Sample records for fully gapped superconductor

  1. Fully gapped superconductivity in In-doped topological crystalline insulator Pb 0.5Sn 0.5Te

    DOE PAGES

    Du, Guan; Gu, G. D.; Du, Zengyi; ...

    2015-07-27

    In this study, superconductors derived from topological insulators and topological crystalline insulators by chemical doping have long been considered to be candidates as topological superconductors. Pb 0.5Sn 0.5Te is a topological crystalline insulator with mirror symmetry protected surface states on (001)-, (011)-, and (111)-oriented surfaces. The superconductor (Pb 0.5Sn 0.5) 0.7In 0.3Te is produced by In doping in Pb 0.5Sn 0.5Te, and is thought to be a topological superconductor. Here we report scanning tunneling spectroscopy measurements of the superconducting state as well as the superconducting energy gap in (Pb 0.5Sn 0.5) 0.7In 0.3Te on a (001)-oriented surface. The spectrum canmore » be well fitted by an anisotropic s-wave gap function of Δ = 0.72 + 0.18cos4θ meV using Dynes model. The results show that the superconductor seems to be a fully gapped one without any in-gap states, in contradiction with the expectation of a topological superconductor.« less

  2. Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2.

    PubMed

    Guan, Syu-You; Chen, Peng-Jen; Chu, Ming-Wen; Sankar, Raman; Chou, Fangcheng; Jeng, Horng-Tay; Chang, Chia-Seng; Chuang, Tien-Ming

    2016-11-01

    The search for topological superconductors (TSCs) is one of the most urgent contemporary problems in condensed matter systems. TSCs are characterized by a full superconducting gap in the bulk and topologically protected gapless surface (or edge) states. Within each vortex core of TSCs, there exists the zero-energy Majorana bound states, which are predicted to exhibit non-Abelian statistics and to form the basis of the fault-tolerant quantum computation. To date, no stoichiometric bulk material exhibits the required topological surface states (TSSs) at the Fermi level ( E F ) combined with fully gapped bulk superconductivity. We report atomic-scale visualization of the TSSs of the noncentrosymmetric fully gapped superconductor PbTaSe 2 . Using quasi-particle scattering interference imaging, we find two TSSs with a Dirac point at E ≅ 1.0 eV, of which the inner TSS and the partial outer TSS cross E F , on the Pb-terminated surface of this fully gapped superconductor. This discovery reveals PbTaSe 2 as a promising candidate for TSC.

  3. Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters

    PubMed Central

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica M.

    2017-01-01

    Impurities in superconductors and their induced bound states are important both for engineering novel states such as Majorana zero-energy modes and for probing bulk properties of the superconducting state. The high-temperature cuprates offer a clear advantage in a much larger superconducting order parameter, but the nodal energy spectrum of a pure d-wave superconductor only allows virtual bound states. Fully gapped d-wave superconducting states have, however, been proposed in several cuprate systems thanks to subdominant order parameters producing d + is- or d + id′-wave superconducting states. Here we study both magnetic and potential impurities in these fully gapped d-wave superconductors. Using analytical T-matrix and complementary numerical tight-binding lattice calculations, we show that magnetic and potential impurities behave fundamentally different in d + is- and d + id′-wave superconductors. In a d + is-wave superconductor, there are no bound states for potential impurities, while a magnetic impurity produces one pair of bound states, with a zero-energy level crossing at a finite scattering strength. On the other hand, a d + id′-wave symmetry always gives rise to two pairs of bound states and only produce a reachable zero-energy level crossing if the normal state has a strong particle-hole asymmetry. PMID:28281570

  4. Low-temperature magnetothermal transport investigation of a Ni-based superconductor BaNi2As2: evidence for fully gapped superconductivity.

    PubMed

    Kurita, N; Ronning, F; Tokiwa, Y; Bauer, E D; Subedi, A; Singh, D J; Thompson, J D; Movshovich, R

    2009-04-10

    We have performed low-temperature specific heat and thermal conductivity measurements of the Ni-based superconductor BaNi2As2 (T{c}=0.7 K) in a magnetic field. In a zero field, thermal conductivity shows T-linear behavior in the normal state and exhibits a BCS-like exponential decrease below T{c}. The field dependence of the residual thermal conductivity extrapolated to zero temperature is indicative of a fully gapped superconductor. This conclusion is supported by the analysis of the specific heat data, which are well fit by the BCS temperature dependence from T{c} down to the lowest temperature of 0.1 K.

  5. Pairing States of Spin-3/2 Fermions: Symmetry-Enforced Topological Gap Functions

    NASA Astrophysics Data System (ADS)

    Venderbos, Jörn W. F.; Savary, Lucile; Ruhman, Jonathan; Lee, Patrick A.; Fu, Liang

    2018-01-01

    We study the topological properties of superconductors with paired j =3/2 quasiparticles. Higher spin Fermi surfaces can arise, for instance, in strongly spin-orbit coupled band-inverted semimetals. Examples include the Bi-based half-Heusler materials, which have recently been established as low-temperature and low-carrier density superconductors. Motivated by this experimental observation, we obtain a comprehensive symmetry-based classification of topological pairing states in systems with higher angular momentum Cooper pairing. Our study consists of two main parts. First, we develop the phenomenological theory of multicomponent (i.e., higher angular momentum) pairing by classifying the stationary points of the free energy within a Ginzburg-Landau framework. Based on the symmetry classification of stationary pairing states, we then derive the symmetry-imposed constraints on their gap structures. We find that, depending on the symmetry quantum numbers of the Cooper pairs, different types of topological pairing states can occur: fully gapped topological superconductors in class DIII, Dirac superconductors, and superconductors hosting Majorana fermions. Notably, we find a series of nematic fully gapped topological superconductors, as well as double- and triple-Dirac superconductors, with quadratic and cubic dispersion, respectively. Our approach, applied here to the case of j =3/2 Cooper pairing, is rooted in the symmetry properties of pairing states, and can therefore also be applied to other systems with higher angular momentum and high-spin pairing. We conclude by relating our results to experimentally accessible signatures in thermodynamic and dynamic probes.

  6. “Nodal Gap” induced by the incommensurate diagonal spin density modulation in underdoped high- T c superconductors

    DOE PAGES

    Zhou, Tao; Gao, Yi; Zhu, Jian -Xin

    2015-03-07

    Recenmore » tly it was revealed that the whole Fermi surface is fully gapped for several families of underdoped cuprates. The existence of the finite energy gap along the d -wave nodal lines (nodal gap) contrasts the common understanding of the d -wave pairing symmetry, which challenges the present theories for the high- T c superconductors. Here we propose that the incommensurate diagonal spin-density-wave order can account for the above experimental observation. The Fermi surface and the local density of states are also studied. Our results are in good agreement with many important experiments in high- T c superconductors.« less

  7. Experimental evidence for s-wave pairing symmetry in superconducting Cu(x)Bi2Se3 single crystals using a scanning tunneling microscope.

    PubMed

    Levy, Niv; Zhang, Tong; Ha, Jeonghoon; Sharifi, Fred; Talin, A Alec; Kuk, Young; Stroscio, Joseph A

    2013-03-15

    Topological superconductors represent a newly predicted phase of matter that is topologically distinct from conventional superconducting condensates of Cooper pairs. As a manifestation of their topological character, topological superconductors support solid-state realizations of Majorana fermions at their boundaries. The recently discovered superconductor Cu(x)Bi(2)Se(3) has been theoretically proposed as an odd-parity superconductor in the time-reversal-invariant topological superconductor class, and point-contact spectroscopy measurements have reported the observation of zero-bias conductance peaks corresponding to Majorana states in this material. Here we report scanning tunneling microscopy measurements of the superconducting energy gap in Cu(x)Bi(2)Se(3) as a function of spatial position and applied magnetic field. The tunneling spectrum shows that the density of states at the Fermi level is fully gapped without any in-gap states. The spectrum is well described by the Bardeen-Cooper-Schrieffer theory with a momentum independent order parameter, which suggests that Cu(x)Bi(2)Se(3) is a classical s-wave superconductor contrary to previous expectations and measurements.

  8. Topological surface states in nodal superconductors.

    PubMed

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  9. μ SR study of the noncentrosymmetric superconductor PbTaSe2

    NASA Astrophysics Data System (ADS)

    Wilson, M. N.; Hallas, A. M.; Cai, Y.; Guo, S.; Gong, Z.; Sankar, R.; Chou, F. C.; Uemura, Y. J.; Luke, G. M.

    2017-06-01

    We present muon spin rotation and relaxation (μ SR ) measurements on the noncentrosymmetric superconductor PbTaSe2. From measurements in an applied transverse field between Hc 1 and Hc 2, we extract the superfluid density as a function of temperature in the vortex state. These data can be fit with a fully gapped two-band model, consistent with previous evidence from ARPES, thermal conductivity, and resistivity. Furthermore, zero-field measurements show no evidence for a time-reversal symmetry-breaking field greater than 0.05 G in the superconducting state. This makes exotic fully gapped spin-triplet states unlikely, and hence we contend that PbTaSe2 is characterized by conventional BCS s -wave superconductivity in multiple bands.

  10. Fully gapped superconductivity in single crystals of noncentrosymmetric Re6Zr with broken time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Pang, G. M.; Nie, Z. Y.; Wang, A.; Singh, D.; Xie, W.; Jiang, W. B.; Chen, Y.; Singh, R. P.; Smidman, M.; Yuan, H. Q.

    2018-06-01

    The noncentrosymmetric superconductor Re6Zr has attracted much interest due to the observation of broken time-reversal symmetry in the superconducting state. Here we report an investigation of the superconducting gap structure of Re6Zr single crystals by measuring the magnetic penetration depth shift Δ λ (T ) and electronic specific heat Ce(T ) . Δ λ (T ) exhibits an exponential temperature dependence behavior for T ≪Tc , which indicates a fully open superconducting gap. Our analysis shows that a single gap s -wave model is sufficient to describe both the superfluid density ρs(T ) and Ce(T ) results, with a fitted gap magnitude larger than the weak coupling BCS value, providing evidence for fully gapped superconductivity in Re6Zr with moderate coupling.

  11. Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2.

    PubMed

    Iwaya, K; Kohsaka, Y; Okawa, K; Machida, T; Bahramy, M S; Hanaguri, T; Sasagawa, T

    2017-10-17

    A bulk superconductor possessing a topological surface state at the Fermi level is a promising system to realise long-sought topological superconductivity. Although several candidate materials have been proposed, experimental demonstrations concurrently exploring spin textures and superconductivity at the surface have remained elusive. Here we perform spectroscopic-imaging scanning tunnelling microscopy on the centrosymmetric superconductor β-PdBi 2 that hosts a topological surface state. By combining first-principles electronic-structure calculations and quasiparticle interference experiments, we determine the spin textures at the surface, and show not only the topological surface state but also all other surface bands exhibit spin polarisations parallel to the surface. We find that the superconducting gap fully opens in all the spin-polarised surface states. This behaviour is consistent with a possible spin-triplet order parameter expected for such in-plane spin textures, but the observed superconducting gap amplitude is comparable to that of the bulk, suggesting that the spin-singlet component is predominant in β-PdBi 2 .Although several materials have been proposed as topological superconductors, spin textures and superconductivity at the surface remain elusive. Here, Iwaya et al. determine the spin textures at the surface of a superconductor β-PdBi 2 and find the superconducting gap opening in all spin-polarised surface states.

  12. Emergence of fully gapped s++-wave and nodal d-wave states mediated by orbital and spin fluctuations in a ten-orbital model of KFe2Se2

    NASA Astrophysics Data System (ADS)

    Saito, Tetsuro; Onari, Seiichiro; Kontani, Hiroshi

    2011-04-01

    We study the superconducting state in recently discovered high-Tc superconductor KxFe2Se2 based on the ten-orbital Hubbard-Holstein model without hole pockets. When the Coulomb interaction is large, a spin-fluctuation-mediated d-wave state appears due to the nesting between electron pockets. Interestingly, the symmetry of the body-centered tetragonal structure in KxFe2Se2 requires the existence of nodes in the d-wave gap, although a fully gapped d-wave state is realized in the case of a simple tetragonal structure. In the presence of moderate electron-phonon interaction due to Fe-ion optical modes, however, orbital fluctuations give rise to the fully gapped s++-wave state without sign reversal. Therefore, both superconducting states are distinguishable by careful measurements of the gap structure or the impurity effect on Tc.

  13. Impurity bound states in d-wave superconductors with subdominant order parameters

    NASA Astrophysics Data System (ADS)

    Mashkoori, Mahdi; Björnson, Kristofer; Black-Schaffer, Annica

    Single magnetic impurity induces intra-gap bound states in conventional s-wave superconductors (SCs) but, in d-wave SCs only virtual bound states can be induced. However, in small cuprate islands a fully gapped spectrum has recently been discovered. In this work, we investigate the real bound states due to potential and magnetic impurities in the two candidate fully gapped states for this system: the topologically trivial d + is -wave state and the topologically non-trivial d + id' -wave (chiral d-wave state). Using the analytic T-matrix formalism and self-consistent numerical tight-binding lattice calculations, we show that potential and magnetic impurities create entirely different intra-gap bound states in d + is -wave and chiral d-wave SCs. Therefore, our results suggest that the bound states mainly depend on the subdominant order parameter. Considering that recent experiments have demonstrated an access to adjustable coupling J, impurities thus offer an intriguing way to clearly distinguish between the chiral d-wave and topologically trivial d + is -wave state. This work was supported by Swedish Research Council, Swedish Foundation for Strategic Research, the Wallenberg Academy Fellows program and the Göran Gustafsson Foundation. The computations were performed on resources provided by SNIC at LUNARC.

  14. Symmetry-Enforced Line Nodes in Unconventional Superconductors [Nodal-Line Superconductors and Band-Sticking

    DOE PAGES

    Micklitz, T.; Norman, M. R.

    2017-05-18

    We classify line nodes in superconductors with strong spin-orbit interactions and time-reversal symmetry, where the latter may include nonprimitive translations in the magnetic Brillouin zone to account for coexistence with antiferromagnetic order. We find four possible combinations of irreducible representations of the order parameter on high-symmetry planes, two of which allow for line nodes in pseudospin-triplet pairs and two that exclude conventional fully gapped pseudospin-singlet pairs. We show that the former can only be realized in the presence of band-sticking degeneracies, and we verify their topological stability using arguments based on Clifford algebra extensions. Lastly, our classification exhausts all possiblemore » symmetry protected line nodes in the presence of spin-orbit coupling and a (generalized) time-reversal symmetry. Implications for existing nonsymmorphic and antiferromagnetic superconductors are discussed.« less

  15. Resilient Nodeless d -Wave Superconductivity in Monolayer FeSe

    NASA Astrophysics Data System (ADS)

    Agterberg, D. F.; Shishidou, T.; O'Halloran, J.; Brydon, P. M. R.; Weinert, M.

    2017-12-01

    Monolayer FeSe exhibits the highest transition temperature among the iron based superconductors and appears to be fully gapped, seemingly consistent with s -wave superconductivity. Here, we develop a theory for the superconductivity based on coupling to fluctuations of checkerboard magnetic order (which has the same translation symmetry as the lattice). The electronic states are described by a symmetry based k .p -like theory and naturally account for the states observed by angle resolved photoemission spectroscopy. We show that a prediction of this theory is that the resultant superconducting state is a fully gapped, nodeless, d -wave state. This state, which would usually have nodes, stays nodeless because, as seen experimentally, the relevant spin-orbit coupling has an energy scale smaller than the superconducting gap.

  16. Superconducting proximity effect in a topological insulator using Fe(Te, Se)

    NASA Astrophysics Data System (ADS)

    Zhao, He; Rachmilowitz, Bryan; Ren, Zheng; Han, Ruobin; Schneeloch, J.; Zhong, Ruidan; Gu, Genda; Wang, Ziqiang; Zeljkovic, Ilija

    2018-06-01

    Interest in the superconducting proximity effect has recently been reignited by theoretical predictions that it could be used to achieve topological superconductivity. Low-Tc superconductors have predominantly been used in this effort, but small energy scales of ˜1 meV have hindered the characterization of the emergent electronic phase, limiting it to extremely low temperatures. In this work, we use molecular beam epitaxy to grow topological insulator B i2T e3 in a range of thicknesses on top of a high-Tc superconductor Fe(Te,Se). Using scanning tunneling microscopy and spectroscopy, we detect Δind as high as ˜3.5 meV, which is the largest reported gap induced by proximity to an s -wave superconductor to date. We find that Δind decays with B i2T e3 thickness, but remains finite even after the topological surface states have been formed. Finally, by imaging the scattering and interference of surface state electrons, we provide a microscopic visualization of the fully gapped B i2T e3 surface state due to Cooper pairing. Our results establish Fe-based high-Tc superconductors as a promising new platform for realizing high-Tc topological superconductivity.

  17. Probing the superconducting gap symmetry of α - PdBi 2 : A penetration depth study

    DOE PAGES

    Mitra, S.; Okawa, K.; Kunniniyil Sudheesh, S.; ...

    2017-04-27

    Inmore » this paper, we report measurements of the in-plane London penetration depth λ in single crystals of the α - PdBi 2 superconductor—the α-phase counterpart of the putative topological superconductor β - PdBi 2 , down to 0.35 K using a high-resolution tunnel-diode-based technique. Both λ and superfluid density ρ s exhibit an exponential behavior for T ≤ 0.35T c, with Δ(0) /k BT c ~ 2.0, ΔC/γT c ~ 2.0, and λ(0) ~ 140 nm, showing that α - PdBi 2 is a moderately coupling, fully gapped superconductor. Finally, the values of Δ(0) and ΔC/γT c are consistent with each other via strong-coupling corrections.« less

  18. Probing the superconducting gap symmetry of α - PdBi 2 : A penetration depth study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, S.; Okawa, K.; Kunniniyil Sudheesh, S.

    Inmore » this paper, we report measurements of the in-plane London penetration depth λ in single crystals of the α - PdBi 2 superconductor—the α-phase counterpart of the putative topological superconductor β - PdBi 2 , down to 0.35 K using a high-resolution tunnel-diode-based technique. Both λ and superfluid density ρ s exhibit an exponential behavior for T ≤ 0.35T c, with Δ(0) /k BT c ~ 2.0, ΔC/γT c ~ 2.0, and λ(0) ~ 140 nm, showing that α - PdBi 2 is a moderately coupling, fully gapped superconductor. Finally, the values of Δ(0) and ΔC/γT c are consistent with each other via strong-coupling corrections.« less

  19. Tuning of superconductivity by Ni substitution into noncentrosymmetric ThC o1 -xN ixC2

    NASA Astrophysics Data System (ADS)

    Grant, T. W.; Cigarroa, O. V.; Rosa, P. F. S.; Machado, A. J. S.; Fisk, Z.

    2017-07-01

    The recently discovered noncentrosymmetric superconductor ThCoC2 was observed to show unusual superconducting behavior with a critical temperature of Tc=2.65 K . Here we investigate the effect of nickel substitution on the superconducting state in ThC o1 -xN ixC2 . Magnetization, resistivity, and heat capacity measurements demonstrate Ni substitution has a dramatic effect with critical temperature increased up to Tc=12.1 K for x =0.4 Ni concentration, which is a rather high transition temperature for a noncentrosymmetric superconductor. In addition, the unusual superconducting characteristics observed in pure ThCoC2 appear to be suppressed or tuned with Ni substitution towards a more conventional fully gapped superconductor.

  20. Theoretical approach to resonant inelastic x-ray scattering in iron-based superconductors at the energy scale of the superconducting gap

    PubMed Central

    Marra, Pasquale; van den Brink, Jeroen; Sykora, Steffen

    2016-01-01

    We develop a phenomenological theory to predict the characteristic features of the momentum-dependent scattering amplitude in resonant inelastic x-ray scattering (RIXS) at the energy scale of the superconducting gap in iron-based super-conductors. Taking into account all relevant orbital states as well as their specific content along the Fermi surface we evaluate the charge and spin dynamical structure factors for the compounds LaOFeAs and LiFeAs, based on tight-binding models which are fully consistent with recent angle-resolved photoemission spectroscopy (ARPES) data. We find a characteristic intensity redistribution between charge and spin dynamical structure factors which discriminates between sign-reversing and sign-preserving quasiparticle excitations. Consequently, our results show that RIXS spectra can distinguish between s± and s++ wave gap functions in the singlet pairing case. In addition, we find that an analogous intensity redistribution at small momenta can reveal the presence of a chiral p-wave triplet pairing. PMID:27151253

  1. Superconducting Sweet-Spot in Microcrystalline Graphite Revealed by Point-Contact Spectroscopy

    NASA Astrophysics Data System (ADS)

    Arnold, F.; Nyéki, J.; Saunders, J.

    2018-05-01

    In this letter we describe the observation of a magnetic field dependent electronic gap, suggestive of local superconductivity, in the point-contact spectrum of micro-crystalline graphite. Magnetic field dependent point-contact spectroscopy was carried out at a temperature of 1.8K using an etched aluminium tip. At zero field a gap structure in the differential conductance is observed, showing a gap of Δ = 4.2 meV. On applying magnetic fields of up to 500mT, this gap gradually closes, following the theoretical prediction by Ginzburg and Landau for a fully flux-penetrated superconductor. By applying BCS-theory, we infer a critical superconducting temperature of 14K.

  2. Disappearance of nodal gap across the insulator-superconductor transition in a copper-oxide superconductor.

    PubMed

    Peng, Yingying; Meng, Jianqiao; Mou, Daixiang; He, Junfeng; Zhao, Lin; Wu, Yue; Liu, Guodong; Dong, Xiaoli; He, Shaolong; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Lee, T K; Zhou, X J

    2013-01-01

    The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi₂Sr₂-xLaxCuO(₆+δ) system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coexistence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator-superconductor transition at a critical doping level of ~0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order disappears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity.

  3. Numerical investigation of gapped edge states in fractional quantum Hall-superconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Repellin, Cécile; Cook, Ashley M.; Neupert, Titus; Regnault, Nicolas

    2018-03-01

    Fractional quantum Hall-superconductor heterostructures may provide a platform towards non-abelian topological modes beyond Majoranas. However their quantitative theoretical study remains extremely challenging. We propose and implement a numerical setup for studying edge states of fractional quantum Hall droplets with a superconducting instability. The fully gapped edges carry a topological degree of freedom that can encode quantum information protected against local perturbations. We simulate such a system numerically using exact diagonalization by restricting the calculation to the quasihole-subspace of a (time-reversal symmetric) bilayer fractional quantum Hall system of Laughlin ν = 1/3 states. We show that the edge ground states are permuted by spin-dependent flux insertion and demonstrate their fractional 6π Josephson effect, evidencing their topological nature and the Cooper pairing of fractionalized quasiparticles. The versatility and efficiency of our setup make it a well suited method to tackle wider questions of edge phases and phase transitions in fractional quantum Hall systems.

  4. Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu2Si2.

    PubMed

    Yamashita, Takuya; Takenaka, Takaaki; Tokiwa, Yoshifumi; Wilcox, Joseph A; Mizukami, Yuta; Terazawa, Daiki; Kasahara, Yuichi; Kittaka, Shunichiro; Sakakibara, Toshiro; Konczykowski, Marcin; Seiro, Silvia; Jeevan, Hirale S; Geibel, Christoph; Putzke, Carsten; Onishi, Takafumi; Ikeda, Hiroaki; Carrington, Antony; Shibauchi, Takasada; Matsuda, Yuji

    2017-06-01

    In exotic superconductors, including high- T c copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu 2 Si 2 , which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. We report low-temperature specific heat, thermal conductivity, and magnetic penetration depth measurements in CeCu 2 Si 2 , demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully gapped s-wave superconducting state, which has an on-site attractive pairing interaction.

  5. Epitaxy of advanced nanowire quantum devices

    NASA Astrophysics Data System (ADS)

    Gazibegovic, Sasa; Car, Diana; Zhang, Hao; Balk, Stijn C.; Logan, John A.; de Moor, Michiel W. A.; Cassidy, Maja C.; Schmits, Rudi; Xu, Di; Wang, Guanzhong; Krogstrup, Peter; Op Het Veld, Roy L. M.; Zuo, Kun; Vos, Yoram; Shen, Jie; Bouman, Daniël; Shojaei, Borzoyeh; Pennachio, Daniel; Lee, Joon Sue; van Veldhoven, Petrus J.; Koelling, Sebastian; Verheijen, Marcel A.; Kouwenhoven, Leo P.; Palmstrøm, Chris J.; Bakkers, Erik P. A. M.

    2017-08-01

    Semiconductor nanowires are ideal for realizing various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles (such as anyons) can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought into contact with a superconductor. To exploit the potential of non-Abelian anyons—which are key elements of topological quantum computing—fully, they need to be exchanged in a well-controlled braiding operation. Essential hardware for braiding is a network of crystalline nanowires coupled to superconducting islands. Here we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks with a predefined number of superconducting islands. Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire ‘hashtags’ reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase-coherent system with strong spin-orbit coupling. In addition, a proximity-induced hard superconducting gap (with vanishing sub-gap conductance) is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens up new avenues for the realization of epitaxial three-dimensional quantum architectures which have the potential to become key components of various quantum devices.

  6. Huge critical current density and tailored superconducting anisotropy in SmFeAsO₀.₈F₀.₁₅ by low-density columnar-defect incorporation.

    PubMed

    Fang, L; Jia, Y; Mishra, V; Chaparro, C; Vlasko-Vlasov, V K; Koshelev, A E; Welp, U; Crabtree, G W; Zhu, S; Zhigadlo, N D; Katrych, S; Karpinski, J; Kwok, W K

    2013-01-01

    Iron-based superconductors could be useful for electricity distribution and superconducting magnet applications because of their relatively high critical current densities and upper critical fields. SmFeAsO₀.₈F₀.₁₅ is of particular interest as it has the highest transition temperature among these materials. Here we show that by introducing a low density of correlated nano-scale defects into this material by heavy-ion irradiation, we can increase its critical current density to up to 2 × 10⁷ A cm⁻² at 5 K--the highest ever reported for an iron-based superconductor--without reducing its critical temperature of 50 K. We also observe a notable reduction in the thermodynamic superconducting anisotropy, from 8 to 4 upon irradiation. We develop a model based on anisotropic electron scattering that predicts that the superconducting anisotropy can be tailored via correlated defects in semimetallic, fully gapped type II superconductors.

  7. Measurement of a superconducting energy gap in a homogeneously amorphous insulator.

    PubMed

    Sherman, D; Kopnov, G; Shahar, D; Frydman, A

    2012-04-27

    We present tunneling spectroscopy measurements that directly reveal the existence of a superconducting gap in the insulating state of homogenously disordered amorphous indium oxide films. Two films on both sides of the disorder induced superconductor to insulator transition show the same energy gap scale. This energy gap persists up to relatively high magnetic fields and is observed across the magnetoresistance peak typical of disordered superconductors. The results provide useful information for understanding the nature of the insulating state in the disorder induced superconductor to insulator transition.

  8. Fractional Josephson vortices in two-gap superconductor long Josephson junctions

    NASA Astrophysics Data System (ADS)

    Kim, Ju

    2014-03-01

    We investigated the phase dynamics of long Josephson junctions (LJJ) with two-gap superconductors in the broken time reversal symmetry state. In this LJJ, spatial phase textures (i-solitons) can be excited due to the presence of two condensates and the interband Joesphson effect between them. The presence of a spatial phase texture in each superconductor layer leads to a spatial variation of the critical current density between the superconductor layers. We find that this spatial dependence of the crtitical current density can self-generate magnetic flux in the insulator layer, resulting in Josephson vortices with fractional flux quanta. Similar to the situation in a YBa2 Cu3O7 - x superconductor film grain boundary, the fractionalization of a Josephson vortex arises as a response to either periodic or random excitation of i-solitions. This suggests that magnetic flux measurements may be used to probe i-soliton excitations in multi-gap superconductor LJJs.

  9. Sensing with Superconducting Point Contacts

    PubMed Central

    Nurbawono, Argo; Zhang, Chun

    2012-01-01

    Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors. PMID:22778630

  10. Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu2Si2

    PubMed Central

    Yamashita, Takuya; Takenaka, Takaaki; Tokiwa, Yoshifumi; Wilcox, Joseph A.; Mizukami, Yuta; Terazawa, Daiki; Kasahara, Yuichi; Kittaka, Shunichiro; Sakakibara, Toshiro; Konczykowski, Marcin; Seiro, Silvia; Jeevan, Hirale S.; Geibel, Christoph; Putzke, Carsten; Onishi, Takafumi; Ikeda, Hiroaki; Carrington, Antony; Shibauchi, Takasada; Matsuda, Yuji

    2017-01-01

    In exotic superconductors, including high-Tc copper oxides, the interactions mediating electron Cooper pairing are widely considered to have a magnetic rather than a conventional electron-phonon origin. Interest in this exotic pairing was initiated by the 1979 discovery of heavy-fermion superconductivity in CeCu2Si2, which exhibits strong antiferromagnetic fluctuations. A hallmark of unconventional pairing by anisotropic repulsive interactions is that the superconducting energy gap changes sign as a function of the electron momentum, often leading to nodes where the gap goes to zero. We report low-temperature specific heat, thermal conductivity, and magnetic penetration depth measurements in CeCu2Si2, demonstrating the absence of gap nodes at any point on the Fermi surface. Moreover, electron irradiation experiments reveal that the superconductivity survives even when the electron mean free path becomes substantially shorter than the superconducting coherence length. This indicates that superconductivity is robust against impurities, implying that there is no sign change in the gap function. These results show that, contrary to long-standing belief, heavy electrons with extremely strong Coulomb repulsions can condense into a fully gapped s-wave superconducting state, which has an on-site attractive pairing interaction. PMID:28691082

  11. Engineering one-dimensional topological phases on p -wave superconductors

    NASA Astrophysics Data System (ADS)

    Sahlberg, Isac; Westström, Alex; Pöyhönen, Kim; Ojanen, Teemu

    2017-05-01

    In this paper, we study how, with the aid of impurity engineering, two-dimensional p -wave superconductors can be employed as a platform for one-dimensional topological phases. We discover that, while chiral and helical parent states themselves are topologically nontrivial, a chain of scalar impurities on both systems supports multiple topological phases and Majorana end states. We develop an approach which allows us to extract the topological invariants and subgap spectrum, even away from the center of the gap, for the representative cases of spinless, chiral, and helical superconductors. We find that the magnitude of the topological gaps protecting the nontrivial phases may be a significant fraction of the gap of the underlying superconductor.

  12. Energy-gap spectroscopy of superconductors using a tunneling microscope

    NASA Technical Reports Server (NTRS)

    Le Duc, H. G.; Kaiser, W. J.; Stern, J. A.

    1987-01-01

    A unique scanning tunneling microscope (STM) system has been developed for spectroscopy of the superconducting energy gap. High-resolution control of tunnel current and voltage allows for measurement of superconducting properties at tunnel resistance levels 100-1000 greater than that achieved in prior work. The previously used STM methods for superconductor spectroscopy are compared to those developed for the work reported here. Superconducting energy-gap spectra are reported for three superconductors, Pb, PbBi, and NbN, over a range of tunnel resistance. The measured spectra are compared directly to theory.

  13. Computational and Theoretical Investigations of Strongly Correlated Fermions in Optical Lattices

    DTIC Science & Technology

    2013-08-29

    and two-particle spectral functions across the disorder - driven superconductor - insulator transition". 22. Invited speaker, \\Fermions in Optical...energy gaps across the disorder - driven superconductor - insulator transition", October 7, 2010, Harvard. 27. Seminar on \\Probing Quantum Phases of...Perimeter Institute, November 14, 2011. 37. Seminar on \\Single and two-particle energy gaps across the disorder - driven superconductor - insulator transition

  14. Two-dimensional topological superconducting phases emerged from d-wave superconductors in proximity to antiferromagnets

    NASA Astrophysics Data System (ADS)

    Zhu, Guo-Yi; Wang, Ziqiang; Zhang, Guang-Ming

    2017-05-01

    Motivated by the recent observations of nodeless superconductivity in the monolayer CuO2 grown on the Bi2Sr2CaCu2O8+δ substrates, we study the two-dimensional superconducting (SC) phases described by the two-dimensional t\\text-J model in proximity to an antiferromagnetic (AF) insulator. We found that i) the nodal d-wave SC state can be driven via a continuous transition into a nodeless d-wave pairing state by the proximity-induced AF field. ii) The energetically favorable pairing states in the strong field regime have extended s-wave symmetry and can be nodal or nodeless. iii) Between the pure d-wave and s-wave paired phases, there emerge two topologically distinct SC phases with (s+\\text{i}d) symmetry, i.e., the weak and strong pairing phases, and the weak pairing phase is found to be a Z 2 topological superconductor protected by valley symmetry, exhibiting robust gapless nonchiral edge modes. These findings strongly suggest that the high-T c superconductors in proximity to antiferromagnets can realize fully gapped symmetry-protected topological SC.

  15. Magnetic disorder and gap symmetry in the optimally electron-doped Sr(Fe ,Co ) 2As2 superconductor

    NASA Astrophysics Data System (ADS)

    Harnagea, Luminita; Mani, Giri; Kumar, Rohit; Singh, Surjeet

    2018-02-01

    We study magnetic pair breaking due to Mn impurities in the optimally electron-doped superconductor Sr (Fe0.88Co0.12)2As2 . We found that the as-grown Sr (Fe0.88-yCo0.12Mny) 2As2 single crystals exhibit a Tc suppression rate of ˜30 mK/μ Ω cm . This rate is slow but in good agreement with the previous reports on various magnetic/nonmagnetic impurities doped in other structurally analogous iron-based superconductors. The slow Tc suppression rate for magnetic impurities is often cited as an evidence for the nonvalidity of the s++-wave symmetry, which should have suppressed Tc in accordance with the Abrikosov-Gor'kov theory. Here, we show that the crystallographic defects are the main source of pair breaking in the as-grown crystals. Once these defects are healed by a low-temperature annealing, the true Tc suppression rate due to Mn impurities is revealed. We thus estimate the actual Tc suppression rate due to Mn alone to be ≥325 mK / μ Ω cm , and that due to the nonmagnetic crystallographic defects to be nearly 35 mK/μ Ω cm . These findings can be reconciled with the fully gapped s+--wave symmetry provided the interband scattering is rather weak. On the other hand, the s++-wave symmetry, which is resilient to the nonmagnetic defects and fragile against the magnetic impurities, can be a possible pairing symmetry in the optimally electron-doped SrFe2As2 . The crucial information that we provide here is that the magnetic pair breaking in these superconductors is not as weak as is generally believed.

  16. Conservation laws, vertex corrections, and screening in Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Maiti, Saurabh; Chubukov, Andrey V.; Hirschfeld, P. J.

    2017-07-01

    We present a microscopic theory for the Raman response of a clean multiband superconductor, with emphasis on the effects of vertex corrections and long-range Coulomb interaction. The measured Raman intensity, R (Ω ) , is proportional to the imaginary part of the fully renormalized particle-hole correlator with Raman form factors γ (k ⃗) . In a BCS superconductor, a bare Raman bubble is nonzero for any γ (k ⃗) and diverges at Ω =2 Δmax , where Δmax is the largest gap along the Fermi surface. However, for γ (k ⃗) = constant, the full R (Ω ) is expected to vanish due to particle number conservation. It was sometimes stated that this vanishing is due to the singular screening by long-range Coulomb interaction. In our general approach, we show diagrammatically that this vanishing actually holds due to vertex corrections from the same short-range interaction that gives rise to superconductivity. We further argue that long-range Coulomb interaction does not affect the Raman signal for any γ (k ⃗) . We argue that vertex corrections eliminate the divergence at 2 Δmax . We also argue that vertex corrections give rise to sharp peaks in R (Ω ) at Ω <2 Δmin (the minimum gap along the Fermi surface), when Ω coincides with the frequency of one of the collective modes in a superconductor, e.g., Leggett and Bardasis-Schrieffer modes in the particle-particle channel, and an excitonic mode in the particle-hole channel.

  17. Out-of-equilibrium spin transport in mesoscopic superconductors.

    PubMed

    Quay, C H L; Aprili, M

    2018-08-06

    The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).

  18. Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure.

    PubMed

    Kjaergaard, M; Nichele, F; Suominen, H J; Nowak, M P; Wimmer, M; Akhmerov, A R; Folk, J A; Flensberg, K; Shabani, J; Palmstrøm, C J; Marcus, C M

    2016-09-29

    Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological matter is by coupling a 2D electron gas with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e 2 /h, consistent with theory. The hard-gap semiconductor-superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems.

  19. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.

    PubMed

    Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2012-07-03

    The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.

  20. Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure

    PubMed Central

    Kjaergaard, M.; Nichele, F.; Suominen, H. J.; Nowak, M. P.; Wimmer, M.; Akhmerov, A. R.; Folk, J. A.; Flensberg, K.; Shabani, J.; Palmstrøm, C. J.; Marcus, C. M.

    2016-01-01

    Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological matter is by coupling a 2D electron gas with strong spin–orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e2/h, consistent with theory. The hard-gap semiconductor–superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems. PMID:27682268

  1. Bulk superconducting phase with a full energy gap in the doped topological insulator Cu(x)Bi₂Se₃.

    PubMed

    Kriener, M; Segawa, Kouji; Ren, Zhi; Sasaki, Satoshi; Ando, Yoichi

    2011-03-25

    The superconductivity recently found in the doped topological insulator Cu(x)Bi₂Se₃ offers a great opportunity to search for a topological superconductor. We have successfully prepared a single-crystal sample with a large shielding fraction and measured the specific-heat anomaly associated with the superconductivity. The temperature dependence of the specific heat suggests a fully gapped, strong-coupling superconducting state, but the BCS theory is not in full agreement with the data, which hints at a possible unconventional pairing in Cu(x)Bi₂Se₃. Also, the evaluated effective mass of 2.6m(e) (m(e) is the free electron mass) points to a large mass enhancement in this material.

  2. Robustness against non-magnetic impurities in topological superconductors

    NASA Astrophysics Data System (ADS)

    Nagai, Y.; Ota, Y.; Machida, M.

    2014-12-01

    We study the robustness against non-magnetic impurities in a three-dimensional topological superconductor, focusing on an effective model (massive Dirac Bogoliubov-de Gennes (BdG) Hamiltonian with s-wave on-site pairing) of CuxBi2Se3 with the parameter set determined by the first-principles calculation. With the use of the self-consistent T- matrix approximation for impurity scattering, we discuss the impurity-concentration dependence of the zero-energy density of states. We show that a single material variable, measuring relativistic effects in the Dirac-BdG Hamiltonian, well characterizes the numerical results. In the nonrelativistic limit, the odd-parity fully-gapped topological superconductivity is fragile against non-magnetic impurities, since this superconductivity can be mapped onto the p-wave superconductivity. On the other hand, in the ultrarelativistic limit, the superconductivity is robust against the non-magnetic impurities, since the effective model has the s-wave superconductivity. We derive the effective Hamiltonian in the both limit.

  3. Nonequilibrium theory of tunneling into a localized state in a superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Ivar; Mozyrsky, Dmitry

    2014-09-01

    A single static magnetic impurity in a fully gapped superconductor leads to the formation of an intragap quasiparticle bound state. At temperatures much below the superconducting transition, the energy relaxation and spin dephasing of the state are expected to be exponentially suppressed. The presence of such a state can be detected in electron tunneling experiments as a pair of conductance peaks at positive and negative biases. Here we show that, for an arbitrarily weak tunneling strength, the peaks have to be symmetric with respect to the applied bias. This is in contrast to the standard result in which the tunnelingmore » conductance is proportional to the local (in general, particle-hole asymmetric) density of states. The asymmetry can be recovered if one allows for either a finite density of impurity states, or if impurities are coupled to another, nonsuperconducting, equilibrium bath.« less

  4. Drive the Dirac electrons into Cooper pairs in SrxBi2Se3.

    PubMed

    Du, Guan; Shao, Jifeng; Yang, Xiong; Du, Zengyi; Fang, Delong; Wang, Jinghui; Ran, Kejing; Wen, Jinsheng; Zhang, Changjin; Yang, Huan; Zhang, Yuheng; Wen, Hai-Hu

    2017-02-15

    Topological superconductors are a very interesting and frontier topic in condensed matter physics. Despite the tremendous efforts in exploring topological superconductivity, its presence is however still under heavy debate. The Dirac electrons have been proven to exist on the surface of a topological insulator. It remains unclear whether and how the Dirac electrons fall into Cooper pairing in an intrinsic superconductor with the topological surface states. Here we show the systematic study of scanning tunnelling microscope/spectroscopy on the possible topological superconductor Sr x Bi 2 Se 3 . We first demonstrate that only the intercalated Sr atoms can induce superconductivity. Then we show the full superconducting gaps without any in-gap density of states as expected theoretically for a bulk topological superconductor. Finally, we find that the surface Dirac electrons will simultaneously condense into the superconducting state within the superconducting gap. This vividly demonstrates how the surface Dirac electrons are driven into Cooper pairs.

  5. Universal heat conduction in Ce 1-xYb xCoIn 5: Evidence for robust nodal d-wave superconducting gap

    DOE PAGES

    Xu, Y.; Petrovic, C.; Dong, J. K.; ...

    2016-02-01

    In the heavy-fermion superconductor Ce 1-xYb xCoIn 5, Yb doping was reported to cause a possible change from nodal d-wave superconductivity to a fully gapped d-wave molecular superfluid of composite pairs near x ≈ 0.07 (nominal value x nom = 0.2). Here we present systematic thermal conductivity measurements on Ce 1-xYb xCoIn 5 (x = 0.013, 0.084, and 0.163) single crystals. The observed finite residual linear term κ 0/T is insensitive to Yb doping, verifying the universal heat conduction of the nodal d-wave superconducting gap in Ce 1-xYb xCoIn 5. Similar universal heat conduction is also observed in the CeCo(Inmore » 1–yCd y) 5 system. Furthermore, these results reveal a robust nodal d-wave gap in CeCoIn 5 upon Yb or Cd doping.« less

  6. Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi 2Sr 2CaCu 2O 8+δ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xuan; Zhang, Wen-Tao; Zhao, Lin

    For this study, we carry out detailed momentum-dependent and temperature-dependent measurements on Bi 2Sr 2CaCu 2O 8+δ (Bi2212) superconductor in the superconducting and pseudogap states by super-high resolution laser-based angle-resolved photoemission spectroscopy. The precise determination of the superconducting gap for the nearly optimally doped Bi2212 (T c=91 K) at low temperature indicates that the momentum-dependence of the superconducting gap deviates from the standard d-wave form (cos(2Φ)). It can be alternatively fitted by including a high-order term (cos(6Φ)) in which the next nearest-neighbor interaction is considered. We find that the band structure near the antinodal region smoothly evolves across the pseudogapmore » temperature without a signature of band reorganization which is distinct from that found in Bi 2Sr 2CuO 6+δ superconductors. This indicates that the band reorganization across the pseudogap temperature is not a universal behavior in cuprate superconductors. These results provide new insights in understanding the nature of the superconducting gap and pseudogap in high-temperature cuprate superconductors.« less

  7. Temperature Evolution of Energy Gap and Band Structure in the Superconducting and Pseudogap States of Bi 2Sr 2CaCu 2O 8+δ Superconductor Revealed by Laser-Based Angle-Resolved Photoemission Spectroscopy

    DOE PAGES

    Sun, Xuan; Zhang, Wen-Tao; Zhao, Lin; ...

    2017-12-17

    For this study, we carry out detailed momentum-dependent and temperature-dependent measurements on Bi 2Sr 2CaCu 2O 8+δ (Bi2212) superconductor in the superconducting and pseudogap states by super-high resolution laser-based angle-resolved photoemission spectroscopy. The precise determination of the superconducting gap for the nearly optimally doped Bi2212 (T c=91 K) at low temperature indicates that the momentum-dependence of the superconducting gap deviates from the standard d-wave form (cos(2Φ)). It can be alternatively fitted by including a high-order term (cos(6Φ)) in which the next nearest-neighbor interaction is considered. We find that the band structure near the antinodal region smoothly evolves across the pseudogapmore » temperature without a signature of band reorganization which is distinct from that found in Bi 2Sr 2CuO 6+δ superconductors. This indicates that the band reorganization across the pseudogap temperature is not a universal behavior in cuprate superconductors. These results provide new insights in understanding the nature of the superconducting gap and pseudogap in high-temperature cuprate superconductors.« less

  8. Observation of dx2-y-Like Superconducting Gap in an Electron-Doped High-Temperature Superconductor

    NASA Astrophysics Data System (ADS)

    Sato, T.; Kamiyama, T.; Takahashi, T.; Kurahashi, K.; Yamada, K.

    2001-02-01

    High-resolution angle-resolved photoemission spectroscopy of the electron-doped high-temperature superconductor Nd2-xCexCuO4 (x = 0.15, transition temperature Tc = 22 K) has found the quasiparticle signature as well as the anisotropic dx2-y-like superconducting gap. The spectral line shape at the superconducting state shows a strong anisotropic nature of the many-body interaction. The result suggests that the electron-hole symmetry is present in the high-temperature superconductors.

  9. Interaction between fractional Josephson vortices in multi-gap superconductor tunnel junctions

    NASA Astrophysics Data System (ADS)

    Kim, Ju H.

    In a long Josephson junction (LJJ) with two-band superconductors, fractionalization of Josephson vortices (fluxons) can occur in the broken time reversal symmetry state when spatial phase textures (i-solitons) are excited. Excitation of i-solitons in each superconductor layer of the junction, arising due to the presence of two condensates and the interband Josephson effect, leads to spatial variation of the critical current density between the superconductor layers. Similar to the situation in a YBa2 Cu3O7 - x superconductor film grain boundary, this spatial dependence of the crtitical current density can self-generate magnetic flux in the insulator layer, resulting in fractional fluxons with large and small fraction of flux quantum. Similar to fluxons in one-band superconductor LJJ, these fractional fluxons are found to interact with each other. The interaction between large and small fractional fluxons determines the size of a fluxon which includes two (one large and one small) fractional fluxons. We discuss the nature of interaction between fractional fluxons and suggest that i-soliton excitations in multi-gap superconductor LJJs may be probed by using magnetic flux measurements.

  10. μ SR and magnetometry study of superconducting 5% Pt-doped IrTe 2

    DOE PAGES

    Wilson, M. N.; Medina, T.; Munsie, T. J.; ...

    2016-11-11

    In this paper, we present magnetometry and muon spin rotation ( SR) measurements of the superconducting dichalcogenide Ir 0.95Pt 0.05Te 2. From both sets of measurements we calculate the penetration depth and thence superfluid density as a function of temperature. The temperature dependence of the superfluid densities from both sets of data indicate fully gapped superconductivity that can be fit to a conventional s-wave model and yield fitting parameters consistent with a BCS weak coupling superconductor. Finally, we therefore see no evidence for exotic superconductivity in Ir 0.95Pt 0.05Te 2.

  11. μ SR and magnetometry study of superconducting 5% Pt-doped IrTe2

    NASA Astrophysics Data System (ADS)

    Wilson, M. N.; Medina, T.; Munsie, T. J.; Cheung, S. C.; Frandsen, B. A.; Liu, L.; Yan, J.; Mandrus, D.; Uemura, Y. J.; Luke, G. M.

    2016-11-01

    We present magnetometry and muon spin rotation (μ SR ) measurements of the superconducting dichalcogenide Ir0.95Pt0.05Te2 . From both sets of measurements, we calculate the penetration depth and thence superfluid density as a function of temperature. The temperature dependence of the superfluid densities from both sets of data indicate fully gapped superconductivity that can be fit to a conventional s -wave model and yield fitting parameters consistent with a BCS weak coupling superconductor. We therefore see no evidence for exotic superconductivity in Ir0.95Pt0.05Te2 .

  12. Effect of heavy-ion and electron irradiation on properties of Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Konczykowski, Marcin

    2013-03-01

    The introduction of defects by particle irradiation is used to reveal the role of disorder in matter, which is unavoidable in all crystalline solids. In superconductors defects introduce flux pinning, controlling critical current, Jc; as well as pair-breaking scattering, limiting the critical temperature, Tc. To elucidate defect related properties of Fe-based superconductors (FBS) we precede in two types of irradiation: heavy ion (6GeV Pb) to create disorder in the form of amorphous tracks and low temperature electron irradiation (2.5MeV at 20K) to create point like defects. Substantial increase of irreversible magnetization and an upward shift of the irreversibility line are observed after heavy ion irradiation of all FBS investigated to date. In BaK 122 , signatures of a Bose-glass vortex state; angular dependence and variable-range hopping flux creep are revealed. Remarkably, heavy ion irradiation does not depress Tc, however, point-like disorder introduced by electron irradiation does substantially. In isovalently substituted Ba(FeAs1 - xPx) 2 and Ba(Fe1 - x Rux As) 2 crystals, Tc decreases linearly with dose. Suppression to 40 % of initial value of Tc was achieved in Ba(FeAs1 - xPx) 2 . An increase of normal state resistivity is observed and correlated to depression of Tc. Change of superconducting gap structure with disorder was determined from penetration depth measurements, λ (T) dependence, at various stages of irradiation. Linear in T variation of pristine samples, indicative of the presence of nodes in gap, turned at low irradiation dose to exponential T variation, indicative of a fully gaped state. T2 variation of λ is observed at higher doses. This behaviour is incompatible with symmetry-imposed nodes of d-wave pairing but consistent with S + / - , S + / + mechanisms. This is the first observation of the impurity-induced node lifting expected in anisotropic s-wave superconductors

  13. Unconventional Superconductivity in the BiS_{2}-Based Layered Superconductor NdO_{0.71}F_{0.29}BiS_{2}.

    PubMed

    Ota, Yuichi; Okazaki, Kozo; Yamamoto, Haruyoshi Q; Yamamoto, Takashi; Watanabe, Shuntaro; Chen, Chuangtian; Nagao, Masanori; Watauchi, Satoshi; Tanaka, Isao; Takano, Yoshihiko; Shin, Shik

    2017-04-21

    We investigate the superconducting-gap anisotropy in one of the recently discovered BiS_{2}-based superconductors, NdO_{0.71}F_{0.29}BiS_{2} (T_{c}∼5  K), using laser-based angle-resolved photoemission spectroscopy. Whereas the previously discovered high-T_{c} superconductors such as copper oxides and iron-based superconductors, which are believed to have unconventional superconducting mechanisms, have 3d electrons in their conduction bands, the conduction band of BiS_{2}-based superconductors mainly consists of Bi 6p electrons, and, hence, the conventional superconducting mechanism might be expected. Contrary to this expectation, we observe a strongly anisotropic superconducting gap. This result strongly suggests that the pairing mechanism for NdO_{0.71}F_{0.29}BiS_{2} is an unconventional one and we attribute the observed anisotropy to competitive or cooperative multiple paring interactions.

  14. Nodeless multiband superconductivity in stoichiometric single-crystalline CaKFe 4 As 4

    DOE PAGES

    Cho, Kyuil; Fente, A.; Teknowijoyo, S.; ...

    2017-03-08

    Measurements of the London penetration depth Δλ(T) and tunneling conductance in single crystals of the recently discovered stoichiometric iron-based superconductor CaKFe 4As 4 (CaK1144) show nodeless, two-effective-gap superconductivity with a larger gap of about 6–10 meV and a smaller gap of about 1–4 meV. Having a critical temperature T c,onset ≈ 35.8 K, this material behaves similar to slightly overdoped (Ba 1–xK x)Fe 2As 2 (e.g., x = 0.54,T c ≈ 34 K), a known multigap s ± superconductor. Here, we conclude that the superconducting behavior of stoichiometric CaK1144 demonstrates that two-gap s± superconductivity is an essential property of high-temperaturemore » superconductivity in iron-based superconductors, independent of the degree of substitutional disorder.« less

  15. Pseudogap and conduction dimensionalities in high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Das Arulsamy, Andrew; Ong, P. C.; Ong, M. T.

    2003-01-01

    The nature of normal state charge-carriers' dynamics and the transition in conduction and gap dimensionalities between 2D and 3D for YBa2Cu3O7-δ and Bi2Sr2Ca1- xYxCu2O8 high-Tc superconductors were described by computing and fitting the resistivity curves, /ρ(T,δ,x). These were carried out by utilizing the 2D and 3D Fermi liquid and ionization energy (EI) based resistivity models coupled with charge-spin separation based /t-/J model (Phys. Rev. B 64 (2001) 104516). /ρ(T,δ,x) curves of Y123 and Bi2212 samples indicate the beginning of the transition of conduction and gap from 2D to 3D with reduction in oxygen content /(7-δ) and Ca2+(1-x) as such, /c-axis pseudogap could be a different phenomenon from superconductor and spin gaps. These models also indicate that the recent MgB2 superconductor is at least not Y123 or Bi2212 type.

  16. Drive the Dirac electrons into Cooper pairs in SrxBi2Se3

    PubMed Central

    Du, Guan; Shao, Jifeng; Yang, Xiong; Du, Zengyi; Fang, Delong; Wang, Jinghui; Ran, Kejing; Wen, Jinsheng; Zhang, Changjin; Yang, Huan; Zhang, Yuheng; Wen, Hai-Hu

    2017-01-01

    Topological superconductors are a very interesting and frontier topic in condensed matter physics. Despite the tremendous efforts in exploring topological superconductivity, its presence is however still under heavy debate. The Dirac electrons have been proven to exist on the surface of a topological insulator. It remains unclear whether and how the Dirac electrons fall into Cooper pairing in an intrinsic superconductor with the topological surface states. Here we show the systematic study of scanning tunnelling microscope/spectroscopy on the possible topological superconductor SrxBi2Se3. We first demonstrate that only the intercalated Sr atoms can induce superconductivity. Then we show the full superconducting gaps without any in-gap density of states as expected theoretically for a bulk topological superconductor. Finally, we find that the surface Dirac electrons will simultaneously condense into the superconducting state within the superconducting gap. This vividly demonstrates how the surface Dirac electrons are driven into Cooper pairs. PMID:28198378

  17. Excitation of terahertz modes localized on a layered superconductor: Anomalous dispersion and resonant transmission

    NASA Astrophysics Data System (ADS)

    Apostolov, S. S.; Makarov, N. M.; Yampol'skii, V. A.

    2018-01-01

    We study theoretically the optic transmission through a slab of layered superconductor separated from two dielectric leads by spatial gaps. Based on the transfer matrix formalism along with the Josephson plasma electrodynamic approach, we derive analytic expressions for the transmittance and identify the conditions for the perfect transmission. The special interest of the study is focused on the resonant transmission, which occurs when the wave does not propagate in the spatial gaps. Far from the resonance, the transmittance is exponentially small due to the total internal reflection from the lead-gap interface. However, the excitation of electromagnetic modes localized on the layered superconductor gives rise to a remarkable resonant enhancement of the transmission. Moreover, this phenomenon is significantly modified for the layered superconductors in comparison with usual dielectrics or conductors. The dispersion curves for the modes localized on the layered superconductor are proved to be nonmonotonic, thus resulting in the specific dependence of the transmittance T on the incidence angle θ . In particular, we predict the onset of two resonant peaks in the T (θ ) dependence and their subsequent merge into the broadened single peak with increasing of the wave frequency. Our analytical results are demonstrated by numerical data.

  18. Thermal Hall conductivity in the spin-triplet superconductor with broken time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Imai, Yoshiki; Wakabayashi, Katsunori; Sigrist, Manfred

    2017-01-01

    Motivated by the spin-triplet superconductor Sr2RuO4 , the thermal Hall conductivity is investigated for several pairing symmetries with broken time-reversal symmetry. In the chiral p -wave phase with a fully opened quasiparticle excitation gap, the temperature dependence of the thermal Hall conductivity has a temperature linear term associated with the topological property directly and an exponential term, which shows a drastic change around the Lifshitz transition. Examining f -wave states as alternative candidates with d =Δ0z ̂(kx2-ky2) (kx±i ky) and Δ0z ̂kxky(kx±i ky) with gapless quasiparticle excitations, we study the temperature dependence of the thermal Hall conductivity, where for the former state the thermal Hall conductivity has a quadratic dependence on temperature, originating from the linear dispersions, in addition to linear and exponential behavior. The obtained result may enable us to distinguish between the chiral p -wave and f -wave states in Sr2RuO4 .

  19. Tunneling STM/STS and break-junction spectroscopy of the layered nitro-chloride superconductors MNCl (M = Ti, Hf, Zr)

    NASA Astrophysics Data System (ADS)

    Ekino, Toshikazu; Sugimoto, Akira; Gabovich, Alexander M.; Zheng, Zhanfeng; Zhang, Shuai; Yamanaka, Shoji

    2014-05-01

    The layered superconductors β-MNCl with the critical temperatures Tc = 14 K (M = Zr) - 25 K (M = Hf) were investigated by means of scanning-tunneling microscopy/spectroscopy and break-junction tunneling spectroscopy. The STM/STS was used to investigate the surface electronic structures in nanometer length scale, while the BJTS was employed to precisely determine the gap characteristics. Both techniques consistently clarified the unusually large size of the superconducting gap. Wide gap distributions with large-scale maximum gap values were also revealed in α-KyTiNCl with a different crystal structure.

  20. Nematic superconductivity in CuxBi2Se3 : Surface Andreev bound states

    NASA Astrophysics Data System (ADS)

    Hao, Lei; Ting, C. S.

    2017-10-01

    We study theoretically the topological surface states (TSSs) and the possible surface Andreev bound states (SABSs) of CuxBi2Se3 , which is known to be a topological insulator at x =0 . The superconductivity (SC) pairing of this compound is assumed to have broken spin-rotation symmetry, similar to that of the A-phase of 3He as suggested by recent nuclear-magnetic resonance experiments. For both spheroidal and corrugated cylindrical Fermi surfaces with the hexagonal warping terms, we show that the bulk SC gap is rather anisotropic; the minimum of the gap is negligibly small as compared to the maximum of the gap. This would make the fully gapped pairing effectively nodal. For a clean system, our results indicate the bulk of this compound to be a topological superconductor with the SABSs appearing inside the bulk SC gap. The zero-energy SABSs, which are Majorana fermions, together with the TSSs not gapped by the pairing, produce a zero-energy peak in the surface density of states (SDOS). The SABSs are expected to be stable against short-range nonmagnetic impurities, and the local SDOS is calculated around a nonmagnetic impurity. The relevance of our results to experiments is discussed.

  1. Superconducting properties of molybdenum ruthenium alloy Mo0.63Ru0.37

    NASA Astrophysics Data System (ADS)

    Wei, Wensen; Ge, Min; Wang, Shasha; Zhang, Lei; Han, Yuyan; Du, Haifeng; Tian, Mingliang; Zhang, Yuheng

    2018-03-01

    Resistance, magnetization and specific heat measurements were performed on Mo0.63Ru0.37 alloy. All of them confirm that Mo0.63Ru0.37 becomes superconducting at about 7.0 K with bulk nature. Its upper critical field behavior fits to Werthamer-Helfand-Hohenberg (WHH) model quite well, with an upper critical field of μ0Hc2(0) = 8.64 T, less than its Pauli limit. Its electronic specific heat is reproduced by Bardeen-Cooper-Schriffer (BCS)-based α-model with a gap ratio Δ0 = 1.88kBTc, which is a little larger than the standard BCS value of 1.76. We concluded that Mo0.63Ru0.37 is a fully gapped isotropic s-wave superconductor, with its features are mostly consistent with the conventional theory.

  2. Observation of conductance doubling in an Andreev quantum point contact

    NASA Astrophysics Data System (ADS)

    Kjaergaard, M.; Nichele, F.; Suominen, H.; Nowak, M.; Wimmer, M.; Akhmerov, A.; Folk, J.; Flensberg, K.; Shabani, J.; Palmstrom, C.; Marcus, C.

    One route to study the non-Abelian nature of excitations in topological superconductors is to realise gateable two dimensional (2D) semiconducting systems, with spin-orbit coupling in proximity to an s-wave superconductor. Previous work on coupling 2D electron gases (2DEG) with superconductors has been hindered by a non-ideal interface and unstable gateability. We report measurements on a gateable 2DEG coupled to superconductors through a pristine interface, and use aluminum grown in situ epitaxially on an InGaAs/InAs electron gas. We demonstrate quantization in units of 4e2 / h in a quantum point contact (QPC) in such hybrid systems. Operating the QPC as a tunnel probe, we observe a hard superconducting gap, overcoming the soft-gap problem in 2D superconductor/semiconductor systems. Our work paves way for a new and highly scalable system in which to pursue topological quantum information processing. Research supported by Microsoft Project Q and the Danish National Research Foundation.

  3. Effects of magnetic and nonmagnetic impurities on the spin susceptibility of a noncentrosymmetrical superconductor: Application to CePt3Si

    NASA Astrophysics Data System (ADS)

    Yavari, H.; Mokhtari, M.; Tamaddonpour, M.

    2013-10-01

    The combined effect of nonmagnetic and magnetic impurities on the spin susceptibility of a noncentrosymmetrical superconductor by considering a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components is investigated. For clean superconductor CePt3Si, the low-temperature dependence (T →0) of spin susceptibility is linear which suggests that the gap function has line nodes, consistent with our gap model. We will show that in the presence of magnetic impurities the susceptibility does not vanish even in the absence of spin orbit coupling and in the region where the energy gap still is finite, and in the low concentration of magnetic impurities the spin susceptibility at zero temperature is proportional to impurity concentration.

  4. Multigap superconductivity in the charge density wave superconductor LaPt2Si2

    NASA Astrophysics Data System (ADS)

    Das, Debarchan; Gupta, Ritu; Bhattacharyya, A.; Biswas, P. K.; Adroja, D. T.; Hossain, Z.

    2018-05-01

    The superconducting gap structure of a charge density wave (CDW) superconductor LaPt2Si2 (Tc=1.6 K) having a quasi-two-dimensional crystal structure has been investigated using muon spin rotation/relaxation (μ SR ) measurements in transverse field (TF), zero field (ZF), and longitudinal field (LF) geometries. Rigorous analysis of TF-μ SR spectra in the superconducting state corroborates that the temperature dependence of the effective penetration depth, λL, derived from muon spin depolarization, fits to a two gap s wave model (i.e., s +s wave) suggesting that the Fermi surface contains two gaps of different magnitude rather than an isotropic gap expected for a conventional s wave superconductor. On the other hand, ZF μ SR data do not show any significant change in muon spin relaxation rate above and below the superconducting transition temperature indicating the fact that time-reversal symmetry is preserved in the superconducting state of this material.

  5. Densification of oxide superconductors by hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Tien, J. K.; Borofka, J. C.; Hendrix, B. C.; Caulfield, T.; Reichman, S. H.

    1988-07-01

    Currently, consolidation of high Tc superconductor powders is done by sintering, which is not effective in the reduction of porosity. This work assesses the feasibility of hot isostatic pressing (HIP) to obtain fully dense bulk superconductor using HIP modeling and experimental verification. It is concluded that fully dense YBa2Cu3O7 can be obtained in reasonable times at temperatures down to around 650 °C. The trade-offs between temperature, time, and pressure are examined as well as the effects of powder particle size, powder grain size, and trapped gas pressure. The model has. been verified by experiment under three conditions: 100 MPa HIP at 900 °C for 2 hours, 100 MPa HIP at 750 °C for 2 hours, and sintering at 950 °C for 16 hours. The additional advantages of HIPing oxide superconductors are also discussed.

  6. Topological gapped edge states in fractional quantum Hall-superconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Cook, Ashley; Repellin, Cécile; Regnault, Nicolas; Neupert, Titus

    We propose and implement a numerical setup for studying edge states of fractional quantum Hall droplets with a superconducting instability. We focus on a time-reversal symmetric bilayer fractional quantum Hall system of Laughlin ν = 1 / 3 states. The fully gapped edges carry a topological parafermionic degree of freedom that can encode quantum information protected against local perturbations. We numerically simulate such a system using exact diagonalization by restricting the calculation to the Laughlin quasihole subspace. We study the quantization of the total charge on each edge and show that the ground states are permuted by spin flux insertion and the parafermionic Josephson effect, evidencing their topological nature and the Cooper pairing of fractionalized quasiparticles. The full affiliation for Author 3 is: Laboratoire Pierre Aigrain, Ecole Normale Supérieure-PSL Research University, CNRS, Université Pierre et Marie Curie-Sorbonne Universités, Université Paris Diderot-Sorbonne Paris Cité, 24 rue Lhomond, 75231 Paris.

  7. Winding numbers of nodal points in Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Chichinadze, Dmitry V.; Chubukov, Andrey V.

    2018-03-01

    We analyze the nodal points in multiorbital Fe-based superconductors from a topological perspective. We consider the s+- gap structure with accidental nodes, and the d -wave gap with nodes along the symmetry directions. In both cases, the nodal points can be moved by varying an external parameter, e.g., a degree of interpocket pairing. Eventually, the nodes merge and annihilate via a Lifshitz-type transition. We discuss the Lifshitz transition in Fe-based superconductors from a topological point of view. We show, both analytically and numerically, that the merging nodal points have winding numbers of opposite sign. This is consistent with the general reasoning that the total winding number is a conserved quantity in the Lifshitz transition.

  8. Concealed d -wave pairs in the s ± condensate of iron-based superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Tzen; Coleman, Piers; Schmalian, Jörg

    A central question in iron-based superconductivity is the mechanism by which the paired electrons minimize their strong mutual Coulomb repulsion. In most unconventional superconductors, Coulomb repulsion is minimized through the formation of higher angular momentum Cooper pairs, with Fermi surface nodes in the pair wavefunction. The apparent absence of such nodes in the iron-based superconductors has led to a belief they form an s-wave (s ±) singlet state, which changes sign between the electron and hole pockets. However, the multiorbital nature of these systems opens an alternative possibility. In this paper, we propose a new class of s ± statemore » containing a condensate of d-wave Cooper pairs, concealed by their entanglement with the iron orbitals. By combining the d-wave (L=2) motion of the pairs with the internal angular momenta I =2 of the iron orbitals to make a singlet (J =L+I =0), an s ± superconductor with a nontrivial topology is formed. This scenario allows us to understand the development of octet nodes in potassium-doped Ba 1$-$xK XFe 2As 2 as a reconfiguration of the orbital and internal angular momentum into a high spin (J =L+I =4) state; the reverse transition under pressure into a fully gapped state can then be interpreted as a return to the low-spin singlet. Finally, the formation of orbitally entangled pairs is predicted to give rise to a shift in the orbital content at the Fermi surface, which can be tested via laser-based angle-resolved photoemission spectroscopy.« less

  9. Concealed d -wave pairs in the s ± condensate of iron-based superconductors

    DOE PAGES

    Ong, Tzen; Coleman, Piers; Schmalian, Jörg

    2016-05-02

    A central question in iron-based superconductivity is the mechanism by which the paired electrons minimize their strong mutual Coulomb repulsion. In most unconventional superconductors, Coulomb repulsion is minimized through the formation of higher angular momentum Cooper pairs, with Fermi surface nodes in the pair wavefunction. The apparent absence of such nodes in the iron-based superconductors has led to a belief they form an s-wave (s ±) singlet state, which changes sign between the electron and hole pockets. However, the multiorbital nature of these systems opens an alternative possibility. In this paper, we propose a new class of s ± statemore » containing a condensate of d-wave Cooper pairs, concealed by their entanglement with the iron orbitals. By combining the d-wave (L=2) motion of the pairs with the internal angular momenta I =2 of the iron orbitals to make a singlet (J =L+I =0), an s ± superconductor with a nontrivial topology is formed. This scenario allows us to understand the development of octet nodes in potassium-doped Ba 1$-$xK XFe 2As 2 as a reconfiguration of the orbital and internal angular momentum into a high spin (J =L+I =4) state; the reverse transition under pressure into a fully gapped state can then be interpreted as a return to the low-spin singlet. Finally, the formation of orbitally entangled pairs is predicted to give rise to a shift in the orbital content at the Fermi surface, which can be tested via laser-based angle-resolved photoemission spectroscopy.« less

  10. Concealed d-wave pairs in the s± condensate of iron-based superconductors.

    PubMed

    Ong, Tzen; Coleman, Piers; Schmalian, Jörg

    2016-05-17

    A central question in iron-based superconductivity is the mechanism by which the paired electrons minimize their strong mutual Coulomb repulsion. In most unconventional superconductors, Coulomb repulsion is minimized through the formation of higher angular momentum Cooper pairs, with Fermi surface nodes in the pair wavefunction. The apparent absence of such nodes in the iron-based superconductors has led to a belief they form an s-wave ([Formula: see text]) singlet state, which changes sign between the electron and hole pockets. However, the multiorbital nature of these systems opens an alternative possibility. Here, we propose a new class of [Formula: see text] state containing a condensate of d-wave Cooper pairs, concealed by their entanglement with the iron orbitals. By combining the d-wave ([Formula: see text]) motion of the pairs with the internal angular momenta [Formula: see text] of the iron orbitals to make a singlet ([Formula: see text]), an [Formula: see text] superconductor with a nontrivial topology is formed. This scenario allows us to understand the development of octet nodes in potassium-doped Ba1-x KXFe2As2 as a reconfiguration of the orbital and internal angular momentum into a high spin ([Formula: see text]) state; the reverse transition under pressure into a fully gapped state can then be interpreted as a return to the low-spin singlet. The formation of orbitally entangled pairs is predicted to give rise to a shift in the orbital content at the Fermi surface, which can be tested via laser-based angle-resolved photoemission spectroscopy.

  11. Ultrasonic and elastic properties of Tl- and Hg-Based cuprate superconductors: a review

    NASA Astrophysics Data System (ADS)

    Abd-Shukor, R.

    2018-01-01

    This review is regarding the ultrasonic and elastic properties of Tl- and Hg-based cuprate superconductors. The objectives of this paper were to review the ultrasonic attenuation above the transition temperature ?, and sound velocity and elastic anomalies at ? in the Tl- and Hg-based cuprate superconductors. A discontinuity in the sound velocity and elastic moduli is observed near ? for the Hg-based and other cuprate high temperature superconductor but not the Tl-based superconductor. Ultrasonic attenuation peaks are observed between 200 and 250 K in almost all Tl- and Hg-based cuprate superconductors reported. These peaks were attributed to lattice stepping and oxygen ordering in the Tl-O and Hg-O layers. Some Tl- and Hg-based superconductors show attenuation peak near ?. However, this is not a common feature for the cuprate superconductors. The ultrasonic attenuation decrease rate below ? is slower than that expected from a Bardeen-Cooper-Schrieffer (BCS) and pseudo-gapped superconductor.

  12. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films.

    PubMed

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J

    2016-02-08

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.

  13. Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor.

    PubMed

    He, M Q; Shen, J Y; Petrović, A P; He, Q L; Liu, H C; Zheng, Y; Wong, C H; Chen, Q H; Wang, J N; Law, K T; Sou, I K; Lortz, R

    2016-09-02

    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3.

  14. Pseudogap and proximity effect in the Bi2Te3/Fe1+yTe interfacial superconductor

    PubMed Central

    He, M. Q.; Shen, J. Y.; Petrović, A. P.; He, Q. L.; Liu, H. C.; Zheng, Y.; Wong, C. H.; Chen, Q. H.; Wang, J. N.; Law, K. T.; Sou, I. K.; Lortz, R.

    2016-01-01

    In the interfacial superconductor Bi2Te3/Fe1+yTe, two dimensional superconductivity occurs in direct vicinity to the surface state of a topological insulator. If this state were to become involved in superconductivity, under certain conditions a topological superconducting state could be formed, which is of high interest due to the possibility of creating Majorana fermionic states. We report directional point-contact spectroscopy data on the novel Bi2Te3/Fe1+yTe interfacial superconductor for a Bi2Te3 thickness of 9 quintuple layers, bonded by van der Waals epitaxy to a Fe1+yTe film at an atomically sharp interface. Our data show highly unconventional superconductivity, which appears as complex as in the cuprate high temperature superconductors. A very large superconducting twin-gap structure is replaced by a pseudogap above ~12 K which persists up to 40 K. While the larger gap shows unconventional order parameter symmetry and is attributed to a thin FeTe layer in proximity to the interface, the smaller gap is associated with superconductivity induced via the proximity effect in the topological insulator Bi2Te3. PMID:27587000

  15. Multilayered cuprate superconductor Ba2Ca5Cu6O12(O1-x,Fx) 2 studied by temperature-dependent scanning tunneling microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Sugimoto, Akira; Ekino, Toshikazu; Gabovich, Alexander M.; Sekine, Ryotaro; Tanabe, Kenji; Tokiwa, Kazuyasu

    2017-05-01

    Scanning tunneling microscopy/spectroscopy (STM/STS) measurements were carried out on a multilayered cuprate superconductor Ba2Ca5Cu6O12 (O1 -x,Fx )2. STM topography revealed random spot structures with the characteristic length ≤0.5 nm. The conductance spectra d I /d V (V ) show the coexistence of smaller gaps ΔS and large gaps (pseudogaps) ΔL. The pseudogap-related features in the superconducting state were traced with the spatial resolution of ˜0.07 nm. Here, I and V are the tunnel current and bias voltage, respectively. The temperature, T , dependence of ΔS follows the reduced Bardeen-Cooper-Schrieffer (BCS) dependence. The hallmark ratio 2 ΔS(T =0 ) /kBTc equals to 4.9, which is smaller than those of other cuprate superconductors. Here, Tc is the superconducting critical temperature and kB is the Boltzmann constant. The larger gap ΔL survives in the normal state and even increases with T above Tc. The T dependencies of the spatial distributions for both relevant gaps (Δ map), as well as for each gap separately (ΔS and ΔL), were obtained. From the histogram of Δ map, the averaged gap values were found to be Δ¯S=˜24 meV and Δ¯L=˜79 meV. The smaller gap ΔS shows a spatially homogeneous distribution while the larger gap ΔL is quite inhomogeneous, indicating that rather homogeneous superconductivity coexists with the patchy distributed pseudogap. The spatial variation length ξΔ L of ΔL correlates with the scale of the topography spot structures, being approximately 0.4 nm. This value is considerably smaller than the coherence length of this class of superconductors, suggesting that ΔL is strongly affected by the disorder of the apical O/F.

  16. Quasiparticle interference in multiband superconductors with strong coupling

    NASA Astrophysics Data System (ADS)

    Dutt, A.; Golubov, A. A.; Dolgov, O. V.; Efremov, D. V.

    2017-08-01

    We develop a theory of the quasiparticle interference (QPI) in multiband superconductors based on the strong-coupling Eliashberg approach within the Born approximation. In the framework of this theory, we study dependencies of the QPI response function in the multiband superconductors with the nodeless s -wave superconductive order parameter. We pay special attention to the difference in the quasiparticle scattering between the bands having the same and opposite signs of the order parameter. We show that at the momentum values close to the momentum transfer between two bands, the energy dependence of the quasiparticle interference response function has three singularities. Two of these correspond to the values of the gap functions and the third one depends on both the gaps and the transfer momentum. We argue that only the singularity near the smallest band gap may be used as a universal tool to distinguish between the s++ and s± order parameters. The robustness of the sign of the response function peak near the smaller gap value, irrespective of the change in parameters, in both the symmetry cases is a promising feature that can be harnessed experimentally.

  17. Gap structure in Fe-based superconductors with accidental nodes: The role of hybridization

    NASA Astrophysics Data System (ADS)

    Hinojosa, Alberto; Chubukov, Andrey V.

    2015-06-01

    We study the effects of hybridization between the two electron pockets in Fe-based superconductors with s -wave gap with accidental nodes. We argue that hybridization reconstructs the Fermi surfaces and also induces an additional interpocket pairing component. We analyze how these two effects modify the gap structure by tracing the position of the nodal points of the energy dispersions in the superconducting state. We find three possible outcomes. In the first, the nodes simply shift their positions in the Brillouin zone; in the second, the nodes merge and disappear, in which case the gap function has either equal or opposite signs on the electron pockets; in the third, a new set of nodal points emerges, doubling the original number of nodes.

  18. Thermodynamic properties of Dynes superconductors

    NASA Astrophysics Data System (ADS)

    Herman, František; Hlubina, Richard

    2018-01-01

    The tunneling density of states in dirty s -wave superconductors is often well described by the phenomenological Dynes formula. Recently we have shown that this formula can be derived, within the coherent potential approximation, for superconductors with simultaneously present pair-conserving and pair-breaking impurity scattering. Here we demonstrate that the theory of such so-called Dynes superconductors is thermodynamically consistent. We calculate the specific heat and critical field of the Dynes superconductors, and we show that their gap parameter, specific heat, critical field, and penetration depth exhibit power-law scaling with temperature in the low-temperature limit. We also show that in the vicinity of a coupling-constant-controlled superconductor to normal metal transition, the Homes law is replaced by a different, pair-breaking-dominated scaling law.

  19. Disorder-induced topological phase transitions in two-dimensional spin-orbit coupled superconductors

    PubMed Central

    Qin, Wei; Xiao, Di; Chang, Kai; Shen, Shun-Qing; Zhang, Zhenyu

    2016-01-01

    Normal superconductors with Rashba spin-orbit coupling have been explored as candidate systems of topological superconductors. Here we present a comparative theoretical study of the effects of different types of disorder on the topological phases of two-dimensional Rashba spin-orbit coupled superconductors. First, we show that a topologically trivial superconductor can be driven into a chiral topological superconductor upon diluted doping of isolated magnetic disorder, which close and reopen the quasiparticle gap of the paired electrons in a nontrivial manner. Secondly, the superconducting nature of a topological superconductor is found to be robust against Anderson disorder, but the topological nature is not, converting the system into a topologically trivial state even in the weak scattering limit. These topological phase transitions are distinctly characterized by variations in the topological invariant. We discuss the central findings in connection with existing experiments, and provide new schemes towards eventual realization of topological superconductors. PMID:27991541

  20. Disorder-induced topological phase transitions in two-dimensional spin-orbit coupled superconductors

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Xiao, Di; Chang, Kai; Shen, Shun-Qing; Zhang, Zhenyu

    2016-12-01

    Normal superconductors with Rashba spin-orbit coupling have been explored as candidate systems of topological superconductors. Here we present a comparative theoretical study of the effects of different types of disorder on the topological phases of two-dimensional Rashba spin-orbit coupled superconductors. First, we show that a topologically trivial superconductor can be driven into a chiral topological superconductor upon diluted doping of isolated magnetic disorder, which close and reopen the quasiparticle gap of the paired electrons in a nontrivial manner. Secondly, the superconducting nature of a topological superconductor is found to be robust against Anderson disorder, but the topological nature is not, converting the system into a topologically trivial state even in the weak scattering limit. These topological phase transitions are distinctly characterized by variations in the topological invariant. We discuss the central findings in connection with existing experiments, and provide new schemes towards eventual realization of topological superconductors.

  1. Momentum dependence of the superconducting gap and in-gap states in MgB 2 multiband superconductor

    DOE PAGES

    Mou, Daixiang; Jiang, Rui; Taufour, Valentin; ...

    2015-06-29

    We use tunable laser-based angle-resolved photoemission spectroscopy to study the electronic structure of the multiband superconductor MgB 2. These results form the baseline for detailed studies of superconductivity in multiband systems. We find that the magnitude of the superconducting gap on both σ bands follows a BCS-like variation with temperature with Δ 0 ~ 7meV. Furthermore, the value of the gap is isotropic within experimental uncertainty and in agreement with a pure s-wave pairing symmetry. We observe in-gap states confined to k F of the σ band that occur at some locations of the sample surface. As a result, themore » energy of this excitation, ~ 3 meV, was found to be somewhat larger than the previously reported gap on π Fermi sheet and therefore we cannot exclude the possibility of interband scattering as its origin.« less

  2. Enhanced Andreev reflection in gapped graphene

    NASA Astrophysics Data System (ADS)

    Majidi, Leyla; Zareyan, Malek

    2012-08-01

    We theoretically demonstrate unusual features of superconducting proximity effect in gapped graphene that presents a pseudospin symmetry-broken ferromagnet with a net pseudomagnetization. We find that the presence of a band gap makes the Andreev conductance of graphene superconductor/pseudoferromagnet (S/PF) junction to behave similar to that of a graphene ferromagnet-superconductor junction. The energy gap ΔN can enhance the pseudospin inverted Andreev conductance of S/PF junction to reach a limiting maximum value for ΔN≫μ, which depending on the bias voltage can be larger than the value for the corresponding junction with no energy gap. We further demonstrate a damped-oscillatory behavior for the local density of states of the PF region of S/PF junction and a long-range crossed Andreev reflection process in PF/S/PF structure with antiparallel alignment of pseudomagnetizations of PFs, which confirm that, in this respect, the gapped normal graphene behaves like a ferromagnetic graphene.

  3. STS study on single crystal of noncentrosymmetric superconductor PbTaSe2

    NASA Astrophysics Data System (ADS)

    Ye, Zhiyang; Wu, Rui; Wang, Jihui; Liang, Xuejin; Mao, Hanqing; Zhao, Lingxiao; Chen, Genfu; Pan, Shuheng

    2015-03-01

    We report our low temperature scanning tunneling spectroscopic study on single crystals of noncentrosymmetric superconductor PbTaSe2. On the background of the normal state tunneling spectrum, a superconducting energy gap opens at a temperature below the bulk Tc = 3.7K. At t = 1.4K, the gap magnitude is estimated to be about 1meV. This energy gap is particle-hole symmetry and is homogeneous in space. Extrapolating the low energy part of the spectrum, we find that the low energy part of the gap spectrum is linear like ``V'' shape. We will present the results of the numerical fit with various gap functions of proposed possible pairing symmetry. We will also present our preliminary results of the magnetic field dependence measurement and discuss the implications of these observations.

  4. Ground state, collective mode, phase soliton and vortex in multiband superconductors.

    PubMed

    Lin, Shi-Zeng

    2014-12-10

    This article reviews theoretical and experimental work on the novel physics in multiband superconductors. Multiband superconductors are characterized by multiple superconducting energy gaps in different bands with interaction between Cooper pairs in these bands. The discovery of prominent multiband superconductors MgB2 and later iron-based superconductors, has triggered enormous interest in multiband superconductors. The most recently discovered superconductors exhibit multiband features. The multiband superconductors possess novel properties that are not shared with their single-band counterpart. Examples include: the time-reversal symmetry broken state in multiband superconductors with frustrated interband couplings; the collective oscillation of number of Cooper pairs between different bands, known as the Leggett mode; and the phase soliton and fractional vortex, which are the main focus of this review. This review presents a survey of a wide range of theoretical exploratory and experimental investigations of novel physics in multiband superconductors. A vast amount of information derived from these studies is shown to highlight unusual and unique properties of multiband superconductors and to reveal the challenges and opportunities in the research on the multiband superconductivity.

  5. Equal-Spin Andreev Reflection on Junctions of Spin-Resolved Quantum Hall Bulk State and Spin-Singlet Superconductor.

    PubMed

    Matsuo, Sadashige; Ueda, Kento; Baba, Shoji; Kamata, Hiroshi; Tateno, Mizuki; Shabani, Javad; Palmstrøm, Christopher J; Tarucha, Seigo

    2018-02-22

    The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi. The measured conductance indicates a sub-gap feature and two peaks on the outer side of the sub-gap feature in the QH plateau-transition regime increases. The observed structures can be explained by considering transport with Andreev reflection from two channels, one originating from equal-spin Andreev reflection intermediated by spin-flip processes and second arising from normal Andreev reflection. This result indicates the possibility to induce the superconducting proximity gap in the the QH bulk state, and the possibility for the development of superconducting spintronics in semiconductor devices.

  6. Signature of magnetic-dependent gapless odd frequency states at superconductor/ferromagnet interfaces

    PubMed Central

    Di Bernardo, A.; Diesch, S.; Gu, Y.; Linder, J.; Divitini, G.; Ducati, C.; Scheer, E.; Blamire, M.G.; Robinson, J.W.A.

    2015-01-01

    The theory of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS) explains the stabilization of electron pairs into a spin-singlet, even frequency, state by the formation of an energy gap within which the density of states is zero. At a superconductor interface with an inhomogeneous ferromagnet, a gapless odd frequency superconducting state is predicted, in which the Cooper pairs are in a spin-triplet state. Although indirect evidence for such a state has been obtained, the gap structure and pairing symmetry have not so far been determined. Here we report scanning tunnelling spectroscopy of Nb superconducting films proximity coupled to epitaxial Ho. These measurements reveal pronounced changes to the Nb subgap superconducting density of states on driving the Ho through a metamagnetic transition from a helical antiferromagnetic to a homogeneous ferromagnetic state for which a BCS-like gap is recovered. The results prove odd frequency spin-triplet superconductivity at superconductor/inhomogeneous magnet interfaces. PMID:26329811

  7. Details of the disorder-induced transition between s ± and s ++ states in the two-band model for Fe-based superconductors

    NASA Astrophysics Data System (ADS)

    Shestakov, V. A.; Korshunov, M. M.; Togushova, Yu N.; Efremov, D. V.; Dolgov, O. V.

    2018-07-01

    Irradiation of superconductors with different particles is one of many ways to investigate the effects of disorder. Here we study the disorder-induced transition between s ± and s ++ states in the two-band model for Fe-based superconductors with nonmagnetic impurities. Specifically, we investigate the important question of whether the superconducting gaps during the transition change smoothly or abruptly. We show that the behavior can be of either type and is controlled by the ratio of intraband to interband impurity scattering potentials, and by a parameter σ , that represents scattering strength and ranges from zero (Born approximation) to one (unitary limit). For the pure interband scattering potential and the scattering strength σ ≲ 0.11, the {s}+/- \\to {s}++ transition is accompanied by steep changes in the gaps, while for larger values of σ , the gaps change smoothly. The behavior of the gaps is characterized by steep changes at low temperatures, T< 0.1{T}{{c}0} with T c0 being the critical temperature in the clean limit, otherwise it changes gradually. The critical temperature T c is always a smooth function of the scattering rate in spite of the steep changes in the behavior of the gaps.

  8. Superconducting proximity effect in topological materials

    NASA Astrophysics Data System (ADS)

    Reeg, Christopher R.

    In recent years, there has been a renewed interest in the proximity effect due to its role in the realization of topological superconductivity. In this dissertation, we discuss several results that have been obtained in the field of proximity-induced superconductivity and relate the results to the search for Majorana fermions. First, we show that repulsive electron-electron interactions can induce a non-Majorana zero-energy bound state at the interface between a conventional superconductor and a normal metal. We show that this state is very sensitive to disorder, owing to its lack of topological protection. Second, we show that Rashba spin-orbit coupling, which is one of the key ingredients in engineering a topological superconductor, induces triplet pairing in the proximity effect. When the spin-orbit coupling is strong (i.e., when the characteristic energy scale for spin-orbit coupling is comparable to the Fermi energy), the induced singlet and triplet pairing amplitudes can be comparable in magnitude. Finally, we discuss how the size of the proximity-induced gap, which appears in a low-dimensional material coupled to a superconductor, evolves as the thickness of the (quasi-)low-dimensional material is increased. We show that the induced gap can be comparable to the bulk energy gap of the underlying superconductor in materials that are much thicker than the Fermi wavelength, even in the presence of an interfacial barrier and strong Fermi surface mismatch. This result has important experimental consequences for topological superconductivity, as a sizable gap is required to isolate and detect the Majorana modes.

  9. Reverse process of usual optical analysis of boson-exchange superconductors: impurity effects on s- and d-wave superconductors.

    PubMed

    Hwang, Jungseek

    2015-03-04

    We performed a reverse process of the usual optical data analysis of boson-exchange superconductors. We calculated the optical self-energy from two (MMP and MMP+peak) input model electron-boson spectral density functions using Allen's formula for one normal and two (s- and d-wave) superconducting cases. We obtained the optical constants including the optical conductivity and the dynamic dielectric function from the optical self-energy using an extended Drude model, and finally calculated the reflectance spectrum. Furthermore, to investigate impurity effects on optical quantities we added various levels of impurities (from the clean to the dirty limit) in the optical self-energy and performed the same reverse process to obtain the optical conductivity, the dielectric function, and reflectance. From these optical constants obtained from the reverse process we extracted the impurity-dependent superfluid densities for two superconducting cases using two independent methods (the Ferrel-Glover-Tinkham sum rule and the extrapolation to zero frequency of -ϵ1(ω)ω(2)); we found that a certain level of impurities is necessary to get a good agreement on results obtained by the two methods. We observed that impurities give similar effects on various optical constants of s- and d-wave superconductors; the greater the impurities the more distinct the gap feature and the lower the superfluid density. However, the s-wave superconductor gives the superconducting gap feature more clearly than the d-wave superconductor because in the d-wave superconductors the optical quantities are averaged over the anisotropic Fermi surface. Our results supply helpful information to see how characteristic features of the electron-boson spectral function and the s- and d-wave superconducting gaps appear in various optical constants including raw reflectance spectrum. Our study may help with a thorough understanding of the usual optical analysis process. Further systematic study of experimental data collected at various conditions using the optical analysis process will help to reveal the origin of the mediated boson in the boson-exchange superconductors.

  10. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films

    PubMed Central

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X. J.

    2016-01-01

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors. PMID:26853801

  11. Electron and Cooper-pair transport across a single magnetic molecule explored with a scanning tunneling microscope

    NASA Astrophysics Data System (ADS)

    Brand, J.; Gozdzik, S.; Néel, N.; Lado, J. L.; Fernández-Rossier, J.; Kröger, J.

    2018-05-01

    A scanning tunneling microscope is used to explore the evolution of electron and Cooper-pair transport across single Mn-phthalocyanine molecules adsorbed on Pb(111) from tunneling to contact ranges. Normal-metal as well as superconducting tips give rise to a gradual transition of the Bardeen-Cooper-Schrieffer energy gap in the tunneling range into a zero-energy resonance close to and at contact. Supporting transport calculations show that in the normal-metal-superconductor junctions this resonance reflects the merging of in-gap Yu-Shiba-Rusinov states as well as the onset of Andreev reflection. For the superconductor-superconductor contacts, the zero-energy resonance is rationalized in terms of a finite Josephson current that is carried by phase-dependent Andreev and Yu-Shiba-Rusinov levels.

  12. Orbital selective pairing and gap structures of iron-based superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreisel, Andreas; Andersen, Brian M.; Sprau, P. O.

    We discuss the in uence on spin-fluctuation pairing theory of orbital selective strong correlation effects in Fe-based superconductors, particularly Fe chalcogenide systems. We propose that a key ingredient for an improved itinerant pairing theory is orbital selectivity, i.e., incorporating the reduced coherence of quasiparticles occupying specific orbital states. This modifies the usual spin-fluctuation via suppression of pair scattering processes involving those less coherent states and results in orbital selective Cooper pairing of electrons in the remaining states. We show that this paradigm yields remarkably good agreement with the experimentally observed anisotropic gap structures in both bulk and monolayer FeSe, asmore » well as LiFeAs, indicating that orbital selective Cooper pairing plays a key role in the more strongly correlated iron-based superconductors.« less

  13. Orbital selective pairing and gap structures of iron-based superconductors

    DOE PAGES

    Kreisel, Andreas; Andersen, Brian M.; Sprau, P. O.; ...

    2017-05-08

    We discuss the in uence on spin-fluctuation pairing theory of orbital selective strong correlation effects in Fe-based superconductors, particularly Fe chalcogenide systems. We propose that a key ingredient for an improved itinerant pairing theory is orbital selectivity, i.e., incorporating the reduced coherence of quasiparticles occupying specific orbital states. This modifies the usual spin-fluctuation via suppression of pair scattering processes involving those less coherent states and results in orbital selective Cooper pairing of electrons in the remaining states. We show that this paradigm yields remarkably good agreement with the experimentally observed anisotropic gap structures in both bulk and monolayer FeSe, asmore » well as LiFeAs, indicating that orbital selective Cooper pairing plays a key role in the more strongly correlated iron-based superconductors.« less

  14. Influence of the spatially inhomogeneous gap distribution on the quasiparticle current in c-axis junctions involving d-wave superconductors with charge density waves.

    PubMed

    Ekino, T; Gabovich, A M; Suan Li, Mai; Szymczak, H; Voitenko, A I

    2016-11-09

    The quasiparticle tunnel current J(V) between the superconducting ab-planes along the c-axis and the corresponding conductance [Formula: see text] were calculated for symmetric junctions composed of disordered d-wave layered superconductors partially gapped by charge density waves (CDWs). Here, V is the voltage. Both the checkerboard and unidirectional CDWs were considered. It was shown that the spatial spread of the CDW-pairing strength substantially smears the peculiarities of G(V) appropriate to uniform superconductors. The resulting curves G(V) become very similar to those observed for a number of cuprates in intrinsic junctions, e.g. mesas. In particular, the influence of CDWs may explain the peak-dip-hump structures frequently found for high-T c oxides.

  15. Orbital-selective pairing and superconductivity in iron selenides

    NASA Astrophysics Data System (ADS)

    Nica, Emilian M.; Yu, Rong; Si, Qimiao

    2017-12-01

    An important challenge in condensed matter physics is understanding iron-based superconductors. Among these systems, the iron selenides hold the record for highest superconducting transition temperature and pose especially striking puzzles regarding the nature of superconductivity. The pairing state of the alkaline iron selenides appears to be of d-wave type based on the observation of a resonance mode in neutron scattering, while it seems to be of s-wave type from the nodeless gaps observed everywhere on the Fermi surface. Here we propose an orbital-selective pairing state, dubbed sτ3, as a natural explanation of these disparate properties. The pairing function, containing a matrix τ3 in the basis of 3d-electron orbitals, does not commute with the kinetic part of the Hamiltonian. This dictates the existence of both intraband and interband pairing terms in the band basis. A spin resonance arises from a d-wave-type sign change in the intraband pairing component, whereas the quasiparticle excitation is fully gapped on the FS due to an s-wave-like form factor associated with the addition in quadrature of the intraband and interband pairing terms. We demonstrate that this pairing state is energetically favored when the electron correlation effects are orbitally selective. More generally, our results illustrate how the multiband nature of correlated electrons affords unusual types of superconducting states, thereby shedding new light not only on the iron-based materials but also on a broad range of other unconventional superconductors such as heavy fermion and organic systems.

  16. Electronic structures and superconductivity in LuTE2Si2 phases (TE = d-electron transition metal)

    NASA Astrophysics Data System (ADS)

    Samsel-Czekała, M.; Chajewski, G.; Wiśniewski, P.; Romanova, T.; Hackemer, A.; Gorzelniak, R.; Pikul, A. P.; Kaczorowski, D.

    2018-05-01

    In the course of our search for unconventional superconductors amidst the 1:2:2 phases, we have re-investigated the LuTE2Si2 compounds with TE = Fe, Co, Ni, Ru, Pd and Pt. In this paper, we present the results of our fully relativistic ab initio calculations of the band structures, performed using the full-potential local-orbital code. The theoretical data are supplemented by the results of low-temperature electrical transport and specific heat measurements performed down to 0.35 K. All the materials studied but LuPt2Si2 crystallize with the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm). Their Fermi surfaces exhibit a three-dimensional multi-band character. In turn, the Pt-bearing compound adopts the primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm), and its Fermi surface consists of predominantly quasi-two-dimensional sheets. Bulk superconductivity was found only in LuPd2Si2 and LuPt2Si2 (independent of the structure type and dimensionality of the Fermi surface). The key superconducting characteristics indicate a fully-gapped BCS type character. Though the electronic structure of LuFe2Si2 closely resembles that of the unconventional superconductor YFe2Ge2, this Lu-based silicide exhibits neither superconductivity nor spin fluctuations at least down to 0.35 K.

  17. High-temperature superconductivity using a model of hydrogen bonds.

    PubMed

    Kaplan, Daniel; Imry, Yoseph

    2018-05-29

    Recently, there has been much interest in high-temperature superconductors and more recently in hydrogen-based superconductors. This work offers a simple model that explains the behavior of the superconducting gap based on naive BCS (Bardeen-Cooper-Schrieffer) theory and reproduces most effects seen in experiments, including the isotope effect and [Formula: see text] enhancement as a function of pressure. We show that this is due to a combination of the factors appearing in the gap equation: the matrix element between the proton states and the level splitting of the proton.

  18. Local Measurement of the Penetration Depth in the Pnictide Superconductor Ba(Fe_0.95 Co_0.05)_2 As_2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsushita, Y.

    2010-01-11

    We use magnetic force microscopy (MFM) to measure the local penetration depth {lambda} in Ba(Fe{sub 0.95}Co{sub 0.05}){sub 2}As{sub 2} single crystals and use scanning SQUID susceptometry to measure its temperature variation down to 0.4 K. We observe that superfluid density {rho}{sub s} over the full temperature range is well described by a clean two-band fully gapped model. We demonstrate that MFM can measure the important and hard-to-determine absolute value of {lambda}, as well as obtain its temperature dependence and spatial homogeneity. We find {rho}{sub s} to be uniform on the submicron scale despite the highly disordered vortex pinning.

  19. Improvement in trapped fields by stacking bulk superconductors

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Wongsatanawarid, A.; Seki, H.; Murakami, M.

    2009-10-01

    We studied the effects of stacking several bulk superconductor blocks on the field trapping properties. In order to avoid the detrimental effects of the bottom deteriorated parts, bulk Dy-Ba-Cu-O superconductors 45 mm in diameter and 10 mm in thickness were cut from the top parts of as-grown bulk blocks of 25 mm diameter. We stacked the superconductors and measured the field distribution as a function of the gap. The trapped field measurements were performed by field-cooling the samples inserted in between two permanent magnets with liquid nitrogen. It was found that the trapped field values are almost doubled when the number of stacked bulk superconductors increased from two to three. The present results clearly show that one can expect beneficial effects of increasing the ratio of the height to the diameter even in bulk high temperature superconductors.

  20. Sensitivity of gap symmetry to an incipient band: Application to iron based superconductors

    NASA Astrophysics Data System (ADS)

    Mishra, Vivek; Scalapino, Douglas; Maier, Thomas

    Observation of high temperature superconductivity in iron-based superconductors with a submerged hole band has attracted wide interest. A spin fluctuation mediated pairing mechanism has been proposed as a possible explanation for the high transition temperatures observed in these systems. Here we discuss the importance of the submerged band in the context of the gap symmetry. We show that the incipient band can lead to an attractive pairing interaction and thus have significant effects on the pairing symmetry. We propose a framework to include the effect of the incipient band in the standard multi-orbital spin-fluctuation theories which are widely used for studying various iron-based superconductors. Research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  1. Doping-evolution of the superconducting gap in single crystals of (Ca 1-x La x ) 10 (Pt 3 As 8 )(Fe 2 As 2 ) 5 superconductor from London penetration depth measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, K.; Tanatar, M. A.; Ni, N.

    2014-09-19

    The doping-evolution of the superconducting gap structure in iron-based superconductor (Ca 1-xLax)10(Pt3As8)(Fe2As2)5(x = 0.04, 0.06, 0.09, 0.11, and 0.18) was probed by high-resolution measurements of the London penetration depth, λ(T). The samples spanned compositions from underdoped to slightly overdoped with superconducting critical temperatures, Tc, from 12.7 K (x = 0.04) through (optimal) 23.3 K (x = 0.11) to 21.9 K (x = 0.18). The low-temperature variation (up to 0.3 Tc ) of λ(T) was analysed using a power-law function, Δλ = ATn. For compositions close to the optimal doping, (x = 0.09, 0.11, and 0.18), characterized by Tc > 20K,more » Δλ(T) shows a tendency to saturation, indicative of a full gap on the Fermi surface. Fitting over the lowest temperature range (T < 0.1 Tc) gives n = 2.6. This value is well outside the range 1 ≤ n ≤ 2 expected for the line-nodal superconductor. The exponent n decreased to n ~ 2 in the two most underdoped compositions x = 0.04 (Tc = 12.7 K) and 0.06 (Tc = 18.2 K), implying the development of a notable gap anisotropy revealed by the enhanced influence of pair-breaking scattering. This decrease is accompanied by a significant increase of the total variation of the penetration depth Δλ in a fixed temperature interval (e.g., Tmin - 0.3Tc). Both the decrease of the exponent and the increase of the absolute value of Δλ in the underdoped regime are similar to the observations in other charge-doped iron-based superconductors, such as doped BaFe2As2 and NaFeAs, suggesting a universal behavior in iron-based superconductors.« less

  2. Spectroscopy of Magnetic Excitations in Magnetic Superconductors Using Vortex Motion

    NASA Astrophysics Data System (ADS)

    Bulaevskii, L. N.; Hruška, M.; Maley, M. P.

    2005-11-01

    In magnetic superconductors a moving vortex lattice is accompanied by an ac magnetic field which leads to the generation of spin waves. At resonance conditions the dynamics of vortices in magnetic superconductors changes drastically, resulting in strong peaks in the dc I-V characteristics at voltages at which the washboard frequency of the vortex lattice matches the spin wave frequency ωs(g), where g are the reciprocal vortex lattice vectors. We show that if the washboard frequency lies above the magnetic gap, measurement of the I-V characteristics provides a new method to obtain information on the spectrum of magnetic excitations in borocarbides and cuprate layered magnetic superconductors.

  3. Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor

    PubMed Central

    Guguchia, Z.; Amato, A.; Kang, J.; Luetkens, H.; Biswas, P. K.; Prando, G.; von Rohr, F.; Bukowski, Z.; Shengelaya, A.; Keller, H.; Morenzoni, E.; Fernandes, Rafael M.; Khasanov, R.

    2015-01-01

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. In contrast to other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba0.65Rb0.35Fe2As2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant. More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap. PMID:26548650

  4. Direct evidence for a pressure-induced nodal superconducting gap in the Ba 0.65Rb 0.35Fe 2As 2 superconductor

    DOE PAGES

    Guguchia, Z.; Amato, A.; Kang, J.; ...

    2015-11-09

    The superconducting gap structure in iron-based high-temperature superconductors (Fe-HTSs) is non-universal. Contrasting with other unconventional superconductors, in the Fe-HTSs both d-wave and extended s-wave pairing symmetries are close in energy. Probing the proximity between these very different superconducting states and identifying experimental parameters that can tune them is of central interest. Here we report high-pressure muon spin rotation experiments on the temperature-dependent magnetic penetration depth in the optimally doped nodeless s-wave Fe-HTS Ba 0.65Rb 0.35Fe 2As 2. Upon pressure, a strong decrease of the penetration depth in the zero-temperature limit is observed, while the superconducting transition temperature remains nearly constant.more » More importantly, the low-temperature behaviour of the inverse-squared magnetic penetration depth, which is a direct measure of the superfluid density, changes qualitatively from an exponential saturation at zero pressure to a linear-in-temperature behaviour at higher pressures, indicating that hydrostatic pressure promotes the appearance of nodes in the superconducting gap.« less

  5. Signature of multigap nodeless superconductivity in CaKFe4As4

    NASA Astrophysics Data System (ADS)

    Biswas, P. K.; Iyo, A.; Yoshida, Y.; Eisaki, H.; Kawashima, K.; Hillier, A. D.

    2017-04-01

    A newly discovered family of high-Tc Fe-based superconductors, AeA Fe4As4 (Ae=Ca , Sr, Eu and A =K , Rb, Cs), offers further opportunities to understand unconventional superconductivity in these materials. In this Rapid Communication, we report on the superconducting and magnetic properties of CaKFe4As4 , studied using muon spectroscopy. Zero-field muon spin relaxation studies carried out on the CaKFe4As4 superconductor do not show any detectable magnetic anomaly at Tc or below, implying that time-reversal symmetry is preserved in the superconducting ground state. The temperature dependence of the superfluid density of CaKFe4As4 is found to be compatible with a two-gap s +s -wave model with gap values of 8.6(4) and 2.5(3) meV, similar to the other Fe-based superconductors. The presence of two superconducting energy gaps is consistent with theoretical and other experimental studies on this material. The value of the penetration depth at T =0 K has been determined as 289 (22 ) nm.

  6. Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoyan, E-mail: xshi@sandia.gov; Pan, W.; Hawkins, S. D.

    2015-10-07

    Superconductivity in topological materials has attracted a great deal of interest in both electron physics and material sciences since the theoretical predictions that Majorana fermions can be realized in topological superconductors. Topological superconductivity could be realized in a type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a conventional superconductor. Here, we report observations of the proximity effect induced giant supercurrent states in an InAs/GaSb bilayer system that is sandwiched between two superconducting tantalum electrodes to form a superconductor-InAs/GaSb-superconductor junction. Electron transport results show that the supercurrent states can be preserved in a surprisingly large temperature-magnetic fieldmore » (T – H) parameter space. In addition, the evolution of differential resistance in T and H reveals an interesting superconducting gap structure.« less

  7. Disorder-induced half-integer quantized conductance plateau in quantum anomalous Hall insulator-superconductor structures

    NASA Astrophysics Data System (ADS)

    Huang, Yingyi; Setiawan, F.; Sau, Jay D.

    2018-03-01

    A weak superconducting proximity effect in the vicinity of the topological transition of a quantum anomalous Hall system has been proposed as a venue to realize a topological superconductor (TSC) with chiral Majorana edge modes (CMEMs). A recent experiment [Science 357, 294 (2017), 10.1126/science.aag2792] claimed to have observed such CMEMs in the form of a half-integer quantized conductance plateau in the two-terminal transport measurement of a quantum anomalous Hall-superconductor junction. Although the presence of a superconducting proximity effect generically splits the quantum Hall transition into two phase transitions with a gapped TSC in between, in this Rapid Communication we propose that a nearly flat conductance plateau, similar to that expected from CMEMs, can also arise from the percolation of quantum Hall edges well before the onset of the TSC or at temperatures much above the TSC gap. Our Rapid Communication, therefore, suggests that, in order to confirm the TSC, it is necessary to supplement the observation of the half-quantized conductance plateau with a hard superconducting gap (which is unlikely for a disordered system) from the conductance measurements or the heat transport measurement of the transport gap. Alternatively, the half-quantized thermal conductance would also serve as a smoking-gun signature of the TSC.

  8. Extension of the N-point Padé approximants solution of the Eliashberg equations to T ˜ T c

    NASA Astrophysics Data System (ADS)

    Leavens, C. R.; Ritchie, D. S.

    1985-01-01

    Vidberg and Serene introduced a very useful technique for calculating the low temperature (T « T c) gap function of a superconductor which bypasses the real-frequency singular integral equations of Eliashberg. Blashke and Blocksdorf recognized and resolved a difficulty with the technique thereby extending it to higher temperatures. We present a much simpler method of doing essentially the same thing and, for a strong-coupling superconductor at a temperature near T c, compare the gap functions calculated using these methods with the accurate one computed directly from the real-frequency equations.

  9. Magnetic exchange coupling through superconductors: A trilayer study

    NASA Astrophysics Data System (ADS)

    Sá de Melo, C. A.

    2000-11-01

    The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.

  10. Tunnelling spectroscopy of gate-induced superconductivity in MoS2

    NASA Astrophysics Data System (ADS)

    Costanzo, Davide; Zhang, Haijing; Reddy, Bojja Aditya; Berger, Helmuth; Morpurgo, Alberto F.

    2018-06-01

    The ability to gate-induce superconductivity by electrostatic charge accumulation is a recent breakthrough in physics and nanoelectronics. With the exception of LaAlO3/SrTiO3 interfaces, experiments on gate-induced superconductors have been largely confined to resistance measurements, which provide very limited information about the superconducting state. Here, we explore gate-induced superconductivity in MoS2 by performing tunnelling spectroscopy to determine the energy-dependent density of states (DOS) for different levels of electron density n. In the superconducting state, the DOS is strongly suppressed at energy smaller than the gap Δ, which is maximum (Δ 2 meV) for n of 1 × 1014 cm-2 and decreases monotonously for larger n. A perpendicular magnetic field B generates states at E < Δ that fill the gap, but a 20% DOS suppression of superconducting origin unexpectedly persists much above the transport critical field. Conversely, an in-plane field up to 10 T leaves the DOS entirely unchanged. Our measurements exclude that the superconducting state in MoS2 is fully gapped and reveal the presence of a DOS that vanishes linearly with energy, the explanation of which requires going beyond a conventional, purely phonon-driven Bardeen-Cooper-Schrieffer mechanism.

  11. Hour-glass magnetic excitations induced by nanoscopic phase separation in cobalt oxides.

    PubMed

    Drees, Y; Li, Z W; Ricci, A; Rotter, M; Schmidt, W; Lamago, D; Sobolev, O; Rütt, U; Gutowski, O; Sprung, M; Piovano, A; Castellan, J P; Komarek, A C

    2014-12-23

    The magnetic excitations in the cuprate superconductors might be essential for an understanding of high-temperature superconductivity. In these cuprate superconductors the magnetic excitation spectrum resembles an hour-glass and certain resonant magnetic excitations within are believed to be connected to the pairing mechanism, which is corroborated by the observation of a universal linear scaling of superconducting gap and magnetic resonance energy. So far, charge stripes are widely believed to be involved in the physics of hour-glass spectra. Here we study an isostructural cobaltate that also exhibits an hour-glass magnetic spectrum. Instead of the expected charge stripe order we observe nano phase separation and unravel a microscopically split origin of hour-glass spectra on the nano scale pointing to a connection between the magnetic resonance peak and the spin gap originating in islands of the antiferromagnetic parent insulator. Our findings open new ways to theories of magnetic excitations and superconductivity in cuprate superconductors.

  12. Nodal-line pairing with 1D-3D coupled Fermi surfaces: A model motivated by Cr-based superconductors

    NASA Astrophysics Data System (ADS)

    Wachtel, Gideon; Kim, Yong Baek

    2016-09-01

    Motivated by the recent discovery of a new family of chromium-based superconductors, we consider a two-band model, where a band of electrons dispersing only in one direction interacts with a band of electrons dispersing in all three directions. Strong 2 kf density fluctuations in the one-dimensional band induces attractive interactions between the three-dimensional electrons, which, in turn, makes the system superconducting. Solving the associated Eliashberg equations, we obtain a gap function which is peaked at the "poles" of the three-dimensional Fermi sphere, and decreases towards the "equator." When strong enough local repulsion is included, the gap actually changes sign around the equator and nodal rings are formed. These nodal rings manifest themselves in several experimentally observable quantities, some of which resemble unconventional observations in the newly discovered superconductors which motivated this work.

  13. Noncontact Measurement Of Critical Current In Superconductor

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Critical current measured indirectly via flux-compression technique. Magnetic flux compressed into gap between superconductive hollow cylinder and superconductive rod when rod inserted in hole in cylinder. Hall-effect probe measures flux density before and after compression. Method does not involve any electrical contact with superconductor. Therefore, does not cause resistive heating and consequent premature loss of superconductivity.

  14. Specific heat of Nb{sub 3}Sn: The case for a single gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, Y. J., E-mail: jophy@knu.ac.kr; Zhou, Jian; Sung, Zu Hawn

    2014-10-01

    The important influence of multiple gaps in the superconductivity of MgB{sub 2} and Fe-based compounds, especially because of the possibility that manipulation of a second gap can significantly raise the upper critical field H{sub c2}, has refocused attention on Nb{sub 3}Sn because anomalies in both specific heat and point-contact tunneling studies have led to the proposal that Nb{sub 3}Sn is also a two-gap superconductor. Here, we search for evidence of the second gap in a careful study of the influence of the homogenization temperature on the sample uniformity. We show that it is very difficult to fabricate samples that aremore » both homogeneous and stoichiometric. We find so-called “second-gap” anomalies disappear only after high temperature and long-term annealing. Such a well-annealed sample shows only a strong, electron-phonon-coupled, single-gap behavior. In contrast, samples reacted and annealed at lower temperatures, as in the earlier two-gap studies, show small chemical composition variations of the A15 phase. We propose that the second gap sightings are actually due to variation of T{sub c} within very difficult-to-fully homogenize samples. A curiosity of the A15 Nb{sub 3}Sn phase is that almost any mixture of Nb and Sn tries to form a stoichiometric A15 composition, but the residue of course contains off-stoichiometric A15, Nb, and other phases when the Nb:Sn ratio departs from the true 3:1 stoichiometry.« less

  15. Contact spectroscopy of high-temperature superconductors (Review). I - Physical and methodological principles of the contact spectroscopy of high-temperature superconductors. Experimental results for La(2-x)Sr(x)CuO4 and their discussion

    NASA Astrophysics Data System (ADS)

    Ianson, I. K.

    1991-03-01

    Research in the field of high-temperature superconductors based on methods of tunneling and microcontact spectroscopy is reviewed in a systematic manner. The theoretical principles of the methods are presented, and various types of contacts are described and classified. Attention is given to deviations of the measured volt-ampere characteristics from those predicted by simple theoretical models and those observed for conventional superconductors. Results of measurements of the energy gap and fine structure of volt ampere characteristic derivatives are presented for La(2-x)Sr(x)CuO4.

  16. The Pressure Coefficients of the Superconducting Order Parameters at the Ground State of Ferromagnetic Superconductors

    NASA Astrophysics Data System (ADS)

    Konno, R.; Hatayama, N.; Chaudhury, R.

    2014-04-01

    We investigated the pressure coefficients of the superconducting order parameters at the ground state of ferromagnetic superconductors based on the microscopic single band model by Linder et al. The superconducting gaps (i) similar to the ones seen in the thin film of A2 phase in liquid 3He and (ii) with the line node were used. This study shows that we would be able to estimate the pressure coefficients of the superconducting and magnetic order parameters at the ground state of ferromagnetic superconductors.

  17. Suppression of the "Quasiclassical" proximity gap in correlated-metal--superconductor structures.

    PubMed

    Nikolić, Branislav K; Freericks, J K; Miller, P

    2002-02-18

    We study the energy and spatial dependence of the local density of states in a superconductor--correlated-metal--superconductor Josephson junction, where the correlated metal is a non-Fermi liquid (described by the Falicov-Kimball model). Many-body correlations are treated with dynamical mean-field theory, extended to inhomogeneous systems. While quasiclassical theories predict a minigap in the spectrum of a disordered Fermi liquid which is proximity-coupled within a mesoscopic junction, we find that increasing electron correlations destroy any minigap that might be opened in the absence of many-body correlations.

  18. Unusual nodal behaviors of the superconducting gap in the iron-based superconductor Ba ( F e 0.65 R u 0.35 ) 2 A s 2 : Effects of spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, L.; Okazaki, K.; Yoshida, T.

    Here we have investigated the superconducting (SC) gap on hole Fermi surfaces (FSs) of optimally substituted Ba (Fe 0.65 Ru 0.35) 2 As 2 by angle-resolved photoemission spectroscopy (APRES) using bulk-sensitive 7 eV laser and synchrotron radiation. It was found that, whereas the gap is isotropic in the k x - k y plane, the gap magnitudes of two resolved hole FSs show similar k z dependences and decrease as k z approaches ~ 2 π/c (i.e., around the Z point), unlike the other Fe-based superconductors reported so far, where the SC gap of only one hole FS shows amore » strong k z dependence. This unique gap structure can be understood in the scenario that the d z₂ orbital character is mixed into both hole FSs due to finite spin-orbit coupling (SOC) and is reproduced by calculation within the random phase approximation including the SOC.« less

  19. Unusual nodal behaviors of the superconducting gap in the iron-based superconductor Ba ( F e 0.65 R u 0.35 ) 2 A s 2 : Effects of spin-orbit coupling

    DOE PAGES

    Liu, L.; Okazaki, K.; Yoshida, T.; ...

    2017-03-06

    Here we have investigated the superconducting (SC) gap on hole Fermi surfaces (FSs) of optimally substituted Ba (Fe 0.65 Ru 0.35) 2 As 2 by angle-resolved photoemission spectroscopy (APRES) using bulk-sensitive 7 eV laser and synchrotron radiation. It was found that, whereas the gap is isotropic in the k x - k y plane, the gap magnitudes of two resolved hole FSs show similar k z dependences and decrease as k z approaches ~ 2 π/c (i.e., around the Z point), unlike the other Fe-based superconductors reported so far, where the SC gap of only one hole FS shows amore » strong k z dependence. This unique gap structure can be understood in the scenario that the d z₂ orbital character is mixed into both hole FSs due to finite spin-orbit coupling (SOC) and is reproduced by calculation within the random phase approximation including the SOC.« less

  20. Observation of the Gap Distribution on Multi-layered Cuprate Superconductor Ba2Ca4Cu5O10(O1-x, Fx)2 by STM/STS

    NASA Astrophysics Data System (ADS)

    Sugimoto, Akira; Ekino, Toshikazu; Tanaka, Katsuhiro; Mineta, Kyohei; Tanabe, Kenji; Tokiwa, Kazuyasu

    The nano-scale spatial gap distributions on apical-fluorine multi-layered cuprate superconductors Ba2Ca4Cu5O10(O1-x, Fx) (F0245, Tc = 70 K) are investigated by scanning tunneling microscopy/spectroscopy (STM/STS). The STM image shows randomly-distributed bright spot structures, which are assigned to the non-replaced apical oxygen. The dI/dV tunnel spectra show the coexistence of two kinds of the gap structures. The magnitudes of these gaps at 4.9 K are about ΔS ∼25 meV and ΔL ∼78 meV, respectively. The ΔL map shows the inhomogeneous distribution with the characteristic length of ∼1 nm. The smaller ΔL gap regions tend to locate at the bright-spot positions, indicating that the apical oxygen causes reduction of ΔL. These results are consistent with the well known relation between the carrier doping level and macroscopically observed gap size.

  1. Scrutinizing the double superconducting gaps and strong coupling pairing in (Li1−xFex)OHFeSe

    PubMed Central

    Du, Zengyi; Yang, Xiong; Lin, Hai; Fang, Delong; Du, Guan; Xing, Jie; Yang, Huan; Zhu, Xiyu; Wen, Hai-Hu

    2016-01-01

    In the field of iron-based superconductors, one of the frontier studies is about the pairing mechanism. The recently discovered (Li1−xFex)OHFeSe superconductor with the transition temperature of about 40 K provides a good platform to check the origin of double superconducting gaps and high transition temperature in the monolayer FeSe thin film. Here we report a scanning tunnelling spectroscopy study on the (Li1−xFex)OHFeSe single crystals. The tunnelling spectrum mimics that of the monolayer FeSe thin film and shows double gaps at about 14.3 and 8.6 meV. Further analysis based on the quasiparticle interference allows us to rule out the d-wave gap, and for the first time assign the larger (smaller) gap to the outer (inner) Fermi pockets (after folding) associating with the dxy (dxz/dyz) orbitals, respectively. The gap ratio amounts to 8.7, which demonstrates the strong coupling mechanism in the present superconducting system. PMID:26822281

  2. Dominant Majorana bound energy and critical current enhancement in ferromagnetic-superconducting topological insulator

    NASA Astrophysics Data System (ADS)

    Khezerlou, Maryam; Goudarzi, Hadi; Asgarifar, Samin

    2017-03-01

    Among the potential applications of topological insulators, we theoretically study the coexistence of proximity-induced ferromagnetic and superconducting orders in the surface states of a 3-dimensional topological insulator. The superconducting electron-hole excitations can be significantly affected by the magnetic order induced by a ferromagnet. In one hand, the surface state of the topological insulator, protected by the time-reversal symmetry, creates a spin-triplet and, on the other hand, magnetic order causes to renormalize the effective superconducting gap. We find Majorana mode energy along the ferromagnet/superconductor interface to sensitively depend on the magnitude of magnetization m zfs from superconductor region, and its slope around perpendicular incidence is steep with very low dependency on m zfs . The superconducting effective gap is renormalized by a factor η( m zfs ), and Andreev bound state in ferromagnet-superconductor/ferromagnet/ferromagnet-superconductor (FS/F/FS) Josephson junction is more sensitive to the magnitude of magnetizations of FS and F regions. In particular, we show that the presence of m zfs has a noticeable impact on the gap opening in Andreev bound state, which occurs in finite angle of incidence. This directly results in zero-energy Andreev state being dominant. By introducing the proper form of corresponding Dirac spinors for FS electron-hole states, we find that via the inclusion of m zfs , the Josephson supercurrent is enhanced and exhibits almost abrupt crossover curve, featuring the dominant zero-energy Majorana bound states.

  3. Topological superconductivity in an ultrathin, magnetically-doped topological insulator proximity coupled to a conventional superconductor

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Philip, Timothy M.; Park, Moon Jip; Gilbert, Matthew J.

    2016-12-01

    As a promising candidate system to realize topological superconductivity, the system of a 3D topological insulator (TI) grown on top of the s -wave superconductor has been extensively studied. To access the topological superconductivity experimentally, the 3D TI sample must be thin enough to allow for Cooper pair tunneling to the exposed surface of TI. The use of magnetically ordered dopants to break time-reversal symmetry may allow the surface of a TI to host Majorana fermion, which are believed to be a signature of topological superconductivity. In this work, we study a magnetically-doped thin film TI-superconductor hybrid system. Considering the proximity induced order parameter in thin film of TI, we analyze the gap closing points of the Hamiltonian and draw the phase diagram as a function of relevant parameters: the hybridization gap, Zeeman energy, and chemical potential of the TI system. Our findings provide a useful guide in choosing relevant parameters to facilitate the observation of topological superconductivity in thin film TI-superconductor hybrid systems. In addition, we further perform numerical analysis on a TI proximity coupled to an s -wave superconductor and find that, due to the spin-momentum locked nature of the surface states in TI, the induced s -wave order parameter of the surface states persists even at large magnitude of the Zeeman energy.

  4. Electronic evidence of an insulator-superconductor crossover in single-layer FeSe/SrTiO3 films.

    PubMed

    He, Junfeng; Liu, Xu; Zhang, Wenhao; Zhao, Lin; Liu, Defa; He, Shaolong; Mou, Daixiang; Li, Fangsen; Tang, Chenjia; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2014-12-30

    In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic bad metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. No evidence of doping-induced insulator-superconductor transition (or crossover) has been reported in the iron-based compounds so far. Here, we report an electronic evidence of an insulator-superconductor crossover observed in the single-layer FeSe film grown on a SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with increasing carrier concentration. In particular, the insulator-superconductor crossover in FeSe/SrTiO3 film exhibits similar behaviors to that observed in the cuprate superconductors. Our results suggest that the observed insulator-superconductor crossover may be associated with the two-dimensionality that enhances electron localization or correlation. The reduced dimensionality and the interfacial effect provide a new pathway in searching for new phenomena and novel superconductors with a high transition temperature.

  5. Electronic evidence of an insulator–superconductor crossover in single-layer FeSe/SrTiO3 films

    PubMed Central

    He, Junfeng; Liu, Xu; Zhang, Wenhao; Zhao, Lin; Liu, Defa; He, Shaolong; Mou, Daixiang; Li, Fangsen; Tang, Chenjia; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X. J.

    2014-01-01

    In high-temperature cuprate superconductors, it is now generally agreed that superconductivity is realized by doping an antiferromagnetic Mott (charge transfer) insulator. The doping-induced insulator-to-superconductor transition has been widely observed in cuprates, which provides important information for understanding the superconductivity mechanism. In the iron-based superconductors, however, the parent compound is mostly antiferromagnetic bad metal, raising a debate on whether an appropriate starting point should go with an itinerant picture or a localized picture. No evidence of doping-induced insulator–superconductor transition (or crossover) has been reported in the iron-based compounds so far. Here, we report an electronic evidence of an insulator–superconductor crossover observed in the single-layer FeSe film grown on a SrTiO3 substrate. By taking angle-resolved photoemission measurements on the electronic structure and energy gap, we have identified a clear evolution of an insulator to a superconductor with increasing carrier concentration. In particular, the insulator–superconductor crossover in FeSe/SrTiO3 film exhibits similar behaviors to that observed in the cuprate superconductors. Our results suggest that the observed insulator–superconductor crossover may be associated with the two-dimensionality that enhances electron localization or correlation. The reduced dimensionality and the interfacial effect provide a new pathway in searching for new phenomena and novel superconductors with a high transition temperature. PMID:25502774

  6. Higgs amplitude mode in the BCS superconductors Nb1-xTi(x)N induced by terahertz pulse excitation.

    PubMed

    Matsunaga, Ryusuke; Hamada, Yuki I; Makise, Kazumasa; Uzawa, Yoshinori; Terai, Hirotaka; Wang, Zhen; Shimano, Ryo

    2013-08-02

    Ultrafast responses of BCS superconductor Nb(1-x)Ti(x)N films in a nonadiabatic excitation regime were investigated by using terahertz (THz) pump-THz probe spectroscopy. After an instantaneous excitation with the monocycle THz pump pulse, a transient oscillation emerges in the electromagnetic response in the BCS gap energy region. The oscillation frequency coincides with the asymptotic value of the BCS gap energy, indicating the appearance of the theoretically anticipated collective amplitude mode of the order parameter, namely the Higgs amplitude mode. Our result opens a new pathway to the ultrafast manipulation of the superconducting order parameter by optical means.

  7. Superconducting gap in cuprate high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeev K.; Kumari, Anita; Gupta, Anushri; Indu, B. D.

    2018-05-01

    The many body quantum dynamical evaluation of double time thermodynamic electron Green's functions followed by generalized electron density of states (EDOS) is used to study the superconducting gap (SG). The dependence of EDOS on defects, anharmonicity and electron-phonon interactions makes the problem quite complicated and challenging but furnishes the more realistic grounds to study the SG both in conventional and high temperature superconductors (HTS). For simplicity, only electron-phonon interaction has been taken up to evaluate the intricate integral to enumerate the SG for representative cuprate HTS: YBa2Cu3O7-δ and results show 2Δ/kBTc ⋍ 7.2.

  8. Directed motion of vortices and annihilation of vortex-antivortex pairs in finite-gap superconductors via hot-lattice routes

    NASA Astrophysics Data System (ADS)

    Gulian, Ellen D.; Melkonyan, Gurgen G.; Gulian, Armen M.

    2017-07-01

    Using finite gap, time-dependent Ginzburg-Landau equations, generalized to include non-thermal phonons, we report numerical simulations of vortex nucleation, propagation, and annihilation in thin, finite strips of magnetic-impurity free, perfectly homogeneous superconductors. When a steady electric current passes through the strip with either surface defects or nonequilibrium phonon sources (e.g., local ;hotspots;), periodic vortex generation and annihilation is observed even in the absence of external magnetic fields. Local pulses of electric field are produced upon annihilation. The injected phonon lines steer the vortices during their motion within the strip, potentially allowing control of the annihilation site.

  9. Unconventional superconductivity in Y5Rh6Sn18 probed by muon spin relaxation

    PubMed Central

    Bhattacharyya, Amitava; Adroja, Devashibhai; Kase, Naoki; Hillier, Adrian; Akimitsu, Jun; Strydom, Andre

    2015-01-01

    Conventional superconductors are robust diamagnets that expel magnetic fields through the Meissner effect. It would therefore be unexpected if a superconducting ground state would support spontaneous magnetics fields. Such broken time-reversal symmetry states have been suggested for the high—temperature superconductors, but their identification remains experimentally controversial. We present magnetization, heat capacity, zero field and transverse field muon spin relaxation experiments on the recently discovered caged type superconductor Y5Rh6Sn18 ( TC= 3.0 K). The electronic heat capacity of Y5Rh6Sn18 shows a T3 dependence below Tc indicating an anisotropic superconducting gap with a point node. This result is in sharp contrast to that observed in the isostructural Lu5Rh6Sn18 which is a strong coupling s—wave superconductor. The temperature dependence of the deduced superfluid in density Y5Rh6Sn18 is consistent with a BCS s—wave gap function, while the zero-field muon spin relaxation measurements strongly evidences unconventional superconductivity through a spontaneous appearance of an internal magnetic field below the superconducting transition temperature, signifying that the superconducting state is categorized by the broken time-reversal symmetry. PMID:26286229

  10. Quasiparticle conductance-voltage characteristics for break junctions involving d-wave superconductors: charge-density-wave effects.

    PubMed

    Ekino, T; Gabovich, A M; Suan Li, Mai; Szymczak, H; Voitenko, A I

    2017-12-20

    Quasiparticle tunnel conductance-voltage characteristics (CVCs), [Formula: see text], were calculated for break junctions (BJs) made up of layered d-wave superconductors partially gapped by charge-density waves (CDWs). The current is assumed to flow in the ab-plane of electrodes. The influence of CDWs is analyzed by comparing the resulting CVCs with CVCs calculated for BJs made up of pure d-wave superconductors with relevant parameters. The main CDW-effects were found to be the appearance of new CVC peculiarities and the loss of CVC symmetry with respect to the V-sign. Tunnel directionality was shown to be one of the key factors in the formation of [Formula: see text] dependences. In particular, the orientation of electrodes with respect to the current channel becomes very important. As a result, [Formula: see text] can acquire a large variety of forms similar to those for tunnel junctions between superconductors with s-wave, d-wave, and mixed symmetry of their order parameters. The diversity of peculiarities is especially striking at finite temperatures. In the case of BJs made up of pure d-wave superconductors, the resulting CVC can include a two-peak gap-driven structure. The results were compared with the experimental BJ data for a number of high-T c oxides. It was shown that the large variety of the observed current-voltage characteristics can be interpreted in the framework of our approach. Thus, quasiparticle tunnel currents in the ab-plane can be used as an additional mean to detect CDWs competing with superconductivity in cuprates or other layered superconductors.

  11. Quasiparticle conductance-voltage characteristics for break junctions involving d-wave superconductors: charge-density-wave effects

    NASA Astrophysics Data System (ADS)

    Ekino, T.; Gabovich, A. M.; Li, Mai Suan; Szymczak, H.; Voitenko, A. I.

    2017-12-01

    Quasiparticle tunnel conductance-voltage characteristics (CVCs), G(V) , were calculated for break junctions (BJs) made up of layered d-wave superconductors partially gapped by charge-density waves (CDWs). The current is assumed to flow in the ab-plane of electrodes. The influence of CDWs is analyzed by comparing the resulting CVCs with CVCs calculated for BJs made up of pure d-wave superconductors with relevant parameters. The main CDW-effects were found to be the appearance of new CVC peculiarities and the loss of CVC symmetry with respect to the V-sign. Tunnel directionality was shown to be one of the key factors in the formation of G(V) dependences. In particular, the orientation of electrodes with respect to the current channel becomes very important. As a result, G(V) can acquire a large variety of forms similar to those for tunnel junctions between superconductors with s-wave, d-wave, and mixed symmetry of their order parameters. The diversity of peculiarities is especially striking at finite temperatures. In the case of BJs made up of pure d-wave superconductors, the resulting CVC can include a two-peak gap-driven structure. The results were compared with the experimental BJ data for a number of high-T c oxides. It was shown that the large variety of the observed current-voltage characteristics can be interpreted in the framework of our approach. Thus, quasiparticle tunnel currents in the ab-plane can be used as an additional mean to detect CDWs competing with superconductivity in cuprates or other layered superconductors.

  12. Nuclear magnetic resonance in low-symmetry superconductors

    NASA Astrophysics Data System (ADS)

    Cavanagh, D. C.; Powell, B. J.

    2018-01-01

    We consider the nuclear spin-lattice relaxation rate 1 /T1 in superconductors with accidental nodes, i.e., zeros of the order parameter that are not enforced by its symmetries. Such nodes in the superconducting gap are not constrained by symmetry to a particular position on the Fermi surface. We show, analytically and numerically, that a Hebel-Slichter-like peak occurs even in the absence of an isotropic component of the superconducting gap. For a gap with symmetry-required nodes the Fermi velocity at the node must point along the node. For accidental nodes this is not, in general, the case. This leads to additional terms in spectral function and hence the density of states. These terms lead to a logarithmic divergence in 1 /T1T at T →Tc- in models neglecting disorder and interactions [except for those leading to superconductivity; here T is temperature, Tc-=limδ→0(Tc-δ ) , and Tc is the critical temperature]. This contrasts with the usual Hebel-Slichter peak which arises from the coherence factors due to the isotropic component of the gap and leads to a divergence in 1 /T1T somewhat below Tc. The divergence in superconductors with accidental nodes is controlled by either disorder or additional electron-electron interactions. However, for reasonable parameters, neither of these effects removes the peak altogether. This provides a simple experimental method to distinguish between symmetry-required and accidental nodes.

  13. Magnetic exchange coupling through superconductors : a trilayer study.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sa de Melo, C. A. R.; Materials Science Division

    1997-09-08

    The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introducesmore » a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.« less

  14. Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors

    PubMed Central

    Hu, Jiangping; Ding, Hong

    2012-01-01

    Cuprates, ferropnictides and ferrochalcogenides are three classes of unconventional high temperature superconductors, who share similar phase diagrams in which superconductivity develops after a magnetic order is suppressed, suggesting a strong interplay between superconductivity and magnetism, although the exact picture of this interplay remains elusive. Here we show that there is a direct bridge connecting antiferromagnetic exchange interactions determined in the parent compounds of these materials to the superconducting gap functions observed in the corresponding superconducting materials: in all high temperature superconductors, the Fermi surface topology matches the form factor of the pairing symmetry favored by local magnetic exchange interactions. We suggest that this match offers a principle guide to search for new high temperature superconductors. PMID:22536479

  15. Two-band induced superconductivity in single-layer graphene and topological insulator bismuth selenide

    NASA Astrophysics Data System (ADS)

    Talantsev, E. F.; Crump, W. P.; Tallon, J. L.

    2018-01-01

    Proximity-induced superconductivity in single-layer graphene (SLG) and in topological insulators represent almost ideal examples of superconductivity in two dimensions. Fundamental mechanisms governing superconductivity in the 2D limit are of central interest for modern condensed-matter physics. To deduce fundamental parameters of superconductor/graphene/superconductor and superconductor/bismuth selenide/superconductor junctions we investigate the self-field critical currents in these devices using the formalism of the Ambegaokar-Baratoff model. Our central finding is that the induced superconducting state in SLG and bismuth selenide each exhibits gapping on two superconducting bands. Based on recent results obtained on ultra-thin films of natural superconductors, including single-atomic layer of iron selenide, double and triple atomic layers of gallium, and several atomic layer tantalum disulphide, we conclude that a two-band induced superconducting state in SLG and bismuth selenide is part of a wider, more general multiple-band phenomenology of currently unknown origin.

  16. The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, P. J. de, E-mail: p.j.devisser@tudelft.nl; Yates, S. J. C.; Guruswamy, T.

    2015-06-22

    We have measured the absorption of terahertz radiation in a BCS superconductor over a broad range of frequencies from 200 GHz to 1.1 THz, using a broadband antenna-lens system and a tantalum microwave resonator. From low frequencies, the response of the resonator rises rapidly to a maximum at the gap edge of the superconductor. From there on, the response drops to half the maximum response at twice the pair-breaking energy. At higher frequencies, the response rises again due to trapping of pair-breaking phonons in the superconductor. In practice, this is a measurement of the frequency dependence of the quasiparticle creationmore » efficiency due to pair-breaking in a superconductor. The efficiency, calculated from the different non-equilibrium quasiparticle distribution functions at each frequency, is in agreement with the measurements.« less

  17. Impurity-generated non-Abelions

    NASA Astrophysics Data System (ADS)

    Simion, G.; Kazakov, A.; Rokhinson, L. P.; Wojtowicz, T.; Lyanda-Geller, Y. B.

    2018-06-01

    Two classes of topological superconductors and Majorana modes in condensed matter systems are known to date: one in which disorder induced by impurities strongly suppresses topological superconducting gap and is detrimental to Majorana modes, and another where Majorana fermions are protected by a disorder-robust topological superconductor gap. Observation and control of Majorana fermions and other non-Abelions often requires a symmetry of an underlying system leading to a gap in the single-particle or quasiparticle spectra. In semiconductor structures, impurities that provide charge carriers introduce states into the gap and enable conductance and proximity-induced superconductivity via the in-gap states. Thus a third class of topological superconductivity and Majorana modes emerges, in which topological superconductivity and Majorana fermions appear exclusively when impurities generate in-gap states. We show that impurity-enabled topological superconductivity is realized in a quantum Hall ferromagnet, when a helical domain wall is coupled to an s -wave superconductor. As an example of emergence of topological superconductivity in quantum Hall ferromagnets, we consider the integer quantum Hall effect in Mn-doped CdTe quantum wells. Recent experiments on transport through the quantum Hall ferromagnet domain wall in this system indicated a vital role of impurities in the conductance, but left unresolved the question whether impurities preclude generation of Majorana fermions and other non-Abelions in such systems in general. Here, solving a general quantum-mechanical problem of impurity bound states in a system of spin-orbit coupled Landau levels, we demonstrate that impurity-induced Majorana modes emerge at boundaries between topological and conventional superconducting states generated in a domain wall due to proximity to an s superconductor. We consider both short-range disorder and a smooth random potential. The phase diagram of the system is defined by characteristic disorder, gate voltage induced angular momentum splitting of impurity levels, and by a proximity superconducting gap. The phase diagram exhibits two ranges of gate voltage with conventional superconducting order separated by a gate voltage range with topological superconductivity. We show that electrostatic control of domain walls in an integer quantum Hall ferromagnet allows manipulation of Majorana fermions. Ferromagnetic transitions in the fractional quantum Hall regime may lead to the formation and electrostatic control of higher order non-Abelian excitations.

  18. Phase fluctuations in a strongly disordered s-wave NbN superconductor close to the metal-insulator transition.

    PubMed

    Mondal, Mintu; Kamlapure, Anand; Chand, Madhavi; Saraswat, Garima; Kumar, Sanjeev; Jesudasan, John; Benfatto, L; Tripathi, Vikram; Raychaudhuri, Pratap

    2011-01-28

    We explore the role of phase fluctuations in a three-dimensional s-wave superconductor, NbN, as we approach the critical disorder for destruction of the superconducting state. Close to critical disorder, we observe a finite gap in the electronic spectrum which persists at temperatures well above T(c). The superfluid density is strongly suppressed at low temperatures and evolves towards a linear-T variation at higher temperatures. These observations provide strong evidence that phase fluctuations play a central role in the formation of a pseudogap state in a disordered s-wave superconductor.

  19. Force balance on two-dimensional superconductors with a single moving vortex

    NASA Astrophysics Data System (ADS)

    Chung, Chun Kit; Arahata, Emiko; Kato, Yusuke

    2014-03-01

    We study forces on two-dimensional superconductors with a single moving vortex based on a recent fully self-consistent calculation of DC conductivity in an s-wave superconductor (E. Arahata and Y. Kato, arXiv:1310.0566). By considering momentum balance of the whole liquid, we attempt to identify various contributions to the total transverse force on the vortex. This provides an estimation of the effective Magnus force based on the quasiclassical theory generalized by Kita [T. Kita, Phys. Rev. B, 64, 054503 (2001)], which allows for the Hall effect in vortex states.

  20. Field dependence of the vortex core size probed by scanning tunneling microscopy

    DOE PAGES

    Fente, A.; Herrera, E.; Guillamón, I.; ...

    2016-07-29

    We study the spatial distribution of the density of states (DOS) at zero bias N(r) in the mixed state of single and multigap superconductors. We provide an analytic expression for N(r) based on deGennes' relationship between DOS and the order parameter that reproduces well scanning tunneling microscopy (STM) data in several superconducting materials. In the single gap superconductor β-Bi 2 Pd, we find that N(r) is governed by a length scale ξ H =more » $$\\sqrt{Φ0/2πH}$$ which decreases in rising fields. The vortex core size $C$ ∝ (d Δ/dr| r→0) ₋1 differs from ξ H by a material dependent numerical factor. The new data on the tunneling conductance and vortex lattice of the 2H-NbSe 1.8S 0.2 show the in-plane isotropic vortices, suggesting that substitutional scattering removes the in-plane anisotropy found in the two-gap superconductor 2H-NbSe 2. We fit the tunneling conductance of 2H-NbSe 1.8S 0.2 to a two gap model and calculate the vortex core size $C$ for each band. We find that $C$ is field independent and has the same value for both bands. We also analyze the two-band superconductor 2H-NbSe 2 and find the same result. Lastly, we conclude that, independently of the magnetic field induced variation of the order parameter values in both bands, the spatial variation of the order parameter close to the vortex core is the same for all bands.« less

  1. Field dependence of the vortex core size probed by scanning tunneling microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fente, A.; Herrera, E.; Guillamón, I.

    We study the spatial distribution of the density of states (DOS) at zero bias N(r) in the mixed state of single and multigap superconductors. We provide an analytic expression for N(r) based on deGennes' relationship between DOS and the order parameter that reproduces well scanning tunneling microscopy (STM) data in several superconducting materials. In the single gap superconductor β-Bi 2 Pd, we find that N(r) is governed by a length scale ξ H =more » $$\\sqrt{Φ0/2πH}$$ which decreases in rising fields. The vortex core size $C$ ∝ (d Δ/dr| r→0) ₋1 differs from ξ H by a material dependent numerical factor. The new data on the tunneling conductance and vortex lattice of the 2H-NbSe 1.8S 0.2 show the in-plane isotropic vortices, suggesting that substitutional scattering removes the in-plane anisotropy found in the two-gap superconductor 2H-NbSe 2. We fit the tunneling conductance of 2H-NbSe 1.8S 0.2 to a two gap model and calculate the vortex core size $C$ for each band. We find that $C$ is field independent and has the same value for both bands. We also analyze the two-band superconductor 2H-NbSe 2 and find the same result. Lastly, we conclude that, independently of the magnetic field induced variation of the order parameter values in both bands, the spatial variation of the order parameter close to the vortex core is the same for all bands.« less

  2. Evidence for phononic pairing in extremely overdoped ``pure'' d-wave superconductor Bi2212

    NASA Astrophysics Data System (ADS)

    He, Yu; Hishimoto, Makoto; Song, Dongjoon; Eisaki, Hiroshi; Shen, Zhi-Xun

    2015-03-01

    Recent advancement in High Tc cuprate superconductor research has elucidated strong interaction between superconductivity and competing orders. Therefore, the mechanism behind the 'pure' d-wave superconducting behavior becomes the next stepping stone to further the understanding. We have performed photoemission study on extremely overdoped Bi2212 single crystal synthesized via high pressure method. In this regime, we demonstrate the much reduced superconducting gap and the absence of pseudogap. Clear gap shifted bosonic mode coupling is observed throughout the entire Brillouin zone. Via full Eliashberg treatment, we find the electron-phonon coupling strength capable of producing a transition temperature very close to Tc. This strongly implies bosonic contribution to cuprate superconductivity's pairing glue.

  3. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.

    PubMed

    Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun

    2016-05-13

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  4. Observation of topological superconductivity on the surface of an iron-based superconductor

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Yaji, Koichiro; Hashimoto, Takahiro; Ota, Yuichi; Kondo, Takeshi; Okazaki, Kozo; Wang, Zhijun; Wen, Jinsheng; Gu, G. D.; Ding, Hong; Shin, Shik

    2018-04-01

    Topological superconductors are predicted to host exotic Majorana states that obey non-Abelian statistics and can be used to implement a topological quantum computer. Most of the proposed topological superconductors are realized in difficult-to-fabricate heterostructures at very low temperatures. By using high-resolution spin-resolved and angle-resolved photoelectron spectroscopy, we find that the iron-based superconductor FeTe1–xSex (x = 0.45; superconducting transition temperature Tc = 14.5 kelvin) hosts Dirac-cone–type spin-helical surface states at the Fermi level; the surface states exhibit an s-wave superconducting gap below Tc. Our study shows that the surface states of FeTe0.55Se0.45 are topologically superconducting, providing a simple and possibly high-temperature platform for realizing Majorana states.

  5. Proximity-Induced Superconductivity and Quantum Interference in Topological Crystalline Insulator SnTe Thin-Film Devices.

    PubMed

    Klett, Robin; Schönle, Joachim; Becker, Andreas; Dyck, Denis; Borisov, Kiril; Rott, Karsten; Ramermann, Daniela; Büker, Björn; Haskenhoff, Jan; Krieft, Jan; Hübner, Torsten; Reimer, Oliver; Shekhar, Chandra; Schmalhorst, Jan-Michael; Hütten, Andreas; Felser, Claudia; Wernsdorfer, Wolfgang; Reiss, Günter

    2018-02-14

    Topological crystalline insulators represent a new state of matter, in which the electronic transport is governed by mirror-symmetry protected Dirac surface states. Due to the helical spin-polarization of these surface states, the proximity of topological crystalline matter to a nearby superconductor is predicted to induce unconventional superconductivity and, thus, to host Majorana physics. We report on the preparation and characterization of Nb-based superconducting quantum interference devices patterned on top of topological crystalline insulator SnTe thin films. The SnTe films show weak anti-localization, and the weak links of the superconducting quantum interference devices (SQUID) exhibit fully gapped proximity-induced superconductivity. Both properties give a coinciding coherence length of 120 nm. The SQUID oscillations induced by a magnetic field show 2π periodicity, possibly dominated by the bulk conductivity.

  6. Field-orientation dependence of low-energy quasiparticle excitations in the heavy-electron superconductor UBe(13).

    PubMed

    Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Haga, Yoshinori; Yamamoto, Etsuji; Amitsuka, Hiroshi; Tsutsumi, Yasumasa; Machida, Kazushige

    2015-04-10

    Low-energy quasiparticle excitations in the superconducting (SC) state of UBe_{13} were studied by means of specific-heat (C) measurements in a rotating field. Quite unexpectedly, the magnetic-field dependence of C(H) is linear in H with no angular dependence at low fields in the SC state, implying that the gap is fully open over the Fermi surfaces, in stark contrast to previous expectations. In addition, a characteristic cubic anisotropy of C(H) was observed above 2 T with a maximum (minimum) for H∥[001] ([111]) within the (11[over ¯]0) plane, in the normal as well as in the SC states. This oscillation possibly originates from the anisotropic response of the heavy quasiparticle bands, and might be a key to understand the unusual properties of UBe_{13}.

  7. Excess current in ferromagnet-superconductor structures with fully polarized triplet component

    NASA Astrophysics Data System (ADS)

    Moor, Andreas; Volkov, Anatoly F.; Efetov, Konstantin B.

    2016-05-01

    We study the I -V characteristics of ST/n/N contacts, where ST is a BCS superconductor S with a built-in exchange field h , n represents a normal metal wire, and N a normal metal reservoir. The superconductor ST is separated from the n wire by a spin filter which allows the passage of electrons with a certain spin direction so that only fully polarized triplet Cooper pairs penetrate into the n wire. We show that both the subgap conductance σsg and the excess current Iexc, which occur in conventional S/n/N contacts due to Andreev reflection (AR), exist also in the considered system. In our case, they are caused by unconventional AR that is not accompanied by spin flip. The excess current Iexc exists only if h exceeds a certain magnitude hc. At h

  8. Nonlinear microwave response of an MgB2 thin film

    NASA Astrophysics Data System (ADS)

    Purnell, A. J.; Cohen, L. F.; Zhai, H. Y.; Christen, H. M.; Paranthaman, M. P.; Lowndes, D. H.; Hao, Ling; Gallop, J. C.

    2004-04-01

    MgB2 is a two-gap superconductor and as a result may manifest unusual physical properties. The performance of MgB2 films at microwave frequencies has so far been rather poor compared to that of Nb alloys and this may result from intrinsic behaviour related to the double-gap structure or extrinsic properties due to non-optimized thin films. Here we give a detailed report on the microwave magnetic field dependent surface impedance of an MgB2 thin film, using a parallel plate resonator, as a function of temperature. We discuss whether the framework used to analyse nonlinear behaviour for other superconductors, both low and high Tc, but single-gap, has any validity for MgB2 and whether the films are limited by intrinsic or extrinsic behaviour. The key result is the observation of junction-type switching effects at high microwave power.

  9. Dynamic response functions, helical gaps, and fractional charges in quantum wires

    NASA Astrophysics Data System (ADS)

    Meng, Tobias; Pedder, Christopher J.; Tiwari, Rakesh P.; Schmidt, Thomas L.

    We show how experimentally accessible dynamic response functions can discriminate between helical gaps due to magnetic field, and helical gaps driven by electron-electron interactions (''umklapp gaps''). The latter are interesting since they feature gapped quasiparticles of fractional charge e / 2 , and - when coupled to a standard superconductor - an 8 π-Josephson effect and topological zero energy states bound to interfaces. National Research Fund, Luxembourg (ATTRACT 7556175), Deutsche Forschungsgemeinschaft (GRK 1621 and SFB 1143), Swiss National Science Foundation.

  10. Size and symmetry of the superconducting gap in the f.c.c. Cs3C60 polymorph close to the metal-Mott insulator boundary.

    PubMed

    Potočnik, Anton; Krajnc, Andraž; Jeglič, Peter; Takabayashi, Yasuhiro; Ganin, Alexey Y; Prassides, Kosmas; Rosseinsky, Matthew J; Arčon, Denis

    2014-03-03

    The alkali fullerides, A(3)C(60) (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.c.c.) Cs(3)C(60) polymorph, which can be tuned continuously through the bandwidth-controlled Mott insulator-metal/superconductor transition by pressure. When superconductivity emerges from the insulating state at large interfullerene separations upon compression, we observe an isotropic (s-wave) Δ with a large gap-to-superconducting transition temperature ratio, 2Δ0/k(B)T(c) = 5.3(2) [Δ0 = Δ(0 K)]. 2Δ0/k(B)T(c) decreases continuously upon pressurization until it approaches a value of ~3.5, characteristic of weak-coupling BCS theory of superconductivity despite the dome-shaped dependence of Tc on interfullerene separation. The results indicate the importance of the electronic correlations for the pairing interaction as the metal/superconductor-insulator boundary is approached.

  11. Asymmetric d-wave superconducting topological insulator in proximity with a magnetic order

    NASA Astrophysics Data System (ADS)

    Khezerlou, M.; Goudarzi, H.; Asgarifar, S.

    2018-02-01

    In the framework of the Dirac-Bogoliubov-de Gennes formalism, we investigate the transport properties in the surface of a 3-dimensional topological insulator-based hybrid structure, where the ferromagnetic and superconducting orders are simultaneously induced to the surface states via the proximity effect. The superconductor gap is taken to be spin-singlet d-wave symmetry. The asymmetric role of this gap respect to the electron-hole exchange, in one hand, affects the topological insulator superconducting binding excitations and, on the other hand, gives rise to forming distinct Majorana bound states at the ferromagnet/superconductor interface. We propose a topological insulator N/F/FS junction and proceed to clarify the role of d-wave asymmetry pairing in the resulting subgap and overgap tunneling conductance. The perpendicular component of magnetizations in F and FS regions can be at the parallel and antiparallel configurations leading to capture the experimentally important magnetoresistance (MR) of junction. It is found that the zero-bias conductance is strongly sensitive to the magnitude of magnetization in FS region mzfs and orbital rotated angle α of superconductor gap. The negative MR only occurs in zero orbital rotated angle. This result can pave the way to distinguish the unconventional superconducting state in the relating topological insulator hybrid structures.

  12. Size and symmetry of the superconducting gap in the f.c.c. Cs3C60 polymorph close to the metal-Mott insulator boundary

    PubMed Central

    Potočnik, Anton; Krajnc, Andraž; Jeglič, Peter; Takabayashi, Yasuhiro; Ganin, Alexey Y.; Prassides, Kosmas; Rosseinsky, Matthew J.; Arčon, Denis

    2014-01-01

    The alkali fullerides, A3C60 (A = alkali metal) are molecular superconductors that undergo a transition to a magnetic Mott-insulating state at large lattice parameters. However, although the size and the symmetry of the superconducting gap, Δ, are both crucial for the understanding of the pairing mechanism, they are currently unknown for superconducting fullerides close to the correlation-driven magnetic insulator. Here we report a comprehensive nuclear magnetic resonance (NMR) study of face-centred-cubic (f.c.c.) Cs3C60 polymorph, which can be tuned continuously through the bandwidth-controlled Mott insulator-metal/superconductor transition by pressure. When superconductivity emerges from the insulating state at large interfullerene separations upon compression, we observe an isotropic (s-wave) Δ with a large gap-to-superconducting transition temperature ratio, 2Δ0/kBTc = 5.3(2) [Δ0 = Δ(0 K)]. 2Δ0/kBTc decreases continuously upon pressurization until it approaches a value of ~3.5, characteristic of weak-coupling BCS theory of superconductivity despite the dome-shaped dependence of Tc on interfullerene separation. The results indicate the importance of the electronic correlations for the pairing interaction as the metal/superconductor-insulator boundary is approached. PMID:24584087

  13. Superconducting properties of the s ± -wave state: Fe-based superconductors

    DOE PAGES

    Bang, Yunkyu; Stewart, G. R.

    2017-02-13

    Although the pairing mechanism of Fe-based superconductors (FeSCs) has not yet been settled with consensus with regard to the pairing symmetry and the superconducting (SC) gap function, the vast majority of experiments support the existence of spin-singlet signchanging s-wave SC gaps on multi-bands (s±-wave state). This multi-band s±-wave state is a very unique gap state per se and displays numerous unexpected novel SC properties, such as a strong reduction of the coherence peak, non-trivial impurity effects, nodal-gap-like nuclear magnetic resonance signals, various Volovik effects in the specific heat (SH) and thermal conductivity, and anomalous scaling behaviors with a SH jumpmore » and condensation energy versus Tc, etc. In particular, many of these non-trivial SC properties can easily be mistaken as evidence for a nodal-gap state such as a d-wave gap. In this review, we provide detailed explanations of the theoretical principles for the various non-trivial SC properties of the s±-wave pairing state, and then critically compare the theoretical predictions with experiments on FeSCs. This will provide a pedagogical overview of to what extent we can coherently understand the wide range of different experiments on FeSCs within the s±-wave gap model.« less

  14. Disorder-induced inhomogeneities of the superconducting state close to the superconductor-insulator transition.

    PubMed

    Sacépé, B; Chapelier, C; Baturina, T I; Vinokur, V M; Baklanov, M R; Sanquer, M

    2008-10-10

    Scanning tunneling spectroscopy at very low temperatures on homogeneously disordered superconducting titanium nitride thin films reveals strong spatial inhomogeneities of the superconducting gap Delta in the density of states. Upon increasing disorder, we observe suppression of the superconducting critical temperature Tc towards zero, enhancement of spatial fluctuations in Delta, and growth of the Delta/Tc ratio. These findings suggest that local superconductivity survives across the disorder-driven superconductor-insulator transition.

  15. Observation of topological superconductivity on the surface of an iron-based superconductor

    DOE PAGES

    Zhang, Peng; Yaji, Koichiro; Hashimoto, Takahiro; ...

    2018-03-08

    Topological superconductors are predicted to host exotic Majorana states that obey non-Abelian statistics and can be used to implement a topological quantum computer. Most of the proposed topological superconductors are realized in difficult-to-fabricate heterostructures at very low temperatures. By using high-resolution spin-resolved and angle-resolved photoelectron spectroscopy, we find that the iron-based superconductor FeTe 1–xSe x (x = 0.45; superconducting transition temperature T c = 14.5 kelvin) hosts Dirac-cone–type spin-helical surface states at the Fermi level; the surface states exhibit an s-wave superconducting gap below T c. Thus, our study shows that the surface states of FeTe 0.55Se 0.45 are topologicallymore » superconducting, providing a simple and possibly high-temperature platform for realizing Majorana states.« less

  16. Observation of topological superconductivity on the surface of an iron-based superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Peng; Yaji, Koichiro; Hashimoto, Takahiro

    Topological superconductors are predicted to host exotic Majorana states that obey non-Abelian statistics and can be used to implement a topological quantum computer. Most of the proposed topological superconductors are realized in difficult-to-fabricate heterostructures at very low temperatures. By using high-resolution spin-resolved and angle-resolved photoelectron spectroscopy, we find that the iron-based superconductor FeTe 1–xSe x (x = 0.45; superconducting transition temperature T c = 14.5 kelvin) hosts Dirac-cone–type spin-helical surface states at the Fermi level; the surface states exhibit an s-wave superconducting gap below T c. Thus, our study shows that the surface states of FeTe 0.55Se 0.45 are topologicallymore » superconducting, providing a simple and possibly high-temperature platform for realizing Majorana states.« less

  17. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    DOE PAGES

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; ...

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called η-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, η pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentummore » calculations with 1 Fe per unit cell.« less

  18. Cryomagnetic Point-Contact Andreev Reflection Spectroscopy on Single Crystal Iron-Chalcogenide Superconductors

    NASA Astrophysics Data System (ADS)

    Yen, Y. T.; Hu, Rongwei; Petrovic, C.; Yeh, K. W.; Wu, M. K.; Wei, J. Y. T.

    2012-02-01

    We report on cryomagnetic point-contact Andreev reflection spectroscopy performed on single crystals of superconducting FeTe1-xSx and FeTe1-xSex. The samples are cleaved in-situ and the measurements are carried out at temperatures down to 4.2K and in a field up to 9T. At base temperature and zero field, we observe a cone-shaped hump at lower voltages in the conductance spectra with no dips at zero bias and a linear background at higher voltages. The spectral evolution of gap size, zero-bias conductance, and excess spectral area are analyzed as a function of temperature and field. Further spectral analysis is carried out using theoretical models of conductance spectra in multiband superconductors [1,2] and of gap symmetry in Fe-based superconductors [3]. The role of interstitial iron is also considered, by comparison with atomically-resolved scanning tunneling spectroscopy data.[4pt] [1] V. Lukic and E.J. Nicol, PRB 76, 144508 (2007) [2] A. Golubov et al., PRL 103, 077003 (2009) [3] P.J. Hirschfeld et al., RPP 74, 124508 (2011)

  19. Electromechanical properties of superconductors for DOE fusion applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekin, J.W.; Moreland, J.; Brauch, J.C.

    1986-03-01

    This is an interim report presenting data on superconductor performance under mechanical load, which are needed for the selection of superconductors and the mechanical design of superconducting magnets for DOE fusion energy systems. A further aim of the reported research is to measure and understand the electromechanical properties of promising new superconductor materials with strong application potential at high magnetic fields. Results include the following. The first strain vs. critical-current studies were made on a Chevrel-phase superconductor, PbMo/sub 6/S/sub 8/. Chevrel-phase superconductors were found to have a large strain effect, comparable in magnitude to A-15 superconductors like Nb/sub 3/Sn. Electromechanical-propertymore » measurements of an experimental liquid-tin-infiltrated Nb/sub 3/Sn conductor showed it to have an irreversible strain limit twice as large as bronze-process supercondutors and a significantly higher overall critical-current denstiy; the liquid-infiltration process thus has the potential for development of a practical Nb/sub 3/Sn conductors with both superior critical-current density and extremely good mechanical properties. Electromechanical parameters were obtained on several Nb/sub 3/Sn conductors that are candidate materials for superconducting fusion magnets, icluding conductors fabricated by the bronze, internal-tin, and jelly-roll processes. Thermal contraction data are reported on several new structural materials for superconductor sheathing and reinforcement, and a new diagnostic tool for probing the energy gap of practical superconductors has been developed using electron tunneling.« less

  20. Connection between in-plane upper critical field Hc 2 and gap symmetry in layered d -wave superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Jing-Rong; Liu, Guo-Zhu; Zhang, Chang-Jin

    2016-07-01

    Angle-resolved upper critical field Hc 2 provides an efficient tool to probe the gap symmetry of unconventional superconductors. We revisit the behavior of in-plane Hc 2 in d -wave superconductors by considering both the orbital effect and Pauli paramagnetic effect. After carrying out systematic analysis, we show that the maxima of Hc 2 could be along either nodal or antinodal directions of a d -wave superconducting gap, depending on the specific values of a number of tuning parameters. This behavior is in contrast to the common belief that the maxima of in-plane Hc 2 are along the direction where the superconducting gap takes its maximal value. Therefore, identifying the precise d -wave gap symmetry through fitting experiments results of angle-resolved Hc 2 with model calculations at a fixed temperature, as widely used in previous studies, is difficult and practically unreliable. However, our extensive analysis of angle-resolved Hc 2 show that there is a critical temperature T*: in-plane Hc 2 exhibits its maxima along nodal directions at T

  1. Electronic structure and superconductivity of FeSe-related superconductors.

    PubMed

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  2. Weyl holographic superconductor in the Lifshitz black hole background

    NASA Astrophysics Data System (ADS)

    Mansoori, S. A. Hosseini; Mirza, B.; Mokhtari, A.; Dezaki, F. Lalehgani; Sherkatghanad, Z.

    2016-07-01

    We investigate analytically the properties of the Weyl holographic superconductor in the Lifshitz black hole background. We find that the critical temperature of the Weyl superconductor decreases with increasing Lifshitz dynamical exponent, z, indicating that condensation becomes difficult. In addition, it is found that the critical temperature and condensation operator could be affected by applying the Weyl coupling, γ. Moreover, we compute the critical magnetic field and investigate its dependence on the parameters γ and z. Finally, we show numerically that the Weyl coupling parameter γ and the Lifshitz dynamical exponent z together control the size and strength of the conductivity peak and the ratio of gap frequency over critical temperature ω g /T c .

  3. Second-order topological insulators and superconductors with an order-two crystalline symmetry

    NASA Astrophysics Data System (ADS)

    Geier, Max; Trifunovic, Luka; Hoskam, Max; Brouwer, Piet W.

    2018-05-01

    Second-order topological insulators and superconductors have a gapped excitation spectrum in bulk and along boundaries, but protected zero modes at corners of a two-dimensional crystal or protected gapless modes at hinges of a three-dimensional crystal. A second-order topological phase can be induced by the presence of a bulk crystalline symmetry. Building on Shiozaki and Sato's complete classification of bulk crystalline phases with an order-two crystalline symmetry [Phys. Rev. B 90, 165114 (2014), 10.1103/PhysRevB.90.165114], such as mirror reflection, twofold rotation, or inversion symmetry, we classify all corresponding second-order topological insulators and superconductors. The classification also includes antiunitary symmetries and antisymmetries.

  4. Terahertz frequency superconductor-nanocomposite photonic band gap

    NASA Astrophysics Data System (ADS)

    Elsayed, Hussein A.; Aly, Arafa H.

    2018-02-01

    In the present work, we discuss the transmittance properties of one-dimensional (1D) superconductor nanocomposite photonic crystals (PCs) in THz frequency regions. Our modeling is essentially based on the two-fluid model, Maxwell-Garnett model and the characteristic matrix method. The numerical results investigate the appearance of the so-called cutoff frequency. We have obtained the significant effect of some parameters such as the volume fraction, the permittivity of the host material, the size of the nanoparticles and the permittivity of the superconductor material on the properties of the cutoff frequency. The present results may be useful in the optical communications and photonic applications to act as tunable antenna in THz, reflectors and high-pass filter.

  5. Mu-Spec - A High Performance Ultra-Compact Photon Counting spectrometer for Space Submillimeter Astronomy

    NASA Technical Reports Server (NTRS)

    Moseley, H.; Hsieh, W.-T.; Stevenson, T.; Wollack, E.; Brown, A.; Benford, D.; Sadleir; U-Yen, I.; Ehsan, N.; Zmuidzinas, J.; hide

    2011-01-01

    We have designed and are testing elements of a fully integrated submillimeter spectrometer based on superconducting microstrip technology. The instrument can offer resolving power R approximately 1500, and its high frequency cutoff is set by the gap of available high performance superconductors. All functions of the spectrometer are integrated - light is coupled to the microstrip circuit with a planar antenna, the spectra discrimination is achieved using a synthetic grating, orders are separated using planar filter, and detected using photon counting MKID detector. This spectrometer promises to revolutionize submillimeter spectroscopy from space. It replaces instruments with the scale of 1m with a spectrometer on a 10 cm Si wafer. The reduction in mass and volume promises a much higher performance system within available resource in a space mission. We will describe the system and the performance of the components that have been fabricated and tested.

  6. Magnetoanisotropic spin-triplet Andreev reflection in ferromagnet-Ising superconductor junctions

    NASA Astrophysics Data System (ADS)

    Lv, Peng; Zhou, Yan-Feng; Yang, Ning-Xuan; Sun, Qing-Feng

    2018-04-01

    We theoretically study the electronic transport through a ferromagnet-Ising superconductor junction. A tight-binding Hamiltonian describing the Ising superconductor is presented. Then by combining the nonequilibrium Green's function method, the expressions of Andreev reflection coefficient and conductance are obtained. A strong magnetoanisotropic spin-triplet Andreev reflection is shown, and the magnetoanisotropic period is π instead of 2 π as in the conventional magnetoanisotropic system. We demonstrate a significant increase of the spin-triplet Andreev reflection for the single-band Ising superconductor. Furthermore, the dependence of the Andreev reflection on the incident energy and incident angle are also investigated. A complete Andreev reflection can occur when the incident energy is equal to the superconducting gap, regardless of the Fermi energy (spin polarization) of the ferromagnet. For the suitable oblique incidence, the spin-triplet Andreev reflection can be strongly enhanced. In addition, the conductance spectroscopies of both zero bias and finite bias are studied, and the influence of gate voltage, exchange energy, and spin-orbit coupling on the conductance spectroscopy are discussed in detail. The conductance exhibits a strong magnetoanisotropy with period π as the Andreev reflection coefficient. When the magnetization direction is parallel to the junction plane, a large conductance peak always emerges at the superconducting gap. This work offers a comprehensive and systematic study of the spin-triplet Andreev reflection and has an underlying application of π -periodic spin valve in spintronics.

  7. Percolative theories of strongly disordered ceramic high-temperature superconductors.

    PubMed

    Phillips, J C

    2010-01-26

    Optimally doped ceramic superconductors (cuprates, pnictides, etc.) exhibit transition temperatures T(c) much larger than strongly coupled metallic superconductors like Pb (T(c) = 7.2 K, E(g)/kT(c) = 4.5) and exhibit many universal features that appear to contradict the Bardeen, Cooper, and Schrieffer theory of superconductivity based on attractive electron-phonon pairing interactions. These complex materials are strongly disordered and contain several competing nanophases that cannot be described effectively by parameterized Hamiltonian models, yet their phase diagrams also exhibit many universal features in both the normal and superconductive states. Here we review the rapidly growing body of experimental results that suggest that these anomalously universal features are the result of marginal stabilities of the ceramic electronic and lattice structures. These dual marginal stabilities favor both electronic percolation of a dopant network and rigidity percolation of the deformed lattice network. This "double percolation" model has previously explained many features of the normal-state transport properties of these materials and is the only theory that has successfully predicted strict lowest upper bounds for T(c) in the cuprate and pnictide families. Here it is extended to include Coulomb correlations and percolative band narrowing, as well as an angular energy gap equation, which rationalizes angularly averaged gap/T(c) ratios, and shows that these are similar to those of conventional strongly coupled superconductors.

  8. Spatial distribution of superconducting and charge-density-wave order parameters in cuprates and its influence on the quasiparticle tunnel current (Review Article)

    NASA Astrophysics Data System (ADS)

    Gabovich, Alexander M.; Voitenko, Alexander I.

    2016-10-01

    The state of the art concerning tunnel measurements of energy gaps in cuprate oxides has been analyzed. A detailed review of the relevant literature is made, and original results calculated for the quasiparticle tunnel current J(V) between a metallic tip and a disordered d-wave superconductor partially gapped by charge density waves (CDWs) are reported, because it is this model of high-temperature superconductors that becomes popular owing to recent experiments in which CDWs were observed directly. The current was calculated suggesting the scatter of both the superconducting and CDW order parameters due to the samples' intrinsic inhomogeneity. It was shown that peculiarities in the current-voltage characteristics inherent to the case of homogeneous superconducting material are severely smeared, and the CDW-related features transform into experimentally observed peak-dip-hump structures. Theoretical results were used to fit data measured for YBa2Cu3O7-δ and Bi2Sr2CaCu2O8+δ. The fitting demonstrated a good qualitative agreement between the experiment and model calculations. The analysis of the energy gaps in high-Tc superconductors is important both per se and as a tool to uncover the nature of superconductivity in cuprates not elucidated so far despite of much theoretical effort and experimental progress.

  9. Dynamical Tests in a Linear Superconducting Magnetic Bearing

    NASA Astrophysics Data System (ADS)

    Dias, D. H. N.; Sotelo, G. G.; Sass, F.; Motta, E. S.; , R. de Andrade, Jr.; Stephan, R. M.

    The unique properties of high critical temperature superconductors (HTS) make possible the development of an effective and self-stable magnetic levitation (MagLev) transportation system. In this context, a full scale MagLev vehicle, named MagLev-Cobra, has been developed at the Laboratory for Applied Superconductivity (LASUP/UFRJ). The vehicle is borne by a linear superconducting magnetic bearing (LSMB). The most important design constraint of the levitation system is the force that appears due to the interaction between the HTS and the permanent magnetic (PM) rail, which composes the LSMB. Static and dynamic characteristics of this force must be studied. The static behavior was already reported in previous work. The dynamic operation of this kind of vehicle, which considers the entry and exit of passengers and vibration movements, may result in the decrease of the gap between the superconductor and the PM rail in LSMB. In order to emulate the vehicle operation and to study the gap variation with time, the superconductors are submitted to a series of vertical displacements performed with the help of an experimental test rig. These movements are controlled by a time-variant reference force that reproduces the vehicle dynamic. In the present work, the results obtained for the dynamic gap behavior are presented. These measurements are essential to the commissioning process of a superconducting MagLev full scale vehicle.

  10. Advanced first-principles theory of superconductivity including both lattice vibrations and spin fluctuations: The case of FeB4

    NASA Astrophysics Data System (ADS)

    Bekaert, J.; Aperis, A.; Partoens, B.; Oppeneer, P. M.; Milošević, M. V.

    2018-01-01

    We present an advanced method to study spin fluctuations in superconductors quantitatively and entirely from first principles. This method can be generally applied to materials where electron-phonon coupling and spin fluctuations coexist. We employ it here to examine the recently synthesized superconductor iron tetraboride (FeB4) with experimental Tc˜2.4 K [H. Gou et al., Phys. Rev. Lett. 111, 157002 (2013), 10.1103/PhysRevLett.111.157002]. We prove that FeB4 is particularly prone to ferromagnetic spin fluctuations due to the presence of iron, resulting in a large Stoner interaction strength, I =1.5 eV, as calculated from first principles. The other important factor is its Fermi surface that consists of three separate sheets, among which two are nested ellipsoids. The resulting susceptibility has a ferromagnetic peak around q =0 , from which we calculated the repulsive interaction between Cooper pair electrons using the random phase approximation. Subsequently, we combined the electron-phonon interaction calculated from first principles with the spin fluctuation interaction in fully anisotropic Eliashberg theory calculations. We show that the resulting superconducting gap spectrum is conventional, yet very strongly depleted due to coupling to the spin fluctuations. The critical temperature decreases from Tc=41 K, if they are not taken into account, to Tc=1.7 K, in good agreement with the experimental value.

  11. Tunable Majorana corner states in a two-dimensional second-order topological superconductor induced by magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoyu

    2018-05-01

    A two-dimensional second-order topological superconductor exhibits a finite gap in both bulk and edges, with the nontrivial topology manifesting itself through Majorana zero modes localized at the corners, i.e., Majorana corner states. We investigate a time-reversal-invariant topological superconductor in two dimensions and demonstrate that an in-plane magnetic field could transform it into a second-order topological superconductor. A detailed analysis reveals that the magnetic field gives rise to mass terms which take distinct values among the edges, and Majorana corner states naturally emerge at the intersection of two adjacent edges with opposite masses. With the rotation of the magnetic field, Majorana corner states localized around the boundary may hop from one corner to a neighboring one and eventually make a full circle around the system when the field rotates by 2 π . In the end, we briefly discuss physical realizations of this system.

  12. Observation of topological superconductivity on the surface of an iron-based superconductor.

    PubMed

    Zhang, Peng; Yaji, Koichiro; Hashimoto, Takahiro; Ota, Yuichi; Kondo, Takeshi; Okazaki, Kozo; Wang, Zhijun; Wen, Jinsheng; Gu, G D; Ding, Hong; Shin, Shik

    2018-04-13

    Topological superconductors are predicted to host exotic Majorana states that obey non-Abelian statistics and can be used to implement a topological quantum computer. Most of the proposed topological superconductors are realized in difficult-to-fabricate heterostructures at very low temperatures. By using high-resolution spin-resolved and angle-resolved photoelectron spectroscopy, we find that the iron-based superconductor FeTe 1- x Se x ( x = 0.45; superconducting transition temperature T c = 14.5 kelvin) hosts Dirac-cone-type spin-helical surface states at the Fermi level; the surface states exhibit an s-wave superconducting gap below T c Our study shows that the surface states of FeTe 0.55 Se 0.45 are topologically superconducting, providing a simple and possibly high-temperature platform for realizing Majorana states. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Topological superfluids with finite-momentum pairing and Majorana fermions.

    PubMed

    Qu, Chunlei; Zheng, Zhen; Gong, Ming; Xu, Yong; Mao, Li; Zou, Xubo; Guo, Guangcan; Zhang, Chuanwei

    2013-01-01

    Majorana fermions (MFs), quantum particles that are their own antiparticles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently MFs have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing with zero total momentum. On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell (FF) Larkin-Ovchinnikov (LO) states, were widely studied in many branches of physics. However, whether FF and LO superconductors can support MFs has not been explored. Here we show that MFs can exist in certain types of gapped FF states, yielding a new quantum matter: topological FF superfluids/superconductors. We demonstrate the existence of such topological FF superfluids and the associated MFs using spin-orbit-coupled degenerate Fermi gases and derive their parameter regions. The implementation of topological FF superconductors in semiconductor/superconductor heterostructures is also discussed.

  14. Cryogenic Scanning Tunneling Spectroscopy of Superconducting Iron Chalcogenide Single Crystals

    NASA Astrophysics Data System (ADS)

    Wei, J. Y. T.; Fridman, Igor; Yeh, Kuo-Wei; Wu, Maw-Kuen; Hu, Rongwei; Petrovic, C.

    2011-03-01

    We report scanning tunneling spectroscopy measurements on the iron-based superconductors of the ``11'' family including Fe 1-y Te 1-x Se x and Fe 1-y Te 1-x Sx . Conductance spectra and atomically-resolved images are obtained on single crystals down to 300 mK. A gap-like structure is observed, showing an asymmetric spectral background, non-trivial spatial variation and temperature dependence. We discuss our data in terms of possible gap anisotropy and doping inhomogeneities, and in relation to other recent spectroscopic measurements on iron-based superconductors. Work supported by NSERC, CFI/OIT, CIFAR, Taiwan National Science Council, U.S. DOE and Brookhaven Science Associates (No. DE-Ac02-98CH10886), and in part by the Center for Emergent Superconductivity, an Energy Frontier Research Center.

  15. Enhancement of the thermoelectric figure of merit in a ferromagnet-quantum dot-superconductor device due to intradot spin-flip scattering and ac field

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Ping; Zhang, Yu-Ying; Li, Zhi-Jian; Nie, Yi-Hang

    2017-08-01

    We investigate the thermoelectric properties of a ferromagnet-quantum dot-superconductor hybrid system with the intradot spin-flip scattering and the external microwave field. The results indicate that the increase of figure of merit in the gap is very slight when the spin-flip scattering strength increases, but outside the gap it significantly increases with enhancing spin-flip scattering strength. The presence of microwave field results in photon-assisted Andreev reflection and induces the satellite peaks in conductance spectrum. The appropriate match of spin-flip scattering strength, microwave field strength and frequency can significantly enhances the figure of merit of thermoelectric conversion of the device, which can be used as a scheme improving thermoelectric efficiency using microwave frequency.

  16. The noncommutative index theorem and the periodic table for disordered topological insulators and superconductors

    NASA Astrophysics Data System (ADS)

    Katsura, Hosho; Koma, Tohru

    2018-03-01

    We study a wide class of topological free-fermion systems on a hypercubic lattice in spatial dimensions d ≥ 1. When the Fermi level lies in a spectral gap or a mobility gap, the topological properties, e.g., the integral quantization of the topological invariant, are protected by certain symmetries of the Hamiltonian against disorder. This generic feature is characterized by a generalized index theorem which is a noncommutative analog of the Atiyah-Singer index theorem. The noncommutative index defined in terms of a pair of projections gives a precise formula for the topological invariant in each symmetry class in any dimension (d ≥ 1). Under the assumption on the nonvanishing spectral or mobility gap, we prove that the index formula reproduces Bott periodicity and all of the possible values of topological invariants in the classification table of topological insulators and superconductors. We also prove that the indices are robust against perturbations that do not break the symmetry of the unperturbed Hamiltonian.

  17. Effect of Surface Morphology and Magnetic Impurities on the Electronic Structure in Cobalt-Doped BaFe 2 As 2 Superconductors

    DOE PAGES

    Zou, Qiang; Wu, Zhiming; Fu, Mingming; ...

    2017-02-03

    Combined scanning tunneling microscopy, spectroscopy, and local barrier height (LBH) studies show that low-temperature-cleaved optimally doped Ba(Fe 1–xCo x) 2As 2 crystals with x = 0.06, with T c = 22 K, have complicated morphologies. Although the cleavage surface and hence the morphologies are variable, the superconducting gap maps show the same gap widths and nanometer size inhomogeneities irrelevant to the morphology. Based on the spectroscopy and LBH maps, the bright patches and dark stripes in the morphologies are identified as Ba- and As-dominated surface terminations, respectively. Magnetic impurities, possibly due to Co or Fe atoms, are believed to createmore » local in-gap state and, in addition, suppress the superconducting coherence peaks. Lastly, this study will clarify the confusion on the cleavage surface terminations of the Fe-based superconductors and its relation with the electronic structures.« less

  18. Low temperature London penetration depth and superfluid density in Fe-based superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunsoo

    2013-01-01

    The superconducting gap symmetry of the Fe-based superconductors was studied by measurements and analysis of London penetration depth and super uid density. Tunnel diode resonator technique for these measurements was implemented in a dilution refrigerator allowing for the temperatures down to 50 mK. For the analysis of the super uid density, we used both experimental studies of Al-coated samples and original thermodynamic approach based on Rutgers relation. In three systems studied, we found that the superconducting gap at the optimal doping is best described in multi-gap full gap scenario. By performing experiments on samples with arti cially introduced disorder withmore » heavy ion irradiation, we show that evolution of the superconducting transition temperature and of the super uid density are consistent with full-gap sign changing s superconducting state. The superconducting gap develops strong modulation both in the under-doped and the over-doped regimes. In the terminal hole-doped KFe{sub 2}As{sub 2}, both temperature dependence of the super uid density and its evolution with increase of the scattering rate are consistent with symmetry imposed vertical line nodes in the superconducting gap. By comparative studies of hole-doped (Ba,K)Fe{sub 2}As{sub 2} and electron-doped Ca10-3-8, we show that the superconducting gap modulation in the under-doped regime is intrinsic and is not induced by the coexisting static magnetic order.« less

  19. Limitations in cooling electrons using normal-metal-superconductor tunnel junctions.

    PubMed

    Pekola, J P; Heikkilä, T T; Savin, A M; Flyktman, J T; Giazotto, F; Hekking, F W J

    2004-02-06

    We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. First, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do not obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Second, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.

  20. Nuclear relaxation rate in layered superconductors with unconventional pairing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maleyev, S.V.; Yashenkin, A.G.; Aristov, D.N.

    1994-11-01

    The cubic temperature dependence of the nuclear relaxation rate (NRR) in layered superconductors with the order parameter having zeros at the Fermi surface (FS) is found to be universal under quite general conditions. The coefficient in the quasi-Korringa term for the NRR appearing at low temperatures due to impurity scattering is estimated. It is shown that an anisotropy of the gap function over the FS leads to the disappearance of the Hebel-Slichter coherence peak close to [ital T][sub [ital c

  1. Superconducting properties and μSR study of the noncentrosymmetric superconductor Nb0.5Os0.5.

    PubMed

    Singh, D; Barker, J A T; Thamizhavel, A; Hillier, A D; Paul, D McK; Singh, R P

    2018-01-22

    The properties of the noncentrosymmetric superconductor (α-[Formula: see text] structure) Nb 0.5 Os 0.5 have been investigated using resistivity, magnetization, specific heat, and muon spin relaxation and rotation (μSR) measurements. These measurements suggest that Nb 0.5 Os 0.5 is a weakly coupled ([Formula: see text]) type-II superconductor ([Formula: see text]), having a bulk superconducting transition temperature T c   =  3.07 K. The specific heat data fits well with the single-gap BCS model indicating nodeless s-wave superconductivity in Nb 0.5 Os 0.5 . The μSR measurements also confirm [Formula: see text]-wave superconductivity with the preserved time-reversal symmetry.

  2. Zeeman-Field-Tuned Topological Phase Transitions in a Two-Dimensional Class-DIII Superconductor

    PubMed Central

    Deng, W. Y.; Geng, H.; Luo, W.; Sheng, L.; Xing, D. Y.

    2016-01-01

    We investigate the topological phase transitions in a two-dimensional time-reversal invariant topological superconductor in the presence of a Zeeman field. Based on the spin Chern number theory, we find that the system exhibits a number of topologically distinct phases with changing the out-of-plane component of the Zeeman field, including a quantum spin Hall-like phase, quantum anomalous Hall-like phases with total Chern number C = −2, −1, 1 and 2, and a topologically trivial superconductor phase. The BdG band gap closes at each boundary of the phase transitions. Furthermore, we demonstrate that the zero bias conductance provides clear transport signatures of the different topological phases, which are robust against symmetry-breaking perturbations. PMID:27148675

  3. Proximity induced ferromagnetism, superconductivity, and finite-size effects on the surface states of topological insulator nanostructures

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Kubis, Tillmann; Tan, Yaohua; Klimeck, Gerhard

    2015-01-01

    Bi2Te3 and Bi2Se3 are well known 3D-topological insulators (TI). Films made of these materials exhibit metal-like surface states with a Dirac dispersion and possess high mobility. The high mobility metal-like surface states can serve as building blocks for a variety of applications that involve tuning their dispersion relationship and opening a band gap. A band gap can be opened either by breaking time reversal symmetry, the proximity effect of a superconductor or ferromagnet or adjusting the dimensionality of the TI material. In this work, methods that can be employed to easily open a band gap for the TI surface states are assessed. Two approaches are described: (1) Coating the surface states with a ferromagnet which has a controllable magnetization axis. The magnetization strength of the ferromagnet is incorporated as an exchange interaction term in the Hamiltonian. (2) An s-wave superconductor, because of the proximity effect, when coupled to a 3D-TI opens a band gap on the surface. Finally, the hybridization of the surface Dirac cones can be controlled by reducing the thickness of the topological insulator film. It is shown that this alters the band gap significantly.

  4. Analytical assessment of some characteristic ratios for s-wave superconductors

    NASA Astrophysics Data System (ADS)

    Gonczarek, Ryszard; Krzyzosiak, Mateusz; Gonczarek, Adam; Jacak, Lucjan

    2018-04-01

    We evaluate some thermodynamic quantities and characteristic ratios that describe low- and high-temperature s-wave superconducting systems. Based on a set of fundamental equations derived within the conformal transformation method, a simple model is proposed and studied analytically. After including a one-parameter class of fluctuations in the density of states, the mathematical structure of the s-wave superconducting gap, the free energy difference, and the specific heat difference is found and discussed in an analytic manner. Both the zero-temperature limit T = 0 and the subcritical temperature range T ≲ T c are discussed using the method of successive approximations. The equation for the ratio R 1, relating the zero-temperature energy gap and the critical temperature, is formulated and solved numerically for various values of the model parameter. Other thermodynamic quantities are analyzed, including a characteristic ratio R 2, quantifying the dynamics of the specific heat jump at the critical temperature. It is shown that the obtained model results coincide with experimental data for low- T c superconductors. The prospect of application of the presented model in studies of high- T c superconductors and other superconducting systems of the new generation is also discussed.

  5. ?-BiPd: a clean noncentrosymmetric superconductor

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Srinivasan; Joshi, Bhanu; Thamizhavel, A.

    2017-12-01

    We present a comprehensive review of the normal and superconducting state properties of a high-quality single crystal of monoclinic BiPd (?-BiPd, space group ?). The superconductivity of this crystal below 3.8 K is established by measuring its properties using bulk as well as spectroscopic techniques. BiPd is one of the cleanest noncentrosymmetric superconductors that display superconductivity with multiple energy gaps. Evidence of multiple energy gaps was found in heat capacity, point contact (PC) spectroscopy, penetration depth, muon spin rotation, small angle neutron scattering and NMR/NQR measurements. Moreover, Muon spin rotation measurements also suggest strong field dependence of the penetration depth of this superconductor. Unusual superconducting properties due to possible s and p wave mixing are shown by the observation of Andreev bound state in PC measurements as well as the suppressed coherence peak in the temperature dependence of the spin-lattice relaxation in the NQR measurements. This surmise is at variance with the recent STM measurements (different crystal). The observed unusual properties and multiband superconductivity are extremely sensitive to disorder in BiPd. Finally, there is a possibility of tuning the electron correlations by selective substitution in BiPd, thus making it an important system for further investigations.

  6. Application of the Mattis-Bardeen theory in strongly disordered superconductors

    NASA Astrophysics Data System (ADS)

    Seibold, G.; Benfatto, L.; Castellani, C.

    2017-10-01

    The low-energy optical conductivity of conventional superconductors is usually well described by Mattis-Bardeen (MB) theory, which predicts the onset of absorption above an energy corresponding to twice the superconducing (SC) gap parameter Δ . Recent experiments on strongly disordered superconductors have challenged the application of the MB formulas due to the occurrence of additional spectral weight at low energies below 2 Δ . Here we identify three crucial items that have to be included in the analysis of optical-conductivity data for these systems: (a) the correct identification of the optical threshold in the Mattis-Bardeen theory and its relation with the gap value extracted from the measured density of states, (b) the gauge-invariant evaluation of the current-current response function needed to account for the optical absorption by SC collective modes, and (c) the inclusion into the MB formula of the energy dependence of the density of states present already above Tc. By computing the optical conductivity in the disordered attractive Hubbard model, we analyze the relevance of all these items, and we provide a compelling scheme for the analysis and interpretation of the optical data in real materials.

  7. Nodal gap detection through polar angle-resolved density of states measurements in uniaxial superconductors

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Yasumasa; Nomoto, Takuya; Ikeda, Hiroaki; Machida, Kazushige

    2016-12-01

    We propose a spectroscopic method to identify the nodal gap structure in unconventional superconductors. This method is best suited for locating the horizontal line node and for pinpointing the isolated point nodes by measuring polar angle (θ ) resolved zero-energy density of states N (θ ) . This is measured by specific heat or thermal conductivity at low temperatures under a magnetic field. We examine a variety of uniaxially symmetric nodal structures, including point and/or line nodes with linear and quadratic dispersions, by solving the Eilenberger equation in vortex states. It is found that (a) the maxima of N (θ ) continuously shift from the antinodal to the nodal direction (θn) as a field increases accompanying the oscillation pattern reversal at low and high fields. Furthermore, (b) local minima emerge next to θn on both sides, except for the case of the linear point node. These features are robust and detectable experimentally. Experimental results of N (θ ) performed on several superconductors, UPd2Al3,URu2Si2,CuxBi2Se3 , and UPt3, are examined and commented on in light of the present theory.

  8. Topological crystalline materials: General formulation, module structure, and wallpaper groups

    NASA Astrophysics Data System (ADS)

    Shiozaki, Ken; Sato, Masatoshi; Gomi, Kiyonori

    2017-06-01

    We formulate topological crystalline materials on the basis of the twisted equivariant K theory. Basic ideas of the twisted equivariant K theory are explained with application to topological phases protected by crystalline symmetries in mind, and systematic methods of topological classification for crystalline materials are presented. Our formulation is applicable to bulk gapful topological crystalline insulators/superconductors and their gapless boundary and defect states, as well as bulk gapless topological materials such as Weyl and Dirac semimetals, and nodal superconductors. As an application of our formulation, we present a complete classification of topological crystalline surface states, in the absence of time-reversal invariance. The classification works for gapless surface states of three-dimensional insulators, as well as full gapped two-dimensional insulators. Such surface states and two-dimensional insulators are classified in a unified way by 17 wallpaper groups, together with the presence or the absence of (sublattice) chiral symmetry. We identify the topological numbers and their representations under the wallpaper group operation. We also exemplify the usefulness of our formulation in the classification of bulk gapless phases. We present a class of Weyl semimetals and Weyl superconductors that are topologically protected by inversion symmetry.

  9. Gap features of layered iron-selenium-tellurium compound below and above the superconducting transition temperature by break-junction spectroscopy combined with STS

    NASA Astrophysics Data System (ADS)

    Ekino, T.; Sugimoto, A.; Gabovich, A. M.

    2018-05-01

    We studied correlations between the superconducting gap features of Te-substituted FeSe observed by scanning tunnelling spectroscopy (STS) and break-junction tunnelling spectroscopy (BJTS). At bias voltages outside the superconducting gap-energy range, the broad gap structure exists, which becomes the normal-state gap above the critical temperature, T c. Such behaviour is consistent with the model of the partially gapped density-wave superconductor involving both superconducting gaps and pseudogaps, which has been applied by us earlier to high-Tc cuprates. The similarity suggests that the parent electronic spectrum features should have much in common for these classes of materials.

  10. Low-noise submillimeter-wave NbTiN superconducting tunnel junction mixers

    NASA Astrophysics Data System (ADS)

    Kawamura, Jonathan; Chen, Jian; Miller, David; Kooi, Jacob; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.

    1999-12-01

    We have developed a low-noise 850 GHz superconductor-insulator-superconductor quasiparticle mixer with NbTiN thin-film microstrip tuning circuits and hybrid Nb/AlN/NbTiN tunnel junctions. The mixer uses a quasioptical configuration with a planar twin-slot antenna feeding a two-junction tuning circuit. At 798 GHz, we measured an uncorrected double-sideband receiver noise temperature of TRX=260 K at 4.2 K bath temperature. This mixer outperforms current Nb SIS mixers by a factor of nearly 2 near 800 GHz. The high-gap frequency and low loss at 800 GHz make NbTiN an attractive material with which to fabricate tuning circuits for SIS mixers. NbTiN mixers can potentially operate up to the gap frequency, 2Δ/h˜1.2 THz.

  11. Nonmagnetic impurity resonances as a signature of sign-reversal pairing in FeAs-based superconductors.

    PubMed

    Zhang, Degang

    2009-10-30

    The energy band structure of FeAs-based superconductors is fitted by a tight-binding model with two Fe ions per unit cell and two degenerate orbitals per Fe ion. Based on this, superconductivity with extended s-wave pairing symmetry of the form cosk(x)+cosk(y) is examined. The local density of states near an impurity is also investigated by using the T-matrix approach. For the nonmagnetic scattering potential, we found that there exist two major resonances inside the gap. The height of the resonance peaks depends on the strength of the impurity potential. These in-gap resonances are originated in the Andreev's bound states due to the quasiparticle scattering between the hole Fermi surfaces around Gamma point with positive order parameter and the electron Fermi surfaces around M point with negative order parameter.

  12. Impact of iron-site defects on superconductivity in LiFeAs

    DOE PAGES

    Chi, Shun; Aluru, Ramakrishna; Singh, Udai Raj; ...

    2016-10-19

    In conventional s -wave superconductors, only magnetic impurities exhibit impurity bound states, whereas for an s ± order parameter they can occur for both magnetic and nonmagnetic impurities. Impurity bound states in superconductors can thus provide important insight into the order parameter. We present a combined experimental and theoretical study of native and engineered iron-site defects in LiFeAs. A detailed comparison of tunneling spectra measured on impurities with spin-fluctuation theory reveals a continuous evolution from negligible impurity-bound-state features for weaker scattering potential to clearly detectable states for somewhat stronger scattering potentials. Furthermore, all bound states for these intermediate strengthmore » potentials are pinned at or close to the gap edge of the smaller gap, a phenomenon that we explain and ascribe to multiorbital physics.« less

  13. Low-Noise Submillimeter-Wave NbTiN Superconducting Tunnel Junction Mixers

    NASA Technical Reports Server (NTRS)

    Kawamura, J.; Chen, J.; Miller, D.; Kooi, J.; Zmuidzinas, J.; Bumble, B.; LeDuc, H. G.; Stern, J. A.

    1999-01-01

    We have developed a low-noise 850 GHz superconductor-insulator-superconductor (SIS) quasi-particle mixer with NbTiN thin-film microstrip tuning circuits and hybrid Nb/AlN/NbTiN tunnel junctions. The mixer uses a quasioptical configuration with a planar twin-slot antenna feeding a two-junction tuning circuit. At 798 GHz, we measured an uncorrected double-sideband receiver noise temperature of T(sub RX) = 260 K at 4.2 K bath temperature. This mixer outperforms current Nb SIS mixers by a factor of nearly 2 near 800 GHz. The high gap frequency and low loss at 800 GHz make NbTiN an attractive material with which to fabricate tuning circuits for SIS mixers. NbTiN mixers can potentially operate up to the gap frequency, 2(delta)/h is approximately 1.2THz.

  14. Energy gap evolution across the superconductivity dome in single crystals of (Ba1−xKx)Fe2As2

    PubMed Central

    Cho, Kyuil; Kończykowski, Marcin; Teknowijoyo, Serafim; Tanatar, Makariy A.; Liu, Yong; Lograsso, Thomas A.; Straszheim, Warren E.; Mishra, Vivek; Maiti, Saurabh; Hirschfeld, Peter J.; Prozorov, Ruslan

    2016-01-01

    The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most intriguing questions in current materials research. Among non-oxide IBSs, (Ba1−xKx)Fe2As2 has been intensively studied because of its high superconducting transition temperature and fascinating evolution of the superconducting gap structure from being fully isotropic at optimal doping (x ≈ 0.4) to becoming nodal at x > 0.8. Although this marked evolution was identified in several independent experiments, there are no details of the gap evolution to date because of the lack of high-quality single crystals covering the entire K-doping range of the superconducting dome. We conducted a systematic study of the London penetration depth, λ(T), across the full phase diagram for different concentrations of point-like defects introduced by 2.5-MeV electron irradiation. Fitting the low-temperature variation with the power law, Δλ ~ Tn, we find that the exponent n is the highest and the Tc suppression rate with disorder is the smallest at optimal doping, and they evolve with doping being away from optimal, which is consistent with increasing gap anisotropy, including an abrupt change around x ≃ 0.8, indicating the onset of nodal behavior. Our analysis using a self-consistent t-matrix approach suggests the ubiquitous and robust nature of s± pairing in IBSs and argues against a previously suggested transition to a d-wave state near x = 1 in this system. PMID:27704046

  15. Energy gap evolution across the superconductivity dome in single crystals of (Ba1-x K x )Fe2As2.

    PubMed

    Cho, Kyuil; Kończykowski, Marcin; Teknowijoyo, Serafim; Tanatar, Makariy A; Liu, Yong; Lograsso, Thomas A; Straszheim, Warren E; Mishra, Vivek; Maiti, Saurabh; Hirschfeld, Peter J; Prozorov, Ruslan

    2016-09-01

    The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most intriguing questions in current materials research. Among non-oxide IBSs, (Ba 1- x K x )Fe 2 As 2 has been intensively studied because of its high superconducting transition temperature and fascinating evolution of the superconducting gap structure from being fully isotropic at optimal doping ( x ≈ 0.4) to becoming nodal at x > 0.8. Although this marked evolution was identified in several independent experiments, there are no details of the gap evolution to date because of the lack of high-quality single crystals covering the entire K-doping range of the superconducting dome. We conducted a systematic study of the London penetration depth, λ( T ), across the full phase diagram for different concentrations of point-like defects introduced by 2.5-MeV electron irradiation. Fitting the low-temperature variation with the power law, Δλ ~ T n , we find that the exponent n is the highest and the T c suppression rate with disorder is the smallest at optimal doping, and they evolve with doping being away from optimal, which is consistent with increasing gap anisotropy, including an abrupt change around x ≃ 0.8, indicating the onset of nodal behavior. Our analysis using a self-consistent t -matrix approach suggests the ubiquitous and robust nature of s ± pairing in IBSs and argues against a previously suggested transition to a d -wave state near x = 1 in this system.

  16. Energy gap evolution across the superconductivity dome in single crystals of (Ba 1-xK x)Fe 2As 2

    DOE PAGES

    Cho, Kyuil; Konczykowski, Marcin; Teknowijoyo, Serafim; ...

    2016-09-30

    The mechanism of unconventional superconductivity in iron-based superconductors (IBSs) is one of the most intriguing questions in current materials research. Among non-oxide IBSs, (Ba 1$-$xK x)Fe 2As 2 has been intensively studied because of its high superconducting transition temperature and fascinating evolution of the superconducting gap structure from being fully isotropic at optimal doping (x ≈ 0.4) to becoming nodal at x > 0.8. Although this marked evolution was identified in several independent experiments, there are no details of the gap evolution to date because of the lack of high-quality single crystals covering the entire K-doping range of the superconductingmore » dome. In this work, we conducted a systematic study of the London penetration depth, λ(T), across the full phase diagram for different concentrations of point-like defects introduced by 2.5-MeV electron irradiation. Fitting the low-temperature variation with the power law, Δλ ~ T n, we find that the exponent n is the highest and the Tc suppression rate with disorder is the smallest at optimal doping, and they evolve with doping being away from optimal, which is consistent with increasing gap anisotropy, including an abrupt change around x ≃ 0.8, indicating the onset of nodal behavior. Our analysis using a self-consistent t-matrix approach suggests the ubiquitous and robust nature of s ± pairing in IBSs and argues against a previously suggested transition to a d-wave state near x = 1 in this system.« less

  17. Topological Superconductivity on the Surface of Fe-Based Superconductors.

    PubMed

    Xu, Gang; Lian, Biao; Tang, Peizhe; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2016-07-22

    As one of the simplest systems for realizing Majorana fermions, the topological superconductor plays an important role in both condensed matter physics and quantum computations. Based on ab initio calculations and the analysis of an effective 8-band model with superconducting pairing, we demonstrate that the three-dimensional extended s-wave Fe-based superconductors such as Fe_{1+y}Se_{0.5}Te_{0.5} have a metallic topologically nontrivial band structure, and exhibit a normal-topological-normal superconductivity phase transition on the (001) surface by tuning the bulk carrier doping level. In the topological superconductivity (TSC) phase, a Majorana zero mode is trapped at the end of a magnetic vortex line. We further show that the surface TSC phase only exists up to a certain bulk pairing gap, and there is a normal-topological phase transition driven by the temperature, which has not been discussed before. These results pave an effective way to realize the TSC and Majorana fermions in a large class of superconductors.

  18. Chiral superconductors.

    PubMed

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  19. Bulk boundary correspondence and the existence of Majorana bound states on the edges of 2D topological superconductors

    NASA Astrophysics Data System (ADS)

    Sedlmayr, Nicholas; Kaladzhyan, Vardan; Dutreix, Clément; Bena, Cristina

    2017-11-01

    The bulk-boundary correspondence establishes a connection between the bulk topological index of an insulator or superconductor, and the number of topologically protected edge bands or states. For topological superconductors in two dimensions, the first Chern number is related to the number of protected bands within the bulk energy gap, and is therefore assumed to give the number of Majorana band states in the system. Here we show that this is not necessarily the case. As an example, we consider a hexagonal-lattice topological superconductor based on a model of graphene with Rashba spin-orbit coupling, proximity-induced s -wave superconductivity, and a Zeeman magnetic field. We explore the full Chern number phase diagram of this model, extending what is already known about its parity. We then demonstrate that, despite the high Chern numbers that can be seen in some phases, these do not strictly always contain Majorana bound states.

  20. Superconducting Properties and μSR Study of the Noncentrosymmetric Superconductor Nb0.5Os0.5.

    PubMed

    Singh, D; Barker, J A T; Arumugam, Thamizhavel; Hillier, A D; Paul, D McK; Singh, R P

    2017-12-21

    The properties of the noncentrosymmetric superconductor ($\\alpha$-$\\textit{Mn}$ structure) Nb$_{0.5}$Os$_{0.5}$ is investigated using resistivity, magnetization, specific heat, and muon spin relaxation and rotation ($\\mu$SR) measurements. These measurements suggest that Nb$_{0.5}$Os$_{0.5}$ is a weakly coupled ($\\lambda_{e-ph}$ $\\sim$ 0.53) type-II superconductor ($\\kappa_{GL}$ $\\approx$ 61) having a bulk superconducting transition temperature $T_c$ = 3.07 K. The specific heat data in the superconductive regime fits well with the single-gap BCS model indicating nodeless s-wave superconductivity in Nb$_{0.5}$Os$_{0.5}$. The $\\mu$SR measurements also confirm $\\textit{s}$-wave superconductivity with the preserved time-reversal symmetry. © 2017 IOP Publishing Ltd.

  1. Anisotropic Josephson-vortex dynamics in layered organic superconductors

    NASA Astrophysics Data System (ADS)

    Yasuzuka, S.; Uji, S.; Satsukawa, H.; Kimata, M.; Terashima, T.; Koga, H.; Yamamura, Y.; Saito, K.; Akutsu, H.; Yamada, J.

    2010-06-01

    To study the anisotropic Josephson-vortex dynamics in the d-wave superconductors, the interplane resistance has been measured on layered organic superconductors κ-(ET)2Cu(NCS)2 and β-(BDA-TTP)2SbF6 under magnetic fields precisely parallel to the conducting planes. For κ-(ET)2Cu(NCS)2, in-plane angular dependence of the Josephson-vortex flow resistance is mainly described by the fourfold symmetry and dip structures appear when the magnetic field is applied parallel to the b- and c-axes. The obtained results have a relation to the d-wave superconducting gap symmetry. However, the absence of in-plane fourfold anisotropy was found for β-(BDA-TTP)2SbF6. The different anisotropic behavior is discussed in terms of the interlayer coupling strength.

  2. Bulk evidence for single-Gap s-wave superconductivity in the intercalated graphite superconductor C6Yb.

    PubMed

    Sutherland, Mike; Doiron-Leyraud, Nicolas; Taillefer, Louis; Weller, Thomas; Ellerby, Mark; Saxena, S S

    2007-02-09

    We report measurements of the in-plane electrical resistivity rho and thermal conductivity kappa of the intercalated graphite superconductor C6Yb down to temperatures as low as Tc/100. When a field is applied along the c axis, the residual electronic linear term kappa0/T evolves in an exponential manner for Hc1

  3. Symmetry-protected line nodes and Majorana flat bands in nodal crystalline superconductors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shingo; Sumita, Shuntaro; Yanase, Youichi; Sato, Masatoshi

    2018-05-01

    Line nodes in the superconducting gap are known to be a source of Majorana flat bands (MFBs) on a surface. Here, we extend this relation to all symmetry-protected line nodes where an additional constraint arising from crystal symmetry destabilizes or hides the existence of MFBs. By establishing a one-to-one correspondence between group theoretical and topological classifications, we are able to classify the possible line-node-induced MFBs, including cases with (magnetic) nonsymmorphic space groups. Our theoretical analysis reveals MFBs in antiferromagnetic superconductors.

  4. Nonlinear electrodynamics of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Zutic, Igor

    We investigate the effects of nonlinear electrodynamics in unconventional superconductors. These effects can serve as fingerprints to identify the symmetry of the superconducting pairing state and to provide information about the unknown pairing mechanism in High Temperature Superconductors (HTSC). In the Meissner regime, at low temperatures, a nonlinear magnetic response arises from the presence of lines on the Fermi surface where the superconducting energy gap is very small or zero. This can be used to perform "node spectroscopy", that is, as a sensitive bulk probe to locate the angular position of those lines. We first compute the nonlinear magnetic moment as a function of applied field and geometry, assuming d-wave pairing and anisotropic penetration depth, for realistic finite sample. Our novel, numerically implemented, perturbative procedure exploits the small ratio of the penetration depths to the sample size and substantially reduces the computational work required. We next generalize these considerations to other candidates for the energy gap and to perform node spectroscopy. In calculating the nonlinear supercurrent response, we include the effects of orthorhombic distortion and a-b plane anisotropy. Analytic results presented demonstrate a systematic way to experimentally distinguish order parameters of different symmetries, including cases with mixed symmetry (for example, d+s and s+id). We finally extend our findings to the case of low frequency harmonic magnetic field. The nonlinear magnetic response for various physical quantities generates higher harmonics of the frequency of the applied field. We discuss how examination of the field and angular dependences of these harmonics allows determination of the structure of the energy gap. We show how to distinguish nodes from small minima ("quasinodes"). Gaps with nodal lines give rise to universal power law field dependences for the nonlinear magnetic moment and torque. They both have separable temporal and angular dependences. In contrast, with gap functions which only have quasinodes, these quantities do not display power laws in the applied field, and their temporal and angular dependences are not separable. We discuss how to perform measurements so as to maximize the nonlinear signal, and how to determine the gap function symmetry.

  5. Low-Symmetry Gap Functions of Organic Superconductors

    NASA Astrophysics Data System (ADS)

    Mori, Takehiko

    2018-04-01

    Superconducting gap functions of various low-symmetry organic superconductors are investigated starting from the tight-binding energy band and the random phase approximation by numerically solving Eliashberg's equation. The obtained singlet gap function is approximately represented by an asymmetrical dx2 - y2 form, where two cosine functions are mixed in an appropriate ratio. This is usually called d + s wave, where the ratio of the two cosine functions varies from 1:1 in the two-dimensional limit to 1:0 in the one-dimensional limit. A single cosine function does not make a superconducting gap in an ideal one-dimensional conductor, but works as a relevant gap function in quasi-one-dimensional conductors with slight interchain transfer integrals. Even when the Fermi surface is composed of small pockets, the gap function is obtained supposing a globally connected elliptical Fermi surface. In such a case, we have to connect the second energy band in the second Brillouin zone. The periodicity of the resulting gap function is larger than the first Brillouin zone. This is because the susceptibility has peaks at 2kF, where the periodicity has to be twice the size of the global Fermi surface. In general, periodicity of gap function corresponds to one electron or two molecules in the real space. In the κ-phase, two axes are nonequivalent, but the exact dx2 - y2 symmetry is maintained because the diagonal transfer integral introduced to a square lattice is oriented to the node direction of the dx2 - y2 wave. By contrast, the θ-phase gap function shows considerable anisotropy because a quarter-filled square lattice has a different dxy symmetry.

  6. Superconductivity with twofold symmetry in Bi2Te3/FeTe0.55Se0.45 heterostructures.

    PubMed

    Chen, Mingyang; Chen, Xiaoyu; Yang, Huan; Du, Zengyi; Wen, Hai-Hu

    2018-06-01

    Topological superconductors are an interesting and frontier topic in condensed matter physics. In the superconducting state, an order parameter will be established with the basic or subsidiary symmetry of the crystalline lattice. In doped Bi 2 Se 3 or Bi 2 Te 3 with a basic threefold symmetry, it was predicted, however, that bulk superconductivity with order parameters of twofold symmetry may exist because of the presence of odd parity. We report the proximity effect-induced superconductivity in the Bi 2 Te 3 thin film on top of the iron-based superconductor FeTe 0.55 Se 0.45 . By using the quasiparticle interference technique, we demonstrate clear evidence of twofold symmetry of the superconducting gap. The gap minimum is along one of the main crystalline axes following the so-called Δ 4 y notation. This is also accompanied by the elongated vortex shape mapped out by the density of states within the superconducting gap. Our results provide an easily accessible platform for investigating possible topological superconductivity in Bi 2 Te 3 /FeTe 0.55 Se 0.45 heterostructures.

  7. Persistent ferromagnetism and topological phase transition at the interface of a superconductor and a topological insulator.

    PubMed

    Qin, Wei; Zhang, Zhenyu

    2014-12-31

    At the interface of an s-wave superconductor and a three-dimensional topological insulator, Majorana zero modes and Majorana helical states have been proposed to exist respectively around magnetic vortices and geometrical edges. Here we first show that randomly distributed magnetic impurities at such an interface will induce bound states that broaden into impurity bands inside (but near the edges of) the superconducting gap, which remains open unless the impurity concentration is too high. Next we find that an increase in the superconducting gap suppresses both the oscillation magnitude and the period of the Ruderman-Kittel-Kasuya-Yosida interaction between two magnetic impurities. Within a mean-field approximation, the ferromagnetic Curie temperature is found to be essentially independent of the superconducting gap, an intriguing phenomenon due to a compensation effect between the short-range ferromagnetic and long-range antiferromagnetic interactions. The existence of robust superconductivity and persistent ferromagnetism at the interface allows realization of a novel topological phase transition from a nonchiral to a chiral superconducting state at sufficiently low temperatures, providing a new platform for topological quantum computation.

  8. Experimental studies on hybrid superconductor-topological insulator nanoribbon Josephson devices

    NASA Astrophysics Data System (ADS)

    Kayyalha, Morteza; Jauregui, Luis; Kazakov, Aleksander; Miotkowski, Ireneusz; Rokhinson, Leonid; Chen, Yong

    The spin-helical topological surface states (TSS) of topological insulators in proximity with an s-wave superconductor are predicted to demonstrate signatures of topological superconductivity and host Majorana fermions. Here, we report on the observation of gate-tunable proximity-induced superconductivity in an intrinsic BiSbTeSe2 topological insulator nanoribbon (TINR) based Josephson junction (JJ) with Nb contacts. We observe a gate-tunable critical current (IC) with an anomalous behavior in the temperature (T) dependence of IC. We discuss various possible scenarios that could be relevant to this anomalous behavior, such as (i) the different temperature dependence of supercurrent generated by in-gap, where phase slip plays an important role, and out-of-gap Andreev bound states or (ii) the different critical temperatures associated with the top and bottom topological surface states. Our modeling of IC vs. T suggests the possible existence of one pair of in-gap Andreev bound states in our TINR. We have also studied the effects of magnetic fields on the critical current in our TINR Josephson junctions.

  9. Superconductivity with twofold symmetry in Bi2Te3/FeTe0.55Se0.45 heterostructures

    PubMed Central

    Du, Zengyi

    2018-01-01

    Topological superconductors are an interesting and frontier topic in condensed matter physics. In the superconducting state, an order parameter will be established with the basic or subsidiary symmetry of the crystalline lattice. In doped Bi2Se3 or Bi2Te3 with a basic threefold symmetry, it was predicted, however, that bulk superconductivity with order parameters of twofold symmetry may exist because of the presence of odd parity. We report the proximity effect–induced superconductivity in the Bi2Te3 thin film on top of the iron-based superconductor FeTe0.55Se0.45. By using the quasiparticle interference technique, we demonstrate clear evidence of twofold symmetry of the superconducting gap. The gap minimum is along one of the main crystalline axes following the so-called Δ4y notation. This is also accompanied by the elongated vortex shape mapped out by the density of states within the superconducting gap. Our results provide an easily accessible platform for investigating possible topological superconductivity in Bi2Te3/FeTe0.55Se0.45 heterostructures. PMID:29888330

  10. Features of Superconducting Gaps Revealed by STM/STS in Iron Based Superconductors With and Without Hole Pockets

    NASA Astrophysics Data System (ADS)

    Wen, Hai-Hu; Hai-Hu Wen Team

    The pairing mechanism and gap structure in iron based superconductors (IBS) remains unresolved. We have conducted extensive STM/STS study on the Na(Fe1-xTx) As (T =Co, Cu, Mn), Ba1-xKxFe2As2KFe2As2, and Li1-xFexOHFeSe single crystals. We found the clear evidence of the in-gap quasi-particle states induced by the non-magnetic Cu impurities in Na(Fe0.97- x Co0.03Cux) As, giving strong evidence of the S+/- pairing. Furthermore, we show the presence of the bosonic mode with the energy identical to that of the neutron resonance and a simple linear relation Ω/kBTc ~ 4.3, being explained a consequence of the S+/-pairing. The STS spectrum in Li1-x FexOHFeSe clearly indicates the presence of double superconducting gaps with Δ1 ~ 14.3 meV and Δ2 ~ 8.6 meV. Further analysis based on QPI allows us to assign the larger (smaller) gap to the outer (inner) hybridized electron pockets. The huge value 2Δ1/kBTc = 8.7 discovered here undoubtedly proves the strong coupling mechanism. This work was supported by the Ministry of Science and Technology of China, National Natural Science Foundation of China.

  11. Holographic superconductor on a novel insulator

    NASA Astrophysics Data System (ADS)

    Ling, Yi; Liu, Peng; Wu, Jian-Pin; Wu, Meng-He

    2018-01-01

    We construct a holographic superconductor model, based on a gravity theory, which exhibits novel metal-insulator transitions. We investigate the condition for the condensation of the scalar field over the parameter space, and then focus on the superconductivity over the insulating phase with a hard gap, which is supposed to be Mott-like. It turns out that the formation of the hard gap in the insulating phase benefits the superconductivity. This phenomenon is analogous to the fact that the pseudogap phase can promote the pre-pairing of electrons in high {T}{{c}} cuprates. We expect that this work can shed light on understanding the mechanism of high {T}{{c}} superconductivity from the holographic side. Supported by Natural Science Foundation of China (11575195, 11775036, 11305018), Y.L. also acknowledges the support from Jiangxi young scientists (JingGang Star) program and 555 talent project of Jiangxi Province. J. P. Wu is also supported by Natural Science Foundation of Liaoning Province (201602013)

  12. Effect of d-wave pairing symmetry in transport properties of silicene-based superconductor junction

    NASA Astrophysics Data System (ADS)

    Vosoughi-nia, S.; Rashedi, G.; hajati, Y.

    2018-06-01

    We theoretically study the tunneling conductance of a normal/d-wave superconductor silicene junction using Blonder-Tinkham-Klapwijk (BTK) formalism. We discuss how the conductance spectra are affected by changing the chemical potential (μN) in the normal silicene region. It is obtained that the amplitude of the spin/valley-dependent Andreev reflection (AR) and charge conductance (G) of the junction can be strongly modulated by the orientation angle of superconductive gap (β) and perpendicular electric field (Ez). We demonstrate that the charge conductance exhibits an oscillatory behavior as a function of β by a period of π/2. Remarkably, variation of μN strongly modifies the amplitude of the oscillations and periodically there are transport gaps in the G - β oscillations for a range of μN. These findings suggest that one may experimentally tune the transport properties of the junction through changing β, Ez and μN.

  13. Spin Resonance in the New-Structure-Type Iron-Based Superconductor CaKFe4As4

    NASA Astrophysics Data System (ADS)

    Iida, Kazuki; Ishikado, Motoyuki; Nagai, Yuki; Yoshida, Hiroyuki; Christianson, Andrew D.; Murai, Naoki; Kawashima, Kenji; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Iyo, Akira

    2017-09-01

    The dynamical spin susceptibility in the new-structure-type iron-based superconductor CaKFe4As4 was investigated by using a combination of inelastic neutron scattering (INS) measurements and random phase approximation (RPA) calculations. Powder INS measurements show that the spin resonance at Qres = 1.17(1) Å-1, corresponding to the (π ,π ) nesting wave vector in tetragonal notation, evolves below Tc. The characteristic energy of the spin resonance Eres = 12.5 meV is smaller than twice the size of the superconducting gap (2Δ). The broad energy feature of the dynamical susceptibility of the spin resonance can be explained by the RPA calculations, in which the different superconducting gaps on different Fermi surfaces are taken into account. Our INS and PRA studies demonstrate that the superconducting pairing nature in CaKFe4As4 is the s± symmetry.

  14. Universal spectral signatures in pnictides and cuprates: the role of quasiparticle-pair coupling.

    PubMed

    Sacks, William; Mauger, Alain; Noat, Yves

    2017-11-08

    Understanding the physical properties of a large variety of high-T c superconductors (SC), the cuprate family as well as the more recent iron-based superconductors, is still a major challenge. In particular, these materials exhibit the 'peak-dip-hump' structure in the quasiparticle density of states (DOS). The origin of this structure is explained within our pair-pair interaction (PPI) model: The non-superconducting state consists of incoherent pairs, a 'Cooper-pair glass' which, due to the PPI, undergoes a Bose-like condensation below T c to the coherent SC state. We derive the equations of motion for the quasiparticle operators showing that the DOS 'peak-dip-hump' is caused by the coupling between quasiparticles and excited pair states, or 'super-quasiparticles'. The renormalized SC gap function becomes energy-dependent and non retarded, reproducing accurately the experimental spectra of both pnictides and cuprates, despite the large difference in gap value.

  15. Performance of ceramic superconductors in magnetic bearings

    NASA Technical Reports Server (NTRS)

    Kirtley, James L., Jr.; Downer, James R.

    1993-01-01

    Magnetic bearings are large-scale applications of magnet technology, quite similar in certain ways to synchronous machinery. They require substantial flux density over relatively large volumes of space. Large flux density is required to have satisfactory force density. Satisfactory dynamic response requires that magnetic circuit permeances not be too large, implying large air gaps. Superconductors, which offer large magnetomotive forces and high flux density in low permeance circuits, appear to be desirable in these situations. Flux densities substantially in excess of those possible with iron can be produced, and no ferromagnetic material is required. Thus the inductance of active coils can be made low, indicating good dynamic response of the bearing system. The principal difficulty in using superconductors is, of course, the deep cryogenic temperatures at which they must operate. Because of the difficulties in working with liquid helium, the possibility of superconductors which can be operated in liquid nitrogen is thought to extend the number and range of applications of superconductivity. Critical temperatures of about 98 degrees Kelvin were demonstrated in a class of materials which are, in fact, ceramics. Quite a bit of public attention was attracted to these new materials. There is a difficulty with the ceramic superconducting materials which were developed to date. Current densities sufficient for use in large-scale applications have not been demonstrated. In order to be useful, superconductors must be capable of carrying substantial currents in the presence of large magnetic fields. The possible use of ceramic superconductors in magnetic bearings is investigated and discussed and requirements that must be achieved by superconductors operating at liquid nitrogen temperatures to make their use comparable with niobium-titanium superconductors operating at liquid helium temperatures are identified.

  16. A review of finite size effects in quasi-zero dimensional superconductors.

    PubMed

    Bose, Sangita; Ayyub, Pushan

    2014-11-01

    Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size dependence of the superconducting energy gap and associated properties. Finally, we discuss in section 7 the properties of ordered heterostructures (bilayers and multilayers of alternating superconducting and normal phases) and disordered heterostructures (nanocomposites consisting of superconducting and normal phases), which are primarily controlled by the proximity effect.

  17. Coupling of Higgs and Leggett modes in non-equilibrium superconductors.

    PubMed

    Krull, H; Bittner, N; Uhrig, G S; Manske, D; Schnyder, A P

    2016-06-21

    In equilibrium systems amplitude and phase collective modes are decoupled, as they are mutually orthogonal excitations. The direct detection of these Higgs and Leggett collective modes by linear-response measurements is not possible, because they do not couple directly to the electromagnetic field. In this work, using numerical exact simulations we show for the case of two-gap superconductors, that optical pump-probe experiments excite both Higgs and Leggett modes out of equilibrium. We find that this non-adiabatic excitation process introduces a strong interaction between the collective modes, which is absent in equilibrium. Moreover, we propose a type of pump-probe experiment, which allows to probe and coherently control the Higgs and Leggett modes, and thus the order parameter directly. These findings go beyond two-band superconductors and apply to general collective modes in quantum materials.

  18. Atomic substitution in selected high-temperature superconductors: Elucidating the nature of Raman spectra excitations

    NASA Astrophysics Data System (ADS)

    Hewitt, Kevin Cecil

    2000-10-01

    In this thesis, the effects of atomic substitution on the vibrational and electronic excitations found in the Raman spectra of selected high-temperature superconductors (HTS) are studied. In particular, atomic and isotopic substitution methods have been used to determine the character of features observed in the Raman spectra of Bi2Sr2Ca n-1CunO2 n+4+delta (n = 1 - Bi2201, n = 2 - Bi2212) and YBa2Cu3O7-delta (Y123). In Bi2201, Pb substitution for Bi (and Sr) has led to the reduction and eventual removal of the structural modulation, characteristic of all members of the Bi-family of HTS. The high quality single crystals and our sensitive triple spectrometer enabled identification of a pair of low frequency modes. The modes are determined to arise from shear and compressional rigid-layer vibrations. The normal state of underdoped cuprates is characterized by a pseudogap of unknown origin. In crystals of underdoped Bi2212 a spectral peak found at 590 cm-1, previously attributed to the pairing of quasiparticles (above Tc) and hence to the formation of a normal state pseudogap, has been found to soften by 3.8% with oxygen isotope exchange. In addition, the feature is absent in fully oxygenated and yttrium underdoped crystals. In this study, the first of its kind on underdoped and isotope substituted Bi2212, the feature has been assigned to stretching vibrations of oxygen in the a-b plane. Bi2212 crystals with varying hole concentrations (0.07 < p < 0.23) were studied to investigate the effects of doping on the symmetry and magnitude of the superconducting gap. Electronic Raman scattering experiments that sample the diagonal (B 2g) and principal axes (B1 g) of the BZ have led us to conclude that the superconducting gap possesses dx2-y2 symmetry, in the underdoped and overdoped regimes. It is found that the magnitude of the superconducting gap (Delta(k)) is sensitive to changes in p. Studies of the pair-breaking peak found in the B1g spectra allow us to conclude that the magnitude of the maximum gap (Deltamax) decreases monotonically with increasing hole doping, for p > 0.13. The pair-breaking effects in Bi2212 have also been compared to the doping dependence of Delta(k) in the widely studied compound Y123. (Abstract shortened by UMI.)

  19. Multi-band description of the specific heat and thermodynamic critical field in MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Szcześniak, R.; Jarosik, M. W.; Tarasewicz, P.; Durajski, A. P.

    2018-05-01

    The thermodynamic properties of MgB2 superconductor can be explained using the multi-band models. In the present paper we have examined the experimental data available in literature and we have found out that it is possible to reproduce the measured values of the superconducting energy gaps, the thermodynamic critical magnetic field and specific heat jump within the framework of two-band Eliashberg formalism and appropriate defined free energy difference between superconducting and normal state. Moreover, we found that the obtained results differ significantly from the predictions of the conventional Bardeen-Cooper-Schrieffer theory.

  20. Dynamic magnetoelectric effect in ferromagnet/superconductor tunnel junctions.

    PubMed

    Trif, Mircea; Tserkovnyak, Yaroslav

    2013-08-23

    We study the magnetization dynamics in a ferromagnet/insulator/superconductor tunnel junction and the associated buildup of the electrical polarization. We show that for an open circuit, the induced voltage varies strongly and nonmonotonically with the precessional frequency, and can be enhanced significantly by the superconducting correlations. For frequencies much smaller or much larger than the superconducting gap, the voltage drops to zero, while when these two energy scales are comparable, the voltage is peaked at a value determined by the driving frequency. We comment on the potential utilization of the effect for the low-temperature spatially resolved spectroscopy of magnetic dynamics.

  1. Eigenfunction fractality and pseudogap state near the superconductor-insulator transition.

    PubMed

    Feigel'man, M V; Ioffe, L B; Kravtsov, V E; Yuzbashyan, E A

    2007-01-12

    We develop a theory of a pseudogap state appearing near the superconductor-insulator (SI) transition in strongly disordered metals with an attractive interaction. We show that such an interaction combined with the fractal nature of the single-particle wave functions near the mobility edge leads to an anomalously large single-particle gap in the superconducting state near SI transition that persists and even increases in the insulating state long after the superconductivity is destroyed. We give analytic expressions for the value of the pseudogap in terms of the inverse participation ratio of the corresponding localization problem.

  2. Magnetic Exchange Coupling in Ferromagnetic/Superconducting/Ferromagnetic Multilayers

    NASA Astrophysics Data System (ADS)

    de Melo, C. A. R. Sa

    2001-03-01

    The possibility of magnetic exchange coupling between ferromagnets (F) separated by superconductor (S) spacers in F/S/F multilayers is analysed theoretically [1,2]. Ideal systems for the observation of magnetic coupling through superconductors are complex oxide multilayers consisting of Colossal Magneto-Resistance (CMR) Ferromagnets and High Critical Temperature Cuprate Superconductors. For this coupling to occur, three "prima facie" conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity of ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled below its critical temperature T_c, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below T_c, as well as strongly temperature-dependent. However at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above Tc the magnetic coupling decay length is controlled by the thermal length. [I would like to thank the Georgia Institute of Technology, NSF (Grant No. DMR-9803111) and NATO (Grant No. CRG-972261) for financial support.] [1] C. A. R. Sa de Melo, Phys. Rev. Lett. 79, 1933 (1997). [2] C. A. R. Sa de Melo, Phys. Rev. B 62, 12303 (2000).

  3. Far-Infrared Optical Conductivity Gap in Superconducting MgB2 Films

    NASA Astrophysics Data System (ADS)

    Kaindl, Robert A.; Carnahan, Marc A.; Orenstein, Joseph; Chemla, Daniel S.; Christen, Hans M.; Zhai, Hong-Ying; Paranthaman, Mariappan; Lowndes, Doug H.

    2002-01-01

    We report the first study of the optical conductivity of MgB 2 covering the range of its lowest-energy superconducting gap. Terahertz time-domain spectroscopy is utilized to determine the complex, frequency-dependent conductivity σ(ω) of thin films. The imaginary part reveals an inductive response due to the emergence of the superconducting condensate. The real part exhibits a strong depletion of oscillator strength near 5 meV resulting from the opening of a superconducting energy gap. The gap ratio of 2Δ0/kBTC~1.9 is well below the weak-coupling value, pointing to complex behavior in this novel superconductor.

  4. Campbell penetration depth in Fe-based superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prommapan, Plegchart

    A 'true' critical current density, j c, as opposite to commonly measured relaxed persistent (Bean) current, j B, was extracted from the Campbell penetration depth, Λ c(T,H) measured in single crystals of LiFeAs, and optimally electron-doped Ba(Fe 0.954Ni 0.046) 2As 2 (FeNi122). In LiFeAs, the effective pinning potential is nonparabolic, which follows from the magnetic field - dependent Labusch parameter α. At the equilibrium (upon field - cooling), α(H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamicmore » explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of jc(2 K) ≅ 1.22 x 10 6 A/cm 2 provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe 2As 2 based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, j c(2K) ≅ 3.3 x 10 6 A/cm 2. The magnetic-dependent feature was observed near the transition temperature in FeTe 0.53Se 0.47 and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the crossing between the magnetic penetration depth and London penetration depth in optimally hold-doped Ba 0.6K 0.4Fe 2As 2 (BaK122) and isovalent doped BaFe 2(As 0.7P 0.3) 2 (BaP122). These phenomena probably coincide with anomalous Meissner effect reported in pnicitde superconductors [Prozorov et al. (2010b)] however more studies are needed in order to clarify this.« less

  5. Campbell penetration depth in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Prommapan, Plengchart

    2011-12-01

    A "true" critical current density, jc, as opposite to commonly measured relaxed persistent (Bean) current, jB, was extracted from the Campbell penetration depth, lambda C(T, H) measured in single crystals of LiFeAs, and optimally electron-doped Ba (Fe0.954Ni 0.046)2As2 (FeNi122). In LiFeAs, the effective pinning potential is non-parabolic, which follows from the magnetic field - dependent Labusch parameter alpha. At the equilibrium (upon field - cooling), alpha( H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamic explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of j c (2 K) ≃ 1:22 x106 A/cm² provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe2As2 based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, jc(2 K) ≃ 3.3 x 106 A/cm². The magnetic-dependent feature was observed near the transition temperature in FeTe0.53Se0.47 and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the crossing between the magnetic penetration depth and London penetration depth in optimally hold-doped Ba0.6K 0.4Fe2As2 (BaK122) and isovalent doped BaFe2(As0.7P0.3)2 (BaP122). These phenomena probably coincide with anomalous Meissner effect reported in pnictide superconductors [Prozorov et al. (2010b)] however more studies are needed in order to clarify this.

  6. A Maxwell-vector p-wave holographic superconductor in a particular background AdS black hole metric

    NASA Astrophysics Data System (ADS)

    Wen, Dan; Yu, Hongwei; Pan, Qiyuan; Lin, Kai; Qian, Wei-Liang

    2018-05-01

    We study the p-wave holographic superconductor for AdS black holes with planar event horizon topology for a particular Lovelock gravity, in which the action is characterized by a self-interacting scalar field nonminimally coupled to the gravity theory which is labeled by an integer k. As the Lovelock theory of gravity is the most general metric theory of gravity based on the fundamental assumptions of general relativity, it is a desirable theory to describe the higher dimensional spacetime geometry. The present work is devoted to studying the properties of the p-wave holographic superconductor by including a Maxwell field which nonminimally couples to a complex vector field in a higher dimensional background metric. In the probe limit, we find that the critical temperature decreases with the increase of the index k of the background black hole metric, which shows that a larger k makes it harder for the condensation to form. We also observe that the index k affects the conductivity and the gap frequency of the holographic superconductors.

  7. Boundaries of the critical state stability in a hard superconductor Nb3Al in the H-T plane

    NASA Astrophysics Data System (ADS)

    Chabanenko, V. V.; Vasiliev, S. V.; Nabiałek, A.; Shishmakov, A. S.; Pérez-Rodríguez, F.; Rusakov, V. F.; Szewczyk, A.; Kodess, B. N.; Gutowska, M.; Wieckowski, J.; Szymczak, H.

    2013-04-01

    The instability of the critical state in a type-II superconductor Nb3Al is studied for the first time for simultaneous consideration of real dependences of thermal and conductive properties of the material on temperature T and magnetic field He. To do this the dependences of specific heat C(T,Hе), magnetization M(T,He) and magnetostriction ΔL(T,He) of the superconductor were investigated experimentally in a strong magnetic field (up to 12 T). The gap width, the coefficient of the linear term, which determines the electronic contribution to the specific heat, the Debye temperature, and other parameters were found using experimental data on the heat capacity in a wide range of temperatures and magnetic fields Hc1 ≤ He ≤ Hc2. From experimental studies of magnetization the dependences of the critical current of the superconductor, Jc(T,He), were reconstructed. The hysteresis loops of magnetization and magnetostriction were calculated using experimental data for temperature and field dependences of the thermal and conductive properties.

  8. High-Tc superconductor coplanar waveguide filter

    NASA Technical Reports Server (NTRS)

    Chew, Wilbert; Bajuk, Louis J.; Cooley, Thomas W.; Foote, Marc C.; Hunt, Brian D.; Rascoe, Daniel L.; Riley, A. L.

    1991-01-01

    Coplanar waveguide (CPW) low-pass filters made of YBa2Cu3O(7-delta) (YBCO) on LaAlO3 substrates, with dimensions suited for integrated circuits, were fabricated and packaged. A complete filter gives a true idea of the advantages and difficulties in replacing thin-film metal with a high-temperature superconductor in a practical circuit. Measured insertion losses in liquid nitrogen were superior to the loss of a similar thin-film copper filter throughout the 0- to 9.5-GHz passband. These results demonstrate the performance of fully patterned YBCO in a practical CPW structure after sealing in a hermetic package.

  9. Engineering of an ultra-thin molecular superconductor by charge transfer

    DOEpatents

    Hla, Saw Wai; Hassanien, Abdelrahim; Kendal, Clark

    2016-06-07

    A method of forming a superconductive device of a single layer of (BETS).sub.2GaCl.sub.4 molecules on a substrate surface which displays a superconducting gap that increases exponentially with the length of the molecular chain is provided.

  10. Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe2As2.

    PubMed

    Dong, J K; Zhou, S Y; Guan, T Y; Zhang, H; Dai, Y F; Qiu, X; Wang, X F; He, Y; Chen, X H; Li, S Y

    2010-02-26

    The in-plane resistivity rho and thermal conductivity kappa of the FeAs-based superconductor KFe2As2 single crystal were measured down to 50 mK. We observe non-Fermi-liquid behavior rho(T) approximately T{1.5} at H{c{2}}=5 T, and the development of a Fermi liquid state with rho(T) approximately T{2} when further increasing the field. This suggests a field-induced quantum critical point, occurring at the superconducting upper critical field H{c{2}}. In zero field, there is a large residual linear term kappa{0}/T, and the field dependence of kappa_{0}/T mimics that in d-wave cuprate superconductors. This indicates that the superconducting gaps in KFe2As2 have nodes, likely d-wave symmetry. Such a nodal superconductivity is attributed to the antiferromagnetic spin fluctuations near the quantum critical point.

  11. Electronic structure of the iron-based superconductor (La,Eu)FeAsO1-xFx investigated by laser photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Malaeb, Walid; Awad, Ramadan; Hibino, Taku; Kamihara, Yoichi; Kondo, Takeshi; Shin, Shik

    2018-05-01

    We have implemented laser photoemission spectroscopy (PES) to investigate the electronic structure of the iron-based superconductor (La,Eu)FeAsO1-xFx (LaEu1111) which is an interesting compound in the "1111" family showing a high value of the superconducting (SC) transition temperature (Tc) due to Eu doping. At least two energy scales were observed from the PES data in the SC compound: One at ∼14 meV closing around Tc and thus corresponding to the SC gap. Another energy scale appears at ∼35 meV and survives at temperatures above Tc which represents the pseudogap (PG). The non-SC sample (La,Eu)FeAsO shows a PG at ∼ 41 meV. These observations in this new superconductor are consistent with the general trend followed by other compounds in the "1111" family.

  12. Amplitude fluctuations driven by the density of electron pairs within nanosize granular structures inside strongly disordered superconductors: evidence for a shell-like effect.

    PubMed

    Ghosh, Sanjib; Mandal, Sudhansu S

    2013-11-15

    Motivated by the recent observation of the shell effect in a nanoscale pure superconductor by Bose et al. [Nat. Mater. 9, 550 (2010)], we explore the possible shell-like effect in a strongly disordered superconductor as it is known to produce nanosize superconducting puddles (SPs). We find a remarkable change in the texture of the pairing amplitudes that is responsible for forming the SP, upon monotonic tuning of the average electron density, , and keeping the disorder landscape unaltered. Both the spatially averaged pairing amplitude and the quasiparticle excitation gap oscillate with . This oscillation is due to a rapid change in the low-lying quasiparticle energy spectra and thereby a change in the shapes and positions of the SPs. We establish a correlation between the formation of SPs and the shell-like effect. The experimental consequences of our theory are also discussed.

  13. Bosonic Confinement and Coherence in Disordered Nanodiamond Arrays.

    PubMed

    Zhang, Gufei; Samuely, Tomas; Du, Hongchu; Xu, Zheng; Liu, Liwang; Onufriienko, Oleksandr; May, Paul W; Vanacken, Johan; Szabó, Pavol; Kačmarčík, Jozef; Yuan, Haifeng; Samuely, Peter; Dunin-Borkowski, Rafal E; Hofkens, Johan; Moshchalkov, Victor V

    2017-11-28

    In the presence of disorder, superconductivity exhibits short-range characteristics linked to localized Cooper pairs which are responsible for anomalous phase transitions and the emergence of quantum states such as the bosonic insulating state. Complementary to well-studied homogeneously disordered superconductors, superconductor-normal hybrid arrays provide tunable realizations of the degree of granular disorder for studying anomalous quantum phase transitions. Here, we investigate the superconductor-bosonic dirty metal transition in disordered nanodiamond arrays as a function of the dispersion of intergrain spacing, which ranges from angstroms to micrometers. By monitoring the evolved superconducting gaps and diminished coherence peaks in the single-quasiparticle density of states, we link the destruction of the superconducting state and the emergence of bosonic dirty metallic state to breaking of the global phase coherence and persistence of the localized Cooper pairs. The observed resistive bosonic phase transitions are well modeled using a series-parallel circuit in the framework of bosonic confinement and coherence.

  14. Coherence factors in a high-tc cuprate probed by quasi-particle scattering off vortices.

    PubMed

    Hanaguri, T; Kohsaka, Y; Ono, M; Maltseva, M; Coleman, P; Yamada, I; Azuma, M; Takano, M; Ohishi, K; Takagi, H

    2009-02-13

    When electrons pair in a superconductor, quasi-particles develop an acute sensitivity to different types of scattering potential that is described by the appearance of coherence factors in the scattering amplitudes. Although the effects of coherence factors are well established in isotropic superconductors, they are much harder to detect in their anisotropic counterparts, such as high-superconducting-transition-temperature cuprates. We demonstrate an approach that highlights the momentum-dependent coherence factors in Ca2-xNaxCuO2Cl2. We used Fourier-transform scanning tunneling spectroscopy to reveal a magnetic-field dependence in quasi-particle scattering interference patterns that is sensitive to the sign of the anisotropic gap. This result is associated with the d-wave coherence factors and quasi-particle scattering off vortices. Our technique thus provides insights into the nature of electron pairing as well as quasi-particle scattering processes in unconventional superconductors.

  15. Gap Symmetry of the Heavy Fermion Superconductor CeCu2Si2 at Ambient Pressure

    NASA Astrophysics Data System (ADS)

    Li, Yu; Liu, Min; Fu, Zhaoming; Chen, Xiangrong; Yang, Fan; Yang, Yi-feng

    2018-05-01

    Recent observations of two nodeless gaps in superconducting CeCu2 Si2 have raised intensive debates on its exact gap symmetry, while a satisfactory theoretical basis is still lacking. Here we propose a phenomenological approach to calculate the superconducting gap functions, taking into consideration both the realistic Fermi surface topology and the intra- and interband quantum critical scatterings. Our calculations yield a nodeless s±-wave solution in the presence of strong interband pairing interaction, in good agreement with experiments. This provides a possible basis for understanding the superconducting gap symmetry of CeCu2 Si2 at ambient pressure and indicates the potential importance of multiple Fermi surfaces and interband pairing interaction in understanding heavy fermion superconductivity.

  16. Electron tunneling and the energy gap in Bi2Sr2CaCu2Ox

    NASA Astrophysics Data System (ADS)

    Lee, Mark; Mitzi, D. B.; Kapitulnik, A.; Beasley, M. R.

    1989-01-01

    Results of electron tunneling on single crystals of the Bi2Sr2CaCu2Ox superconductor are reported. The junctions show a gap structure with Δ~=25 meV, whose temperature dependence exhibits a qualitatively Bardeen-Cooper-Schrieffer-like behavior with a gap-closing Tc~=81-85 K. Comparisons of these tunneling spectra to those obtained on YBa2Cu3O7-x are made. Evidence that 2Δ/kTc~7 for both Ba2Sr2CaCu2Ox and YBa2Cu3O7-x is also discussed.

  17. Excitations Élémentaires au Voisinage de la Surface de Séparation d'un Métal Normal et d'un Métal Supraconducteur

    NASA Astrophysics Data System (ADS)

    Saint-James, Par D.

    On étudie le spectre d'excitation pour une couche de métal normal déposée sur un supraconducteur. On montre que si l'interaction attractive électron-électron est négligeable dans le métal normal, il n'y a pas de gap d'énergie dans le spectre d'excitation, même si l'épaisseur de la couche normale est petite. Une étude analogue, conduisant à une conclusion similaire, est menée pour deux supraconducteurs accolés et pour des sphères de métal normal baignant dans un supraconducteur. L'effet prévu pourrait expliquer quelques résultats particuliers observés dans des mesures d'effet tunnel dans des supraconducteurs durs. The excitation spectrum of a layer of normal metal (N) deposited on a superconducting substrate (S) is discussed. It is shown that if the electron-electron attractive interaction is negligibly small in (N) there is no energy gap in the excitation spectrum even if the thickness of the layer (N) is small. A similar study, with equivalent conclusions, has been carried out for two superconductors and for normal metal spheres embedded in a superconductor. The effect may possibly explain some peculiar results of tunnelling experiments on hard superconductors.

  18. Pressure effects on the electronic properties of the undoped superconductor ThFeAsN

    NASA Astrophysics Data System (ADS)

    Barbero, N.; Holenstein, S.; Shang, T.; Shermadini, Z.; Lochner, F.; Eremin, I.; Wang, C.; Cao, G.-H.; Khasanov, R.; Ott, H.-R.; Mesot, J.; Shiroka, T.

    2018-04-01

    The recently synthesized ThFeAsN iron pnictide superconductor exhibits a Tc of 30 K, the highest of the 1111-type series in the absence of chemical doping. To understand how pressure affects its electronic properties, we carried out microscopic investigations up to 3 GPa via magnetization, nuclear magnetic resonance, and muon-spin rotation experiments. The temperature dependence of the 75As Knight shift, the spin-lattice relaxation rates, and the magnetic penetration depth suggest a multiband s±-wave gap symmetry in the dirty limit, whereas the gap-to-Tc ratio Δ /kBTc hints at a strong-coupling scenario. Pressure modulates the geometrical parameters, thus reducing Tc as well as Tm, the temperature where magnetic-relaxation rates are maximized, both at the same rate of approximately -1.1 K /GPa . This decrease in Tc with pressure is consistent with band-structure calculations, which relate it to the deformation of the Fe 3 dz2 orbitals.

  19. Epitaxy of semiconductor-superconductor nanowires

    NASA Astrophysics Data System (ADS)

    Krogstrup, P.; Ziino, N. L. B.; Chang, W.; Albrecht, S. M.; Madsen, M. H.; Johnson, E.; Nygård, J.; Marcus, C. M.; Jespersen, T. S.

    2015-04-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface plays a key role in determining the quality of the induced superconducting gap. Here we present epitaxial growth of semiconductor-metal core-shell nanowires by molecular beam epitaxy, a method that provides a conceptually new route to controlled electrical contacting of nanostructures and the design of devices for specialized applications such as topological and gate-controlled superconducting electronics. Our materials of choice, InAs/Al grown with epitaxially matched single-plane interfaces, and alternative semiconductor/metal combinations allowing epitaxial interface matching in nanowires are discussed. We formulate the grain growth kinetics of the metal phase in general terms of continuum parameters and bicrystal symmetries. The method realizes the ultimate limit of uniform interfaces and seems to solve the soft-gap problem in superconducting hybrid structures.

  20. Superconductor-insulator transition and Fermi-Bose crossovers

    DOE PAGES

    Loh, Yen Lee; Randeria, Mohit; Trivedi, Nandini; ...

    2016-05-31

    The direct transition from an insulator to a superconductor (SC) in Fermi systems is a problem of long-standing interest, which necessarily goes beyond the standard BCS paradigm of superconductivity as a Fermi surface instability. We introduce here a simple, translationally invariant lattice fermion model that undergoes a SC-insulator transition (SIT) and elucidate its properties using analytical methods and quantum Monte Carlo simulations. We show that there is a fermionic band insulator to bosonic insulator crossover in the insulating phase and a BCS-to-BEC crossover in the SC. The SIT is always found to be from a bosonic insulator to a BEC-likemore » SC, with an energy gap for fermions that remains finite across the SIT. Hence, the energy scales that go critical at the SIT are the gap to pair excitations in the insulator and the superfluid stiffness in the SC. In addition to giving insight into important questions about the SIT in solid-state systems, our model should be experimentally realizable using ultracold fermions in optical lattices.« less

  1. Modeling tunneling for the unconventional superconducting proximity effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zareapour, Parisa; Xu, Jianwei; Zhao, Shu Yang F.

    Recently there has been reinvigorated interest in the superconducting proximity effect, driven by predictions of the emergence of Majorana fermions. To help guide this search, we have developed a phenomenological model for the tunneling spectra in anisotropic superconductor-normal metal proximity devices. We combine successful approaches used in s-wave proximity and standard d-wave tunneling to reproduce tunneling spectra in d-wave proximity devices, and clarify the origin of various features. Different variations of the pair potential are considered, resulting from the proximity-induced superconductivity. Furthermore, the effective pair potential felt by the quasiparticles is momentum-dependent in contrast to s-wave superconductors. The probabilities ofmore » reflection and transmission are calculated by solving the Bogoliubov equations. Our results are consistent with experimental observations of the unconventional proximity effect and provide important experimental parameters such as the size and length scale of the proximity induced gap, as well as the conditions needed to observe the reduced and full superconducting gaps.« less

  2. Modeling tunneling for the unconventional superconducting proximity effect

    DOE PAGES

    Zareapour, Parisa; Xu, Jianwei; Zhao, Shu Yang F.; ...

    2016-10-12

    Recently there has been reinvigorated interest in the superconducting proximity effect, driven by predictions of the emergence of Majorana fermions. To help guide this search, we have developed a phenomenological model for the tunneling spectra in anisotropic superconductor-normal metal proximity devices. We combine successful approaches used in s-wave proximity and standard d-wave tunneling to reproduce tunneling spectra in d-wave proximity devices, and clarify the origin of various features. Different variations of the pair potential are considered, resulting from the proximity-induced superconductivity. Furthermore, the effective pair potential felt by the quasiparticles is momentum-dependent in contrast to s-wave superconductors. The probabilities ofmore » reflection and transmission are calculated by solving the Bogoliubov equations. Our results are consistent with experimental observations of the unconventional proximity effect and provide important experimental parameters such as the size and length scale of the proximity induced gap, as well as the conditions needed to observe the reduced and full superconducting gaps.« less

  3. Quasiparticle interference in the heavy-fermion superconductor CeCoIn5

    NASA Astrophysics Data System (ADS)

    Akbari, Alireza; Thalmeier, Peter; Eremin, Ilya

    2011-10-01

    We investigate the quasiparticle interference in the heavy fermion superconductor CeCoIn5 as a direct method to confirm the d-wave gap symmetry. The ambiguity between dxy and dx2-y2 symmetry remaining from earlier specific heat and thermal transport investigations has been resolved in favor of the latter by the observation of a spin resonance that can occur only in dx2-y2 symmetry. However, these methods are all indirect and depend considerably on theoretical interpretation. Here we propose that quasiparticle interference (QPI) spectroscopy by scanning tunneling microscopy (STM) can give a direct fingerprint of the superconducting gap in real space that may lead to a definite conclusion on its symmetry for CeCoIn5 and related 115 compounds. The QPI pattern for both magnetic and nonmagnetic impurities is calculated for the possible d-wave symmetries and characteristic differences are found that may be identified by use of the STM method.

  4. Theory of asymmetric tunneling in the cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Anderson, P. W.; Ong, N. P.

    2006-01-01

    We explain quantitatively, within the Gutzwiller-Resonating Valence Bond theory, the puzzling observation of tunneling conductivity between a metallic point and a cuprate high-Tc superconductor which is markedly asymmetric between positive and negative voltage biases. The asymmetric part does not have a ‘coherence peak’ but does show structure due to the gap. The fit to data is satisfactory within the over-simplifications of the theory; in particular, it explains the marked ‘peak-dip-hump’ structure observed on the hole side and a number of other qualitative observations. This asymmetry is strong evidence for the projective nature of the ground state and hence for ‘t-J’ physics.

  5. Magnetic hard gap due to bound magnetic polarons in the localized regime.

    PubMed

    Rimal, Gaurab; Tang, Jinke

    2017-02-08

    We investigate the low temperature electron transport properties of manganese doped lead sulfide films. The system shows variable range hopping at low temperatures that crosses over into an activation regime at even lower temperatures. This crossover is destroyed by an applied magnetic field which suggests a magnetic origin of the hard gap, associated with bound magnetic polarons. Even though the gap forms around the superconducting transition temperature of lead, we do not find evidence of this being due to insulator-superconductor transition. Comparison with undoped PbS films, which do not show the activated transport behavior, suggests that bound magnetic polarons create the hard gap in the system that can be closed by magnetic fields.

  6. Improving NIS Tunnel Junction Refrigerators: Modeling, Materials, and Traps

    NASA Astrophysics Data System (ADS)

    O'Neil, Galen Cascade

    This thesis presents a systematic study of electron cooling with Normal-metal/insulator/superconductor (NIS) tunnel junctions. NIS refrigerators have an exciting potential to simplify 100 mK and 10 mK cryogenics. Rather than using an expensive dilution refrigerator, researchers will be able to use much simpler cryogenics to reach 300 mK and supplement them with mass fabricated thin-film NIS refrigerators to reach 100 mK and below. The mechanism enabling NIS refrigeration is energy selective tunneling. Due to the gap in the superconducting density of states, only hot electrons tunnel from the normal-metal. Power is removed from the normal-metal, that same power and the larger IV power are both deposited in the superconductor. NIS refrigerators often cool less than theory predicts because of the power deposited in the superconductor returns to the normal-metal. When the superconductor temperature is raised, or athermal phonons due to quasiparticle recombination are absorbed in the normal-metal, refrigerator performance will be reduced. I studied the quasiparticle excitations in superconductors to develop the most complete thermal model of NIS refrigerators to date. I introduced overlayer quasiparticle traps, a new method for heatsinking the superconductor. I present measurements on NIS refrigerators with and without quasiparticle traps, to determine their effectiveness. This includes an NIS refrigerator that cools from 300 mK to 115 mK or lower, a large improvement over previous designs. I also looked into reducing the power deposited in the superconductor, by choosing the transition temperature of the superconductor based upon the NIS refrigerator launch temperature. I performed a detailed study of the density of states of superconducting AlMn alloys, demonstrating that Mn impurities behave non-magnetically in Al due to resonant scattering. The density of states remains BCS-like, but my measurements show that the deviations from a BCS density of states harm cooling in NIS refrigerators.

  7. Theoretical study of cathode surfaces and high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Mueller, Wolfgang

    1995-01-01

    Calculations are presented for the work functions of BaO on W, Os, Pt, and alloys of Re-W, Os-W, and Ir-W that are in excellent agreement with experiment. The observed emission enhancement for alloy relative to tungsten dispenser cathodes is attributed to properties of the substrate crystal structure and explained by the smaller depolarization of the surface dipole on hexagonal as compared to cubic substrates. For Ba and BaO on W(100), the geometry of the adsorbates has been determined by a comparison of inverse photoemission spectra with calculated densities of unoccupied states based on the fully relativistic embedded cluster approach. Results are also discussed for models of scandate cathodes and the electronic structure of oxygen on W(100) at room and elevated temperatures. A detailed comparison is made for the surface electronic structure of the high-temperature superconductor YBa2Cu3O7 as obtained with non-, quasi-, and fully relativistic cluster calculations.

  8. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe1-x Rh x )2As2 from London penetration depth measurements.

    PubMed

    Kim, Hyunsoo; Tanatar, M A; Martin, C; Blomberg, E C; Ni, Ni; Bud'ko, S L; Canfield, P C; Prozorov, R

    2018-06-06

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe 1-x Rh x ) 2 As 2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth [Formula: see text]. Single crystals with doping levels representative of an underdoped regime x  =  0.039 ([Formula: see text] K), close to optimal doping x  =  0.057 ([Formula: see text] K) and overdoped x  =  0.079 ([Formula: see text] K) and x  =  0.131([Formula: see text] K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n, by fitting the data to the power-law, [Formula: see text]. The exponent n varies non-monotonically with x, increasing to a maximum n  =  2.5 for x  =  0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x  =  0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe 2 As 2 and 3d-electron-doped Ba(Fe,Co) 2 As 2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co) 2 As 2 samples. Our study supports the universal superconducting gap variation with doping and [Formula: see text] pairing at least in iron based superconductors of the BaFe 2 As 2 family.

  9. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe 1–xRh x) 2As 2 from London penetration depth measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyunsoo; Tanatar, M. A.; Martin, C.

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe 1–xRh x) 2As 2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth Δλ( T). Single crystals with doping levels representative of an underdoped regime x = 0.039 ( T c = 15.5 K), close to optimal doping x = 0.057 ( T c = 24.4 K) and overdoped x = 0.079 ( T c = 21.5 K) and x = 0.131( T c = 4.9 K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n,more » by fitting the data to the power-law, Δλ = AT n. The exponent n varies non-monotonically with x, increasing to a maximum n = 2.5 for x = 0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x = 0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe 2As 2 and 3d-electron-doped Ba(Fe,Co) 2As 2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co) 2As 2 samples. In conclusion, our study supports the universal superconducting gap variation with doping and pairing at least in iron based superconductors of the BaFe 2As 2 family.« less

  10. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe 1–xRh x) 2As 2 from London penetration depth measurements

    DOE PAGES

    Kim, Hyunsoo; Tanatar, M. A.; Martin, C.; ...

    2018-05-08

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe 1–xRh x) 2As 2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth Δλ( T). Single crystals with doping levels representative of an underdoped regime x = 0.039 ( T c = 15.5 K), close to optimal doping x = 0.057 ( T c = 24.4 K) and overdoped x = 0.079 ( T c = 21.5 K) and x = 0.131( T c = 4.9 K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n,more » by fitting the data to the power-law, Δλ = AT n. The exponent n varies non-monotonically with x, increasing to a maximum n = 2.5 for x = 0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x = 0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe 2As 2 and 3d-electron-doped Ba(Fe,Co) 2As 2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co) 2As 2 samples. In conclusion, our study supports the universal superconducting gap variation with doping and pairing at least in iron based superconductors of the BaFe 2As 2 family.« less

  11. Universal doping evolution of the superconducting gap anisotropy in single crystals of electron-doped Ba(Fe1‑x Rh x )2As2 from London penetration depth measurements

    NASA Astrophysics Data System (ADS)

    Kim, Hyunsoo; Tanatar, M. A.; Martin, C.; Blomberg, E. C.; Ni, Ni; Bud’ko, S. L.; Canfield, P. C.; Prozorov, R.

    2018-06-01

    Doping evolution of the superconducting gap anisotropy was studied in single crystals of 4d-electron doped Ba(Fe1‑x Rh x )2As2 using tunnel diode resonator measurements of the temperature variation of the London penetration depth . Single crystals with doping levels representative of an underdoped regime x  =  0.039 ( K), close to optimal doping x  =  0.057 ( K) and overdoped x  =  0.079 ( K) and x  =  0.131( K) were studied. Superconducting energy gap anisotropy was characterized by the exponent, n, by fitting the data to the power-law, . The exponent n varies non-monotonically with x, increasing to a maximum n  =  2.5 for x  =  0.079 and rapidly decreasing towards overdoped compositions to 1.6 for x  =  0.131. This behavior is qualitatively similar to the doping evolution of the superconducting gap anisotropy in other iron pnictides, including hole-doped (Ba,K)Fe2As2 and 3d-electron-doped Ba(Fe,Co)2As2 superconductors, finding a full gap near optimal doping and strong anisotropy toward the ends of the superconducting dome in the T-x phase diagram. The normalized superfluid density in an optimally Rh-doped sample is almost identical to the temperature-dependence in the optimally doped Ba(Fe,Co)2As2 samples. Our study supports the universal superconducting gap variation with doping and pairing at least in iron based superconductors of the BaFe2As2 family.

  12. Probing the superconducting ground state of the rare-earth ternary boride superconductors R RuB2 (R = Lu,Y) using muon-spin rotation and relaxation

    NASA Astrophysics Data System (ADS)

    Barker, J. A. T.; Singh, R. P.; Hillier, A. D.; Paul, D. McK.

    2018-03-01

    The superconductivity in the rare-earth transition-metal ternary borides R RuB2 (where R =Lu and Y) has been investigated using muon-spin rotation and relaxation. Measurements made in zero field suggest that time-reversal symmetry is preserved upon entering the superconducting state in both materials; a small difference in depolarization is observed above and below the superconducting transition in both compounds, however, this has been attributed to quasistatic magnetic fluctuations. Transverse-field measurements of the flux-line lattice indicate that the superconductivity in both materials is fully gapped, with a conventional s -wave pairing symmetry and BCS-like magnitudes for the zero-temperature gap energies. The electronic properties of the charge carriers in the superconducting state have been calculated, with effective masses m*/me=9.8 ±0.1 and 15.0 ±0.1 in the Lu and Y compounds, respectively, with superconducting carrier densities ns=(2.73 ±0.04 ) ×1028m-3 and (2.17 ±0.02 ) ×1028m-3 . The materials have been classified according to the Uemura scheme for superconductivity, with values for Tc/TF of 1 /(414 ±6 ) and 1 /(304 ±3 ) , implying that the superconductivity may not be entirely conventional in nature.

  13. Twisting Anderson pseudospins with light: Quench dynamics in THz-pumped BCS superconductors

    NASA Astrophysics Data System (ADS)

    Chou, Yang-Zhi; Liao, Yunxiang; Foster, Matthew

    We study the preparation and the detection of coherent far-from-equilibrium BCS superconductor dynamics in THz pump-probe experiments. In a recent experiment, an intense monocycle THz pulse with center frequency ω = Δ was injected into a superconductor with BCS gap Δ the post-pump evolution was detected via the optical conductivity. It was argued that nonlinear coupling of the pump to the Anderson pseudospins of the superconductor induces coherent dynamics of the Higgs mode Δ (t) . We validate this picture in a 2D BCS model with a combination of exact numerics and the Lax reduction, and we compute the dynamical phase diagram. The main effect of the pump is to scramble the orientations of Anderson pseudospins along the Fermi surface by twisting them in the xy-plane. We show that more intense pulses can induce a far-from-equilibrium gapless phase (phase I), originally predicted in the context of interaction quenches. We show that the THz pump can reach phase I at much lower energy densities than an interaction quench, and we demonstrate that Lax reduction provides a quantitative tool for computing coherent BCS dynamics. We also compute the optical conductivity for the states discussed here.

  14. Normal metal - insulator - superconductor thermometers and coolers with titanium-gold bilayer as the normal metal

    NASA Astrophysics Data System (ADS)

    Räisänen, I. M. W.; Geng, Z.; Kinnunen, K. M.; Maasilta, I. J.

    2018-03-01

    We have fabricated superconductor - insulator - normal metal - insulator - superconductor (SINIS) tunnel junctions in which Al acts as the superconductor, AlOx is the insulator, and the normal metal consists of a thin Ti layer (5 nm) covered with a thicker Au layer (40 nm). We have characterized the junctions by measuring their current-voltage curves between 60 mK and 750 mK. For comparison, the same measurements have been performed for a SINIS junction pair whose normal metal is Cu. The Ti-Au bilayer decreases the SINIS tunneling resistance by an order of magnitude compared to junctions where Cu is used as normal metal, made with the same oxidation parameters. The Ti-Au devices are much more robust against chemical attacks, and their lower tunneling resistance makes them more robust against static charge. More significantly, they exhibit significantly stronger electron cooling than Cu devices with identical fabrication steps, when biased close to the energy gap of the superconducting Al. By using a self-consistent thermal model, we can fit the current-voltage characteristics well, and show an electron cooling from 200 mK to 110 mK, with a non-optimized device.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agosta, C. C.; Jin, J.; Coniglio, W. A.

    We present upper critical field data for {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} with the magnetic field close to parallel and parallel to the conducting layers. We show that we can eliminate the effect of vortex dynamics in these layered materials if the layers are oriented within 0.3-inch of parallel to the applied magnetic field. Eliminating vortex effects leaves one remaining feature in the data that corresponds to the Pauli paramagnetic limit (H{sub p}). We propose a semiempirical method to calculate the H{sub p} in quasi-2D superconductors. This method takes into account the energy gap of each of the quasi-2D superconductors, which ismore » calculated from specific-heat data, and the influence of many-body effects. The calculated Pauli paramagnetic limits are then compared to critical field data for the title compound and other organic conductors. Many of the examined quasi-2D superconductors, including the above organic superconductors and CeCoIn{sub 5}, exhibit upper critical fields that exceed their calculated H{sub p} suggesting unconventional superconductivity. We show that the high-field low-temperature state in {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} is consistent with the Fulde-Ferrell-Larkin-Ovchinnikov state.« less

  16. Accurate experimental and theoretical comparisons between superconductor-insulator-superconductor mixers showing weak and strong quantum effects

    NASA Technical Reports Server (NTRS)

    Mcgrath, W. R.; Richards, P. L.; Face, D. W.; Prober, D. E.; Lloyd, F. L.

    1988-01-01

    A systematic study of the gain and noise in superconductor-insulator-superconductor mixers employing Ta based, Nb based, and Pb-alloy based tunnel junctions was made. These junctions displayed both weak and strong quantum effects at a signal frequency of 33 GHz. The effects of energy gap sharpness and subgap current were investigated and are quantitatively related to mixer performance. Detailed comparisons are made of the mixing results with the predictions of a three-port model approximation to the Tucker theory. Mixer performance was measured with a novel test apparatus which is accurate enough to allow for the first quantitative tests of theoretical noise predictions. It is found that the three-port model of the Tucker theory underestimates the mixer noise temperature by a factor of about 2 for all of the mixers. In addition, predicted values of available mixer gain are in reasonable agreement with experiment when quantum effects are weak. However, as quantum effects become strong, the predicted available gain diverges to infinity, which is in sharp contrast to the experimental results. Predictions of coupled gain do not always show such divergences.

  17. Robustness of Topological Superconductivity in Solid State Hybrid Structures

    NASA Astrophysics Data System (ADS)

    Sitthison, Piyapong

    The non-Abelian statistics of Majorana fermions (MFs) makes them an ideal platform for implementing topological quantum computation. In addition to the fascinating fundamental physics underlying the emergence of MFs, this potential for applications makes the study of these quasiparticles an extremely popular subject in condensed matter physics. The commonly called `Majorana fermions' are zero-energy bound states that emerge near boundaries and defects in topological superconducting phases, which can be engineered, for example, by proximity coupling strong spin-orbit coupling semiconductor nanowires and ordinary s-wave superconductors. The stability of these bound states is determined by the stability of the underlying topological superconducting phase. Hence, understanding their stability (which is critical for quantum computation), involves studying the robustness of the engineered topological superconductors. This work addresses this important problem in the context of two types of hybrid structures that have been proposed for realizing topological superconductivity: topological insulator - superconductor (TI-SC) and semiconductor - superconductor (SM-SC) nanostructures. In both structures, electrostatic effects due to applied external potentials and interface-induced potentials are significant. This work focuses on developing a theoretical framework for understanding these effects, to facilitate the optimization of the nanostructures studied in the laboratory. The approach presented in this thesis is based on describing the low-energy physics of the hybrid structure using effective tight-binding models that explicitly incorporate the proximity effects emerging at interfaces. Generically, as a result of the proximity coupling to the superconductor, an induced gap emerges in the semiconductor (topological insulator) sub-system. The strength of the proximity-induced gap is determined by the transparency of the interface and by the amplitude of the low- energy SM (TI) states at the interface. In turn, this amplitude is strongly impacted by electrostatic effects. In addition, these effects control the value of the chemical potential in the nanowire (nanoribbon), as well as the strength of the Rashba-type spin-orbit coupling - two key parameters that determine the stability of the topological superconducting phase. To account for these critical effects, a numerically efficient Poisson-Schrodinger scheme is developed.

  18. A superconducting conveyer system using multiple bulk Y-Ba-Cu-O superconductors and permanent magnets

    NASA Astrophysics Data System (ADS)

    Kinoshita, T.; Koshizuka, N.; Nagashima, K.; Murakami, M.

    Developments of non-contact superconducting devices like superconducting magnetic levitation transfer and superconducting flywheel energy storage system have been performed based on the interactions between bulk Y-Ba-Cu-O superconductors and permanent magnets, in that the superconductors can stably be levitated without any active control. The performances of noncontact superconducting devices are dependent on the interaction forces like attractive forces and stiffness. In the present study, we constructed a non-contact conveyer for which the guide rails were prepared by attaching many Fe-Nd-B magnets onto an iron base plate. Along the translational direction, all the magnets were arranged as to face the same pole, and furthermore their inter-distance was made as small as possible. The guide rail has three magnet rows, for which the magnets were glued on the iron plate such that adjacent magnet rows have opposite poles like NSN. At the center row, the magnetic field at zero gap reached 0.61T, while the field strengths of two rows on the side edges were only 0.48T due to magnetic interactions among permanent magnets. We then prepared a cryogenic box made with FRP that can store several bulk Y-Ba-Cu-O superconductors 25 mm in diameter cooled by liquid nitrogen. It was found that the levitation forces and stiffness increased with increasing the number of bulk superconductors installed in the box, although the levitation force per unit bulk were almost the same. We also confirmed that these forces are dependent on the configuration of bulk superconductors.

  19. Observation of multiple superconducting gaps in Fe1+y Se x Te 1-x through Andreev reflection

    NASA Astrophysics Data System (ADS)

    de, Debtanu; Diaz-Pinto, Carlos; Wu, Zheng; Hor, Pei-Herng; Peng, Haibing

    2011-03-01

    Iron-based superconductors have been under intensive study because of the high transition temperature and the intriguing physical mechanisms involving the superconductivity and magnetic orders. Theoretical studies on the role of spin fluctuation suggest unconventional S wave pairing and multiple superconducting (SC) gaps due to the five disjoint Fermi surfaces. However, this multiple SC-gap scenario has yet to be confirmed in experiments. Here we report the experimental observation of five SC gaps in Fe 1+y Se x Te 1-x from Andreev reflection spectra, along with negative differential conductance dips due to the pair breaking related to the largest SC gap. The evolution of the multiple SC gaps is further investigated as a function of both temperature and magnetic field. For the largest SC gap, the Andreev reflection signal persists above bulk Tc, suggesting the existence of phase incoherent Cooper pairs.

  20. Josephson effect in multiterminal superconductor-ferromagnet junctions coupled via triplet components

    NASA Astrophysics Data System (ADS)

    Moor, Andreas; Volkov, Anatoly F.; Efetov, Konstantin B.

    2016-03-01

    On the basis of the Usadel equation we study a multiterminal Josephson junction. This junction is composed by "magnetic" superconductors Sm, which have singlet pairing and are separated from the normal n wire by spin filters so that the Josephson coupling is caused only by fully polarized triplet components. We show that there is no interaction between triplet Cooper pairs with antiparallel total spin orientations. The presence of an additional singlet superconductor S attached to the n wire leads to a finite Josephson current IQ with an unusual current-phase relation. The density of states in the n wire for different orientations of spins of Cooper pairs is calculated. We derive a general formula for the current IQ in a multiterminal Josephson contact and apply this formula for analysis of two four-terminal Josephson junctions of different structures. It is shown in particular that both the "nematic" and the "magnetic" cases can be realized in these junctions. In a two-terminal structure with parallel filter orientations and in a three-terminal structure with antiparallel filter orientations of the "magnetic" superconductors with attached additional singlet superconductor, we find a nonmonotonic temperature dependence of the critical current. Also, in these structures, the critical current shows a Riedel peak like dependence on the exchange field in the "magnetic" superconductors. Although there is no current through the S/n interface due to orthogonality of the singlet and triplet components, the phase of the order parameter in the superconuctor S is shown to affect the Josephson current in a multiterminal structure.

  1. Electronic structure of the ingredient planes of Bi2Sr2CaCu2O8 + δ and Bi2Sr2CuO6 + δ superconductors

    NASA Astrophysics Data System (ADS)

    Ma, Xucun

    Understanding the mechanism of high transition temperature superconductivity in cuprates has been hindered by the apparent complexity of their multilayered crystal structure. Using a cryogenic scanning tunneling microscopy (STM), we report on layer-by-layer probing of the electronic structures of the ingredient planes (BiO, SrO, CuO2) of Bi2Sr2CaCu2O8 + δ (Bi-2212) and Bi2Sr2CuO6 + δ (Bi-2201) superconductors prepared by argon-ion bombardment and annealing (IBA) technique. We show that the well-known pseudogap (PG) feature observed by STM is inherently a property of the charge reservoir planes and thus irrelevant directly to Cooper pairing. The CuO2 planes are exclusively characterized by a small gap inside the PG. The small gap becomes invisible near Tc, which we identify as the superconducting gap. The results constitute severe constraints on any microscopic model for high Tc superconductivity in cuprates. Contributors: Yan-Feng Lv, Wen-Lin Wang, Hao Ding, Yang Wang, Yong Zhong, Ying Ding, Ruidan Zhong, John Schneeloch, Gen-Da Gu, Lili Wang, Ke He, Shuai-Hua Ji, Lin Zhao, Xing-Jiang Zhou Can-Li Song, and Qi-Kun Xue. NSF and MOST of China.

  2. Spectroscopic views of high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Wendin, Göran

    1989-01-01

    Recent progress in the fields of photoelectron spectroscopy, electron energy loss spectroscopy, inverse photoemission, and infrared- and optical reflectivity applied to high-Tc superconductors is analyzed in terms of correlation effects, transport properties and Fermi liquid behaviour. For the CuO2 based materials, a picture emerges of localized holes in copper 3d levels and itinerant holes in oxygen 2p-like bands. A Fermi liquid picture and a superconducting gap is indicated by angle-resolved photo-emission, infrared absorption, and NMR. A Fermi surface is indicated by positron annihilation. Infrared absorption reveals strongly frequency and temperature dependent scattering and polaronic behaviour for frequencies below 0.1 eV. Infrared absorption indicates a maximum superconducting gap of 2Δ/kBTc = 8 and suggests that ordinary samples may show a range of gaps 2 < 2Δ/kBTc < 8 resulting in commonly measured average values of 2Δ/kBTc = 5. An interesting possibility in YBaCuO, suggested by infrared reflectivity and photoconductivity measurements, is that polarons in the CuO2 planes with 0.13 eV excitation energy mediate an attractive interaction between quasi-holes in O 2p-derived conduction bands. The polarons will involve important lattice distortions even if, as is frequently assumed, magnetic polaron effects may be the essential thing.

  3. Pairing-dependent superconductivity gap and nonholonomic Andreev reflection in Weyl semimetal/Weyl superconductor heterojunctions

    NASA Astrophysics Data System (ADS)

    Fang, Jun; Duan, Wenye; Liu, Junfeng; Zhang, Chao; Ma, Zhongshui

    2018-04-01

    We study superconductivity states mediated by the BCS and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairings in superconducting Weyl semimetals. It is found that a mixture of BCS and FFLO pairings results in a distinctive double-gap structure for superconducting states. With a heterojunction of a Weyl semimetal and a superconducting Weyl semimetal, we demonstrate the nonholonomic Andreev reflection and show that the intra- and internode Andreev reflections increase at the edges of the effective gap. The influence of interface potentials on the Andreev reflections is investigated. The conductance spectra arising from the mixed superconducting pairings is also analyzed.

  4. Non-magnetic impurity effects in LiFeAs studied by STM/STS

    NASA Astrophysics Data System (ADS)

    Hanaguri, T.; Khim, Seung Hyun; Lee, Bumsung; Kim, Kee Hoon; Kitagawa, K.; Matsubayashi, K.; Mazaki, Y.; Uwatoko, Y.; Takigawa, M.; Takagi, H.

    2012-02-01

    Detecting the possible sign reversal of the superconducting gap in iron-based superconductors is highly non-trivial. Here we use non-magnetic impurity as a sign indicator. If the sign of the superconducting gap is positive everywhere in momentum space, in-gap bound state should not be observed near the impurity site unless it is magnetic. On the other hand, if there is a sign-reversal in the gap, even non-magnetic impurity may create in-gap bound state [1]. We performed STM/STS experiments on self-flux and Sn-flux grown LiFeAs crystals and examined the effects of Sn impurity. In STM images of Sn-flux grown samples, we found a ring-like object which may represent Sn. Tunneling spectrum taken at this defect site exhibits in-gap bound state. Together with flat-bottom superconducting gap observed far from the defects, sign-reversing s-wave gap is the most plausible gap structure in LiFeAs. [1] T. Kariyado and M. Ogata, JPSJ 79, 083704 (2010).

  5. Point-contact electron tunneling into the high-Tc superconductor Y-Ba-Cu-O

    NASA Astrophysics Data System (ADS)

    Kirk, M. D.; Smith, D. P. E.; Mitzi, D. B.; Sun, J. Z.; Webb, D. J.

    1987-06-01

    Results are reported from a study of electron tunneling into bulk samples of the new high-Tc superconductor Y-Ba-Cu-O using point-contact tunneling. Based on a superconductive tunneling interpretation, the results show exceptionally large energy gaps in these materials (roughly 2Delta = 100 MeV), implying 2Delta/kBTc = about 13. Similar values were found for La-Sr-Cu-O. The structure in the I-V curves is also similar to that seen in La-Sr-Cu-O. From the asymmetries observed in the I-V characteristics, it is inferred that the natural tunneling barrier on this material is of the Schottky type.

  6. An overview of rotating machine systems with high-temperature bulk superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Difan; Izumi, Mitsuru; Miki, Motohiro; Felder, Brice; Ida, Tetsuya; Kitano, Masahiro

    2012-10-01

    The paper contains a review of recent advancements in rotating machines with bulk high-temperature superconductors (HTS). The high critical current density of bulk HTS enables us to design rotating machines with a compact configuration in a practical scheme. The development of an axial-gap-type trapped flux synchronous rotating machine together with the systematic research works at the Tokyo University of Marine Science and Technology since 2001 are briefly introduced. Developments in bulk HTS rotating machines in other research groups are also summarized. The key issues of bulk HTS machines, including material progress of bulk HTS, in situ magnetization, and cooling together with AC loss at low-temperature operation are discussed.

  7. Imaging the electron-boson coupling in superconducting FeSe films using a scanning tunneling microscope.

    PubMed

    Song, Can-Li; Wang, Yi-Lin; Jiang, Ye-Ping; Li, Zhi; Wang, Lili; He, Ke; Chen, Xi; Hoffman, Jennifer E; Ma, Xu-Cun; Xue, Qi-Kun

    2014-02-07

    Scanning tunneling spectroscopy has been used to reveal signatures of a bosonic mode in the local quasiparticle density of states of superconducting FeSe films. The mode appears below Tc as a "dip-hump" feature at energy Ω∼4.7kBTc beyond the superconducting gap Δ. Spectra on strained regions of the FeSe films reveal simultaneous decreases in Δ and Ω. This contrasts with all previous reports on other high-Tc superconductors, where Δ locally anticorrelates with Ω. A local strong coupling model is found to reconcile the discrepancy well, and to provide a unified picture of the electron-boson coupling in unconventional superconductors.

  8. In situ/non-contact superfluid density measurement apparatus

    NASA Astrophysics Data System (ADS)

    Nam, Hyoungdo; Su, Ping-Hsang; Shih, Chih-Kang

    2018-04-01

    We present a double-coil apparatus designed to operate with in situ capability, which is strongly desired for superconductivity studies on recently discovered two-dimensional superconductors. Coupled with a scanning tunneling microscope, the study of both local and global superconductivity [for superconducting gap and superfluid density (SFD), respectively] is possible on an identical sample without sample degradations due to damage, contamination, or oxidation in an atmosphere. The performance of the double-coil apparatus was tested on atomically clean surfaces of non-superconducting Si(111)-7 × 7 and on superconducting films of 100 nm-thick Pb and 1.4 nm-ultrathin Pb. The results clearly show the normal-to-superconductor phase transition for Pb films with a strong SFD.

  9. Theory of the high-frequency chiral optical response of a p(x) + ip(y) superconductor.

    PubMed

    Yakovenko, Victor M

    2007-02-23

    The optical Hall conductivity and the polar Kerr angle are calculated as functions of temperature for a two-dimensional chiral p(x) + ip(y) superconductor, where the time-reversal symmetry is spontaneously broken. The theoretical estimate for the polar Kerr angle agrees by the order of magnitude with the recent experimental measurement in Sr2RuO4 by Xia et al. [Phys. Rev. Lett. 97, 167002 (2006)10.1103/PhysRevLett.97.167002]. The theory predicts that the Kerr angle is proportional to the square of the superconducting energy gap and is inversely proportional to the cube of frequency, which can be verified experimentally.

  10. Enhancement of pairing interaction and magnetic fluctuations toward a band insulator in an electron-doped Li(x)ZrNCl Superconductor.

    PubMed

    Kasahara, Yuichi; Kishiume, Tsukasa; Takano, Takumi; Kobayashi, Katsuki; Matsuoka, Eiichi; Onodera, Hideya; Kuroki, Kazuhiko; Taguchi, Yasujiro; Iwasa, Yoshihiro

    2009-08-14

    The doping dependence of specific heat and magnetic susceptibility has been investigated for Li(x)ZrNCl superconductors derived from a band insulator. As the carrier concentration is decreased, the anisotropy of superconducting gap changes from highly anisotropic to almost isotropic. It was also found that, upon reducing carrier density, the superconducting coupling strength and the magnetic susceptibility are concomitantly enhanced in parallel with T(c), while the density of states at the Fermi level is kept almost constant. Theoretical calculations taking into account the on-site Coulomb interaction reproduced the experimental results, suggesting a possible pairing mediated by magnetic fluctuations, even in the doped band insulators.

  11. Amplitude mode oscillations in pump-probe photoemission spectra from a d -wave superconductor

    NASA Astrophysics Data System (ADS)

    Nosarzewski, B.; Moritz, B.; Freericks, J. K.; Kemper, A. F.; Devereaux, T. P.

    2017-11-01

    Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle-resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d -wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d -wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. We comment on the necessary conditions for detecting the amplitude mode in trARPES experiments.

  12. Magnetic Fluctuations in Pair-Density-Wave Superconductors

    NASA Astrophysics Data System (ADS)

    Christensen, Morten H.; Jacobsen, Henrik; Maier, Thomas A.; Andersen, Brian M.

    2016-04-01

    Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d -wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La1.905 Ba0.095 CuO4 [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].

  13. Quantum Phase Transitions and Collective Modes in d-Wave Superconductors

    NASA Astrophysics Data System (ADS)

    Vojta, Matthias; Sachdev, Subir

    Fluctuations near second-order quantum phase transitions in d-wave superconductors can cause strong damping of fermionic excitations, as observed in photoemission experiments. The damping of the gapless nodal quasiparticles can arise naturally in the quantum-critical region of a transition with an additional spin-singlet, zero momentum order parameter; we argue that the transition to a dx^2-y^2+ i dxy pairing state is the most likely possibility in this category. On the other hand, the gapped antinodal quasiparticles can be strongly damped by the coupling to antiferromagnetic spin fluctuations arising from the proximity to a Neel-ordered state. We review some aspects of the low-energy field theories for both transitions and the corresponding quantum-critical behavior.In addition, we discuss the spectral properties of the collective modes associated with the proximity to a superconductor with dx^2-y^2+ i dxy symmetry, and implications for experiments.

  14. Spatially resolved NMR spectra for the Swiss cheese model in heavy fermion PuCoGa5 superconductor

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Zhu, Jian-Xin; Balatsky, A. V.; Graf, M. J.

    2011-03-01

    Spatially resolved NMR experiments, which probe the local electronic excitations, play a vital role for studying the pairing symmetry of unconventional superconductors. Here we calculate the spatial modulation of the NMR spin-lattice relaxation rate (1/T1) for the Swiss cheese model as a function of impurity concentration in PuCoGa5 superconductor. The local suppression of the superconducting order parameter due to impurities is related to the number of holes in the Swiss cheese model. Our results indicate that Friedel-like oscillations,as seen in the local-density of states near an impurity, are also present in the behavior of 1/T1 as one moves away from the impurity site. We demonstrate that the gap nodes, which are filled by disorder, can be probed by NMR through the local information encoded in the spectra. The advantage of spatially resolved NMR compared to STM measurements is that the former probe is not sensitive to surface states. Work is supported by US DOE.

  15. Thermal Expansion of Ferromagnetic Superconductors:. Possible Application to UGe2

    NASA Astrophysics Data System (ADS)

    Hatayama, Nobukuni; Konno, Rikio

    2011-03-01

    We investigate the temperature dependence of thermal expansion of the ferromagnetic triplet superconductors and their thermal expansion coefficients below the superconducting transition temperature of a majority spin conduction band. The free energy of the ferromagnetic superconductors derived by Linder et al. is used. The superconducting gaps in the A2 phase of 3He and with a node in UGe2 are considered. By applying Takahashi's method to the free energy, i.e. by taking into account the volume dependence of the free energy explicitly, the temperature dependence of the thermal expansion and the thermal expansion coefficients is studied below the superconducting transition temperature of the majority spin conduction band. We find that we have anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures and that we have divergence of the thermal expansion coefficients are divergent at the superconducting transition temperatures. The Grüneisen's relation between the temperature dependence of the thermal expansion coefficients and the temperature dependence of the specific heat at low temperatures is satisfied.

  16. Thermal Expansion of Ferromagnetic Superconductors:. Possible Application to UGe2

    NASA Astrophysics Data System (ADS)

    Hatayama, Nobukuni; Konno, Rikio

    We investigate the temperature dependence of thermal expansion of the ferromagnetic triplet superconductors and their thermal expansion coefficients below the superconducting transition temperature of a majority spin conduction band. The free energy of the ferromagnetic superconductors derived by Linder et al. is used. The superconducting gaps in the A2 phase of 3He and with a node in UGe2 are considered. By applying Takahashi's method to the free energy, i.e. by taking into account the volume dependence of the free energy explicitly, the temperature dependence of the thermal expansion and the thermal expansion coefficients is studied below the superconducting transition temperature of the majority spin conduction band. We find that we have anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures and that we have divergence of the thermal expansion coefficients are divergent at the superconducting transition temperatures. The Grüneisen's relation between the temperature dependence of the thermal expansion coefficients and the temperature dependence of the specific heat at low temperatures is satisfied.

  17. Enhancement of the finite-frequency superfluid response in the pseudogap regime of strongly disordered superconducting films

    PubMed Central

    Mondal, Mintu; Kamlapure, Anand; Ganguli, Somesh Chandra; Jesudasan, John; Bagwe, Vivas; Benfatto, Lara; Raychaudhuri, Pratap

    2013-01-01

    The persistence of a soft gap in the density of states above the superconducting transition temperature Tc, the pseudogap, has long been thought to be a hallmark of unconventional high-temperature superconductors. However, in the last few years this paradigm has been strongly revised by increasing experimental evidence for the emergence of a pseudogap state in strongly-disordered conventional superconductors. Nonetheless, the nature of this state, probed primarily through scanning tunneling spectroscopy (STS) measurements, remains partly elusive. Here we show that the dynamic response above Tc, obtained from the complex ac conductivity, is highly modified in the pseudogap regime of strongly disordered NbN films. Below the pseudogap temperature, T*, the superfluid stiffness acquires a strong frequency dependence associated with a marked slowing down of critical fluctuations. When translated into the length-scale of fluctuations, our results suggest a scenario of thermal phase fluctuations between superconducting domains in a strongly disordered s-wave superconductor. PMID:23446946

  18. Temperature dependence of lower critical field of YBCO superconductor

    NASA Astrophysics Data System (ADS)

    Rani, Poonam; Hafiz, A. K.; Awana, V. P. S.

    2018-05-01

    We report the detailed study of the temperature dependence of the lower critical field (Hc1) of the YBa2Cu3O7 superconductor by magnetization measurements. The curve shows the multiband gap behavior of the sample. It is found that the sample is not a single BCS type superconductor. Hc1 is measured as the point at which the curve deviates from a Meissner-like linear M(H) curve to a nonlinear path. The Hc1 for YBCO at different temperatures from 10K to 85K has been determined by magnetization measurements M(H) with applied field parallel to the c-axis. The sample phase purity has been confirmed by Rietveld fitted X-ray diffraction data. The amplitude (1-17Oe) dependent AC susceptibility confirms the granular nature of superconducting compound. Using Bean model we calculated the temperature dependency of inter-grain critical current density and Jc(0) is found as 699.14kAcm-2.

  19. Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Simonson, Jack; Sun, Liling; Wu, Qi; Guo, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian

    2014-03-01

    The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.

  20. Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Simonson, J. W.; Sun, Liling; Wu, Qi; Gao, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian

    2013-08-01

    The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.

  1. Observation of antiferromagnetic order collapse in the pressurized insulator LaMnPO.

    PubMed

    Guo, Jing; Simonson, J W; Sun, Liling; Wu, Qi; Gao, Peiwen; Zhang, Chao; Gu, Dachun; Kotliar, Gabriel; Aronson, Meigan; Zhao, Zhongxian

    2013-01-01

    The emergence of superconductivity in the iron pnictide or cuprate high temperature superconductors usually accompanies the suppression of a long-ranged antiferromagnetic (AFM) order state in a corresponding parent compound by doping or pressurizing. A great deal of effort by doping has been made to find superconductivity in Mn-based compounds, which are thought to bridge the gap between the two families of high temperature superconductors, but the AFM order was not successfully suppressed. Here we report the first observations of the pressure-induced elimination of long-ranged AFM order at ~ 34 GPa and a crossover from an AFM insulating to an AFM metallic state at ~ 20 GPa in LaMnPO single crystals that are iso-structural to the LaFeAsO superconductor by in-situ high pressure resistance and ac susceptibility measurements. These findings are of importance to explore potential superconductivity in Mn-based compounds and to shed new light on the underlying mechanism of high temperature superconductivity.

  2. Enhancement of the finite-frequency superfluid response in the pseudogap regime of strongly disordered superconducting films.

    PubMed

    Mondal, Mintu; Kamlapure, Anand; Ganguli, Somesh Chandra; Jesudasan, John; Bagwe, Vivas; Benfatto, Lara; Raychaudhuri, Pratap

    2013-01-01

    The persistence of a soft gap in the density of states above the superconducting transition temperature Tc, the pseudogap, has long been thought to be a hallmark of unconventional high-temperature superconductors. However, in the last few years this paradigm has been strongly revised by increasing experimental evidence for the emergence of a pseudogap state in strongly-disordered conventional superconductors. Nonetheless, the nature of this state, probed primarily through scanning tunneling spectroscopy (STS) measurements, remains partly elusive. Here we show that the dynamic response above Tc, obtained from the complex ac conductivity, is highly modified in the pseudogap regime of strongly disordered NbN films. Below the pseudogap temperature, T*, the superfluid stiffness acquires a strong frequency dependence associated with a marked slowing down of critical fluctuations. When translated into the length-scale of fluctuations, our results suggest a scenario of thermal phase fluctuations between superconducting domains in a strongly disordered s-wave superconductor.

  3. Metallization of a Rashba wire by a superconducting layer in the strong-proximity regime

    NASA Astrophysics Data System (ADS)

    Reeg, Christopher; Loss, Daniel; Klinovaja, Jelena

    2018-04-01

    Semiconducting quantum wires defined within two-dimensional electron gases and strongly coupled to thin superconducting layers have been extensively explored in recent experiments as promising platforms to host Majorana bound states. We study numerically such a geometry, consisting of a quasi-one-dimensional wire coupled to a disordered three-dimensional superconducting layer. We find that, in the strong-coupling limit of a sizable proximity-induced superconducting gap, all transverse subbands of the wire are significantly shifted in energy relative to the chemical potential of the wire. For the lowest subband, this band shift is comparable in magnitude to the spacing between quantized levels that arises due to the finite thickness of the superconductor (which typically is ˜500 meV for a 10-nm-thick layer of aluminum); in higher subbands, the band shift is much larger. Additionally, we show that the width of the system, which is usually much larger than the thickness, and moderate disorder within the superconductor have almost no impact on the induced gap or band shift. We provide a detailed discussion of the ramifications of our results, arguing that a huge band shift and significant renormalization of semiconducting material parameters in the strong-coupling limit make it challenging to realize a topological phase in such a setup, as the strong coupling to the superconductor essentially metallizes the semiconductor. This metallization of the semiconductor can be tested experimentally through the measurement of the band shift.

  4. PREFACE: Anisotropic and multiband pairing: from borides to multicomponent superconductivity Anisotropic and multiband pairing: from borides to multicomponent superconductivity

    NASA Astrophysics Data System (ADS)

    Annett, James; Kusmartsev, Feodor; Bianconi, Antonio

    2009-01-01

    In 2001, the discovery of superconductivity in MgB2 rapidly led to the understanding that its complex multi-sheeted Fermi surface had two distinct values of the gap parameter Δ, each with its own characteristic temperature dependence. While the theory of multigap superconductivity had been developed long ago, this was the first well studied example where multigap behaviour was observed clearly, and indeed is essential to understand the full superconducting properties of the material. Following this discovery, evidence for multigap behaviour has appeared in a number of materials, including cuprates, ruthenates, and most recently the iron pnictides. As well as multigap pairing on different Fermi-surface sheets, strong gap anisotropy in k-space and strong modulations of the gap in real space (e.g. stripes and phase separation models) are also important in cuprates. The aim of this special section is to present a selection of high-quality papers from experts in these diverse systems, showing the links and common physical issues arising from the existence of multi-component Cooper pairing. The papers collected together for the special section provide a snapshot of the current state of the understanding of multi-component superconductivity in a wide range of materials. In a model motivated by MgB2, Tanaka and Eschrig describe Abrikosov vortex lattice in a two-gap superconductor, examining how the vortex structure is modified by three-dimensionality or quasi two-dimensionality of the Fermi surface. The multi-sheeted Fermi surfaces of the nickel borocarbides are probed using angle-resolved positron annihilation spectroscopy, described by Dugdale et al, leading to a full three-dimensional picture of the complex Fermi surface in this superconducting material. Possible evidence for multigap superconductivity in the iron pnictides, obtained using Andreev point contact spectroscopy, is described by Samuely et al. The iron pnictides are also the subject of the article by Caivano et al, in which it is proposed that the Feschbach resonance mechanism operating near to a quantum critical point may lead to stripe-like fluctuations in these materials. A number of papers describe multigap-related effects in high-Tc superconductors. In particular, Atkinson shows how the existence of CuO chain states at the Fermi surface leads to a set of resonances in the induced gap in the chain layer, which have a pronounced effect on the vortex core shape. Kristoffel et al discuss the existence of the two coherence lengths in two-gap superconductors, and describe how this leads to spatially periodic fluctuations, with possible application to high-temperature superconductivity. Kugel et al describe a scenario for phase separation due to long-range Coulomb forces leading to microstrain and nanoscale inhomogeneities in high-Tc cuprates. Kusmartsev and Saarela also argue that charge over-screening may lead to 'Coulomb bubbles' in high-Tc superconductors. Finally, Wysokiński et al describe multigap effects in strontium ruthenate, in particular the effects on the NMR relaxation rate spectra, which are obtained for NMR on different nuclear species.

  5. FOREWORD: Focus on Superconductivity in Semiconductors Focus on Superconductivity in Semiconductors

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2008-12-01

    Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm-3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors. This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008), which was held at the National Institute for Materials Science (NIMS), Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM) in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1). The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al) and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al) are discussed, and In2O3 (Makise et al) is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high-TC superconductors (Tamegai et al), and the mechanism of superconductivity is discussed. Last but not least, a novel highest-density phase of boron is produced and characterized (Zarechnaya et al). We hope that this focus issue will help readers to understand the frontiers of superconductivity in semiconductors and assist in the application of new devices using a combination of superconductivity and semiconductivity.

  6. Ab initio Eliashberg Theory: Making Genuine Predictions of Superconducting Features

    NASA Astrophysics Data System (ADS)

    Sanna, Antonio; Flores-Livas, José A.; Davydov, Arkadiy; Profeta, Gianni; Dewhurst, Kay; Sharma, Sangeeta; Gross, E. K. U.

    2018-04-01

    We present an application of Eliashberg theory of superconductivity to study a set of novel superconducting systems with a wide range of structural and chemical properties. The set includes three intercalated group-IV honeycomb layered structures, SH3 at 200 GPa (the superconductor with the highest measured critical temperature), the similar system SeH3 at 150 GPa, and a lithium doped mono-layer of black phosphorus. The theoretical approach we adopt is a recently developed, fully ab initio Eliashberg approach that takes into account the Coulomb interaction in a full energy-resolved fashion avoiding any free parameters like μ*. This method provides reasonable estimations of superconducting properties, including TC and the excitation spectra of superconductors.

  7. Depinning of the Bragg glass in a point disordered model superconductor.

    PubMed

    Olsson, Peter

    2007-03-02

    We perform simulations of the three-dimensional frustrated anisotropic XY model with point disorder as a model of a type-II superconductor with quenched point pinning in a magnetic field and a weak applied current. Using resistively shunted junction dynamics, we find a critical current I_{c} that separates a creep region with immeasurably low voltage from a region with a voltage V proportional, variant(I-I_{c}) and also identify the mechanism behind this behavior. It also turns out that data at fixed disorder strength may be collapsed by plotting V versus TI, where T is the temperature, though the reason for this behavior as yet not is fully understood.

  8. A portable magnetic field of >3 T generated by the flux jump assisted, pulsed field magnetization of bulk superconductors

    NASA Astrophysics Data System (ADS)

    Zhou, Difan; Ainslie, Mark D.; Shi, Yunhua; Dennis, Anthony R.; Huang, Kaiyuan; Hull, John R.; Cardwell, David A.; Durrell, John H.

    2017-02-01

    A trapped magnetic field of greater than 3 T has been achieved in a single grain GdBa2Cu3O7-δ (GdBaCuO) bulk superconductor of diameter 30 mm by employing pulsed field magnetization. The magnet system is portable and operates at temperatures between 50 K and 60 K. Flux jump behaviour was observed consistently during magnetization when the applied pulsed field, Ba, exceeded a critical value (e.g., 3.78 T at 60 K). A sharp dBa/dt is essential to this phenomenon. This flux jump behaviour enables the magnetic flux to penetrate fully to the centre of the bulk superconductor, resulting in full magnetization of the sample without requiring an applied field as large as that predicted by the Bean model. We show that this flux jump behaviour can occur over a wide range of fields and temperatures, and that it can be exploited in a practical quasi-permanent magnet system.

  9. Cooper-pair-condensate fluctuations and plasmons in layered superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cote, R.; Griffin, A.

    1993-10-01

    Starting from a given attractive potential, we give a systematic analysis of the spin-singlet [ital s]-wave Cooper-pair-condensate fluctuations in a two-dimensional (2D) superconductor. These results are applied to a superlattice of superconducting sheets in which the 2D charge fluctuations are coupled via the Coulomb interaction. Our main interest is how the low-energy Anderson-Bogoliubov (AB) phonon mode in the pair-breaking gap [omega][lt]2[Delta] is modified by the Coulomb interaction. Our formal analysis is valid at arbitrary temperatures. It describes the weakly bound, large-Cooper-pair limit as well as the strongly bound, small-Cooper-pair limit and thus includes both the BCS and Bose-Einstein scenarios (asmore » discussed by Nozieres and Schmitt-Rink as well as Randeira [ital et] [ital al].). A comlete normal-mode analysis is given for a charged BCS superconductor, showing how the repulsive (Coulomb) interaction modifies the collective modes of a neutral superconductor. This complements the recent numerical study carried out by Fertig and Das Sarma. We show that the pair-response function shares the same spectrum as the charge-response function, given by the zero of the longitudinal dielectric function [epsilon]([bold q],[omega]). In 2D and layered superconductors, there is a low-frequency and high-frequency plasmon branch, separated by a relatively narrow particle-hole continuum at around 2[Delta]. The low-frequency ([omega][lt]2[Delta]) plasmon branch is a renormalized version of the AB phonon mode.« less

  10. Electronic structure of the ingredient planes of the cuprate superconductor Bi 2Sr 2CuO 6+δ: A comparison study with Bi 2Sr 2CaCu 2O 8+δ

    DOE PAGES

    Yan -Feng Lv; Gu, G. D.; Wang, Wen -Lin; ...

    2016-04-15

    By means of low-temperature scanning tunneling microscopy, we report on the electronic structures of the BiO and SrO planes of the Bi 2Sr 2CuO 6+δ (Bi-2201) superconductor prepared by argon-ion bombardment and annealing. Depending on post annealing conditions, the BiO planes exhibit either a pseudogap (PG) with sharp coherence peaks and an anomalously large gap magnitude of 49 meV or van Hove singularity (vHS) near the Fermi level, while the SrO is always characteristic of a PG-like feature. This contrasts with the Bi 2Sr 2CaCu 2O 8+δ (Bi-2212) superconductor where vHS occurs solely on the SrO plane. We disclose themore » interstitial oxygen dopants (δ in the formulas) as a primary cause for the occurrence of vHS, which are located dominantly around the BiO and SrO planes, respectively, in Bi-2201 and Bi-2212. This is supported by the contrasting structural buckling amplitude of the BiO and SrO planes in the two superconductors. Furthermore, our findings provide solid evidence for the irrelevance of PG to the superconductivity in the two superconductors, as well as insights into why Bi-2212 can achieve a higher superconducting transition temperature than Bi-2201, and by implication, the mechanism of cuprate superconductivity.« less

  11. Sharp low-energy feature in single-particle spectra due to forward scattering in d-wave cuprate superconductors.

    PubMed

    Hong, Seung Hwan; Bok, Jin Mo; Zhang, Wentao; He, Junfeng; Zhou, X J; Varma, C M; Choi, Han-Yong

    2014-08-01

    There is an enormous interest in the renormalization of the quasiparticle (qp) dispersion relation of cuprate superconductors both below and above the critical temperature T_{c} because it enables the determination of the fluctuation spectrum to which the qp's are coupled. A remarkable discovery by angle-resolved photoemission spectroscopy (ARPES) is a sharp low-energy feature (LEF) in qp spectra well below the superconducting energy gap but with its energy increasing in proportion to T_{c} and its intensity increasing sharply below T_{c}. This unexpected feature needs to be reconciled with d-wave superconductivity. Here, we present a quantitative analysis of ARPES data from Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} (Bi2212) using Eliashberg equations to show that the qp scattering rate due to the forward scattering impurities far from the Cu-O planes is modified by the energy gap below T_{c} and shows up as the LEF. This is also a necessary step to analyze ARPES data to reveal the spectrum of fluctuations promoting superconductivity.

  12. Topology and symmetry of surface Majorana arcs in cyclic superconductors

    NASA Astrophysics Data System (ADS)

    Mizushima, Takeshi; Nitta, Muneto

    2018-01-01

    We study the topology and symmetry of surface Majorana arcs in superconductors with nonunitary "cyclic" pairing. Cyclic p -wave pairing may be realized in a cubic or tetrahedral crystal, while it is a candidate for the interior P32 superfluids of neutron stars. The cyclic state is an admixture of full gap and nodal gap with eight Weyl points and the low-energy physics is governed by itinerant Majorana fermions. We here show the evolution of surface states from Majorana cone to Majorana arcs under rotation of surface orientation. The Majorana cone is protected solely by an accidental spin rotation symmetry and fragile against spin-orbit coupling, while the arcs are attributed to two topological invariants: the first Chern number and one-dimensional winding number. Lastly, we discuss how topologically protected surface states inherent to the nonunitary cyclic pairing can be captured from surface probes in candidate compounds, such as U1 -xThxBe13 . We examine tunneling conductance spectra for two competitive scenarios in U1 -xThxBe13 —the degenerate Eu scenario and the accidental scenario.

  13. Evidence of a miscibility gap in the FeTe1-xSex polycrystalline samples prepared with a melting process

    NASA Astrophysics Data System (ADS)

    Sala, A.; Palenzona, A.; Bernini, C.; Caglieris, F.; Cimberle, M. R.; Ferdeghini, C.; Lamura, G.; Martinelli, A.; Pani, M.; Hecher, J.; Eisterer, M.; Putti, M.

    2014-05-01

    The study of overdoped FeTe1-xSex (0.5 < x < 1) polycrystalline superconductor samples is reported. The samples were prepared using a melting technique previously developed by our group. Increasing the Se content a phase separation related to the formation of FeSe inside the Fe(Se,Te) phase happens, as demonstrated by structural analysis and magnetic characterization. The proposed phase separation picture is likely the fingerprint of a miscibility gap in the Fe(Se,Te) system.

  14. Wide-band operation of quasi-optical distributed superconductor/insulator/superconductor mixers with epitaxial NbN/AlN/NbN junctions

    NASA Astrophysics Data System (ADS)

    Kohjiro, S.; Shitov, S. V.; Wang, Z.; Uzawa, Y.; Miki, S.; Kawakami, A.; Shoji, A.

    2004-05-01

    For the optimum design of integrated receivers operating above the gap frequency of Nb, we have designed, fabricated and tested NbN-based quasi-optical superconductor/insulator/superconductor (SIS) mixers. The mixer chip incorporates a resonant half-wavelength epitaxial NbN/AlN/NbN junction, a twin-slot antenna and their coupling circuits. We adopted two kinds of coupling circuit between the antenna and the SIS junction: one is an in-phase feed with a length of 95 µm and the other is an anti-phase feed of 30 µm length. It was found that the anti-phase mixer reveals a 3 dB bandwidth of 43% of the centre frequency; the uncorrected double-sideband receiver noise temperature TRX = 691 K at 0.91 THz and TRX = 844 K at 0.80 THz, while 17% and TRX = 1250 K at 0.79 THz for the in-phase version. Possible reasons for this difference are discussed, which could be transmission loss and its robustness with respect to the variation of junction parameters. These experimental results suggest the NbN-based distributed mixer with the anti-phase feed is a better candidate for wide-band integrated receivers operating above 0.7 THz.

  15. Charge of a quasiparticle in a superconductor.

    PubMed

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-02-16

    Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang

    In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less

  17. Amplitude mode oscillations in pump-probe photoemission spectra from a d -wave superconductor

    DOE PAGES

    Nosarzewski, B.; Moritz, B.; Freericks, J. K.; ...

    2017-11-20

    Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle-resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d-wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d-wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. As a result, we comment on the necessary conditionsmore » for detecting the amplitude mode in trARPES experiments.« less

  18. Amplitude mode oscillations in pump-probe photoemission spectra from a d -wave superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosarzewski, B.; Moritz, B.; Freericks, J. K.

    Recent developments in the techniques of ultrafast pump-probe photoemission have made possible the search for collective modes in strongly correlated systems out of equilibrium. Including inelastic scattering processes and a retarded interaction, we simulate time- and angle-resolved photoemission spectroscopy (trARPES) to study the amplitude mode of a d-wave superconductor, a collective mode excited through the nonlinear light-matter coupling to the pump pulse. We find that the amplitude mode oscillations of the d-wave order parameter occur in phase at a single frequency that is twice the quasi-steady-state maximum gap size after pumping. As a result, we comment on the necessary conditionsmore » for detecting the amplitude mode in trARPES experiments.« less

  19. Quantum phase transitions and phase diagram for a one-dimensional p-wave superconductor with an incommensurate potential.

    PubMed

    Cai, X

    2014-04-16

    The effect of the incommensurate potential is studied for the one-dimensional p-wave superconductor. It is determined by analyzing various properties, such as the superconducting gap, the long-range order of the correlation function, the inverse participation ratio and the Z2 topological invariant, etc. In particular, two important aspects of the effect are investigated: (1) as disorder, the incommensurate potential destroys the superconductivity and drives the system into the Anderson localized phase; (2) as a quasi-periodic potential, the incommensurate potential causes band splitting and turns the system with certain chemical potential into the band insulator phase. A full phase diagram is also presented in the chemical potential-incommensurate potential strength plane.

  20. Interface-enhanced high-temperature superconductivity in single-unit-cell FeT e1 -xS ex films on SrTi O3

    NASA Astrophysics Data System (ADS)

    Li, Fangsen; Ding, Hao; Tang, Chenjia; Peng, Junping; Zhang, Qinghua; Zhang, Wenhao; Zhou, Guanyu; Zhang, Ding; Song, Can-Li; He, Ke; Ji, Shuaihua; Chen, Xi; Gu, Lin; Wang, Lili; Ma, Xu-Cun; Xue, Qi-Kun

    2015-06-01

    Recently discovered high-temperature superconductivity in single-unit-cell (UC) FeSe films on SrTi O3 (STO) substrate has stimulated tremendous research interest, both experimental and theoretical. Whether this scenario could be extended to other superconductors is vital in both identifying the enhanced superconductivity mechanism and further raising the critical transition temperature (Tc). Here we successfully prepared single-UC FeT e1 -xS ex(0.1 ≤x ≤0.6 ) films on STO substrates by molecular beam epitaxy and observed U -shaped superconducting gaps (Δ ) up to ˜16.5 meV , nearly ten times the gap value (Δ ˜1.7 meV ) of the optimally doped bulk FeT e0 .6S e0 .4 single crystal (Tc˜14.5 K ). No superconducting gap has been observed on the second UC and thicker FeT e1 -xS ex films at 5.7 K, indicating the important role of the interface. This interface-enhanced high-temperature superconductivity is further confirmed by ex situ transport measurements, which revealed an onset superconducting transition temperature above 40 K, nearly two times higher than that of the optimally doped bulk FeT e0 .6S e0 .4 single crystal. This work demonstrates that interface engineering is a feasible way to discover alternative superconductors with higher Tc.

  1. Discovery of orbital-selective Cooper pairing in FeSe

    DOE PAGES

    Sprau, P. O.; Kostin, A.; Kreisel, A.; ...

    2017-07-07

    The superconductor iron selenide (FeSe) is of intense interest owing to its unusual nonmagnetic nematic state and potential for high-temperature superconductivity. But its Cooper pairing mechanism has not been determined. Here, we used Bogoliubov quasiparticle interference imaging to determine the Fermi surface geometry of the electronic bands surrounding the Γ = (0,0) and X = (π/a Fe, 0) points of FeSe and to measure the corresponding superconducting energy gaps. We show that both gaps are extremely anisotropic but nodeless and that they exhibit gap maxima oriented orthogonally in momentum space. Moreover, by implementing a novel technique, we demonstrate that thesemore » gaps have opposite sign with respect to each other. This complex gap configuration reveals the existence of orbital-selective Cooper pairing that, in FeSe, is based preferentially on electrons from the d yz orbitals of the iron atoms.« less

  2. Discovery of orbital-selective Cooper pairing in FeSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprau, P. O.; Kostin, A.; Kreisel, A.

    The superconductor iron selenide (FeSe) is of intense interest owing to its unusual nonmagnetic nematic state and potential for high-temperature superconductivity. But its Cooper pairing mechanism has not been determined. Here, we used Bogoliubov quasiparticle interference imaging to determine the Fermi surface geometry of the electronic bands surrounding the Γ = (0,0) and X = (π/a Fe, 0) points of FeSe and to measure the corresponding superconducting energy gaps. We show that both gaps are extremely anisotropic but nodeless and that they exhibit gap maxima oriented orthogonally in momentum space. Moreover, by implementing a novel technique, we demonstrate that thesemore » gaps have opposite sign with respect to each other. This complex gap configuration reveals the existence of orbital-selective Cooper pairing that, in FeSe, is based preferentially on electrons from the d yz orbitals of the iron atoms.« less

  3. Phase-driven collapse of the Cooper condensate in a nanosized superconductor

    NASA Astrophysics Data System (ADS)

    Ronzani, Alberto; D'Ambrosio, Sophie; Virtanen, Pauli; Giazotto, Francesco; Altimiras, Carles

    2017-12-01

    Superconductivity can be understood in terms of a phase transition from an uncorrelated electron gas to a condensate of Cooper pairs in which the relative phases of the constituent electrons are coherent over macroscopic length scales. The degree of correlation is quantified by a complex-valued order parameter, whose amplitude is proportional to the strength of the pairing potential in the condensate. Supercurrent-carrying states are associated with nonzero values of the spatial gradient of the phase. The pairing potential and several physical observables of the Cooper condensate can be manipulated by means of temperature, current bias, dishomogeneities in the chemical composition, or application of a magnetic field. Here we show evidence of complete suppression of the energy gap in the local density of quasiparticle states (DOS) of a superconducting nanowire upon establishing a phase difference equal to π over a length scale comparable to the superconducting coherence length. These observations are consistent with a complete collapse of the pairing potential in the center of the wire, in accordance with theoretical modeling based on the quasiclassical theory of superconductivity in diffusive systems. Our spectroscopic data, fully exploring the phase-biased states of the condensate, highlight the profound effect that extreme phase gradients exert on the amplitude of the pairing potential. Moreover, the sharp magnetic response (up to 27 mV/Φ0) observed near the onset of the superconducting gap collapse regime is exploited to realize magnetic flux detectors with noise-equivalent resolution as low as 260 n Φ0/√{Hz} .

  4. BCS-Bose model of exotic superconductors: Generalized coherence length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casas, M.; Getino, J.M.; de Llano, M.

    1994-12-01

    Analytic expressions are derived for the root-mean-square (rms) radius of a pair of fermions in a BCS many-fermion state in one, two, and three dimensions, in terms of the BCS gap energy and the associated chemical potential. These expressions are valid for any coupling strength of [ital any] pair interaction model implying a momentum-independent gap energy. The latter holds, e.g., for an attractive [delta] pair potential examined in the one-dimensional (1D) case (whose [ital N]-fermion ground state can be determined exactly) or for the BCS (electron-phonon) model interaction in any dimension. Weak-coupling and/or high-density limits for the rms radius aremore » identical in 1D, 2D, and 3D, and reduce to the familiar well-known Pippard result to within a factor of order unity. In contrast, strong-coupling and/or low-density limits coincide in 1D and 3D, but differ by a factor of order unity in the 2D limit, and in each case are essentially the size of a single, isolated pair. The 1D [delta] interaction McGuire-Yang-Gaudin many-fermion model is studied in detail. The interaction renormalization scheme of Miyake and of Randeria, Duan, and Shieh, and the BCS interaction model, both in 2D, are employed to analyze cuprate superconductor empirical results. Reasonable agreement between theoretical rms radii with experimental coherence lengths suggests that cuprates can be described moderately well as [ital weakly] [ital coupled] superconductors within the BCS-Bose formalism.« less

  5. Theoretical study of cathode surfaces and high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Mueller, Wolfgang

    1994-01-01

    The surface-dipole properties of model cathode surfaces have been investigated with relativistic scattered-wave cluster calculations. Work-function/coverage curves have been derived from these data by employing the depolarization model of interacting surface dipoles. Accurate values have been obtained for the minimum work functions of several low-work-function surfaces. In the series BaO on bcc W, hcp Os, and fcc Pt, BaO/Os shows a lower and BaO/Pt a higher work function than BaO/W, which is attributed to the different substrate crystal structures involved. Results are also presented on the electronic structure of the high-temperature superconductor YBa2Cu3O7, which has been investigated with fully relativistic calculations for the first time.

  6. Orbital Picture of Yu-Shiba-Rusinov Multiplets

    NASA Astrophysics Data System (ADS)

    Heinrich, Benjamin W.; Ruby, Michael; Franke, Katharina J.; Peng, Yang; von Oppen, Felix

    Magnetic impurities on an s-wave superconductor induce Yu-Shiba-Rusinov (YSR) bound states within the excitation gap of the superconductor. Here, we investigate single manganese (Mn) atoms adsorbed on different surface orientations of superconducting lead (Pb) and the nature of their YSR states. Depending on the adsorption site and surface, we detect a distinct number and characteristic patterns of YSR states around the Mn atoms. We show that the YSR states inherit their properties from the Mn d levels, which are split by the surrounding crystal field. The periodicity of the long-range YSR oscillations allows us to identify a dominant coupling of the d states to the outer Fermi sheet of the two-band superconductor Pb. The long-range and directional nature of the states are promising for the design of coupled adatom structures, which could bear topological phases. We acknowledge funding by the Deutsche Forschungsgemeinschaft through Grant No. FR2726/4 and through collaborative research Grants No. Sfb 658, No. CRC 183, and No. SPP 1666, as well as by the European Research Council through Consolidator Grant NanoSpin.

  7. What makes the T c of monolayer FeSe on SrTiO 3 so high: a sign-problem-free quantum Monte Carlo study

    DOE PAGES

    Li, Zi-Xiang; Wang, Fa; Yao, Hong; ...

    2016-04-30

    Monolayer FeSe films grown on SrTiO 3 (STO) substrate show superconducting gap-opening temperatures (T c) which are almost an order of magnitude higher than those of the bulk FeSe and are highest among all known Fe-based superconductors. Angle-resolved photoemission spectroscopy observed “replica bands” suggesting the importance of the interaction between FeSe electrons and STO phonons. These facts rejuvenated the quest for T c enhancement mechanisms in iron-based, especially iron-chalcogenide, superconductors. Here, we perform the first numerically-exact sign-problem-free quantum Monte Carlo simulations to iron-based superconductors. We (1) study the electronic pairing mechanism intrinsic to heavily electron doped FeSe films, and (2)more » examine the effects of electron–phonon interaction between FeSe and STO as well as nematic fluctuations on T c. Armed with these results, we return to the question “what makes the T c of monolayer FeSe on SrTiO 3 so high?” in the conclusion and discussions.« less

  8. Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce1−xYbxCoIn5

    PubMed Central

    Song, Yu; Van Dyke, John; Lum, I. K.; White, B. D.; Jang, Sooyoung; Yazici, Duygu; Shu, L.; Schneidewind, A.; Čermák, Petr; Qiu, Y.; Maple, M. B.; Morr, Dirk K.; Dai, Pengcheng

    2016-01-01

    The neutron spin resonance is a collective magnetic excitation that appears in the unconventional copper oxide, iron pnictide and heavy fermion superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce1−xYbxCoIn5 with x=0, 0.05 and 0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with a random phase approximation calculation using the electronic structure and the momentum dependence of the -wave superconducting gap determined from scanning tunnelling microscopy (STM) for CeCoIn5, we conclude that the robust upward-dispersing resonance mode in Ce1−xYbxCoIn5 is inconsistent with the downward dispersion predicted within the spin-exciton scenario. PMID:27677397

  9. Quasiclassical Theory on Third-Harmonic Generation in Conventional Superconductors with Paramagnetic Impurities

    NASA Astrophysics Data System (ADS)

    Jujo, Takanobu

    2018-02-01

    We investigate the third-harmonic generation (THG) of s-wave superconductors under microwave pulse irradiation. We consider the effect of paramagnetic impurities on the THG intensity of dirty superconductors. The nonlinear response function is calculated using the method of the quasiclassical Green function. It is shown that the amplitude mode is included as the vertex correction and makes a predominant contribution to the THG intensity. When the effect of paramagnetic impurities is weak, the THG intensity shows a peak at the temperature at which the superconducting gap is about the same as the frequency of the incident pulse, similarly to in experiments. As the effect of paramagnetic impurities is strengthened, the peak of the THG intensity disappears. This indicates that time-reversal symmetry breaking due to paramagnetic impurities eliminates the well-defined amplitude mode. The result of our calculation shows that the existence of the amplitude mode can be confirmed through the THG intensity. The result of a semiquantitative calculation is in good agreement with the experimental result, and it also shows that the diamagnetic term is negligible.

  10. Method to improve superconductor cable

    DOEpatents

    Borden, A.R.

    1984-03-08

    A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.

  11. Recent Topics of Organic Superconductors

    NASA Astrophysics Data System (ADS)

    Ardavan, Arzhang; Brown, Stuart; Kagoshima, Seiichi; Kanoda, Kazushi; Kuroki, Kazuhiko; Mori, Hatsumi; Ogata, Masao; Uji, Shinya; Wosnitza, Jochen

    2012-01-01

    Recent developments in research into superconductivity in organic materials are reviewed. In the epoch-defining quasi-one-dimensional TMTSF superconductors with Tc ˜ 1 K, Tc decreases monotonically with increasing pressure, as do signatures of spin fluctuations in the normal state, providing good evidence for magnetically-mediated pairing. Upper critical fields exceed the Zeeman-limiting field by several times, suggesting triplet pairing or a transition to an inhomogeneous superconducting state at high magnetic fields, while triplet pairing is ruled out at low fields by NMR Knight-shift measurements. Evidence for a spatially inhomogeneous superconducting state, Fulde--Ferrel--Larkin--Ovchinnikov state, which has long been sought in various superconducting systems, is now captured by thermodynamic and transport measurements for clean and highly two-dimensional BEDT-TTF and BETS superconductors. Some of the layered superconductors also serve as model systems for Mott physics on anisotropic triangular lattice. For example, the Nernst effect and the pseudo-gap behavior in NMR relaxation are enhanced near to the Mott transition. In the case of increasing spin frustration, the superconducting transition temperature is depressed, and antiferromagnetic ordering is eliminated altogether in the adjacent Mott insulating phase. There is an increasing number of materials exhibiting superconductivity in competition or cooperation with charge order. Theoretical studies shed light on the role of spin and/or charge fluctuations for superconductivity appearing under conditions close to those of correlation-induced insulating phases in the diversity of organic materials.

  12. Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering.

    PubMed

    Bachmann, Maja D; Nair, Nityan; Flicker, Felix; Ilan, Roni; Meng, Tobias; Ghimire, Nirmal J; Bauer, Eric D; Ronning, Filip; Analytis, James G; Moll, Philip J W

    2017-05-01

    By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. We show a new route to reliably fabricate superconducting microstructures from the nonsuperconducting Weyl semimetal NbAs under ion irradiation. The significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer ( T c ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale.

  13. Localization via exchange splitting in NaFe1-xCuxAs

    NASA Astrophysics Data System (ADS)

    Charnukha, Aliaksei; Yin, Zhiping; Song, Yu; Cao, Chongde; Dai, Pengcheng; Basov, Dimitri

    Iron-based high-temperature superconductors have emerged as a distinct material family believed to bridge the wide gap in understanding between conventional low-temperature and unconventional high-temperature copper-based superconductors. And yet, compounds that bear close resemblance to strongly correlated superconducting cuprates have been hard to come by. Recently, copper substitution in a quintessential iron pnictide, NaFeAs, has been demonstrated to result in a semiconducting transport behavior, suggesting the possibility of a strongly correlated Mott insulating electronic state. Here we use optical spectroscopy and dynamical mean-field theory to demonstrate explicitly that the excitation spectrum of NaFe0.5Cu0.5As possesses a sizable gap below the Neel temperature and remains unchanged up to room temperature due to the persistence of short-range antiferromagnetic correlations. We show that all of the observed experimental properties can be explained remarkably well as a result of exchange splitting in the predominantly Fe- d-derived electronic band structure induced by local antiferromagnetic order. On-site repulsion, on the contrary, is insufficient to drive localization. Our results paint a fuller picture of the intermediate character of correlations in iron-pnictides.

  14. Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering

    PubMed Central

    Bachmann, Maja D.; Nair, Nityan; Flicker, Felix; Ilan, Roni; Meng, Tobias; Ghimire, Nirmal J.; Bauer, Eric D.; Ronning, Filip; Analytis, James G.; Moll, Philip J. W.

    2017-01-01

    By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. We show a new route to reliably fabricate superconducting microstructures from the nonsuperconducting Weyl semimetal NbAs under ion irradiation. The significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer (Tc ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale. PMID:28560340

  15. Point contact Andreev reflection spectroscopic (PCARS) studies on 122-type iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Park, W. K.; Greene, L. H.; Yuan, H. Q.; Chen, G. F.; Luo, G. L.; Wang, N. L.; Sefat, A. S.; McGuire, M. A.; Jin, R.; Sales, B. C.; Mandrus, D.; Gillett, J.; Sebastian, S. E.

    2010-03-01

    PCARS is applied to investigate the superconducting gap in iron pnictide single crystal superconductors of the AFe2As2 (A=Ba, Sr) family with two categories of G(V) curves observed [1]: one where Andreev reflection (AR) is present for (Ba0.6K0.4)Fe2As2 and Ba(Fe0.9Co0.1)2As2, and the other without AR but a V^2/3 shape for Sr0.6Na0.4Fe2As2 and Sr(Fe0.9Co0.1)2As2. The latter is also observed in the nonsuperconducting parent compound BaFe2As2. Mesoscopic phase-separated coexistence of magnetic and superconducting orders is considered to explain distinct behaviors. A gap size ˜3.0-4.0 meV with 2δ0/kBTc˜2.0-2.6 is observed for PCARS on Ba0.6K0.4Fe2As2. For the Ba(Fe0.9Co0.1)2As2, G(V) curves typically display a zero-bias conductance peak, sometimes with a V-shape background. [1] Xin Lu et al., arXiv:0910.4230

  16. Electron-phonon coupling in superconducting β-PdBi{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Ramesh; Dwivedi, Shalini; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com

    2015-06-24

    We have studied the electronic, transport and vibrational properties of low temperature superconductor β-PdBi{sub 2}. The band manifold clearly demonstrates the 2D-layered structure with multiple gaps. The intersection of bands at E{sub F} in the Γ-P, Γ-N directions gives rise to complicated Fermi surface topology, which contains quite complicated multiple connected sheets, as well as hole and electron-like pockets. From the low temperature specific heat, we have estimated the electron-phonon coupling constant λ{sub el-ph} which has a very high value of 3.66. The vibrational properties clearly illustrates that the strong coupling makes the lattice unstable. The calculated properties confirm thatmore » β-PdBi{sub 2} is an intermediate coupling superconductor.« less

  17. Electronic structure of the bismuth family of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Feng, Donglai

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic properties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the large superconducting phase transition temperature in a high temperature superconductor is associated with parameters that cause both large pairing strength and strong phase coherence in the system. The number of CuO2 layers in each unit cell is just one of the factors that affect these parameters.

  18. Observation of Majorana fermions in the vortex on topological insulator-superconductor heterostructure Bi2Te3/NbSe2

    NASA Astrophysics Data System (ADS)

    Jia, Jinfeng

    Majorana fermion (MF) zero modes have been predicted in a wide variety of condensed matter systems and proposed as a potential building block for fault-tolerant quantum computer. Signatures of the MFs have been reported in the form of zero-energy conductance peak in various systems. As predicted, MFs appear as zero-energy vortex core modes with distinctive spatial profile in proximity-induced superconducting surface states of topological insulators. Furthermore, MFs can induce spin selective Andreev reflection (SSAR), a unique signature of MFs. We report the observation of all the three features for the MFs inside vortices in Bi2Te3/NbSe2 hetero-structure, in which proximity-induced superconducting gap on topological surface states was previously established. Especially, by using spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS), we observed the spin dependent tunneling effect, and fully supported by theoretical analyses, which is a direct evidence for the SSAR from MFs. More importantly, all evidences are self-consistent. Our work provides definitive evidences of MFs and will stimulate the MFs research on their novel physical properties, hence a step towards their non-Abelian statistics and application in quantum computing.

  19. Holographic entanglement entropy in imbalanced superconductors

    NASA Astrophysics Data System (ADS)

    Dutta, Arghya; Modak, Sujoy Kumar

    2014-01-01

    We study the behavior of holographic entanglement entropy (HEE) for imbalanced holographic superconductors. We employ a numerical approach to consider the robust case of fully back-reacted gravity system. The hairy black hole solution is found by using our numerical scheme. Then it is used to compute the HEE for the superconducting case. The cases we study show that in presence of a mismatch between two chemical potentials, below the critical temperature, superconducting phase has a lower HEE in comparison to the AdS-Reissner-Nordström black hole phase. Interestingly, the effects of chemical imbalance are different in the contexts of black hole and superconducting phases. For black hole, HEE increases with increasing imbalance parameter while it behaves oppositely for the superconducting phase. The implications of these results are discussed.

  20. Theory of dynamic spin susceptibility in terms of the t-J-V model: Comparison with neutron scattering data for Pr0.88LaCe0.12CuO4 - x and La2 - x Sr x CuO4

    NASA Astrophysics Data System (ADS)

    Andreev, A. I.; Eremin, I. M.; Eremin, M. V.

    2009-01-01

    A formula for the dynamic spin susceptibility is derived in terms of the t-J-V model. This formula makes it possible to explain the main features of recent experiments on neutron scattering in the electron-doped superconductor Pr0.88LaCe0.12CuO4 - x . In particular, the proposed theory reproduces well a V-shaped relief in the frequency behavior of the imaginary part χ″( Q, ω) of the susceptibility of the Pr0.88LaCe0.12CuO4 - x compound in the vicinity of the wave vector Q = (π,π) and the scaling behavior of the position of the maxima in the dependence of the function χ″( Q, ω) T on the quantity ω/ T. The magnetism of the high-temperature superconductors is dual. These materials contain charge carriers, on the one hand, and localized spins in the copper ion sublattice, on the other hand. Both these systems are strongly coupled to each other. The mode of collective oscillations is common. The magnetism of localized spins “freezes” with the appearance of the superconducting gap. The recently revealed double-peak structure of the imaginary part χ″( Q, ω) of the susceptibility in superconductors of the La1.84Sr0.16CuO4 type is explained. The low-frequency absorption peak is located within the superconducting gap and interpreted as a manifestation of the branch of spin excitons, and the high-frequency absorption peak predominantly corresponds to renormalized collective oscillations of localized spins.

  1. Discovery of a Superconducting High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Koželj, P.; Vrtnik, S.; Jelen, A.; Jazbec, S.; Jagličić, Z.; Maiti, S.; Feuerbacher, M.; Steurer, W.; Dolinšek, J.

    2014-09-01

    High-entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations, where the high entropy of mixing can stabilize disordered solid-solution phases with simple structures like a body-centered cubic or a face-centered cubic, in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. %), which possesses an average body-centered cubic structure of lattice parameter a =3.36 Å. The measurements of the electrical resistivity, the magnetization and magnetic susceptibility, and the specific heat revealed that the Ta34Nb33Hf8Zr14Ti11 HEA is a type II superconductor with a transition temperature Tc≈7.3 K, an upper critical field μ0Hc2≈8.2 T, a lower critical field μ0Hc1≈32 mT, and an energy gap in the electronic density of states (DOS) at the Fermi level of 2Δ ≈2.2 meV. The investigated HEA is close to a BCS-type phonon-mediated superconductor in the weak electron-phonon coupling limit, classifying it as a "dirty" superconductor. We show that the lattice degrees of freedom obey Vegard's rule of mixtures, indicating completely random mixing of the elements on the HEA lattice, whereas the electronic degrees of freedom do not obey this rule even approximately so that the electronic properties of a HEA are not a "cocktail" of properties of the constituent elements. The formation of a superconducting gap contributes to the electronic stabilization of the HEA state at low temperatures, where the entropic stabilization is ineffective, but the electronic energy gain due to the superconducting transition is too small for the global stabilization of the disordered state, which remains metastable.

  2. Angle-resolved photoemission spectroscopy studies of the Mott insulator to superconductor evolution in calcium-sodium-copper-chloride

    NASA Astrophysics Data System (ADS)

    Shen, Kyle Michael

    The parent compounds of the high-temperature cuprate superconductors are antiferromagnetic Mott insulators. To explain the microscopic mechanism behind high-temperature superconductivity, it is first necessary to understand how the electronic states evolve from the parent Mott insulator into the superconducting compounds. This dissertation presents angle-resolved photoemission spectroscopy (ARPES) studies of one particular family of the cuprate superconductors, Ca 2-xNaxCuO 2Cl2, to investigate how the single-electron excitations develop throughout momentum space as the system is hole doped from the Mott insulator into a superconductor with a transition temperature of 22 K. These measurements indicate that, due to very strong electron-boson interactions, the quasiparticle residue, Z, approaches zero in the parent Mott insulator due to the formation of small lattice polarons. As a result, many fundamental quantities such as the chemical potential, quasiparticle excitations, and the Fermi surface evolve in manners wholly unexpected from conventional weakly-interacting theories. In addition, highly anisotropic interactions have been observed in momentum space where quasiparticle-like excitations persist to low doping levels along the nodal direction of the d-wave super-conducting gap, in contrast to the unusual excitations near the d-wave antinode. This anisotropy may reflect the propensity of the lightly doped cuprates towards forming a competing, charge-ordered state. These results provide a novel and logically consistent explanation of the hole doping evolution of the lineshape, spectral weight, chemical potential, quasiparticle dispersion, and Fermi surface as Ca2- xNaxCuO2Cl2 evolves from the parent Mott insulator into a high-temperature superconductor.

  3. Surface impedance and optimum surface resistance of a superconductor with an imperfect surface

    NASA Astrophysics Data System (ADS)

    Gurevich, Alex; Kubo, Takayuki

    2017-11-01

    We calculate a low-frequency surface impedance of a dirty, s -wave superconductor with an imperfect surface incorporating either a thin layer with a reduced pairing constant or a thin, proximity-coupled normal layer. Such structures model realistic surfaces of superconducting materials which can contain oxide layers, absorbed impurities, or nonstoichiometric composition. We solved the Usadel equations self-consistently and obtained spatial distributions of the order parameter and the quasiparticle density of states which then were used to calculate a low-frequency surface resistance Rs(T ) and the magnetic penetration depth λ (T ) as functions of temperature in the limit of local London electrodynamics. It is shown that the imperfect surface in a single-band s -wave superconductor results in a nonexponential temperature dependence of Z (T ) at T ≪Tc which can mimic the behavior of multiband or d -wave superconductors. The imperfect surface and the broadening of the gap peaks in the quasiparticle density of states N (ɛ ) in the bulk give rise to a weakly temperature-dependent residual surface resistance. We show that the surface resistance can be optimized and even reduced below its value for an ideal surface by engineering N (ɛ ) at the surface using pair-breaking mechanisms, particularly by incorporating a small density of magnetic impurities or by tuning the thickness and conductivity of the normal layer and its contact resistance. The results of this work address the limit of Rs in superconductors at T ≪Tc , and the ways of engineering the optimal density of states by surface nanostructuring and impurities to reduce losses in superconducting microresonators, thin-film strip lines, and radio-frequency cavities for particle accelerators.

  4. Fabrication and characterization of high current-density, submicron, NbN/MgO/NbN tunnel junctions

    NASA Technical Reports Server (NTRS)

    Stern, J. A.; Leduc, Henry G.; Judas, A. J.

    1992-01-01

    At near-millimeter wavelengths, heterodyne receivers based on SIS tunnel junctions are the most sensitive available. However, in order to scale these results to submillimeter wavelengths, certain device properties should be scaled. The tunnel-junction's current density should be increased to reduce the RC product. The device's area should be reduced to efficiently couple power from the antenna to the mixer. Finally, the superconductor used should have a large energy gap to minimize RF losses. Most SIS mixers use Nb or Pb-alloy tunnel junctions; the gap frequency for these materials is approximately 725 GHz. Above the gap frequency, these materials exhibit losses similar to those in a normal metal. The gap frequency in NbN films is as-large-as 1440 GHz. Therefore, we have developed a process to fabricate small area (down to 0.13 sq microns), high current density, NbN/MgO/NbN tunnel junctions.

  5. Odd-Parity Superconductivity near an Inversion Breaking Quantum Critical Point in One Dimension

    DOE PAGES

    Ruhman, Jonathan; Kozii, Vladyslav; Fu, Liang

    2017-05-31

    In this work, we study how an inversion-breaking quantum critical point affects the ground state of a one-dimensional electronic liquid with repulsive interaction and spin-orbit coupling. We find that regardless of the interaction strength, the critical fluctuations always lead to a gap in the electronic spin sector. The origin of the gap is a two-particle backscattering process, which becomes relevant due to renormalization of the Luttinger parameter near the critical point. The resulting spin-gapped state is topological and can be considered as a one-dimensional version of a spin-triplet superconductor. Interestingly, in the case of a ferromagnetic critical point, the Luttingermore » parameter is renormalized in the opposite manner, such that the system remains nonsuperconducting.« less

  6. Superconducting gap symmetry in the superconductor BaFe1.9Ni0.1As2

    NASA Astrophysics Data System (ADS)

    Kuzmicheva, T. E.; Kuzmichev, S. A.; Sadakov, A. V.; Gavrilkin, S. Yu.; Tsvetkov, A. Yu.; Lu, X.; Luo, H.; Vasiliev, A. N.; Pudalov, V. M.; Chen, Xiao-Jia; Abdel-Hafiez, Mahmoud

    2018-06-01

    We report on the Andreev spectroscopy and specific heat of high-quality single crystals of BaFe1.9Ni0.1As2 . The intrinsic multiple Andreev reflection spectroscopy reveals two anisotropic superconducting gaps ΔL≈3.2 -4.5 meV , ΔS≈1.2 -1.6 meV (the ranges correspond to the minimum and maximum value of the coupling energy in the kxky plane). The 25 %-30 % anisotropy shows the absence of nodes in the superconducting gaps. Using a two-band model with s -wave-like gaps ΔL≈3.2 meV and ΔS≈1.6 meV , the temperature dependence of the electronic specific heat can be well described. A linear magnetic field dependence of the low-temperature specific heat offers further support of s -wave type of the order parameter. We find that a d -wave or single-gap BCS theory under the weak-coupling approach cannot describe our experiments.

  7. Dependence of the quasiparticle recombination rate on the superconducting gap and TC

    NASA Astrophysics Data System (ADS)

    Carr, G. L.; Xi, Xiaoxiang; Hwang, J.; Tashiro, H.; Reitze, D. H.; Tanner, D. B.

    2010-03-01

    The relaxation of excess quasiparticles in a BCS superconductor is known to depend on quantities such as the quasiparticle & phonon density of states, and their coupling (Kaplan et al, Phys. Rev. B 14 4854, 1976). Disorder or an applied field can disrupt superconductivity, as evidenced by a reduced TC. We consider some simple modifications to the quasiparticle density of states consistent with a suppressed energy gap and TC, leading to changes in the intrinsic and effective (measured) rates for excess quasiparticles to recombine into pairs. We review some results for disordered MoGe and discuss the magnetic-field dependence of the recombination process.

  8. Quantum oscillations in the mixed state of d -wave superconductors

    NASA Astrophysics Data System (ADS)

    Melikyan, Ashot; Vafek, Oskar

    2008-07-01

    We show that the low-energy density of quasiparticle states in the mixed state of ultraclean dx2-y2 -wave superconductors exhibits quantum oscillations even in the regime where the cyclotron frequency ℏωc≪Δ0 , the d -wave pairing gap. Such oscillations as a function of magnetic field B are argued to be due to the internodal scattering of the nodal quasiparticles near wave vectors (±kD,±kD) by the vortex lattice as well as their Zeeman coupling. While the nominal periodicity of the oscillations is set by the condition kD[hc/(eB)]1/2≡kD'[hc/(eB')]1/2(mod2π) , we find that there is additional structure within each period that grows in complexity as the Dirac node anisotropy increases.

  9. Observation of pseudogap in MgB2

    NASA Astrophysics Data System (ADS)

    Patil, S.; Medicherla, V. R. R.; Ali, Khadiza; Singh, R. S.; Manfrinetti, P.; Wrubl, F.; Dhar, S. K.; Maiti, Kalobaran

    2017-11-01

    We investigate the electronic structure of a specially prepared highly dense conventional high temperature superconductor, MgB2, employing high resolution photoemission spectroscopy. The spectral evolution close to the Fermi energy is commensurate to BCS descriptions as expected. However, the spectra in the wider energy range reveal the emergence of a pseudogap much above the superconducting transition temperature indicating an apparent departure from the BCS scenario. The energy scale of the pseudogap is comparable to the energy of the E2g phonon mode responsible for superconductivity in MgB2 and the pseudogap can be attributed to the effect of electron-phonon coupling on the electronic structure. These results reveal a scenario of the emergence of the superconducting gap within an electron-phonon coupling induced pseudogap and have significant implications in the study of high temperature superconductors.

  10. Nonlinear conductivity of a holographic superconductor under constant electric field

    NASA Astrophysics Data System (ADS)

    Zeng, Hua Bi; Tian, Yu; Fan, Zheyong; Chen, Chiang-Mei

    2017-02-01

    The dynamics of a two-dimensional superconductor under a constant electric field E is studied by using the gauge-gravity correspondence. The pair breaking current induced by E first increases to a peak value and then decreases to a constant value at late times, where the superconducting gap goes to zero, corresponding to a normal conducting phase. The peak value of the current is found to increase linearly with respect to the electric field. Moreover, the nonlinear conductivity, defined as an average of the conductivity in the superconducting phase, scales as ˜E-2 /3 when the system is close to the critical temperature Tc, which agrees with predictions from solving the time-dependent Ginzburg-Landau equation. Away from Tc, the E-2 /3 scaling of the conductivity still holds when E is large.

  11. Global Phase Diagram of a Three-Dimensional Dirty Topological Superconductor

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Alavirad, Yahya; Sau, Jay D.

    2017-06-01

    We investigate the phase diagram of a three-dimensional, time-reversal symmetric topological superconductor in the presence of charge impurities and random s -wave pairing. Combining complimentary field theoretic and numerical methods, we show that the quantum phase transition between two topologically distinct paired states (or thermal insulators), described by thermal Dirac semimetal, remains unaffected in the presence of sufficiently weak generic randomness. At stronger disorder, however, these two phases are separated by an intervening thermal metallic phase of diffusive Majorana fermions. We show that across the insulator-insulator and metal-insulator transitions, normalized thermal conductance displays single parameter scaling, allowing us to numerically extract the critical exponents across them. The pertinence of our study in strong spin-orbit coupled, three-dimensional doped narrow gap semiconductors, such as CuxBi2Se3 , is discussed.

  12. Temperature dependence of differential conductance in Co-based Heusler alloy Co2TiSn and superconductor Pb junctions

    NASA Astrophysics Data System (ADS)

    Ooka, Ryutaro; Shigeta, Iduru; Umetsu, Rie Y.; Nomura, Akiko; Yubuta, Kunio; Yamauchi, Touru; Kanomata, Takeshi; Hiroi, Masahiko

    2018-05-01

    We investigated temperature dependence of differential conductance G (V) in planar junctions consisting of Co-based Heusler alloy Co2TiSn and superconductor Pb. Ferromagnetic Co2TiSn was predicted to be half-metal by first-principles band calculations. The spin polarization P of Co2TiSn was deduced to be 60.0% at 1.4 K by the Andreev reflection spectroscopy. The G (V) spectral shape was smeared gradually with increasing temperature and its structure was disappeared above the superconducting transition temperature Tc. Theoretical model analysis revealed that the superconducting energy gap Δ was 1.06 meV at 1.4 K and the Tc was 6.8 K , indicating that both values were suppressed from bulk values. However, the temperature dependent Δ (T) behavior was in good agreement with that of the Bardeen-Cooper-Schrieffer (BCS) theory. The experimental results exhibit that the superconductivity of Pb attached to half-metallic Co2TiSn was kept the conventional BCS mechanism characterized strong-coupling superconductors while its superconductivity was slightly suppressed by the superconducting proximity effect at the Co2TiSn/Pb interface.

  13. A Low Noise NbTiN-Based 850 GHz SIS Receiver for the Caltech Submillimeter Observatory

    NASA Technical Reports Server (NTRS)

    Kooi, J. W.; Kawamura, J.; Chen, J.; Chattopadhyay, G.; Pardo, J. R.; Zmuidzinas, J.; Phillips, T. G.; Bumble, B.; Stern, J.; LeDuc, H. G.

    2000-01-01

    We have developed a niobium titanium nitride (NbTiN) based superconductor- insulator-superconductor (SIS) receiver to cover the 350 micron atmospheric window. This frequency band lies entirely above the energy gap of niobium (700 GHz), a commonly used SIS superconductor. The instrument uses an open structure twin-slot SIS mixer that consists of two Nb/AlN/NbTiN tunnel junctions, NbTiN thin-film microstrip tuning elements, and a NbTiN ground plane. The optical configuration is very similar to the 850 GHz waveguide receiver that was installed at the Caltech Submillimeter Observatory (CSO) in 1997. To minimize front-end loss, we employed reflecting optics and a cooled beamsplitter at 4 K. The instrument has an uncorrected receiver noise temperature of 205K DSB at 800 GHz and 410K DSB at 900 GHz. The degradation in receiver sensitivity with frequency is primarily due to an increase in the mixer conversion loss, which is attributed to the mismatch between the SIS junction and the twin-slot antenna impedance. The overall system performance has been confirmed through its use at the telescope to detect a wealth of new spectroscopic lines.

  14. Robust upward dispersion of the neutron spin resonance in the heavy fermion superconductor Ce 1–xYb xCoIn 5

    DOE PAGES

    Song, Yu; Van Dyke, John; Lum, I. K.; ...

    2016-09-28

    Here, the neutron spin resonance is a collective magnetic excitation that appears in copper oxide, iron pnictide, and heavy fermion unconventional superconductors. Although the resonance is commonly associated with a spin-exciton due to the d(s ±)-wave symmetry of the superconducting order parameter, it has also been proposed to be a magnon-like excitation appearing in the superconducting state. Here we use inelastic neutron scattering to demonstrate that the resonance in the heavy fermion superconductor Ce 1–xYb xCoIn 5 with x=0,0.05,0.3 has a ring-like upward dispersion that is robust against Yb-doping. By comparing our experimental data with random phase approximation calculation usingmore » the electronic structure and the momentum dependence of the d x2 –y2-wave superconducting gap determined from scanning tunneling microscopy for CeCoIn 5, we conclude the robust upward dispersing resonance mode in Ce 1–xYb xCoIn 5 is inconsistent with the downward dispersion predicted within the spin-exciton scenari« less

  15. Controllable morphology of flux avalanches in microstructured superconductors

    NASA Astrophysics Data System (ADS)

    Motta, M.; Colauto, F.; Vestgârden, J. I.; Fritzsche, J.; Timmermans, M.; Cuppens, J.; Attanasio, C.; Cirillo, C.; Moshchalkov, V. V.; Van de Vondel, J.; Johansen, T. H.; Ortiz, W. A.; Silhanek, A. V.

    2014-04-01

    The morphology of abrupt bursts of magnetic flux into superconducting films with engineered periodic pinning centers (antidots) has been investigated. Guided flux avalanches of thermomagnetic origin develop a treelike structure, with the main trunk perpendicular to the borders of the sample, while secondary branches follow well-defined directions determined by the geometrical details of the underlying periodic pinning landscape. Strikingly, we demonstrate that in a superconductor with relatively weak random pinning the morphology of such flux avalanches can be fully controlled by proper combinations of lattice symmetry and antidot geometry. Moreover, the resulting flux patterns can be reproduced, to the finest details, by simulations based on a phenomenological thermomagnetic model. In turn, this model can be used to predict such complex structures and to estimate physical variables of more difficult experimental access, such as the local values of temperature and electric field.

  16. Comparison of the effects of platinum and CeO2 on the properties of single grain, Sm-Ba-Cu-O bulk superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Wen; Shi, Yunhua; Radušovská, Monika; Dennis, Anthony R.; Durrell, John H.; Diko, Pavel; Cardwell, David A.

    2016-12-01

    SmBa2Cu3O7-δ (Sm-123) is a light-rare-earth barium-cuprate (LRE-BCO) high-temperature superconductor (HTS) with significant potential for high field industrial applications. We report the fabrication of large, single grain bulk [Sm-Ba-Cu-O (SmBCO)] superconductors containing 1 wt% CeO2 and 0.1 wt% Pt using a top-seeded melt growth process. The performance of the SmBCO bulk superconductors containing the different dopants was evaluated based on an analysis of their superconducting properties, including critical transition temperature, T c and critical current density, J c , and on sample microstructure. We find that both CeO2 and Pt dopants refine the size of Sm2BaCuO5 (Sm-211) particles trapped in the Sm-123 superconducting phase matrix, which act as effective flux pinning centres, although the addition of CeO2 results in broadly improved superconducting performance of the fully processed bulk single grain. However, 1 wt% CeO2 is significantly cheaper than 0.1 wt% Pt, which has clear economic benefits for use in medium to large scale production processes for these technologically important materials. Finally, the use of CeO2 results generally in the formation of finer Sm-211 particles and to the generation of fewer macro-cracks and Sm-211 free regions in the sample microstructure.

  17. Modeling dynamic behavior of superconducting maglev systems under external disturbances

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Guang; Xue, Cun; Yong, Hua-Dong; Zhou, You-He

    2017-08-01

    For a maglev system, vertical and lateral displacements of the levitation body may simultaneously occur under external disturbances, which often results in changes in the levitation and guidance forces and even causes some serious malfunctions. To fully understand the effect of external disturbances on the levitation performance, in this work, we build a two-dimensional numerical model on the basis of Newton's second law of motion and a mathematical formulation derived from magnetoquasistatic Maxwell's equations together with a nonlinear constitutive relation between the electric field and the current density. By using this model, we present an analysis of dynamic behavior for two typical maglev systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. The results show that during the vertical movement, the levitation force is closely associated with the flux motion and the moving velocity of the superconductor. After being disturbed at the working position, the superconductor has a disturbance-induced initial velocity and then starts to periodically vibrate in both lateral and vertical directions. Meanwhile, the lateral and vertical vibration centers gradually drift along their vibration directions. The larger the initial velocity, the faster their vibration centers drift. However, the vertical drift of the vertical vibration center seems to be independent of the direction of the initial velocity. In addition, due to the lateral and vertical drifts, the equilibrium position of the superconductor in the maglev systems is not a space point but a continuous range.

  18. Gaplessness and the Coulomb anomaly in the strongly disordered films of molybdenum carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, P., E-mail: prasanna1609@gmail.com; Szabo, P.; Zemlicka, M.

    2016-05-23

    Gaplessness was observed in the disordered films of MoC close to the superconductor to insulator transition. The transition temperature decreases and the superconducting gap tends to close as the film thickness is reduced to 3 nm from 20 nm. The gaplessness is attributed to the enhanced Coulomb interactions due to the loss of screening in the presence of strong disorder in the films.

  19. Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachmann, Maja D.; Nair, Nityan; Flicker, Felix

    By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. Here, we show a new route to reliably fabricate superconducting microstructures from the nonsuperconductingmore » Weyl semimetal NbAs under ion irradiation. Furthermore, the significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer (Tc ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale.« less

  20. High-T c superconductivity in undoped ThFeAsN.

    PubMed

    Shiroka, T; Shang, T; Wang, C; Cao, G-H; Eremin, I; Ott, H-R; Mesot, J

    2017-07-31

    Unlike the widely studied ReFeAsO series, the newly discovered iron-based superconductor ThFeAsN exhibits a remarkably high critical temperature of 30 K, without chemical doping or external pressure. Here we investigate in detail its magnetic and superconducting properties via muon-spin rotation/relaxation and nuclear magnetic resonance techniques and show that ThFeAsN exhibits strong magnetic fluctuations, suppressed below ~35 K, but no magnetic order. This contrasts strongly with the ReFeAsO series, where stoichiometric parent materials order antiferromagnetically and superconductivity appears only upon doping. The ThFeAsN case indicates that Fermi-surface modifications due to structural distortions and correlation effects are as important as doping in inducing superconductivity. The direct competition between antiferromagnetism and superconductivity, which in ThFeAsN (as in LiFeAs) occurs at already zero doping, may indicate a significant deviation of the s-wave superconducting gap in this compound from the standard s ± scenario.Exploring the interplay between the superconducting gap and the antiferromagnetic phase in Fe-based superconductors remains an open issue. Here, the authors show that Fermi-surface modifications by means of structural distortions and correlation effects are as important as doping in inducing superconductivity in undoped ThFeAsN.

  1. Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering

    DOE PAGES

    Bachmann, Maja D.; Nair, Nityan; Flicker, Felix; ...

    2017-05-24

    By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. Here, we show a new route to reliably fabricate superconducting microstructures from the nonsuperconductingmore » Weyl semimetal NbAs under ion irradiation. Furthermore, the significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer (Tc ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale.« less

  2. Super Photon Counters

    NASA Technical Reports Server (NTRS)

    Mather, John

    1999-01-01

    The perfect photon detector would measure the arrival time, the energy, the polarization, and the position of every arriving quantum, but that is easier said than done. Two groups have now succeeded in doing time-resolved spectroscopy on the Crab Nebula pulsar, measuring everything but the polarization, with reports from Romani et al. at Stanford and from Perryman et al. at ESTEC. Both groups use superconducting detectors to gain the necessary speed and sensitivity. The photon can heat the electrons in a superconductor biased in the middle of its resistive transition, or break bound superconducting electron-hole pairs, which can then be collected. Three years ago, Peacock et al. reported that they had detected single optical photons with a superconducting tunnel junction (STJ), and Paresce wrote a News and Views article. A tunnel junction uses two pieces of conductive material, separated by a tiny gap of insulating material or even vacuum. If the gap is thin enough, electrons can tunnel across anyway, and if the conductors are superconductors, the junction displays very useful quantum mechanical properties and electrical nonlinearities. Amplifiers, detectors, oscillators, and computer circuits can all be made from them. Their special advantage is that they operate at very low temperatures, dissipate very little power, operate very fast, and are very small.

  3. Doping influence on Sm1 - x Th x OFeAs superconducting properties: Observation of the effect of intrinsic multiple Andreev reflections and determination of the superconducting parameters

    NASA Astrophysics Data System (ADS)

    Kuzmicheva, T. E.; Kuzmichev, S. A.; Zhigadlo, N. D.

    2014-04-01

    We studied SNS and S-N-S-N-...-S contacts (where S is a superconductor and N is a normal metal) formed by "break-junction" technique in polycrystalline Sm1 - x Th x OFeAs superconductor samples with critical temperatures T C = 34-45 K. In such contacts (intrinsic) multiple Andreev reflections effects were observed. Using spectroscopies based on these effects, we detected two independent bulk order parameters and determined their magnitudes. Theoretical analysis of the large and the small gap temperature dependences revealed superconducting properties of Sm1 - x Th x OFeAs to be driven by intraband coupling, and (where V ij are the electron-boson interaction matrix elements), whereas the ratio between density of states for the bands with the small and the large gap, N 2/ N 1, correspondingly, was roughly of an order. We estimated "solo" BCS-ratio values in a hypothetic case of zero interband coupling ( V i ≠ j = 0) for each condensate as 2ΔL, S/ k B T {C/L,S} ≤ 4.5. The values are constant within the range of critical temperatures studied, and correspond to a case of strong intraband electron-phonon coupling.

  4. Glide-Plane Symmetry and Superconducting Gap Structure of Iron-Based Superconductors

    NASA Astrophysics Data System (ADS)

    Maier, Thomas

    This talk will provide a review of the implications of the glide plane symmetry of a single Fe-pnictide/chalcogen plane on the structure of the superconducting gap. It will be shown that `` η-pairing'' with non-zero total momentum occurs inevitably in this system, but that its contribution to the superconducting condensate has the usual even parity symmetry and time reversal symmetry is preserved. I will demonstrate that for a single plane the gap function, which appears in physical quantities, is identical to that found in 1 Fe per unit cell pseudo-crystal momentum calculations and discuss the effects of the symmetry breaking out-of-plane hopping integrals in three dimensions. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.

  5. Far-infrared Optical Conductivity Gap in Superconducting MgB2 Films

    NASA Astrophysics Data System (ADS)

    Carnahan, M. A.; Kaindl, R. A.; Chemla, D. S.; Christen, H. M.; Zhai, H. Y.; Paranthaman, M.; Lowndes, D. H.

    2002-03-01

    The prospect of unconventional coupling in the superconductor MgB2 motivates experiments which probe the density of states around the superconducting gap. The frequency and temperature dependent optical conductivity contains important spectroscopic information about the fundamental gap excitations as well as providing a contactless measure of the superconducting condensate. Here we present the first measurements of the far-infrared conductivity of MgB2 over a broad frequency range which spans excitations across its lowest-energy superconducting gap [1]. Thin films of MgB2 are grown on Al_2O3 substrates through e-beam evaporation and subsequent ex-situ annealing [2]. Both the real and imaginary parts of the conductivity are obtained - without recourse to Kramers-Kronig transformations - from terahertz time-domain spectroscopy. Below Tc we observe a depletion of oscillator strength due to the opening of a superconducting gap. We find a gap size of 2Δ ≈ 5 meV. This result, a value which is only half that expected in weak-coupling BCS theory, disfavors a conventional isotropic single-gap scenario. [1] R. Kaindl et al., Phys. Rev. Lett. (to appear). [2] M. Paranthaman et al., Appl. Phys. Lett. 78, 3669 (2001).

  6. Quantum impurity models for magnetic adsorbates on superconductor surfaces

    NASA Astrophysics Data System (ADS)

    Žitko, Rok

    2018-05-01

    Magnetic atoms adsorbed on surfaces have a quenched orbital moment while their ground-state spin multiplet is partially split as a consequence of the spin-orbit coupling which, even if intrinsically weak, has a large effect due to the abrupt change of the potential at the surface. Such metal adsorbates should be modelled using quantum impurity models that include the relevant internal degrees of freedom and the interaction terms, in particular the magnetic anisotropy and the Kondo exchange coupling. When adsorbed on superconducting surfaces, these impurities have complex spectra of sub-gap excitations due to magnetic anisotropy splitting and Kondo screening. Both anisotropy splitting and Zeeman splitting due to the external magnetic field are significantly renormalized by the coupling to the substrate electrons. In this work I discuss the quantum-to-classical crossover and the applicability of classical static-local-spin picture for discussing magnetic nanostructures on superconductors.

  7. Long-range Cooper pair splitter with high entanglement production rate

    PubMed Central

    Chen, Wei; Shi, D. N.; Xing, D. Y.

    2015-01-01

    Cooper pairs in the superconductor are a natural source of spin entanglement. The existing proposals of the Cooper pair splitter can only realize a low efficiency of entanglement production, and its size is constrained by the superconducting coherence length. Here we show that a long-range Cooper pair splitter can be implemented in a normal metal-superconductor-normal metal (NSN) junction by driving a supercurrent in the S. The supercurrent results in a band gap modification of the S, which significantly enhances the crossed Andreev reflection (CAR) of the NSN junction and simultaneously quenches its elastic cotunneling. Therefore, a high entanglement production rate close to its saturation value can be achieved by the inverse CAR. Interestingly, in addition to the conventional entangled electron states between opposite energy levels, novel entangled states with equal energy can also be induced in our proposal. PMID:25556521

  8. Majorana splitting from critical currents in Josephson junctions

    NASA Astrophysics Data System (ADS)

    Cayao, Jorge; San-Jose, Pablo; Black-Schaffer, Annica M.; Aguado, Ramón; Prada, Elsa

    2017-11-01

    A semiconducting nanowire with strong Rashba spin-orbit coupling and coupled to a superconductor can be tuned by an external Zeeman field into a topological phase with Majorana zero modes. Here we theoretically investigate how this exotic topological superconductor phase manifests in Josephson junctions based on such proximitized nanowires. In particular, we focus on critical currents in the short junction limit (LN≪ξ , where LN is the junction length and ξ is the superconducting coherence length) and show that they contain important information about nontrivial topology and Majoranas. This includes signatures of the gap inversion at the topological transition and a unique oscillatory pattern that originates from Majorana interference. Interestingly, this pattern can be modified by tuning the transmission across the junction, thus providing complementary evidence of Majoranas and their energy splittings beyond standard tunnel spectroscopy experiments, while offering further tunability by virtue of the Josephson effect.

  9. Quantum critical point underlying the pseudogap state in underdoped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Pepin, Catherine

    2014-03-01

    Cuprate superconductors rank among the most complex materials that are known in the universe. Faced with this complexity, scientists have adopted two types of approaches. In a bottom up approach, one considers that strong correlations occur at a high energy scale of roughly 1 eV upon very strong Coulomb interactions. In the top down approach one considers that one universal singularity at very low temperatures is responsible for complexity of the phase diagram. In this talk we will argue that the strong quantum fluctuations experienced at the proximity to a anti-ferromagnetic Quantum Critical Point (QCP) is responsible for a cascade of phase transitions in the charge and superconducting channels. We will discuss in this context the emergence of the pseudo-gap and charge order modulations. Symmetries and relations to experimental observations will be addressed. Work done in collaboration with K.B. Efetov (Bochum) and H. Meier (Yale).

  10. Ballistic superconductivity in semiconductor nanowires.

    PubMed

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K; van Veen, Jasper; de Moor, Michiel W A; Bommer, Jouri D S; van Woerkom, David J; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Quintero-Pérez, Marina; Cassidy, Maja C; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P

    2017-07-06

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.

  11. Nodeless superconductivity and time-reversal symmetry breaking in the noncentrosymmetric superconductor Re24Ti5

    NASA Astrophysics Data System (ADS)

    Shang, T.; Pang, G. M.; Baines, C.; Jiang, W. B.; Xie, W.; Wang, A.; Medarde, M.; Pomjakushina, E.; Shi, M.; Mesot, J.; Yuan, H. Q.; Shiroka, T.

    2018-01-01

    The noncentrosymmetric superconductor Re24Ti5 , a time-reversal symmetry- (TRS-) breaking candidate with Tc=6 K , was studied by means of muon-spin rotation/relaxation (μ SR ) and tunnel-diode oscillator techniques. At the macroscopic level, its bulk superconductivity was investigated via electrical resistivity, magnetic susceptibility, and heat-capacity measurements. The low-temperature penetration depth, superfluid density, and electronic heat capacity all evidence an s -wave coupling with an enhanced superconducting gap. The spontaneous magnetic fields revealed by zero-field μ SR below Tc indicate a time-reversal symmetry breaking and thus the unconventional nature of superconductivity in Re24Ti5 . The concomitant occurrence of TRS breaking also in the isostructural Re6(Zr ,Hf ) compounds hints at its common origin in this superconducting family and that an enhanced spin-orbital coupling does not affect pairing symmetry.

  12. Multipole Superconductivity in Nonsymmorphic Sr_{2}IrO_{4}.

    PubMed

    Sumita, Shuntaro; Nomoto, Takuya; Yanase, Youichi

    2017-07-14

    Discoveries of marked similarities to high-T_{c} cuprate superconductors point to the realization of superconductivity in the doped J_{eff}=1/2 Mott insulator Sr_{2}IrO_{4}. Contrary to the mother compound of cuprate superconductors, several stacking patterns of in-plane canted antiferromagnetic moments have been reported, which are distinguished by the ferromagnetic components as -++-, ++++, and -+-+. In this paper, we clarify unconventional features of the superconductivity coexisting with -++- and -+-+ structures. Combining the group theoretical analysis and numerical calculations for an effective J_{eff}=1/2 model, we show unusual superconducting gap structures in the -++- state protected by nonsymmorphic magnetic space group symmetry. Furthermore, our calculation shows that the Fulde-Ferrell-Larkin-Ovchinnikov superconductivity is inevitably stabilized in the -+-+ state since the odd-parity magnetic -+-+ order makes the band structure asymmetric by cooperating with spin-orbit coupling. These unusual superconducting properties are signatures of magnetic multipole order in nonsymmorphic crystal.

  13. Holographic superconductivity from higher derivative theory

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Pin; Liu, Peng

    2017-11-01

    We construct a 6 derivative holographic superconductor model in the 4-dimensional bulk spacetimes, in which the normal state describes a quantum critical (QC) phase. The phase diagram (γ1 ,Tˆc) and the condensation as the function of temperature are worked out numerically. We observe that with the decrease of the coupling parameter γ1, the critical temperature Tˆc decreases and the formation of charged scalar hair becomes harder. We also calculate the optical conductivity. An appealing characteristic is a wider extension of the superconducting energy gap, comparing with that of 4 derivative theory. It is expected that this phenomena can be observed in the real materials of high temperature superconductor. Also the Homes' law in our present models with 4 and 6 derivative corrections is explored. We find that in certain range of parameters γ and γ1, the experimentally measured value of the universal constant C in Homes' law can be obtained.

  14. Pressure and temperature dependence of the Ce valence and c -f hybridization gap in Ce T2In5(T =Co ,Rh ,Ir ) heavy-fermion superconductors

    NASA Astrophysics Data System (ADS)

    Yamaoka, H.; Yamamoto, Y.; Schwier, E. F.; Honda, F.; Zekko, Y.; Ohta, Y.; Lin, J.-F.; Nakatake, M.; Iwasawa, H.; Arita, M.; Shimada, K.; Hiraoka, N.; Ishii, H.; Tsuei, K.-D.; Mizuki, J.

    2015-12-01

    Pressure- and temperature-induced changes in the Ce valence and c -f hybridization of the Ce115 superconductors have been studied systematically. Resonant x-ray-emission spectroscopy indicated that the increase of the Ce valence with pressure was significant for CeCoIn5, and moderate for CeIr (In0.925Cd0.075)5 . We found no abrupt change of the Ce valence in the Kondo regime for CeIr (In0.925Cd0.075)5 , which suggests that valence fluctuations are unlikely to mediate the superconductivity in this material. X-ray-diffraction results were consistent with the pressure-induced change in the Ce valence. High-resolution photoelectron spectroscopy revealed a temperature-dependent reduction of the spectral intensity at the Fermi level, indicating enhanced c -f hybridization on cooling.

  15. Note: Low temperature superconductor superconducting quantum interference device system with wide pickup coil for detecting small metallic particles

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Ogata, Kuniomi; Kawabata, Ryuzo; Tanimoto, Sayaka; Seki, Yusuke

    2012-07-01

    A one-channel low temperature superconductor superconducting quantum interference device system comprising a second-order axial gradiometer with a sensing area of 10 mm × 190 mm was developed. The gradiometer was mounted in a liquid-helium dewar (450-mm diameter; 975-mm length), with a gap of 12 mm between the pickup coil and the dewar-tail surface. The magnetic field sensitivity was measured to be 16 fT/Hz1/2 in the white noise regime above 2 Hz. The system was used to measure stainless steel particles of different sizes passing through the sensing area. A 100-μm diameter SUS304 particle was readily detected passing at different positions underneath the large pickup coil by measuring its 1.3-pT magnetic field. Thus, the system was shown to be applicable to quality control of lamination sheet products such as lithium ion batteries.

  16. Multipole Superconductivity in Nonsymmorphic Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Sumita, Shuntaro; Nomoto, Takuya; Yanase, Youichi

    2017-07-01

    Discoveries of marked similarities to high-Tc cuprate superconductors point to the realization of superconductivity in the doped Jeff=1 /2 Mott insulator Sr2IrO4. Contrary to the mother compound of cuprate superconductors, several stacking patterns of in-plane canted antiferromagnetic moments have been reported, which are distinguished by the ferromagnetic components as -++-, ++++, and -+-+ . In this paper, we clarify unconventional features of the superconductivity coexisting with -++- and -+-+ structures. Combining the group theoretical analysis and numerical calculations for an effective Jeff=1 /2 model, we show unusual superconducting gap structures in the -++- state protected by nonsymmorphic magnetic space group symmetry. Furthermore, our calculation shows that the Fulde-Ferrell-Larkin-Ovchinnikov superconductivity is inevitably stabilized in the -+-+ state since the odd-parity magnetic -+-+ order makes the band structure asymmetric by cooperating with spin-orbit coupling. These unusual superconducting properties are signatures of magnetic multipole order in nonsymmorphic crystal.

  17. Intrinsic Josephson junction behaviour of the low Tc superconductor (LaSe) 1.14(NbSe 2)

    NASA Astrophysics Data System (ADS)

    Kačmarčík, J.; Szabó, P.; Samuely, P.; Rodrigo, J. G.; Suderow, H.; Vieira, S.; Lafond, A.; Meerschaut, A.

    2008-04-01

    Interlayer magnetotransport measurements on the highly anisotropic (LaSe)1.14(NbSe2) superconductor with Tc ∼ 1.2 K have indicated that this layered compound represents a model system of intrinsic Josephson junctions [P. Szabó et al., Phys. Rev. Lett. 86 (2001) 5990]. Scanning tunneling microscopy at room temperature and tunneling spectroscopy measurements at very low temperatures are presented in this work. STM imaging has revealed the presence of two types of surfaces which can be attributed to the appearance of LaSe or NbSe2 layers on the surface. The use of STM tip made of superconducting lead enabled a precise measurement of the temperature dependence of the superconducting energy gap Δ(T) on the NbSe2 layer. Δ(T) obtained from the surface sensitive STS data support the scenario obtained from our previous interlayer - ergo bulk sensitive magnetotransport measurements.

  18. Nanoscale phase separation of antiferromagnetic order and superconductivity in K0.75Fe1.75Se2

    PubMed Central

    Yuan, R. H.; Dong, T.; Song, Y. J.; Zheng, P.; Chen, G. F.; Hu, J. P.; Li, J. Q.; Wang, N. L.

    2012-01-01

    We report an in-plane optical spectroscopy study on the iron-selenide superconductor K0.75Fe1.75Se2. The measurement revealed the development of a sharp reflectance edge below Tc at frequency much smaller than the superconducting energy gap on a relatively incoherent electronic background, a phenomenon which was not seen in any other Fe-based superconductors so far investigated. Furthermore, the feature could be noticeably suppressed and shifted to lower frequency by a moderate magnetic field. Our analysis indicates that this edge structure arises from the development of a Josephson-coupling plasmon in the superconducting condensate. Together with the transmission electron microscopy analysis, our study yields compelling evidence for the presence of nanoscale phase separation between superconductivity and magnetism. The results also enable us to understand various seemingly controversial experimental data probed from different techniques. PMID:22355735

  19. Construction and performance of a dilution-refrigerator based spectroscopic-imaging scanning tunneling microscope.

    PubMed

    Singh, U R; Enayat, M; White, S C; Wahl, P

    2013-01-01

    We report on the set-up and performance of a dilution-refrigerator based spectroscopic imaging scanning tunneling microscope. It operates at temperatures below 10 mK and in magnetic fields up to 14T. The system allows for sample transfer and in situ cleavage. We present first-results demonstrating atomic resolution and the multi-gap structure of the superconducting gap of NbSe(2) at base temperature. To determine the energy resolution of our system we have measured a normal metal/vacuum/superconductor tunneling junction consisting of an aluminum tip on a gold sample. Our system allows for continuous measurements at base temperature on time scales of up to ≈170 h.

  20. STM/STS Observation on Layered Nitride Superconductor α-(DDA)xTiNCl

    NASA Astrophysics Data System (ADS)

    Sugimoto, Akira; Ukita, Ryuichi; Ekino, Toshikazu; Zheng, Zhanfeng; Yamanaka, Shoji

    2012-12-01

    Scanning tunneling microscopy/spectroscopy (STM/STS) measurements on α-(DDA)xTiNCl (DDA=H2N-(CH2)10-NH2, Tc=16 K) have been carried out. The STM topography exhibits simple rectangular shaped atomic lattice with the periods of |a|=0.38 nm and |b| =0.33 nm. The averaged dI / dV spectrum shows the gap value of Δ ~ 9 meV, giving an unusual large gap ratio 2Δ/kBTc ≃ 13. The STS results show the bar-shaped domain structures along the b-axis direction in the bias range of V = +5 ~ +15 mV, demonstrating the possible existence of intercalated molecules.

  1. Differential conductance and defect states in the heavy-fermion superconductor CeCoIn 5

    DOE PAGES

    John S. Van Dyke; Davis, James C.; Morr, Dirk K.

    2016-01-22

    We demonstrate that the electronic band structure extracted from quasiparticle interference spectroscopy [Nat. Phys. 9, 468 (2013)] and the theoretically computed form of the superconducting gaps [Proc. Natl. Acad. Sci. USA 111, 11663 (2014)] can be used to understand the dI/dV line shape measured in the normal and superconducting state of CeCoIn5 [Nat. Phys. 9, 474 (2013)]. In particular, the dI/dV line shape, and the spatial structure of defect-induced impurity states, reflects the existence of multiple superconducting gaps of d x2–y2 symmetry. As a result, these results strongly support a recently proposed microscopic origin of the unconventional superconducting state.

  2. Gaps, Pseudogaps, and the Nature of Charge in Holographic Fermion Models

    NASA Astrophysics Data System (ADS)

    Vanacore, Garrett; Phillips, Philip

    Building on prior holographic constructions of Fermi arcs and Mott physics, we investigate the landscape of gapped and gapless strongly-correlated phases resulting from bulk fermion interactions in gauge/gravity duality. We test a proposed connection between bulk chiral symmetry and gapless boundary states, and discuss implications for discrete symmetry breaking in pseudogapped systems like the cuprate superconductors. Numerical methods are used to treat gravitational backreaction of bulk fermions, allowing more rigorous investigation of the existence of holographic Fermi surfaces and their adherence to Luttinger's rule. We use these techniques to study deviations from Luttinger's rule in holography, testing a recent claim that momentum-deconfined charges are at the heart of the Mott state.

  3. Evidence for the coexistence of an anisotropic superconducting gap and nonlocal effects in the nonmagnetic superconductor LuNi2B2C.

    PubMed

    Park, Tuson; Chia, Elbert E M; Salamon, M B; Bauer, E D; Vekhter, I; Thompson, J D; Choi, Eun Mi; Kim, Heon Jung; Lee, Sung-Ik; Canfield, P C

    2004-06-11

    A study of the dependence of the heat capacity C(p)(alpha) on the field angle in LuNi2B2C reveals an anomalous disorder effect. For pure samples, C(p)(alpha) exhibits a fourfold variation as the field H (alpha=0). A slightly disordered sample, however, develops anomalous secondary minima along <110> for mu(0)H>1 T, leading to an eightfold pattern at 2 K and 1.5 T. The anomalous pattern is discussed in terms of coexisting superconducting gap anisotropy and nonlocal effects.

  4. Topological Insulators and Superconductors for Innovative Devices

    DTIC Science & Technology

    2015-03-20

    bulk-sensitive experiment with hard x ray or low-energy photons.) This demon- strates that the bulk band gap can be enhanced by taking advantage of the...crystallinity in X - ray Laue analysis, and their detailed transport properties are described in the Supplementary Information. ARPES measurements were...high quality of our fi lms grown at high temperatures, including ultrathin ones, is evident from the X - ray diffraction patterns shown in Figure 2 d

  5. Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Y. F.; Chen, C. -C.; Wang, Yao

    Here, we characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π,π) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understandingmore » of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.« less

  6. Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Y. F.; Chen, C. -C.; Wang, Yao

    We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π,π) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understanding ofmore » the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.« less

  7. Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo

    DOE PAGES

    Kung, Y. F.; Chen, C. -C.; Wang, Yao; ...

    2016-04-29

    Here, we characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π,π) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understandingmore » of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.« less

  8. Characterizing the three-orbital Hubbard model with determinant quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Kung, Y. F.; Chen, C.-C.; Wang, Yao; Huang, E. W.; Nowadnick, E. A.; Moritz, B.; Scalettar, R. T.; Johnston, S.; Devereaux, T. P.

    2016-04-01

    We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the (π ,π ) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understanding of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.

  9. Twisting Anderson pseudospins with light: Quench dynamics in terahertz-pumped BCS superconductors

    NASA Astrophysics Data System (ADS)

    Chou, Yang-Zhi; Liao, Yunxiang; Foster, Matthew S.

    2017-03-01

    We study the preparation (pump) and the detection (probe) of far-from-equilibrium BCS superconductor dynamics in THz pump-probe experiments. In a recent experiment [R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H. Terai, Z. Wang, and R. Shimano, Phys. Rev. Lett. 111, 057002 (2013), 10.1103/PhysRevLett.111.057002], an intense monocycle THz pulse with center frequency ω ≃Δ was injected into a superconductor with BCS gap Δ ; the subsequent postpump evolution was detected via the optical conductivity. It was argued that nonlinear coupling of the pump to the Anderson pseudospins of the superconductor induces coherent dynamics of the Higgs (amplitude) mode Δ (t ) . We validate this picture in a two-dimensional BCS model with a combination of exact numerics and the Lax reduction method, and we compute the nonequilibrium phase diagram as a function of the pump intensity. The main effect of the pump is to scramble the orientations of Anderson pseudospins along the Fermi surface by twisting them in the x y plane. We show that more intense pump pulses can induce a far-from-equilibrium phase of gapless superconductivity ("phase I"), originally predicted in the context of interaction quenches in ultracold atoms. We show that the THz pump method can reach phase I at much lower energy densities than an interaction quench, and we demonstrate that Lax reduction (tied to the integrability of the BCS Hamiltonian) provides a general quantitative tool for computing coherent BCS dynamics. We also calculate the Mattis-Bardeen optical conductivity for the nonequilibrium states discussed here.

  10. Two-gap superconductivity in Mo8Ga41 and its evolution upon vanadium substitution

    NASA Astrophysics Data System (ADS)

    Verchenko, V. Yu.; Khasanov, R.; Guguchia, Z.; Tsirlin, A. A.; Shevelkov, A. V.

    2017-10-01

    Zero-field and transverse-field muon spin rotation/relaxation (μ SR ) experiments were undertaken in order to elucidate the microscopic properties of a strongly coupled superconductor Mo8Ga41 with Tc=9.8 K. The upper critical field extracted from the transverse-field μ SR data exhibits significant reduction with respect to the data from thermodynamic measurements indicating the coexistence of two independent length scales in the superconducting state. Accordingly, the temperature-dependent magnetic penetration depth of Mo8Ga41 is described using a model in which two s wave superconducting gaps are assumed. A V for Mo substitution in the parent compound leads to the complete suppression of one superconducting gap, and Mo7VGa41 is well described within the single s wave gap scenario. The reduction in the superfluid density and the evolution of the low-temperature resistivity upon V substitution indicate the emergence of a competing state in Mo7VGa41 that may be responsible for the closure of one of the superconducting gaps.

  11. Anisotropic Eliashberg theory of MgB 2: Tc, isotope effects, superconducting energy gaps, quasiparticles, and specific heat

    NASA Astrophysics Data System (ADS)

    Choi, Hyoung Joon; Cohen, Marvin L.; Louie, Steven G.

    2003-03-01

    The anisotropic Eliashberg formalism, employing results from the ab initio pseudopotential density functional calculations, is applied to study the superconducting properties of MgB 2. It is shown that the relatively high transition temperature of MgB 2 originates from strong electron-phonon coupling of the hole states in the boron σ-bonds although the coupling strength averaged over the Fermi surface is moderate, and the reduction of the isotope effect arises from the large anharmonicity of the relevant phonons. The superconducting energy gap is nodeless but its value varies strongly on different pieces of the Fermi surface. The gap values Δ( k) cluster into two groups at low temperature, a small value of ∼2 meV and a large value of ∼7 meV, resulting in two thresholds in the quasiparticle density of states and an increase in the specific heat at low temperature due to quasiparticle excitations over the small gap. All of these results are in good agreement with corresponding experiments and support the view that MgB 2 is a phonon-mediated multiple-gap superconductor.

  12. Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions.

    PubMed

    Dvir, T; Massee, F; Attias, L; Khodas, M; Aprili, M; Quay, C H L; Steinberg, H

    2018-02-09

    Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation and transfer of layered semiconductors, sustain stable currents with strong suppression of sub-gap tunneling. This allows us to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) NbSe 2 devices at 70 mK. These exhibit two distinct superconducting gaps, the larger of which decreases monotonically with thickness and critical temperature. The spectra are analyzed using a two-band model incorporating depairing. In the bulk, the smaller gap exhibits strong depairing in in-plane magnetic fields, consistent with high out-of-plane Fermi velocity. In the few-layer devices, the large gap exhibits negligible depairing, consistent with out-of-plane spin locking due to Ising spin-orbit coupling. In the 3-layer device, the large gap persists beyond the Pauli limit.

  13. Influence of experimental methods on crossing in magnetic force-gap hysteresis curve of HTS maglev system

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Qin, Yujie; Dang, Qiaohong; Wang, Jiasu

    2010-12-01

    The crossing in magnetic levitation force-gap hysteresis curve of melt high-temperature superconductor (HTS) vs. NdFeB permanent magnet (PM) was experimentally studied. One HTS bulk and PM was used in the experiments. Four experimental methods were employed combining of high/low speed of movement of PM with/without heat insulation materials (HIM) enclosed respectively. Experimental results show that crossing of the levitation force-gap curve is related to experimental methods. A crossing occurs in the magnetic force-gap curve while the PM moves approaching to and departing from the sample with high or low speed of movement without HIM enclosed. When the PM is enclosed with HIM during the measurement procedures, there is no crossing in the force-gap curve no matter high speed or low speed of movement of the PM. It was found experimentally that, with the increase of the moving speed of the PM, the maximum magnitude of levitation force of the HTS increases also. The results are interpreted based on Maxwell theories and flux flow-creep models of HTS.

  14. Decoupling of critical temperature and superconducting gaps in irradiated films of a Fe-based superconductor

    NASA Astrophysics Data System (ADS)

    Daghero, Dario; Tortello, Mauro; Ummarino, Giovanni A.; Piatti, Erik; Ghigo, Gianluca; Hatano, Takafumi; Kawaguchi, Takahiko; Ikuta, Hiroshi; Gonnelli, Renato S.

    2018-07-01

    We report on direct measurements of the energy gaps (carried out by means of point-contact Andreev reflection spectroscopy, PCARS) and of the critical temperature in thin, optimally doped, epitaxial films of BaFe2(As1-x P x )2 irradiated with 250 MeV Au ions. The low-temperature PCARS spectra (taken with the current flowing along the c axis) can be fitted by a modified Blonder-Tinkham-Klapwijk model with two nodeless gaps; this is not in contrast with the possible presence of node lines suggested by various experiments in literature. Up to a fluence Φ = 7.3 × 1011 cm-2, we observe a monotonic suppression of the critical temperature and of the gap amplitudes Δ1 and Δ2. Interestingly, while T c decreases by about 3%, the gaps decrease much more (by about 37% and 25% respectively), suggesting a decoupling between high-temperature and low-temperature superconducting properties. An explanation for this finding is proposed within an effective two-band Eliashberg model, in which such decoupling is inherently associated to defects created by irradiation.

  15. Conductivity of higher dimensional holographic superconductors with nonlinear electrodynamics

    NASA Astrophysics Data System (ADS)

    Sheykhi, Ahmad; Hashemi Asl, Doa; Dehyadegari, Amin

    2018-06-01

    We investigate analytically as well as numerically the properties of s-wave holographic superconductors in d-dimensional spacetime and in the presence of Logarithmic nonlinear electrodynamics. We study three aspects of this kind of superconductors. First, we obtain, by employing analytical Sturm-Liouville method as well as numerical shooting method, the relation between critical temperature and charge density, ρ, and disclose the effects of both nonlinear parameter b and the dimensions of spacetime, d, on the critical temperature Tc. We find that in each dimension, Tc /ρ 1 / (d - 2) decreases with increasing the nonlinear parameter b while it increases with increasing the dimension of spacetime for a fixed value of b. Then, we calculate the condensation value and critical exponent of the system analytically and numerically and observe that in each dimension, the dimensionless condensation get larger with increasing the nonlinear parameter b. Besides, for a fixed value of b, it increases with increasing the spacetime dimension. We confirm that the results obtained from our analytical method are in agreement with the results obtained from numerical shooting method. This fact further supports the correctness of our analytical method. Finally, we explore the holographic conductivity of this system and find out that the superconducting gap increases with increasing either the nonlinear parameter or the spacetime dimension.

  16. Graphene based superconducting junctions as spin sources for spintronics

    NASA Astrophysics Data System (ADS)

    Emamipour, Hamidreza

    2018-02-01

    We investigate spin-polarized transport in graphene-based ferromagnet-superconductor junctions within the Blonder-Tinkham-Klapwijk formalism by using spin-polarized Dirac-Bogoliubov-de-Gennes equations. We consider superconductor in spin-singlet s-wave pairing state and ferromagnet is modeled by an exchange field with energy of Ex. We have found that graphene-based junctions can be used to produce highly spin-polarized current in different situations. For example, if we design a junction with high Ex and EF compared to order parameter of superconductor, then one can have a large spin-polarized current which is tunable in magnitude and sign by bias voltage and Ex. Therefore graphene-based superconducting junction can be used in spintronic devices in alternative to conventional junctions or half-metallic ferromagnets. Also, we have found that the calculated spin polarization can be used as a tool to distinguish specular Andreev reflection (SAR) from the conventional Andreev reflection (CAR) such that in the case of CAR, spin polarization in sub-gap region is completely negative which means that spin-down current is greater than spin-up current. When the SAR is dominated, the spin polarization is positive at all bias-voltages, which itself shows that spin-up current is greater than spin-down current.

  17. Topological superconductivity in an ultrathin, magnetically-doped topological insulator proximity coupled to a conventional superconductor

    NASA Astrophysics Data System (ADS)

    Kim, Youngseok; Philip, Timothy M.; Park, Moon Jip; Gilbert, Matthew J.; University of Illinois at Urbana; Champaign Team

    As a promising candidate system to realize topological superconductivity (SC), 3D time-reversal invariant topological insulators (TI) proximity-coupled to s-wave superconductors have been intensively studied. Recent experiments on proximity-coupled TI have shown that superconductivity may be induced in ultrathin TI. One proposal to observe the topological SC in proximity-coupled ultrathin TI system is to add magnetic dopants to the TI. However, detailed study on the impact of the experimental parameters on possible topological phase is sparse. In this work, we investigate ultrathin, magnetically-doped, proximity-coupled TI in order to determine the experimentally relevant parameters needed to observe topological SC. We find that, due to the spin-momentum locked nature of the surface states in TI, the induced s-wave order parameter within the surface states persists even at large magnitudes of the Zeeman energy, allowing us to explore the system in parameter space. We elucidate the phase diagram as a function of: the hybridization gap, Zeeman energy, and chemical potential of the TI system. Our findings provide a useful guide in choosing relevant parameters to facilitate the observation of topological SC in thin film TI-superconductor hybrid systems. National Science Foundation (NSF) under Grant CAREER ECCS-1351871.

  18. Doping dependence of charge order in electron-doped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Mou, Yingping; Feng, Shiping

    2017-12-01

    In the recent studies of the unconventional physics in cuprate superconductors, one of the central issues is the interplay between charge order and superconductivity. Here the mechanism of the charge-order formation in the electron-doped cuprate superconductors is investigated based on the t-J model. The experimentally observed momentum dependence of the electron quasiparticle scattering rate is qualitatively reproduced, where the scattering rate is highly anisotropic in momentum space, and is intriguingly related to the charge-order gap. Although the scattering strength appears to be weakest at the hot spots, the scattering in the antinodal region is stronger than that in the nodal region, which leads to the original electron Fermi surface is broken up into the Fermi pockets and their coexistence with the Fermi arcs located around the nodal region. In particular, this electron Fermi surface instability drives the charge-order correlation, with the charge-order wave vector that matches well with the wave vector connecting the hot spots, as the charge-order correlation in the hole-doped counterparts. However, in a striking contrast to the hole-doped case, the charge-order wave vector in the electron-doped side increases in magnitude with the electron doping. The theory also shows the existence of a quantitative link between the single-electron fermiology and the collective response of the electron density.

  19. Pseudogap-generated a coexistence of Fermi arcs and Fermi pockets in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Huaisong; Gao, Deheng; Feng, Shiping

    2017-03-01

    One of the most intriguing puzzle is why there is a coexistence of Fermi arcs and Fermi pockets in the pseudogap phase of cuprate superconductors? This puzzle is calling for an explanation. Based on the t - J model in the fermion-spin representation, the coexistence of the Fermi arcs and Fermi pockets in cuprate superconductors is studied by taking into account the pseudogap effect. It is shown that the pseudogap induces an energy band splitting, and then the poles of the electron Green's function at zero energy form two contours in momentum space, however, the electron spectral weight on these two contours around the antinodal region is gapped out by the pseudogap, leaving behind the low-energy electron spectral weight only located at the disconnected segments around the nodal region. In particular, the tips of these disconnected segments converge on the hot spots to form the closed Fermi pockets, generating a coexistence of the Fermi arcs and Fermi pockets. Moreover, the single-particle coherent weight is directly related to the pseudogap, and grows linearly with doping. The calculated result of the overall dispersion of the electron excitations is in qualitative agreement with the experimental data. The theory also predicts that the pseudogap-induced peak-dip-hump structure in the electron spectrum is absent from the hot-spot directions.

  20. Charge of a quasiparticle in a superconductor

    PubMed Central

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-01-01

    Nonlinear charge transport in superconductor–insulator–superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e=n, with n = 1–4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD∼2Δ, we found a reproducible and clear dip in the extracted charge to q ∼0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure. PMID:26831071

  1. Superconductor to Mott insulator transition in YBa2Cu3O7/LaCaMnO3 heterostructures.

    PubMed

    Gray, B A; Middey, S; Conti, G; Gray, A X; Kuo, C-T; Kaiser, A M; Ueda, S; Kobayashi, K; Meyers, D; Kareev, M; Tung, I C; Liu, Jian; Fadley, C S; Chakhalian, J; Freeland, J W

    2016-09-15

    The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high Tc superconductor YBa2Cu3O7 (YBCO) and colossal magnetoresistance ferromagnet La0.67Ca0.33MnO3 (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping in cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may respond to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Such deterministic control of Tc by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.

  2. Spin–orbit coupling, minimal model and potential Cooper-pairing from repulsion in BiS2-superconductors

    NASA Astrophysics Data System (ADS)

    Cobo-Lopez, Sergio; Saeed Bahramy, Mohammad; Arita, Ryotaro; Akbari, Alireza; Eremin, Ilya

    2018-04-01

    We develop the realistic minimal electronic model for recently discovered BiS2 superconductors including the spin–orbit (SO) coupling based on the first-principles band structure calculations. Due to strong SO coupling, characteristic for the Bi-based systems, the tight-binding low-energy model necessarily includes p x , p y , and p z orbitals. We analyze a potential Cooper-pairing instability from purely repulsive interaction for the moderate electronic correlations using the so-called leading angular harmonics approximation. For small and intermediate doping concentrations we find the dominant instabilities to be {d}{x2-{y}2}-wave, and s ±-wave symmetries, respectively. At the same time, in the absence of the sizable spin fluctuations the intra and interband Coulomb repulsions are of the same strength, which yield the strongly anisotropic behavior of the superconducting gaps on the Fermi surface. This agrees with recent angle resolved photoemission spectroscopy findings. In addition, we find that the Fermi surface topology for BiS2 layered systems at large electron doping can resemble the doped iron-based pnictide superconductors with electron and hole Fermi surfaces maintaining sufficient nesting between them. This could provide further boost to increase T c in these systems.

  3. Classification of topological insulators and superconductors in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Schnyder, Andreas P.; Ryu, Shinsei; Furusaki, Akira; Ludwig, Andreas W. W.

    2008-11-01

    We systematically study topological phases of insulators and superconductors (or superfluids) in three spatial dimensions. We find that there exist three-dimensional (3D) topologically nontrivial insulators or superconductors in five out of ten symmetry classes introduced in seminal work by Altland and Zirnbauer within the context of random matrix theory, more than a decade ago. One of these is the recently introduced Z2 topological insulator in the symplectic (or spin-orbit) symmetry class. We show that there exist precisely four more topological insulators. For these systems, all of which are time-reversal invariant in three dimensions, the space of insulating ground states satisfying certain discrete symmetry properties is partitioned into topological sectors that are separated by quantum phase transitions. Three of the above five topologically nontrivial phases can be realized as time-reversal invariant superconductors. In these the different topological sectors are characterized by an integer winding number defined in momentum space. When such 3D topological insulators are terminated by a two-dimensional surface, they support a number (which may be an arbitrary nonvanishing even number for singlet pairing) of Dirac fermion (Majorana fermion when spin-rotation symmetry is completely broken) surface modes which remain gapless under arbitrary perturbations of the Hamiltonian that preserve the characteristic discrete symmetries, including disorder. In particular, these surface modes completely evade Anderson localization from random impurities. These topological phases can be thought of as three-dimensional analogs of well-known paired topological phases in two spatial dimensions such as the spinless chiral (px±ipy) -wave superconductor (or Moore-Read Pfaffian state). In the corresponding topologically nontrivial (analogous to “weak pairing”) and topologically trivial (analogous to “strong pairing”) 3D phases, the wave functions exhibit markedly distinct behavior. When an electromagnetic U(1) gauge field and fluctuations of the gap functions are included in the dynamics, the superconducting phases with nonvanishing winding number possess nontrivial topological ground-state degeneracies.

  4. Investigation of immiscible systems and potential applications

    NASA Technical Reports Server (NTRS)

    Markworth, A. J.; Oldfield, W.; Duga, J.; Gelles, S. H.

    1975-01-01

    The droplet coalescence kinetics at 0 g and 1 g were considered for two systems which contained liquid droplets in a host liquid. One of these (Al-In) typified a system containing a liquid phase miscibility gap and the order (oil-water) a mixture of two essentially insoluble liquids. A number of coalescence mechanisms potentially prominent at low g in this system were analyzed and explanations are presented for the observed unusual stability of the emulsion. Ground base experiments were conducted on the coalescence of In droplets in and Al-In alloy during cooling through the miscibility gap at different cooling rates. These were in qualitative agreement with the computer simulation. Potential applications for systems with liquid phase miscibility gaps were explored. Possibilities included superconductors, electrical contact materials, superplastic materials, catalysts, magnetic materials, and others. The role of space processing in their production was also analyzed.

  5. Aerospace Applications Of High Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Anderson, W. W.

    1988-05-01

    The existence of superconductors with TcOOK (which implies device operating temper-atures the order of Top ≍45K) opens up a variety of potential applications within the aerospace/defense industry. This is partly due to the existence of well developed cooler technologies to reach this temperature regime and partly due to the present operation of some specialized components at cryogenic temperatures. In particular, LWIR focal planes may operate at 10K with some of the signal processing electronics at an intermediate temperature of 40K. Addition of high Tc superconducting components in the latter system may be "free" in the sense of additional system complexity required. The established techniques for cooling in the 20K to 50K temperature regime are either open cycle, expendable material (stored gas with Joule-Thomson expansion, liquid cryogen or solid cryogen) or mechanical refrigerators (Stirling cycle, Brayton cycle or closed cycle Joule-Thomson). The high Tc materials may also contribute to the development of coolers through magnetically levitated bearings or providing the field for a stage of magnetic refrigeration. The discovery of materials with Tc, 90K has generated a veritable shopping list of applications. The superconductor properties which are of interest for applications are (1) zero resistance, (2) Meissner effect, (3) phase coherence and (4) existence of an energy gap. The zero resistance property is significant in the development of high field magnets requiring neglible power to maintain the field. In addition to the publicized applications to rail guns and electromagnetic launcher, we can think of space born magnets for charged particle shielding or whistler mode propagation through a plasma sheath. Conductor losses dominate attenuation and dispersion in microstrip transmission lines. While the surface impedance of a superconductor is non vanishing, significant improvements in signal transmission may be obtained. The Meissner effect may be utilized for some magnetic shielding applications but the penetration depth and high frequency effects will have to be considered. Phase coherence forms the basis for Josephson junction devices which, in turn are used for mixers, detectors and parametric amplifiers in the microwave/millimeter wave regime and for A/D converters, sampling and switching circuits and voltage standards in electronics. The energy gap has been the basis of optical and IR detection through modulation of the order parameter (or gap energy) by generation of quasi particles.

  6. Levitation properties of maglev systems using soft ferromagnets

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Guang; Zhou, You-He

    2015-03-01

    Soft ferromagnets are widely used as flux-concentration materials in the design of guideways for superconducting magnetic levitation transport systems. In order to fully understand the influence of soft ferromagnets on the levitation performance, in this work we apply a numerical model based on the functional minimization method and the Bean’s critical state model to study the levitation properties of an infinitely long superconductor immersed in the magnetic field created by a guideway of different sets of infinitely long parallel permanent magnets with soft ferromagnets between them. The levitation force, guidance force, magnetic stiffness and magnetic pole density are calculated considering the coupling between the superconductor and soft ferromagnets. The results show that the levitation performance is closely associated with the permanent magnet configuration and with the location and dimension of the soft ferromagnets. Introducing the soft ferromagnet with a certain width in a few configurations always decreases the levitation force. However, for most configurations, the soft ferromagnets contribute to improve the levitation performance only when they have particular locations and dimensions in which the optimized location and thickness exist to increase the levitation force the most. Moreover, if the superconductor is laterally disturbed, the presence of soft ferromagnets can effectively improve the lateral stability for small lateral displacement and reduce the degradation of levitation force.

  7. London penetration depth measurements in Ba (Fe 1-xT x) 2As 2(T=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu) superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Ryan T.

    2011-01-01

    The London penetration depth has been measured in various doping levels of single crystals of Ba(Fe 1-xT x) 2As 2 (T=Co,Ni,Ru,Rh,Pd,Pt,Co+Cu) superconductors by utilizing a tunnel diode resonator (TDR) apparatus. All in-plane penetration depth measurements exhibit a power law temperature dependence of the form Δλ ab(T) = CT n, indicating the existence of low-temperature, normal state quasiparticles all the way down to the lowest measured temperature, which was typically 500 mK. Several different doping concentrations from the Ba(Fe 1-xT x) 2As 2 (T=Co,Ni) systems have been measured and the doping dependence of the power law exponent, n, is compared tomore » results from measurements of thermal conductivity and specific heat. In addition, a novel method has been developed to allow for the measurement of the zero temperature value of the in-plane penetration depth, λ ab(0), by using TDR frequency shifts. By using this technique, the doping dependence of λ ab(0) has been measured in the Ba(Fe 1-xCo x) 2As 2 series, which has allowed also for the construction of the doping-dependent superfluid phase stiffness, ρ s(T) = [λ(0)/λ(T)] 2. By studying the effects of disorder on these superconductors using heavy ion irradiation, it has been determined that the observed power law temperature dependence likely arises from pair-breaking impurity scattering contributions, which is consistent with the proposed s±-wave symmetry of the superconducting gap in the dirty scattering limit. This hypothesis is supported by the measurement of an exponential temperature dependence of the penetration depth in the intrinsically clean LiFeAs, indicative of a nodeless superconducting gap.« less

  8. Discovery of a superconducting high-entropy alloy.

    PubMed

    Koželj, P; Vrtnik, S; Jelen, A; Jazbec, S; Jagličić, Z; Maiti, S; Feuerbacher, M; Steurer, W; Dolinšek, J

    2014-09-05

    High-entropy alloys (HEAs) are multicomponent mixtures of elements in similar concentrations, where the high entropy of mixing can stabilize disordered solid-solution phases with simple structures like a body-centered cubic or a face-centered cubic, in competition with ordered crystalline intermetallic phases. We have synthesized an HEA with the composition Ta34Nb33Hf8Zr14Ti11 (in at. %), which possesses an average body-centered cubic structure of lattice parameter a=3.36  Å. The measurements of the electrical resistivity, the magnetization and magnetic susceptibility, and the specific heat revealed that the Ta34Nb33Hf8Zr14Ti11 HEA is a type II superconductor with a transition temperature Tc≈7.3  K, an upper critical field μ0H_c2≈8.2  T, a lower critical field μ0Hc1≈32  mT, and an energy gap in the electronic density of states (DOS) at the Fermi level of 2Δ≈2.2  meV. The investigated HEA is close to a BCS-type phonon-mediated superconductor in the weak electron-phonon coupling limit, classifying it as a "dirty" superconductor. We show that the lattice degrees of freedom obey Vegard's rule of mixtures, indicating completely random mixing of the elements on the HEA lattice, whereas the electronic degrees of freedom do not obey this rule even approximately so that the electronic properties of a HEA are not a "cocktail" of properties of the constituent elements. The formation of a superconducting gap contributes to the electronic stabilization of the HEA state at low temperatures, where the entropic stabilization is ineffective, but the electronic energy gain due to the superconducting transition is too small for the global stabilization of the disordered state, which remains metastable.

  9. Electromagnetic Radiation from Vortex Flow in Type-II Superconductors

    NASA Astrophysics Data System (ADS)

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2006-11-01

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, ω0=2πv/a, up to a superconducting gap, Δ/ℏ. Here v is the velocity of the vortex lattice and a is the intervortex spacing. We compute radiation power and show that this effect can be used for the generation of terahertz radiation and for characterization of moving vortex lattices.

  10. Twofold spin-triplet pairing states and tunneling conductance in ferromagnet/ferromagnet/iron pnictide superconductor heterojunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, X.; Tao, Y.C., E-mail: yctao88@163.com; Dong, Z.C.

    By applying an extended eight-component Bogoliubov–de Gennes equation, we study theoretically the tunneling conductance in clean ferromagnet/ferromagnet/iron pnictide superconductor (FM/FM/iron-based SC) heterojunctions. Under the condition of noncollinear magnetizations, twofold novel Andreev reflections exist due to the existence of two bands in the SC, in which the incident electron and the two Andreev-reflected holes, belonging to the same spin subband, form twofold spin-triplet pairing states near the FM/iron-based SC interface. It is shown that the conversions of the conductance not only between the zero-bias peak and valley at zero energy but also between the peaks and dips at two gap energiesmore » are strongly dependent on both the interband coupling strength in the SC and the spin polarization in the FM. The qualitative differences from tunneling into a conventional s-wave SC are also presented, which may help with experimentally probing and identifying the antiphase s-wave pairing symmetry in the iron-based SC. -- Highlights: •An eight-component Bogoliubov–de Gennes (BDG) equation. •Twofold novel ARs and twofold usual ARs. •Conversions of conductance between the zero-bias peak and valley at zero energy. •Conversions of conductance between peaks and dips at two gap energies. •The importance of the interband coupling strength in the SC.« less

  11. Resonances in the Field-Angle-Resolved Thermal Conductivity of CeCoIn 5

    DOE PAGES

    Kim, Duk Y.; Lin, Shi -Zeng; Weickert, Franziska; ...

    2017-05-12

    Here, the thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. We present high-precision measurements of the low-temperature thermal conductivity in the unconventional heavy-fermion superconductor CeCoIn 5, with the heat current J along the nodal [110] direction of its d x2–y2 order parameter and the magnetic field up to 7 T rotating in the ab plane. In contrast to the smooth oscillations found previously for J∥[100], we observe a sharp resonancelike peak in the thermal conductivity when the magnetic field is also in the [110] direction, parallel to themore » heat current. We explain this peak qualitatively via a model of the heat transport in a d-wave superconductor. In addition, we observe two smaller but also very sharp peaks in the thermal conductivity for the field directions at angles Θ≈±33° with respect to J. The origin of the observed resonances at Θ≈±33° at present defies theoretical explanation. The challenge of uncovering their source will dictate exploring theoretically more complex models, which might include, e.g., fine details of the Fermi surface, Andreev bound vortex core states, a secondary superconducting order parameter, and the existence of gaps in spin and charge excitations.« less

  12. Resonances in the Field-Angle-Resolved Thermal Conductivity of CeCoIn 5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Duk Y.; Lin, Shi -Zeng; Weickert, Franziska

    Here, the thermal conductivity measurement in a rotating magnetic field is a powerful probe of the structure of the superconducting energy gap. We present high-precision measurements of the low-temperature thermal conductivity in the unconventional heavy-fermion superconductor CeCoIn 5, with the heat current J along the nodal [110] direction of its d x2–y2 order parameter and the magnetic field up to 7 T rotating in the ab plane. In contrast to the smooth oscillations found previously for J∥[100], we observe a sharp resonancelike peak in the thermal conductivity when the magnetic field is also in the [110] direction, parallel to themore » heat current. We explain this peak qualitatively via a model of the heat transport in a d-wave superconductor. In addition, we observe two smaller but also very sharp peaks in the thermal conductivity for the field directions at angles Θ≈±33° with respect to J. The origin of the observed resonances at Θ≈±33° at present defies theoretical explanation. The challenge of uncovering their source will dictate exploring theoretically more complex models, which might include, e.g., fine details of the Fermi surface, Andreev bound vortex core states, a secondary superconducting order parameter, and the existence of gaps in spin and charge excitations.« less

  13. Phase competition and anomalous thermal evolution in high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Yu, Zuo-Dong; Zhou, Yuan; Yin, Wei-Guo; Lin, Hai-Qing; Gong, Chang-De

    2017-07-01

    The interplay of competing orders is relevant to high-temperature superconductivity known to emerge upon suppression of a parent antiferromagnetic order typically via charge doping. How such interplay evolves at low temperature—in particular at what doping level the zero-temperature quantum critical point (QCP) is located—is still elusive because it is masked by the superconducting state. The QCP had long been believed to follow a smooth extrapolation of the characteristic temperature T* for the strange normal state well above the superconducting transition temperature. However, recently the T* within the superconducting dome was reported to unexpectedly exhibit back-bending likely in the cuprate Bi2Sr2CaCu2O8 +δ . Here we show that the original and revised phase diagrams can be understood in terms of weak and moderate competitions, respectively, between superconductivity and a pseudogap state such as d -density or spin-density wave, based on both Ginzburg-Landau theory and the realistic t -t'-t''-J -V model for the cuprates. We further found that the calculated temperature and doping-level dependence of the quasiparticle spectral gap and Raman response qualitatively agrees with the experiments. In particular, the T* back-bending can provide a simple explanation of the observed anomalous two-step thermal evolution dominated by the superconducting gap and the pseudogap, respectively. Our results imply that the revised phase diagram is likely to take place in high-temperature superconductors.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, Yunkyu; Stewart, G. R.

    Although the pairing mechanism of Fe-based superconductors (FeSCs) has not yet been settled with consensus with regard to the pairing symmetry and the superconducting (SC) gap function, the vast majority of experiments support the existence of spin-singlet signchanging s-wave SC gaps on multi-bands (s±-wave state). This multi-band s±-wave state is a very unique gap state per se and displays numerous unexpected novel SC properties, such as a strong reduction of the coherence peak, non-trivial impurity effects, nodal-gap-like nuclear magnetic resonance signals, various Volovik effects in the specific heat (SH) and thermal conductivity, and anomalous scaling behaviors with a SH jumpmore » and condensation energy versus Tc, etc. In particular, many of these non-trivial SC properties can easily be mistaken as evidence for a nodal-gap state such as a d-wave gap. In this review, we provide detailed explanations of the theoretical principles for the various non-trivial SC properties of the s±-wave pairing state, and then critically compare the theoretical predictions with experiments on FeSCs. This will provide a pedagogical overview of to what extent we can coherently understand the wide range of different experiments on FeSCs within the s±-wave gap model.« less

  15. Nuclear relaxation behavior of the superconducting cuprates: Bi2Sr2CaCu2O8

    NASA Astrophysics Data System (ADS)

    Walstedt, R. E.; Bell, R. F.; Mitzi, D. B.

    1991-10-01

    Nuclear-magnetic-resonance data are presented and analyzed for the high-Tc compound Bi2Sr2CaCu2O8 for two oxygen doping levels. Both sample conditions lead to spin-gap behavior for the NMR shift, with a precursive downturn in the data at T>Tc. In addition, the relaxation times T1 obey the relation (T1T)-1~Ks(T) at low temperatures (T<~100 K), where Ks(T) is the spin paramagnetic shift. This relation, which is also obeyed by other superconductors, is argued to be related to the spin-gap effects and thus incompatible with a Fermi-liquid approach to the understanding of these systems.

  16. Low-Loss NbTiN Films for THz SIS Mixer Tuning Circuits

    NASA Technical Reports Server (NTRS)

    Kooi, J. W.; Stern, J. A.; Chattopadhyay, G.; LeDuc, H. G.; Bumble, B.; Zmuidzinas, J.

    1998-01-01

    Recent results at 1 THz using normal-metal tuning circuits have shown that SIS mixers can work well up to twice the gap frequency of the junction material (niobium). However, the performance at 1 THz is limited by the substantial loss in the normal metal films. For better performance superconducting films with a higher gap frequency than niobium and with low RF loss are needed. Niobium nitride has long been considered a good candidate material, but typical NbN films suffer from high RF loss. To circumvent this problem we are currently investigating the RF loss in NbTiN films, a 15 K Tc compound superconductor, by incorporating them into quasi-optical slot antenna SIS devices.

  17. Spectroscopy of infrared-active phonons in high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Litvinchuk, A. P.; Thomsen, C.; Cardona, M.; Borjesson, L.

    1995-01-01

    For a large variety of superconducting materials both experimental and theoretical lattice dynamical studies have been performed to date. The assignment of the observed infrared- and Raman-active phonon modes to the particular lattice eigenmodes is generally accepted. We will concentrate here upon the analysis of the changes of the infrared-phonon parameters (frequency and linewidth) upon entering the superconducting state which, as will be shown, may provide information on the magnitude of the superconductivity-related gap and its dependence on the superconducting transition temperature Tc.

  18. Multipartite Entanglement in Topological Quantum Phases.

    PubMed

    Pezzè, Luca; Gabbrielli, Marco; Lepori, Luca; Smerzi, Augusto

    2017-12-22

    We witness multipartite entanglement in the ground state of the Kitaev chain-a benchmark model of a one dimensional topological superconductor-also with variable-range pairing, using the quantum Fisher information. Phases having a finite winding number, for both short- and long-range pairing, are characterized by a power-law diverging finite-size scaling of multipartite entanglement. Moreover, the occurring quantum phase transitions are sharply marked by the divergence of the derivative of the quantum Fisher information, even in the absence of a closing energy gap.

  19. Developing Test Apparatus and Measurements of AC Loss of High Temperature Superconductors

    DTIC Science & Technology

    2012-11-01

    temperature of the coil is not raised significantly. The second system, a larger machine, designed with a long term prospective to serve a test bed for...four sample chambers inside the vacuum gap, LN2 – cooled sample holder (currently only one is in use), the laminated back iron, and the outer shell...machine. accommodate a variety of different small coils and linear tapes. This assembly is surrounded by the laminated back iron and the outer shell

  20. Ultrasonic attenuation in superconducting molybdenum-rhenium alloys.

    NASA Technical Reports Server (NTRS)

    Ashkin, M.; Deis, D. W.; Gottlieb, M.; Jones, C. K.

    1971-01-01

    Investigation of longitudinal sound attenuation in superconducting Mo-Re alloys as a function of temperature, magnetic field, and frequency. Evaporated thin film CdS transducers were used for the measurements at frequencies up to 3 GHz. The normal state attenuation coefficient was found to be proportional to the square of frequency over this frequency range. Measurements in zero magnetic field yielded a value of the energy gap parameter close to the threshold value of 3.56 kTc, appropriate to a weakly coupled dirty limit superconductor.

  1. Nonempirical Calculation of Superconducting Transition Temperatures in Light-Element Superconductors.

    PubMed

    Arita, Ryotaro; Koretsune, Takashi; Sakai, Shiro; Akashi, Ryosuke; Nomura, Yusuke; Sano, Wataru

    2017-07-01

    Recent progress in the fully nonempirical calculation of the superconducting transition temperature (T c ) is reviewed. Especially, this study focuses on three representative light-element high-T c superconductors, i.e., elemental Li, sulfur hydrides, and alkali-doped fullerides. Here, it is discussed how crucial it is to develop the beyond Migdal-Eliashberg (ME) methods. For Li, a scheme of superconducting density functional theory for the plasmon mechanism is formulated and it is found that T c is dramatically enhanced by considering the frequency dependence of the screened Coulomb interaction. For sulfur hydrides, it is essential to go beyond not only the static approximation for the screened Coulomb interaction, but also the constant density-of-states approximation for electrons, the harmonic approximation for phonons, and the Migdal approximation for the electron-phonon vertex, all of which have been employed in the standard ME calculation. It is also shown that the feedback effect in the self-consistent calculation of the self-energy and the zero point motion considerably affect the calculation of T c . For alkali-doped fullerides, the interplay between electron-phonon coupling and electron correlations becomes more nontrivial. It has been demonstrated that the combination of density functional theory and dynamical mean field theory with the ab initio downfolding scheme for electron-phonon coupled systems works successfully. This study not only reproduces the experimental phase diagram but also obtains a unified view of the high-T c superconductivity and the Mott-Hubbard transition in the fullerides. The results for these high-T c superconductors will provide a firm ground for future materials design of new superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Temperature-dependent transformation of the magnetic excitation spectrum on approaching superconductivity in Fe(1+y-x)(Ni/Cu)(x)Te(0.5)Se(0.5).

    PubMed

    Xu, Zhijun; Wen, Jinsheng; Zhao, Yang; Matsuda, Masaaki; Ku, Wei; Liu, Xuerong; Gu, Genda; Lee, D-H; Birgeneau, R J; Tranquada, J M; Xu, Guangyong

    2012-11-30

    Spin excitations are one of the top candidates for mediating electron pairing in unconventional superconductors. Their coupling to superconductivity is evident in a large number of systems, by the observation of an abrupt redistribution of magnetic spectral weight at the superconducting transition temperature, T(c), for energies comparable to the superconducting gap. Here we report inelastic neutron scattering measurements on Fe-based superconductors, Fe(1+y-x)(Ni/Cu)(x)Te(0.5)Se(0.5) that emphasize an additional signature. The overall shape of the low energy magnetic dispersion changes from two incommensurate vertical columns at T≫T(c) to a distinctly different U-shaped dispersion at low temperature. Importantly, this spectral reconstruction is apparent for temperatures up to ~3T(c). If the magnetic excitations are involved in the pairing mechanism, their surprising modification on the approach to T(c) demonstrates that strong interactions are involved.

  3. Maglev performance of a double-layer bulk high temperature superconductor above a permanent magnet guideway

    NASA Astrophysics Data System (ADS)

    Deng, Z.; Wang, J.; Zheng, J.; Lin, Q.; Zhang, Y.; Wang, S.

    2009-05-01

    In order to improve the performance of the present high temperature superconducting (HTS) maglev vehicle system, the maglev performance of single- and double-layer bulk high temperature superconductors (HTSC) was investigated above a permanent magnet guideway (PMG). It is found that the maglev performance of a double-layer bulk HTSC is not a simple addition of each layer's levitation and guidance force. Moreover, the applied magnetic field at the position of the upper layer bulk HTSC is not completely shielded by the lower layer bulk HTSC either. 53.5% of the levitation force and 27.5% of the guidance force of the upper layer bulk HTSC are excited in the double-layer bulk HTSC arrangement in the applied field-cooling condition and working gap, bringing a corresponding improvement of 16.9% and 8.8% to the conventional single-layer bulk HTSC. The present research implies that the cost performance of upper layer bulk HTSC is a little low for the whole HTS maglev system.

  4. Room temperature deposition of superconducting NbN for superconductor-insulator-superconductor junctions

    NASA Technical Reports Server (NTRS)

    Thakoor, S.; Leduc, H. G.; Thakoor, A. P.; Lambe, J.; Khanna, S. K.

    1986-01-01

    The deposition of stoichiometric B1-crystal-structure (111) NbN films on glass or sapphire substrates by reactive dc magnetron sputtering is reported. High-purity Ar-N2 mixtures are used in the apparatus described by Thakoor et al. (1985), and typical deposition parameters are given as background pressure about 10 ntorr, voltage -325 V, current 1 A, deposition rate 1.35 nm/s, film thickness 500 nm, P(Ar) 5-17 mtorr, initial P(N2) 2-6 mtorr, and room temperature. The N2 consumption-injection characteristics are studied and found to control NbN formation using well-conditioned Nb targets. Films with transition temperatures 15-16 K are obtained at P(Ar) = 12.9 + or - 0.2 mtorr and P(N2) = 3.7 + or - 0.1 mtorr. SIS junctions of area about 0.001 sq cm fabricated using the NbN films are shown to have I-V characteristics with nonlinearity parameter about 110 and NbN superconducting-gap parameter Delta = about 2.8 meV.

  5. Induced Superconductivity and Engineered Josephson Tunneling Devices in Epitaxial (111)-Oriented Gold/Vanadium Heterostructures.

    PubMed

    Wei, Peng; Katmis, Ferhat; Chang, Cui-Zu; Moodera, Jagadeesh S

    2016-04-13

    We report a unique experimental approach to create topological superconductors by inducing superconductivity into epitaxial metallic thin film with strong spin-orbit coupling. Utilizing molecular beam epitaxy technique under ultrahigh vacuum conditions, we are able to achieve (111) oriented single phase of gold (Au) thin film grown on a well-oriented vanadium (V) s-wave superconductor film with clean interface. We obtained atomically smooth Au thin films with thicknesses even down to below a nanometer showing near-ideal surface quality. The as-grown V/Au bilayer heterostructure exhibits superconducting transition at around 3.9 K. Clear Josephson tunneling and Andreev reflection are observed in S-I-S tunnel junctions fabricated from the epitaxial bilayers. The barrier thickness dependent tunneling and the associated subharmonic gap structures (SGS) confirmed the induced superconductivity in Au (111), paving the way for engineering thin film heterostructures based on p-wave superconductivity and nano devices exploiting Majorana Fermions for quantum computing.

  6. Microscopic investigation of the weakly correlated noncentrosymmetric superconductor SrAuSi3

    NASA Astrophysics Data System (ADS)

    Barbero, N.; Biswas, P. K.; Isobe, M.; Amato, A.; Morenzoni, E.; Hillier, A. D.; Ott, H.-R.; Mesot, J.; Shiroka, T.

    2018-01-01

    SrAuSi3 is a noncentrosymmetric superconductor (NCS) with Tc=1.54 K, which to date has been studied only via macroscopic techniques. By combining nuclear-magnetic-resonance and muon-spin-rotation measurements, we investigate both the normal and the superconducting phase of SrAuSi3 at a local level. In the normal phase, our data indicate a standard metallic behavior with weak electron correlations and a Korringa constant Sexp=1.31 ×10-5 sK. The latter, twice the theoretical value, can be justified by the Moriya theory of exchange enhancement. In the superconducting phase, the material exhibits conventional BCS-type superconductivity with a weak-coupling s -wave pairing, a gap value Δ (0 )=0.213 (2 ) meV, and a magnetic penetration depth λ (0 )=398 (2 ) nm. The experimental proof of weak correlations in SrAuSi3 implies that correlation effects can be decoupled from those of antisymmetric spin-orbit coupling, thus enabling accurate band-structure calculations in the weakly correlated NCSs.

  7. Ballistic superconductivity in semiconductor nanowires

    PubMed Central

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P.A.M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-01-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices. PMID:28681843

  8. Gate-tunable supercurrent and multiple Andreev reflections in a superconductor-topological insulator nanoribbon-superconductor hybrid device

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis A.; Kayyalha, Morteza; Kazakov, Aleksandr; Miotkowski, Ireneusz; Rokhinson, Leonid P.; Chen, Yong P.

    2018-02-01

    We report on the observation of gate-tunable proximity-induced superconductivity and multiple Andreev reflections (MARs) in a bulk-insulating BiSbTeSe2 topological insulator nanoribbon (TINR) Josephson junction with superconducting Nb contacts. We observe a gate-tunable critical current (IC) for gate voltages (Vg) above the charge neutrality point (VCNP), with IC as large as 430 nA. We also observe MAR peaks in the differential conductance (dI/dV) versus DC voltage (Vdc) across the junction corresponding to sub-harmonic peaks (at Vdc = Vn = 2ΔNb/en, where ΔNb is the superconducting gap of the Nb contacts and n is the sub-harmonic order). The sub-harmonic order, n, exhibits a Vg-dependence and reaches n = 13 for Vg = 40 V, indicating the high transparency of the Nb contacts to TINR. Our observations pave the way toward exploring the possibilities of using TINR in topologically protected devices that may host exotic physics such as Majorana fermions.

  9. Chiral topological superconductor and half-integer conductance plateau from quantum anomalous Hall plateau transition

    DOE PAGES

    Wang, Jing; Zhou, Quan; Lian, Biao; ...

    2015-08-31

    Here, we propose to realize a two-dimensional chiral topological superconducting (TSC) state from the quantum anomalous Hall plateau transition in a magnetic topological insulator thin film through the proximity effect to a conventional s -wave superconductor. This state has a full pairing gap in the bulk and a single chiral Majorana mode at the edge. The optimal condition for realizing such chiral TSC is to have inequivalent superconducting pairing amplitudes on top and bottom surfaces of the doped magnetic topological insulator. We further propose several transport experiments to detect the chiral TSC. One unique signature is that the conductance willmore » be quantized into a half-integer plateau at the coercive field in this hybrid system. In particular, with the point contact formed by a superconducting junction, the conductance oscillates between e 2 /2h and e2 /h with the frequency determined by the voltage across the junction. We close by discussing the feasibility of these experimental proposals.« less

  10. Close correlation between magnetic properties and the soft phonon mode of the structural transition in BaFe 2 As 2 and SrFe 2 As 2

    DOE PAGES

    Parshall, D.; Pintschovius, L.; Niedziela, Jennifer L.; ...

    2015-04-27

    Pmore » arent compounds of Fe-based superconductors undergo a structural phase transition from a tetragonal to an orthorhombic structure. We investigated the temperature dependence of the frequencies of TA phonons that extrapolate to the shear vibrational mode at the zone center, which corresponds to the orthorhombic deformation of the crystal structure at low temperatures in BaFe 2 As 2 and SrFe 2 As 2 . We found that acoustic phonons at small wave vectors soften gradually towards the transition from high temperatures, tracking the increase of the size of slowly fluctuating magnetic domains. On cooling below the transition to base temperature the phonons harden, following the square of the magnetic moment (which we find is proportional to the anisotropy gap). Finally, our results provide evidence for close correlation between magnetic and phonon properties in Fe-based superconductors.« less

  11. Microscopic theory of vortex interaction in two-band superconductors and type-1.5 superconductivity

    NASA Astrophysics Data System (ADS)

    Silaev, Mihail; Babaev, Egor

    2011-03-01

    In the framework of self-consistent microscopic theory we study the structure and interaction of vortices in two-gap superconductor taking into account the interband Josephson coupling. The asymptotical behavior of order parameter densities and magnetic field is studied analytically within the microscopic theory at low temperature. At higher temperatures, results consistent with Ginzburg-Landau theory are obtained. It is shown that under quite general conditions and in a wide temperature ranges (in particular outside the validity of the Ginzburg-Landau theory) there can exist an additional characteristic length scale of the order parameter density variation which exceeds the London penetration length of magnetic field due to the multi-component nature of superconducting state. Such behavior of order parameter density variation leads to the attractive long-range and repulsive short-range interaction between vortices. Supported by NSF CAREER Award DMR-0955902, Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences and Swedish Research Council, ''Dynasty'' foundation and Russian Foundation for Basic Research.

  12. Thermodynamics of strong coupling superconductors including the effect of anisotropy

    NASA Astrophysics Data System (ADS)

    Daams, J. M.; Carbotte, J. P.

    1981-05-01

    The thermodynamics of several elemental superconductors is computed from isotropic Eliashberg theory formulated on the imaginary frequency axis. A symmary of the available experimental literature is presented and a comparison with theory is given. The small disagreements that are found are all in the direction expected from anisotropy effects. We calculate the effect of a small amount of model anisotropy on the critical temperature, critical field, and high-temperature specific heat from an exact solution of the anisotropic Eliashberg equations. These are the first such results below the critical temperature; unlike previous analytical work, we include retardation, anisotropy in the mass enhancement, and the effect of the Coulomb repulsion in enhancing anisotropy, all of which are significant. We derive a new formula independent of any model anisotropy for the rate of decrease with impurity lifetime of the critical temperature. Finally we demonstrate how the commonly used formulas of Markowitz and Kadanoff and of Clem may give entirely misleading estimates of the gap anisotropy when used to interpret certain experiments.

  13. Chiral topological superconductor and half-integer conductance plateau from quantum anomalous Hall plateau transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Zhou, Quan; Lian, Biao

    Here, we propose to realize a two-dimensional chiral topological superconducting (TSC) state from the quantum anomalous Hall plateau transition in a magnetic topological insulator thin film through the proximity effect to a conventional s -wave superconductor. This state has a full pairing gap in the bulk and a single chiral Majorana mode at the edge. The optimal condition for realizing such chiral TSC is to have inequivalent superconducting pairing amplitudes on top and bottom surfaces of the doped magnetic topological insulator. We further propose several transport experiments to detect the chiral TSC. One unique signature is that the conductance willmore » be quantized into a half-integer plateau at the coercive field in this hybrid system. In particular, with the point contact formed by a superconducting junction, the conductance oscillates between e 2 /2h and e2 /h with the frequency determined by the voltage across the junction. We close by discussing the feasibility of these experimental proposals.« less

  14. Contact spectroscopy on S/TI/N devices: Induced pairing on the surface of a topological insulator

    NASA Astrophysics Data System (ADS)

    Stehno, Martin P.; Ngabonziza, Prosper; Snelder, Marieke; Myoren, Hiroaki; Pan, Yu; de Visser, Anne; Huang, Y.; Golden, Mark S.; Brinkman, Alexander

    Translating concepts of topological quantum computation into applications requires fine-tuning of parameters in the model Hamiltonians of candidate systems. Such level of control has proven difficult to achieve in devices where superconductors are used to induce pairing in topological insulator (TI) materials. While local probe experiments have indicated features of p-wave superconducting correlations in TIs (as suggested by theory), results on extended devices often remain ambiguous. We present contact spectroscopy data on superconductor/topological insulator/normal metal devices with bulk-insulating TI material and compare these with bulk conducting samples. We discuss the magnitude of the induced gap and unusual features in the conductance traces of the bulk-insulating samples that may suggest the presence of p-wave type correlations in the TI. This work is financially supported by the Dutch Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO), and by the European Research Council (ERC).

  15. Effect of nonmagnetic impurities on s+/- superconductivity in the presence of incipient bands

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Mishra, Vivek; Maiti, Saurabh; Hirschfeld, Peter

    Several Fe chalcogenide superconductors without hole pockets at the Fermi level display high temperature superconductivity, in apparent contradiction to naive spin fluctuation pairing arguments. Recently, scanning tunneling microscopy measurements have measured the influence of impurities on some of these materials, and claimed that non-magnetic impurities do not create in-gap states, leading to the conclusion that the gap must be s+ +, i.e. conventional s wave with no gap sign change. Here we present various ways sign-changing gaps can be consistent with the absence of such bound states. In particular, we calculate the bound states for an s+/- system with a hole pocket below the Fermi level, and show that the nonmagnetic impurity bound state energy generically tracks the gap edge in the system, thereby rendering it unobservable. A failure to observe a bound state in the case of a nonmagnetic impurity can therefore not be used as an argument to exclude sign-changing pairing states. XC, SM and PJH were supported by NSF-DMR-1407502. VM was supported by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.

  16. Anisotropic type-I superconductivity and anomalous superfluid density in OsB2

    NASA Astrophysics Data System (ADS)

    Bekaert, J.; Vercauteren, S.; Aperis, A.; Komendová, L.; Prozorov, R.; Partoens, B.; Milošević, M. V.

    2016-10-01

    We present a microscopic study of superconductivity in OsB2, and discuss the origin and characteristic length scales of the superconducting state. From first-principles we show that OsB2 is characterized by three different Fermi sheets, and we prove that this fermiology complies with recent quantum-oscillation experiments. Using the found microscopic properties, and experimental data from the literature, we employ Ginzburg-Landau relations to reveal that OsB2 is a distinctly type-I superconductor with a very low Ginzburg-Landau parameter κ —a rare property among compound materials. We show that the found coherence length and penetration depth corroborate the measured thermodynamic critical field. Moreover, our calculation of the superconducting gap structure using anisotropic Eliashberg theory and ab initio calculated electron-phonon interaction as input reveals a single but anisotropic gap. The calculated gap spectrum is shown to give an excellent account for the unconventional behavior of the superfluid density of OsB2 measured in experiments as a function of temperature. This reveals that gap anisotropy can explain such behavior, observed in several compounds, which was previously attributed solely to a two-gap nature of superconductivity.

  17. Anisotropic type-I superconductivity and anomalous superfluid density in OsB 2

    DOE PAGES

    Bekaert, Jonas; Vercauteren, S.; Aperis, A.; ...

    2016-10-12

    Here, we present a microscopic study of superconductivity in OsB 2, and discuss the origin and characteristic length scales of the superconducting state. From first-principles we show that OsB 2 is characterized by three different Fermi sheets, and we prove that this fermiology complies with recent quantum-oscillation experiments. Using the found microscopic properties, and experimental data from the literature, we employ Ginzburg-Landau relations to reveal that OsB 2 is a distinctly type-I superconductor with a very low Ginzburg-Landau parameter κ—a rare property among compound materials. We show that the found coherence length and penetration depth corroborate the measured thermodynamic criticalmore » field. Moreover, our calculation of the superconducting gap structure using anisotropic Eliashberg theory and ab initio calculated electron-phonon interaction as input reveals a single but anisotropic gap. The calculated gap spectrum is shown to give an excellent account for the unconventional behavior of the superfluid density of OsB 2 measured in experiments as a function of temperature. This reveals that gap anisotropy can explain such behavior, observed in several compounds, which was previously attributed solely to a two-gap nature of superconductivity.« less

  18. Superconductor to Mott insulator transition in YBa 2Cu 3O 7/LaCaMnO 3 heterostructures

    DOE PAGES

    Gray, B. A.; Middey, S.; Conti, G.; ...

    2016-09-15

    The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In this paper, in pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high Tc superconductor YBa 2Cu 3O 7 (YBCO) and colossal magnetoresistance ferromagnet La 0.67Ca 0.33MnO 3 (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping inmore » cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may respond to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Finally, such deterministic control of Tc by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.« less

  19. Hanbury Brown and Twiss noise correlations in a topological superconductor beam splitter

    NASA Astrophysics Data System (ADS)

    Jonckheere, T.; Rech, J.; Zazunov, A.; Egger, R.; Martin, T.

    2017-02-01

    We study Hanbury Brown and Twiss current cross-correlations in a three-terminal junction where a central topological superconductor (TS) nanowire, bearing Majorana bound states at its ends, is connected to two normal leads. Relying on a nonperturbative Green function formalism, our calculations allow us to provide analytical expressions for the currents and their correlations at subgap voltages, while also giving exact numerical results valid for arbitrary external bias. We show that when the normal leads are biased at voltages V1 and V2 smaller than the gap, the sign of the current cross-correlations is given by -sgn(V1V2) . In particular, this leads to positive cross-correlations for opposite voltages, a behavior in stark contrast with the one of a standard superconductor, which provides direct evidence of the presence of the Majorana zero mode at the edge of the TS. We further extend our results, varying the length of the TS (leading to an overlap of the Majorana bound states) as well as its chemical potential (driving it away from half-filling), generalizing the boundary TS Green function to those cases. In the case of opposite bias voltages, sgn(V1V2)=-1 , driving the TS wire through the topological transition leads to a sign change of the current cross-correlations, providing yet another signature of the physics of the Majorana bound state.

  20. Weak interband-coupling superconductivity in the filled skutterudite LaPt4Ge12

    NASA Astrophysics Data System (ADS)

    Zhang, J. L.; Pang, G. M.; Jiao, L.; Nicklas, M.; Chen, Y.; Weng, Z. F.; Smidman, M.; Schnelle, W.; Leithe-Jasper, A.; Maisuradze, A.; Baines, C.; Khasanov, R.; Amato, A.; Steglich, F.; Gumeniuk, R.; Yuan, H. Q.

    2015-12-01

    The superconducting pairing state of LaPt4Ge12 is studied by measuring the magnetic penetration depth λ (T ,B ) and superfluid density ρs(T ) using a tunnel-diode-oscillator (TDO)-based method and transverse-field muon-spin rotation (TF -μ SR ) spectroscopy. The penetration depth follows an exponential-type temperature dependence at T ≪Tc , but increases linearly with magnetic field at T =1.5 K. A detailed analysis demonstrates that both λL(T ) and ρsTDO(T ) , measured in the Meissner state using the TDO method, are well described by a two-gap γ model with gap sizes of Δ1(0 ) =1.31 kBTc and Δ2(0 ) =1.80 kBTc , and weak interband coupling. In contrast, ρsμ SR(T ) , derived from the μ SR data, can be fitted by a single-gap BCS model with a gap close to Δ2(0 ) . We conclude that LaPt4Ge12 is a marginal two-gap superconductor and the small gap Δ1 seems to be suppressed by a small magnetic field applied in the μ SR experiments. In comparison, the 4 f electrons in PrPt4Ge12 may enhance the interband coupling and, therefore, give rise to more robust multiband superconductivity.

  1. Developmental Challenges of SMES Technology for Applications

    NASA Astrophysics Data System (ADS)

    Rong, Charles C.; Barnes, Paul N.

    2017-12-01

    This paper reviews the current status of high temperature superconductor (HTS) based superconducting magnetic energy storage (SMES) technology as a developmental effort. Discussion centres on the major challenges in magnet optimization, loss reduction, cooling improvement, and new development of quench detection. The cryogenic operation for superconductivity in this technological application requires continued research and development, especially with a greater engineering effort that involves the end user. For the SMES-based technology to more fully mature, some suggestions are given for consideration and discussion.

  2. Stencil lithography of superconducting contacts on MBE-grown topological insulator thin films

    NASA Astrophysics Data System (ADS)

    Schüffelgen, Peter; Rosenbach, Daniel; Neumann, Elmar; Stehno, Martin P.; Lanius, Martin; Zhao, Jialin; Wang, Meng; Sheehan, Brendan; Schmidt, Michael; Gao, Bo; Brinkman, Alexander; Mussler, Gregor; Schäpers, Thomas; Grützmacher, Detlev

    2017-11-01

    Topological insulator (Bi0.06Sb0.94)2Te3 thin films grown by molecular beam epitaxy have been capped in-situ with a 2 nm Al film to conserve the pristine topological surface states. Subsequently, a shadow mask - structured by means of focus ion beam - was in-situ placed underneath the sample to deposit a thick layer of Al on well-defined microscopically small areas. The 2 nm thin Al layer fully oxidizes after exposure to air and in this way protects the TI surface from degradation. The thick Al layer remains metallic underneath a 3-4 nm thick native oxide layer and therefore serves as (super-) conducting contacts. Superconductor-Topological Insulator-Superconductor junctions with lateral dimensions in the nm range have then been fabricated via an alternative stencil lithography technique. Despite the in-situ deposition, transport measurements and transmission electron microscope analysis indicate a low transparency, due to an intermixed region at the interface between topological insulator thin film and metallic Al.

  3. Theory of Fermi Liquid with Flat Bands

    NASA Astrophysics Data System (ADS)

    Khodel, V. A.

    2018-04-01

    A self-consistent theory of Fermi systems hosting flat bands is developed. Compared with an original model of fermion condensation, its key point consists in proper accounting for mixing between condensate and non-condensate degrees of freedom that leads to formation of a non-BCS gap Υ (p) in the single-particle spectrum. The results obtained explain: (1) the two-gap structure of spectra of single-particle excitations of electron systems of copper oxides, revealed in ARPES studies, (2) the role of violation of the topological stability of the Landau state in the arrangement of the T-x phase diagram of this family of high-T_c superconductors, (3) the topological nature of a metal-insulator transition, discovered in homogeneous two-dimensional low-density electron liquid of MOSFETs more than 20 years ago.

  4. Multigap superconductivity and strong electron-boson coupling in Fe-based superconductors: a point-contact Andreev-reflection study of Ba(Fe(1-x)Co(x))2As2 single crystals.

    PubMed

    Tortello, M; Daghero, D; Ummarino, G A; Stepanov, V A; Jiang, J; Weiss, J D; Hellstrom, E E; Gonnelli, R S

    2010-12-03

    Directional point-contact Andreev-reflection measurements in Ba(Fe(1-x)Co(x))2As2 single crystals (T(c) = 24.5 K) indicate the presence of two superconducting gaps with no line nodes on the Fermi surface. The point-contact Andreev-reflection spectra also feature additional structures related to the electron-boson interaction, from which the characteristic boson energy Ω(b)(T) is obtained, very similar to the spin-resonance energy observed in neutron scattering experiments. Both the gaps and the additional structures can be reproduced within a three-band s ± Eliashberg model by using an electron-boson spectral function peaked at Ω(0) = 12 meV ≃ Ω(b)(0).

  5. Phase competition and anomalous thermal evolution in high-temperature superconductors

    DOE PAGES

    Yu, Zuo-Dong; Zhou, Yuan; Yin, Wei-Guo; ...

    2017-07-12

    The interplay of competing orders is relevant to high-temperature superconductivity known to emerge upon suppression of a parent antiferromagnetic order typically via charge doping. How such interplay evolves at low temperature—in particular at what doping level the zero-temperature quantum critical point (QCP) is located—is still elusive because it is masked by the superconducting state. The QCP had long been believed to follow a smooth extrapolation of the characteristic temperature T * for the strange normal state well above the superconducting transition temperature. However, recently the T * within the superconducting dome was reported to unexpectedly exhibit back-bending likely in themore » cuprate Bi 2 Sr 2 CaCu 2 O 8 + δ . We show that the original and revised phase diagrams can be understood in terms of weak and moderate competitions, respectively, between superconductivity and a pseudogap state such as d -density or spin-density wave, based on both Ginzburg-Landau theory and the realistic t - t ' - t ' ' - J - V model for the cuprates. We further found that the calculated temperature and doping-level dependence of the quasiparticle spectral gap and Raman response qualitatively agrees with the experiments. Particularly, the T * back-bending can provide a simple explanation of the observed anomalous two-step thermal evolution dominated by the superconducting gap and the pseudogap, respectively. These results imply that the revised phase diagram is likely to take place in high-temperature superconductors.« less

  6. Do theoretical calculations really predict nodes in Fe-based superconductors?

    NASA Astrophysics Data System (ADS)

    Mazin, Igor

    2011-03-01

    It is well established that calculations based on the LDA band structure and the Hubbard model, with the parameters U ~ 1.3 - 1.6 eV, and J ~ 0.2 - 0.3 J (a ``UJ'' model), yield strongly anisotropic, and sometimes nodal gaps. The physical origin of this effect is well understood: the two leading terms in the model are ∑Uni ↑ni ↓ and ∑ ' Uninj . The former ensures that the coupling to spin fluctuations proceeds only through the like orbitals, and the latter, not being renormalized by the standard Tolmachev-Morel-Anderson logarithm, tends to equalize the positive and the negative order parameters. Both these features are suspect on a general physics basis: the leading magnetic interaction in itinerant systems is the Hund-rule coupling, which couples every orbital with all the others, and the pnictides, with the order parameter less than 20 meV, should have nearly as strong renormalization of the Coulomb pseudopotential as the conventional superconductors. I will argue that, instead of the UJ model, in pnictides one should use the ``I'' model, derived from the density functional theory (which is supposed to describe the static susceptibility on the mean field level very accurately). The ``I'' here is simply the Stoner factor, the second variation of the LSDA magnetic energy. Unfortunately, this approach is very unlikely to produce gap nodes as easily as the UJ model, indicating that one has to look elsewhere for the nodes origin.

  7. Specific heat, Electrical resistivity and Electronic band structure properties of noncentrosymmetric Th7Fe3 superconductor.

    PubMed

    Tran, V H; Sahakyan, M

    2017-11-17

    Noncentrosymmetric superconductor Th 7 Fe 3 has been investigated by means of specific heat, electrical resisitivity measurements and electronic properties calculations. Sudden drop in the resistivity at 2.05 ± 0.15 K and specific heat jump at 1.98 ± 0.02 K are observed, rendering the superconducting transition. A model of two BCS-type gaps appears to describe the zero-magnetic-field specific heat better than those based on the isotropic BCS theory or anisotropic functions. A positive curvature of the upper critical field H c2 (T c ) and nonlinear field dependence of the Sommerfeld coefficient at 0.4 K qualitatively support the two-gap scenario, which predicts H c2 (0) = 13 kOe. The theoretical densities of states and electronic band structures (EBS) around the Fermi energy show a mixture of Th 6d- and Fe 3d-electrons bands, being responsible for the superconductivity. Furthermore, the EBS and Fermi surfaces disclose significantly anisotropic splitting associated with asymmetric spin-orbit coupling (ASOC). The ASOC sets up also multiband structure, which presumably favours a multigap superconductivity. Electron Localization Function reveals the existence of both metallic and covalent bonds, the latter may have different strengths depending on the regions close to the Fe or Th atoms. The superconducting, electronic properties and implications of asymmetric spin-orbit coupling associated with noncentrosymmetric structure are discussed.

  8. Lifshitz transitions and zero point lattice fluctuations in sulfur hydride showing near room temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Jarlborg, Thomas

    2015-11-01

    Emerets's experiments on pressurized sulfur hydride have shown that H3S metal has the highest known superconducting critical temperature Tc = 203 K. The Emerets data show pressure induced changes of the isotope coefficient between 0.25 and 0.5, in disagreement with Eliashberg theory which predicts a nearly constant isotope coefficient.We assign the pressure dependent isotope coefficient to Lifshitz transitions induced by pressure and zero point lattice fluctuations. It is known that pressure could induce changes of the topology of the Fermi surface, called Lifshitz transitions, but were neglected in previous papers on the H3S superconductivity issue. Here we propose thatH3S is a multi-gap superconductor with a first condensate in the BCS regime (located in the large Fermi surface with high Fermi energy) which coexists with second condensates in the BCS-BEC crossover regime (located on the Fermi surface spots with small Fermi energy) near the and Mpoints.We discuss the Bianconi-Perali-Valletta (BPV) superconductivity theory to understand superconductivity in H3S since the BPV theory includes the corrections of the chemical potential due to pairing and the configuration interaction between different condensates, neglected by the Eliashberg theory. These two terms in the BPV theory give the shape resonance in superconducting gaps, similar to Feshbach resonance in ultracold fermionic gases, which is known to amplify the critical temperature. Therefore this work provides some key tools useful in the search for new room temperature superconductors.

  9. Lumped element kinetic inductance detectors based on two-gap MgB2 thin films

    NASA Astrophysics Data System (ADS)

    Yang, C.; Niu, R. R.; Guo, Z. S.; Cai, X. W.; Chu, H. M.; Yang, K.; Wang, Y.; Feng, Q. R.; Gan, Z. Z.

    2018-01-01

    Lumped element kinetic inductance detectors (LEKIDs) are made from a single layer superconducting thin film. Because of their low noise and highly multiplexibility, LEKIDs provide a sensitive technology for the detection of millimeter and submillimeter waves. In this work, a 5-pixel 50-nm-thick MgB2 array is made. The microwave properties of the array are measured under dark conditions. We show that the loaded quality factor Q of the resonant circuit is 30 000 at 7.5 K, which is comparable to that of lower-operating-temperature (usually several hundred mK) LEKIDs made from superconductors such as Al and Nb. Moreover, the temperature dependence of resonance frequency gives the two-gap character of MgB2, Δπ (0) = 2.58 meV and Δσ (0) = 8.26 meV. The gap frequency (f = 2Δ/h) indicates that MgB2 LEKIDs have a promising application on terahertz detection.

  10. Evidence for Itinerant Carriers in an Anisotropic Narrow-Gap Semiconductor by Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Ju, Sailong; Bai, Wei; Wu, Liming; Lin, Hua; Xiao, Chong; Cui, Shengtao; Li, Zhou; Kong, Shuai; Liu, Yi; Liu, Dayong; Zhang, Guobin; Sun, Zhe; Xie, Yi

    2018-01-01

    The ability to accurately determine the electronic structure of solids has become a key prerequisite for modern functional materials. For example, the precise determination of the electronic structure helps to balance the three thermoelectric parameters, which is the biggest challenge to design high-performance thermoelectric materials. Herein, by high-resolution, angle-resolved photoemission spectroscopy (ARPES), the itinerant carriers in CsBi 4 Te 6 (CBT) are revealed for the first time. CBT is a typical anisotropic, narrow-gap semiconductor used as a practical candidate for low-temperature thermoelectric applications, and p-doped CBT series show superconductivity at relatively low carrier concentrations. The ARPES results show a significantly larger bandwidth near the Fermi surface than calculations, which means the carriers transport anisotropically and itinerantly in CBT. It is reasonable to believe that these newly discovered features of carriers in narrow-gap semiconductors are promising for designing optimal thermoelectric materials and superconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Topological π Junctions from Crossed Andreev Reflection in the Quantum Hall Regime

    NASA Astrophysics Data System (ADS)

    Finocchiaro, F.; Guinea, F.; San-Jose, P.

    2018-03-01

    We consider a two-dimensional electron gas (2DEG) in the quantum Hall regime in the presence of a Zeeman field, with the Fermi level tuned to a filling factor of ν =1 . We show that, in the presence of spin-orbit coupling, contacting the 2DEG with a narrow strip of an s -wave superconductor produces a topological superconducting gap along the contact as a result of crossed Andreev reflection (CAR) processes across the strip. The sign of the topological gap, controlled by the CAR amplitude, depends periodically on the Fermi wavelength and strip width and can be externally tuned. An interface between two halves of a long strip with topological gaps of opposite sign implements a robust π junction, hosting a pair of Majorana zero modes that do not split despite their overlap. We show that such a configuration can be exploited to perform protected non-Abelian tunnel-braid operations without any fine tuning.

  12. Microscopic theory of the superconducting gap in the quasi-one-dimensional organic conductor (TMTSF) 2ClO4 : Model derivation and two-particle self-consistent analysis

    NASA Astrophysics Data System (ADS)

    Aizawa, Hirohito; Kuroki, Kazuhiko

    2018-03-01

    We present a first-principles band calculation for the quasi-one-dimensional (Q1D) organic superconductor (TMTSF) 2ClO4 . An effective tight-binding model with the TMTSF molecule to be regarded as the site is derived from a calculation based on maximally localized Wannier orbitals. We apply a two-particle self-consistent (TPSC) analysis by using a four-site Hubbard model, which is composed of the tight-binding model and an onsite (intramolecular) repulsive interaction, which serves as a variable parameter. We assume that the pairing mechanism is mediated by the spin fluctuation, and the sign of the superconducting gap changes between the inner and outer Fermi surfaces, which correspond to a d -wave gap function in a simplified Q1D model. With the parameters we adopt, the critical temperature for superconductivity estimated by the TPSC approach is approximately 1 K, which is consistent with experiment.

  13. A fully superconducting bearing system for flywheel applications

    NASA Astrophysics Data System (ADS)

    Xu, Ke-xi; Wu, Dong-jie; Jiao, Y. L.; Zheng, M. H.

    2016-06-01

    A fully superconducting magnetic suspension structure has been designed and constructed for the purpose of superconducting bearing applications in flywheel energy storage systems. A thrust type bearing and two journal type bearings, those that are composed of melt textured high-Tc superconductor YBCO bulks and Nd-Fe-B permanent magnets, are used in the bearing system. The rotor dynamical behaviors, including critical speeds and rotational loss, are studied. Driven by a variable-frequency three-phase induction motor, the rotor shaft attached with a 25 kg flywheel disc can be speeded up to 15 000 rpm without serious resonance occurring. Although the flywheel system runs stably in the supercritical speeds region, very obvious rotational loss is unavoidable. The loss mechanism has been discussed in terms of eddy current loss and hysteresis loss.

  14. High quality factor, fully switchable terahertz superconducting metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scalari, G., E-mail: scalari@phys.ethz.ch; Maissen, C.; Faist, J.

    2014-12-29

    We present a complementary THz metasurface realised with Niobium thin film which displays a quality factor Q = 54 and a fully switchable behaviour as a function of the temperature. The switching behaviour and the high quality factor are due to a careful design of the metasurface aimed at maximising the ohmic losses when the Nb is above the critical temperature and minimising the radiative coupling. The superconductor allows the operation of the cavity with high Q and the use of inductive elements with a high aspect ratio. Comparison with three dimensional finite element simulations highlights the crucial role of the inductivemore » elements and of the kinetic inductance of the Cooper pairs in achieving the high quality factor and the high field enhancement.« less

  15. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    DOE PAGES

    David, Tanya M. S.; Zhang, Cheng; Sun, Sam-Shajing

    2014-01-01

    Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene) or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO) level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO) level of −3.33 eV based on optical energy gap. The polymer wasmore » synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.« less

  16. Photosynthetic Potential Of Laurel Oak Seedlings Following Canopy Manipulation

    Treesearch

    K.W. McLeod

    2004-01-01

    Abstract The theory of forest gap dynamics predicts that replacement individuals are those that can most fully use the light environment of a gap. Along the Coosawhatchie River in South Carolina, 12 canopy gaps were identified in a bottomland hardwood forest dominated by laurel oak (Quercus laurifolia Michaux). Each gap was...

  17. Condensed Matter Theories: Volume 25

    NASA Astrophysics Data System (ADS)

    Ludeña, Eduardo V.; Bishop, Raymond F.; Iza, Peter

    2011-03-01

    pt. A. Fermi and Bose fluids, exotic systems. Reemergence of the collective mode in [symbol]He and electron layers / H. M. Bohm ... [et al.]. Dissecting and testing collective and topological scenarios for the quantum critical point / J. W. Clark, V. A. Khodel and M. V. Zverev. Helium on nanopatterned surfaces at finite temperature / E. S. Hernandez ... [et al.]. Towards DFT calculations of metal clusters in quantum fluid matrices / S. A. Chin ... [et al.]. Acoustic band gap formation in metamaterials / D. P. Elford ... [et al.]. Dissipative processes in low density strongly interacting 2D electron systems / D. Neilson. Dynamical spatially resolved response function of finite 1-D nano plasmas / T. Raitza, H. Reinholz and G. Ropke. Renormalized bosons and fermions / K. A. Gernoth and M. L. Ristig. Light clusters in nuclear matter / G. Ropke -- pt. B. Quantum magnets, quantum dynamics and phase transitions. Magnetic ordering of antiferromagnets on a spatially anisotropic triangular lattice / R. F. Bishop ... [et al.]. Thermodynamic detection of quantum phase transitions / M. K. G. Kruse ... [et al.]. The SU(2) semi quantum systems dynamics and thermodynamics / C. M. Sarris and A. N. Proto -- pt. C. Physics of nanosystems and nanotechnology. Quasi-one dimensional fluids that exhibit higher dimensional behavior / S. M. Gatica ... [et al.]. Spectral properties of molecular oligomers. A non-Markovian quantum state diffusion approach / J. Roden, W. T. Strunz and A. Eisfeld. Quantum properties in transport through nanoscopic rings: Charge-spin separation and interference effects / K. Hallberg, J. Rincon and S. Ramasesha. Cooperative localization-delocalization in the high T[symbol] cuprates / J. Ranninger. Thermodynamically stable vortex states in superconducting nanowires / W. M. Wu, M. B. Sobnack and F. V. Kusmartsev.pt. D. Quantum information. Quantum information in optical lattices / A. M. Guzman and M. A. Duenas E. -- pt. E. Theory and applications of molecular dynamics and density functional theory. Exchange-correlation functionals from the identical-particle Ornstein-Zernike equation: Basic formulation and numerical algorithms / R. Cuevas-Saavedra and P. W. Ayers. Features and catalytic properties of RhCu: A review / S. Gonzalez, C. Sousa and F. Illas. Kinetic energy functionals: Exact ones from analytic model wave functions and approximate ones in orbital-free molecular dynamics / V. V. Karasiev ... [et al.]. Numerical analysis of hydrogen storage in carbon nanopores / C. Wexler ... [et al.] -- pt. F. Superconductivity. Generalized Bose-Einstein condensation in superconductivity / M. de Llano. Kohn anomaly energy in conventional superconductors equals twice the energy of the superconducting gap: How and why? / R. Chaudhury and M. P. Das. Collective excitations in superconductors and semiconductors in the presence of a condensed phase / Z. Koinov. Thermal expansion of ferromagnetic superconductors: Possible application to UGe[symbol] / N. Hatayama and R. Konno. Generalized superconducting gap in a Boson-Fermion model / T. A. Mamedov and M. de Llano. Influence of domain walls in the superconductor/ferromagnet proximity effect / E. J. Patino. Spin singlet and triplet superconductivity induced by correlated hopping interactions / L. A. Perez, J. S. Millan and C. Wang -- pt. G. Statistical mechanics, relativistic quantum mechanics. Boltzmann's ergodic hypothesis: A meeting place for two cultures / M. H. Lee. Electron-electron interaction in the non-relativistic limit / F. B. Malik.

  18. Investigation of scanning tunneling spectra on iron-based superconductor FeSe 0.5Te 0.5(in Chinese)

    DOE PAGES

    Du, Z. -Y.; Fang, D. -L.; Wang, Z. -Y.; ...

    2015-05-05

    FeSe 0.5Te 0.5 single crystals with superconducting critical temperature of 13.5 K are investigated by scanning tunneling microscopy/spectroscopy (STM/STS) measureflents in detail. STM image on the top surface shows an atomically resolved square lattice consisted by white and dark spots with a constant of about 3.73± 0.03 Å which is consistent with the lattice constant 3.78 Å. The Se and Te atoms with a height difference of about 0.35 Å are successfully identified since the sizes of the two kinds of atoms are different. The tunneling spectra show very large zero-bias conductance value and asymmetric coherent peaks in the superconductingmore » state. According to the positions of coherence peaks, we determine the superconducting gap 2Δ = 5.5 meV, and the reduced gap 2Δ/kBTc = 4.9 is larger than the value predicted by the weak-coupling BCS theory. The zero-bias conductance at 1.7 K only have a decrease of about 40% compared with the normal state conductance, which may originate from some scattering and broadening mechanism in the material. This broadening effect will also make the superconducting gap determined by the distance between the coherence peaks larger than the exact gap value. The asymmetric structure of the tunneling spectra near the superconducting gap is induced by the hump on the background. This hump appears at temperature more than twice the superconducting critical temperature. This kind of hump has also been observed in other iron pnictides and needs further investigation. A possible bosonic mode outside the coherence peak with a mode energy Ω of about 5.5 meV is observed in some tunneling spectra, and the ratio between the mode energy and superconducting transition temperature Ω/kBTc ≈ 4.7 is roughly consistent with the universal ratio 4.3 in iron-based superconductors. The high-energy background of the spectra beyond the superconducting gaps shows a V-shape feature. The slopes of the differential conductance spectra at high energy are very different in the areas of Te-atom cluster and Se-atom cluster, and the difference extends to the energy of more than 300 meV. The differential conductance mapping has very little information about the quasi-particle interference of the superconducting state, which may result from the other strong scattering mechanism in the sample.« less

  19. Investigation of scanning tunneling spectra on iron-based superconductor FeSe 0.5Te 0.5 (in Chinese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Z. -Y.; Fang, D. -L.; Wang, Z. -Y.

    FeSe 0.5Te 0.5 single crystals with superconducting critical temperature of 13.5 K are investigated by scanning tunneling microscopy/spectroscopy (STM/STS) measureflents in detail. STM image on the top surface shows an atomically resolved square lattice consisted by white and dark spots with a constant of about 3.73± 0.03 Å which is consistent with the lattice constant 3.78 Å. The Se and Te atoms with a height difference of about 0.35 Å are successfully identified since the sizes of the two kinds of atoms are different. The tunneling spectra show very large zero-bias conductance value and asymmetric coherent peaks in the superconductingmore » state. According to the positions of coherence peaks, we determine the superconducting gap 2Δ = 5.5 meV, and the reduced gap 2Δ/kBTc = 4.9 is larger than the value predicted by the weak-coupling BCS theory. The zero-bias conductance at 1.7 K only have a decrease of about 40% compared with the normal state conductance, which may originate from some scattering and broadening mechanism in the material. This broadening effect will also make the superconducting gap determined by the distance between the coherence peaks larger than the exact gap value. The asymmetric structure of the tunneling spectra near the superconducting gap is induced by the hump on the background. This hump appears at temperature more than twice the superconducting critical temperature. This kind of hump has also been observed in other iron pnictides and needs further investigation. A possible bosonic mode outside the coherence peak with a mode energy Ω of about 5.5 meV is observed in some tunneling spectra, and the ratio between the mode energy and superconducting transition temperature Ω/kBTc ≈ 4.7 is roughly consistent with the universal ratio 4.3 in iron-based superconductors. The high-energy background of the spectra beyond the superconducting gaps shows a V-shape feature. The slopes of the differential conductance spectra at high energy are very different in the areas of Te-atom cluster and Se-atom cluster, and the difference extends to the energy of more than 300 meV. The differential conductance mapping has very little information about the quasi-particle interference of the superconducting state, which may result from the other strong scattering mechanism in the sample.« less

  20. Breakdown of Strong Coupling Expansions for doped Mott Insulators

    NASA Astrophysics Data System (ADS)

    Phillips, Philip; Galanakis, Dimitrios; Stanescu, Tudor

    2005-03-01

    We show that doped Mott insulators, such as the copper-oxide superconductors, are asymptotically slaved in that the quasiparticle weight, Z, near half-filling depends critically on the existence of the high energy scale set by the upper Hubbard band. In particular, near half filling, the following dichotomy arises: Z0 when the high energy scale is integrated out but Z=0 in the thermodynamic limit when it is retained. Slavery to the high energy scale arises from quantum interference between electronic excitations across the Mott gap.

  1. Fracture Gap Reduction With Variable-Pitch Headless Screws.

    PubMed

    Roebke, Austin J; Roebke, Logan J; Goyal, Kanu S

    2018-04-01

    Fully threaded, variable-pitch, headless screws are used in many settings in surgery and have been extensively studied in this context, especially in regard to scaphoid fractures. However, it is not well understood how screw parameters such as diameter, length, and pitch variation, as well as technique parameters such as depth of drilling, affect gap closure. Acutrak 2 fully threaded variable-pitch headless screws of various diameters (Standard, Mini, and Micro) and lengths (16-28 mm) were inserted into polyurethane blocks of "normal" and "osteoporotic" bone model densities using a custom jig. Three drilling techniques (drill only through first block, 4 mm into second block, or completely through both blocks) were used. During screw insertion, fluoroscopic images were taken and later analyzed to measure gap reduction. The effect of backing the screw out after compression was evaluated. Drilling at least 4 mm past the fracture site reduces distal fragment push-off compared with drilling only through the proximal fragment. There were no significant differences in gap closure in the normal versus the osteoporotic model. The Micro screw had a smaller gap closure than both the Standard and the Mini screws. After block contact and compression with 2 subsequent full forward turns, backing the screw out by only 1 full turn resulted in gapping between the blocks. Intuitively, fully threaded headless variable-pitch screws can obtain compression between bone fragments only if the initial gap is less than the gap closed. Gap closure may be affected by drilling technique, screw size, and screw length. Fragment compression may be immediately lost if the screw is reversed. We describe characteristics of variable-pitch headless screws that may assist the surgeon in screw choice and method of use. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  2. Towards a quantitative description of tunneling conductance of superconductors: Application to LiFeAs

    DOE PAGES

    Kreisel, A.; Nelson, R.; Berlijn, T.; ...

    2016-12-27

    Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconducting gap. Within the same framework, the surface wave functions may also be calculated, allowing, e.g., for detailed comparisons between theoretical results and measured scanning tunneling topographs and spectra. We present such a comparison between theory and experiment on the Fe-based superconductor LiFeAs. Our results for the homogeneous surfacemore » as well as impurity states are presented as a benchmark test of the theory. For the homogeneous system, we argue that the maxima of topographic image intensity may be located at positions above either the As or Li atoms, depending on tip height and the setpoint current of the measurement. We further report the experimental observation of transitions between As- and Li-registered lattices as functions of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed comparison between the simulated scanning tunneling microscopy images of transition-metal defects with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory with true predictive power for scanning tunneling microscopy in Fe-based systems.« less

  3. Towards a quantitative description of tunneling conductance of superconductors: Application to LiFeAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreisel, A.; Nelson, R.; Berlijn, T.

    Since the discovery of iron-based superconductors, a number of theories have been put forward to explain the qualitative origin of pairing, but there have been few attempts to make quantitative, material-specific comparisons to experimental results. The spin-fluctuation theory of electronic pairing, based on first-principles electronic structure calculations, makes predictions for the superconducting gap. Within the same framework, the surface wave functions may also be calculated, allowing, e.g., for detailed comparisons between theoretical results and measured scanning tunneling topographs and spectra. We present such a comparison between theory and experiment on the Fe-based superconductor LiFeAs. Our results for the homogeneous surfacemore » as well as impurity states are presented as a benchmark test of the theory. For the homogeneous system, we argue that the maxima of topographic image intensity may be located at positions above either the As or Li atoms, depending on tip height and the setpoint current of the measurement. We further report the experimental observation of transitions between As- and Li-registered lattices as functions of both tip height and setpoint bias, in agreement with this prediction. Next, we give a detailed comparison between the simulated scanning tunneling microscopy images of transition-metal defects with experiment. Finally, we discuss possible extensions of the current framework to obtain a theory with true predictive power for scanning tunneling microscopy in Fe-based systems.« less

  4. ESR spectrometer with a loop-gap resonator for cw and time resolved studies in a superconducting magnet.

    PubMed

    Simon, Ferenc; Murányi, Ferenc

    2005-04-01

    The design and performance of an electron spin resonance spectrometer operating at 3 and 9 GHz microwave frequencies combined with a 9-T superconducting magnet are described. The probehead contains a compact two-loop, one gap resonator, and is inside the variable temperature insert of the magnet enabling measurements in the 0-9T magnetic field and 1.5-400 K temperature range. The spectrometer allows studies on systems where resonance occurs at fields far above the g approximately 2 paramagnetic condition such as in antiferromagnets. The low quality factor of the resonator allows time resolved experiments such as, e.g., longitudinally detected ESR. We demonstrate the performance of the spectrometer on the NaNiO2 antiferromagnet, the MgB2 superconductor, and the RbC60 conducting alkaline fulleride polymer.

  5. Effects of electron irradiation on resistivity and London penetration depth of Ba1-xKxFe2As2 (x <= 0.34) iron-pnictide superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, K; Konczykowski, M; Murphy, Jason

    2014-09-01

    Irradiation with 2.5 MeV electrons at doses up to 5.2×1019 electrons/cm2 was used to introduce pointlike defects in single crystals of Ba1-xKxFe2As2 with x=0.19 (Tc=14K),0.26 (Tc=32K), 0.32 (Tc=37K), and 0.34 (Tc=39K) to study the superconducting gap structure by probing the effect of nonmagnetic scattering on electrical resistivity ρ(T) and London penetration depth λ(T). For all compositions, the irradiation suppressed the superconducting transition temperature Tc and increased resistivity. The low-temperature behavior of λ(T) is best described by the power-law function, Δλ(T)=A(T/Tc)n. While substantial suppression of Tc supports s± pairing, in samples close to the optimal doping, x=0.26, 0.32, and 0.34, themore » exponent n remained high (n≥3), indicating almost exponential attenuation and thus a robust full superconducting gap. For the x=0.19 composition, which exhibits coexistence of superconductivity and long-range magnetism, the suppression of Tc was much more rapid, and the exponent n decreased toward the s± dirty limit of n=2. In this sample, the irradiation also suppressed the temperature of structural/magnetic transition Tsm from 103 to 98 K, consistent with the itinerant nature of the long-range magnetic order. Our results suggest that underdoped compositions, especially in the coexisting regime, are most susceptible to nonmagnetic scattering and imply that in multiband Ba1-xKxFe2As2 superconductors, the ratio of the interband to intraband pairing strength, as well as the related gap anisotropy, increases upon the departure from the optimal doping.« less

  6. Switching effects and spin-valley Andreev resonant peak shifting in silicene superconductor

    NASA Astrophysics Data System (ADS)

    Soodchomshom, Bumned; Niyomsoot, Kittipong; Pattrawutthiwong, Eakkarat

    2018-03-01

    The magnetoresistance and spin-valley transport properties in a silicene-based NM/FB/SC junction are investigated, where NM, FB and SC are normal, ferromagnetic and s-wave superconducting silicene, respectively. In the FB region, perpendicular electric and staggered exchange fields are applied. The quasiparticles may be described by Dirac Bogoliubov-de Gennes equation due to Cooper pairs formed by spin-valley massive fermions. The spin-valley conductances are calculated based on the modified Blonder-Tinkham-Klapwijk formalism. We find the spin-valley dependent Andreev resonant peaks in the junction shifted by applying exchange field. Perfect conductance switch generated by interplay of intrinsic spin orbit interaction and superconducting gap has been predicted. Spin and valley polarizations are almost linearly dependent on biased voltage near zero bias and then turn into perfect switch at biased voltage approaching the superconducting gap. The perfect switching of large magnetoresistance has been also predicted at biased energy near the superconducting gap. These switching effects may be due to the presence of spin-valley Andreev resonant peak near the superconducting gap. Our work reveals potential of silicene as applications of electronic switching devices and linear control of spin and valley polarizations.

  7. Large superconducting double-gap, a pronounced pseudogap and evidence for proximity-induced topological superconductivity in the Bi2Te3/Fe1+yTe interfacial superconductor

    NASA Astrophysics Data System (ADS)

    Shen, J. Y.; He, M. Q.; He, Q. L.; Law, K. T.; Sou, I. K.; Lortz, R.; Petrovic, A. P.

    We investigate directional point-contact spectroscopy on a Bi2Te3/ Fe1+yTe heterostructure, fabricated via van der Waals epitaxy, which is interfacial superconducting with an onset TC at 12K and zero resistance below 8K. A large superconducting twin-gap structure is seen down to 0.27K, together with a zero bias conductance peak. The anisotropic smaller gap (Δ1) is around 5 meV at 0.27K and closes at 8K, while the other one (Δ2), as large as 12 meV, is isotropic and eventually evolves into a pseudogap closing at 40K. Both, the two-gap BTK and Dynes models can well reproduce our data, demonstrating Δ1 should be associated with the proximity-induced superconductivity in the topological Bi2Te3 layer, while Δ2 may be attributed to an intrinsically-doped FeTe thin film at the interface. This work was supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (603010, SEGHKUST03).

  8. Sensors and detectors based on superconducting devices. July 1982-February 1989 (Citations from the EI Engineering Meetings data base). Report for July 1982-February 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-04-01

    This bibliography contains citations from conference proceedings concerning gradiometers, magnetometers, and infrared detectors which use superconductors to improve sensitivity. Applications include biomagnetic measurements for medical studies, gravity-wave experiments, geomagnetism and ocean bottom magnetic exploration, galvanometers and voltmeters, and bolometers and radiometers. Some articles refer to design considerations for cooling systems for the sensors and detectors, and fabrication techniques for SQUIDS (superconducting quantum interference devices.) (Contains 115 citations fully indexed and including a title list.)

  9. Antiferromagnetic spin fluctuations and unconventional nodeless superconductivity in an iron-based new superconductor (Ca4Al2O(6-y))(Fe2As2): 75As nuclear quadrupole resonance study.

    PubMed

    Kinouchi, H; Mukuda, H; Yashima, M; Kitaoka, Y; Shirage, P M; Eisaki, H; Iyo, A

    2011-07-22

    We report 75As nuclear quadrupole resonance studies on (Ca4Al2O(6-y))(Fe2As2) with T(c) = 27  K. Measurement of nuclear-spin-relaxation rate 1/T1 has revealed a significant development of two-dimensional antiferromagnetic spin fluctuations down to T(c) in association with the smallest As-Fe-As bond angle. Below T(c), the temperature dependence of 1/T1 without any trace of the coherence peak is well accounted for by a nodeless s(±)-wave multiple-gaps model. From the fact that its T(c) is comparable to T(c) = 28  K in the optimally doped LaFeAsO(1-y) in which antiferromagnetic spin fluctuations are not dominant, we remark that antiferromagnetic spin fluctuations are not a unique factor for enhancing T(c) among Fe-based superconductors, but a condition for optimizing superconductivity should be addressed from the lattice structure point of view.

  10. From single magnetic adatoms on superconductors to coupled spin chains

    NASA Astrophysics Data System (ADS)

    Franke, Katharina J.

    Magnetic adsorbates on conventional s-wave superconductors lead to exchange interactions that induce Yu-Shiba-Rusinov (YSR) states inside the superconducting energy gap. Here, we employ tunneling spectroscopy at 1.1 K to investigate magnetic atoms and chains on superconducting Pb surfaces. We show that individual Manganese (Mn) atoms give rise to a distinct number of YSR-states. The single-atom junctions are stable over several orders of magnitude in conductance. We identify single-electron tunneling as well as Andreev processes. When the atoms are brought into sufficiently close distance, the Shiba states hybridize, thus giving rise to states with bonding and anti-bonding character. It has been shown that the Pb(110) surface supports the self-assembly of Fe chains, which exhibit fingerprints of Majorana bound states. Using superconducting tips, we resolve a rich subgap structure including peaks at zero energy and low-energy resonances, which overlap with the putative Majorana states. We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft through collaborative research Grant Sfb 658, and through Grant FR2726/4, as well by the European Research Council through Consolidator Grant NanoSpin.

  11. Change of carrier density at the pseudogap critical point of a cuprate superconductor.

    PubMed

    Badoux, S; Tabis, W; Laliberté, F; Grissonnanche, G; Vignolle, B; Vignolles, D; Béard, J; Bonn, D A; Hardy, W N; Liang, R; Doiron-Leyraud, N; Taillefer, Louis; Proust, Cyril

    2016-03-10

    The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p = 0.16 that is distinctly lower than the pseudogap critical point p* = 0.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n = 1 + p in the conventional metal at high doping (ref. 12) to n = p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked.

  12. Local suppression of the superfluid density of PuCoGa5 by strong onsite disorder

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Zhu, Jian-Xin; Graf, Matthias J.

    2011-10-01

    We present superfluid density calculations for the unconventional superconductor PuCoGa5 by solving the real-space Bogoliubov-de Gennes equations on a square lattice within the Swiss-cheese model in the presence of strong onsite disorder. We find that, despite strong electronic inhomogeneity, one can establish a one-to-one correspondence between the local maps of the density of states, superconducting order parameter, and superfluid density. In this model, strong onsite impurity scattering punches localized holes into the fabric of d-wave superconductivity similar to a Swiss cheese. Already, a two-dimensional impurity concentration of nimp=4% gives rise to a pronounced short-range suppression of the order parameter and a suppression of the superconducting transition temperature Tc by roughly 20% compared to its pure limit value Tc0, whereas the superfluid density ρs is reduced drastically by about 70%. This result is consistent with available experimental data for aged (400-day-old) and fresh (25-day-old) PuCoGa5 superconducting samples. In addition, we show that the T2 dependence of the low-T superfluid density, a signature of dirty d-wave superconductivity, originates from a combined effect in the density of states of “gap filling” and “gap closing.” Finally, we demonstrate that the Uemuera plot of Tc versus ρs deviates sharply from the conventional Abrikosov-Gor’kov theory for radiation-induced defects in PuCoGa5, but follows the same trend of short-coherence-length high-Tc cuprate superconductors.

  13. In Situ STM Observation of Nonmagnetic Impurity Effect in MBE-grown CeCoIn5 Films

    NASA Astrophysics Data System (ADS)

    Haze, Masahiro; Torii, Yohei; Peters, Robert; Kasahara, Shigeru; Kasahara, Yuichi; Shibauchi, Takasada; Terashima, Takahito; Matsuda, Yuji

    2018-03-01

    Local electronic effects in the vicinity of an impurity provide pivotal insight into the origin of unconventional superconductivity, especially when the materials are located on the edge of magnetic instability. In high-temperature cuprate superconductors, a strong suppression of superconductivity and appearance of low-energy bound states are clearly observed near nonmagnetic impurities. However, whether these features are common to other strongly correlated superconductors has not been established experimentally. Here, we report the in situ scanning tunneling microscopy observation of electronic structure around a nonmagnetic Zn impurity in heavy-fermion CeCo(In1-xZnx)5 films, which are epitaxially grown by the state-of-the-art molecular beam epitaxy technique. The films have very wide atomically flat terraces and Zn atoms residing on two different In sites are clearly resolved. Remarkably, no discernible change is observed for the superconducting gap at and around the Zn atoms. Moreover, the local density of states around Zn atoms shows little change inside the c-f hybridization gap, which is consistent with calculations for a periodic Anderson model without local magnetic order. These results indicate that no nonsuperconducting region is induced around a Zn impurity and do not support the scenario of antiferromagnetic droplet formation suggested by indirect measurements in Cd-doped CeCoIn5. These results also highlight a significant difference of the impurity effect between cuprates and CeCoIn5, in both of which d-wave superconductivity arises from the non-Fermi liquid normal state near antiferromagnetic instabilities.

  14. Tire Crumb Research Study Literature Review / Gap AnalysisWhite Paper Summary of Results

    EPA Science Inventory

    In order to more fully understand data gaps in human exposure and toxicity to tire crumb materials, ATSDR, CPSC and EPA undertook a collaborative effort in the form of a scientific literature review and subsequent gaps analysis. The first objective of the Literature Review and Ga...

  15. The Hispanic-Asian Achievement Gap in Elementary School

    ERIC Educational Resources Information Center

    Martinez, Lina Maria

    2012-01-01

    There is little research of Hispanic and Asian children's educational outcomes; in particular, the achievement gap between these two racial/ethnic groups has not been fully explored. The objective of this investigation is to analyze the Hispanic-Asian achievement gap in elementary school using the ECLS-K, a longitudinal nationally representative…

  16. Emergent geometric description for a topological phase transition in the Kitaev superconductor model

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Seok; Park, Miok; Cho, Jaeyoon; Park, Chanyong

    2017-10-01

    Resorting to Wilsonian renormalization group (RG) transformations, we propose an emergent geometric description for a topological phase transition in the Kitaev superconductor model. An effective field theory consists of an emergent bulk action with an extra dimension, an ultraviolet (UV) boundary condition for an initial value of a coupling function, and an infrared (IR) effective action with a fully renormalized coupling function. The bulk action describes the evolution of the coupling function along the direction of the extra dimension, where the extra dimension is identified with an RG scale and the resulting equation of motion is nothing but a β function. In particular, the IR effective field theory turns out to be consistent with a Callan-Symanzik equation which takes into account both the bulk and IR boundary contributions. This derived Callan-Symanzik equation gives rise to a metric structure. Based on this emergent metric tensor, we uncover the equivalence of the entanglement entropy between the emergent geometric description and the quantum field theory in the vicinity of the quantum critical point.

  17. Frustrated proximity effects between s and s± superconductors

    NASA Astrophysics Data System (ADS)

    Stanev, Valentin; Koshelev, Alexei E.

    2011-03-01

    The nature of the superconducting order parameter (OP) in iron pnictides and chalcogenides is a hotly debated issue. It was theoretically proposed that the OP has opposite signs on the hole and the electron bands, i.e., it belongs to the unconventional class of s +/- (or extended s)-wave. There are, however, very few experiments that can directly distinguish this state from the ordinary s-wave OP. One way to address this problem is to study the proximity effects in a sandwich composed of conventional and iron pnictide superconductors (SC). If the pnictides indeed have the s +/- OP this system is intrinsically frustrated. In the case of strong frustration, a time-reversal symmetry-breaking (TRSB) SC state emerges, in which the OP phases in different bands are tilted at an angle, different from π , and controlled by the coupling strength. Observation of such state in the iron-based SC materials would give definite evidence for the s +/- OP. We present a microscopic, fully self-consistent approach to this problem, based on Usadel equations. We have studied the conditions for existence of the TRSB state and its experimental signatures.

  18. High-Quality CrO2 Nanowires for Dissipation-less Spintronics

    NASA Astrophysics Data System (ADS)

    Singh, Amrita; Jansen, Charlotte; Lahabi, Kaveh; Aarts, Jan

    2016-10-01

    Superconductor-ferromagnet (S-F) hybrids based on half-metallic ferromagnets, such as CrO2 , are ideal candidates for superconducting spintronic applications. This is primarily due to the fully spin-polarized nature of CrO2 , which produces enhanced long-range triplet proximity effects. However, reliable production of CrO2 -based Josephson junctions (JJs) has proved to be extremely challenging because of a poorly controlled interface transparency and an incomplete knowledge of the local magnetization of the CrO2 films. To address these issues, we use a bottom-up approach to grow CrO2 nanowires on prepatterned substrates via chemical-vapor deposition. A comprehensive study of the growth mechanism enables us to reliably synthesize faceted, homogeneous CrO2 wires with a well-defined magnetization state. Combining these high-quality wires with a superconductor produces JJs with a high interface transparency, leading to exceptionally large 100% spin-polarized supercurrents, with critical current densities exceeding 109 Am-2 over distances as long as 600 nm. These CrO2 -nanowire-based JJs thus provide a realistic route to creating a scalable device platform for dissipation-less spintronics.

  19. Holographic entanglement entropy of a 1 + 1 dimensional p-wave superconductor

    NASA Astrophysics Data System (ADS)

    Das, Sumit R.; Fujita, Mitsutoshi; Kim, Bom Soo

    2017-09-01

    We examine the behavior of entanglement entropy S A EE of a subsystem A in a fully backreacted holographic model of a 1 + 1 dimensional p wave superconductor across the phase transition. For a given temperature, the system goes to a superconducting phase beyond a critical value of the charge density. The entanglement entropy, considered as a function of the charge density at a given temperature, has a cusp at the critical point. In addition, we find that there are three different behaviors in the condensed phase, depending on the subsystem size. For a subsystem size l smaller than a critical size l c1, S A EE continues to increase as a function of the charge density as we cross the phase transition. When l lies between l c1 and another critical size l c2 the entanglement entropy displays a non-monotonic behavior, while for l > l c2 it decreases monotonically. At large charge densities S A EE appears to saturate. The non-monotonic behavior leads to a novel phase diagram for this system.

  20. DFT investigations of the hydrogenation effect on silicene/graphene hybrids.

    PubMed

    Drissi, L B; Saidi, E H; Bousmina, M; Fassi-Fehri, O

    2012-12-05

    We report here a study on the effect of hydrogenation on a new one-atom thick material made of silicon and carbon atoms (silicene/graphene (SG) hybrid) within density functional theory. The structural, electronic and magnetic properties are investigated for non-, semi- and fully hydrogenated SG hybrids in a chair configuration and are compared with their parent materials. Calculations reveal that pure SG is a non-zero band gap semi-conductor with stable planar honeycomb structure. So mixing C and Si in an alternating manner gives another way to generate a finite band gap in one-atom thick materials. Fully hydrogenation makes the gap larger; however half chemical modification with H reduces the gap in favor of ferromagnetism order. The findings of this work open a wide spectrum of possibilities for designing SG-based nanodevices with controlled and tuned properties.

  1. Fabrication of high temperature superconductors

    DOEpatents

    Balachandran, Uthamalingam; Dorris, Stephen E.; Ma, Beihai; Li, Meiya

    2003-06-17

    A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0.degree. and less than 90.degree. to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.

  2. Unconventional superconductivity and quantum criticality in the heavy fermions CeIrSi3 and CeRhSi3

    NASA Astrophysics Data System (ADS)

    Landaeta, J. F.; Subero, D.; Catalá, D.; Taylor, S. V.; Kimura, N.; Settai, R.; Īnuki, Y.; Sigrist, M.; Bonalde, I.

    2018-03-01

    In most strongly correlated electron systems superconductivity appears nearby a magnetic quantum critical point (QCP) which is believed to cause unconventional behaviors. In order to explore this physics, we present here a study of the heavy-fermion superconductors CeIrSi3 and CeRhSi3 carried out using a newly developed system for high-resolution magnetic penetration-depth measurements under pressure. Superconductivity in CeIrSi3 shows a change from an excitation spectrum with a line-nodal gap to one which is entirely gapful when pressure is close but not yet at the QCP. In contrast, CeRhSi3 does not possess a T =0 quantum phase transition and the superconducting phase remains for all accessible pressures with a nodal gap. Combining both results suggests that in these compounds unconventional superconducting behaviors are rather connected with the coexisting antiferromagnetic order. This study provides another viewpoint on the interplay of superconductivity, magnetism, and quantum criticality in CeIrSi3 and CeRhSi3 and maybe in other heavy fermions.

  3. Mottness Collapse in 1 T -TaS2 -xSex Transition-Metal Dichalcogenide: An Interplay between Localized and Itinerant Orbitals

    NASA Astrophysics Data System (ADS)

    Qiao, Shuang; Li, Xintong; Wang, Naizhou; Ruan, Wei; Ye, Cun; Cai, Peng; Hao, Zhenqi; Yao, Hong; Chen, Xianhui; Wu, Jian; Wang, Yayu; Liu, Zheng

    2017-10-01

    The layered transition-metal dichalcogenide 1 T -TaS2 has been recently found to undergo a Mott-insulator-to-superconductor transition induced by high pressure, charge doping, or isovalent substitution. By combining scanning tunneling microscopy measurements and first-principles calculations, we investigate the atomic scale electronic structure of the 1 T -TaS2 Mott insulator and its evolution to the metallic state upon isovalent substitution of S with Se. We identify two distinct types of orbital textures—one localized and the other extended—and demonstrate that the interplay between them is the key factor that determines the electronic structure. In particular, we show that the continuous evolution of the charge gap visualized by scanning tunneling microscopy is due to the immersion of the localized-orbital-induced Hubbard bands into the extended-orbital-spanned Fermi sea, featuring a unique evolution from a Mott gap to a charge-transfer gap. This new mechanism of Mottness collapse revealed here suggests an interesting route for creating novel electronic states and designing future electronic devices.

  4. Free surfaces recast superconductivity in few-monolayer MgB2: Combined first-principles and ARPES demonstration.

    PubMed

    Bekaert, J; Bignardi, L; Aperis, A; van Abswoude, P; Mattevi, C; Gorovikov, S; Petaccia, L; Goldoni, A; Partoens, B; Oppeneer, P M; Peeters, F M; Milošević, M V; Rudolf, P; Cepek, C

    2017-10-31

    Two-dimensional materials are known to harbour properties very different from those of their bulk counterparts. Recent years have seen the rise of atomically thin superconductors, with a caveat that superconductivity is strongly depleted unless enhanced by specific substrates, intercalants or adatoms. Surprisingly, the role in superconductivity of electronic states originating from simple free surfaces of two-dimensional materials has remained elusive to date. Here, based on first-principles calculations, anisotropic Eliashberg theory, and angle-resolved photoemission spectroscopy (ARPES), we show that surface states in few-monolayer MgB 2 make a major contribution to the superconducting gap spectrum and density of states, clearly distinct from the widely known, bulk-like σ- and π-gaps. As a proof of principle, we predict and measure the gap opening on the magnesium-based surface band up to a critical temperature as high as ~30 K for merely six monolayers thick MgB 2 . These findings establish free surfaces as an unavoidable ingredient in understanding and further tailoring of superconductivity in atomically thin materials.

  5. Classification of "multipole" superconductivity in multiorbital systems and its implications

    NASA Astrophysics Data System (ADS)

    Nomoto, T.; Hattori, K.; Ikeda, H.

    2016-11-01

    Motivated by a growing interest in multiorbital superconductors with spin-orbit interactions, we perform the group-theoretical classification of various unconventional superconductivity emerging in symmorphic O , D4, and D6 space groups. The generalized Cooper pairs, which we here call "multipole" superconductivity, possess spin-orbital coupled (multipole) degrees of freedom, instead of the conventional spin singlet/triplet in single-orbital systems. From the classification, we obtain the following key consequences, which have never been focused in the long history of research in this field: (1) A superconducting gap function with Γ9⊗Γ9 in D6 possesses nontrivial momentum dependence different from the usual spin-1/2 classification. (2) Unconventional gap structure can be realized in the BCS approximation of purely local (onsite) interactions irrespective of attraction/repulsion. It implies the emergence of an electron-phonon (e-ph) driven unconventional superconductivity. (3) Reflecting symmetry of orbital basis functions there appear not symmetry protected but inevitable line nodes/gap minima, and thus, anisotropic s -wave superconductivity can be naturally explained even in the absence of competing fluctuations.

  6. μSR and NMR study of the superconducting Heusler compound YPd2Sn

    NASA Astrophysics Data System (ADS)

    Saadaoui, H.; Shiroka, T.; Amato, A.; Baines, C.; Luetkens, H.; Pomjakushina, E.; Pomjakushin, V.; Mesot, J.; Pikulski, M.; Morenzoni, E.

    2013-09-01

    We report on muon-spin rotation and relaxation (μSR) and 119Sn nuclear magnetic resonance (NMR) measurements to study the microscopic superconducting and magnetic properties of the Heusler compound with the highest superconducting transition temperature, YPd2Sn (Tc=5.4 K). Measurements in the vortex state provide the temperature dependence of the effective magnetic penetration depth λ(T) and the field dependence of the superconducting gap Δ(0). The results are consistent with a very dirty s-wave BCS superconductor with a gap Δ(0)=0.85(3) meV, λ(0)=212(1) nm, and a Ginzburg-Landau coherence length ξGL(0)≅23 nm. In spite of its very dirty character, the effective density of condensed charge carriers is high compared to that in the normal state. The μSR data in a broad range of applied fields are well reproduced by taking into account a field-related reduction of the effective superconducting gap. Zero-field μSR measurements, sensitive to the possible presence of very small magnetic moments, do not show any indications of magnetism in this compound.

  7. Two gaps make a high-temperature superconductor?

    NASA Astrophysics Data System (ADS)

    Hüfner, S.; Hossain, M. A.; Damascelli, A.; Sawatzky, G. A.

    2008-06-01

    One of the keys to the high-temperature superconductivity puzzle is the identification of the energy scales associated with the emergence of a coherent condensate of superconducting electron pairs. These might provide a measure of the pairing strength and of the coherence of the superfluid, and ultimately reveal the nature of the elusive pairing mechanism in the superconducting cuprates. To this end, a great deal of effort has been devoted to investigating the connection between the superconducting transition temperature Tc and the normal-state pseudogap crossover temperature T*. Here we present a review of a large body of experimental data which suggests a coexisting two-gap scenario, i.e. superconducting gap and pseudogap, over the whole superconducting dome. We focus on spectroscopic data from cuprate systems characterized by T_c^max\\sim 95\\,K , such as Bi2Sr2CaCu2O8+δ, YBa2Cu3O7-δ, Tl2Ba2CuO6+δ and HgBa2CuO4+δ, with particular emphasis on the Bi-compound which has been the most extensively studied with single-particle spectroscopies.

  8. Tuning across the BCS-BEC crossover in superconducting Fe1+ySexTe1-x : An angle-resolved photoemission study

    NASA Astrophysics Data System (ADS)

    Rinott, Shahar; Ribak, Amit; Chashka, Khanan; Randeria, Mohit; Kanigel, Amit

    The crossover from Bardeen-Cooper-Schrieffer (BCS) superconductivity to Bose-Einstein condensation (BEC) was never realized in quantum materials. It is difficult to realize because, unlike in ultra cold atoms, one cannot tune the pairing interaction. We realize the BCS-BEC crossover in a nearly compensated semimetal Fe1+ySexTe1-x by tuning the Fermi energy ɛF via chemical doping, which permits us to systematically change Δ /ɛF from 0 . 16 to 0 . 50 , where Δ is the superconducting (SC) gap. We use angle-resolved photoemission spectroscopy to measure the Fermi energy, the SC gap and characteristic changes in the SC state electronic dispersion as the system evolves from a BCS to a BEC regime. Our results raise important questions about the crossover in multi-band superconductors which go beyond those addressed in the context of cold atoms.

  9. Building and Testing a Superconductivity Measurement Platform for a Helium Cryostat

    NASA Astrophysics Data System (ADS)

    Rose, Heath; Ostrander, Joshua; Wu, Jim; Ramos, Roberto

    2013-03-01

    Superconductivity experiments using Josephson junctions are an excellent environment to study quantum mechanics and materials science. A standard electrical transport technique uses filtered four wire measurement of these superconducting devices. We report our experience as undergraduates in a liberal arts college in building and testing an experimental platform anchored on the cold-finger of a helium cryostat and designed for performing differential conductance measurements in Josephson junctions. To filter out RF, we design, build and test cryogenic filters using ceramic capacitors and inductors and thermocoax cables. We also use fixed attenuators for thermal anchoring and use miniature connectors to connect wires and coax to a sample box. We report on progress in our diagnostic measurements as well as low-temperature tunneling experiments to probe the structure of the energy gap in both single- and multi-gapped superconductors. We acknowledge the support of the National Science Foundation through NSF Grant DMR-1206561.

  10. Spin-triplet superconductivity in a weak-coupling Hubbard model for the quasi-one-dimensional compound Li0.9Mo6O17

    NASA Astrophysics Data System (ADS)

    Cho, Weejee; Platt, Christian; McKenzie, Ross H.; Raghu, Srinivas

    2015-10-01

    The purple bronze Li0.9Mo6O17 is of interest due to its quasi-one-dimensional electronic structure and the possible Luttinger liquid behavior resulting from it. For sufficiently low temperatures, it is a superconductor with a pairing symmetry that is still to be determined. To shed light on this issue, we analyze a minimal Hubbard model for this material involving four molybdenum orbitals per unit cell near quarter filling, using asymptotically exact perturbative renormalization group methods. We find that spin-triplet odd-parity superconductivity is the dominant instability. Approximate nesting properties of the two quasi-one-dimensional Fermi surfaces enhance certain second-order processes, which play crucial roles in determining the structure of the pairing gap. Notably, we find that the gap has more sign changes than required by the point-group symmetry.

  11. Spin triplet superconductivity in a weak-coupling Hubbard model for the quasi-one-dimensional compound Li0.9 Mo6 O17

    NASA Astrophysics Data System (ADS)

    Platt, Christian; Cho, Weejee; McKenzie, Ross H.; Raghu, Sri

    The purple bronze Li0.9Mo6O17 is of interest due to its quasi-one-dimensional electronic structure and the possible Luttinger liquid behavior resulting from it. For sufficiently low temperatures, it is a superconductor with a pairing symmetry that is still to be determined. To shed light on this issue, we analyze a minimal Hubbard model for this material involving four Molybdenum orbitals per unit cell near quarter filling, using asymptotically exact perturbative renormalization group methods. We find that spin triplet odd-parity superconductivity is the dominant instability. Approximate nesting properties of the two quasi-one-dimensional Fermi surfaces enhance certain second-order processes, which play crucial roles in determining the structure of the pairing gap. Notably, we find that the gap has accidental nodes, i.e. it has more sign changes than required by the point-group symmetry.

  12. Anisotropic superconductivity and elongated vortices with unusual bound states in quasi-one-dimensional nickel-bismuth compounds

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Lin; Zhang, Yi-Min; Lv, Yan-Feng; Ding, Hao; Wang, Lili; Li, Wei; He, Ke; Song, Can-Li; Ma, Xu-Cun; Xue, Qi-Kun

    2018-04-01

    We report low-temperature scanning tunneling microscopy and spectroscopy studies of Ni-Bi films grown by molecular beam epitaxy. Highly anisotropic and twofold symmetric superconducting gaps are revealed in two distinct composites, Bi-rich NiBi3 and near-equimolar NixBi , both sharing quasi-one-dimensional crystal structure. We further reveal axially elongated vortices in both phases, but Caroli-de Gennes-Matricon states solely within the vortex cores of NiBi3. Intriguingly, although the localized bound state splits energetically off at a finite distance ˜10 nm away from a vortex center along the minor axis of elliptic vortex, no splitting is found along the major axis. We attribute the elongated vortices and unusual vortex behaviors to the combined effects of twofold superconducting gap and Fermi velocity. The findings provide a comprehensive understanding of the electron pairing and vortex matter in quasi-one-dimensional superconductors.

  13. Two regimes in the magnetic field response of superconducting MgB2

    NASA Astrophysics Data System (ADS)

    Kohen, A.; Giubileo, F.; Proslier, Th.; Bobba, F.; Cucolo, A. M.; Sacks, W.; Noat, Y.; Troianovski, A.; Roditchev, D.

    2007-05-01

    Using Scanning Tunneling Microscope at low temperature we explore the superconducting phase diagram in the π-band of the two-band superconductor MgB2. In this band the peculiar shape of the local tunneling spectra and their dynamics in the magnetic field reveal the complex character of the quasiparticle density of states (DOS). The gap in the DOS is first rapidly filled with states in raising the magnetic field up to 0.5 T and then slowly approaches the normal state value: the gap is observed up to 2 T. Such a change in the DOS dynamics suggests the existence of two terms in the DOS of the π-band: a first one, reflecting an intrinsic superconductivity in the band and a second one, originating from an inter-band coupling to the σ-band. Our findings allow a deeper understanding of the unique phase diagram of MgB2.

  14. Continuous lengths of oxide superconductors

    DOEpatents

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  15. Energy-Efficient Wide Datapath Integer Arithmetic Logic Units Using Superconductor Logic

    NASA Astrophysics Data System (ADS)

    Ayala, Christopher Lawrence

    Complementary Metal-Oxide-Semiconductor (CMOS) technology is currently the most widely used integrated circuit technology today. As CMOS approaches the physical limitations of scaling, it is unclear whether or not it can provide long-term support for niche areas such as high-performance computing and telecommunication infrastructure, particularly with the emergence of cloud computing. Alternatively, superconductor technologies based on Josephson junction (JJ) switching elements such as Rapid Single Flux Quantum (RSFQ) logic and especially its new variant, Energy-Efficient Rapid Single Flux Quantum (ERSFQ) logic have the capability to provide an ultra-high-speed, low power platform for digital systems. The objective of this research is to design and evaluate energy-efficient, high-speed 32-bit integer Arithmetic Logic Units (ALUs) implemented using RSFQ and ERSFQ logic as the first steps towards achieving practical Very-Large-Scale-Integration (VLSI) complexity in digital superconductor electronics. First, a tunable VHDL superconductor cell library is created to provide a mechanism to conduct design exploration and evaluation of superconductor digital circuits from the perspectives of functionality, complexity, performance, and energy-efficiency. Second, hybrid wave-pipelining techniques developed earlier for wide datapath RSFQ designs have been used for efficient arithmetic and logic circuit implementations. To develop the core foundation of the ALU, the ripple-carry adder and the Kogge-Stone parallel prefix carry look-ahead adder are studied as representative candidates on opposite ends of the design spectrum. By combining the high-performance features of the Kogge-Stone structure and the low complexity of the ripple-carry adder, a 32-bit asynchronous wave-pipelined hybrid sparse-tree ALU has been designed and evaluated using the VHDL cell library tuned to HYPRES' gate-level characteristics. The designs and techniques from this research have been implemented using RSFQ logic and prototype chips have been fabricated. As a joint work with HYPRES, a 20 GHz 8-bit Kogge-Stone ALU consisting of 7,950 JJs total has been fabricated using a 1.5 μm 4.5 kA/cm2 process and fully demonstrated. An 8-bit sparse-tree ALU (8,832 JJs total) and a 16-bit sparse-tree adder (12,785 JJs total) have also been fabricated using a 1.0 μm 10 kA/cm 2 process and demonstrated under collaboration with Yokohama National University and Nagoya University (Japan).

  16. Doping-dependent correlation effects in (Sr1-xLax) 3Ir2O7

    NASA Astrophysics Data System (ADS)

    Affeldt, Gregory; Hogan, Tom; Denlinger, Jonathan D.; Vishwanath, Ashvin; Wilson, Stephen D.; Lanzara, Alessandra

    2018-03-01

    We have measured the signatures of electronic energy scales and their doping evolution in the band structure of (Sr1-xLax) 3Ir2O7 using angle-resolved photoemission spectroscopy. While band splittings and positions corresponding to the bilayer splitting and spin-orbit coupling undergo only small changes, the Mott gap and effective mass of both the lower Hubbard band and conduction band exhibit strong variations with doping. These changes correspond to similar observations in the cuprate superconductors, and are likely connected to the changing effective Coulomb interaction upon addition of itinerant carriers.

  17. Relation between the /ital T//sub /ital c// degradation and the correlation gap in disordered superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belitz, D.

    1989-07-01

    It is shown theoretically that for both bulk and thin-film superconductorsthe dominant contributions to the disorder-induced degradation of/ital T//sub /ital c// can be expressed in terms of the disorder-induced suppression/delta//ital N/ of the normal-state electronic density of states. This explains thecorrelation found experimentally between /ital T//sub /ital c// and /delta//ital N/, and iteliminates the resistivity scale as an adjustable parameter for comparisonbetween theory and experiment. Agreement with recent experimental results on Pbis very good. We also discuss the disorder dependence of the superconductinggap.

  18. Electronic Properties of High-Tc Superconductors. The Normal and the Superconducting State of High-Tc Materials. Proceedings of the International Winter School held in Kirchberg, Tyrol on March 7 - 14, 1992

    DTIC Science & Technology

    1992-03-14

    overdoped Lal. 66 Sr0 34 CuO4 . 1. Introduction Understanding the normal state charge and spin dynamics of cuprates is closely tied to an explanation of high...frequency of the tank circuit of 160 MHz. As predicted by theory [191, the SQUID noise is reduced significantly when using the higher frequency. This...emphasized that the spin excitation gap is not decreasing with temperature as expected in the classical BCS theory . An other astonishing result is

  19. Development of machine-vision system for gap inspection of muskmelon grafted seedlings.

    PubMed

    Liu, Siyao; Xing, Zuochang; Wang, Zifan; Tian, Subo; Jahun, Falalu Rabiu

    2017-01-01

    Grafting robots have been developed in the world, but some auxiliary works such as gap-inspecting for grafted seedlings still need to be done by human. An machine-vision system of gap inspection for grafted muskmelon seedlings was developed in this study. The image acquiring system consists of a CCD camera, a lens and a front white lighting source. The image of inspected gap was processed and analyzed by software of HALCON 12.0. The recognition algorithm for the system is based on principle of deformable template matching. A template should be created from an image of qualified grafted seedling gap. Then the gap image of the grafted seedling will be compared with the created template to determine their matching degree. Based on the similarity between the gap image of grafted seedling and the template, the matching degree will be 0 to 1. The less similar for the grafted seedling gap with the template the smaller of matching degree. Thirdly, the gap will be output as qualified or unqualified. If the matching degree of grafted seedling gap and the template is less than 0.58, or there is no match is found, the gap will be judged as unqualified; otherwise the gap will be qualified. Finally, 100 muskmelon seedlings were grafted and inspected to test the gap inspection system. Results showed that the gap inspection machine-vision system could recognize the gap qualification correctly as 98% of human vision. And the inspection speed of this system can reach 15 seedlings·min-1. The gap inspection process in grafting can be fully automated with this developed machine-vision system, and the gap inspection system will be a key step of a fully-automatic grafting robots.

  20. Topological nodal superconducting phases and topological phase transition in the hyperhoneycomb lattice

    NASA Astrophysics Data System (ADS)

    Bouhon, Adrien; Schmidt, Johann; Black-Schaffer, Annica M.

    2018-03-01

    We establish the topology of the spin-singlet superconducting states in the bare hyperhoneycomb lattice, and we derive analytically the full phase diagram using only symmetry and topology in combination with simple energy arguments. The phase diagram is dominated by two states preserving time-reversal symmetry. We find a line-nodal state dominating at low doping levels that is topologically nontrivial and exhibits surface Majorana flatbands, which we show perfectly match the bulk-boundary correspondence using the Berry phase approach. At higher doping levels, we find a fully gapped state with trivial topology. By analytically calculating the topological invariant of the nodal lines, we derive the critical point between the line-nodal and fully gapped states as a function of both pairing parameters and doping. We find that the line-nodal state is favored not only at lower doping levels but also if symmetry-allowed deformations of the lattice are present. Adding simple energy arguments, we establish that a fully gapped state with broken time-reversal symmetry likely appears covering the actual phase transition. We find this fully gapped state to be topologically trivial, while we find an additional point-nodal state at very low doing levels that also break time-reversal symmetry and has nontrivial topology with associated Fermi surface arcs. We eventually address the robustness of the phase diagram to generalized models also including adiabatic spin-orbit coupling, and we show how all but the point-nodal state are reasonably stable.

  1. Simultaneous constraint and phase conversion processing of oxide superconductors

    DOEpatents

    Li, Qi; Thompson, Elliott D.; Riley, Jr., Gilbert N.; Hellstrom, Eric E.; Larbalestier, David C.; DeMoranville, Kenneth L.; Parrell, Jeffrey A.; Reeves, Jodi L.

    2003-04-29

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  2. Magnetic, superconducting and electron-boson properties of GdO(F)FeAs oxypnictides

    NASA Astrophysics Data System (ADS)

    Kuzmicheva, Tatiana; Sadakov, Andrey; Muratov, Andrei; Kuzmichev, Svetoslav; Khlybov, Yevgeny; Kulikova, Lyudmila; Eltsev, Yuri

    2018-05-01

    We performed comprehensive studies of nearly optimal fluorine-substituted GdO1-xFx FeAs oxypnictide superconductors with TC = 48 - 53 K . Specific heat measurements revealed a sharp peak at T = 3.5 K that shifts to lower temperatures with magnetic field increase. This peak corresponds to an antiferromagnetic ordering in Gd3+ ion sublattice and may indicate coexistence between superconducting and magnetic orderings. Andreev transport through artificially made constriction demonstrated two channels for the carriers from the band(s) with the large superconducting gap as well as from those with the small gap. As expected, the presence of a transport channel with the bands mixing (ΔL +ΔS) was not detected. Using intrinsic multiple Andreev reflections effect (IMARE) spectroscopy, we determined two superconducting gaps, ΔS ≈ 2.7 meV , and ΔL ≈ 11.6 meV . The reproducible fine structure in the dI(V)/dV spectra of the Andreev contacts (satellites of the main subharmonic gap structure for ΔL) was interpreted as caused by a resonant emission of bosons with the energy ε0 = 12 - 15 meV ≈ΔL +ΔS during the process of multiple Andreev reflections (MAR) for normal carriers in ΔL-band(s) transport channel.

  3. Method of texturing a superconductive oxide precursor

    DOEpatents

    DeMoranville, Kenneth L.; Li, Qi; Antaya, Peter D.; Christopherson, Craig J.; Riley, Jr., Gilbert N.; Seuntjens, Jeffrey M.

    1999-01-01

    A method of forming a textured superconductor wire includes constraining an elongated superconductor precursor between two constraining elongated members placed in contact therewith on opposite sides of the superconductor precursor, and passing the superconductor precursor with the two constraining members through flat rolls to form the textured superconductor wire. The method includes selecting desired cross-sectional shape and size constraining members to control the width of the formed superconductor wire. A textured superconductor wire formed by the method of the invention has regular-shaped, curved sides and is free of flashing. A rolling assembly for single-pass rolling of the elongated precursor superconductor includes two rolls, two constraining members, and a fixture for feeding the precursor superconductor and the constraining members between the rolls. In alternate embodiments of the invention, the rolls can have machined regions which will contact only the elongated constraining members and affect the lateral deformation and movement of those members during the rolling process.

  4. Impact of the Order Parameter Symmetries on the Vortex Core Structure in Iron-Based Superconductors

    NASA Astrophysics Data System (ADS)

    Belova, Polina; Zakharchuk, Ivan; Traito, Konstantin Borisovich; Lähderanta, Erkki

    2012-08-01

    Effects of the order parameter symmetries on the cutoff parameter ξh (determining the magnetic field distribution) in the mixed state are investigated in the framework of quasiclassical Eilenberger theory for isotropic s±, s++ and anisotropic dx2-y2-wave superconducting pairings. These symmetries are proposed for the pairing state of the Fe-pnictides. In s± pairing symmetry, the gap function has opposite sign at the electron and hole pockets of the Fermi surface, it is connected with interband antiferromagnetic spin fluctuations. In s++ pairing symmetry, the gap function has the same sign at the Fermi surface, it is mediated by moderate electron-phonon interaction due to Fe-ion oscillation and the critical orbital fluctuation. The dx2-y2 pairing symmetry can rise from intraband antiferromagnetic spin fluctuation in strongly hole overdoped iron pnictide KFe2As2 and ternary chalcogenides. The s± pairing symmetry results in different effects of intraband (Γ0) and interband (Γπ) impurity scattering on ξh. It is found that ξh/ξc2 value decreases with Γ0 leading to the values much less than those predicted by the analytical Ginzburg-Landau (AGL) theory for high Γ0. At very high Γ0, the interband scattering suppresses ξh/ξc2 considerably below one in the whole field range making it flat for both s± and s++ pairing symmetries. Scaling of the cutoff parameter with the electromagnetic coherence length shows the importance of the nonlocal effects in mixed state. The small values of ξh/ξc2 were observed in μSR measurements of Co-doped BaFe2As2. If Γ0 and Γπ are small and equal than the ξh/ξc2(B/Bc2) dependence for s± symmetry behaves like that of the AGL model and shows a minimum with value much more than that obtained for s++ superconductors. With high Γπ, the ξh/ξc2(B/Bc2) dependence resides above the AGL curve for s± pairing symmetry, as observed in SANS measurements of stoichiometrical LiFeAs compound. In d-wave superconductors, ξh/ξc2 always increases with Γ similar to the s± symmetry case with Γ0 = Γπ.

  5. Eliminating Major Gaps in DoD Data on the Fully-Burdened and Life-Cycle Cost of Military Personnel: Cost Elements Should be Mandated by Policy

    DTIC Science & Technology

    2013-01-07

    Budgetary Assessment as well as private sector companies . Reserve Forces Policy Board Eliminating Major Gaps in DoD Data on the Fully-Burdened and Life...and utilities costs associated with the housing, childcare and recreation facilities found on major bases. This is true whether the reservist is...Notably, the current Under Secretary of Defense Comptroller, the Honorable Robert Hale has said, “the cost of pay and benefits has risen more than 87

  6. Method of manufacturing a high temperature superconductor with improved transport properties

    DOEpatents

    Balachandran, Uthamalingam; Siegel, Richard W.; Askew, Thomas R.

    2001-01-01

    A method of preparing a high temperature superconductor. A method of preparing a superconductor includes providing a powdered high temperature superconductor and a nanophase paramagnetic material. These components are combined to form a solid compacted mass with the paramagnetic material disposed on the grain boundaries of the polycrystaline high temperature superconductor.

  7. A Double-Decker Levitation Experiment Using a Sandwich of Superconductors.

    ERIC Educational Resources Information Center

    Jacob, Anthony T.; And Others

    1988-01-01

    Shows that the mutual repulsion that enables a superconductor to levitate a magnet and a magnet to levitate a superconductor can be combined into a single demonstration. Uses an overhead projector, two pellets of "1-2-3" superconductor, Nd-Fe-B magnets, liquid nitrogen, and paraffin. Offers superconductor preparation, hazards, and disposal…

  8. Generalized Bose-Einstein Condensation in Superconductivity

    NASA Astrophysics Data System (ADS)

    de Llano, Manuel

    2011-03-01

    Unification of the BCS and the Bose-Einstein condensation (BEC) theories is surveyed in detail via a generalized BEC (GBEC) finite-temperature statistical formalism. Its major difference with BCS theory is that it can be diagonalized exactly. Under specified conditions it yields the precise BCS gap equation for all temperatures as well as the precise BCS zero-temperature condensation energy for all couplings, thereby suggesting that a BCS condensate is a BE condensate in a ternary mixture of kinematically independent unpaired electrons coexisting with equally proportioned weakly-bound two-electron and two-hole Cooper pairs. Without abandoning the electron-phonon mechanism in moderately weak coupling it suffices, in principle, to reproduce the unusually high values of Tc (in units of the Fermi temperature TF) of 0.01-0.05 empirically reported in the so-called "exotic" superconductors of the Uemura plot, including cuprates, in contrast to the low values of Tc/TF ≤ 10-3 roughly reproduced by BCS theory for conventional (mostly elemental) superconductors. Replacing the characteristic phonon-exchange Debye temperature by a characteristic magnon-exchange one more than twice in size can lead to a simple interaction model associated with spin-fluctuation-mediated pairing.

  9. Generalized Bose-Einstein Condensation in Superconductivity

    NASA Astrophysics Data System (ADS)

    de Llano, Manuel

    Unification of the BCS and the Bose-Einstein condensation (BEC) theories is surveyed in detail via a generalized BEC (GBEC) finite-temperature statistical formalism. Its major difference with BCS theory is that it can be diagonalized exactly. Under specified conditions it yields the precise BCS gap equation for all temperatures as well as the precise BCS zero-temperature condensation energy for all couplings, thereby suggesting that a BCS condensate is a BE condensate in a ternary mixture of kinematically independent unpaired electrons coexisting with equally proportioned weakly-bound two-electron and two-hole Cooper pairs. Without abandoning the electron-phonon mechanism in moderately weak coupling it suffices, in principle, to reproduce the unusually high values of Tc (in units of the Fermi temperature TF) of 0.01-0.05 empirically reported in the so-called "exotic" superconductors of the Uemura plot, including cuprates, in contrast to the low values of Tc/TF ≤ 10-3 roughly reproduced by BCS theory for conventional (mostly elemental) superconductors. Replacing the characteristic phonon-exchange Debye temperature by a characteristic magnon-exchange one more than twice in size can lead to a simple interaction model associated with spin-fluctuation-mediated pairing.

  10. Invited Article: High resolution angle resolved photoemission with tabletop 11 eV laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yu; Vishik, Inna M.; Yi, Ming

    2016-01-15

    We developed a table-top vacuum ultraviolet (VUV) laser with 113.778 nm wavelength (10.897 eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV laser operates at a repetition rate of 10 MHz, provides a flux of 2 × 10{sup 12} photons/s, and enables photoemission with energy and momentum resolutions better than 2 meV and 0.012 Å{sup −1}, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2 meV. The setup reaches electron momenta up to 1.2 Å{sup −1}, granting full access to the first Brillouin zone ofmore » most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors, and iron-based superconductors.« less

  11. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    NASA Astrophysics Data System (ADS)

    Crapo, Alan D.; Lloyd, Jerry D.

    1991-03-01

    Two motors have been designed and built for use with high-temperature superconductor (HTSC) materials. They are a homopolar dc motor that uses HTSC field windings and a brushless dc motor that uses bulk HTSC materials to trap flux in steel rotor poles. The HTSC field windings of the homopolar dc motor are designed to operate at 1000 A/sq cm in a 0.010-T field. In order to maximize torque in the homopolar dc motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar dc motor has been tested while waiting for 575 A turn HTSC coils. The trapped flux brushless dc motor has been built and is ready to test melt textured bulk HTSC rings that are currently being prepared. The stator of the trapped flux motor will impress a magnetic field in the steel rotor poles with warm HTSC bulk rings. The rings are then cooled to 77 K to trap the flux in the rotor. The motor can then operate as a brushless dc motor.

  12. A Flux-Pinning Mechanism for Segment Assembly and Alignment

    NASA Technical Reports Server (NTRS)

    Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip

    2011-01-01

    Currently, the most compelling astrophysics questions include how planets and the first stars formed and whether there are protostellar disks that contain large organic molecules. Although answering these questions requires space telescopes with apertures of at least 10 meters, such large primaries are challenging to construct by scaling up previous designs; the limited capacity of a launch vehicle bounds the maximum diameter of a monolithic primary, and beyond a certain size, deployable telescopes cannot fit in current launch vehicle fairings. One potential solution is connecting the primary mirror segments edgewise using flux-pinning mechanisms, which are analogous to non-contacting damped springs. In the baseline design, a flux-pinning mechanism consists of a magnet and a superconductor separated by a predetermined gap, with the damping adjusted by placing aluminum near the interface. Since flux pinning is possible only when the superconductor is cooled below a critical temperature, flux-pinning mechanisms are uniquely suited for cryogenic space telescopes. By placing these mechanisms along the edges of the mirror segments, a primary can be built up over time. Since flux pinning requires no mechanical deployments, the assembly process could be robotic or use some other non-contacting scheme. Advantages of this approach include scalability and passive stability.

  13. Resonant Two-Magnon Raman Scattering in Cuprate Antiferromagnetic Insulators and Superconductors.

    NASA Astrophysics Data System (ADS)

    Blumberg, G.; Abbamonte, P.; Klein, M. V.

    1996-03-01

    We present results of low-temperature two-magnon resonance Raman excitation profile measurements for single layer Sr_2CuO_2Cl2 and bilayer YBa_2Cu_3O6 + δ antiferromagnets over the excitation region from 1.65 to 3.05 eV. These data reveal composite structure of the B_1g two-magnon line shape peaked at ~ 2.7J and ~ 4J and strong nonmonotonic dependence of the scattering intensity on excitation energy. Resonant magnetic scattering contributes also to A_1g and B_2g channels. We analyze these data using the triple resonance theory of Chubukov and Frenkel(A. Chubukov and D. Frenkel, Phys. Rev. Lett.74), 3057 (1995). and deduce information about magnetic interaction (J and J_⊥) and band parameters (NN hopping t and charge transfer gap 2Δ) in these antiferromagnets.(G. Blumberg et. al.), Preprint cond-mat/9511080. The ~ 3J spin superexchange excitation persists upon hole doping and is present in superconductors, proving the universality of the short wavelength magnetic excitations in the cuprate superconducting metals and the parent antiferromagnetic insulators.(G. Blumberg et. al.), Phys. Rev. B 49, 13 295 (1994).

  14. Effects of sudden density changes in disordered superconductors and semiconductors

    NASA Astrophysics Data System (ADS)

    Assi, Hiba; Chaturvedi, Harshwardhan; Pleimling, Michel; Täuber, Uwe

    Vortices in type-II superconductors in the presence of extended, linear defects display the strongly pinned Bose glass phase at low temperatures. This disorder-dominated thermodynamic state is characterized by suppressed lateral flux line fluctuations and very slow structural relaxation kinetics: The vortices migrate between different columnar pinning centers to minimize the mutual repulsive interactions and eventually optimize the system's pinning configuration. To monitor the flux lines' late-time structural relaxations, we employ a mapping between an effectively two-dimensional Bose glass system and a modified Coulomb glass model, originally developed to describe disordered semiconductors at low temperatures. By means of Monte Carlo simulations, we investigate the effects of the introduction of random bare site energies and sudden changes in the vortex or charge carrier density on the soft Coulomb gap that appears in the density of states due to the emerging spatial anticorrelations. The non-equilibrium relaxation properties of the Bose and Coulomb glass states and the ensuing aging kinetics are studied through the two-time density autocorrelation function and its various scaling forms. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  15. Granular superconductor in a honeycomb lattice as a realization of bosonic Dirac material

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Fransson, J.; Black-Schaffer, A. M.; Ågren, H.; Balatsky, A. V.

    2016-04-01

    We examine the low-energy effective theory of phase oscillations in a two-dimensional granular superconducting sheet where the grains are arranged in a honeycomb lattice structure. Using the example of graphene, we present evidence for the engineered Dirac nodes in the bosonic excitations: the spectra of the collective bosonic modes cross at the K and K' points in the Brillouin zone and form Dirac nodes. We show how two different types of collective phase oscillations are obtained and that they are analogous to the Leggett and the Bogoliubov-Anderson-Gorkov modes in a two-band superconductor. We show that the Dirac node is preserved in the presence of an intergrain interaction, despite induced changes of the qualitative features of the two collective modes. Finally, breaking the sublattice symmetry by choosing different on-site potentials for the two sublattices leads to a gap opening near the Dirac node, in analogy with fermionic Dirac materials. The Dirac node dispersion of bosonic excitations is thus expanding the discussion of the conventional Dirac cone excitations to the case of bosons. We call this case as a representative of bosonic Dirac materials (BDM), similar to the case of Fermionic Dirac materials extensively discussed in the literature.

  16. Improving superconductivity in BaFe2As2-based crystals by cobalt clustering and electronic uniformity.

    PubMed

    Li, L; Zheng, Q; Zou, Q; Rajput, S; Ijaduola, A O; Wu, Z; Wang, X P; Cao, H B; Somnath, S; Jesse, S; Chi, M; Gai, Z; Parker, D; Sefat, A S

    2017-04-19

    Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2 As 2 -based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Néel-ordering temperature in BaFe 2 As 2 crystal (T N  = 132 K to 136 K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2 As 2 crystal (T c  = 23 to 25 K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. While annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c .

  17. Improving superconductivity in BaFe 2As 2-based crystals by cobalt clustering and electronic uniformity

    DOE PAGES

    Li, L.; Zheng, Q.; Zou, Q.; ...

    2017-04-19

    Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2As 2-based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Neel-ordering temperature in BaFe 2As 2 crystal (T N=132K to 136K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2As 2 crystalmore » (T c=23 to 25K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. And while annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it also promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c« less

  18. Improving superconductivity in BaFe 2As 2-based crystals by cobalt clustering and electronic uniformity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, L.; Zheng, Q.; Zou, Q.

    Quantum materials such as antiferromagnets or superconductors are complex in that chemical, electronic, and spin phenomena at atomic scales can manifest in their collective properties. Although there are some clues for designing such materials, they remain mainly unpredictable. In this work, we find that enhancement of transition temperatures in BaFe 2As 2-based crystals are caused by removing local-lattice strain and electronic-structure disorder by thermal annealing. While annealing improves Neel-ordering temperature in BaFe 2As 2 crystal (T N=132K to 136K) by improving in-plane electronic defects and reducing overall a-lattice parameter, it increases superconducting-ordering temperature in optimally cobalt-doped BaFe 2As 2 crystalmore » (T c=23 to 25K) by precipitating-out the cobalt dopants and giving larger overall a-lattice parameter. And while annealing improves local chemical and electronic uniformity resulting in higher T N in the parent, it also promotes nanoscale phase separation in the superconductor resulting in lower disparity and strong superconducting band gaps in the dominant crystal regions, which lead to both higher overall T c and critical-current-density, J c« less

  19. The first man-loading high temperature superconducting Maglev test vehicle in the world

    NASA Astrophysics Data System (ADS)

    Wang, Jiasu; Wang, Suyu; Zeng, Youwen; Huang, Haiyu; Luo, Fang; Xu, Zhipei; Tang, Qixue; Lin, Guobin; Zhang, Cuifang; Ren, Zhongyou; Zhao, Guomin; Zhu, Degui; Wang, Shaohua; Jiang, He; Zhu, Min; Deng, Changyan; Hu, Pengfei; Li, Chaoyong; Liu, Fang; Lian, Jisan; Wang, Xiaorong; Wang, Lianghui; Shen, Xuming; Dong, Xiaogang

    2002-10-01

    The first man-loading high temperature superconducting Maglev test vehicle in the world is reported. This vehicle was first tested successfully on December 31, 2000 in the Applied Superconductivity Laboratory, Southwest Jiaotong University, China. Heretofore over 17,000 passengers took the vehicle, and it operates very well from beginning to now. The function of suspension is separated from one of propulsion. The high temperature superconducting Maglev provides inherent stable forces both in the levitation and in the guidance direction. The vehicle is 3.5 m long, 1.2 m wide, and 0.8 m high. When five people stand on vehicle and the total weight is 530 kg, the net levitation gap is more than 20 mm. The whole vehicle system includes three parts, vehicle body, guideway and controlling system. The high temperature superconducting Maglev equipment on board is the most important for the system. The onboard superconductors are melt-textured YBaCuO bulks. The superconductors are fixed on the bottom of liquid nitrogen vessels and cooled by liquid nitrogen. The guideway consists of two parallel permanent magnetic tracks, whose surface concentrating magnetic field is up to 1.2 T. The guideway is 15.5 m long.

  20. Cluster Dynamical Mean Field Methods and the Momentum-selective Mott transition

    NASA Astrophysics Data System (ADS)

    Gull, Emanuel

    2011-03-01

    Innovations in methodology and computational power have enabled cluster dynamical mean field calculations of the Hubbard model with interaction strengths and band structures representative of high temperature copper oxide superconductors, for clusters large enough that the thermodyamic limit behavior may be determined. We present the methods and show how extrapolations to the thermodynamic limit work in practice. We show that the Hubbard model with next-nearest neighbor hopping at intermediate interaction strength captures much of the exotic behavior characteristic of the high temperature superconductors. An important feature of the results is a pseudogap for hole doping but not for electron doping. The pseudogap regime is characterized by a gap for momenta near Brillouin zone face and gapless behavior near the zone diagonal. for dopings outside of the pseudogap regime we find scattering rates which vary around the fermi surface in a way consistent with recent transport measurements. Using the maximum entropy method we calculate spectra, self-energies, and response functions for Raman spectroscopy and optical conductivities, finding results also in good agreement with experiment. Olivier Parcollet, Philipp Werner, Nan Lin, Michel Ferrero, Antoine Georges, Andrew J. Millis; NSF-DMR-0705847.

Top