and crystals made of three organic species (dicarboxylic acids and sugars), of which one or two are semi-volatile. 1. Bilde M. and Pandis, S.N.: Evaporation Rates and Vapor Pressures of Individual Aerosol Species Formed in the Atmospheric Oxidation of alpha- and beta-Pinene. Environmental Science and Technology, 35, 2001. 2. Bilde M., et al.: Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols, Environmental. Science and Technology, 37, 2003. 5. Koponen I.K., et al.: Thermodynamic properties of malonic, succinic, and glutaric acids: Evaporation rates and saturation vapor pressures. Environmental Science and Technology, 41, 2007. 4. Zardini A.A., et al.: White light Mie resonance spectroscopy used to measure very low vapor pressures of substances in aqueous solution aerosol particles. Optics Express, 14, 2006. 3. Zardini A.A. and Krieger, U.K.: Evaporation kinetics of a non-spherical, levitated aerosol particle using optical resonance spectroscopy for precision sizing. Optics Express, 17, 2009. 6. Riipinen, I., et al.: Adipic and Malonic Acid Aqueous Solutions: Surface Tensions and Saturation Vapor Pressures, J. Phys. Chem., 111, 2007.
NASA Astrophysics Data System (ADS)
Tomas, J. M.; Pourquie, M. J. B. M.; Jonker, H. J. J.
2016-05-01
Large-eddy simulations (LES) are used to investigate the effect of stable stratification on rural-to-urban roughness transitions. Smooth-wall turbulent boundary layers are subjected to a generic urban roughness consisting of cubes in an in-line arrangement. Two line sources of pollutant are added to investigate the effect on pollutant dispersion. Firstly, the LES method is validated with data from wind-tunnel experiments on fully-developed flow over cubical roughness. Good agreement is found for the vertical profiles of the mean streamwise velocity component and mean Reynolds stress. Subsequently, roughness transition simulations are done for both neutral and stable conditions. Results are compared with fully-developed simulations with conventional double-periodic boundary conditions. In stable conditions, at the end of the domain the streamwise velocity component has not yet reached the fully-developed state even though the surface forces are nearly constant. Moreover, the internal boundary layer is shallower than in the neutral case. Furthermore, an investigation of the turbulence kinetic energy budget shows that the buoyancy destruction term is reduced in the internal boundary layer, above which it is equal to the undisturbed (smooth wall) value. In addition, in stable conditions pollutants emitted above the urban canopy enter the canopy farther downstream due to decreased vertical mixing. Pollutants emitted below the top of the urban canopy are 85 % higher in concentration in stable conditions mostly due to decreased advection. If this is taken into account concentrations remain 17 % greater in stable conditions due to less rapid internal boundary-layer growth. Finally, it is concluded that in the first seven streets the vertical advective pollutant flux is significant, in contrast to the fully-developed case.
Translations on USSR Military Affairs, Number 1260
1977-02-01
more fully extract lessons, and set to carrying out new missions fully armed with the experience gained. 8545 CSO: 1801 NEED FOR IMPROVING UNIT...meeting peculiar to other party 8545 CSO: 1801 12 REACTION TO COMPLAINT LETTER SENT TO NEWSPAPER Moscow KRASNAYA ZVEZDA in Russian 8 Oct 76 p 1...letter from the regimental medical center even became possible. 8545 CSO: 1801 15 EDITORIAL ON DEVELOPING PROPER POLITICAL VIEWS OF
Cardiac imaging: working towards fully-automated machine analysis & interpretation.
Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido
2017-03-01
Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered: This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary: Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation.
An Institutional Perspective on Accountable Care Organizations.
Goodrick, Elizabeth; Reay, Trish
2016-12-01
We employ aspects of institutional theory to explore how Accountable Care Organizations (ACOs) can effectively manage the multiplicity of ideas and pressures within which they are embedded and consequently better serve patients and their communities. More specifically, we draw on the concept of institutional logics to highlight the importance of understanding the conflicting principles upon which ACOs were founded. Based on previous research conducted both inside and outside health care settings, we argue that ACOs can combine attention to these principles (or institutional logics) in different ways; the options fall on a continuum from (a) segregating the effects of multiple logics from each other by compartmentalizing responses to multiple logics to (b) fully hybridizing the different logics. We suggest that the most productive path for ACOs is to situate their approach between the two extremes of "segregating" and "fully hybridizing." This strategic approach allows ACOs to develop effective responses that combine logics without fully integrating them. We identify three ways that ACOs can embrace institutional complexity short of fully hybridizing disparate logics: (1) reinterpreting practices to make them compatible with other logics; (2) engaging in strategies that take advantage of existing synergy between conflicting logics; (3) creating opportunities for people at frontline to develop innovative ways of working that combine multiple logics. © The Author(s) 2016.
Rogiers, Suzy Y.; Clarke, Simon J.
2013-01-01
Heterogeneity in root-zone temperature both vertically and horizontally may contribute to the uneven vegetative and reproductive growth often observed across vineyards. An experiment was designed to assess whether the warmed half of a grapevine root zone could compensate for the cooled half in terms of vegetative growth and reproductive development. We divided the root system of potted Shiraz grapevines bilaterally and applied either a cool or a warm treatment to each half from budburst to fruit set. Shoot growth and inflorescence development were monitored over the season. Simultaneous cooling and warming of parts of the root system decreased shoot elongation, leaf emergence and leaf expansion below that of plants with a fully warmed root zone, but not to the same extent as those with a fully cooled root zone. Inflorescence rachis length, flower number and berry number after fertilization were smaller only in those vines exposed to fully cooled root zones. After terminating the treatments, berry enlargement and the onset of veraison were slowed in those vines that had been exposed to complete or partial root-zone cooling. Grapevines exposed to partial root-zone cooling were thus delayed in vegetative and reproductive development, but the inhibition was greater in those plants whose entire root system had been cooled. PMID:24244839
On the development of lift and drag in a rotating and translating cylinder
NASA Astrophysics Data System (ADS)
Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon
2014-11-01
The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.
A novel fully-humanised 3D skin equivalent to model early melanoma invasion
Hill, David S; Robinson, Neil D P; Caley, Matthew P; Chen, Mei; O’Toole, Edel A; Armstrong, Jane L; Przyborski, Stefan; Lovat, Penny E
2015-01-01
Metastatic melanoma remains incurable, emphasising the acute need for improved research models to investigate the underlying biological mechanisms mediating tumour invasion and metastasis, and to develop more effective targeted therapies to improve clinical outcome. Available animal models of melanoma do not accurately reflect human disease and current in vitro human skin equivalent models incorporating melanoma cells are not fully representative of the human skin microenvironment. We have developed a robust and reproducible, fully-humanised 3D skin equivalent comprising a stratified, terminally differentiated epidermis and a dermal compartment consisting of fibroblast-generated extracellular matrix. Melanoma cells incorporated into the epidermis were able to invade through the basement membrane and into the dermis, mirroring early tumour invasion in vivo. Comparison of our novel 3D melanoma skin equivalent with melanoma in situ and metastatic melanoma indicates this model accurately recreates features of disease pathology, making it a physiologically representative model of early radial and vertical growth phase melanoma invasion. PMID:26330548
Wang, Zheng; Lu, Hong-Liang; Ma, Li; Ji, Xiang
2014-03-01
Viviparous Phrynocephalus lizards (Agamidae) are mainly restricted to the Qinghai-Tibet Plateau of China. In this study, we used Phrynocephalus vlangalii females kept under seven thermal regimes for the whole gestation period to test the hypothesis that viviparity in high-altitude Phrynocephalus lizards is adaptive because embryos cannot fully develop without maternal thermoregulation. All females at 24 °C and 93% of the females at 28 °C failed to give birth or produced stillborns, and proportionally fewer females gave birth at 29 or 35 °C than at 32 °C. Though the daily temperatures encountered were unsuitable for embryonic development, 95% of the females in nature and 89% of the females thermoregulating in the laboratory gave birth. There was no shift in the thermal preferences of females when they were pregnant. Although thermal conditions inside natural burrows were unsuitable for embryonic development, mass and sprint speed were both greater in neonates produced in nature. Our data show that (1) long-term exposure of P. vlangalii embryos to temperatures outside the range of 29-35 °C may result in the failure of development, but daily or short-term exposure may not necessarily increase embryonic mortality; (2) low gestation temperatures slow but do not arrest embryonic development, and females produce high-quality offspring in the shortest possible time by maintaining gestation temperatures close to the upper thermal limit for embryonic development; and (3) viviparity is currently adaptive at high elevations because embryos in nature cannot fully develop without relying on maternal thermoregulation. Our data validate the hypothesis tested.
Hamidieh, A A; Dehaghi, M Ostadali; Paragomi, P; Navaei, S; Jalali, A; Eslami, G Ghazizadeh; Behfar, M; Ghavamzadeh, A
2015-04-01
The best donors for hematopoietic SCT (HSCT) are fully-matched siblings. In patients without fully-matched siblings, HLA registries or cord blood banks are alternative strategies with some restrictions. Owing to the high rate of consanguineous marriage in our country, between 2006 and 2013, extended family searches were undertaken in Hematology-Oncology Research Center and Stem Cell Transplantation (HORCSCT), Tehran, Iran, in 523 HSCT candidates with parental consanguinity and no available HLA identical sibling. Fully-matched other-relative donors were found for 109 cases. We retrospectively studied the HSCT outcome in these patients. Median time to neutrophil engraftment was 13 days (range: 9-31days). In 83 patients, full chimerism and in 17 patients, mixed chimerism was achieved. Acute GvHD (aGvHD) grade II-IV appeared in 36 patients (33%). The frequency of aGvHD development in various familial subgroups was NS. Five patients expired before day+100. In the surviving 104 cases, chronic GvHD developed in 20 patients (19.2%). The distantly related subgroup had significantly a higher rate of cGvHD (P=0.04). The 2-year OS and disease-free survival (DFS) were 76.7±4.5% and 71.7±4.7%, respectively. No significant difference in OS (P=0.30) and DFS (P=0.80) was unraveled between various familial relationships. Our considerable rate of fully-matched non-sibling family members and the favorable outcome support the rationale for extended family search in regions where consanguineous marriage is widely practiced.
NASA Astrophysics Data System (ADS)
Jin, L.; Zoback, M. D.
2017-10-01
We formulate the problem of fully coupled transient fluid flow and quasi-static poroelasticity in arbitrarily fractured, deformable porous media saturated with a single-phase compressible fluid. The fractures we consider are hydraulically highly conductive, allowing discontinuous fluid flux across them; mechanically, they act as finite-thickness shear deformation zones prior to failure (i.e., nonslipping and nonpropagating), leading to "apparent discontinuity" in strain and stress across them. Local nonlinearity arising from pressure-dependent permeability of fractures is also included. Taking advantage of typically high aspect ratio of a fracture, we do not resolve transversal variations and instead assume uniform flow velocity and simple shear strain within each fracture, rendering the coupled problem numerically more tractable. Fractures are discretized as lower dimensional zero-thickness elements tangentially conforming to unstructured matrix elements. A hybrid-dimensional, equal-low-order, two-field mixed finite element method is developed, which is free from stability issues for a drained coupled system. The fully implicit backward Euler scheme is employed for advancing the fully coupled solution in time, and the Newton-Raphson scheme is implemented for linearization. We show that the fully discretized system retains a canonical form of a fracture-free poromechanical problem; the effect of fractures is translated to the modification of some existing terms as well as the addition of several terms to the capacity, conductivity, and stiffness matrices therefore allowing the development of independent subroutines for treating fractures within a standard computational framework. Our computational model provides more realistic inputs for some fracture-dominated poromechanical problems like fluid-induced seismicity.
DOT National Transportation Integrated Search
2004-06-01
Real-time transportation system information is a critical element in the development of Intelligent Transportation Systems (ITS). The Rhode Island Department of Transportation (RIDOT) is in the process of developing a fully integrated intelligent tra...
NASA Astrophysics Data System (ADS)
Payne, Joshua; Taitano, William; Knoll, Dana; Liebs, Chris; Murthy, Karthik; Feltman, Nicolas; Wang, Yijie; McCarthy, Colleen; Cieren, Emanuel
2012-10-01
In order to solve problems such as the ion coalescence and slow MHD shocks fully kinetically we developed a fully implicit 2D energy and charge conserving electromagnetic PIC code, PlasmaApp2D. PlasmaApp2D differs from previous implicit PIC implementations in that it will utilize advanced architectures such as GPUs and shared memory CPU systems, with problems too large to fit into cache. PlasmaApp2D will be a hybrid CPU-GPU code developed primarily to run on the DARWIN cluster at LANL utilizing four 12-core AMD Opteron CPUs and two NVIDIA Tesla GPUs per node. MPI will be used for cross-node communication, OpenMP will be used for on-node parallelism, and CUDA will be used for the GPUs. Development progress and initial results will be presented.
Development of Miniaturized Optimized Smart Sensors (MOSS) for space plasmas
NASA Technical Reports Server (NTRS)
Young, D. T.
1993-01-01
The cost of space plasma sensors is high for several reasons: (1) Most are one-of-a-kind and state-of-the-art, (2) the cost of launch to orbit is high, (3) ruggedness and reliability requirements lead to costly development and test programs, and (4) overhead is added by overly elaborate or generalized spacecraft interface requirements. Possible approaches to reducing costs include development of small 'sensors' (defined as including all necessary optics, detectors, and related electronics) that will ultimately lead to cheaper missions by reducing (2), improving (3), and, through work with spacecraft designers, reducing (4). Despite this logical approach, there is no guarantee that smaller sensors are necessarily either better or cheaper. We have previously advocated applying analytical 'quality factors' to plasma sensors (and spacecraft) and have begun to develop miniaturized particle optical systems by applying quantitative optimization criteria. We are currently designing a Miniaturized Optimized Smart Sensor (MOSS) in which miniaturized electronics (e.g., employing new power supply topology and extensive us of gate arrays and hybrid circuits) are fully integrated with newly developed particle optics to give significant savings in volume and mass. The goal of the SwRI MOSS program is development of a fully self-contained and functional plasma sensor weighing 1 lb and requiring 1 W. MOSS will require only a typical spacecraft DC power source (e.g., 30 V) and command/data interfaces in order to be fully functional, and will provide measurement capabilities comparable in most ways to current sensors.
Arabnejad, Sajad; Johnston, Burnett; Tanzer, Michael; Pasini, Damiano
2017-08-01
Current hip replacement femoral implants are made of fully solid materials which all have stiffness considerably higher than that of bone. This mechanical mismatch can cause significant bone resorption secondary to stress shielding, which can lead to serious complications such as peri-prosthetic fracture during or after revision surgery. In this work, a high strength fully porous material with tunable mechanical properties is introduced for use in hip replacement design. The implant macro geometry is based off of a short stem taper-wedge implant compatible with minimally invasive hip replacement surgery. The implant micro-architecture is fine-tuned to locally mimic bone tissue properties which results in minimum bone resorption secondary to stress shielding. We present a systematic approach for the design of a 3D printed fully porous hip implant that encompasses the whole activity spectrum of implant development, from concept generation, multiscale mechanics of porous materials, material architecture tailoring, to additive manufacturing, and performance assessment via in vitro experiments in composite femurs. We show that the fully porous implant with an optimized material micro-structure can reduce the amount of bone loss secondary to stress shielding by 75% compared to a fully solid implant. This result also agrees with those of the in vitro quasi-physiological experimental model and the corresponding finite element model for both the optimized fully porous and fully solid implant. These studies demonstrate the merit and the potential of tuning material architecture to achieve a substantial reduction of bone resorption secondary to stress shielding. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1774-1783, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Bruno, Alexander G.; Bouxsein, Mary L.; Anderson, Dennis E.
2015-01-01
We developed and validated a fully articulated model of the thoracolumbar spine in opensim that includes the individual vertebrae, ribs, and sternum. To ensure trunk muscles in the model accurately represent muscles in vivo, we used a novel approach to adjust muscle cross-sectional area (CSA) and position using computed tomography (CT) scans of the trunk sampled from a community-based cohort. Model predictions of vertebral compressive loading and trunk muscle tension were highly correlated to previous in vivo measures of intradiscal pressure (IDP), vertebral loading from telemeterized implants and trunk muscle myoelectric activity recorded by electromyography (EMG). PMID:25901907
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pourrezaei, K.
1982-01-01
A neutral beam probe capable of measuring plasma space potential in a fully 3-dimensional magnetic field geometry has been developed. This neutral beam was successfully used to measure an arc target plasma contained within the ALEX baseball magnetic coil. A computer simulation of the experiment was performed to refine the experimental design and to develop a numerical model for scaling the ALEX neutral beam probe to other cases of fully 3-dimensional magnetic field. Based on this scaling a 30 to 50 keV neutral cesium beam probe capable of measuring space potential in the thermal barrier region of TMX Upgrade wasmore » designed.« less
Development of a fully automated network system for long-term health-care monitoring at home.
Motoi, K; Kubota, S; Ikarashi, A; Nogawa, M; Tanaka, S; Nemoto, T; Yamakoshi, K
2007-01-01
Daily monitoring of health condition at home is very important not only as an effective scheme for early diagnosis and treatment of cardiovascular and other diseases, but also for prevention and control of such diseases. From this point of view, we have developed a prototype room for fully automated monitoring of various vital signs. From the results of preliminary experiments using this room, it was confirmed that (1) ECG and respiration during bathing, (2) excretion weight and blood pressure, and (3) respiration and cardiac beat during sleep could be monitored with reasonable accuracy by the sensor system installed in bathtub, toilet and bed, respectively.
The structure of turbulence in fully developed pipe flow
NASA Technical Reports Server (NTRS)
Laufer, John
1954-01-01
Measurements, principally with a hot-wire anemometer, were made in fully developed turbulent flow in a 10-inch pipe at speeds of approximately 10 and 100 feet per second. Emphasis was placed on turbulence and conditions near the wall. The results include relevant mean and statistical quantities, such as Reynolds stresses, triple correlations, turbulent dissipation, and energy spectra. It is shown that rates of turbulent-energy production, dissipation, and diffusion have sharp maximums near the edge of the laminar sublayer and that there exist a strong movement of kinetic energy away from this point and an equally strong movement of pressure energy toward it.
Alternative refrigerants and refrigeration cycles for domestic refrigerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sand, J.R.; Rice, C.L.; Vineyard, E.A.
1992-12-01
This project initially focused on using nonazeotropic refrigerant mixtures (NARMs) in a two-evaporator refrigerator-freezer design using two stages of liquid refrigerant subcooling. This concept was proposed and tested in 1975. The work suggested that the concept was 20% more efficient than the conventional one-evaporator refrigerator-freezer (RF) design. After considerable planning and system modeling based on using a NARM in a Lorenz-Meutzner (L-M) RF, the program scope was broadened to include investigation of a ``dual-loop`` concept where energy savings result from exploiting the less stringent operating conditions needed to satisfy cooling, of the fresh food section. A steady-state computer model (CYCLE-Z)more » capable of simulating conventional, dual loop, and L-M refrigeration cycles was developed. This model was used to rank the performance of 20 ozone-safe NARMs in the L-M refrigeration cycle while key system parameters were systematically varied. The results indicated that the steady-state efficiency of the L-M design was up to 25% greater than that of a conventional cycle. This model was also used to calculate the performance of other pure refrigerants relative to that of dichlorodifluoromethane, R-12, in conventional and dual-loop RF designs. Projected efficiency gains for these cycles were more modest, ranging from 0 to 10%. Individual compressor calorimeter tests of nine combinations of evaporator and condenser temperatures usually used to map RF compressor performance were carried out with R-12 and two candidate L-M NARMs in several compressors. Several models of a commercially produced two-evaporator RF were obtained as test units. Two dual-loop RF designs were built and tested as part of this project.« less
A User’s Guide to the PLTEMP/ANL Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olson, A. P.; Kalimullah, M.; Feldman, E. E.
2016-07-25
PLTEMP/ANL V4.2 is a program that obtains a steady-state flow and temperature solution for a nuclear reactor core, or for a single fuel assembly. It is based on an evolutionary sequence of codes originally used for plate temperatures, hence “PLTEMP”, developed at Argonne National Laboratory over several decades. Fueled and non-fueled regions are modeled. Each fuel assembly consists of one or more plates or tubes separated by coolant channels. The fuel plates may have one to five layers of different materials, each with heat generation. The width of a fuel plate may be divided into multiple longitudinal stripes, each withmore » its own axial power shape. The temperature solution is effectively 2-dimensional. It begins with a one-dimensional solution across all coolant channels and fuel plates or tubes within a given fuel assembly, at the entrance to the assembly. The temperature solution is repeated for each axial node along the length of the fuel assembly. The geometry may be either slab or radial, corresponding to fuel assemblies made of a series of flat (or slightly curved) plates, or of nested tubes. A variety of thermal-hydraulic correlations are available with which to determine safety margins such as onset-of-nucleate boiling ratio(ONBR), departure from nucleate boiling ratio (DNBR), and onset of flow instability ratio (OFIR). Coolant properties for either light or heavy water are obtained from FORTRAN functions rather than from tables. The code is intended for thermal-hydraulic analysis of research reactor performance in the sub-cooled boiling regime. Both turbulent and laminar flow regimes can be modeled. Options to calculate both forced flow and natural circulation are available. A general search capability is available (Appendix XII) to greatly reduce the reactor analyst’s time.« less
DEVELOPMENT OF TECHNOLOGY TRANSFER PRODUCTS FOR THE EPA EMPACT PROGRAM
A presentation was given for a National Satellite Broadcast on the development of technology transfer handbooks for the EMPACT program. These handbooks help spread the knowledge and experience developed from the EMPACT projects. Handbooks are being prepared for every fully implem...
Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy
NASA Astrophysics Data System (ADS)
Bucht, Curry; Söderberg, Per; Manneberg, Göran
2009-02-01
The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor. Morphometry of the corneal endothelium is presently done by semi-automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development of fully automated analysis of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images. The digitally enhanced images of the corneal endothelium were transformed, using the fast Fourier transform (FFT). Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on images captured by CSM. The cell density obtained by the fully automated analysis was compared to the cell density obtained from classical, semi-automated analysis and a relatively large correlation was found.
ERIC Educational Resources Information Center
Aagard, James A.; Ansbro, Thomas M.
The Naval Enlisted Professional Development Information System (NEPDIS) was designed to function as a fully computerized information assembly and analysis system to support labor force, personnel, and training management. The NEPDIS comprises separate training development, instructional, training record and evaluation, career development, and…
Fully phase-encoded MRI near metallic implants using ultrashort echo times and broadband excitation.
Wiens, Curtis N; Artz, Nathan S; Jang, Hyungseok; McMillan, Alan B; Koch, Kevin M; Reeder, Scott B
2018-04-01
To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T 1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T 1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T 1 -weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 79:2156-2163, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Fully Phase-Encoded MRI Near Metallic Implants Using Ultrashort Echo Times and Broadband Excitation
Wiens, Curtis N.; Artz, Nathan S.; Jang, Hyungseok; McMillan, Alan B.; Koch, Kevin M.; Reeder, Scott B.
2017-01-01
Purpose To develop a fully phase-encoded MRI method for distortion-free imaging near metallic implants, in clinically feasible acquisition times. Theory and Methods An accelerated 3D fully phase-encoded acquisition with broadband excitation and ultrashort echo times is presented, which uses a broadband radiofrequency pulse to excite the entire off-resonance induced by the metallic implant. Furthermore, fully phase-encoded imaging is used to prevent distortions caused by frequency encoding, and to obtain ultrashort echo times for rapidly decaying signal. Results Phantom and in vivo acquisitions were used to describe the relationship among excitation bandwidth, signal loss near metallic implants, and T1 weighting. Shorter radiofrequency pulses captured signal closer to the implant by improving spectral coverage and allowing shorter echo times, whereas longer pulses improved T1 weighting through larger maximum attainable flip angles. Comparisons of fully phase-encoded acquisition with broadband excitation and ultrashort echo times to T1-weighted multi-acquisition with variable resonance image combination selective were performed in phantoms and subjects with metallic knee and hip prostheses. These acquisitions had similar contrast and acquisition efficiency. Conclusions Accelerated fully phase-encoded acquisitions with ultrashort echo times and broadband excitation can generate distortion free images near metallic implants in clinically feasible acquisition times. Magn Reson Med 000:000–000, 2017. PMID:28833407
Widespread mechanosensing controls the structure behind the architecture in plants.
Hamant, Olivier
2013-10-01
Mechanical forces play an instructing role for many aspects of animal cell biology, such as division, polarity and fate. Although the associated mechanoperception pathways still remain largely elusive in plants, physical cues have long been thought to guide development in parallel to biochemical factors. With the development of new imaging techniques, micromechanics tools and modeling approaches, the role of mechanical signals in plant development is now re-examined and fully integrated with modern cell biology. Using recent examples from the literature, I propose to use a multiscale perspective, from the whole plant down to the cell wall, to fully appreciate the diversity of developmental processes that depend on mechanical signals. Incidentally, this also illustrates how conceptually rich this field is. Copyright © 2013 Elsevier Ltd. All rights reserved.
Towards Automated Screening of Two-dimensional Crystals
Cheng, Anchi; Leung, Albert; Fellmann, Denis; Quispe, Joel; Suloway, Christian; Pulokas, James; Carragher, Bridget; Potter, Clinton S.
2007-01-01
Screening trials to determine the presence of two-dimensional (2D) protein crystals suitable for three-dimensional structure determination using electron crystallography is a very labor-intensive process. Methods compatible with fully automated screening have been developed for the process of crystal production by dialysis and for producing negatively stained grids of the resulting trials. Further automation via robotic handling of the EM grids, and semi-automated transmission electron microscopic imaging and evaluation of the trial grids is also possible. We, and others, have developed working prototypes for several of these tools and tested and evaluated them in a simple screen of 24 crystallization conditions. While further development of these tools is certainly required for a turn-key system, the goal of fully automated screening appears to be within reach. PMID:17977016
Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor
Isvoranu, Dragos D.; Cizmas, Paul G. A.
2003-01-01
This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has beenmore » used to investigate the flow and combustion in a one-stage turbine combustor.« less
Advanced high temperature heat flux sensors
NASA Technical Reports Server (NTRS)
Atkinson, W.; Hobart, H. F.; Strange, R. R.
1983-01-01
To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.
Lunar Portable Life Support System Heat Rejection Study
NASA Technical Reports Server (NTRS)
Conger, Bruce; Sompayrac,Robert G.; Trevino, Luis A.; Bue, Grant C.
2009-01-01
Performing extravehicular activity (EVA) at various locations of the lunar surface presents thermal challenges that exceed those experienced in space flight to date. The lunar Portable Life Support System (PLSS) cooling unit must maintain thermal conditions within the space suit and reject heat loads generated by the crewmember and the PLSS equipment. The amount of cooling required varies based on the lunar location and terrain due to the heat transferred between the suit and its surroundings. A study has been completed which investigated the resources required to provide cooling under various lunar conditions, assuming three different thermal technology categories: 1. Spacesuit Water Membrane Evaporator (SWME) 2. Subcooled Phase Change Material (SPCM) 3. Radiators with and without heat pumps Results from the study are presented that show mass and power impacts on the cooling system as a function of the location and terrain on the lunar surface. Resources (cooling equipment mass and consumables) are greater at the equator and inside sunlit craters due to the additional heat loads on the cooling system. While radiator and SPCM technologies require minimal consumables, they come with carry-weight penalties and have limitations. A wider investigation is recommended to determine if these penalties and limitations are offset by the savings in consumables.
Impact of different thickness of the smooth heated surface on flow boiling heat transfer
NASA Astrophysics Data System (ADS)
Strąk, Kinga; Piasecka, Magdalena
2018-06-01
This paper presents a comparison of the performance of three smooth heated surfaces with different thicknesses. Analysis was carried out on an experimental setup for flow boiling heat transfer. The most important element of the setup was the test section with a rectangular minichannel, 1.7 mm deep, 16 mm wide and 180 mm long, oriented vertically. The heated element for the FC-72 Fluorinert flowing in the minichannel was designated as a Haynes-230 alloy plate (0.10 mm and 0.45 mm thick) or a Hastelloy X alloy plate (0.65 mm thick). Infrared thermography was used to measure the temperature of the outer plate surface. The local values of the heat transfer coefficient for stationary state conditions were calculated using a simple one-dimensional method. The experimental results were presented as the relationship between the heat transfer coefficients in the subcooled boiling region and the distance along the minichannel length and boiling curves. The highest local heat transfer coefficients were recorded for the surface of 0.10 mm thick heated plate at the outlet and 0.45 mm thick plate at the minichannel inlet. All boiling curves were typical in shape.
Simplified liquid oxygen propellant conditioning concepts
NASA Technical Reports Server (NTRS)
Cleary, N. L.; Holt, K. A.; Flachbart, R. H.
1995-01-01
Current liquid oxygen feed systems waste propellant and use hardware, unnecessary during flight, to condition the propellant at the engine turbopumps prior to launch. Simplified liquid oxygen propellant conditioning concepts are being sought for future launch vehicles. During a joint program, four alternative propellant conditioning options were studied: (1) passive recirculation; (2) low bleed through the engine; (3) recirculation lines; and (4) helium bubbling. The test configuration for this program was based on a vehicle design which used a main recirculation loop that was insulated on the downcomer and uninsulated on the upcomer. This produces a natural convection recirculation flow. The test article for this program simulated a feedline which ran from the main recirculation loop to the turbopump. The objective was to measure the temperature profile of this test article. Several parameters were varied from the baseline case to determine their effects on the temperature profile. These parameters included: flow configuration, feedline slope, heat flux, main recirculation loop velocity, pressure, bleed rate, helium bubbling, and recirculation lines. The heat flux, bleed rate, and recirculation configurations produced the greatest changes from the baseline temperature profile. However, the temperatures in the feedline remained subcooled. Any of the options studied could be used in future vehicles.
Influence of Two-Phase Thermocapillary Flow on Cryogenic Liquid Retention in Microscopic Pores
NASA Technical Reports Server (NTRS)
Schmidt, G. R.; Nadarajah, A.; Chung, T. J.; Karr, G. R.
1994-01-01
Previous experiments indicate that the bubble point pressure of spacecraft liquid hydrogen acquisition devices is reduced substantially when the ullage is pressurized with heated hydrogen vapor. The objective is to determine whether the two-phase thermocapillary convection arising from thermodynamic non-equilibrium along the porous surfaces of such devices could lead to this observed degradation in retention performance. We also examine why retention capability appears to be unaffected by pressurization with heated helium or direct heating through the porous structure. Computational assessments based on coupled solution of the flowfield and liquid free surface indicate that for highly wetting fluids in small pores, dynamic pressure and vapor recoil dictate surface morphology and drive meniscus deformation. With superheating, the two terms exert the same influence on curvature and promote mechanical equilibrium, but with subcooling, the pressure distribution produces a suction about the pore center-line that degrades retention. This result points to thermocapillary-induced deformation arising from condensation as the cause for retention loss. It also indicates that increasing the level of non-equilibrium by reducing accommodation coefficient restricts deformation and explains why retention failure does not occur with direct screen heating or helium pressurization.
Enright, Ryan; Miljkovic, Nenad; Al-Obeidi, Ahmed; Thompson, Carl V; Wang, Evelyn N
2012-10-09
Water condensation on surfaces is a ubiquitous phase-change process that plays a crucial role in nature and across a range of industrial applications, including energy production, desalination, and environmental control. Nanotechnology has created opportunities to manipulate this process through the precise control of surface structure and chemistry, thus enabling the biomimicry of natural surfaces, such as the leaves of certain plant species, to realize superhydrophobic condensation. However, this "bottom-up" wetting process is inadequately described using typical global thermodynamic analyses and remains poorly understood. In this work, we elucidate, through imaging experiments on surfaces with structure length scales ranging from 100 nm to 10 μm and wetting physics, how local energy barriers are essential to understand non-equilibrium condensed droplet morphologies and demonstrate that overcoming these barriers via nucleation-mediated droplet-droplet interactions leads to the emergence of wetting states not predicted by scale-invariant global thermodynamic analysis. This mechanistic understanding offers insight into the role of surface-structure length scale, provides a quantitative basis for designing surfaces optimized for condensation in engineered systems, and promises insight into ice formation on surfaces that initiates with the condensation of subcooled water.
Ariyasena, Thiloka C; Poole, Colin F
2014-09-26
Retention factors on several columns and at various temperatures using gas chromatography and from reversed-phase liquid chromatography on a SunFire C18 column with various mobile phase compositions containing acetonitrile, methanol and tetrahydrofuran as strength adjusting solvents are combined with liquid-liquid partition coefficients in totally organic biphasic systems to calculate descriptors for 23 polycyclic aromatic hydrocarbons and eighteen related compounds of environmental interest. The use of a consistent protocol for the above measurements provides descriptors that are more self consistent for the estimation of physicochemical properties (octanol-water, air-octanol, air-water, aqueous solubility, and subcooled liquid vapor pressure). The descriptor in this report tend to have smaller values for the L and E descriptors and random differences in the B and S descriptors compared with literature sources. A simple atom fragment constant model is proposed for the estimation of descriptors from structure for polycyclic aromatic hydrocarbons. The new descriptors show no bias in the prediction of the air-water partition coefficient for polycyclic aromatic hydrocarbons unlike the literature values. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Ajmi, R. M.; Abou-Ziyan, H. Z.; Mahmoud, M. A.
2012-01-01
This paper reports the results of a comprehensive study that aimed at identifying best neural network architecture and parameters to predict subcooled boiling characteristics of engine oils. A total of 57 different neural networks (NNs) that were derived from 14 different NN architectures were evaluated for four different prediction cases. The NNs were trained on experimental datasets performed on five engine oils of different chemical compositions. The performance of each NN was evaluated using a rigorous statistical analysis as well as careful examination of smoothness of predicted boiling curves. One NN, out of the 57 evaluated, correctly predicted the boiling curves for all cases considered either for individual oils or for all oils taken together. It was found that the pattern selection and weight update techniques strongly affect the performance of the NNs. It was also revealed that the use of descriptive statistical analysis such as R2, mean error, standard deviation, and T and slope tests, is a necessary but not sufficient condition for evaluating NN performance. The performance criteria should also include inspection of the smoothness of the predicted curves either visually or by plotting the slopes of these curves.
Analysis of Screen Channel LAD Bubble Point Tests in Liquid Oxygen at Elevated Temperature
NASA Technical Reports Server (NTRS)
Hartwig, Jason; McQuillen, John
2011-01-01
The purpose of this paper is to examine the key parameters that affect the bubble point pressure for screen channel Liquid Acquisition Devices in cryogenic liquid oxygen at elevated pressures and temperatures. An in depth analysis of the effect of varying temperature, pressure, and pressurization gas on bubble point is presented. Testing of a 200 x 1400 and 325 x 2300 Dutch Twill screen sample was conducted in the Cryogenics Components Lab 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. Test conditions ranged from 92 to 130K and 0.138 - 1.79 MPa. Bubble point is shown to be a strong function of temperature with a secondary dependence on pressure. The pressure dependence is believed to be a function of the amount of evaporation and condensation occurring at the screen. Good agreement exists between data and theory for normally saturated liquid but the model generally under predicts the bubble point in subcooled liquid. Better correlation with the data is obtained by using the liquid temperature at the screen to determine surface tension of the fluid, as opposed to the bulk liquid temperature.
Numerical simulation of condensation on structured surfaces.
Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei
2014-11-25
Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.
Interfacial Dynamics of Condensing Vapor Bubbles in an Ultrasonic Acoustic Field
NASA Astrophysics Data System (ADS)
Boziuk, Thomas; Smith, Marc; Glezer, Ari
2016-11-01
Enhancement of vapor condensation in quiescent subcooled liquid using ultrasonic actuation is investigated experimentally. The vapor bubbles are formed by direct injection from a pressurized steam reservoir through nozzles of varying characteristic diameters, and are advected within an acoustic field of programmable intensity. While kHz-range acoustic actuation typically couples to capillary instability of the vapor-liquid interface, ultrasonic (MHz-range) actuation leads to the formation of a liquid spout that penetrates into the vapor bubble and significantly increases its surface area and therefore condensation rate. Focusing of the ultrasonic beam along the spout leads to ejection of small-scale droplets from that are propelled towards the vapor liquid interface and result in localized acceleration of the condensation. High-speed video of Schlieren images is used to investigate the effects of the ultrasonic actuation on the thermal boundary layer on the liquid side of the vapor-liquid interface and its effect on the condensation rate, and the liquid motion during condensation is investigated using high-magnification PIV measurements. High-speed image processing is used to assess the effect of the actuation on the dynamics and temporal variation in characteristic scale (and condensation rate) of the vapor bubbles.
NASA Technical Reports Server (NTRS)
Lin, Chin-Shun; Hasan, Mohammad M.
1989-01-01
The effects of system parameters on the interface condensation rate in a laminar jet induced mixing tank are numerically studied. The physical system consists of a partially filled cylindrical tank with a slightly subcooled jet discharged from the center of the tank bottom toward the liquid-vapor interface which is at a saturation temperature corresponding to the constant tank pressure. Liquid is also withdrawn from the outer part of the tank bottom to maintain the constant liquid level. The jet velocity is selected to be low enough such that the free surface is approximately flat. The effect of vapor superheat is assumed to be negligible. Therefore, the interface condensation rate can be determined from the resulting temperature field in the liquid region alone. The nondimensional form of the steady state conservation equations are solved by a finite difference method for various system parameters including liquid height to tank diameter ratio, tank to jet diameter ratio, liquid inflow to outflow area ratio, and a heat leak parameter which characterizes the uniform wall heat flux. Detailed analyses based on the numerical solutions are performed and simplified equations are suggested for the prediction of condensation rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kraus, Adam; Merzari, Elia; Sofu, Tanju
2016-08-01
High-fidelity analysis has been utilized in the design of beam target options for an accelerator driven subcritical system. Designs featuring stacks of plates with square cross section have been investigated for both tungsten and uranium target materials. The presented work includes the first thermal-hydraulic simulations of the full, detailed target geometry. The innovative target cooling manifold design features many regions with complex flow features, including 90 bends and merging jets, which necessitate three-dimensional fluid simulations. These were performed using the commercial computational fluid dynamics code STAR-CCM+. Conjugate heat transfer was modeled between the plates, cladding, manifold structure, and fluid. Steady-statemore » simulations were performed but lacked good residual convergence. Unsteady simulations were then performed, which converged well and demonstrated that flow instability existed in the lower portion of the manifold. It was established that the flow instability had little effect on the peak plate temperatures, which were well below the melting point. The estimated plate surface temperatures and target region pressure were shown to provide sufficient margin to subcooled boiling for standard operating conditions. This demonstrated the safety of both potential target configurations during normal operation.« less
When a water drop freezes before it solidifies
NASA Astrophysics Data System (ADS)
Kavehpour, Pirouz; Davis, Stephen; Tavakoli, Faryar
2012-11-01
When a drop of liquid is placed on a substrate which temperature is below the melting point of the liquid, one would expect the drop to solidify instantaneously. However, many liquids, such as water, must be subcooled to solidify below its melting temperature due to homogeneous nucleation's high activation energy. Most of the drop solidification research, particularly for water, phase change is assumed to occur at equilibrium freezing temperature; however, this is not the case. We found that after a certain degree of supercooling, a kinetic based nucleation begins and latent heat of fusion is suddenly liberated, causing an increase in liquid temperature. At the end of this stage, approximately 20% of the drop is crystallized. This phenomenon is known among metallurgists as recalescence. This is followed by a slow solidification process at the melting point. As a water droplet spreads on a cold substrate, its contact line stops just prior to freezing inception from the liquid-solid interface. In this study, we assert that recalescence prior to solidification may be the cause of water's sudden immobility, which results in a fixed contact angle and droplet diameter. In our experiments, the nucleation front initiates from the trijunction point and propagates to the drop volume.
NASA Astrophysics Data System (ADS)
Depczyński, Wojciech; Piasecki, Artur; Piasecka, Magdalena; Strąk, Kinga
2017-10-01
This paper focuses on identification of the impact of porous heated surface on flow boiling heat transfer in a rectangular minichannel. The heated element for Fluorinert FC-72 was a thin plate made of Haynes-230. Infrared thermography was used to determine changes in the temperature on its outer smooth side. The porous surface in contact with the fluid in the minichannel was produced in two processes: sintering or soldering of Fe powder to the plate. The results were presented as relationships between the heat transfer coefficient and the distance from the minichannel inlet and as boiling curves. Results obtained for using a smooth heated plate at the saturated boiling region were also presented to compare. In the subcooled boiling region, at a higher heat flux, the heat transfer coefficient was slightly higher for the surface prepared via soldering. In the saturated boiling region, the local heat transfer coefficients obtained for the smooth plate surface were slightly higher than those achieved from the sintered plate surface. The porous structures formed have low thermal conductivity. This may induce noticeable thermal resistance at the diffusion bridges of the sintered structures, in particular within the saturated boiling region.
DNB heat flux on inner side of a vertical pipe in forced flow of liquid hydrogen and liquid nitrogen
NASA Astrophysics Data System (ADS)
Shirai, Yasuyuki; Tatsumoto, Hideki; Shiotsu, Masahiro; Hata, Koichi; Kobayashi, Hiroaki; Naruo, Yoshihiro; Inatani, Yoshifumi
2018-06-01
Heat transfer from inner side of a heated vertical pipe to liquid hydrogen flowing upward was measured at the pressures of 0.4, 0.7 and 1.1 MPa for wide ranges of flow rate and liquid temperature. Nine test heaters with different inner diameters of 3, 4, 6 and 9 mm and the lengths of 50, 100, 150, 200, 250 and 300 mm were used. The DNB (departure from nucleate boiling) heat fluxes in forced flow of liquid hydrogen were measured for various subcoolings and flow velocities at pressures of 0.4, 0.7 and 1.1 MPa. Effect of L/d (ratio of heater length to diameter) was clarified for the range of L / d ⩽ 50 . A new correlation of DNB heat flux was presented based on a simple model and the experimental data. Similar experiments were performed for liquid nitrogen at pressures of 0.5 MPa and 1.0 MPa by using the same experimental system and some of the test heaters. It was confirmed that the new correlation can describe not only the hydrogen data, but also the data of liquid nitrogen.
The behavior of vapor bubbles during boiling enhanced with acoustics and open microchannels
NASA Astrophysics Data System (ADS)
Boziuk, Thomas; Smith, Marc K.; Glezer, Ari
2012-11-01
Boiling heat transfer on a submerged heated surface is enhanced by combining a grid of surface micromachined open channels and ultrasonic acoustic actuation to control the formation and evolution of vapor bubbles and to inhibit the instability that leads to film boiling at the critical heat flux (CHF). The microchannels provide nucleation sites for vapor bubble formation and enable the entrainment of bulk subcooled fluid to these sites for sustained evaporation. Acoustic actuation excites interfacial oscillations of the detached bubbles and leads to accelerated condensation in the bulk fluid, thereby limiting the formation of vapor columns that precede the CHF instability. The combined effects of microchannels and acoustic actuation are investigated experimentally with emphasis on bubble nucleation, growth, detachment, and condensation. It is shown that this hybrid approach leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. A large-scale model of the microchannel grid reveals details of the flow near the nucleation site and shows that the presence of the microchannels decreases the surface superheat at a given heat flux. Supported by ONR.
Cryogenic Propellant Management Device: Conceptual Design Study
NASA Technical Reports Server (NTRS)
Wollen, Mark; Merino, Fred; Schuster, John; Newton, Christopher
2010-01-01
Concepts of Propellant Management Devices (PMDs) were designed for lunar descent stage reaction control system (RCS) and lunar ascent stage (main and RCS propulsion) missions using liquid oxygen (LO2) and liquid methane (LCH4). Study ground rules set a maximum of 19 days from launch to lunar touchdown, and an additional 210 days on the lunar surface before liftoff. Two PMDs were conceptually designed for each of the descent stage RCS propellant tanks, and two designs for each of the ascent stage main propellant tanks. One of the two PMD types is a traditional partial four-screen channel device. The other type is a novel, expanding volume device which uses a stretched, flexing screen. It was found that several unique design features simplified the PMD designs. These features are (1) high propellant tank operating pressures, (2) aluminum tanks for propellant storage, and (3) stringent insulation requirements. Consequently, it was possible to treat LO2 and LCH4 as if they were equivalent to Earth-storable propellants because they would remain substantially subcooled during the lunar mission. In fact, prelaunch procedures are simplified with cryogens, because any trapped vapor will condense once the propellant tanks are pressurized in space.
Capillary Liquid Acquisition Device Heat Entrapment
NASA Technical Reports Server (NTRS)
Bolshinskiy, L. G.; Hastings, L. J.; Statham, G.; Turpin, J. B.
2007-01-01
Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, which can be a significant heat leak source. Further, the accumulation of thermal energy within LAD channels can lead to the loss of subcooled propellant conditions and result in feed system cavitation during propellant outflow. Therefore, the fundamental question addressed by this program was: To what degree is natural convection in a cryogenic liquid constrained by the capillary screen meshes envisioned for LADs? Testing was first conducted with water as the test fluid, followed by LN2 tests. In either case, the basic experimental approach was to heat the bottom of a cylindrical column of test fluid to establish stratification patterns measured by temperature sensors located above and below a horizontal screen barrier position. Experimentation was performed without barriers, with screens, and with a solid barrier. The two screen meshes tested were those typically used by LAD designers, 200x1400 and 325x2300, both with Twill Dutch Weave. Upon consideration of both the water and LN2 data, it was concluded that heat transfer across the screen meshes was dependent upon barrier thermal conductivity and that the capillary screen meshes were impervious to natural convection currents.
Cryogenic Capillary Screen Heat Entrapment
NASA Technical Reports Server (NTRS)
Bolshinskiy, L.G.; Hastings, L.J.; Stathman, G.
2007-01-01
Cryogenic liquid acquisition devices (LADs) for space-based propulsion interface directly with the feed system, which can be a significant heat leak source. Further, the accumulation of thermal energy within LAD channels can lead to the loss of sub-cooled propellant conditions and result in feed system cavitation during propellant outflow. Therefore, the fundamental question addressed by this program was: "To what degree is natural convection in a cryogenic liquid constrained by the capillary screen meshes envisioned for LADs.?"Testing was first conducted with water as the test fluid, followed by LN2 tests. In either case, the basic experimental approach was to heat the bottom of a cylindrical column of test fluid to establish stratification patterns measured by temperature sensors located above and below a horizontal screen barrier position. Experimentation was performed without barriers, with screens, and with a solid barrier. The two screen meshes tested were those typically used by LAD designers, "200x1400" and "325x2300", both with Twill Dutch Weave. Upon consideration of both the water and LN2 data it was concluded that heat transfer across the screen meshes was dependent upon barrier thermal conductivity and that the capillary screen meshes were impervious to natural convection currents.
NASA Astrophysics Data System (ADS)
Zhu, Kang; Li, Yanzhong; Wang, Jiaojiao; Ma, Yuan; Wang, Lei; Xie, Fushou
2018-05-01
Bubble formation and condensation in liquid pipes occur widely in industrial systems such as cryogenic propellant feeding system. In this paper, an integrated theoretical model is established to give a comprehensive description of the bubble formation, motion and condensation process. The model is validated by numerical simulations and bubble condensation experiments from references, and good agreements are achieved. The bubble departure diameter at the orifice and the flow condensation length in the liquid channel are predicted by the model, and effects of various influencing parameters on bubble behaviors are analyzed. Prediction results indicate that the orifice diameter, the gas feeding rate, and the liquid velocity are the primary influence factors on the bubble departure diameter. The interfacial heat transfer as well as the bubble departure diameter has a direct impact on the bubble flow condensation length, which increases by 2.5 times over a system pressure range of 0.1 0.4 MPa, and decreases by 85% over a liquid subcooling range of 5 30 K. This work could be beneficial to the prediction of bubble formation and flow condensation processes and the design of cryogenic transfer pipes.
NASA Technical Reports Server (NTRS)
Patel, Deepak
2011-01-01
There are many papers on describing a LHP as an overall system, but few detail on the condenser section of a loop heat pipe. The DeCoM (Deepak Condenser Model) method utilizes user set initial parameters in-order to simulate a condenser by calculating the interactions between the fluid and the wall. Equations are derived for two sections of the condenser: a two-phase section and a subcooled (liquid) section. All Equations are based upon the conservation of energy theory, from which fluid temperature, and fluid quality values are solved. In order to solve for the heat transfer value, between fluid and the wall in two phase section, the Lockhart-Martinelli correlation method was implemented as a solution approach. For Liquid phase, the Reynolds number was used in-order to differentiate the flow state, from either turbulent or laminar, and Nusselt number was used to solve for the film coefficient. To represent these calculations for both sections a flow chart is presented in order to display the execution process of DeCoM. The benefit of DeCoM is that it is capable of performing preliminary analysis without requiring a license and without much of users knowledge on condensers.
Improved toughness of silicon carbide
NASA Technical Reports Server (NTRS)
Palm, J. A.
1976-01-01
Impact energy absorbing layers (EALs) comprised of partially densified silicon carbide were formed in situ on fully sinterable silicon carbide substrates. After final sintering, duplex silicon carbide structures resulted which were comprised of a fully sintered, high density silicon carbide substrate or core, overlayed with an EAL of partially sintered silicon carbide integrally bonded to its core member. Thermal cycling tests proved such structures to be moderately resistant to oxidation and highly resistant to thermal shock stresses. The strength of the developed structures in some cases exceeded but essentially it remained the same as the fully sintered silicon carbide without the EAL. Ballistic impact tests indicated that substantial improvements in the toughness of sintered silicon carbide were achieved by the use of the partially densified silicon carbide EALs.
Fixation Probability in a Haploid-Diploid Population
Bessho, Kazuhiro; Otto, Sarah P.
2017-01-01
Classical population genetic theory generally assumes either a fully haploid or fully diploid life cycle. However, many organisms exhibit more complex life cycles, with both free-living haploid and diploid stages. Here we ask what the probability of fixation is for selected alleles in organisms with haploid-diploid life cycles. We develop a genetic model that considers the population dynamics using both the Moran model and Wright–Fisher model. Applying a branching process approximation, we obtain an accurate fixation probability assuming that the population is large and the net effect of the mutation is beneficial. We also find the diffusion approximation for the fixation probability, which is accurate even in small populations and for deleterious alleles, as long as selection is weak. These fixation probabilities from branching process and diffusion approximations are similar when selection is weak for beneficial mutations that are not fully recessive. In many cases, particularly when one phase predominates, the fixation probability differs substantially for haploid-diploid organisms compared to either fully haploid or diploid species. PMID:27866168
Fully Packaged Carbon Nanotube Supercapacitors by Direct Ink Writing on Flexible Substrates.
Chen, Bolin; Jiang, Yizhou; Tang, Xiaohui; Pan, Yayue; Hu, Shan
2017-08-30
The ability to print fully packaged integrated energy storage components (e.g., supercapacitors) is of critical importance for practical applications of printed electronics. Due to the limited variety of printable materials, most studies on printed supercapacitors focus on printing the electrode materials but rarely the full-packaged cell. This work presents for the first time the printing of a fully packaged single-wall carbon nanotube-based supercapacitor with direct ink writing (DIW) technology. Enabled by the developed ink formula, DIW setup, and cell architecture, the whole printing process is mask free, transfer free, and alignment free with precise and repeatable control on the spatial distribution of all constituent materials. Studies on cell design show that a wider electrode pattern and narrower gap distance between electrodes lead to higher specific capacitance. The as-printed fully packaged supercapacitors have energy and power performances that are among the best in recently reported planar carbon-based supercapacitors that are only partially printed or nonprinted.
Code of Federal Regulations, 2011 CFR
2011-01-01
... such enterprises in participating fully in research, development, demonstration and contract activities...-tier subcontractors of DOE operating contractors in furtherance of the research, development... extent funds are provided in advance in appropriation acts. This regulation implements the authority for...
Code of Federal Regulations, 2010 CFR
2010-01-01
... such enterprises in participating fully in research, development, demonstration and contract activities...-tier subcontractors of DOE operating contractors in furtherance of the research, development... extent funds are provided in advance in appropriation acts. This regulation implements the authority for...
Iconic and Immediate Memory in Elementary School Children.
ERIC Educational Resources Information Center
Ewert, G. D.; Janzen, H. L.
1978-01-01
As age and grade increased, recall on all tasks increased; subjects in grades three to six were also seen to have a fully developed Iconic Memory, while only sixth graders had a functionally developed Immediate Memory. (KR)
Cardiac imaging: working towards fully-automated machine analysis & interpretation
Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido
2017-01-01
Introduction Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation. PMID:28277804
A three-dimensional semianalytical model of hydraulic fracture growth through weak barriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luiskutty, C.T.; Tomutes, L.; Palmer, I.D.
1989-08-01
The goal of this research was to develop a fracture model for length/height ratio {le}4 that includes 2D flow (and a line source corresponding to the perforated interval) but makes approximations that allow a semianalytical solution, with large computer-time savings over the fully numerical mode. The height, maximum width, and pressure at the wellbore in this semianalytical model are calculated and compared with the results of the fully three-dimensional (3D) model. There is reasonable agreement in all parameters, the maximum discrepancy being 24%. Comparisons of fracture volume and leakoff volume also show reasonable agreement in volume and fluid efficiencies. Themore » values of length/height ratio, in the four cases in which agreement is found, vary from 1.5 to 3.7. The model offers a useful first-order (or screening) calculation of fracture-height growth through weak barriers (e.g., low stress contrasts). When coupled with the model developed for highly elongated fractures of length/height ratio {ge}4, which are also found to be in basic agreement with the fully numerical model, this new model provides the capability for approximating fracture-height growth through barriers for vertical fracture shapes that vary from penny to highly elongated. The computer time required is estimated to be less than the time required for the fully numerical model by a factor of 10 or more.« less
NASA Astrophysics Data System (ADS)
Darwiche, Mahmoud Khalil M.
The research presented herein is a contribution to the understanding of the numerical modeling of fully nonlinear, transient water waves. The first part of the work involves the development of a time-domain model for the numerical generation of fully nonlinear, transient waves by a piston type wavemaker in a three-dimensional, finite, rectangular tank. A time-domain boundary-integral model is developed for simulating the evolving fluid field. A robust nonsingular, adaptive integration technique for the assembly of the boundary-integral coefficient matrix is developed and tested. A parametric finite-difference technique for calculating the fluid- particle kinematics is also developed and tested. A novel compatibility and continuity condition is implemented to minimize the effect of the singularities that are inherent at the intersections of the various Dirichlet and/or Neumann subsurfaces. Results are presented which demonstrate the accuracy and convergence of the numerical model. The second portion of the work is a study of the interaction of the numerically-generated, fully nonlinear, transient waves with a bottom-mounted, surface-piercing, vertical, circular cylinder. The numerical model developed in the first part of this dissertation is extended to include the presence of the cylinder at the centerline of the basin. The diffraction of the numerically generated waves by the cylinder is simulated, and the particle kinematics of the diffracted flow field are calculated and reported. Again, numerical results showing the accuracy and convergence of the extended model are presented.
Towards the Development of a Unified Distributed Date System for L1 Spacecraft
NASA Technical Reports Server (NTRS)
Lazarus, Alan J.; Kasper, Justin C.
2005-01-01
The purpose of this grant, 'Towards the Development of a Unified Distributed Data System for L1 Spacecraft', is to take the initial steps towards the development of a data distribution mechanism for making in-situ measurements more easily accessible to the scientific community. Our obligations as subcontractors to this grant are to add our Faraday Cup plasma data to this initial study and to contribute to the design of a general data distribution system. The year 1 objectives of the overall project as stated in the GSFC proposal are: 1) Both the rsync and Perl based data exchange tools will be fully developed and tested in our mixed, Unix, VMS, Windows and Mac OS X data service environment. Based on the performance comparisons, one will be selected and fully deployed. Continuous data exchange between all L1 solar wind monitors initiated. 2) Data version metadata will be agreed upon, fully documented, and deployed on our data sites. 3) The first version of the data description rules, encoded in a XML Schema, will be finalized. 4) Preliminary set of library routines will be collected, documentation standards and formats agreed on, and desirable routines that have not been implemented identified and assigned. 5) ViSBARD test site implemented to independently validate data mirroring procedures. The specific MIT tasks over the duration of this project are the following: a) implement mirroring service for WIND plasma data b) participate in XML Schema development c) contribute toward routine library.
NASA Astrophysics Data System (ADS)
Elazhary, Amr Mohamed; Soliman, Hassan M.
2012-10-01
An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.
Review of X-33 Hypersonic Aerodynamic and Aerothermodynamic Development
2000-09-01
proposed development of a fully reusable, rocket pow- ered, single-stage-to-orbit ( SSTO ) vehicle capa- ble of delivering 25,000 lbs (including crew...space at greatly reduced cost. The “Access-to-Space” study identified critical technologies that required development before a SSTO reusable launch
ERIC Educational Resources Information Center
Li, Zhi; Wang, Youhua
2008-01-01
To make breakthroughs, obtain further development, and win in the fierce competition, higher vocational colleges must apply scientific outlook on development, set up students-and-teachers oriented educational concept, enhance connotation construction, create competition advantages so as to fully improve education and teaching quality and realize…
Two nonlinear control schemes contrasted on a hydrodynamiclike model
NASA Technical Reports Server (NTRS)
Keefe, Laurence R.
1993-01-01
The principles of two flow control strategies, those of Huebler (Luescher and Huebler, 1989) and of Ott et al. (1990) are discussed, and the two schemes are compared for their ability to control shear flow, using fully developed and transitional solutions of the Ginzburg-Landau equation as models for such flows. It was found that the effectiveness of both methods in obtaining control of fully developed flows depended strongly on the 'distance' in state space between the uncontrolled flow and goal dynamics. There were conceptual difficulties in applying the Ott et al. method to transitional convectively unstable flows. On the other hand, the Huebler method worked well, within certain limitations, although at a large cost in energy terms.
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook; Chen, Yen-Sen
1988-01-01
An algebraic stress turbulence model and a computational procedure for turbulent boundary layer flows which is based on the semidiscrete Galerkin FEM are discussed. In the algebraic stress turbulence model, the eddy viscosity expression is obtained from the Reynolds stress turbulence model, and the turbulent kinetic energy dissipation rate equation is improved by including a production range time scale. Good agreement with experimental data is found for the examples of a fully developed channel flow, a fully developed pipe flow, a flat plate boundary layer flow, a plane jet exhausting into a moving stream, a circular jet exhausting into a moving stream, and a wall jet flow.
Collection of solved problems in physics
NASA Astrophysics Data System (ADS)
Koupilová, ZdeÅka; Mandíková, Dana; Snětinová, Marie
2017-01-01
To solve physics problems is a key ability which students should reach during their physics education. Ten years ago we started to develop a Collection of fully solved problems. The structure of problems' solutions is specially designed to substitute tutor's help during lesson and encourage students to solve at least some parts of a problem independently. Nowadays the database contains about 770 fully solved problems in physics in Czech, more than 100 problems in Polish and more than 140 problems in English. Other problems are still being translated. Except for physics problems, the Collection has also a mathematical part, which contains more than 300 fully solved problems in mathematics. This paper follows the presentation of the Collection of solved problems from previous years and introduces a new interface of the Collection, its enhanced functionality, new topics, newly created interface for teachers, user feedback and plans for future development. The database is placed at the website of the Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague, the links are: http://reseneulohy.cz/fyzika (Czech version); http://www.physicstasks.eu/ (English version).
Adolescent thinking ála Piaget: The formal stage.
Dulit, E
1972-12-01
Two of the formal-stage experiments of Piaget and Inhelder, selected largely for their closeness to the concepts defining the stage, were replicated with groups of average and gifted adolescents. This report describes the relevant Piagetian concepts (formal stage, concrete stage) in context, gives the methods and findings of this study, and concludes with a section discussing implications and making some reformulations which generally support but significantly qualify some of the central themes of the Piaget-Inhelder work. Fully developed formal-stage thinking emerges as far from commonplace among normal or average adolescents (by marked contrast with the impression created by the Piaget-Inhelder text, which chooses to report no middle or older adolescents who function at less than fully formal levels). In this respect, the formal stage differs appreciably from the earlier Piagetian stages, and early adolescence emerges as the age for which a "single path" model of cognitive development becomes seriously inadequate and a more complex model becomes essential. Formal-stage thinking seems best conceptualized, like most other aspects of psychological maturity, as a potentiality only partially attained by most and fully attained only by some.
Ercan, Ertuğrul; Kırılmaz, Bahadır; Kahraman, İsmail; Bayram, Vildan; Doğan, Hüseyin
2012-11-01
Flow-mediated dilation (FMD) is used to evaluate endothelial functions. Computer-assisted analysis utilizing edge detection permits continuous measurements along the vessel wall. We have developed a new fully automated software program to allow accurate and reproducible measurement. FMD has been measured and analyzed in 18 coronary artery disease (CAD) patients and 17 controls both by manually and by the software developed (computer supported) methods. The agreement between methods was assessed by Bland-Altman analysis. The mean age, body mass index and cardiovascular risk factors were higher in CAD group. Automated FMD% measurement for the control subjects was 18.3±8.5 and 6.8±6.5 for the CAD group (p=0.0001). The intraobserver and interobserver correlation for automated measurement was high (r=0.974, r=0.981, r=0.937, r=0.918, respectively). Manual FMD% at 60th second was correlated with automated FMD % (r=0.471, p=0.004). The new fully automated software© can be used to precise measurement of FMD with low intra- and interobserver variability than manual assessment.
Wang, Xinyu; Lu, Qiongqiong; Chen, Chen; Han, Mo; Wang, Qingrong; Li, Haixia; Niu, Zhiqiang; Chen, Jun
2017-08-30
The rapid development of printable electronic devices with flexible and wearable characteristics requires supercapacitor devices to be printable, light, thin, integrated macro- and micro-devices with flexibility. Herein, we developed a consecutive spray printing strategy to controllably construct and integrate diverse supercapacitors on various substrates. In such a strategy, all supercapacitor components are fully printable, and their thicknesses and shapes are well controlled. As a result, supercapacitors obtained by this strategy achieve diverse structures and shapes. In addition, different nanocarbon and pseudocapacitive materials are applicable for the fabrication of these diverse supercapacitors. Furthermore, the diverse supercapacitors can be readily constructed on various objects with planar, curved, or even rough surfaces (e.g., plastic film, glass, cloth, and paper). More importantly, the consecutive spray printing process can integrate several supercapacitors together in the perpendicular and parallel directions of one substrate by designing the structure of electrodes and separators. This enlightens the construction and integration of fully printable supercapacitors with diverse configurations to be compatible with fully printable electronics on various substrates.
Biobehavioral Development. From Cells to Selves.
ERIC Educational Resources Information Center
National Inst. of Child Health and Human Development (NIH), Bethesda, MD.
Key to the mission of the National Institute of Child Health and Human Development (NICHD) is answering fundamental questions about how a single fertilized cell eventually develops into a fully functional adult human being and how a multitude of genetic and environmental factors influence that process. This document details part of NICHD's…
Designing a Web-Based Asynchronous Innovation/Entrepreneurism Course
ERIC Educational Resources Information Center
Ghandforoush, Parviz
2017-01-01
Teaching an online fully asynchronous information technology course that requires students to ideate, build an e-commerce website, and develop an effective business plan involves a well-developed and highly engaging course design. This paper describes the design, development, and implementation of such a course and presents information on…
Preparation of Youth Sport Coaches: An Educational Application of Sport Psychology.
ERIC Educational Resources Information Center
Smoll, Frank L.; Smith, Ronald E.
1981-01-01
Sport psychology has become increasingly important in the development of athletic programs intended to promote healthy physical and psychological development of young participants. In an effort to develop appropriate methods of training coaches to meet the children's needs more fully, behavioral guidelines and assessments are devised and…
Natural disturbance and stand development principles for ecological forestry
Jerry F. Franklin; Robert J. Mitchell; Brian J. Palik
2007-01-01
Foresters use natural disturbances and stand development processes as models for silvicultural practices in broad conceptual ways. Incorporating an understanding of natural disturbance and stand development processes more fully into silvicultural practice is the basis for an ecological forestry approach. Such an approach must include 1) understanding the importance of...
Evaluation Systems, Ethics, and Development Evaluation
ERIC Educational Resources Information Center
Thomas, Vinod
2010-01-01
After some 65 years of international development assistance, it is still difficult to show the effectiveness of aid in ways that are fully convincing. In part, this reflects inadequacies in the evaluation systems of the bilateral, multilateral, and global organizations that provide official development aid. Underlying these weaknesses often are a…
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.
Numerical study of hydrogen-air supersonic combustion by using elliptic and parabolized equations
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.
1986-01-01
The two-dimensional Navier-Stokes and species continuity equations are used to investigate supersonic chemically reacting flow problems which are related to scramjet-engine configurations. A global two-step finite-rate chemistry model is employed to represent the hydrogen-air combustion in the flow. An algebraic turbulent model is adopted for turbulent flow calculations. The explicit unsplit MacCormack finite-difference algorithm is used to develop a computer program suitable for a vector processing computer. The computer program developed is then used to integrate the system of the governing equations in time until convergence is attained. The chemistry source terms in the species continuity equations are evaluated implicitly to alleviate stiffness associated with fast chemical reactions. The problems solved by the elliptic code are re-investigated by using a set of two-dimensional parabolized Navier-Stokes and species equations. A linearized fully-coupled fully-implicit finite difference algorithm is used to develop a second computer code which solves the governing equations by marching in spce rather than time, resulting in a considerable saving in computer resources. Results obtained by using the parabolized formulation are compared with the results obtained by using the fully-elliptic equations. The comparisons indicate fairly good agreement of the results of the two formulations.
Lin, Yi; Hyyppä, Juha; Kukko, Antero
2013-01-01
This study was dedicated to illustrating the significance of sensor manipulation in the case of terrestrial laser scanning, which is a field now in quick development. In fact, this quickness was mainly rooted in the emergence of new sensors with better performance, while the implications of sensor manipulation have not been fully recognized by the whole community. For this technical gap, the stop-and-go mapping mode can be reckoned as one of the potential solution plans. Stop-and-go was first proposed to handle the low efficiency of traditional static terrestrial laser scanning, and then, it was re-emphasized to improve the stability of sample collections for the state-of-the-art technology of mobile laser scanning. This work reviewed the previous efforts of trying the stop-and-go mode for improving the performance of static and mobile terrestrial laser scanning and generalized their principles respectively. This work also analyzed its advantages compared to the fully-static and fully-kinematic terrestrial laser scanning, and suggested the plans with more automatic measures for raising the efficacy of terrestrial laser scanning. Overall, this literature review indicated that the stop-and-go mapping mode as a case with generic sense can verify the presumption of sensor manipulation as essential as sensor development. PMID:23799493
Experimental Investigation of Very Large Model Wind Turbine Arrays
NASA Astrophysics Data System (ADS)
Charmanski, Kyle; Wosnik, Martin
2013-11-01
The decrease in energy yield in large wind farms (array losses) and associated revenue losses can be significant. When arrays are sufficiently large they can reach what is known as a fully developed wind turbine array boundary layer, or fully developed wind farm condition. This occurs when the turbulence statistics and the structure of the turbulence, within and above a wind farm, as well as the performance of the turbines remain the same from one row to the next. The study of this condition and how it is affected by parameters such as turbine spacing, power extraction, tip speed ratio, etc. is important for the optimization of large wind farms. An experimental investigation of the fully developed wind farm condition was conducted using a large array of porous disks (upstream) and realistically scaled 3-bladed wind turbines with a diameter of 0.25m. The turbines and porous disks were placed inside a naturally grown turbulent boundary layer in the 6m × 2.5m × 72m test section of the UNH Flow Physics Facility which can achieve test section velocities of up to 14 m/s and Reynolds numbers δ+ = δuτ / ν ~ 20 , 000 . Power, rate of rotation and rotor thrust were measured for select turbines, and hot-wire anemometry was used for flow measurements.
NASA Astrophysics Data System (ADS)
Yu, Rixin; Lipatnikov, Andrei N.
2017-06-01
3D Direct Numerical Simulation (DNS) study of propagation of a single-reaction wave in forced, statistically stationary, homogeneous, isotropic, and constant-density turbulence was performed in order to evaluate both developing UTt and fully developed UTs bulk turbulent consumption velocities by independently varying a ratio of 0.5 ≤u'/SL≤ 90 of the r.m.s. turbulent velocity to the laminar wave speed and a ratio of 0.39 ≤L11/δF≤ 12.5 of the longitudinal integral length scale of the turbulence to the laminar wave thickness. Accordingly, the Damköhler D a =(L11SL ) /(u'δF ) and Karlovitz K a =δF/(SLτη ) numbers were varied from 0.01 to 24.7 and from 0.36 to 587, respectively. Here, τη is the Kolmogorov time scale. The obtained DNS data show that, at sufficiently low Da, the fully developed ratio of UTs/u' is mainly controlled by Da and scales as √{D a }. However, such a scaling should not be extrapolated to high Da. The higher Da (or the lower Ka), the less pronounced dependence of UTs/u' on a ratio of L11/δF. Moreover, scaling laws UT∝u'αSL1 -α(L11/δF ) β are substantially different for developing UTt and fully developed UTs, i.e., the scaling exponents α and, especially, β depend on the wave-development time. Furthermore, α and, especially, β depend on a method used to evaluate the developing UTt. Such effects can contribute to significant scatter of expressions for UT or ST as a function of {u', SL, L11, δF}, obtained by parameterizing various experimental databases.
Shiozaki, Hiroki; Miyahara, Masayoshi; Otsuka, Kazunori; Miyako, Kei; Honda, Akito; Takasaki, Yuichi; Takamizawa, Satoshi; Tukada, Hideyuki; Ishikawa, Yuichi; Sakai, Ryuichi; Oikawa, Masato
2018-05-23
A synthetic strategy for accessing protoaculeine B (1), the N-terminal amino acid of the highly modified peptide toxin aculeine, was developed via the synthesis of the fully protected natural homologue of 1 with a 12-mer poly(propanediamine). The synthesis of mono(propanediamine) analog 2, as well as core amino acid 3, was demonstrated by this strategy. New amino acid 3 induced convulsions in mice; however, compound 2 showed no such activity.
Parametric study of modern airship productivity
NASA Technical Reports Server (NTRS)
Ardema, M. D.; Flaig, K.
1980-01-01
A method for estimating the specific productivity of both hybrid and fully buoyant airships is developed. Various methods of estimating structural weight of deltoid hybrids are discussed and a derived weight estimating relationship is presented. Specific productivity is used as a figure of merit in a parametric study of fully buoyant ellipsoidal and deltoid hybrid semi-buoyant vehicles. The sensitivity of results as a function of assumptions is also determined. No airship configurations were found to have superior specific productivity to transport airplanes.
Rubella Virus-associated Anterior Uveitis in a Vaccinated Patient: A Case Report.
ten Berge, Josianne C E M; van Daele, Paul L A; Rothova, Aniki
2016-01-01
Rubella virus is involved in the pathogenesis of Fuchs heterochromic uveitis and almost all cases in Europe show an active antibody production in the aqueous humor against rubella virus. Herein we report a case of a fully vaccinated patient with common variable immunodeficiency who developed unilateral Fuchs heterochromic uveitis secondary to rubella virus which was proven by intraocular fluid examination. Awareness of rubella associated anterior uveitis should remain also in vaccinated patients, especially those without a fully competent immune system.
NASA Astrophysics Data System (ADS)
Yu, Long; Druckenbrod, Markus; Greve, Martin; Wang, Ke-qi; Abdel-Maksoud, Moustafa
2015-10-01
A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.
2010-07-26
evolving Voce hardness at the end of each bending and straightening cycle. The value contoured is the element average Voce hardness calculated by volume...cycle is shown in Figure 18. These results show that the gradient hardness is on the order of 10% of the Voce hardness. Increasing the gradient...the models or to the Voce hardness patterns. There are notable changes between the fully bent and fully straightened deformations that indicate a
Using XML Configuration-Driven Development to Create a Customizable Ground Data System
NASA Technical Reports Server (NTRS)
Nash, Brent; DeMore, Martha
2009-01-01
The Mission data Processing and Control Subsystem (MPCS) is being developed as a multi-mission Ground Data System with the Mars Science Laboratory (MSL) as the first fully supported mission. MPCS is a fully featured, Java-based Ground Data System (GDS) for telecommand and telemetry processing based on Configuration-Driven Development (CDD). The eXtensible Markup Language (XML) is the ideal language for CDD because it is easily readable and editable by all levels of users and is also backed by a World Wide Web Consortium (W3C) standard and numerous powerful processing tools that make it uniquely flexible. The CDD approach adopted by MPCS minimizes changes to compiled code by using XML to create a series of configuration files that provide both coarse and fine grained control over all aspects of GDS operation.
Generalised solutions for fully nonlinear PDE systems and existence-uniqueness theorems
NASA Astrophysics Data System (ADS)
Katzourakis, Nikos
2017-07-01
We introduce a new theory of generalised solutions which applies to fully nonlinear PDE systems of any order and allows for merely measurable maps as solutions. This approach bypasses the standard problems arising by the application of Distributions to PDEs and is not based on either integration by parts or on the maximum principle. Instead, our starting point builds on the probabilistic representation of derivatives via limits of difference quotients in the Young measures over a toric compactification of the space of jets. After developing some basic theory, as a first application we consider the Dirichlet problem and we prove existence-uniqueness-partial regularity of solutions to fully nonlinear degenerate elliptic 2nd order systems and also existence of solutions to the ∞-Laplace system of vectorial Calculus of Variations in L∞.
Zonal PANS: evaluation of different treatments of the RANS-LES interface
NASA Astrophysics Data System (ADS)
Davidson, L.
2016-03-01
The partially Reynolds-averaged Navier-Stokes (PANS) model can be used to simulate turbulent flows either as RANS, large eddy simulation (LES) or DNS. Its main parameter is fk whose physical meaning is the ratio of the modelled to the total turbulent kinetic energy. In RANS fk = 1, in DNS fk = 0 and in LES fk takes values between 0 and 1. Three different ways of prescribing fk are evaluated for decaying grid turbulence and fully developed channel flow: fk = 0.4, fk = k3/2tot/ɛ and, from its definition, fk = k/ktot where ktot is the sum of the modelled, k, and resolved, kres, turbulent kinetic energy. It is found that the fk = 0.4 gives the best results. In Girimaji and Wallin, a method was proposed to include the effect of the gradient of fk. This approach is used at RANS- LES interface in the present study. Four different interface models are evaluated in fully developed channel flow and embedded LES of channel flow: in both cases, PANS is used as a zonal model with fk = 1 in the unsteady RANS (URANS) region and fk = 0.4 in the LES region. In fully developed channel flow, the RANS- LES interface is parallel to the wall (horizontal) and in embedded LES, it is parallel to the inlet (vertical). The importance of the location of the horizontal interface in fully developed channel flow is also investigated. It is found that the location - and the choice of the treatment at the interface - may be critical at low Reynolds number or if the interface is placed too close to the wall. The reason is that the modelled turbulent shear stress at the interface is large and hence the relative strength of the resolved turbulence is small. In RANS, the turbulent viscosity - and consequently also the modelled Reynolds shear stress - is only weakly dependent on Reynolds number. It is found in the present work that it also applies in the URANS region.
DOT National Transportation Integrated Search
2015-08-01
When infrastructure is subjected to temperature changes, structural members that are either partially or fully : restrained against motion can develop internal stresses. The phenomenon of temperature-induced internal stress development : in superstru...
Development of a methodology for accident causation research
DOT National Transportation Integrated Search
1983-06-01
The obj ective of this study was to fully develop and apply a me thodology to : study accident causation, uhich was outlined in a previous study . " Causal" factors : are those pre-crash factors, which are statistically related to the accident rate :...
Fan, Xing; Chang, Jie; Ren, Yuan; Wu, Xu; Du, Yuanyuan; Xu, Ronghua; Liu, Dong; Chang, Scott X; Meyerson, Laura A; Peng, Changhui; Ge, Ying
2018-04-03
Dairy production is becoming more industrialized globally, especially in developing countries. The large amount of animal wastes from industrial feedlots cannot be fully used on nearby farmlands, leading to severe environmental problems. Using China as a case study, we found that most dairy feedlots employ a semicoupled mode that only recycles solid manure to farmlands, and only a few dairy feedlots employ a fully coupled mode that recycles both solid and liquid animal manure. To produce 1 ton of milk, the fully coupled mode could reduce greenhouse gas (including carbon dioxide, methane, and nitrous oxide in this paper) emissions by 24%, ammonia emissions by 14%, and N discharge into water by 29%, compared with the semicoupled systems. Coupling feedlots with constructed wetlands can further result in greater mitigation of N leaching into groundwater. However, the fully coupled system has not been widely used due to the low benefit to farmers and the institutional barrier that the feedlot owners have no right to use adjacent farmlands. Since a fully coupled system improves net ecosystem services that favor the public, a policy that supports removing the economic and institutional barriers is necessary. Our approach provides a template for mitigating environmental impacts from livestock production without sacrificing milk production.
NASA Astrophysics Data System (ADS)
Eyyuboğlu, Halil T.
2015-03-01
Apertured averaged scintillation requires the evaluation of rather complicated irradiance covariance function. Here we develop a much simpler numerical method based on our earlier introduced semi-analytic approach. Using this method, we calculate aperture averaged scintillation of fully and partially coherent Gaussian, annular Gaussian flat topped and dark hollow beams. For comparison, the principles of equal source beam power and normalizing the aperture averaged scintillation with respect to received power are applied. Our results indicate that for fully coherent beams, upon adjusting the aperture sizes to capture 10 and 20% of the equal source power, Gaussian beam needs the largest aperture opening, yielding the lowest aperture average scintillation, whilst the opposite occurs for annular Gaussian and dark hollow beams. When assessed on the basis of received power normalized aperture averaged scintillation, fixed propagation distance and aperture size, annular Gaussian and dark hollow beams seem to have the lowest scintillation. Just like the case of point-like scintillation, partially coherent beams will offer less aperture averaged scintillation in comparison to fully coherent beams. But this performance improvement relies on larger aperture openings. Upon normalizing the aperture averaged scintillation with respect to received power, fully coherent beams become more advantageous than partially coherent ones.
Fully implicit moving mesh adaptive algorithm
NASA Astrophysics Data System (ADS)
Chacon, Luis
2005-10-01
In many problems of interest, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former is best dealt with with fully implicit methods, which are able to step over fast frequencies to resolve the dynamical time scale of interest. The latter requires grid adaptivity for efficiency. Moving-mesh grid adaptive methods are attractive because they can be designed to minimize the numerical error for a given resolution. However, the required grid governing equations are typically very nonlinear and stiff, and of considerably difficult numerical treatment. Not surprisingly, fully coupled, implicit approaches where the grid and the physics equations are solved simultaneously are rare in the literature, and circumscribed to 1D geometries. In this study, we present a fully implicit algorithm for moving mesh methods that is feasible for multidimensional geometries. A crucial element is the development of an effective multilevel treatment of the grid equation.ootnotetextL. Chac'on, G. Lapenta, A fully implicit, nonlinear adaptive grid strategy, J. Comput. Phys., accepted (2005) We will show that such an approach is competitive vs. uniform grids both from the accuracy (due to adaptivity) and the efficiency standpoints. Results for a variety of models 1D and 2D geometries, including nonlinear diffusion, radiation-diffusion, Burgers equation, and gas dynamics will be presented.
Whose Development, Whose Needs? Distance Education Practice and Politics in the South Pacific.
ERIC Educational Resources Information Center
Matthewson, Claire
The education that is being provided in the South Pacific, at a distance or in the classroom, reinforces a model of development in terms of which this region will never achieve fully "developed" status. This developing region has characteristics that render it unique. No member country shares its profile of economy, population, language,…
DOT National Transportation Integrated Search
2013-03-01
This report details the development and testing of a dual magnetization in-line inspection (ILI) : tool for detecting mechanical damage in operating pipelines, including the first field trials of a : fully operational dual-field magnetic flux leakage...
Świderski, Zdzisław; Poddubnaya, Larisa G; Gibson, David I; Młocicki, Daniel
2012-06-01
Ultrastructural aspects of the advanced embryonic development and cotylocidial morphogenesis of the aspidogastrean Aspidogaster limacoides are described. The posterior or distal regions of the uterus are filled with eggs containing larvae at advanced stages of morphogenesis and fully-formed cotylocidia. Various stages and organs of this larva are described in detail, including the aspects of the developing and fully-differentiated cotylocidium, the body wall (tegument and musculature), glandular regions and the protonephridial excretory system. Blastomere multiplication by means of mitotic divisions takes place simultaneously with the degeneration or apoptosis of some micromeres; this frequently observed characteristic is compared and discussed in relation to corresponding reports for other neodermatans. During the advanced stages of the embryonic development of A. limacoides, the vitelline syncytium disappears and the size of the embryo increases rapidly. Evident polarization of the differentiating larva was observed; towards one pole of the egg, cytodifferentiation of the mouth, surrounded by the oral sucker and cephalic glands, takes place, whereas, towards the opposite pole, differentiation of the posterior sucker (incipient ventral disc) occurs. The oral and posterior suckers are formed from numerous embryonic cells which have differentiated into myocytes. The central part of the oral sucker undergoes invagination and forms the future pharynx and intestine. Fully-developed cotylocidia of A. limacoides have a neodermatan type of tegument, flame cells and two types of glandular structures. These results suggest a sister relationship between the Aspidogastrea and the Digenea, although the systematic position of aspidogastreans in relation to other platyhelminth taxa remains somewhat equivocal.
Li, Wei; Abram, François; Pelletier, Jean-Pierre; Raynauld, Jean-Pierre; Dorais, Marc; d'Anjou, Marc-André; Martel-Pelletier, Johanne
2010-01-01
Joint effusion is frequently associated with osteoarthritis (OA) flare-up and is an important marker of therapeutic response. This study aimed at developing and validating a fully automated system based on magnetic resonance imaging (MRI) for the quantification of joint effusion volume in knee OA patients. MRI examinations consisted of two axial sequences: a T2-weighted true fast imaging with steady-state precession and a T1-weighted gradient echo. An automated joint effusion volume quantification system using MRI was developed and validated (a) with calibrated phantoms (cylinder and sphere) and effusion from knee OA patients; (b) with assessment by manual quantification; and (c) by direct aspiration. Twenty-five knee OA patients with joint effusion were included in the study. The automated joint effusion volume quantification was developed as a four stage sequencing process: bone segmentation, filtering of unrelated structures, segmentation of joint effusion, and subvoxel volume calculation. Validation experiments revealed excellent coefficients of variation with the calibrated cylinder (1.4%) and sphere (0.8%) phantoms. Comparison of the OA knee joint effusion volume assessed by the developed automated system and by manual quantification was also excellent (r = 0.98; P < 0.0001), as was the comparison with direct aspiration (r = 0.88; P = 0.0008). The newly developed fully automated MRI-based system provided precise quantification of OA knee joint effusion volume with excellent correlation with data from phantoms, a manual system, and joint aspiration. Such an automated system will be instrumental in improving the reproducibility/reliability of the evaluation of this marker in clinical application.
Torsion effect on fully developed flow in a helical pipe
NASA Technical Reports Server (NTRS)
Kao, Hsiao C.
1987-01-01
Two techniques, a series expansion method of perturbed Poiseuille flow valid for low Dean numbers and a solution of the complete Navier-Stokes equation applicable to intermediate Dean values, are used to investigate the torsion effect on the fully developed laminar flow in a helical pipe of constant circular cross section. For the secondary flow patterns, the results show that the presence of torsion can produce a significant effect if the ratio of the curvature to the torsion is of order unity. The secondary flow is distorted in these cases. It is noted that the torsion effect is, however, usually small, and that the secondary flow has the usual pattern of a pair of counter-rotating vortices of nearly equal strength.
Multigrid Method for Modeling Multi-Dimensional Combustion with Detailed Chemistry
NASA Technical Reports Server (NTRS)
Zheng, Xiaoqing; Liu, Chaoqun; Liao, Changming; Liu, Zhining; McCormick, Steve
1996-01-01
A highly accurate and efficient numerical method is developed for modeling 3-D reacting flows with detailed chemistry. A contravariant velocity-based governing system is developed for general curvilinear coordinates to maintain simplicity of the continuity equation and compactness of the discretization stencil. A fully-implicit backward Euler technique and a third-order monotone upwind-biased scheme on a staggered grid are used for the respective temporal and spatial terms. An efficient semi-coarsening multigrid method based on line-distributive relaxation is used as the flow solver. The species equations are solved in a fully coupled way and the chemical reaction source terms are treated implicitly. Example results are shown for a 3-D gas turbine combustor with strong swirling inflows.
Reynolds shear stress and heat flux calculations in a fully developed turbulent duct flow
NASA Technical Reports Server (NTRS)
Antonia, R. A.; Kim, J.
1991-01-01
The use of a modified form of the Van Driest mixing length for a fully developed turbulent channel flow leads to mean velocity and Reynolds stress distributions that are in close agreement with data obtained either from experiments or direct numerical simulations. The calculations are then extended to a nonisothermal flow by assuming a constant turbulent Prandtl number, the value of which depends on the molecular Prandtl number. Calculated distributions of mean temperature and lateral heat flux are in reasonable agreement with the simulations. The extension of the calculations to higher Reynolds numbers provides some idea of the Reynolds number required for scaling on wall variables to apply in the inner region of the flow.
Numerical study of turbulent secondary flows in curved ducts
NASA Technical Reports Server (NTRS)
Hur, N.; Thangam, S.; Speziale, C. G.
1990-01-01
The pressure driven, fully-developed turbulent flow of an incompressible viscous fluid in curved ducts of square-section is studied numerically by making use of a finite volume method. A nonlinear Kappa - Iota model is used to represent the turbulence. The results for both straight and curved ducts are presented. For the case of fully-developed turbulent flow in straight and curved ducts, the secondary flow is characterized by an eight-vortex structure for which the computed flowfield is shown to be in good agreement with available experimental data. The introduction of moderate curvature is shown to cause a substantial increase in the strength of the secondary flow and to change the secondary flow pattern to either a double-vortex or a four-vortex configuration.
Numerical study of turbulent secondary flows in curved ducts
NASA Technical Reports Server (NTRS)
Hur, N.; Thangam, S.; Speziale, C. G.
1989-01-01
The pressure driven, fully-developed turbulent flow of an incompressible viscous fluid in curved ducts of square cross-section is studied numerically by making use of a finite volume method. A nonlinear Kappa - Iota model is used to represent the turbulence. The results for both straight and curved ducts are presented. For the case of fully-developed turbulent flow in straight ducts, the secondary flow is characterized by an eight-vortex structure for which the computed flowfield is shown to be in good agreement with available experimental data. The introduction of moderate curvature is shown to cause a substantial increase in the strength of the secondary flow and to change the secondary flow pattern to either a double-vortex or a four-vortex configuration.
Developing Successful Global Leaders
ERIC Educational Resources Information Center
Training, 2011
2011-01-01
Everyone seems to agree the world desperately needs strong leaders who can manage a global workforce and all the inherent challenges that go with it. That's a big part of the raison d'etre for global leadership development programs. But are today's organizations fully utilizing these programs to develop global leaders, and, if so, are they…
Expanding the Reach of Youth Mentoring: Partnering with Youth for Personal Growth and Social Change
ERIC Educational Resources Information Center
Liang, Belle; Spencer, Renee; West, Jennifer; Rappaport, Nancy
2013-01-01
The goals of youth mentoring have broadened from redressing youth problems to promoting positive youth development. Yet, many of the principles associated with contemporary conceptualizations of development found in the positive youth development (PYD) and community psychology (CP) literature have yet to be fully integrated into mentoring research…
Lifelong Learning and Vision 2020 in Malaysia.
ERIC Educational Resources Information Center
Leong, Yip Kai
The Malaysian government has adopted the creation of a fully developed economy by the year 2020 as a principal goal, emphasizing that the development should be economic, political, social, spiritual, psychological, and cultural. In order to develop the necessary human resource base to reach this goal, the country must strengthen the teaching of…
Fixation Probability in a Haploid-Diploid Population.
Bessho, Kazuhiro; Otto, Sarah P
2017-01-01
Classical population genetic theory generally assumes either a fully haploid or fully diploid life cycle. However, many organisms exhibit more complex life cycles, with both free-living haploid and diploid stages. Here we ask what the probability of fixation is for selected alleles in organisms with haploid-diploid life cycles. We develop a genetic model that considers the population dynamics using both the Moran model and Wright-Fisher model. Applying a branching process approximation, we obtain an accurate fixation probability assuming that the population is large and the net effect of the mutation is beneficial. We also find the diffusion approximation for the fixation probability, which is accurate even in small populations and for deleterious alleles, as long as selection is weak. These fixation probabilities from branching process and diffusion approximations are similar when selection is weak for beneficial mutations that are not fully recessive. In many cases, particularly when one phase predominates, the fixation probability differs substantially for haploid-diploid organisms compared to either fully haploid or diploid species. Copyright © 2017 by the Genetics Society of America.
NASA Astrophysics Data System (ADS)
Lui, E. W.; Xu, W.; Pateras, A.; Qian, M.; Brandt, M.
2017-12-01
Recent progress has shown that Ti-6Al-4V fabricated by selective laser melting (SLM) can achieve a fully lamellar α + β microstructure using 60 µm layer thickness in the as-built state via in situ martensite decomposition by manipulating the processing parameters. The potential to broaden the processing window was explored in this study by increasing the layer thickness to the less commonly used 90 µm. Fully lamellar α + β microstructures were produced in the as-built state using inter-layer times in the range of 1-12 s. Microstructural features such as the α-lath thickness and morphology were sensitive to both build height and inter-layer time. The α-laths produced using the inter-layer time of 1 s were much coarser than those produced with the inter-layer time of 12 s. The fine fully lamellar α + β structure resulted in tensile ductility of 11% and yield strength of 980 MPa. The tensile properties can be further improved by minimizing the presence of process-induced defects.