Science.gov

Sample records for fully implantable stimulator

  1. A fully implantable rodent neural stimulator

    NASA Astrophysics Data System (ADS)

    Perry, D. W. J.; Grayden, D. B.; Shepherd, R. K.; Fallon, J. B.

    2012-02-01

    The ability to electrically stimulate neural and other excitable tissues in behaving experimental animals is invaluable for both the development of neural prostheses and basic neurological research. We developed a fully implantable neural stimulator that is able to deliver two channels of intra-cochlear electrical stimulation in the rat. It is powered via a novel omni-directional inductive link and includes an on-board microcontroller with integrated radio link, programmable current sources and switching circuitry to generate charge-balanced biphasic stimulation. We tested the implant in vivo and were able to elicit both neural and behavioural responses. The implants continued to function for up to five months in vivo. While targeted to cochlear stimulation, with appropriate electrode arrays the stimulator is well suited to stimulating other neurons within the peripheral or central nervous systems. Moreover, it includes significant on-board data acquisition and processing capabilities, which could potentially make it a useful platform for telemetry applications, where there is a need to chronically monitor physiological variables in unrestrained animals.

  2. A fully implantable stimulator for use in small laboratory animals

    PubMed Central

    Millard, Rodney E.; Shepherd, Robert K.

    2007-01-01

    This paper describes a low cost, fully implantable, single channel stimulator that can be manufactured in a research laboratory. The stimulator generates charge-balanced biphasic current pulses which are delivered to a bipolar electrode array for chronic stimulation of neural tissue in free-running laboratory animals such as rats and mice. The system is magnetically coupled and contains no batteries or external leadwires. The subject is placed in a chamber surrounded by three orthogonal coils of wire which are driven to generate a magnetic field. Currents are induced in wire coils in the implanted stimulator then regulated to produce biphasic current pulses with fixed amplitude of up to 500 μA. Phase duration is adjustable from 25 – 250 μs per phase. Charge balance is maintained by capacitive coupling and shorting of the electrodes between pulses. Stimulus rate can be continuously varied, and the temporal precision of the stimulus means that the stimulator can be used in behavioural experiments or for generating electrically-evoked potentials. We describe the application of this stimulator for chronic electrical stimulation of the auditory nerve (i.e. a cochlear implant); however it will have application in other areas of neuroscience requiring controlled safe electrical stimulation of neural tissue over extended periods. Circuit diagrams and manufacturing details are provided as supplementary data. PMID:17897719

  3. A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation.

    PubMed

    Yip, Marcus; Jin, Rui; Nakajima, Hideko Heidi; Stankovic, Konstantina M; Chandrakasan, Anantha P

    2015-01-01

    A system-on-chip for an invisible, fully-implantable cochlear implant is presented. Implantable acoustic sensing is achieved by interfacing the SoC to a piezoelectric sensor that detects the sound-induced motion of the middle ear. Measurements from human cadaveric ears demonstrate that the sensor can detect sounds between 40 and 90 dB SPL over the speech bandwidth. A highly-reconfigurable digital sound processor enables system power scalability by reconfiguring the number of channels, and provides programmable features to enable a patient-specific fit. A mixed-signal arbitrary waveform neural stimulator enables energy-optimal stimulation pulses to be delivered to the auditory nerve. The energy-optimal waveform is validated with in-vivo measurements from four human subjects which show a 15% to 35% energy saving over the conventional rectangular waveform. Prototyped in a 0.18 μm high-voltage CMOS technology, the SoC in 8-channel mode consumes 572 μW of power including stimulation. The SoC integrates implantable acoustic sensing, sound processing, and neural stimulation on one chip to minimize the implant size, and proof-of-concept is demonstrated with measurements from a human cadaver ear.

  4. A Fully-Implantable Cochlear Implant SoC with Piezoelectric Middle-Ear Sensor and Arbitrary Waveform Neural Stimulation

    PubMed Central

    Yip, Marcus; Jin, Rui; Nakajima, Hideko Heidi; Stankovic, Konstantina M.; Chandrakasan, Anantha P.

    2015-01-01

    A system-on-chip for an invisible, fully-implantable cochlear implant is presented. Implantable acoustic sensing is achieved by interfacing the SoC to a piezoelectric sensor that detects the sound-induced motion of the middle ear. Measurements from human cadaveric ears demonstrate that the sensor can detect sounds between 40 and 90 dB SPL over the speech bandwidth. A highly-reconfigurable digital sound processor enables system power scalability by reconfiguring the number of channels, and provides programmable features to enable a patient-specific fit. A mixed-signal arbitrary waveform neural stimulator enables energy-optimal stimulation pulses to be delivered to the auditory nerve. The energy-optimal waveform is validated with in-vivo measurements from four human subjects which show a 15% to 35% energy saving over the conventional rectangular waveform. Prototyped in a 0.18 μm high-voltage CMOS technology, the SoC in 8-channel mode consumes 572 μW of power including stimulation. The SoC integrates implantable acoustic sensing, sound processing, and neural stimulation on one chip to minimize the implant size, and proof-of-concept is demonstrated with measurements from a human cadaver ear. PMID:26251552

  5. A fully implantable 96-channel neural data acquisition system.

    PubMed

    Rizk, Michael; Bossetti, Chad A; Jochum, Thomas A; Callender, Stephen H; Nicolelis, Miguel A L; Turner, Dennis A; Wolf, Patrick D

    2009-04-01

    A fully implantable neural data acquisition system is a key component of a clinically viable brain-machine interface. This type of system must communicate with the outside world and obtain power without the use of wires that cross through the skin. We present a 96-channel fully implantable neural data acquisition system. This system performs spike detection and extraction within the body and wirelessly transmits data to an external unit. Power is supplied wirelessly through the use of inductively coupled coils. The system was implanted acutely in sheep and successfully recorded, processed and transmitted neural data. Bidirectional communication between the implanted system and an external unit was successful over a range of 2 m. The system is also shown to integrate well into a brain-machine interface. This demonstration of a high channel-count fully implanted neural data acquisition system is a critical step in the development of a clinically viable brain-machine interface.

  6. A fully implantable 96-channel neural data acquisition system

    NASA Astrophysics Data System (ADS)

    Rizk, Michael; Bossetti, Chad A.; Jochum, Thomas A.; Callender, Stephen H.; Nicolelis, Miguel A. L.; Turner, Dennis A.; Wolf, Patrick D.

    2009-04-01

    A fully implantable neural data acquisition system is a key component of a clinically viable brain-machine interface. This type of system must communicate with the outside world and obtain power without the use of wires that cross through the skin. We present a 96-channel fully implantable neural data acquisition system. This system performs spike detection and extraction within the body and wirelessly transmits data to an external unit. Power is supplied wirelessly through the use of inductively coupled coils. The system was implanted acutely in sheep and successfully recorded, processed and transmitted neural data. Bidirectional communication between the implanted system and an external unit was successful over a range of 2 m. The system is also shown to integrate well into a brain-machine interface. This demonstration of a high channel-count fully implanted neural data acquisition system is a critical step in the development of a clinically viable brain-machine interface.

  7. A Fully Implantable 96-channel Neural Data Acquisition System

    PubMed Central

    Rizk, Michael; Bossetti, Chad A; Jochum, Thomas A; Callender, Stephen H; Nicolelis, Miguel A L; Turner, Dennis A; Wolf, Patrick D

    2009-01-01

    A fully implantable neural data acquisition system is a key component of a clinically viable brain-machine interface. This type of system must communicate with the outside world and obtain power without the use of wires that cross through the skin. We present a 96-channel fully implantable neural data acquisition system. This system performs spike detection and extraction within the body and wirelessly transmits data to an external unit. Power is supplied wirelessly through the use of inductively-coupled coils. The system was implanted acutely in sheep and successfully recorded, processed, and transmitted neural data. Bidirectional communication between the implanted system and an external unit was successful over a range of 2 m. The system is also shown to integrate well into a brain-machine interface. This demonstration of a high channel-count fully implanted neural data acquisition system is a critical step in the development of a clinically viable brain-machine interface. PMID:19255459

  8. Polymeric Packaging for Fully Implantable Wireless Neural Microsensors

    PubMed Central

    Aceros, Juan; Yin, Ming; Borton, David A.; Patterson, William R.; Bull, Christopher; Nurmikko, Arto V.

    2014-01-01

    We present polymeric packaging methods used for subcutaneous, fully implantable, broadband, and wireless neurosensors. A new tool for accelerated testing and characterization of biocompatible polymeric packaging materials and processes is described along with specialized test units to simulate our fully implantable neurosensor components, materials and fabrication processes. A brief description of the implantable systems is presented along with their current encapsulation methods based on polydimethylsiloxane (PDMS). Results from in-vivo testing of multiple implanted neurosensors in swine and non-human primates are presented. Finally, a novel augmenting polymer thin film material to complement the currently employed PDMS is introduced. This thin layer coating material is based on the Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Hexamethyldisiloxane (HMDSO) and Oxygen (O2). PMID:23365999

  9. Polymeric packaging for fully implantable wireless neural microsensors.

    PubMed

    Aceros, Juan; Yin, Ming; Borton, David A; Patterson, William R; Bull, Christopher; Nurmikko, Arto V

    2012-01-01

    We present polymeric packaging methods used for subcutaneous, fully implantable, broadband, and wireless neurosensors. A new tool for accelerated testing and characterization of biocompatible polymeric packaging materials and processes is described along with specialized test units to simulate our fully implantable neurosensor components, materials and fabrication processes. A brief description of the implantable systems is presented along with their current encapsulation methods based on polydimethylsiloxane (PDMS). Results from in-vivo testing of multiple implanted neurosensors in swine and non-human primates are presented. Finally, a novel augmenting polymer thin film material to complement the currently employed PDMS is introduced. This thin layer coating material is based on the Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Hexamethyldisiloxane (HMDSO) and Oxygen (O(2)).

  10. Considering optogenetic stimulation for cochlear implants.

    PubMed

    Jeschke, Marcus; Moser, Tobias

    2015-04-01

    Electrical cochlear implants are by far the most successful neuroprostheses and have been implanted in over 300,000 people worldwide. Cochlear implants enable open speech comprehension in most patients but are limited in providing music appreciation and speech understanding in noisy environments. This is generally considered to be due to low frequency resolution as a consequence of wide current spread from stimulation contacts. Accordingly, the number of independently usable stimulation channels is limited to less than a dozen. As light can be conveniently focused, optical stimulation might provide an alternative approach to cochlear implants with increased number of independent stimulation channels. Here, we focus on summarizing recent work on optogenetic stimulation as one way to develop optical cochlear implants. We conclude that proof of principle has been presented for optogenetic stimulation of the cochlea and central auditory neurons in rodents as well as for the technical realization of flexible μLED-based multichannel cochlear implants. Still, much remains to be done in order to advance the technique for auditory research and even more for eventual clinical translation. This article is part of a Special Issue entitled .

  11. Fully implantable hearing aid in the incudostapedial joint gap.

    PubMed

    Koch, Martin; Eßinger, Till Moritz; Stoppe, Thomas; Lasurashvili, Nikoloz; Bornitz, Matthias; Zahnert, Thomas

    2016-10-01

    A fully implantable hearing aid is introduced which is a combined sensor-actuator-transducer designed for insertion into the incudostapedial joint gap (ISJ). The active elements each consist of a thin titanium membrane with an applied piezoelectric single crystal. The effectiveness of the operating principle is verified in a temporal bone study. We also take a closer look at the influence of an implantation-induced increase in middle ear stiffness on the transducer's output. An assembly of the transducer with 1 mm thickness is built and inserted into six temporal bones. At this thickness, the stiffness of the annular ligament is considerably increased, which leads to a loss in functional gain for the transducer. It is assumed that a thinner transducer would reduce this effect. In order to examine the performance for a prospective reduced pretension, we increased the gap size at the ISJ by 0.5 mm by removing the capitulum of the stapes in four temporal bones. The TM is stimulated with a broadband multisine sound signal in the audiological frequency range. The movement of the stapes footplate is measured with a laser Doppler vibrometer. The sensor signal is digitally processed and the amplified signal drives the actuator. The resulting feedback is minimized by an active noise control least mean square (LMS) algorithm which is implemented on a field programmable gate array. The dynamic range and the functional gain of the transducer in the temporal bones are determined. The results are compared to measurements from temporal bones without ISJ extension and to the results of Finite Elements Model (FE model) simulations. In the frequency range above 2 kHz a functional gain of 30 dB and more is achieved. This proposes the transducer as a potential treatment for high frequency hearing loss, e.g. for patients with noise-induced hearing loss. The transducer offers sufficient results for a comprehensive application. Adaptations in the transducer design or surgical

  12. Wirelessly powering miniature implants for optogenetic stimulation

    NASA Astrophysics Data System (ADS)

    Yeh, Alexander J.; Ho, John S.; Tanabe, Yuji; Neofytou, Evgenios; Beygui, Ramin E.; Poon, Ada S. Y.

    2013-10-01

    Conventional methods for in vivo optogenetic stimulation require optical fibers or mounted prosthesis. We present an approach for wirelessly powering implantable stimulators using electromagnetic midfield. By exploiting the properties of the midfield, we demonstrate the ability to generate high intensity light pulses in a freely moving animal.

  13. Implantable microcoils for intracortical magnetic stimulation

    PubMed Central

    Lee, Seung Woo; Fallegger, Florian; Casse, Bernard D. F.; Fried, Shelley I.

    2016-01-01

    Neural prostheses that stimulate the neocortex have the potential to treat a wide range of neurological disorders. However, the efficacy of electrode-based implants remains limited, with persistent challenges that include an inability to create precise patterns of neural activity as well as difficulties in maintaining response consistency over time. These problems arise from fundamental limitations of electrodes as well as their susceptibility to implantation and have proven difficult to overcome. Magnetic stimulation can address many of these limitations, but coils small enough to be implanted into the cortex were not thought strong enough to activate neurons. We describe a new microcoil design and demonstrate its effectiveness for both activating cortical neurons and driving behavioral responses. The stimulation of cortical pyramidal neurons in brain slices in vitro was reliable and could be confined to spatially narrow regions (<60 μm). The spatially asymmetric fields arising from the coil helped to avoid the simultaneous activation of passing axons. In vivo implantation was safe and resulted in consistent and predictable behavioral responses. The high permeability of magnetic fields to biological substances may yield another important advantage because it suggests that encapsulation and other adverse effects of implantation will not diminish coil performance over time, as happens to electrodes. These findings suggest that a coil-based implant might be a useful alternative to existing electrode-based devices. The enhanced selectivity of microcoil-based magnetic stimulation will be especially useful for visual prostheses as well as for many brain-computer interface applications that require precise activation of the cortex. PMID:27957537

  14. 21 CFR 882.5820 - Implanted cerebellar stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted cerebellar stimulator. 882.5820 Section... (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5820 Implanted cerebellar stimulator. (a) Identification. An implanted cerebellar stimulator is a device used to...

  15. 21 CFR 882.5860 - Implanted neuromuscular stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted neuromuscular stimulator. 882.5860... (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5860 Implanted neuromuscular stimulator. (a) Identification. An implanted neuromuscular stimulator is a device that...

  16. Useful applications and limits of battery powered implants in functional electrical stimulations.

    PubMed

    Lanmüller, H; Bijak, M; Mayr, W; Rafolt, D; Sauermann, S; Thoma, H

    1997-03-01

    Battery powered stimulation implants have been well-known for a long time as heart pacemakers. In the last few years, fully implantable stimulators have been used in the field of functional electrical stimulation (FES) for applications like dynamic cardiomyoplasty and electro-stimulated graciloplasty for fecal incontinence. The error rate of battery powered implants is significantly smaller than that for conventional stimulator systems, and the quality of life for the patients is increased because the need for an external power and control unit is eliminated. The use of battery powered implants is limited by the complexity of the stimulation control strategies and the battery capacity. Therefore, applications like the stimulation of lower extremities for walking, cochlea stimulation, or direct muscle stimulation cannot be supported. The improvement of implantable batteries, microcontrollers, and ultralow power products is ongoing. In the future, battery powered implants will also meet the requirements of complex applications. Systems for restoration of hand and breathing functions after spinal cord injury can be the next field of use for battery powered implants. For these purposes, we developed a battery powered multichannel implant with a sufficient life span for phrenic pacing. The problems during development and the limits of this system are described in this paper.

  17. 21 CFR 882.5860 - Implanted neuromuscular stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... neuromuscular stimulator. (a) Identification. An implanted neuromuscular stimulator is a device that provides electrical stimulation to a patient's peroneal or femoral nerve to cause muscles in the leg to contract, thus... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted neuromuscular stimulator....

  18. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics.

    PubMed

    Park, Sung Il; Brenner, Daniel S; Shin, Gunchul; Morgan, Clinton D; Copits, Bryan A; Chung, Ha Uk; Pullen, Melanie Y; Noh, Kyung Nim; Davidson, Steve; Oh, Soong Ju; Yoon, Jangyeol; Jang, Kyung-In; Samineni, Vijay K; Norman, Megan; Grajales-Reyes, Jose G; Vogt, Sherri K; Sundaram, Saranya S; Wilson, Kellie M; Ha, Jeong Sook; Xu, Renxiao; Pan, Taisong; Kim, Tae-Il; Huang, Yonggang; Montana, Michael C; Golden, Judith P; Bruchas, Michael R; Gereau, Robert W; Rogers, John A

    2015-12-01

    Optogenetics allows rapid, temporally specific control of neuronal activity by targeted expression and activation of light-sensitive proteins. Implementation typically requires remote light sources and fiber-optic delivery schemes that impose considerable physical constraints on natural behaviors. In this report we bypass these limitations using technologies that combine thin, mechanically soft neural interfaces with fully implantable, stretchable wireless radio power and control systems. The resulting devices achieve optogenetic modulation of the spinal cord and peripheral nervous system. This is demonstrated with two form factors; stretchable film appliqués that interface directly with peripheral nerves, and flexible filaments that insert into the narrow confines of the spinal epidural space. These soft, thin devices are minimally invasive, and histological tests suggest they can be used in chronic studies. We demonstrate the power of this technology by modulating peripheral and spinal pain circuitry, providing evidence for the potential widespread use of these devices in research and future clinical applications of optogenetics outside the brain.

  19. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics

    PubMed Central

    Park, Sung Il; Brenner, Daniel S.; Shin, Gunchul; Morgan, Clinton D.; Copits, Bryan A.; Chung, Ha Uk; Pullen, Melanie Y.; Noh, Kyung Nim; Davidson, Steve; Oh, Soong Ju; Yoon, Jangyeol; Jang, Kyung-In; Samineni, Vijay K.; Norman, Megan; Grajales-Reyes, Jose G.; Vogt, Sherri K; Sundaram, Saranya S.; Wilson, Kellie M.; Ha, Jeong Sook; Xu, Renxiao; Pan, Taisong; Kim, Tae-il; Huang, Yonggang; Montana, Michael C.; Golden, Judith P.; Bruchas, Michael R.; Gereau, Robert W.; Rogers, John A.

    2016-01-01

    Optogenetics allows rapid, temporally specific control of neuronal activity via targeted expression and activation of light-sensitive proteins. Implementation typically requires remote light sources and fiber-optic delivery schemes that impose significant physical constraints on natural behaviors. In this report we bypass these limitations using novel technologies that combine thin, mechanically soft neural interfaces with fully implantable, stretchable wireless radio power and control systems. The resulting devices achieve optogenetic modulation of the spinal cord and peripheral nervous system. This is demonstrated with two form factors; stretchable film appliques that interface directly with peripheral nerves, and flexible filaments that insert into the narrow confines of the spinal epidural space. These soft, thin devices are minimally invasive, and histological tests suggest they can be used in chronic studies. We demonstrate the power of this technology by modulating peripheral and spinal pain circuitry, providing evidence for the potential widespread use of these devices in research and future clinical applications of optogenetics outside the brain. PMID:26551059

  20. Optimization of kinetic energy harvesters design for fully implantable Cochlear Implants.

    PubMed

    Sudano, A; Accoto, D; Francomano, M T; Salvinelli, F; Guglielmelli, E

    2011-01-01

    Fully implantable Cochlear Implants (CIs) would represent a tremendous advancement in terms of quality of life, comfort and cosmetics, for patients with profound sensorineural deafness. One of the main challenges involved in the development of such implants consists of finding a power supply means which does not require recharging. To this aim an inertial Energy Harvester (EH), exploiting the kinetic energy produced by vertical movements of the head during walking, has been investigated. Compared to existing devices, the EH needs to exploit very low frequency vibrations (<2.5 Hz) with small amplitude (<9 m/s(2)). In order to maximize the power transduced, an optimization method has been developed, which is the objective of this paper. The method consists in calculating the dynamical behavior of the EH using discrete transforms of experimentally measured acceleration profiles. It is shown that the quick integration of the second order dynamical equation allows the use of computationally intensive optimization techniques, such as Genetic Algorithms (GAs). The robustness of the solution is also evaluated.

  1. Design and operation of a fully implantable SMA actuated implant for correcting short bowel syndrome

    NASA Astrophysics Data System (ADS)

    Utter, Brent; Luntz, Jonathan; Brei, Diann; Teitelbaum, Daniel; Okawada, Manabu; Miyasaka, Eiichi

    2009-03-01

    Short Bowel Syndrome (SBS) is medical condition characterized by insufficient small intestine length, leading to improper nutrient absorption and significant mortality rates. The complications of current treatment methods have encouraged the development of a novel treatment method based on mechanotransduction, the process through which mechanical tensile loading induces longitudinal growth of intestine. Animal based studies with simple extension devices have demonstrated the potential of the treatment to grow healthy bowel, but an implantable device suitable for clinical use remains undeveloped. This paper presents the development of an instrumented fully implantable bowel extender based upon a shape memory alloy driven linear ratchet that can be controlled and monitored remotely. The overall bowel extender system is described with respect to specifications for pig experimental tests. The functionality of the mechanical and electrical subsystems of the device are detailed and experimentally validated on the bench top, in segments of living bowel tissue removed from a pig, and in cadaveric pigs. Mechanical loading characteristics and safe load limits on bowel tissue are identified. Results from these experiments establish the readiness of the device to be tested in living pigs, enabling studies to move one step closer to clinical studies.

  2. A microcontroller-based implantable nerve stimulator used for rats.

    PubMed

    Sha, Hong; Zheng, Zheng; Wang, Yan; Ren, Chaoshi

    2005-01-01

    A microcontroller-based stimulator that can be flexible programmed after it has been implanted into a rat was studied. Programmability enables implanted stimulators to generate customized, complex protocols for experiments. After implantation, a coded light pulse train that contains information of specific identification will unlock a certain stimulator. If a command that changing the parameters is received, the microcontroller will update its flash memory after it affirms the commands. The whole size of it is only 1.6 cubic centimeters, and it can work for a month. The devices have been successfully used in animal behavior experiments, especially on rats.

  3. Efficacy Study of a Fully Implanted Neuroprosthesis for Functional Benefit to Individuals with Tetraplegia

    DTIC Science & Technology

    2015-10-01

    propose to complete a Phase II Clinical Trial to demonstrate the safety and efficacy of a fully-implanted neuroprosthesis to provide upper extremity...complete a Phase II Clinical Trial to demonstrate the safety and efficacy of a fully-implanted neuroprosthesis to provide upper extremity function for...individuals with cervical SCI. We have completed a clinical feasibility study of a neuroprosthesis that provides myoelectrically-controlled hand

  4. Chronic cortical and electromyographic recordings from a fully implantable device: preclinical experience in a nonhuman primate

    NASA Astrophysics Data System (ADS)

    Ryapolova-Webb, Elena; Afshar, Pedram; Stanslaski, Scott; Denison, Tim; de Hemptinne, Coralie; Bankiewicz, Krystof; Starr, Philip A.

    2014-02-01

    Objective. Analysis of intra- and perioperatively recorded cortical and basal ganglia local field potentials in human movement disorders has provided great insight into the pathophysiology of diseases such as Parkinson's, dystonia, and essential tremor. However, in order to better understand the network abnormalities and effects of chronic therapeutic stimulation in these disorders, long-term recording from a fully implantable data collection system is needed. Approach. A fully implantable investigational data collection system, the Activa® PC + S neurostimulator (Medtronic, Inc., Minneapolis, MN), has been developed for human use. Here, we tested its utility for extended intracranial recording in the motor system of a nonhuman primate. The system was attached to two quadripolar paddle arrays: one covering sensorimotor cortex, and one covering a proximal forelimb muscle, to study simultaneous cortical field potentials and electromyography during spontaneous transitions from rest to movement. Main results. Over 24 months of recording, movement-related changes in physiologically relevant frequency bands were readily detected, including beta and gamma signals at approximately 2.5 μV/\\sqrtHz and 0.7 μV/\\sqrt{Hz}, respectively. The system architecture allowed for flexible recording configurations and algorithm triggered data recording. In the course of physiological analyses, sensing artifacts were observed (˜1 μVrms stationary tones at fixed frequency), which were mitigated either with post-processing or algorithm design and did not impact the scientific conclusions. Histological examination revealed no underlying tissue damage; however, a fibrous capsule had developed around the paddles, demonstrating a potential mechanism for the observed signal amplitude reduction. Significance. This study establishes the usefulness of this system in measuring chronic brain and muscle signals. Use of this system may potentially be valuable in human trials of chronic brain

  5. Composite implants coated with biodegradable polymers prevent stimulating tumor progression

    NASA Astrophysics Data System (ADS)

    Litviakov, N. V.; Tverdokhlebov, S. I.; Perelmuter, V. M.; Kulbakin, D. E.; Bolbasov, E. N.; Tsyganov, M. M.; Zheravin, A. A.; Svetlichnyi, V. A.; Cherdyntseva, N. V.

    2016-08-01

    In this experiment we studied oncologic safety of model implants created using the solution blow spinning method with the use of the PURASORB PL-38 polylactic acid polymer and organic mineral filler which was obtained via laser ablation of a solid target made of dibasic calcium phosphate dihydrate. For this purpose the implant was introduced into the area of Wistar rats' iliums, and on day 17 after the surgery the Walker sarcoma was transplanted into the area of the implant. We evaluated the implant's influence on the primary tumor growth, hematogenous and lymphogenous metastasis of the Walker sarcoma. In comparison with sham operated animals the implant group demonstrated significant inhibition of hematogenous metastasis on day 34 after the surgery. The metastasis inhibition index (MII) equaled 94% and the metastases growth inhibition index (MGII) equaled 83%. The metastasis frequency of the Walker sarcoma in para aortic lymph nodes in the implant group was not statistically different from the control frequency; there was also no influence of the implant on the primary tumor growth noted. In case of the Walker sarcoma transplantation into the calf and the palmar pad of the ipsilateral limb to the one with the implant in the ilium, we could not note any attraction of tumor cells to the implant area, i.e. stimulation of the Walker sarcoma relapse by the implant. Thus, the research concluded that the studied implant meets the requirements of oncologic safety.

  6. A fully integrated microbattery for an implantable microelectromechanical system

    NASA Astrophysics Data System (ADS)

    Albano, F.; Lin, Y. S.; Blaauw, D.; Sylvester, D. M.; Wise, K. D.; Sastry, A. M.

    The Wireless Integrated Microsystems Engineering Research Center's Intraocular Sensor (WIMS-ERC IOS) was studied as a model system for an integrated, autonomous implantable device. In the present study, we had four objectives: (1) select and designing an optimized power supply for the WIMS-IOS; (2) develop a fabrication technique allowing small scale, low-cost, and integrable fabrication for CMOS systems, and experimentally demonstrate a microscopic power source; (3) map capacity and lifetime of several fabricated microbatteries; (4) determine the effects of miniaturization on capacity, lifetime and device architecture. Physical vapor deposition (PVD) was used to deposit thin layers (≤1 μm) of metal sequentially onto glass substrates (SiO 2, as used in the device). To map the influence of size over cell capacity and cycle life, we fabricated and tested five stand-alone cells using a Solartron ® 1470E battery tester and a Maccor ® 4000 series tester. A sixth battery was fabricated to investigate the effects of system integration, variable discharge rate and size reduction simultaneously. The highest experimental capacity among the larger cells O(cm 2) was 100 μAh, achieved by IOS-C-1 at 250 μA (1.4 C) discharge. Among O(mm 2) cells, IOS-M-1 achieved the highest capacity (2.75 μAh, ∼76% of theoretical) at 2.5 μA discharge (0.7 C rate).

  7. Implantable optical-electrode device for stimulation of spinal motoneurons

    NASA Astrophysics Data System (ADS)

    Matveev, M. V.; Erofeev, A. I.; Zakharova, O. A.; Pyatyshev, E. N.; Kazakin, A. N.; Vlasova, O. L.

    2016-08-01

    Recent years, optogenetic method of scientific research has proved its effectiveness in the nerve cell stimulation tasks. In our article we demonstrate an implanted device for the spinal optogenetic motoneurons activation. This work is carried out in the Laboratory of Molecular Neurodegeneration of the Peter the Great St. Petersburg Polytechnic University, together with Nano and Microsystem Technology Laboratory. The work of the developed device is based on the principle of combining fiber optic light stimulation of genetically modified cells with the microelectrode multichannel recording of neurons biopotentials. The paper presents a part of the electrode implant manufacturing technique, combined with the optical waveguide of ThorLabs (USA).

  8. An Implanted, Stimulated Muscle Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Gustafson, Kenneth; Kilgore, Kevin

    2007-01-01

    A totally implantable piezoelectric generator system able to harness power from electrically activated muscle could be used to augment the power systems of implanted medical devices, such as neural prostheses, by reducing the number of battery replacement surgeries or by allowing periods of untethered functionality. The features of our generator design are no moving parts and the use of a portion of the generated power for system operation and regulation. A software model of the system has been developed and simulations have been performed to predict the output power as the system parameters were varied within their constraints. Mechanical forces that mimic muscle forces have been experimentally applied to a piezoelectric generator to verify the accuracy of the simulations and to explore losses due to mechanical coupling. Depending on the selection of system parameters, software simulations predict that this generator concept can generate up to approximately 700 W of power, which is greater than the power necessary to drive the generator, conservatively estimated to be 50 W. These results suggest that this concept has the potential to be an implantable, self-replenishing power source and further investigation is underway.

  9. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to...

  10. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral...

  11. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to...

  12. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral...

  13. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to...

  14. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to...

  15. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted spinal cord stimulator for pain relief... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to...

  16. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral...

  17. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral...

  18. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted peripheral nerve stimulator for pain....5870 Implanted peripheral nerve stimulator for pain relief. (a) Identification. An implanted peripheral nerve stimulator for pain relief is a device that is used to stimulate electrically a peripheral...

  19. Soft Encapsulation of Flexible Electrical Stimulation Implant: Challenges and Innovations

    PubMed Central

    Debelle, Adrien; Hermans, Laura; Bosquet, Maxime; Dehaeck, Sam; Lonys, Laurent; Scheid, Benoit; Nonclercq, Antoine; Vanhoestenberghe, Anne

    2016-01-01

    In this document we discuss the main challenges encountered when producing flexible electrical stimulation implants, and present our approach to solving them for prototype production. We include a study of the optimization of the flexible PCB design, the selection of additive manufacturing materials for the mold, and the chemical compatibility of the different materials. Our approach was tested on a flexible gastro-stimulator as part of the ENDOGES research program. PMID:28078073

  20. SaBer DBS: a fully programmable, rechargeable, bilateral, charge-balanced preclinical microstimulator for long-term neural stimulation

    PubMed Central

    Ewing, Samuel G.; Porr, Bernd; Riddell, John; Winter, Christine; Grace, Anthony A.

    2013-01-01

    To effectively study the mechanisms by which deep brain stimulation (DBS) produces its therapeutic benefit and to evaluate new therapeutic indications, it is vital to administer DBS over an extended period of time in awake, freely behaving animals. To date multiple preclinical stimulators have been designed and described. However, these stimulators have failed to incorporate some of the design criteria necessary to provide a system analogous to those used clinically. Here we define these design criteria and propose an improved and complete preclinical DBS system. This system is fully programmable in frequency, pulse-width and current amplitude, has a rechargeable battery and delivers biphasic, charge-balanced output to two independent electrodes. The system has been optimized for either implantation or for use externally via attachment to rodent jackets. PMID:23305773

  1. 21 CFR 882.5860 - Implanted neuromuscular stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted neuromuscular stimulator. 882.5860 Section 882.5860 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5860...

  2. 21 CFR 882.5820 - Implanted cerebellar stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted cerebellar stimulator. 882.5820 Section 882.5820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5820...

  3. 21 CFR 882.5820 - Implanted cerebellar stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted cerebellar stimulator. 882.5820 Section 882.5820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5820...

  4. 21 CFR 882.5820 - Implanted cerebellar stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted cerebellar stimulator. 882.5820 Section 882.5820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5820...

  5. Pudendal Nerve Stimulation and Block by a Wireless Controlled Implantable Stimulator in Cats

    PubMed Central

    Yang, Guangning; Wang, Jicheng; Shen, Bing; Roppolo, James R.; de Groat, William C.; Tai, Changfeng

    2014-01-01

    Objective To determine the functionality of a wireless controlled implantable stimulator designed for stimulation and block of the pudendal nerve. Materials and Methods In 5 cats under α-chloralose anesthesia, the stimulator was implanted underneath the skin on the left side in the lower back along the sacral spine. Two tripolar cuff electrodes were implanted bilaterally on the pudendal nerves in addition to one bipolar cuff electrode that was implanted on the left side central to the tripolar cuff electrode. The stimulator provided high frequency (5-20 kHz) biphasic stimulation waveforms to the two tripolar electrodes and low frequency (1-100 Hz) rectangular pulses to the bipolar electrode. Bladder and urethral pressures were measured to determine the effects of pudendal nerve stimulation (PNS) or block. Results The maximal (70-100 cmH2O) urethral pressure generated by 20 Hz PNS applied via the bipolar electrode was completely eliminated by the pudendal nerve block induced by the high frequency stimulation (6-15 kHz, 6-10 V) applied via the two tripolar electrodes. In a partially filled bladder 20-30 Hz PNS (2-8 V, 0.2 ms) but not 5 Hz stimulation applied via the bipolar electrode elicited a large sustained bladder contraction (45.9±13.4 to 52.0±22 cmH2O). During cystometry, the 5 Hz PNS significantly (P<0.05) increased bladder capacity to 176.5±27.1% of control capacity. Conclusions The wireless controlled implantable stimulator successfully generated the required waveforms for stimulation and block of pudendal nerve, which will be useful for restoring bladder functions after spinal cord injury (SCI). PMID:24320615

  6. First permanent human implant of the Stimulus Router System, a novel neuroprosthesis: preliminary testing of a polarity reversing stimulation technique.

    PubMed

    Gan, Liu Shi; Ravid, Einat N; Kowalczewski, Jan; Gauthier, Michel; Olson, Jaret; Morhart, Michael; Prochazka, Arthur

    2011-01-01

    Neuroprostheses (NPs) are electrical stimulators that help to restore sensory or motor functions lost as a result of neural damage. The Stimulus Router System (SRS) is a new type of NP developed in our laboratory. The system uses fully implanted, passive leads to "capture" and "route" some of the current flowing between pairs of surface electrodes to the vicinity of the target nerves, hence eliminating the need for an implanted stimulator. In June 2008, 3 SRS leads were implanted in a tetraplegic man for restoration of grasp and release. To reduce the size of the external wristlet and thereby optimize usability, we recently implemented a polarity reversing stimulation technique that allowed us to eliminate a reference electrode. Selective activation of three target muscles was achieved by switching the polarities of the stimulus current delivered between pairs of surface electrodes located over the pick-up terminals of the implanted leads and reducing the amplitude of the secondary phases of the stimulus pulses.

  7. Sacral nerve stimulation lead implantation using the o-arm

    PubMed Central

    2013-01-01

    Background Sacral neuromodulation operations have usually been performed based on 2D fluoro images. However, sacral nerve stimulation lead implantation may be challenging when the normal anatomy is confused by obesity or congenital anomalies. Thus the surgical navigation and intraoperative imaging methods could be helpful as those same methods have proven to be feasible methods for guiding other surgical operations. Our recent knowledge about the O-arm in trauma pelvic operations encouraged us to evaluate the usefulness of O-arm guided navigation in sacral neuromodulation. Similar navigation would be useful for complex sacral nerve stimulation lead implantations. Methods In this preliminary article we report our experience of utilizing the orthopedically optimized O-arm to implant the S3 stimulation electrode in a patient. The 3D O-arm imaging was performed intraoperatively under surgical navigation control. General anesthesia was used. The obtained 3D image dataset was registered automatically into the patient’s anatomy. The stimulation needle was guided and the tined lead electrode was implanted using navigation. Results The bony sacral structures were clearly visualized. Due to automatic registration, the navigation was practicable instantly after the O-arm scanning and operation could be performed successfully under navigation control. Conclusions To our knowledge, this is the first published tined lead implantation which was guided based on the surgical navigation and intraoperative O-arm images. In this case, the applied method was useful and helped the surgeon to demarcate the region of surgical interest. The method is slightly more invasive than the formal technique but could be an option in anatomically challenging cases and reoperations. However, further evaluation with larger patient series is required before definitive recommendations can be made. PMID:24131790

  8. Electrophysiological channel interactions using focused multipolar stimulation for cochlear implants

    NASA Astrophysics Data System (ADS)

    George, Shefin S.; Shivdasani, Mohit N.; Wise, Andrew K.; Shepherd, Robert K.; Fallon, James B.

    2015-12-01

    Objective. Speech intelligibility with existing multichannel cochlear implants (CIs) is thought to be limited by poor spatial selectivity and interactions between CI channels caused by overlapping activation with monopolar (MP) stimulation. Our previous studies have shown that focused multipolar (FMP) and tripolar (TP) stimulation produce more restricted neural activation in the inferior colliculus (IC), compared to MP stimulation. Approach. This study explored interactions in the IC produced by simultaneous stimulation of two CI channels. We recorded multi-unit neural activity in the IC of anaesthetized cats with normal and severely degenerated spiral ganglion neuron populations in response to FMP, TP and MP stimulation from a 14 channel CI. Stimuli were applied to a ‘fixed’ CI channel, chosen toward the middle of the cochlear electrode array, and the effects of simultaneously stimulating a more apical ‘test’ CI channel were measured as a function of spatial separation between the two stimulation channels and stimulus level of the fixed channel. Channel interactions were quantified by changes in neural responses and IC threshold (i.e., threshold shift) elicited by simultaneous stimulation of two CI channels, compared to stimulation of the test channel alone. Main results. Channel interactions were significantly lower for FMP and TP than for MP stimulation (p < 0.001), whereas no significant difference was observed between FMP and TP stimulation. With MP stimulation, threshold shifts increased with decreased inter-electrode spacing and increased stimulus levels of the fixed channel. For FMP and TP stimulation, channel interactions were found to be similar for different inter-electrode spacing and stimulus levels of the fixed channel. Significance. The present study demonstrates how the degree of channel interactions in a CI can be controlled using stimulation configurations such as FMP and TP; such knowledge is essential in enhancing CI function in complex

  9. Spinal cord stimulation for refractory angina in a patient implanted with a cardioverter defibrillator.

    PubMed

    Ferrero, Paolo; Grimaldi, Roberto; Massa, Riccardo; Chiribiri, Amedeo; De Luca, Anna; Castellano, Maddalena; Cardano, Paola; Trevi, Gian Paolo

    2007-01-01

    Spinal cord stimulation is currently used to treat refractory angina. Some concerns may arise about the possible interaction concerning the spinal cord stimulator in patients already implanted with a pacemaker or a cardioverter defibrillator. We are going to describe the successful implantation of a spinal cord stimulator in a patient previously implanted with a cardioverter defibrillator.

  10. A New Trans-Tympanic Microphone Approach for Fully Implantable Hearing Devices.

    PubMed

    Woo, Seong Tak; Shin, Dong Ho; Lim, Hyung-Gyu; Seong, Ki-Woong; Gottlieb, Peter; Puria, Sunil; Lee, Kyu-Yup; Cho, Jin-Ho

    2015-09-09

    Fully implantable hearing devices (FIHDs) have been developed as a new technology to overcome the disadvantages of conventional acoustic hearing aids. The implantable microphones currently used in FIHDs, however, have difficulty achieving high sensitivity to environmental sounds, low sensitivity to body noise, and ease of implantation. In general, implantable microphones may be placed under the skin in the temporal bone region of the skull. In this situation, body noise picked up during mastication and touching can be significant, and the layer of skin and hair can both attenuate and distort sounds. The new approach presently proposed is a microphone implanted at the tympanic membrane. This method increases the microphone's sensitivity by utilizing the pinna's directionally dependent sound collection capabilities and the natural resonances of the ear canal. The sensitivity and insertion loss of this microphone were measured in human cadaveric specimens in the 0.1 to 16 kHz frequency range. In addition, the maximum stable gain due to feedback between the trans-tympanic microphone and a round-window-drive transducer, was measured. The results confirmed in situ high-performance capabilities of the proposed trans-tympanic microphone.

  11. A New Trans-Tympanic Microphone Approach for Fully Implantable Hearing Devices

    PubMed Central

    Woo, Seong Tak; Shin, Dong Ho; Lim, Hyung-Gyu; Seong, Ki-Woong; Gottlieb, Peter; Puria, Sunil; Lee, Kyu-Yup; Cho, Jin-Ho

    2015-01-01

    Fully implantable hearing devices (FIHDs) have been developed as a new technology to overcome the disadvantages of conventional acoustic hearing aids. The implantable microphones currently used in FIHDs, however, have difficulty achieving high sensitivity to environmental sounds, low sensitivity to body noise, and ease of implantation. In general, implantable microphones may be placed under the skin in the temporal bone region of the skull. In this situation, body noise picked up during mastication and touching can be significant, and the layer of skin and hair can both attenuate and distort sounds. The new approach presently proposed is a microphone implanted at the tympanic membrane. This method increases the microphone’s sensitivity by utilizing the pinna’s directionally dependent sound collection capabilities and the natural resonances of the ear canal. The sensitivity and insertion loss of this microphone were measured in human cadaveric specimens in the 0.1 to 16 kHz frequency range. In addition, the maximum stable gain due to feedback between the trans-tympanic microphone and a round-window-drive transducer, was measured. The results confirmed in situ high-performance capabilities of the proposed trans-tympanic microphone. PMID:26371007

  12. A fully implantable pacemaker for the mouse: from battery to wireless power.

    PubMed

    Laughner, Jacob I; Marrus, Scott B; Zellmer, Erik R; Weinheimer, Carla J; MacEwan, Matthew R; Cui, Sophia X; Nerbonne, Jeanne M; Efimov, Igor R

    2013-01-01

    Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice.

  13. Fully implantable Otologics MET Carina™ device for the treatment of sensorineural hearing loss. Preliminary surgical and clinical results

    PubMed Central

    Bruschini, L; Forli, F; Santoro, A; Bruschini, P; Berrettini, S

    2009-01-01

    Summary Middle ear implants overcome some of the common problems of conventional hearing aid technology, such as feedback, signal distortion, ear canal occlusion and associated issues. The Otologics MET Carina™, Boulder, CO, USA, is a fully implantable hearing prosthesis designed to address the amplification needs of adults (> 18 years of age), with moderate to severe sensorineural hearing loss and normal middle ears, providing a mechanical direct stimulation of middle ear ossicles. Recently, it has been successfully used also in patients with conductive hearing loss. In the present report, personal surgical and clinical experience with the fully implantable Carina™ is described in 5 adults with moderate to severe sensorineural hearing loss, operated upon between November 2007 and May 2008 in the ENT Unit, University of Pisa. Mean follow-up was 10.2 months of device use (range 7-13). Surgery was performed under general anaesthesia, in ~3 hours, with no surgical complications in any of the patients. In these 5 cases, no significant post-operative variation was observed in hearing thresholds, either for air or bone conduction, indicating absence of surgical damage to the cochlea. All patients showed improvements in hearing thresholds, in free field and in speech perception abilities, with the device functioning, moreover, they reported subjective benefits. With regard to post-operative adverse effects, no cases of extrusion of the device, device failure, loss of external communication or increased charging times were observed. Problems of feedback noise occurred, which were resolved with minor fitting adjustments in 4 cases, while a second operation was required to change the microphone position in the other patient. The present results, in agreement with those reported in the literature, confirm that the Otologics MET Carina™ is viable treatment for moderate to severe sensorineural hearing loss and, in selected cases, may represent an alternative to

  14. Effects of stimulation rate on speech recognition with cochlear implants.

    PubMed

    Friesen, Lendra M; Shannon, Robert V; Cruz, Rachel J

    2005-01-01

    Phoneme and speech recognition were measured as a function of stimulation pulse rate in 12 listeners with three types of cochlear implants. Identification of consonants and vowels and recognition of words and sentences were measured in 5 Clarion C1 subjects fit with continuous interleaved sampling (CIS) processors having 4 or 8 electrodes, 4 Nucleus 24 subjects fit with CIS processors having 4, 8, 12 or 16 electrodes and 3 Clarion C2 subjects fit with CIS processors with 4, 8, 12 and 16 electrodes. Stimulation rates ranged from 200 to more than 5000 Hz per electrode, depending on the device, number of electrodes used and stimulation strategy. Listeners were also tested on the same materials with their original processor prior to receiving the experimental processors. All testing was done in quiet listening conditions with essentially no practice with the experimental processor prior to data collection. Listeners scored the highest with their original processor. Little difference in speech understanding was observed for listener scores with processors using different stimulation rates. Speech recognition was significantly poorer only at the lowest stimulation rate and at high rates that used noninterleaved pulses. Speech recognition was similar for processors using 8, 12 or 16 electrodes. Only 4-electrode processors produced a significantly poorer performance. These results suggest that patients with present commercial implants are not able to make full use of the number of channels of spectral information delivered by the present speech processors. In addition, the results show no significant change in performance as a function of stimulation rate, suggesting that high stimulation rates do not result in improved access to temporal cues in speech, at least under quiet listening conditions.

  15. Abnormal Pitch Perception Produced by Cochlear Implant Stimulation

    PubMed Central

    Zeng, Fan-Gang; Tang, Qing; Lu, Thomas

    2014-01-01

    Contemporary cochlear implants with multiple electrode stimulation can produce good speech perception but poor music perception. Hindered by the lack of a gold standard to quantify electric pitch, relatively little is known about the nature and extent of the electric pitch abnormalities and their impact on cochlear implant performance. Here we overcame this obstacle by comparing acoustic and electric pitch perception in 3 unilateral cochlear-implant subjects who had functionally usable acoustic hearing throughout the audiometric frequency range in the non-implant ear. First, to establish a baseline, we measured and found slightly impaired pure tone frequency discrimination and nearly perfect melody recognition in all 3 subjects’ acoustic ear. Second, using pure tones in the acoustic ear to match electric pitch induced by an intra-cochlear electrode, we found that the frequency-electrode function was not only 1–2 octaves lower, but also 2 times more compressed in frequency range than the normal cochlear frequency-place function. Third, we derived frequency difference limens in electric pitch and found that the equivalent electric frequency discrimination was 24 times worse than normal-hearing controls. These 3 abnormalities are likely a result of a combination of broad electric field, distant intra-cochlear electrode placement, and non-uniform spiral ganglion cell distribution and survival, all of which are inherent to the electrode-nerve interface in contemporary cochlear implants. Previous studies emphasized on the “mean” shape of the frequency-electrode function, but the present study indicates that the large “variance” of this function, reflecting poor electric pitch discriminability, is the main factor limiting contemporary cochlear implant performance. PMID:24551131

  16. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted spinal cord stimulator for bladder....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal... paraplegic patient who has a complete transection of the spinal cord and who is unable to empty his or...

  17. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted spinal cord stimulator for bladder....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal... paraplegic patient who has a complete transection of the spinal cord and who is unable to empty his or...

  18. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted spinal cord stimulator for bladder....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal... paraplegic patient who has a complete transection of the spinal cord and who is unable to empty his or...

  19. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted spinal cord stimulator for bladder....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal... paraplegic patient who has a complete transection of the spinal cord and who is unable to empty his or...

  20. 21 CFR 882.5850 - Implanted spinal cord stimulator for bladder evacuation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted spinal cord stimulator for bladder....5850 Implanted spinal cord stimulator for bladder evacuation. (a) Identification. An implanted spinal... paraplegic patient who has a complete transection of the spinal cord and who is unable to empty his or...

  1. A novel, fully implantable, multichannel biotelemetry system for measurement of blood flow, pressure, ECG, and temperature.

    PubMed

    Axelsson, M; Dang, Q; Pitsillides, K; Munns, S; Hicks, J; Kassab, G S

    2007-03-01

    Biotelemetry provides high-quality data in awake, free-ranging animals without the effects of anesthesia and surgery. Although many biological parameters can be measured using biotelemetry, simultaneous telemetric measurements of pressure and flow have not been available. The objective of this study was to evaluate simultaneous measurements of blood flow, pressure, ECG, and temperature in a fully implantable system. This novel system allows the measurement of up to four channels of blood flow, up to three channels of pressure, and a single channel each of ECG and temperature. The system includes a bidirectional radio-frequency link that allows the implant to send data and accept commands to perform various tasks. The system is controlled by a base station decoder/controller that decodes the data stream sent by the implant into analog signals. The system also converts the data into a digital data stream that can be sent via ethernet to a remote computer for storage and/or analysis. The system was chronically implanted in swine and alligators for up to 5 wk. Both bench and in vivo animal tests were performed to evaluate system performance. Results show that this biotelemetry system is capable of long-term accurate monitoring of simultaneous blood flow and pressure. The system allows, within the room, recordings, since the implant transmission range is between 6 and 10 m, and, with a relay, backpack transmission distance of up to 500 m can be achieved. This system will have significant utility in chronic models of cardiovascular physiology and pathology.

  2. An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor.

    PubMed

    DeHennis, Andrew; Getzlaff, Stefan; Grice, David; Mailand, Marko

    2016-01-01

    This paper presents an integrated circuit (IC) that merges integrated optical and temperature transducers, optical interface circuitry, and a near-field communication (NFC)-enabled digital, wireless readout for a fully passive implantable sensor platform to measure glucose in people with diabetes. A flip-chip mounted LED and monolithically integrated photodiodes serve as the transduction front-end to enable fluorescence readout. A wide-range programmable transimpedance amplifier adapts the sensor signals to the input of an 11-bit analog-to-digital converter digitizing the measurements. Measurement readout is enabled by means of wireless backscatter modulation to a remote NFC reader. The system is able to resolve current levels of less than 10 pA with a single fluorescent measurement energy consumption of less than 1 μJ. The wireless IC is fabricated in a 0.6-μm-CMOS process and utilizes a 13.56-MHz-based ISO15693 for passive wireless readout through a NFC interface. The IC is utilized as the core interface to a fluorescent, glucose transducer to enable a fully implantable sensor-based continuous glucose monitoring system.

  3. [Fully implantable intramedullary distraction nail in shortening deformity and bone defects. Spectrum of indications].

    PubMed

    Baumgart, R; Zeiler, C; Kettler, M; Weiss, S; Schweiberer, L

    1999-12-01

    Since the first clinical experiences with the fully implantable programmable distraction nail nearly ten years ago, the system has been improved in Munich and meanwhile used in 26 patients. During the first 10 cases there has been highest interest in the reliability of the system, while in the following the expansion of indications was more important. At the thigh a good indication beside shortening is the combination of shortening and axis deviation, even if the center of deviation is located near to the knee joint in the supracondylar area. According to preoperative planing the deformity correction can be done acutely while the lengthening procedure follows postoperatively automatically at night-time. If the stabilization with an intramedullary nail is possible, large bone defects can be treated by bone transport using this system also. The fully implantable intramedullary nail has proved its variable functions in cases of large bone defects combined with shortening of the femur. The system is able to perform the bone transport at first and the lengthening procedure automatically without any further operation thereafter.

  4. Numerical simulation of electrically stimulated osteogenesis in dental implants.

    PubMed

    Vanegas-Acosta, J C; Garzón-Alvarado, D A; Lancellotti, V

    2014-04-01

    Cell behavior and tissue formation are influenced by a static electric field (EF). Several protocols for EF exposure are aimed at increasing the rate of tissue recovery and reducing the healing times in wounds. However, the underlying mechanisms of the EF action on cells and tissues are still a matter of research. In this work we introduce a mathematical model for electrically stimulated osteogenesis at the bone-dental implant interface. The model describes the influence of the EF in the most critical biological processes leading to bone formation at the bone-dental implant interface. The numerical solution is able to reproduce the distribution of spatial-temporal patterns describing the influence of EF during blood clotting, osteogenic cell migration, granulation tissue formation, displacements of the fibrillar matrix, and formation of new bone. In addition, the model describes the EF-mediated cell behavior and tissue formation which lead to an increased osteogenesis in both smooth and rough implant surfaces. Since numerical results compare favorably with experimental evidence, the model can be used to predict the outcome of using electrostimulation in other types of wounds and tissues.

  5. Microchip-Embedded Capacitors for Implantable Neural Stimulators

    NASA Astrophysics Data System (ADS)

    Auciello, Orlando

    Miniaturization of microchips for implantation in the human body (e.g., microchip for the artificial retina to restore sight to people blinded by retina photoreceptors degeneration) requires the integration of high-capacitance (≥ 10 μF) energy-storage capacitors into the microchip. These capacitors would be based on high-dielectric constant layers, preferably made of materials that are bioinert (not affected by human body fluids) and are biocompatible (do not elicit adverse reactions in the human body). This chapter focuses on reviewing the work being done at Argonne National Laboratory (Materials Science Division and Center for Nanoscale Materials) to develop high-capacitance microchip-embedded capacitors based on novel high-K dielectric layers (TiAlOx or TiO2/Al2O3 superlattices). The microchip-embedded capacitor provides energy storage and electromagnetic signal coupling needed for neural stimulations. Advances in neural prostheses such as artificial retinas and cochlear implants require miniaturization of device size to minimize tissue damage and improve device/tissue interfaces in the human body. Therefore, development of microchip-embedded capacitors is critical to achieve full-implantable biomedical device miniaturization.

  6. Responses evoked by a vestibular implant providing chronic stimulation.

    PubMed

    Thompson, Lara A; Haburcakova, Csilla; Gong, Wangsong; Lee, Daniel J; Wall, Conrad; Merfeld, Daniel M; Lewis, Richard F

    2012-01-01

    Patients with bilateral vestibular loss experience dehabilitating visual, perceptual, and postural difficulties, and an implantable vestibular prosthesis that could improve these symptoms would be of great benefit to these patients. In previous work, we have shown that a one-dimensional, unilateral canal prosthesis can improve the vestibulooccular reflex (VOR) in canal-plugged squirrel monkeys. In addition to the VOR, the potential effects of a vestibular prosthesis on more complex, highly integrative behaviors, such as the perception of head orientation and posture have remained unclear. We tested a one-dimensional, unilateral prosthesis in a rhesus monkey with bilateral vestibular loss and found that chronic electrical stimulation partially restored the compensatory VOR and also that percepts of head orientation relative to gravity were improved. However, the one-dimensional prosthetic stimulation had no clear effect on postural stability during quiet stance, but sway evoked by head-turns was modestly reduced. These results suggest that not only can the implementation of a vestibular prosthesis provide partial restitution of VOR but may also improve perception and posture in the presence of bilateral vestibular hypofunction (BVH). In this review, we provide an overview of our previous and current work directed towards the eventual clinical implementation of an implantable vestibular prosthesis.

  7. Rescue pallidotomy for dystonia through implanted deep brain stimulation electrode

    PubMed Central

    Blomstedt, Patric; Taira, Takaomi; Hariz, Marwan

    2016-01-01

    Background: Some patients with deep brain stimulation (DBS), where removal of implants is indicated due to hardware related infections, are not candidates for later re-implantation. In these patients a rescue lesion through the DBS electrode has been suggested as an option. In this case report we present a patient where a pallidotomy was performed using the DBS electrode. Case Description: An elderly woman with bilateral Gpi DBS suffered an infection around the left burr hole involving the DBS electrode. A unilateral lesion was performed through the DBS electrode before it was removed. No side effects were encountered. Burke-Fahn-Marsden (BFM) dystonia movement scale score was 39 before DBS. With DBS before lesioning BFM score was 2.5 points. The replacement of the left sided stimulation with a pallidotomy resulted in only a minor deterioration of the score to 5 points. Conclusions: In the case presented here a small pallidotomy performed with the DBS electrode provided a satisfactory effect on the patient's dystonic symptoms. Thus, rescue lesions through the DBS electrodes, although off-label, might be considered in patients with Gpi DBS for dystonia when indicated. PMID:27990311

  8. Design and Evaluation of a Robust PID Controller for a Fully Implantable Artificial Pancreas.

    PubMed

    Huyett, Lauren M; Dassau, Eyal; Zisser, Howard C; Doyle, Francis J

    2015-10-28

    Treatment of type 1 diabetes mellitus could be greatly improved by applying a closed-loop control strategy to insulin delivery, also known as an artificial pancreas (AP). In this work, we outline the design of a fully implantable AP using intraperitoneal (IP) insulin delivery and glucose sensing. The design process utilizes the rapid glucose sensing and insulin action offered by the IP space to tune a PID controller with insulin feedback to provide safe and effective insulin delivery. The controller was tuned to meet robust performance and stability specifications. An anti-reset windup strategy was introduced to prevent dangerous undershoot toward hypoglycemia after a large meal disturbance. The final controller design achieved 78% of time within the tight glycemic range of 80-140 mg/dL, with no time spent in hypoglycemia. The next step is to test this controller design in an animal model to evaluate the in vivo performance.

  9. Design and Evaluation of a Robust PID Controller for a Fully Implantable Artificial Pancreas

    PubMed Central

    2015-01-01

    Treatment of type 1 diabetes mellitus could be greatly improved by applying a closed-loop control strategy to insulin delivery, also known as an artificial pancreas (AP). In this work, we outline the design of a fully implantable AP using intraperitoneal (IP) insulin delivery and glucose sensing. The design process utilizes the rapid glucose sensing and insulin action offered by the IP space to tune a PID controller with insulin feedback to provide safe and effective insulin delivery. The controller was tuned to meet robust performance and stability specifications. An anti-reset windup strategy was introduced to prevent dangerous undershoot toward hypoglycemia after a large meal disturbance. The final controller design achieved 78% of time within the tight glycemic range of 80–140 mg/dL, with no time spent in hypoglycemia. The next step is to test this controller design in an animal model to evaluate the in vivo performance. PMID:26538805

  10. The management of leg-length discrepancy in Ollier's disease with a fully implantable lengthening nail.

    PubMed

    Baumgart, R; Bürklein, D; Hinterwimmer, S; Thaller, P; Mutschler, W

    2005-07-01

    Ollier's disease is characterised by severe deformity of the extremities and retarded growth because of multiple enchondromas. For correction of deformity, the Ilizarov method has been used although it has many complications. A 17-year-old boy with Ollier's disease had a limb-length discrepancy of 17.4 cm, with a valgus deformity of the right knee and recurvatum of the femur of 23 degrees . He had undergone three unsuccessful attempts to correct the deformities by using external fixators. We used a fully implantable, motorised, lengthening and correction nail (Fitbone) to achieve full correction of all the deformities without complications. We decided to carry out the procedure in three stages. First, we lengthened the femur by 3.6 cm and the tibia by 4 cm. We then exchanged the femoral nail for a longer implant and achieved a further 6 cm of length. This reduced the shortening to 3.8 cm. When the boy has finished secondary school we will adjust the remaining discrepancy.

  11. A 32-channel fully implantable wireless neurosensor for simultaneous recording from two cortical regions

    PubMed Central

    Aceros, Juan; Yin, Ming; Borton, David A.; Patterson, William R.; Nurmikko, Arto V.

    2014-01-01

    We present a fully implantable, wireless, neurosensor for multiple-location neural interface applications. The device integrates two independent 16-channel intracortical microelectrode arrays and can simultaneously acquire 32 channels of broadband neural data from two separate cortical areas. The system-on-chip implantable sensor is built on a flexible Kapton polymer substrate and incorporates three very low power subunits: two cortical subunits connected to a common subcutaneous subunit. Each cortical subunit has an ultra-low power 16-channel preamplifier and multiplexer integrated onto a cortical microelectrode array. The subcutaneous epicranial unit has an inductively coupled power supply, two analog-to-digital converters, a low power digital controller chip, and microlaser-based infrared telemetry. The entire system is soft encapsulated with biocompatible flexible materials for in vivo applications. Broadband neural data is conditioned, amplified, and analog multiplexed by each of the cortical subunits and passed to the subcutaneous component, where it is digitized and combined with synchronization data and wirelessly transmitted transcutaneously using high speed infrared telemetry. PMID:22254801

  12. Design and Evaluation of a Fully Implantable Control Unit for Blood Pumps

    PubMed Central

    Unthan, Kristin; Gräf, Felix; Laumen, Marco; Finocchiaro, Thomas; Sommer, Christoph; Lanmüller, Hermann; Steinseifer, Ulrich

    2015-01-01

    As the number of donor hearts is limited while more and more patients suffer from end stage biventricular heart failure, Total Artificial Hearts become a promising alternative to conventional treatment. While pneumatic devices sufficiently supply the patients with blood flow, the patient's quality of life is limited by the percutaneous pressure lines and the size of the external control unit. This paper describes the development of the control unit of the ReinHeart, a fully implantable Total Artificial Heart. General requirements for any implantable control unit are defined from a technical and medical point of view: necessity of a Transcutaneous Energy Transmission, autonomous operation, safety, geometry, and efficiency. Based on the requirements, a prototype is designed; it incorporates a LiFePo4 battery pack with charger, a rectifier for transcutaneous energy transmission, the motor's driver electronics, and a microcontroller which monitors and controls all functions. In validation tests, the control unit demonstrated a stable operation on TET and battery supply and a safe switching from one supply to the other. The overall mean efficiency is 14% on TET and 22% on battery supply. The control unit is suitable for chronic animal trials of the ReinHeart. PMID:26583095

  13. Carina® and Esteem®: A Systematic Review of Fully Implantable Hearing Devices

    PubMed Central

    Pulcherio, Janaina Oliveira Bentivi; Bittencourt, Aline Gomes; Burke, Patrick Rademaker; Monsanto, Rafael da Costa; de Brito, Rubens; Tsuji, Robinson Koji; Bento, Ricardo Ferreira

    2014-01-01

    Objective To review the outcomes of the fully implantable middle ear devices Carina and Esteem regarding the treatment of hearing loss. Data Sources PubMed, Embase, Scielo, and Cochrane Library databases were searched. Study Selection Abstracts of 77 citations were screened, and 43 articles were selected for full review. From those, 22 studies and two literature reviews in English directly demonstrating the results of Carina and Esteem were included. Data Extraction There were a total of 244 patients ranging from 18 to 88 years. One hundred and 10 patients were implanted with Carina and with 134 Esteem. There were registered 92 males and 67 females. Five studies provided no information about patients’ age or gender. From the data available, the follow-up ranged from 2 to 29.4 months. Data Synthesis The comparison of the results about word recognition is difficult as there was no standardization of measurement. The results were obtained from various sound intensities and different frequencies. The outcomes comparing to conventional HAs were conflicting. Nevertheless, all results comparing to unaided condition showed improvement and showed a subjective improvement of quality of life. Conclusion There are still some problems to be solved, mainly related to device functioning and price. Due to the relatively few publications available and small sample sizes, we must be careful in extrapolating these results to a broader population. Additionally, none of all these studies represented level high levels of evidence (i.e. randomized controlled trials). PMID:25329463

  14. Design and Evaluation of a Fully Implantable Control Unit for Blood Pumps.

    PubMed

    Unthan, Kristin; Gräf, Felix; Laumen, Marco; Finocchiaro, Thomas; Sommer, Christoph; Lanmüller, Hermann; Steinseifer, Ulrich

    2015-01-01

    As the number of donor hearts is limited while more and more patients suffer from end stage biventricular heart failure, Total Artificial Hearts become a promising alternative to conventional treatment. While pneumatic devices sufficiently supply the patients with blood flow, the patient's quality of life is limited by the percutaneous pressure lines and the size of the external control unit. This paper describes the development of the control unit of the ReinHeart, a fully implantable Total Artificial Heart. General requirements for any implantable control unit are defined from a technical and medical point of view: necessity of a Transcutaneous Energy Transmission, autonomous operation, safety, geometry, and efficiency. Based on the requirements, a prototype is designed; it incorporates a LiFePo4 battery pack with charger, a rectifier for transcutaneous energy transmission, the motor's driver electronics, and a microcontroller which monitors and controls all functions. In validation tests, the control unit demonstrated a stable operation on TET and battery supply and a safe switching from one supply to the other. The overall mean efficiency is 14% on TET and 22% on battery supply. The control unit is suitable for chronic animal trials of the ReinHeart.

  15. A 32-channel fully implantable wireless neurosensor for simultaneous recording from two cortical regions.

    PubMed

    Aceros, Juan; Yin, Ming; Borton, David A; Patterson, William R; Nurmikko, Arto V

    2011-01-01

    We present a fully implantable, wireless, neurosensor for multiple-location neural interface applications. The device integrates two independent 16-channel intracortical microelectrode arrays and can simultaneously acquire 32 channels of broadband neural data from two separate cortical areas. The system-on-chip implantable sensor is built on a flexible Kapton polymer substrate and incorporates three very low power subunits: two cortical subunits connected to a common subcutaneous subunit. Each cortical subunit has an ultra-low power 16-channel preamplifier and multiplexer integrated onto a cortical microelectrode array. The subcutaneous epicranial unit has an inductively coupled power supply, two analog-to-digital converters, a low power digital controller chip, and microlaser-based infrared telemetry. The entire system is soft encapsulated with biocompatible flexible materials for in vivo applications. Broadband neural data is conditioned, amplified, and analog multiplexed by each of the cortical subunits and passed to the subcutaneous component, where it is digitized and combined with synchronization data and wirelessly transmitted transcutaneously using high speed infrared telemetry.

  16. 21 CFR 882.5840 - Implanted intracerebral/subcortical stimulator for pain relief.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... pain relief. 882.5840 Section 882.5840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5840 Implanted intracerebral/subcortical stimulator for pain relief. (a) Identification. An implanted intracerebral/subcortical stimulator for pain relief is a device that applies electrical...

  17. 21 CFR 882.5840 - Implanted intracerebral/subcortical stimulator for pain relief.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... pain relief. 882.5840 Section 882.5840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5840 Implanted intracerebral/subcortical stimulator for pain relief. (a) Identification. An implanted intracerebral/subcortical stimulator for pain relief is a device that applies electrical...

  18. 21 CFR 882.5840 - Implanted intracerebral/subcortical stimulator for pain relief.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... pain relief. 882.5840 Section 882.5840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5840 Implanted intracerebral/subcortical stimulator for pain relief. (a) Identification. An implanted intracerebral/subcortical stimulator for pain relief is a device that applies electrical...

  19. 21 CFR 882.5840 - Implanted intracerebral/subcortical stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... pain relief. 882.5840 Section 882.5840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5840 Implanted intracerebral/subcortical stimulator for pain relief. (a) Identification. An implanted intracerebral/subcortical stimulator for pain relief is a device that applies electrical...

  20. 21 CFR 882.5840 - Implanted intracerebral/subcortical stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... pain relief. 882.5840 Section 882.5840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5840 Implanted intracerebral/subcortical stimulator for pain relief. (a) Identification. An implanted intracerebral/subcortical stimulator for pain relief is a device that applies electrical...

  1. Research Progress of Subretinal Implant based on Electronic Stimulation.

    PubMed

    Xing, Wang; Chenglin, Peng; Zhiqiang, Zhao; Xiaogang, Luo; Ning, Hu; Huiquan, Zhang

    2005-01-01

    Subretinal prosthesis is one kind of retinal prosthesis, which means that a microimplant based on MEMS technology is inserted in the subretinal space to stimulate the optic nerve and elicit an electrical-evoked response on the cortical region. The subretinal implant is made up of extraocular part and intraocular part. As an important part, the latter consists of accessorial setting and stimulation chip that contains microphotodiode array (MPDA) and microelectrodes. The paper main body is made up of four parts. Firstly significance of the retinal prosthesis is given out;secondly fundamentals on both in retina physiology and retinal prosthesis theory are introduced simply. Then the key segment about the subretinal microimplant is presented in detail. In the third segment, first of all is its design concept, the second is fabrication of MPDA which consists of several parts. First is microscopic configuration, electric prototype schematic and chip image COMS. The second is detailed fabrication flow with several special materials. Then is situation of its dimension. The fourth segment presents challenge and outlook.

  2. [Research progress of subretinal implant based on electronic stimulation].

    PubMed

    Wang, Xing; Peng, Chenglin; Zhang, Ying; Zhang, Sijie; Hu, Ning; Yang, Lili; Zheng, Erxin

    2008-02-01

    Subretinal prosthesis is one kind of retinal prosthesis, which means that a microimplant based on MEMS technology is inserted in the subretinal space to stimulate the optic nerve and elicit an electrical-evoked response on the cortical region. The subretinal implant is made up of extraocular part and intraocular part. As an important part, the latter consists of accessorial setting and stimulation chip that contains microphotodiode array (MPDA) and microelectrodes. The paper main body is made up of four parts. Firstly significance of the retinal prosthesis is given out; secondly fundamentals on both in retina physiology and retinal prosthesis theory are introduced simply. Then the key segment about the subretinal microimplant is presented in detail. In the third segment, first of all is its design concept, the second is fabrication of MPDA which consists of several parts. First is microscopic configuration, electric prototype schematic and chip image CMOS. The second is detailed fabrication flow with several special materials. Then is situation of its dimension. The fourth segment presents challenge and outlook.

  3. A high bandwidth fully implantable mouse telemetry system for chronic ECG measurement.

    PubMed

    Russell, David M; McCormick, Daniel; Taberner, Andrew J; Malpas, Simon C; Budgett, David M

    2011-01-01

    We report on the development of a novel system that enables the wireless transmission of high-bandwidth physiological data from a freely moving mouse. The system employs inductive power transfer (IPT) to continuously power a battery-less transmitter using an array of overlapping planar coils placed under the animal. This arrangement provides a minimum of 20 mW at all locations and orientations across the mouse cage by selecting a coil which will sufficiently power the transmitter. Coil selection is performed by feedback control across the 2.4 GHz wireless link. A device was constructed utilizing this novel IPT system and was used to capture high-fidelity electrocardiogram (ECG) signal sampled at 2 kHz in mice. Various attributes of the ECG signal such as QT, QRS, and PR intervals could be obtained with a high degree of accuracy. This system potentially provides lifetime continuous high bandwidth measurement of physiological signals from a fully implanted telemeter in a freely moving mouse.

  4. Use of brain MRI after deep brain stimulation hardware implantation.

    PubMed

    Nazzaro, Jules M; Lyons, Kelly E; Wetzel, Louis H; Pahwa, Rajesh

    2010-03-01

    The objective of this study was to examine the experience with and safety of brain 1.5 Tesla (T) magnetic resonance imaging (MRI) in deep brain stimulation (DBS) patients. This was a retrospective review of brain MRI scanning performed on DBS patients at the University of Kansas Medical Center between January 1995 and December 2007. A total of 249 DBS patients underwent 445 brain 1.5 T MRI scan sessions encompassing 1,092 individual scans using a transmit-receive head coil, representing the cumulative scanning of 1,649 DBS leads. Patients with complete implanted DBS systems as well as those with externalized leads underwent brain imaging. For the majority of scans, specific absorption rates localized to the head (SAR(H)) were estimated and in all cases SAR(H) were higher than that specified in the present product labeling. There were no clinical or hardware related adverse events secondary to brain MRI scanning. Our data should not be extrapolated to encourage MRI scanning beyond the present labeling. Rather, our data may contribute to further defining safe MRI scanning parameters that might ultimately be adopted in future product labeling as more centers report in detail their experiences.

  5. Effects of stimulation rates on Cantonese lexical tone perception by cochlear implant users in Hong Kong.

    PubMed

    Au, D K K

    2003-12-01

    High, moderate and low stimulation rates of 1800, 800 and 400 pulse per second (pps)/channel, respectively, were used to test the effects of stimulation rates on the discrimination and identification of Cantonese lexical tones in 11 Chinese post-lingually deafened adults with cochlear implants (CIs). The subjects were implanted with the MED-EL Combi 40+ CI system. They were randomly assigned to each of the stimulation rate conditions according to an ABC design. In both the Cantonese lexical tone perception tests, the subjects reached the highest scores in the high-stimulation-rate condition, and the lowest scores in the low-stimulation-rate condition (P < 0.01). Post hoc comparisons between different stimulation rates did not yield consistent results. This study demonstrated that the maximum stimulation rate of 1800 pps/channel could be an 'optimal' stimulation rate and an informed choice of parameter for the benefit of Cantonese-speaking CI users in lexical tone perception.

  6. Prevention of mechanical failures in implanted spinal cord stimulation systems.

    PubMed

    Henderson, Jaimie M; Schade, C M; Sasaki, John; Caraway, David L; Oakley, John C

    2006-07-01

    Introduction.  Spinal cord stimulation (SCS) is an effective procedure for the treatment of neuropathic extremity pain, with success rates approaching 70%. However, mechanical failures, including breakage and migration, can significantly limit the long-term effectiveness of SCS. A systematic analysis of surgical techniques was undertaken by a consensus group, coupled with extensive in vivo and in vitro biomechanical testing of system components. Methods.  A computer model based on morphometric data was used to predict movement in a standard SCS system between an anchored lead and pulse generator placed in various locations. These displacements were then used to determine a realistic range of forces exerted on components of the SCS system. Laboratory fixtures were constructed to subject leads and anchors to repetitive stresses until failure occurred. An in vivo sheep model also was used to determine system compliances and failure thresholds in a biologically realistic setting. A panel of experienced implanters then interpreted the results and related them to clinical observations. Results.  Use of a soft silastic anchor pushed through the fascia to provide a larger bend radius for the lead was associated with a time to failure 65 times longer than an anchored but unsupported lead. In addition, failures of surgical paddle leads occurred when used with an anchor, whereas without an anchor, no failures occurred to 1 million cycles. Based on these findings, the panel recommended a paramedian approach, abdominal pulse generator placement, maximizing bend radius by pushing the anchor through the fascia, and anchoring of the extension connector near the lead anchor. Discussion.  Several factors are important in longevity of SCS systems. We discovered that technical factors can make a large difference in SCS reliability and that strict attention to these "best practices" will provide the best chance for maintaining the integrity of SCS systems over the long term.

  7. Radiofrequency energy ablation in a child with an implanted vagus nerve stimulator.

    PubMed

    Radolec, Mackenzy M; Beerman, Lee B; Arora, Gaurav

    2015-10-01

    An 8-year-old girl with supraventricular tachycardia and an implanted vagus nerve stimulator underwent radiofrequency ablation of her supraventricular tachycardia substrate. No known literature exists addressing the potential interaction of these two technologies, although there are reported cases of interaction between radiofrequency and other implanted stimulating devices such as pacemakers. The procedure was performed successfully without observed interaction, and the patient's family reported no significant change in frequency of seizure control.

  8. A PARYLENE-BASED MICROELECTRODE ARRAY IMPLANT FOR SPINAL CORD STIMULATION IN RATS

    PubMed Central

    Nandra, Mandheerej. S.; Lavrov, Igor A.; Edgerton, V. Reggie; Tai, Yu-Chong

    2011-01-01

    The design and fabrication of an epidural spinal cord implant using a parylene-based microelectrode array is presented. Rats with hindlimb paralysis from a complete spinal cord transection were implanted with the device and studied for up to eight weeks, where we have demonstrated recovery of hindlimb stepping functionality through pulsed stimulation. The microelectrode array allows for a high degree of freedom and specificity in selecting the site of stimulation compared to wire-based implants, and triggers varied biological responses that can lead to an increased understanding of the spinal cord and locomotion recovery for victims of spinal cord injury. PMID:21841938

  9. A PARYLENE-BASED MICROELECTRODE ARRAY IMPLANT FOR SPINAL CORD STIMULATION IN RATS.

    PubMed

    Nandra, Mandheerej S; Lavrov, Igor A; Edgerton, V Reggie; Tai, Yu-Chong

    2011-01-23

    The design and fabrication of an epidural spinal cord implant using a parylene-based microelectrode array is presented. Rats with hindlimb paralysis from a complete spinal cord transection were implanted with the device and studied for up to eight weeks, where we have demonstrated recovery of hindlimb stepping functionality through pulsed stimulation. The microelectrode array allows for a high degree of freedom and specificity in selecting the site of stimulation compared to wire-based implants, and triggers varied biological responses that can lead to an increased understanding of the spinal cord and locomotion recovery for victims of spinal cord injury.

  10. Melatonin plus porcine bone on discrete calcium deposit implant surface stimulates osteointegration in dental implants.

    PubMed

    Calvo-Guirado, José Luis; Gómez-Moreno, Gerardo; Barone, Antonio; Cutando, Antonio; Alcaraz-Baños, Miguel; Chiva, Fernando; López-Marí, Laura; Guardia, Javier

    2009-09-01

    The aim of this study was to evaluate the effect of the topical application of melatonin mixed with collagenized porcine bone to accelerate the osteointegration on the rough discrete calcium deposit (DCD) surface implants in Beagle dogs 3 months after their insertion. In preparation for subsequent insertion of dental implants, lower premolars and molars were extracted from 12 Beagle dogs. Each mandible received three parallel wall implants with discrete calcium deposit (DCD) surface of 4 mm in diameter and 10 mm in length. The implants were randomly assigned to the distal sites on each side of the mandible in three groups: group I implants alone, group II implants with melatonin and group III implants with melatonin and porcine bone. Prior to implanting, 5 mg lyophylized powdered melatonin was applied to one bone hole at each side of the mandible. None was applied at the control sites. Ten histological sections per implant were obtained for histomorphometric studies. After a 4-wk treatment period, melatonin significantly increased the perimeter of bone that was in direct contact with the treated implants (P < 0.0001), bone density (P < 0.0001), new bone formation (P < 0.0001) in comparison with control implants. Topical application of melatonin on DCD surface may act as a biomimetic agent in the placement of endo-osseous dental implants and enhance the osteointegration. Melatonin combined with porcine bone on DCD implants reveals more bone to implant contact at 12 wk (84.5 +/- 1.5%) compared with melatonin treated (75.1 +/- 1.4%) and nonmelatonin treated surface implants (64 +/- 1.4%).

  11. Management of a fully edentulous mandible using an implant supported overdenture: a case report.

    PubMed

    Egesi, Edward; Uguru, Chibuzo

    2015-01-01

    The choice for rehabilitation of an edentulous mandible by an implant supported overdenture is now the recommended minimally accepted option. This prosthesis has many advantages over conventional dentures and root or tooth supported overdentuers. We present a case of a failed conventional long span bridge which was treated satisfactorily using a four implant supported over denture and discuss our treatment option along with its advantages. This is a new and developing treatment option in our country.

  12. CUSTOM-FIT RADIOLUCENT CRANIAL IMPLANTS FOR NEUROPHYSIOLOGICAL RECORDING AND STIMULATION

    PubMed Central

    Mulliken, Grant H; Bichot, Narcisse P; Ghadooshahy, Azriel; Sharma, Jitendra; Kornblith, Simon; Philcock, Michael; Desimone, Robert

    2015-01-01

    Background Recording and manipulating neural activity in awake behaving animal models requires long-term implantation of cranial implants that must address a variety of design considerations, which include preventing infection, minimizing tissue damage, mechanical strength of the implant, and MRI compatibility. New Method Here we address these issues by designing legless, custom-fit cranial implants using structural MRI-based reconstruction of the skull and that are made from carbon-reinforced PEEK. Results We report several novel custom-fit radiolucent implant designs, which include a legless recording chamber, a legless stimulation chamber, a multi-channel microdrive and a head post. The fit to the skull was excellent in all cases, with no visible gaps between the base of the implants and the skull. The wound margin was minimal in size and showed no sign of infection or skin recession. Comparison with Existing Methods Cranial implants used for neurophysiological investigation in awake behaving animals often employ methyl methacrylate (MMA) to serve as a bonding agent to secure the implant to the skull. Other designs rely on radially extending legs to secure the implant. Both of these methods have significant drawbacks. MMA is toxic to bone and frequently leads to infection while radially extending legs cause the skin to recede away from the implant, ultimately exposing bone and proliferating granulation tissue. Conclusions These radiolucent implants constitute a set of technologies suitable for reliable long-term recording, which minimize infection and tissue damage. PMID:25542350

  13. Vestibular implantation and longitudinal electrical stimulation of the semicircular canal afferents in human subjects

    PubMed Central

    Ling, Leo; Nie, Kaibao; Jameyson, Elyse; Phillips, Christopher M.; Nowack, Amy L.; Golub, Justin S.; Rubinstein, Jay T.

    2015-01-01

    Animal experiments and limited data in humans suggest that electrical stimulation of the vestibular end organs could be used to treat loss of vestibular function. In this paper we demonstrate that canal-specific two-dimensionally (2D) measured eye velocities are elicited from intermittent brief 2 s biphasic pulse electrical stimulation in four human subjects implanted with a vestibular prosthesis. The 2D measured direction of the slow phase eye movements changed with the canal stimulated. Increasing pulse current over a 0–400 μA range typically produced a monotonic increase in slow phase eye velocity. The responses decremented or in some cases fluctuated over time in most implanted canals but could be partially restored by changing the return path of the stimulation current. Implantation of the device in Meniere's patients produced hearing and vestibular loss in the implanted ear. Electrical stimulation was well tolerated, producing no sensation of pain, nausea, or auditory percept with stimulation that elicited robust eye movements. There were changes in slow phase eye velocity with current and over time, and changes in electrically evoked compound action potentials produced by stimulation and recorded with the implanted device. Perceived rotation in subjects was consistent with the slow phase eye movements in direction and scaled with stimulation current in magnitude. These results suggest that electrical stimulation of the vestibular end organ in human subjects provided controlled vestibular inputs over time, but in Meniere's patients this apparently came at the cost of hearing and vestibular function in the implanted ear. PMID:25652917

  14. In vivo stimulation of bone formation by aluminum and oxygen plasma surface-modified magnesium implants.

    PubMed

    Wong, Hoi Man; Zhao, Ying; Tam, Vivian; Wu, Shuilin; Chu, Paul K; Zheng, Yufeng; To, Michael Kai Tsun; Leung, Frankie K L; Luk, Keith D K; Cheung, Kenneth M C; Yeung, Kelvin W K

    2013-12-01

    A newly developed magnesium implant is used to stimulate bone formation in vivo. The magnesium implant after undergoing dual aluminum and oxygen plasma implantation is able to suppress rapid corrosion, leaching of magnesium ions, as well as hydrogen gas release from the biodegradable alloy in simulated body fluid (SBF). No released aluminum is detected from the SBF extract and enhanced corrosion resistance properties are confirmed by electrochemical tests. In vitro studies reveal enhanced growth of GFP mouse osteoblasts on the aluminum oxide coated sample, but not on the untreated sample. In addition to that a small amount (50 ppm) of magnesium ions can enhance osteogenic differentiation as reported previously, our present data show a low concentration of hydrogen can give rise to the same effect. To compare the bone volume change between the plasma-treated magnesium implant and untreated control, micro-computed tomography is performed and the plasma-treated implant is found to induce significant new bone formation adjacent to the implant from day 1 until the end of the animal study. On the contrary, bone loss is observed during the first week post-operation from the untreated magnesium sample. Owing to the protection offered by the Al2O3 layer, the plasma-treated implant degrades more slowly and the small amount of released magnesium ions stimulate new bone formation locally as revealed by histological analyses. Scanning electron microscopy discloses that the Al2O3 layer at the bone-implant interface is still present two months after implantation. In addition, no inflammation or tissue necrosis is observed from both treated and untreated implants. These promising results suggest that the plasma-treated magnesium implant can stimulate bone formation in vivo in a minimal invasive way and without causing post-operative complications.

  15. Battery-powered implantable nerve stimulator for chronic activation of two skeletal muscles using multichannel techniques.

    PubMed

    Lanmüller, H; Sauermann, S; Unger, E; Schnetz, G; Mayr, W; Bijak, M; Rafolt, D; Girsch, W

    1999-05-01

    Chronic activation of skeletal muscle is used clinically in representative numbers for diaphragm pacing to restore breathing and for dynamic graciloplasty to achieve fecal continence. The 3 different stimulation techniques currently used for electrophrenic respiration (EPR) all apply high frequency powered implants. It was our goal to make these stimulation methods applicable for EPR by a battery-powered nerve stimulator that would maximize the patient's freedom of movement. Additionally, the system should allow the implementation of multichannel techniques and alternating stimulation of 2 skeletal muscles as a further improvement in graciloplasty. Generally, the developed implantable nerve stimulator can be used for simultaneous and alternating activation of 2 skeletal muscles. Stimulation of the motor nerve is achieved by either single channel or multichannel methods. Carousel stimulation and sequential stimulation can be used for graciloplasty as well as for EPR. For EPR we calculated an operating time of the implant battery of 4.1 years based on the clinically used stimulation parameters with carousel stimulation. The multichannel pulse generator is hermetically sealed in a titanium case sized 65 x 17 mm (diameter x height) and weighs 88 g.

  16. Pulse-Width Modulation of Optogenetic Photo-Stimulation Intensity for Application to Full-Implantable Light Sources.

    PubMed

    Chen, Fu-Yu Beverly; Budgett, David M; Sun, Yuhui; Malpas, Simon; McCormick, Daniel; Freestone, Peter S

    2017-02-01

    Optogenetics allows control of neuronal activity with unprecedented spatiotemporal precision, and has enabled both significant advances in neuroscience and promising clinical prospects for some neurological, cardiac, and sensory disorders. The ability to chronically stimulate light-sensitive excitable cells is crucial for developing useful research tools and viable long-term treatment strategies. Popular optogenetic stimulation devices often rely on bench-top light-sources tethered via an optical fibre to the research animal, or significant componentry protruding externally from animal. These approaches are prone to infection, vulnerable to damage and restrict the experimental approaches that can be conducted. An ideal optogenetic stimulator would be contained entirely within the animal and provide precisely controlled optical output. However, existing prototypes of fully implantable devices rely on amplitude tuning of wireless power, which can vary strongly with environmental conditions. Here we show that pulse-width modulation (PWM) of the intensity of a light-emitting diode (LED) can enable control of photo-stimulation intensity equivalent to direct amplitude modulation. This result has significant implications for fully implantable light delivery tools, as PWM can be implemented with simple and miniaturized circuit architectures. We have modified a telemeter device previously developed by our group to include a small form-factor LED capable of generating sufficient optical power with manageable electrical power requirements and minimal heat generation. We have tested key device components in an in vitro mouse brain slice preparation and shown that pulse-width-modulation is an alternative method to modulate photo-stimulation intensity using a miniature circuit and providing easy control.

  17. A fully integrated wireless system for intracranial direct cortical stimulation, real-time electrocorticography data transmission, and smart cage for wireless battery recharge.

    PubMed

    Piangerelli, Marco; Ciavarro, Marco; Paris, Antonino; Marchetti, Stefano; Cristiani, Paolo; Puttilli, Cosimo; Torres, Napoleon; Benabid, Alim Louis; Romanelli, Pantaleo

    2014-01-01

    Wireless transmission of cortical signals is an essential step to improve the safety of epilepsy procedures requiring seizure focus localization and to provide chronic recording of brain activity for Brain Computer Interface (BCI) applications. Our group developed a fully implantable and externally rechargeable device, able to provide wireless electrocorticographic (ECoG) recording and cortical stimulation (CS). The first prototype of a wireless multi-channel very low power ECoG system was custom-designed to be implanted on non-human primates. The device, named ECOGIW-16E, is housed in a compact hermetically sealed Polyether ether ketone (PEEK) enclosure, allowing seamless battery recharge. ECOGIW-16E is recharged in a wireless fashion using a special cage designed to facilitate the recharge process in monkeys and developed in accordance with guidelines for accommodation of animals by Council of Europe (ETS123). The inductively recharging cage is made up of nylon and provides a thoroughly novel experimental setting on freely moving animals. The combination of wireless cable-free ECoG and external seamless battery recharge solves the problems and shortcomings caused by the presence of cables leaving the skull, providing a safer and easier way to monitor patients and to perform ECoG recording on primates. Data transmission exploits the newly available Medical Implant Communication Service band (MICS): 402-405 MHz. ECOGIW-16E was implanted over the left sensorimotor cortex of a macaca fascicularis to assess the feasibility of wireless ECoG monitoring and brain mapping through CS. With this device, we were able to record the everyday life ECoG signal from a monkey and to deliver focal brain stimulation with movement elicitation.

  18. Non-penetrating round window electrode stimulation for tinnitus therapy followed by cochlear implantation.

    PubMed

    Wenzel, Gentiana I; Sarnes, Petra; Warnecke, Athanasia; Stöver, Timo; Jäger, Burkard; Lesinski-Schiedat, Anke; Lenarz, Thomas

    2015-11-01

    One main theory behind the origin of tinnitus is based on the idea that alterations of the spontaneous electrical activity within the auditory system lead to abnormal firing patterns in the affected nervous structures [1]. A possible therapeutic option is the use of electrical stimulation of the auditory nerve for the recovery or at least limitation of the abnormal firing pattern to a level that can be easily tolerated by the patient. The Tinnelec Implant consists of a single non-penetrating stimulation electrode connected to a Neurelec cochlear implant system. As a first feasibility study, before starting implantations in hearing patients, we thought to assess the potential of the Tinnelec stimulation to treat tinnitus in unilateral deaf patients, analysing hereby its effectivity and risks. Three patients suffering from unilateral tinnitus resistant to pharmacological treatment and ipsilateral severe to profound sensorineural hearing loss/deafness were implanted with a Tinnelec system between September 2007 and July 2008, at the ENT Department of Hannover Medical School. The stimulation strategy was chosen to induce alleviation of the tinnitus through suppression, masking and/or habituation and the response of each patient on the treatment was monitored using a visual analogue scale (VAS) on loudness and annoyance of tinnitus, mood of the patient, as well as the tinnitus handicap inventory (THI). All patients had a benefit from the electrical stimulation for their tinnitus (THI-score improvement of 20-70), however, not all participants profited from the Tinnelec system in same way and degree. In one patient, despite good results, the device had to be replaced with a conventional cochlear implant because of Tinnelec-independent increase in hearing loss on the contralateral ear. Additionally, due to the extension of cochlear implant indications, the devices of the other two patients have been meanwhile replaced with a conventional cochlear implant to benefit

  19. New cosurface capacitive stimulators for the development of active osseointegrative implantable devices

    NASA Astrophysics Data System (ADS)

    Soares Dos Santos, Marco P.; Marote, Ana; Santos, T.; Torrão, João; Ramos, A.; Simões, José A. O.; da Cruz E Silva, Odete A. B.; Furlani, Edward P.; Vieira, Sandra I.; Ferreira, Jorge A. F.

    2016-07-01

    Non-drug strategies based on biophysical stimulation have been emphasized for the treatment and prevention of musculoskeletal conditions. However, to date, an effective stimulation system for intracorporeal therapies has not been proposed. This is particularly true for active intramedullary implants that aim to optimize osseointegration. The increasing demand for these implants, particularly for hip and knee replacements, has driven the design of innovative stimulation systems that are effective in bone-implant integration. In this paper, a new cosurface-based capacitive system concept is proposed for the design of implantable devices that deliver controllable and personalized electric field stimuli to target tissues. A prototype architecture of this system was constructed for in vitro tests, and its ability to deliver controllable stimuli was numerically analyzed. Successful results were obtained for osteoblastic proliferation and differentiation in the in vitro tests. This work provides, for the first time, a design of a stimulation system that can be embedded in active implantable devices for controllable bone-implant integration and regeneration. The proposed cosurface design holds potential for the implementation of novel and innovative personalized stimulatory therapies based on the delivery of electric fields to bone cells.

  20. New cosurface capacitive stimulators for the development of active osseointegrative implantable devices

    PubMed Central

    Soares dos Santos, Marco P.; Marote, Ana; Santos, T.; Torrão, João; Ramos, A.; Simões, José A. O.; da Cruz e Silva, Odete A. B.; Furlani, Edward P.; Vieira, Sandra I.; Ferreira, Jorge A. F.

    2016-01-01

    Non-drug strategies based on biophysical stimulation have been emphasized for the treatment and prevention of musculoskeletal conditions. However, to date, an effective stimulation system for intracorporeal therapies has not been proposed. This is particularly true for active intramedullary implants that aim to optimize osseointegration. The increasing demand for these implants, particularly for hip and knee replacements, has driven the design of innovative stimulation systems that are effective in bone-implant integration. In this paper, a new cosurface-based capacitive system concept is proposed for the design of implantable devices that deliver controllable and personalized electric field stimuli to target tissues. A prototype architecture of this system was constructed for in vitro tests, and its ability to deliver controllable stimuli was numerically analyzed. Successful results were obtained for osteoblastic proliferation and differentiation in the in vitro tests. This work provides, for the first time, a design of a stimulation system that can be embedded in active implantable devices for controllable bone-implant integration and regeneration. The proposed cosurface design holds potential for the implementation of novel and innovative personalized stimulatory therapies based on the delivery of electric fields to bone cells. PMID:27456818

  1. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode

    PubMed Central

    MacEwan, Matthew R.; Zellmer, Erik R.; Wheeler, Jesse J.; Burton, Harold; Moran, Daniel W.

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm2 surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation. PMID:28008303

  2. Regenerated Sciatic Nerve Axons Stimulated through a Chronically Implanted Macro-Sieve Electrode.

    PubMed

    MacEwan, Matthew R; Zellmer, Erik R; Wheeler, Jesse J; Burton, Harold; Moran, Daniel W

    2016-01-01

    Sieve electrodes provide a chronic interface for stimulating peripheral nerve axons. Yet, successful utilization requires robust axonal regeneration through the implanted electrode. The present study determined the effect of large transit zones in enhancing axonal regeneration and revealed an intimate neural interface with an implanted sieve electrode. Fabrication of the polyimide sieve electrodes employed sacrificial photolithography. The manufactured macro-sieve electrode (MSE) contained nine large transit zones with areas of ~0.285 mm(2) surrounded by eight Pt-Ir metallized electrode sites. Prior to implantation, saline, or glial derived neurotropic factor (GDNF) was injected into nerve guidance silicone-conduits with or without a MSE. The MSE assembly or a nerve guidance conduit was implanted between transected ends of the sciatic nerve in adult male Lewis rats. At 3 months post-operation, fiber counts were similar through both implant types. Likewise, stimulation of nerves regenerated through a MSE or an open silicone conduit evoked comparable muscle forces. These results showed that nerve regeneration was comparable through MSE transit zones and an open conduit. GDNF had a minimal positive effect on the quality and morphology of fibers regenerating through the MSE; thus, the MSE may reduce reliance on GDNF to augment axonal regeneration. Selective stimulation of several individual muscles was achieved through monopolar stimulation of individual electrodes sites suggesting that the MSE might be an optimal platform for functional neuromuscular stimulation.

  3. Evaluation of focused multipolar stimulation for cochlear implants in acutely deafened cats

    NASA Astrophysics Data System (ADS)

    George, Shefin S.; Wise, Andrew K.; Shivdasani, Mohit N.; Shepherd, Robert K.; Fallon, James B.

    2014-12-01

    Objective. The conductive nature of the fluids and tissues of the cochlea can lead to broad activation of spiral ganglion neurons using contemporary cochlear implant stimulation configurations such as monopolar (MP) stimulation. The relatively poor spatial selectivity is thought to limit implant performance, particularly in noisy environments. Several current focusing techniques have been proposed to reduce the spread of activation with the aim towards achieving improved clinical performance. Approach. The present research evaluated the efficacy of focused multipolar (FMP) stimulation, a relatively new focusing technique in the cochlea, and compared its efficacy to both MP stimulation and tripolar (TP) stimulation. The spread of neural activity across the inferior colliculus (IC), measured by recording the spatial tuning curve, was used as a measure of spatial selectivity. Adult cats (n = 6) were acutely deafened and implanted with an intracochlear electrode array before multi-unit responses were recorded across the cochleotopic gradient of the contralateral IC. Recordings were made in response to acoustic and electrical stimulation using the MP, TP and FMP configurations. Main results. FMP and TP stimulation resulted in greater spatial selectivity than MP stimulation. However, thresholds were significantly higher (p < 0.001) for FMP and TP stimulation compared to MP stimulation. There were no differences found in spatial selectivity and threshold between FMP and TP stimulation. Significance. The greater spatial selectivity of FMP and TP stimulation would be expected to result in improved clinical performance. However, further research will be required to demonstrate the efficacy of these modes of stimulation after longer durations of deafness.

  4. Cochlear Implant Stimulation of a Hearing Ear Generates Separate Electrophonic and Electroneural Responses

    PubMed Central

    Baumhoff, Peter; Kral, Andrej

    2016-01-01

    Electroacoustic stimulation in subjects with residual hearing is becoming more widely used in clinical practice. However, little is known about the properties of electrically induced responses in the hearing cochlea. In the present study, normal-hearing guinea pig cochleae underwent cochlear implantation through a cochleostomy without significant loss of hearing. Using recordings of unit activity in the midbrain, we were able to investigate the excitation patterns throughout the tonotopic field determined by acoustic stimulation. With the cochlear implant and the midbrain multielectrode arrays left in place, the ears were pharmacologically deafened and electrical stimulation was repeated in the deafened condition. The results demonstrate that, in addition to direct neuronal (electroneuronal) stimulation, in the hearing cochlea excitation of the hair cells occurs (“electrophonic responses”) at the cochlear site corresponding to the dominant temporal frequency components of the electrical stimulus, provided these are < 12 kHz. The slope of the rate–level functions of the neurons in the deafened condition was steeper and the firing rate was higher than in the hearing condition at those sites that were activated in the two conditions. Finally, in a monopolar stimulation configuration, the differences between hearing status conditions were smaller than in the narrower (bipolar) configurations. SIGNIFICANCE STATEMENT Stimulation with cochlear implants and hearing aids is becoming more widely clinically used in subjects with residual hearing. The neurophysiological characteristics underlying electroacoustic stimulation and the mechanism of its benefit remain unclear. The present study directly demonstrates that cochlear implantation does not interfere with the normal mechanical and physiological function of the cochlea. For the first time, it double-dissociates the electrical responses of hair cells (electrophonic responses) from responses of the auditory nerve

  5. An implantable electrical stimulator used for peripheral nerve rehabilitation in rats

    PubMed Central

    RUI, BIYU; GUO, SHANGCHUN; ZENG, BINGFANG; WANG, JINGWU; CHEN, XIN

    2013-01-01

    This study evaluated an implantable electrical stimulator using a sciatic nerve injury animal model, and ethological, electrophysiological and histological assessments. Forty Sprague-Dawley rats were used in the study, and were subjected to crushing of the right sciatic nerve with a micro-vessel clamp. Electrical stimulators were implanted in twenty of the rats (the implantation group), while the remaining twenty rats were assigned to the control group. At three and six weeks following the surgery, the sciatic nerve function index (SFI) and the motor nerve conduction velocity (MCV) were demonstrated to be significantly higher in the implantation group compared with the control group (P<0.05). Histological analysis, using hematoxylin and eosin (H&E) staining, showed the typical pathological atrophy, and an assessment of the nerve that had been crushed revealed distal axonal breakdown in the control group. These results suggest that the implantable electrical stimulator was effective, and was suitable for implantation in a Sprague-Dawley rat model. PMID:23935712

  6. Implantable power generation system utilizing muscle contractions excited by electrical stimulation.

    PubMed

    Sahara, Genta; Hijikata, Wataru; Tomioka, Kota; Shinshi, Tadahiko

    2016-06-01

    An implantable power generation system driven by muscle contractions for supplying power to active implantable medical devices, such as pacemakers and neurostimulators, is proposed. In this system, a muscle is intentionally contracted by an electrical stimulation in accordance with the demands of the active implantable medical device for electrical power. The proposed system, which comprises a small electromagnetic induction generator, electrodes with an electrical circuit for stimulation and a transmission device to convert the linear motion of the muscle contractions into rotational motion for the magneto rotor, generates electrical energy. In an ex vivo demonstration using the gastrocnemius muscle of a toad, which was 28 mm in length and weighed 1.3 g, the electrical energy generated by the prototype exceeded the energy consumed for electrical stimulation, with the net power being 111 µW. It was demonstrated that the proposed implantable power generation system has the potential to replace implantable batteries for active implantable medical devices.

  7. Correction of Footdrop Due to Multiple Sclerosis Using the STIMuSTEP Implanted Dropped Foot Stimulator

    PubMed Central

    Wilkinson Hart, Ingrid A.; Khan, Mansoor S.; Slade-Sharman, Diana E.M.

    2016-01-01

    Background: Footdrop is a significant problem in multiple sclerosis, reducing the safety and efficiency of walking. Functional electrical stimulation (FES) can produce dorsiflexion, correcting footdrop. The purpose of this retrospective analysis of clinical study data was to compare the effect of external and implanted FES devices for the correction of footdrop. Methods: External FES was used for a minimum of 6 months before implantation. Walking performance was assessed using 10-m walking speed, 3-minute walking distance, the Physiological Cost Index, and health- and device-related quality of life and device-use questionnaires. Assessments were made before implantation and a mean (SD) of 128 (24) days after surgery, with additional walking speed measurements at 3 years. Results: Twenty-three people with multiple sclerosis received the STIMuSTEP implant. Both devices enabled statistically significant increases in walking speed and walking distance, with a strong trend toward a reduced Physiological Cost Index, indicating that walking required less effort (P = .07). Both devices improved device-related quality of life. Walking speed gain with FES was maintained at 3 years. Three implants failed after falls, and there was one case of neuropraxia. The implant was used more days per week and was quicker to put on each day than the external FES device. Conclusions: The STIMuSTEP implanted dropped foot stimulator is an effective long-term intervention for the correction of footdrop. PMID:27803639

  8. Speech perception with interaction-compensated simultaneous stimulation and long pulse durations in cochlear implant users.

    PubMed

    Schatzer, Reinhold; Koroleva, Inna; Griessner, Andreas; Levin, Sergey; Kusovkov, Vladislav; Yanov, Yuri; Zierhofer, Clemens

    2015-04-01

    Early multi-channel designs in the history of cochlear implant development were based on a vocoder-type processing of frequency channels and presented bands of compressed analog stimulus waveforms simultaneously on multiple tonotopically arranged electrodes. The realization that the direct summation of electrical fields as a result of simultaneous electrode stimulation exacerbates interactions among the stimulation channels and limits cochlear implant outcome led to the breakthrough in the development of cochlear implants, the continuous interleaved (CIS) sampling coding strategy. By interleaving stimulation pulses across electrodes, CIS activates only a single electrode at each point in time, preventing a direct summation of electrical fields and hence the primary component of channel interactions. In this paper we show that a previously presented approach of simultaneous stimulation with channel interaction compensation (CIC) may also ameliorate the deleterious effects of simultaneous channel interaction on speech perception. In an acute study conducted in eleven experienced MED-EL implant users, configurations involving simultaneous stimulation with CIC and doubled pulse phase durations have been investigated. As pairs of electrodes were activated simultaneously and pulse durations were doubled, carrier rates remained the same. Comparison conditions involved both CIS and fine structure (FS) strategies, either with strictly sequential or paired-simultaneous stimulation. Results showed no statistical difference in the perception of sentences in noise and monosyllables for sequential and paired-simultaneous stimulation with doubled phase durations. This suggests that CIC can largely compensate for the effects of simultaneous channel interaction, for both CIS and FS coding strategies. A simultaneous stimulation paradigm has a number of potential advantages over a traditional sequential interleaved design. The flexibility gained when dropping the requirement of

  9. Integrated amplifiers using fully ion-implanted InP JFET's with high transconductance

    NASA Astrophysics Data System (ADS)

    Kim, Sung J.; Guth, G.; Vella-Coleiro, G. P.

    1988-06-01

    Monolithically integrated amplifiers have been fabricated using JFETs with a gate length of 1.5 microns and a maximum transconductance of 110 mS/mm, the highest ever reported for ion-implanted InP JFETs. The amplifiers utilized both a conventional direct-coupled design and a new symmetrical design. The conventional direct-coupled amplifier shows a maximum gain of 8 (18 dB) while the symmetrical amplifier design exhibits the same gain without DC offset regardless of the FET threshold voltage and the power supply voltage used.

  10. A fully integrated mixed-signal neural processor for implantable multichannel cortical recording.

    PubMed

    Sodagar, Amir M; Wise, Kensall D; Najafi, Khalil

    2007-06-01

    A 64-channel neural processor has been developed for use in an implantable neural recording microsystem. In the Scan Mode, the processor is capable of detecting neural spikes by programmable positive, negative, or window thresholding. Spikes are tagged with their associated channel addresses and formed into 18-bit data words that are sent serially to the external host. In the Monitor Mode, two channels can be selected and viewed at high resolution for studies where the entire signal is of interest. The processor runs from a 3-V supply and a 2-MHz clock, with a channel scan rate of 64 kS/s and an output bit rate of 2 Mbps.

  11. Concept Developed for an Implanted Stimulated Muscle-Powered Piezoelectric Generator

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David; Gustafson, Kenneth

    2005-01-01

    Implanted electronic devices are typically powered by batteries or transcutaneous power transmission. Batteries must be replaced or recharged, and transcutaneous power sources burden the patient or subject with external equipment prone to failure. A completely self-sustaining implanted power source would alleviate these limitations. Skeletal muscle provides an available autologous power source containing native chemical energy that produces power in excess of the requirements for muscle activation by motor nerve stimulation. A concept has been developed to convert stimulated skeletal muscle power into electrical energy (see the preceding illustration). We propose to connect a piezoelectric generator between a muscle tendon and bone. Electrically stimulated muscle contractions would exert force on the piezoelectric generator, charging a storage circuit that would be used to power the stimulator and other devices.

  12. Feasibility of fully automated detection of fiducial markers implanted into the prostate using electronic portal imaging: A comparison of methods

    SciTech Connect

    Harris, Emma J. . E-mail: eharris@icr.ac.uk; McNair, Helen A.; Evans, Phillip M.

    2006-11-15

    Purpose: To investigate the feasibility of fully automated detection of fiducial markers implanted into the prostate using portal images acquired with an electronic portal imaging device. Methods and Materials: We have made a direct comparison of 4 different methods (2 template matching-based methods, a method incorporating attenuation and constellation analyses and a cross correlation method) that have been published in the literature for the automatic detection of fiducial markers. The cross-correlation technique requires a-priory information from the portal images, therefore the technique is not fully automated for the first treatment fraction. Images of 7 patients implanted with gold fiducial markers (8 mm in length and 1 mm in diameter) were acquired before treatment (set-up images) and during treatment (movie images) using 1MU and 15MU per image respectively. Images included: 75 anterior (AP) and 69 lateral (LAT) set-up images and 51 AP and 83 LAT movie images. Using the different methods described in the literature, marker positions were automatically identified. Results: The method based upon cross correlation techniques gave the highest percentage detection success rate of 99% (AP) and 83% (LAT) set-up (1MU) images. The methods gave detection success rates of less than 91% (AP) and 42% (LAT) set-up images. The amount of a-priory information used and how it affects the way the techniques are implemented, is discussed. Conclusions: Fully automated marker detection in set-up images for the first treatment fraction is unachievable using these methods and that using cross-correlation is the best technique for automatic detection on subsequent radiotherapy treatment fractions.

  13. Longitudinal hemodynamic measurements in swine heart failure using a fully implantable telemetry system.

    PubMed

    Choy, Jenny S; Zhang, Zhen-Du; Pitsillides, Koullis; Sosa, Margo; Kassab, Ghassan S

    2014-01-01

    Chronic monitoring of heart rate, blood pressure, and flow in conscious free-roaming large animals can offer considerable opportunity to understand the progression of cardiovascular diseases and can test new diagnostics and therapeutics. The objective of this study was to demonstrate the feasibility of chronic, simultaneous measurement of several hemodynamic parameters (left ventricular pressure, systemic pressure, blood flow velocity, and heart rate) using a totally implantable multichannel telemetry system in swine heart failure models. Two solid-state blood pressure sensors were inserted in the left ventricle and the descending aorta for pressure measurements. Two Doppler probes were placed around the left anterior descending (LAD) and the brachiocephalic arteries for blood flow velocity measurements. Electrocardiographic (ECG) electrodes were attached to the surface of the left ventricle to monitor heart rate. The telemeter body was implanted in the right side of the abdomen under the skin for approximately 4 to 6 weeks. The animals were subjected to various heart failure models, including volume overload (A-V fistula, n = 3), pressure overload (aortic banding, n = 2) and dilated cardiomyopathy (pacing-induced tachycardia, n = 3). Longitudinal changes in hemodynamics were monitored during the progression of the disease. In the pacing-induced tachycardia animals, the systemic blood pressure progressively decreased within the first 2 weeks and returned to baseline levels thereafter. In the aortic banding animals, the pressure progressively increased during the development of the disease. The pressure in the A-V fistula animals only showed a small increase during the first week and remained stable thereafter. The results demonstrated the ability of this telemetry system of long-term, simultaneous monitoring of blood flow, pressure and heart rate in heart failure models, which may offer significant utility for understanding cardiovascular disease progression and

  14. Longitudinal Hemodynamic Measurements in Swine Heart Failure Using a Fully Implantable Telemetry System

    PubMed Central

    Choy, Jenny S.; Zhang, Zhen-Du; Pitsillides, Koullis; Sosa, Margo; Kassab, Ghassan S.

    2014-01-01

    Chronic monitoring of heart rate, blood pressure, and flow in conscious free-roaming large animals can offer considerable opportunity to understand the progression of cardiovascular diseases and can test new diagnostics and therapeutics. The objective of this study was to demonstrate the feasibility of chronic, simultaneous measurement of several hemodynamic parameters (left ventricular pressure, systemic pressure, blood flow velocity, and heart rate) using a totally implantable multichannel telemetry system in swine heart failure models. Two solid-state blood pressure sensors were inserted in the left ventricle and the descending aorta for pressure measurements. Two Doppler probes were placed around the left anterior descending (LAD) and the brachiocephalic arteries for blood flow velocity measurements. Electrocardiographic (ECG) electrodes were attached to the surface of the left ventricle to monitor heart rate. The telemeter body was implanted in the right side of the abdomen under the skin for approximately 4 to 6 weeks. The animals were subjected to various heart failure models, including volume overload (A-V fistula, n = 3), pressure overload (aortic banding, n = 2) and dilated cardiomyopathy (pacing-induced tachycardia, n = 3). Longitudinal changes in hemodynamics were monitored during the progression of the disease. In the pacing-induced tachycardia animals, the systemic blood pressure progressively decreased within the first 2 weeks and returned to baseline levels thereafter. In the aortic banding animals, the pressure progressively increased during the development of the disease. The pressure in the A-V fistula animals only showed a small increase during the first week and remained stable thereafter. The results demonstrated the ability of this telemetry system of long-term, simultaneous monitoring of blood flow, pressure and heart rate in heart failure models, which may offer significant utility for understanding cardiovascular disease

  15. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high...

  16. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high...

  17. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high...

  18. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high...

  19. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high...

  20. Fully-distributed fiber-optic high temperature sensing based on stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Hu, Di; Wang, Dorothy Y.; Wang, Anbo

    2013-06-01

    We proposed a Brillouin optical fiber time domain analysis (BOTDA)-based fully-distributed temperature system as high as 1000°C and spatial resolution to 5 meters. This technique is prominent for high spatial resolution fully distributed high temperature and stress sensing over long distance.

  1. Nanomaterials and synergistic low-intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices.

    PubMed

    Shirwaiker, Rohan A; Samberg, Meghan E; Cohen, Paul H; Wysk, Richard A; Monteiro-Riviere, Nancy A

    2013-01-01

    Nanomaterials play a significant role in biomedical research and applications because of their unique biological, mechanical, and electrical properties. In recent years, they have been utilized to improve the functionality and reliability of a wide range of implantable medical devices ranging from well-established orthopedic residual hardware devices (e.g., hip implants) that can repair defects in skeletal systems to emerging tissue engineering scaffolds that can repair or replace organ functions. This review summarizes the applications and efficacies of these nanomaterials that include synthetic or naturally occurring metals, polymers, ceramics, and composites in orthopedic implants, the largest market segment of implantable medical devices. The importance of synergistic engineering techniques that can augment or enhance the performance of nanomaterial applications in orthopedic implants is also discussed, the focus being on a low-intensity direct electric current (LIDC) stimulation technology to promote the long-term antibacterial efficacy of oligodynamic metal-based surfaces by ionization, while potentially accelerating tissue growth and osseointegration. While many nanomaterials have clearly demonstrated their ability to provide more effective implantable medical surfaces, further decisive investigations are necessary before they can translate into medically safe and commercially viable clinical applications. The article concludes with a discussion about some of the critical impending issues with the application of nanomaterials-based technologies in implantable medical devices, and potential directions to address these.

  2. Nanomaterials and synergistic low intensity direct current (LIDC) stimulation technology for orthopaedic implantable medical devices

    PubMed Central

    Samberg, Meghan E.; Cohen, Paul H.; Wysk, Richard A.; Monteiro-Riviere, Nancy A.

    2012-01-01

    Nanomaterials play a significant role in biomedical research and applications due to their unique biological, mechanical, and electrical properties. In recent years, they have been utilised to improve the functionality and reliability of a wide range of implantable medical devices ranging from well-established orthopaedic residual hardware devices (e.g. hip implants) that can repair defects in skeletal systems to emerging tissue engineering scaffolds that can repair or replace organ functions. This review summarizes the applications and efficacies of these nanomaterials that include synthetic or naturally occurring metals, polymers, ceramics, and composites in orthopaedic implants, the largest market segment of implantable medical devices. The importance of synergistic engineering techniques that can augment or enhance the performance of nanomaterial applications in orthopaedic implants is also discussed,, the focus being on a low intensity direct electric current (LIDC) stimulation technology to promote the long-term antibacterial efficacy of oligodynamic metal-based surfaces by ionization, while potentially accelerating tissue growth and osseointegration. While many nanomaterials have clearly demonstrated their ability to provide more effective implantable medical surfaces, further decisive investigations are necessary before they can translate into medically safe and commercially viable clinical applications. The paper concludes with a discussion about some of the critical impending issues with the application of nanomaterials-based technologies in implantable medical devices, and potential directions to address these. PMID:23335493

  3. An implantable device for neuropsychiatric rehabilitation by chronic deep brain stimulation in freely moving rats

    PubMed Central

    Wang, Chenguang; Zhang, Fuqiang; Jia, Hong

    2017-01-01

    Successful practice of clinical deep brain stimulation (DBS) calls for basic research on the mechanisms and explorations of new indications in animals. In the article, a new implantable, single-channel, low-power miniature device is proposed, which may transmit pulses chronically into the brain nucleus of freely moving rats. The DBS system consists of an implantable pulse generator (IPG), a bipolar electrode, and an external programmer. The IPG circuit module is assembled as a 20-mm diameter circular board and fixed on a rat’s skull together with an electrode and battery. The rigid electrode may make its fabrication and implantation more easy. The external programmer is designed for bidirectional communication with the IPG by a telecontrol transceiver and adjusts stimulation parameters. A biological validation was performed in which the effects of electrical stimulation in brain nucleus accumbens were detected. The programmed parameters were accurate, implant steady, and power sufficient to allow stimulation for more than 3 months. The larger area of the electrode tip provided a moderate current or charge density and minimized the damage from electrochemistry and pyroelectricity. The rats implanted with the device showed a reduction in morphine-induced conditioned place preference after high-frequency stimulation. In conclusion, the DBS device is based on the criteria of simple technology, minimal invasion, low cost, small in size, light-weight, and wireless controlled. This shows that our DBS device is appropriate and can be used for preclinical studies, indicating its potential utility in the therapy and rehabilitation of neuropsychiatric disorders. PMID:28121810

  4. Recent advances in power efficient output stage for high density implantable stimulators.

    PubMed

    Sooksood, Kriangkrai; Noorsal, Emilia; Bihr, Ulrich; Ortmanns, Maurits

    2012-01-01

    A major drawback of a current-controlled stimulation is its power efficiency. However, it is commonly used in implantable stimulators due to its safety. The power efficiency of a current-controlled stimulation can be improved by reducing the headroom voltage needed in the current driver. A promising technique is to bias the transistor in triode region whereas improving output impedance through the regulated cascode structure. This comes with a feature of implicit compliance monitor which is used for the supply voltage adaptation. This paper presents an overview on recent power efficient high voltage-compliance output drivers.

  5. The Codacs™ direct acoustic cochlear implant actuator: exploring alternative stimulation sites and their stimulation efficiency.

    PubMed

    Grossöhmichen, Martin; Salcher, Rolf; Kreipe, Hans-Heinrich; Lenarz, Thomas; Maier, Hannes

    2015-01-01

    This work assesses the efficiency of the Codacs system actuator (Cochlear Ltd., Sydney Australia) in different inner ear stimulation modalities. Originally the actuator was intended for direct perilymph stimulation after stapedotomy using a piston prosthesis. A possible alternative application is the stimulation of middle ear structures or the round window (RW). Here the perilymph stimulation with a K-piston through a stapes footplate (SFP) fenestration (N = 10) as well as stimulation of the stapes head (SH) with a Bell prosthesis (N = 9), SFP stimulation with an Omega/Aerial prosthesis (N = 8) and reverse RW stimulation (N = 10) were performed in cadaveric human temporal bones (TBs). Codacs actuator output is expressed as equivalent sound pressure level (eq. SPL) using RW and SFP displacement responses, measured by Laser Doppler velocimetry as reference. The axial actuator coupling force in stimulation of stapes and RW was adjusted to ~5 mN. The Bell prosthesis and Omega/Aerial prosthesis stimulation generated similar mean eq. SPLs (Bell: 127.5-141.8 eq. dB SPL; Omega/Aerial: 123.6-143.9 eq. dB SPL), being significantly more efficient than K-piston perilymph stimulation (108.6-131.6 eq. dB SPL) and RW stimulation (108.3-128.2 eq. dB SPL). Our results demonstrate that SH, SFP and RW are adequate alternative stimulation sites for the Codacs actuator using coupling prostheses and an axial coupling force of ~5 mN. Based on the eq. SPLs, all investigated methods were adequate for in vivo hearing aid applications, provided that experimental conditions including constant coupling force will be implemented.

  6. Transcutaneous electrical nerve stimulator trial may be used as a screening tool prior to spinal cord stimulator implantation.

    PubMed

    Mathew, Leena; Winfree, Christopher; Miller-Saultz, Debra; Sonty, Nomita

    2010-08-01

    This is a prospective pilot study looking at the utility of Transcutaneous Electrical Nerve Stimulator (TENS) trial as a screening tool prior to spinal cord stimulator (SCS) implant to identify patients who may fail a SCS trial. The accepted screening test prior to a permanent SCS implant is a SCS trial. Patients may fail the SCS trial due to several causes of which one is the inability to tolerate stimulation induced paresthesias. Twenty five patients scheduled for a SCS trial for the treatment of refractory pain secondary to Failed Back surgery syndrome underwent a TENS trial and psychological evaluation by personnel uninvolved in the SCS trial. Data was collected by personnel not involved in the SCS trial or permanent placement. Twenty patients completed the study. Data collected included area of coverage, paresthesia tolerance, pain and anxiety measured on a VAS scale. Comparability between the groups were analyzed using Pearson's correlation, Fisher Exact test and simple regression analysis. We noted a significant correlation between ability to tolerate TENS and SCS induced paresthesias. Statistically significant correlation was also noted between pre SCS trial anxiety score and high pain score during SCS trial. We conclude that there is potential applicability of a TENS trial as a non invasive screening tool which may promote cost effectiveness and decrease unnecessary procedural risks to the patient by avoiding SCS trial in select patients.

  7. Remote power delivery for hybrid integrated bio-implantable electrical stimulation system

    NASA Astrophysics Data System (ADS)

    Gaddam, Venkat R.; Yernagula, Jagadish; Anantha, Raghavendra R.; Kona, Satish; Kopparthi, Sunitha; Chamakura, A.; Ajmera, Pratul K.; Srivastava, Ashok

    2005-05-01

    In this work, a remote power delivery system to charge rechargeable batteries that power a Bio-implanted Electrical Stimulation System (BESS) is first described. A loosely coupled inductive transmitter and receiver system has been used to power a bio-implanted gastric pacer. The receiver coil, rechargeable batteries, battery charging chip and the chip containing stimulation circuitry form a hybrid integrated microsystem. A design methodology for this Remote Power Delivery System (RPDS) is proposed. The BESS chip is also designed for electrical stimulation. It is a special IC chip which takes power from the rechargeable batteries and provides output pulses of 9.9 V amplitude at a frequency of 103 Hz and a duty cycle of 5%. The BESS chip contains a battery switching circuit and a pulse conditioning circuit which first provides pulses of 3 V amplitude. It also has an internal charge pump and a pulse booster circuit to boost the pulse amplitude to 9.9 V. Hybrid packaging is considered for integrating the implantable electrical stimulation circuitry and the remote power delivery system. Screen printed interconnects are used to integrate the BESS chip, the battery charging chip, discrete components and the receiver circuit of the RPDS.

  8. Duplex communicable implanted antenna for magnetic direct feeding method: Functional electrical stimulation

    NASA Astrophysics Data System (ADS)

    Kato, Kentaro; Matsuki, Hidetoshi; Sato, Fumihiro; Satoh, Tadakuni; Handa, Nobuyasu

    2009-04-01

    Functional electrical stimulation (FES) is the therapy used for the rehabilitation of lost movement function by applying electrical stimulation (ES) to paralyzed extremities. To realize ES, we adapted the implanted direct feeding method (DFM). In this method, small implanted stimulators are placed under the skin at a depth of 10-20 mm and stimulus energy and signals for controlling devices are applied to them by a mounted system using magnetic coupling. This method has the merits of having no percutaneous points and high-precision stimulation. However, since the mounted system and implanted elements are separated, it is necessary to add feedback information from inside the body to confirm the system operation for safety therapy or to rehabilitate motor function smoothly. Satisfying both restrictions, we propose the magnetic connective dual resonance (MCDR) antenna, which has two resonance circuits. Adding the LC serial circuit to the LC parallel circuit gives the sending function. In this paper, we report the principle of the MCDR antenna and verify its duplex communication ability through communication experiment. This antenna enables DFM of FES to rehabilitate more complex movements.

  9. [Abscess at the implant site following apical parodontitis. Hardware-related complications of deep brain stimulation].

    PubMed

    Sixel-Döring, F; Trenkwalder, C; Kappus, C; Hellwig, D

    2006-08-01

    Deep brain stimulation of the subthalamic nucleus is an important treatment option for advanced stages of idiopathic Parkinson's disease, leading to significant improvement of motor symptoms in suited patients. Hardware-related complications such as technical malfunction, skin erosion, and infections however cause patient discomfort and additional expense. The patient presented here suffered a putrid infection of the impulse generator site following only local dental treatment of apical parodontitis. Therefore, prophylactic systemic antibiotic treatment is recommended for patients with implanted deep brain stimulation devices in case of operations, dental procedures, or infectious disease.

  10. Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system.

    PubMed

    Hamilton, Lei; McConley, Marc; Angermueller, Kai; Goldberg, David; Corba, Massimiliano; Kim, Louis; Moran, James; Parks, Philip D; Sang Chin; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed

  11. Sensitivity to pulse phase duration in cochlear implant listeners: Effects of stimulation mode

    PubMed Central

    Chatterjee, Monita; Kulkarni, Aditya M.

    2014-01-01

    The objective of this study was to investigate charge-integration at threshold by cochlear implant listeners using pulse train stimuli in different stimulation modes (monopolar, bipolar, tripolar). The results partially confirmed and extended the findings of previous studies conducted in animal models showing that charge-integration depends on the stimulation mode. The primary overall finding was that threshold vs pulse phase duration functions had steeper slopes in monopolar mode and shallower slopes in more spatially restricted modes. While the result was clear-cut in eight users of the Cochlear CorporationTM device, the findings with the six user of the Advanced BionicsTM device who participated were less consistent. It is likely that different stimulation modes excite different neuronal populations and/or sites of excitation on the same neuron (e.g., peripheral process vs central axon). These differences may influence not only charge integration but possibly also temporal dynamics at suprathreshold levels and with more speech-relevant stimuli. Given the present interest in focused stimulation modes, these results have implications for cochlear implant speech processor design and protocols used to map acoustic amplitude to electric stimulation parameters. PMID:25096116

  12. Preclinical Evaluation of Poly(HEMA-co-acrylamide) Hydrogels Encapsulating Glucose Oxidase and Palladium Benzoporphyrin as Fully Implantable Glucose Sensors

    PubMed Central

    Unruh, Rachel M.; Roberts, Jason R.; Nichols, Scott P.; Gamsey, Soya; Wisniewski, Natalie A.; McShane, Michael J.

    2015-01-01

    Background: Continuous glucose monitors (CGMs) require percutaneous wire probes to monitor glucose. Sensors based on luminescent hydrogels are being explored as fully implantable alternatives to traditional CGMs. Our previous work investigated hydrogel matrices functionalized with enzymes and oxygen-quenched phosphors, demonstrating sensitivity to glucose, range of response, and biofouling strongly depend on the matrix material. Here, we further investigate the effect of matrix composition on overall performance in vitro and in vivo. Methods: Sensors based on three hydrogels, a poly(2-hydroxyethyl methacrylate) (pHEMA) homopolymer and 2 poly(2-hydroxyethyl methacrylate-co-acrylamide) (pHEMA-co-AAm) copolymers, were compared. These were used to entrap glucose oxidase (GOx), catalase, and an oxygen-sensitive benzoporphyrin phosphor. All sensor formulations were evaluated for glucose response and stability at physiological temperatures. Selected sensors were then evaluated as implanted sensors in a porcine model challenged with glucose and insulin. The animal protocol used in this study was approved by an IACUC committee at Texas A&M University. Results: PHEMA-co-AAm copolymer hydrogels (75:25 HEMA:AAm) yielded the most even GOx and dye dispersion throughout the hydrogel matrix and best preserved GOx apparent activity. In response to in vitro glucose challenges, this formulation exhibited a dynamic range of 12-167 mg/dL, a sensitivity of 1.44 ± 0.46 µs/(mg/dL), and tracked closely with reference capillary blood glucose values in vivo. Conclusions: The hydrogel-based sensors exhibited excellent sensitivity and sufficiently rapid response to the glucose levels achieved in vivo, proving feasibility of these materials for use in real-time glucose tracking. Extending the dynamic range and assessing long-term effects in vivo are ongoing efforts. PMID:26085565

  13. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.

    PubMed

    Gabran, S R I; Saad, J H; Salama, M M A; Mansour, R R

    2009-01-01

    This paper demonstrates the electromagnetic modeling and simulation of an implanted Medtronic deep brain stimulation (DBS) electrode using finite difference time domain (FDTD). The model is developed using Empire XCcel and represents the electrode surrounded with brain tissue assuming homogenous and isotropic medium. The model is created to study the parameters influencing the electric field distribution within the tissue in order to provide reference and benchmarking data for DBS and intra-cortical electrode development.

  14. Inappropriate implantable cardioverter defibrillator shock from a transcutaneous muscle stimulation device therapy.

    PubMed

    Siu, Chung-Wah; Tse, Hung-Fat; Lau, Chu-Pak

    2005-06-01

    Inappropriate shock from implantable cardioverter defibrillator (ICD) may result from external electromagnetic interference (EMI), especially for unipolar ventricle sensing. Previous case reports and small in-vitro safety study suggested that endocardial bipolar lead system may be immune from EMI resulting from transcutaneous electrical neuromuscle stimulation (TENS) therapy. This report presents an unusual case of inappropriate discharge in a patient with ICD of endocardial bipolar lead system, receiving TENS from a commercially available device.

  15. Chronic in-vivo testing of a 16-channel implantable wireless neural stimulator.

    PubMed

    Bredeson, Samuel; Kanneganti, Aswini; Deku, Felix; Cogan, Stuart; Romero-Ortega, Mario; Troyk, Philip

    2015-08-01

    Here, we report on chronic in-vivo testing of a 16-channel wireless floating microelectrode array (WFMA) in a rat sciatic nerve model. Muscle threshold currents, charge injection levels, and charge density were monitored for electrodes of two WFMA devices implanted into animal subjects over a five month period. This type of wireless stimulation device could eliminate problems associated with percutaneous connectors for a variety of neural prostheses and other medical devices.

  16. Simulated phase-locking stimulation: An improved signal processing strategy for cochlear implant

    NASA Astrophysics Data System (ADS)

    Wu, Xihong; Qu, Hongwei; Chen, Jing; Qu, Tianshu; Li, Liang

    2005-04-01

    Electrical stimulation of the auditory pathway produces different patterns of neural activity than those acoustically elicited. Traditional signal-processing strategies for cochlear implant usually do not utilize phase information contained in sound waves. Here, to evaluate potential advantages of introducing phase information to cochlear implant devices, a new signal processing method, so called simulated phase-locking stimulation (SPLS), was developed. To convey phase information of sound signals to the auditory nerve, electrical stimulation pulses were delivered at the zero-crossing time of sine waves of frequency bands after band-pass filtering and envelope extraction. The advantages of the SPLS method over the method of Continuous Interleaved Sampling (CIS+) were demonstrated by both objective evaluations, such as the spectro-temporal modulation index (STMI), and subjective evaluations, such as recognition of processed Chinese speech by normal hearing listeners under either noise (energetic) masking or speech (informational) masking conditions. The results suggest that the SPLS method is able to improve the function of cochlear devices by extracting and transferring fine-structure signals, which are important for cochlear-implant listeners to perceive tonal speech and music.

  17. Implanted functional electrical stimulation: case report of a paraplegic patient with complete SCI after 9 years

    PubMed Central

    2014-01-01

    Backgrounds Experience of an implanted functional electrical stimulation neuroprosthesis (FES) associating 8-channel epimysial and 4-channel neural stimulations. The primary objective consisted in presenting clinical and technological experiences based on a 9-year follow-up of one patient implanted with this FES device. The secondary objective consisted in assessing resulting functional benefits. Methods One patient recruited in 1996 within the European Stand Up and Walk Project benefited from a 9-year follow-up with clinical and technological evaluations. Results The patient was still using the system nine years later making this a unique case, even when compared to other similar studies. The analysis of muscular response to FES underlined the great variability of stimulation thresholds evolution (−26% to +360%, mean +110%) and quality of the induced contraction. Three muscles out of five scored at least 4/5 on the Medical Research Council scale, all stimulated via neural pathways. The patient used the system once a week for 6 years, up to 2006, due to lack of use, the FES-induced muscular response worsened even though the implant was properly functioning, leading to significant decline in gait performances (best 3.45 m/s on 2.9 m), due to muscle fatigue and loss of muscle mass. Conclusion Two major issues arise: first the importance of muscle fatigue, underlining the relevance of muscle strength training, and second technological hurdles raising up the question of neural vs. epimysial FES. This advanced technology proves the concept of restoring lower limb motor functions in patients with spinal cord injury. The main features of the stimulation device remain stable even after long periods of inactivity, yet there is a real need for close clinical and technological monitoring. PMID:24564879

  18. High-resolution electrical stimulation of primate retina for epiretinal implant design

    PubMed Central

    Sekirnjak, Chris; Hottowy, Pawel; Sher, Alexander; Dabrowski, Wladyslaw; Litke, A. M.; Chichilnisky, E. J.

    2009-01-01

    The development of retinal implants for the blind depends crucially on understanding how neurons in the retina respond to electrical stimulation. This study used multi-electrode arrays to stimulate ganglion cells in the peripheral macaque retina, which is very similar to the human retina. Analysis was restricted to parasol cells, which form one of the major high-resolution visual pathways in primates. Individual cells were characterized using visual stimuli, and subsequently targeted for electrical stimulation using electrodes 9-15 microns in diameter. Results were accumulated across 16 ON and 9 OFF parasol cells. At threshold, all cells responded to biphasic electrical pulses 0.05-0.1 ms in duration by firing a single spike with latency lower than 0.35 ms. The average threshold charge density was 0.050 ± 0.005 mC/cm2, significantly below established safety limits for platinum electrodes. ON and OFF ganglion cells were stimulated with similar efficacy. Repetitive stimulation elicited spikes within a 0.1 ms time window, indicating that the high temporal precision necessary for spike-by-spike stimulation can be achieved in primate retina. Spatial analysis of observed thresholds suggests that electrical activation occurred near the axon hillock, and that dendrites contributed little. Finally, stimulation of a single parasol cell produced little or no activation of other cells in the ON and OFF parasol cell mosaics. The low-threshold, temporally precise, and spatially specific responses hold promise for the application of high density arrays of small electrodes in epiretinal implants. PMID:18434523

  19. Immediate motor effects of stimulation through electrodes implanted in the human globus pallidus.

    PubMed

    Ashby, P; Strafella, A; Dostrovsky, J O; Lozano, A; Lang, A E

    1998-01-01

    The immediate motor effects of stimulation through electrodes chronically implanted in the globus pallidus internus (GPI) were studied in 9 subjects with Parkinson's disease. Single stimuli (at >0.4 Hz) produced short latency facilitation of voluntarily activated contralateral muscles in all subjects. The latency and distribution of the facilitation, its probably monosynaptic nature, and the short chronaxie and refractory period of the activated neural elements suggest that the facilitation results from the direct excitation of the fast conducting corticospinal pathway. The facilitation of motoneurons followed high frequency (e.g. 200 Hz) stimulation without decrement and occurred at stimulus intensities well below those required to produce a visible muscle contraction. We conclude that, while there may be other effects, GPI stimulation through electrodes may activate the corticospinal tract, even when the stimuli are below the threshold for a visible muscle contraction, and that continuous stimulation may do so continuously. This may be an unwanted side effect, but possible therapeutic actions are considered. The reproducible short latency facilitation enabled us to estimate current spread from the quadripolar electrodes used for deep brain stimulation. When the current is sufficient to excite large myelinated fibers near one of the quadripolar electrodes, an additional 1-mA current will activate similar fibers at an additional distance of 1.8 mm with bipolar stimulation and at a distance of 5.7 mm with monopolar stimulation.

  20. The transtympanic promontory stimulation test in patients with auditory deprivation: correlations with electrical dynamics of cochlear implant and speech perception.

    PubMed

    Alfelasi, Mohammad; Piron, Jean Pierre; Mathiolon, Caroline; Lenel, Nadjmah; Mondain, Michel; Uziel, Alain; Venail, Frederic

    2013-05-01

    Transtympanic promontory stimulation test (TPST) has been suggested to be a useful tool in predicting postoperative outcomes in patients at risk of poor auditory neuron functioning, especially after a long auditory deprivation. However, only sparse data are available on this topic. This study aimed at showing correlations between the auditory nerve dynamic range, evaluated by TPST, the electrical dynamic range of the cochlear implant and speech perception outcome. We evaluated 65 patients with postlingual hearing loss and no residual hearing, implanted with a Nucleus CI24 cochlear implant device for at least 2 years and with a minimum of 17 active electrodes. Using the TPST, we measured the threshold for auditory perception (T-level) and the maximum acceptable level of stimulation (M-level) at stimulation frequencies of 50, 100 and 200 Hz. General linear regression was performed to correlate 1/speech perception, evaluated using the PBK test 1 year after surgery, and 2/cochlear implant electrical dynamic range, with the age at time of implantation, the duration of auditory deprivation, the etiology of the deafness, the duration of cochlear implant use and auditory nerve dynamic range. Postoperative speech perception outcome correlated with etiology, duration of auditory deprivation and implant use, and TPST at 100 and 200 Hz. The dynamic range of the cochlear implant map correlated with duration of auditory deprivation, speech perception outcome at 6 months and TPST at 100 and 200 Hz. TPST test can be used to predict functional outcome after cochlear implant surgery in difficult cases.

  1. Stimulated emission via electron-hole plasma recombination in fully strained single InGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Minj, A.; Romero, M. F.; Wang, Y.; Tuna, Ö.; Feneberg, M.; Goldhahn, R.; Schmerber, G.; Ruterana, P.; Giesen, C.; Heuken, M.

    2016-11-01

    The optical properties of fully coherently grown single InGaN/GaN heterostructures for 12 stimulated emission by electron-hole plasma recombination was observed for temperatures up to 295 K.

  2. The Sound Sensation of Apical Electric Stimulation in Cochlear Implant Recipients with Contralateral Residual Hearing

    PubMed Central

    Marozeau, Jeremy; McDermott, Hugh J.

    2012-01-01

    Background Studies using vocoders as acoustic simulators of cochlear implants have generally focused on simulation of speech understanding, gender recognition, or music appreciation. The aim of the present experiment was to study the auditory sensation perceived by cochlear implant (CI) recipients with steady electrical stimulation on the most-apical electrode. Methodology/Principal Findings Five unilateral CI users with contralateral residual hearing were asked to vary the parameters of an acoustic signal played to the non-implanted ear, in order to match its sensation to that of the electric stimulus. They also provided a rating of similarity between each acoustic sound they selected and the electric stimulus. On average across subjects, the sound rated as most similar was a complex signal with a concentration of energy around 523 Hz. This sound was inharmonic in 3 out of 5 subjects with a moderate, progressive increase in the spacing between the frequency components. Conclusions/Significance For these subjects, the sound sensation created by steady electric stimulation on the most-apical electrode was neither a white noise nor a pure tone, but a complex signal with a progressive increase in the spacing between the frequency components in 3 out of 5 subjects. Knowing whether the inharmonic nature of the sound was related to the fact that the non-implanted ear was impaired has to be explored in single-sided deafened patients with a contralateral CI. These results may be used in the future to better understand peripheral and central auditory processing in relation to cochlear implants. PMID:22723876

  3. Indication of direct acoustical cochlea stimulation in comparison to cochlear implants.

    PubMed

    Kludt, Eugen; Büchner, Andreas; Schwab, Burkard; Lenarz, Thomas; Maier, Hannes

    2016-10-01

    The new implantable hearing system Codacs™ was designed to close the treatment gap between active middle ear implants and cochlear implants in cases of severe-to-profound mixed hearing loss. The Codacs™ actuator is attached to conventional stapes prosthesis during the implantation and thereby provides acoustical stimulation through a stapedotomy to the cochlea. Cochlear implants (CIs) on the other hand are an established treatment option for profoundly deaf patients including mixed hearing losses that are possible candidates for the Codacs™. In this retrospective study, we compared the clinical outcome of 25 patients with the Codacs™ (≥3 month post-activation) to 54 CI patients (two years post-activation) with comparable pre-operative bone conduction (BC) thresholds that were potential candidates for both categories of devices. The word recognition score (Freiburg monosyllables test) in quiet was significantly (p < 0.05) better in the Codacs™ than in the corresponding CI patients for average pre-operative bone conduction below 60 dB HL and equal in patients with a pre-operative BC PTA between 60 and 70 dB HL. Speech in noise intelligibility (HSM sentences test at +10 dB SNR) was significantly (p < 0.001) better in Codacs™ (80% median) than in CI patients (25% median) in all tested groups. Our results indicate for patients with sufficient cochlear reserve that speech intelligibility in noise with the Codacs™ hearing implant is significantly better than with a CI. Further, results in Codacs™ were better predictable, encouraging the extension of the indication to patients with less cochlear reserve than reported here.

  4. The perception of complex pitch in cochlear implants: A comparison of monopolar and tripolar stimulation.

    PubMed

    Fielden, Claire A; Kluk, Karolina; Boyle, Patrick J; McKay, Colette M

    2015-10-01

    Cochlear implant listeners typically perform poorly in tasks of complex pitch perception (e.g., musical pitch and voice pitch). One explanation is that wide current spread during implant activation creates channel interactions that may interfere with perception of temporal fundamental frequency information contained in the amplitude modulations within channels. Current focusing using a tripolar mode of stimulation has been proposed as a way of reducing channel interactions, minimising spread of excitation and potentially improving place and temporal pitch cues. The present study evaluated the effect of mode in a group of cochlear implant listeners on a pitch ranking task using male and female singing voices separated by either a half or a quarter octave. Results were variable across participants, but on average, pitch ranking was at chance level when the pitches were a quarter octave apart and improved when the difference was a half octave. No advantage was observed for tripolar over monopolar mode at either pitch interval, suggesting that previously published psychophysical advantages for focused modes may not translate into improvements in complex pitch ranking. Evaluation of the spectral centroid of the stimulation pattern, plus a lack of significant difference between male and female voices, suggested that participants may have had difficulty in accessing temporal pitch cues in either mode.

  5. [CILAB--a PC-based laboratory speech processor for implementation and evaluation of new stimulation strategies for cochlear implants].

    PubMed

    Mitterbacher, A; Lampacher, P; Zierhofer, C; Hochmair, E

    2004-06-01

    CILab is a computer-based versatile laboratory system for the implementation and evaluation of innovative stimulation strategies for cochlear implants. In contrast to existing laboratory systems the entire signal processing from the input signal to the creation of the data word for the implant is effected with the aid of a personal computer (PC). This permits rapid implementation of new stimulation strategies or psycho-acoustic tests. Real-time audio processing is also possible by using the CILab as a cochlear implant speech processor. The laboratory system has been employed with success for the evaluation of new strategies and numerous psycho-acoustic tests.

  6. Enhanced tissue integration of implantable electrodes for sensing, and stimulation, via radio frequency glow discharge

    NASA Astrophysics Data System (ADS)

    O'Connor, Laurie M.

    Biopotential electrodes are conductive materials that convert electronic currents to or from ionic currents for sensing, and stimulating specific tissue sites for medical applications. Implanted electrodes become "walled off" by the foreign body tissue reactions producing poorly attached scar capsules dominated by surrounding dense collagenous lamellae and source fibroblasts which are electrically resistive. The conductive interstitial fluid that is typical between an electrode and the resistive capsule allows spurious current paths. The insulating layer increases the distance between the electrode and the target sites and poor attachment often results in electrode migration within the host tissue. This investigation tested the hypothesis that surface-energy modulation of electrodes, via Radio Frequency Glow Discharge Treatment (RFGDT), can improve the performance of tissue-implantable electrodes by reducing the foreign body tissue reaction and enhancing interfacial bonding between the tissue and electrode material. Previously published findings were reproduced in a pilot study of explanted reference grade medical-grade methyl silicone (PDMS) and commercially pure titanium (cpTi) materials and their tissue capsules from 30-day subcutaneous exposures in Balb/C mice. The low-critical surface tension PDMS produced thick, dense, poorly attached scar capsules while the higher-surface-energy commercially pure titanium (cpTi) produced more cellular and strongly attached tissue layers difficult to delaminate from the biomaterial. For the main body of work, cpTi, capacitor-grade Tantalum (Ta), and synthetic heart valve-quality Pyrolytic Carbon (PyC) were evaluated, representative of potential high-surface-energy implant electrode materials. Their surface characteristics were determined as-manufactured and after Radio Frequency Glow Discharge Treatment (RFGDT) by Critical Surface Tension (CST) measurement, Scanning Electron Microscopy (SEM), Energy Dispersive X

  7. Computational modeling of chemotactic signaling and aggregation of microglia around implantation site during deep brain stimulation

    NASA Astrophysics Data System (ADS)

    Silchenko, A. N.; Tass, P. A.

    2013-10-01

    It is well established that prolonged electrical stimulation of brain tissue causes massive release of ATP in the extracellular space. The released ATP and the products of its hydrolysis, such as ADP and adenosine, become the main elements mediating chemotactic sensitivity and motility of microglial cells via subsequent activation of P2Y2,12 as well as A3A and A2A adenosine receptors. The size of the sheath around the electrode formed by the microglial cells is an important criterion for the optimization of the parameters of electrical current delivered to brain tissue. Here, we study a purinergic signaling pathway underlying the chemotactic motion of microglia towards the implanted electrode during deep brain stimulation. We present a computational model describing formation of a stable aggregate around the implantation site due to the joint chemo-attractive action of ATP and ADP together with a mixed influence of extracellular adenosine. The model was built in accordance with the classical Keller-Segel approach and includes an equation for the cells' density as well as equations describing the hydrolysis of extracellular ATP via successive reaction steps ATP →ADP →AMP →adenosine. The results of our modeling allowed us to reveal the dependence of the width of the encapsulating layer around the electrode on the amount of ATP released due to permanent electrical stimulation. The dependences of the aggregates' size on the parameter governing the nonlinearity of interaction between extracellular adenosine and adenosine receptors are also analyzed.

  8. Adding simultaneous stimulating channels to reduce power consumption in cochlear implants.

    PubMed

    Langner, Florian; Saoji, Aniket A; Büchner, Andreas; Nogueira, Waldo

    2017-03-01

    Sound coding strategies for Cochlear Implant (CI) listeners can be used to control the trade-off between speech performance and power consumption. Most commercial CI strategies use non-simultaneous channel stimulation, stimulating only one electrode at a time. One could add parallel simultaneous stimulating channels such that the electrical interaction between channels is increased. This would produce spectral smearing, because the electrical fields of the simultaneous stimulated channels interact, but also power savings. The parallel channels produce a louder sensation than sequential stimulation. To test this hypothesis we implemented different sound coding strategies using a research interface from Advanced Bionics: the commercial F120 strategy using sequential channel stimulation (one channel equals two electrodes with current steering) and the Paired strategy, consisting of simultaneous stimulation with two channels. Here, the electrical field of both channels will interact, requiring less current on each channel to perceive the same loudness as with F120. However, channel interaction between the independent channels may reduce speech recognition or understanding. This can be diminished by adding an inverse-polarity stimulation channel between both channels. This strategy is termed Paired with Flanks. Additionally, Triplet with three channels and an adjacent Flank style was investigated. For each strategy we measured speech intelligibility with the Hochmair-Schulz-Moser sentence test. Spectral resolution was assessed using a spectral modulation depth detection task. Results show that Paired without Flanks obtains similar performance while reducing the current by 20% on average compared to F120. Triplet with and without Flanks shows overall poorer performance when compared to F120. All strategies inhibit the option to increase the pulse width which would result in even further decreased power consumption.

  9. FREQUENCY-PLACE MAP FOR ELECTRICAL STIMULATION IN COCHLEAR IMPLANTS: CHANGE OVER TIME

    PubMed Central

    Vermeire, Katrien; Landsberger, David M.; Van de Heyning, Paul H.; Voormolen, Maurits; Punte, Andrea Kleine; Schatzer, Reinhold; Zierhofer, Clemens

    2015-01-01

    The relationship between the place of electrical stimulation from a cochlear implant and the corresponding perceived pitch remains uncertain. Previous studies have estimated what the pitch corresponding to a particular location should be. However, perceptual verification is difficult because a subject needs both a cochlear implant and sufficient residual hearing to reliably compare electric and acoustic pitches. Additional complications can arise from the possibility that the pitch corresponding to an electrode may change as the auditory system adapts to a sound processor. In the following experiment, five subjects with normal or near-to-normal hearing in one ear and a cochlear implant with a long electrode array in the other ear were studied. Pitch matches were made between single electrode pulse trains and acoustic tones before activation of the speech processor to gain an estimate of the pitch provided by electrical stimulation at a given insertion angle without the influence of exposure to a sound processor. The pitch matches were repeated after 1, 3, 6, and 12 months of experience with the sound processor to evaluate the effect of adaptation over time. Pre-activation pitch matches were lower than would be estimated by a spiral ganglion pitch map. Deviations were largest for stimulation below 240° degrees and smallest above 480°. With experience, pitch matches shifted towards the frequency-to-electrode allocation. However, no statistically significant pitch shifts were observed over time. The likely explanation for the lack of pitch change is that the frequency-to-electrode allocations for the long electrode arrays were already similar to the pre-activation pitch matches. Minimal place pitch shifts over time suggest a minimal amount of perceptual remapping needed for the integration of electric and acoustic stimuli, which may contribute to shorter times to asymptotic performance. PMID:25840373

  10. Vagus nerve stimulation: Surgical technique of implantation and revision and related morbidity.

    PubMed

    Giordano, Flavio; Zicca, Anna; Barba, Carmen; Guerrini, Renzo; Genitori, Lorenzo

    2017-04-01

    Indications for vagus nerve stimulation (VNS) therapy include focal, multifocal epilepsy, drop attacks (tonic/atonic seizures), Lennox-Gastaut syndrome, tuberous sclerosis complex (TSC)-related multifocal epilepsy, and unsuccessful resective surgery. Surgical outcome is about 50-60% for seizures control, and may also improve mood, cognition, and memory. On this basis, VNS has also been proposed for the treatment of major depression and Alzheimer's' disease. The vagus nerve stimulator must be implanted with blunt technique on the left side to avoid cardiac side effects through the classic approach for anterior cervical discectomy. The actual device is composed of a wire with three helical contacts (two active contacts, one anchoring) and a one-pin battery. VNS is usually started 2 weeks after implantation with recommended settings of stimulation (1.0-2.0 mA; 500 μs pulse width; 20-30 Hz; 30 s ON, 5 min OFF). The complications of VNS therapy are early (related to surgery) and late (related to the device and to stimulation of the vagus nerve). Early complications include the following: intraoperative bradycardia and asystole during lead impedance testing, peritracheal hematoma, infections (3-8%), and vagus nerve injury followed by hoarseness, dyspnea, and dysphagia because of left vocal cord paralysis. Delayed morbidity due to the device includes late infections or problems in wound healing; other more rare events are due to late injury of the nerve. Late complications due to nerve stimulation include delayed arrhythmias, laryngopharyngeal dysfunction (hoarseness, dyspnea, and coughing), obstructive sleep apnea, stimulation of phrenic nerve, tonsillar pain mimicking glossopharyngeal neuralgia, and vocal cord damage during prolonged endotracheal intubation. The laryngopharyngeal dysfunction occurs in about 66% of patients and is usually transitory and due to the stimulation of the inferior (recurrent) laryngeal nerve. A true late paralysis of the left vocal cord

  11. An implantable, designed-for-human-use peripheral nerve stimulation and recording system for advanced prosthetics.

    PubMed

    Lachapelle, John R; Bjune, Caroline K; Kindle, Alexander L; Czarnecki, Andrew; Burns, John R; Grainger, Julianne E; Segura, Carlos A; Nugent, Brian D; Sriram, Tirunelveli S; Parks, Philip D; Keefer, Edward; Cheng, Jonathan

    2016-08-01

    Complex suture prostheses that deliver sensory and position feedback require a more sophisticated integration with the human user. Here a micro-size active implantable system that provides many-degree-of-freedom neural feedback in both sensory stimulation and motor control is shown, as one potential human-use solution in DARPA's HAPTIX program. Various electrical and mechanical challenge and solutions in meeting both sensory /motor performance as well as ISO 14708 FDA-acceptable human use in an aspirin-size active implementation are discussed.

  12. Divergent endometrial inflammatory cytokine expression at peri-implantation period and after the stimulation by copper intrauterine device.

    PubMed

    Chou, Chia-Hung; Chen, Shee-Uan; Shun, Chia-Tung; Tsao, Po-Nien; Yang, Yu-Shih; Yang, Jehn-Hsiahn

    2015-10-15

    Endometrial inflammation has contradictory effects. The one occurring at peri-implantation period is favourable for embryo implantation, whereas the other occurring after the stimulation by copper intrauterine device (Cu-IUD) prevents from embryo implantation. In this study, 8 week female ICR mice were used to investigate the endometrial inflammation, in which they were at proestrus stage (Group 1), at peri-implantation period (Group 2), and had a copper wire implanted into right uterine horn (Group 3). Cytokine array revealed that two cytokines were highly expressed in Group 2 and Group 3 as compared with Group 1, and seven cytokines, including tumour necrosis factor α (TNF-α), had selectively strong expression in Group 3. Immunohistochemistry demonstrated prominent TNF-α staining on the endometrium after Cu-IUD stimulation, and in vitro culture of human endometrial glandular cells with Cu induced TNF-α secretion. The increased TNF-α concentration enhanced in vitro THP-1 cells chemotaxis, and reduced embryo implantation rates. These results suggest that inflammatory cytokine profiles of endometrium are different between those at peri-implantation period and after Cu-IUD stimulation, and TNF-α is the one with selectively strong expression in the latter. It might account for the contradictory biological effects of endometrial inflammation.

  13. Divergent endometrial inflammatory cytokine expression at peri-implantation period and after the stimulation by copper intrauterine device

    PubMed Central

    Chou, Chia-Hung; Chen, Shee-Uan; Shun, Chia-Tung; Tsao, Po-Nien; Yang, Yu-Shih; Yang, Jehn-Hsiahn

    2015-01-01

    Endometrial inflammation has contradictory effects. The one occurring at peri-implantation period is favourable for embryo implantation, whereas the other occurring after the stimulation by copper intrauterine device (Cu-IUD) prevents from embryo implantation. In this study, 8 week female ICR mice were used to investigate the endometrial inflammation, in which they were at proestrus stage (Group 1), at peri-implantation period (Group 2), and had a copper wire implanted into right uterine horn (Group 3). Cytokine array revealed that two cytokines were highly expressed in Group 2 and Group 3 as compared with Group 1, and seven cytokines, including tumour necrosis factor α (TNF-α), had selectively strong expression in Group 3. Immunohistochemistry demonstrated prominent TNF-α staining on the endometrium after Cu-IUD stimulation, and in vitro culture of human endometrial glandular cells with Cu induced TNF-α secretion. The increased TNF-α concentration enhanced in vitro THP-1 cells chemotaxis, and reduced embryo implantation rates. These results suggest that inflammatory cytokine profiles of endometrium are different between those at peri-implantation period and after Cu-IUD stimulation, and TNF-α is the one with selectively strong expression in the latter. It might account for the contradictory biological effects of endometrial inflammation. PMID:26469146

  14. Design of a semi-implantable hearing device for direct acoustic cochlear stimulation.

    PubMed

    Bernhard, Hans; Stieger, Christof; Perriard, Yves

    2011-02-01

    A new hearing therapy based on direct acoustic cochlear stimulation was developed for the treatment of severe to profound mixed hearing loss. The device efficacy was validated in an initial clinical trial with four patients. This semi-implantable investigational device consists of an externally worn audio processor, a percutaneous connector, and an implantable microactuator. The actuator is placed in the mastoid bone, right behind the external auditory canal. It generates vibrations that are directly coupled to the inner ear fluids and that, therefore, bypass the external and the middle ear. The system is able to provide an equivalent sound pressure level of 125 dB over the frequency range between 125 and 8000 Hz. The hermetically sealed actuator is designed to provide maximal output power by keeping its dimensions small enough to enable implantation. A network model is used to simulate the dynamic characteristics of the actuator to adjust its transfer function to the characteristics of the middle ear. The geometry of the different actuator components is optimized using finite-element modeling.

  15. Signal coding in cochlear implants: exploiting stochastic effects of electrical stimulation.

    PubMed

    Rubinstein, Jay T; Hong, Robert

    2003-09-01

    Speech perception in quiet with cochlear implants has increased substantially over the past 17 years. If current trends continue, average monosyllabic word scores will be nearly 80% by 2010. These improvements are due to enhancements in speech processing strategies, to the implantation of patients with more residual hearing and shorter durations of deafness, and to unknown causes. Despite these improvements, speech perception in noise and music perception are still poor in most implant patients. These deficits may be partly due to poor representation of temporal fine structure by current speech processing strategies. It may be possible to improve both this representation and the dynamic range of electrical stimulation through the exploitation of stochastic effects produced by high-rate (eg, 5-kilopulse-per-second) pulse trains. Both the loudness growth and the dynamic range of low-frequency sinusoids have been enhanced via this technique. A laboratory speech processor using this strategy is under development. Although the clinical programming for such an algorithm is likely to be complex, some guidelines for the psychophysical and electrophysiological techniques necessary can be described now.

  16. The parturient with implanted spinal cord stimulator: management and review of the literature.

    PubMed

    Young, Adam C; Lubenow, Timothy R; Buvanendran, Asokumar

    2015-01-01

    Spinal cord stimulation (SCS) is an approved treatment for complex regional pain syndrome and other chronic pain conditions. These devices enable women with chronic pain to maintain relatively normal lives, with some encountering pregnancy. Use of previously implanted SCS systems in pregnant women is considered controversial due to lack of long-term prospective studies evaluating both maternal and fetal safety. Seven patients at a university pain clinic were identified as having SCS implanted before becoming pregnant. Data on these patients before, during, and after labor were collected through chart review and patient interview. Onset of labor varied among the 7 patients (2 preterm and 5 term). Mode of anesthesia for delivery included 4 neuraxial anesthetics, with 3 successfully obtaining an adequate level of anesthesia for delivery. Four general anesthetics were administered for cesarean delivery, one of which included a failed attempt at neuraxial anesthesia. All infants were born healthy. Management approaches and outcomes in our patients, as well as those previously reported are discussed within this article. Definitive conclusions cannot be drawn from this small cohort. We believe that management of a parturient with an implanted SCS requires careful planning between all peripartum physicians.

  17. A zero-voltage switching technique for minimizing the current-source power of implanted stimulators.

    PubMed

    Çilingiroğlu, Uğur; İpek, Sercan

    2013-08-01

    The current-source power of an implanted stimulator is reduced almost to the theoretical minimum by driving the electrodes directly from the secondary port of the inductive link with a dedicated zero-voltage switching power supply. A feedback loop confined to the secondary of the inductive link adjusts the timing and conduction angle of switching to provide just the right amount of supply voltage needed for keeping the current-source voltage constant at or slightly above the compliance limit. Since drive is based on current rather than voltage, and supply-voltage update is near real-time, the quality of the current pulses is high regardless of how the electrode impedance evolves during stimulation. By scaling the switching frequency according to power demand, the technique further improves overall power consumption of the stimulator. The technique is implemented with a very simple control circuitry comprising a comparator, a Schmitt trigger and a logic gate of seven devices in addition to an on-chip switch and an off-chip capacitor. The power consumed by the proposed supply circuit itself is no larger than what the linear regulator of a conventional supply typically consumes for the same stimulation current. Still, the sum of supply and current-source power is typically between 20% and 75% of the conventional source power alone. Functionality of the proposed driver is verified experimentally on a proof-of-concept prototype built with 3.3 V devices in a 0.18 μm CMOS technology.

  18. Epidural hematomas after the implantation of thoracic paddle spinal cord stimulators.

    PubMed

    Moufarrij, Nazih A

    2016-10-01

    OBJECTIVE There is little information on the frequency of symptomatic epidural hematomas after the implantation of paddle spinal cord stimulators (SCSs) in the thoracic spine. The purpose of this paper is to provide this metric and compare it to the frequency of symptomatic epidural hematomas for all other thoracic laminectomies combined. METHODS This study involved retrospectively analyzing the experience of a single surgeon in a consecutive series of patients who underwent the implantation of a thoracic paddle SCS with respect to the occurrence of a symptomatic epidural hematoma. For comparison, the occurrence of a symptomatic epidural hematoma in non-SCS thoracic laminectomies done during the same period of time was determined. RESULTS One hundred fifty-four thoracic paddle SCSs were implanted between May 2002 and February 2015. Despite perfect hemostasis and no preoperative risk factors, 4 of 154 patients (2.60%) developed postoperative lower-extremity weakness caused by an epidural hematoma. There were no other causes of a neurological deficit. In 3 of the 4 patients, the symptoms were delayed. Over the same time period, only 1 of 119 patients (0.84%) developed a postoperative motor deficit from a symptomatic epidural hematoma after a non-SCS laminectomy. CONCLUSIONS The occurrence of epidural hematomas after thoracic paddle SCS implantation may be underreported. Suggestions are given to decrease its incidence. It seems paradoxical that an epidural hematoma occurred 3 times more often after small SCS thoracic laminectomies than after larger non-SCS thoracic laminectomies. If confirmed by future studies, this finding may suggest that the intrusion of instruments into a confined epidural sublaminar space or the presence of a paddle and a hematoma in this restricted space may account for this differential.

  19. Bio-Impedance Characterization Technique with Implantable Neural Stimulator Using Biphasic Current Stimulus

    PubMed Central

    Lo, Yi-Kai; Chang, Chih-Wei; Liu, Wentai

    2016-01-01

    Knowledge of the bio-impedance and its equivalent circuit model at the electrode-electrolyte/tissue interface is important in the application of functional electrical stimulation. Impedance can be used as a merit to evaluate the proximity between electrodes and targeted tissues. Understanding the equivalent circuit parameters of the electrode can further be leveraged to set a safe boundary for stimulus parameters in order not to exceed the water window of electrodes. In this paper, we present an impedance characterization technique and implement a proof-of-concept system using an implantable neural stimulator and an off-the-shelf microcontroller. The proposed technique yields the parameters of the equivalent circuit of an electrode through large signal analysis by injecting a single low-intensity biphasic current stimulus with deliberately inserted inter-pulse delay and by acquiring the transient electrode voltage at three well-specified timings. Using low-intensity stimulus allows the derivation of electrode double layer capacitance since capacitive charge-injection dominates when electrode overpotential is small. Insertion of the inter-pulse delay creates a controlled discharge time to estimate the Faradic resistance. The proposed method has been validated by measuring the impedance of a) an emulated Randles cells made of discrete circuit components and b) a custom-made platinum electrode array in-vitro, and comparing estimated parameters with the results derived from an impedance analyzer. The proposed technique can be integrated into implantable or commercial neural stimulator system at low extra power consumption, low extra-hardware cost, and light computation. PMID:25569999

  20. Spinal Cord Stimulation (SCS)—The Implantable Systems Performance Registry (ISPR)

    PubMed Central

    Schultz, David M.; Calodney, Aaron K.; Mogilner, Alon Y.; Weaver, Todd W.; Wells, Michelle D.; Stromberg, E. Katherine; Roediger, Mollie P.; Sasaki, John T.

    2016-01-01

    Objectives The Implantable Systems Performance Registry (ISPR) was created to monitor the product performance of Medtronic Spinal Cord Stimulation (SCS) and implanted intrathecal drug infusion systems available in the United States. Materials and Methods Data were collected on 2605 patients from 44 centers from various geographic regions across the United States implanting and following patients with SCS systems between June 25, 2004 and January 31, 2014. Actuarial life table methods are used to estimate device performance over time. Of the 2605 patients, 1490 (57.2%) were female, 1098 (42.1%) were male and 17 (0.7%) did not provide gender data. The average age at enrollment was 56.3 years (range: 4–97, SD = 14.3) and average follow‐up time was 20.1 months (SD = 22.5). Results Currently the estimates of device survival from neurostimulator‐related events exceed 97% for all neurostimulator models across the applicable follow‐up time points and all applicable extension models had greater than 95% survival from extension events. The majority of product performance events were lead‐related. At 5 years of follow‐up, all applicable lead families, with the exception of the Pisces‐Quad LZ family, had greater than 75% survival from lead events. Conclusions The ISPR is designed to serve as an ongoing source of system and device‐related information with a focus on “real‐world” safety and product performance. ISPR data continue to be used to guide future product development efforts aimed at improving product reliability and quality. PMID:27730706

  1. Cochlear Implant Electrode Effect on Sound Energy Transfer within the Cochlea during Acoustic Stimulation

    PubMed Central

    Greene, Nathaniel T.; Mattingly, Jameson K.; Jenkins, Herman A.; Tollin, Daniel J.; Easter, James R.; Cass, Stephen P.

    2015-01-01

    Hypothesis Cochlear implants (CI) designed for hearing preservation will not alter mechanical properties of the middle and inner ear as measured by intracochlear pressure (PIC) and stapes velocity (Vstap). Background CIs designed to provide combined electrical and acoustic stimulation (EAS) are now available. To maintain functional acoustic hearing, it is important to know if a CI electrode can alter middle or inner ear mechanics, as any alteration could contribute to elevated low-frequency thresholds in EAS patients. Methods Seven human cadaveric temporal bones were prepared, and pure-tone stimuli from 120Hz–10kHz were presented at a range of intensities up to 110 dB SPL. PIC in the scala vestibuli (PSV) and tympani (PST) were measured with fiber-optic pressure sensors concurrently with VStap using laser Doppler vibrometry. Five CI electrodes from two different manufacturers, with varying dimensions were inserted via a round window approach at six different depths (16–25 mm). Results The responses of PIC and VStap to acoustic stimulation were assessed as a function of stimulus frequency, normalized to SPL in the external auditory canal (EAC), in baseline and electrode inserted conditions. Responses measured with electrodes inserted were generally within ~5 dB of baseline, indicating little effect of cochlear implant electrode insertion on PIC and VStap. Overall, mean differences across conditions were small for all responses, and no substantial differences were consistently visible across electrode types. Conclusions Results suggest that the influence of a CI electrode on middle and inner ear mechanics is minimal, despite variation in electrode lengths and configurations. PMID:26333018

  2. Brachial insertion of fully implantable venous catheters for chemotherapy: complications and quality of life assessment in 35 patients

    PubMed Central

    Fonseca, Igor Yoshio Imagawa; Krutman, Mariana; Nishinari, Kenji; Yazbek, Guilherme; Teivelis, Marcelo Passos; Bomfim, Guilherme André Zottele; Cavalcante, Rafael Noronha; Wolosker, Nelson

    2016-01-01

    ABSTRACT Objective To prospectively evaluate the perioperative safety, early complications and satisfaction of patients who underwent the implantation of central catheters peripherally inserted via basilic vein. Methods Thirty-five consecutive patients with active oncologic disease requiring chemotherapy were prospectively followed up after undergoing peripheral implantation of indwelling venous catheters, between November 2013 and June 2014. The procedures were performed in the operating room by the same team of three vascular surgeons. The primary endpoints assessed were early postoperative complications, occurring within 30 days after implantation. The evaluation of patient satisfaction was based on a specific questionnaire used in previous studies. Results In all cases, ultrasound-guided puncture of the basilic vein was feasible and the procedure successfully completed. Early complications included one case of basilic vein thrombophlebitis and one case of pocket infection that did not require device removal. Out of 35 patients interviewed, 33 (94.3%) would recommend the device to other patients. Conclusion Implanting brachial ports is a feasible option, with low intraoperative risk and similar rates of early postoperative complications when compared to the existing data of the conventional technique. The patients studied were satisfied with the device and would recommend the procedure to others. PMID:28076593

  3. DS147 improves pregnancy in mice with embryo implantation dysfunction induced by controlled ovarian stimulation.

    PubMed

    Deng, Shao-rong; Li, Jing; Zhang, Zhi-qiang; Li, Bing; Sheng, Li-li; Zeng, Jian-wu; Liu, Ya-ping; An, Song-lin; Wu, Yun-xia

    2013-08-01

    The study examined the effect of DS147, the bioactive component of the traditional herbal recipe Bangdeyun, on pregnancy in mice with embryo implantation dysfunction induced by controlled ovarian stimulation (COS), and the underlying mechanisms. Female mice were superovulated by intraperitoneal injection of 7.5 IU of pregnant mare serum gonadotropin (PMSG) followed by an additional injection of 7.5 IU hCG 48 h later to establish embryo implantation dysfunction (EID) model. Pregnant mice were randomly divided into normal control group, COS group and DS147-treated groups. The pregnancy rate and the average implantation site were obtained on pregnancy day 8 (PD8). The side effect of 200 mg/kg of DS147 on naturally pregnant mice was also observed. Further, the uterine and ovarian tissue samples were collected on PD5 for measuring their weights, observing the development of the endometrium and ovary, and detecting the endometrial expression of MMP-2, TIMP-2, CD34 and angiogenin (ANG). The female mice treated with DS147 at doses of 100 to 800 mg/kg showed a higher pregnancy rate than those in COS group, and the highest pregnancy rate of 83.3% occurred in the 200 mg/kg DS147-treated group. Moreover, no obvious side effect was found in mice treated with 200 mg/kg DS147 on PD8 and PD16. The ovarian and uterine weights, and the expression levels of MMP-2, ANG and CD34 were significantly increased in DS147-treated groups when compared with COS group. The TIMP-2 expression level was much lower in DS147-treated mice than in COS mice and the ratio of MMP-2/TIMP-2 was much higher in DS147-treated group than in COS group, and even higher than normal control group. In all, these findings suggest that DS147 may improve pregnancy in mice with COS-induced EID by promoting matrix degradation and angiogenesis, and improving the development of corpus luteum and endometrial decidualization around the implantation window.

  4. Implanted electro-acupuncture electric stimulation improves outcome of stem cells' transplantation in spinal cord injury.

    PubMed

    Liu, Haichun; Yang, Kaiyun; Xin, Tao; Wu, Wenliang; Chen, Yunzhen

    2012-10-01

    Spinal cord injury (SCI) is one of the most serious disorders in clinics, and the high disability rate and functional deficits are common issues in patients. Transplantation of bone-marrow-derived mesenchymal stromal cells (BMSCs) into the injured spinal cord is emerging as a novel method in the therapeutics of SCI; however, its application is limited by the poor survival rate of the transplanted cells and low differentiation rate into neurons. Our laboratory recently reported that electrical stimulation (ES) dramatically improves the survival rate of transplanted BMSCs and increases spinal cord functions in animals with spinal cord injury. In this paper, we asked whether implanted electro-acupuncture (iEA) can advance the beneficial effects from the ES treatment in animals with spinal cord injury. We showed that BMSCs transplantation alone resulted in significant functional recovery in animals. Interestingly, iEA with BMSCs treatment induced a significantly higher functional improvement in locomotor functions and SSEP compared to the BMSCs treatment alone. Additionally, we used molecular biology techniques and showed that BMSCs transplantation with iEA treatment significantly increased the number of surviving BMSCs compared to the BMSCs alone group. In conclusion, our experiment showed that the approach of coupling iEA electric stimulation and BMSCs transplantation remarkably promotes functional improvements in animals with spinal cord injury and holds promising potential to treat spinal cord injury in humans.

  5. Influence of implantation on the electrochemical properties of smooth and porous TiN coatings for stimulation electrodes

    NASA Astrophysics Data System (ADS)

    Meijs, S.; Sørensen, C.; Sørensen, S.; Rechendorff, K.; Fjorback, M.; Rijkhoff, N. J. M.

    2016-04-01

    Objective. To determine whether changes in electrochemical properties of porous titanium nitride (TiN) electrodes as a function of time after implantation are different from those of smooth TiN electrodes. Approach. Eight smooth and 8 porous TiN coated electrodes were implanted in 8 rats. Before implantation, voltage transients, cyclic voltammograms and impedance spectra were recorded in phosphate buffered saline (PBS). After implantation, these measurements were done weekly to investigate how smooth and porous electrodes were affected by implantation. Main results. The electrode capacitance of the porous TiN electrodes decreased more than the capacitance of the smooth electrodes due to acute implantation under fast measurement conditions (such as stimulation pulses). This indicates that protein adhesion presents a greater diffusion limitation for counter-ions for the porous than for the smooth electrodes. The changes in electrochemical properties during the implanted period were similar for smooth and porous TiN electrodes, indicating that cell adhesion poses a similar diffusion limitation for smooth and porous electrodes. Significance. This knowledge can be used to optimize the porous structure of the TiN film, so that the effect of protein adhesion on the electrochemical properties is diminished. Alternatively, an additional coating could be applied on the porous TiN that would prevent or minimize protein adhesion.

  6. Perceptual Spaces Induced by Cochlear Implant All-Polar Stimulation Mode

    PubMed Central

    McKay, Colette M.

    2016-01-01

    It has been argued that a main limitation of the cochlear implant is the spread of current induced by each electrode, which activates an inappropriately large range of sensory neurons. To reduce this spread, an alternative stimulation mode, the all-polar mode, was tested with five participants. It was designed to activate all the electrodes simultaneously with appropriate current levels and polarities to recruit narrower regions of auditory nerves at specific intracochlear electrode positions (denoted all-polar electrodes). In this study, the all-polar mode was compared with the current commercial stimulation mode: the monopolar mode. The participants were asked to judge the sound dissimilarity between pairs of two-electrode pulse-train stimuli that differed in the electrode positions and were presented in either monopolar or all-polar mode with pulses on the two electrodes presented either sequentially or simultaneously. The dissimilarity ratings were analyzed using a multidimensional scaling technique and three-dimensional stimulus perceptual spaces were produced. For all the conditions (mode and simultaneity), the first perceptual dimension was highly correlated with the position of the most apical activated electrode of the electrical stimulation and the second dimension with the position of the most basal electrode. In both sequential and simultaneous conditions, the monopolar and all-polar stimuli were significantly separated by a third dimension, which may indicate that all-polar stimuli have a perceptual quality that differs from monopolar stimuli. Overall, the results suggest that both modes might successfully represent spectral information in a sound processing strategy. PMID:27604784

  7. Package architecture and component design for an implanted neural stimulator with closed loop control.

    PubMed

    Bjune, Caroline K; Marinis, Thomas F; Brady, Jeanne M; Moran, James; Wheeler, Jesse; Sriram, Tirunelveli S; Parks, Philip D; Widge, Alik S; Dougherty, Darin D; Eskandar, Emad N

    2015-08-01

    An implanted neural stimulator with closed loop control requires electrodes for stimulation pulses and recording neuron activity. Our system features arrays of 64 electrodes. Each electrode can be addressed through a cross bar switch, to enable it to be used for stimulation or recording. This electrode switch, a bank of low noise amplifiers with an integrated analog to digital converter, power conditioning electronics, and a communications and control gate array are co-located with the electrode array in a 14 millimeter diameter satellite package that is designed to be flush mounted in a skull burr hole. Our system features five satellite packages connected to a central hub processor-controller via ten conductor cables that terminate in a custom designed, miniaturized connector. The connector incorporates features of high reliability, military grade devices and utilizes three distinct seals to isolate the contacts from fluid permeation. The hub system is comprised of a connector header, hermetic electronics package, and rechargeable battery pack, which are mounted on and electrically interconnected by a flexible circuit board. The assembly is over molded with a compliant silicone rubber. The electronics package contains two antennas, a large coil, used for recharging the battery and a high bandwidth antenna that is used to download data and update software. The package is assembled from two machined alumina pieces, a flat base with brazed in, electrical feed through pins and a rectangular cover with rounded corners. Titanium seal rings are brazed onto these two pieces so that they can be sealed by laser welding. A third system antenna is incorporated in the flexible circuit board. It is used to communicate with an externally worn control package, which monitors the health of the system and allows both the user and clinician to control or modify various system function parameters.

  8. Feasibility of an ultra-low power digital signal processor platform as a basis for a fully implantable brain-computer interface system.

    PubMed

    Wang, Po T; Gandasetiawan, Keulanna; McCrimmon, Colin M; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An H

    2016-08-01

    A fully implantable brain-computer interface (BCI) can be a practical tool to restore independence to those affected by spinal cord injury. We envision that such a BCI system will invasively acquire brain signals (e.g. electrocorticogram) and translate them into control commands for external prostheses. The feasibility of such a system was tested by implementing its benchtop analogue, centered around a commercial, ultra-low power (ULP) digital signal processor (DSP, TMS320C5517, Texas Instruments). A suite of signal processing and BCI algorithms, including (de)multiplexing, Fast Fourier Transform, power spectral density, principal component analysis, linear discriminant analysis, Bayes rule, and finite state machine was implemented and tested in the DSP. The system's signal acquisition fidelity was tested and characterized by acquiring harmonic signals from a function generator. In addition, the BCI decoding performance was tested, first with signals from a function generator, and subsequently using human electroencephalogram (EEG) during eyes opening and closing task. On average, the system spent 322 ms to process and analyze 2 s of data. Crosstalk (<;-65 dB) and harmonic distortion (~1%) were minimal. Timing jitter averaged 49 μs per 1000 ms. The online BCI decoding accuracies were 100% for both function generator and EEG data. These results show that a complex BCI algorithm can be executed on an ULP DSP without compromising performance. This suggests that the proposed hardware platform may be used as a basis for future, fully implantable BCI systems.

  9. Role of bimodal stimulation for auditory-perceptual skills development in children with a unilateral cochlear implant.

    PubMed

    Marsella, P; Giannantonio, S; Scorpecci, A; Pianesi, F; Micardi, M; Resca, A

    2015-12-01

    This is a prospective randomised study that evaluated the differences arising from a bimodal stimulation compared to a monaural electrical stimulation in deaf children, particularly in terms of auditory-perceptual skills development. We enrolled 39 children aged 12 to 36 months, suffering from severe-to-profound bilateral sensorineural hearing loss with residual hearing on at least one side. All were unilaterally implanted: 21 wore only the cochlear implant (CI) (unilateral CI group), while the other 18 used the CI and a contralateral hearing aid at the same time (bimodal group). They were assessed with a test battery designed to appraise preverbal and verbal auditory-perceptual skills immediately before and 6 and 12 months after implantation. No statistically significant differences were observed between groups at time 0, while at 6 and 12 months children in the bimodal group had better scores in each test than peers in the unilateral CI group. Therefore, although unilateral deafness/hearing does not undermine hearing acuity in normal listening, the simultaneous use of a CI and a contralateral hearing aid (binaural hearing through a bimodal stimulation) provides an advantage in terms of acquisition of auditory-perceptual skills, allowing children to achieve the basic milestones of auditory perception faster and in greater number than children with only one CI. Thus, "keeping awake" the contralateral auditory pathway, albeit not crucial in determining auditory acuity, guarantees benefits compared with the use of the implant alone. These findings provide initial evidence to establish shared guidelines for better rehabilitation of patients undergoing unilateral cochlear implantation, and add more evidence regarding the correct indications for bilateral cochlear implantation.

  10. Gastric electrical stimulation treatment of type 2 diabetes: effects of implantation versus meal-mediated stimulation. A randomized blinded cross-over trial

    PubMed Central

    Lebovitz, Harold E; Ludvik, Bernhard; Kozakowski, Jaroslaw; Tarnowski, Wieslaw; Zelewski, Mateusz; Yaniv, Irit; Schwartz, Tse’ela

    2015-01-01

    Gastric electrical stimulation with the implanted DIAMOND device has been shown to improve glycemic control and decrease weight and systolic blood pressure in patients with type 2 diabetes inadequately controlled with oral antidiabetic agents. The objective of this study was to determine if device implantation alone (placebo effect) contributes to the long-term metabolic benefits of DIAMOND® meal-mediated gastric electrical stimulation in patients with type 2 diabetes. The study was a 48 week randomized, blinded, cross-over trial in university centers comparing glycemic improvement of DIAMOND® implanted patients with type 2 diabetic with no activation of the electrical stimulation (placebo) versus meal-mediated activation of the electrical signal. The endpoint was improvement in glycemic control (HbA1c) from baseline to 24 and 48 weeks. In period 1 (0–24 weeks), equal improvement in HbA1c occurred independent of whether the meal-mediated electrical stimulation was turned on or left off (HbA1c −0.80% and −0.85% [−8.8 and −9.0 mmol/mol]). The device placebo improvement proved to be transient as it was lost in period 2 (25–48 weeks). With electrical stimulation turned off, HbA1c returned toward baseline values (8.06 compared to 8.32%; 64.2 to 67.4 mmol/mol, P = 0.465). In contrast, turning the electrical stimulation on in period 2 sustained the decrease in HbA1c from baseline (−0.93%, −10.1mmol/mol, P = 0.001) observed in period 1. The results indicate that implantation of the DIAMOND device causes a transient improvement in HbA1c which is not sustained beyond 24 weeks. Meal-mediated electrical stimulation accounts for the significant improvement in HbA1c beyond 24 weeks. PMID:26177957

  11. Deep brain stimulation in the setting of cochlear implants: Case report and literature review

    PubMed Central

    Buell, Thomas J.; Ksendzovsky, Alexander; Shah, Binit B.; Kesser, Bradley W.; Elias, W. Jeffrey

    2015-01-01

    Background/Aims As technology continues to advance for our aging population, an increasing number of DBS candidates will have preexisting implanted electrical devices. In this article, we discuss safe and successful DBS in a patient with Parkinson's disease (PD) and bilateral cochlear implants. Methods A 70 year-old male with PD and bilateral cochlear implants underwent successful microelectrode-guided DBS implantation into bilateral subthalamic nuclei (STN). The patient's cochlear implant magnets were removed and replaced in outpatient clinic for pre-operative MRI and stereotactic targeting. The cochlear implants were turned off intraoperatively for STN microelectrode recordings. Results Precise, MRI-guided stereotactic DBS implantation was possible. Intraoperative high-fidelity microelectrode recordings confirmed STN neurons with the cochlear implants turned off. These recordings were not possible with active cochlear implant devices. Our literature review describes the other approaches/techniques that have been used to manage DBS surgery in the setting of cochlear implants. Conclusions Despite the risk of electrical interference between implanted medical devices, DBS and cochlear implants may be safe and compatible in the same patient if necessary precautions are taken. PMID:25998722

  12. Evaluation of a cochlear-implant processing strategy incorporating phantom stimulation and asymmetric pulses

    PubMed Central

    Monstrey, Jolijn; Deeks, John M.; Macherey, Olivier

    2014-01-01

    Objective To evaluate a speech-processing strategy in which the lowest frequency channel is conveyed using an asymmetric pulse shape and “phantom stimulation”, where current is injected into one intra-cochlear electrode and where the return current is shared between an intra-cochlear and an extra-cochlear electrode. This strategy is expected to provide more selective excitation of the cochlear apex, compared to a standard strategy where the lowest-frequency channel is conveyed by symmetric pulses in monopolar mode. In both strategies all other channels were conveyed by monopolar stimulation. Design Within-subjects comparison between the two strategies. Four experiments: (1) discrimination between the strategies, controlling for loudness differences, (2) consonant identification, (3) recognition of lowpass-filtered sentences in quiet, (4) sentence recognition in the presence of a competing speaker. Study sample Eight users of the Advanced Bionics CII/Hi-Res 90k cochlear implant. Results Listeners could easily discriminate between the two strategies but no consistent differences in performance were observed. Conclusions The proposed method does not improve speech perception, at least in the short term. PMID:25358027

  13. Do we need to establish guidelines for patients with neuromodulation implantable devices, including spinal cord stimulators undergoing nonspinal surgeries?

    PubMed Central

    Ghaly, Ramsis F.; Tverdohleb, Tatiana; Candido, Kenneth D.; Knezevic, Nebojsa Nick

    2016-01-01

    Background: Spinal cord stimulation is currently approved to treat chronic intractable pain of the trunk and limbs. However, such implantable electronic devices are vulnerable to external electrical currents and magnetic fields. Within the hospitals and modern operating rooms (ORs), there is an abundance of electrical devices and other types of equipment that could interfere with such devices. Despite the increasing number of patients with neuromodulation implantable devices, there are no written guidelines available or consensus of cautions for such patients undergoing unrelated surgery. Case Descriptions: A 60-year-old female with a permanent St. Jude's spinal cord stimulator (SCS) presented for open total abdominal hysterectomy. Both the anesthesia and gynecology staffs were aware of the device presence, but were unaware of any precautions regarding intraoperative management. The device was found to be nonmagnetic resonance imaging compatible, and bipolar cautery was used instead of monopolar cautery. A 59-year-old female with a 9-year-old permanent Medtronic SCS, presented for right total hip arthroplasty. The device was switched off prior to entering the OR, bipolar cautery was used, and grounding pads were placed away from her battery site. In each case, the manufacturer's representative was contacted preoperative. Both surgeries proceeded uneventfully. Conclusions: The Food and Drug Administration safety information manual warns about the use of diathermy, concomitant implanted stimulation devices, lithotripsy, external defibrillation, radiation therapy, ultrasonic scanning, and high-output ultrasound, all of which can lead to permanent implant damage if not turned off prior to undertaking procedures. Lack of uniform guidelines makes intraoperative management, as well as remote anesthesia care of patients with previously implanted SCSs unsafe. PMID:26958424

  14. Active books: the design of an implantable stimulator that minimizes cable count using integrated circuits very close to electrodes.

    PubMed

    Liu, Xiao; Demosthenous, Andreas; Vanhoestenberghe, Anne; Jiang, Dai; Donaldson, Nick

    2012-06-01

    This paper presents an integrated stimulator that can be embedded in implantable electrode books for interfacing with nerve roots at the cauda equina. The Active Book overcomes the limitation of conventional nerve root stimulators which can only support a small number of stimulating electrodes due to cable count restriction through the dura. Instead, a distributed stimulation system with many tripole electrodes can be configured using several Active Books which are addressed sequentially. The stimulator was fabricated in a 0.6-μm high-voltage CMOS process and occupies a silicon area of 4.2 × 6.5 mm(2). The circuit was designed to deliver up to 8 mA stimulus current to tripole electrodes from an 18 V power supply. Input pad count is limited to five (two power and three control lines) hence requiring a specific procedure for downloading stimulation commands to the chip and extracting information from it. Supported commands include adjusting the amplitude of stimulus current, varying the current ratio at the two anodes in each channel, and measuring relative humidity inside the chip package. In addition to stimulation mode, the chip supports quiescent mode, dissipating less than 100 nA current from the power supply. The performance of the stimulator chip was verified with bench tests including measurements using tripoles in saline.

  15. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.

    2016-08-01

    Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.

  16. First-in-Man Demonstration of Fully Implanted Myoelectric Sensors for Control of an Advanced Electromechanical Arm by Transradial Amputees

    PubMed Central

    Pasquina, Paul F.; Evangelista, Melissa; Carvalho, Antonio J.; Lockhart, Joseph; Griffin, Sarah; Nanos, George; McKay, Patricia; Hansen, Morten; Ipsen, Derek; Vandersea, James; Butkus, Josef; Miller, Matthew; Murphy, Ian; Hankin, David

    2014-01-01

    Background Advanced motorized prosthetic devices are currently controlled by EMG signals generated by residual muscles and recorded by surface electrodes on the skin. These surface recordings are often inconsistent and unreliable, leading to high prosthetic abandonment rates for individuals with upper limb amputation. Surface electrodes are limited because of poor skin contact, socket rotation, residual limb sweating, and their ability to only record signals from superficial muscles, whose function frequently does not relate to the intended prosthetic function. More sophisticated prosthetic devices require a stable and reliable interface between the user and robotic hand to improve upper limb prosthetic function. New Method Implantable Myoelectric Sensors (IMES®) are small electrodes intended to detect and wirelessly transmit EMG signals to an electromechanical prosthetic hand via an electromagnetic coil built into the prosthetic socket. This system is designed to simultaneously capture EMG signals from multiple residual limb muscles, allowing the natural control of multiple degrees of freedom simultaneously. Results We report the status of the first FDA-approved clinical trial of the IMES® System. This study is currently in progress, limiting reporting to only preliminary results. Comparison with Existing Methods Our first subject has reported the ability to accomplish a greater variety and complexity of tasks in his everyday life compared to what could be achieved with his previous myoelectric prosthesis. Conclusion The interim results of this study indicate the feasibility of utilizing IMES® technology to reliably sense and wirelessly transmit EMG signals from residual muscles to intuitively control a three degree-of-freedom prosthetic arm. PMID:25102286

  17. A good preoperative response to transcutaneous electrical nerve stimulation predicts a better therapeutic effect of implanted occipital nerve stimulation in pharmacologically intractable headaches.

    PubMed

    Nguyen, Jean-Paul; Nizard, Julien; Kuhn, Emmanuelle; Carduner, Florence; Penverne, Frédérique; Verleysen-Robin, Marie-Christine; Terreaux, Luc; de Gaalon, Solène; Raoul, Sylvie; Lefaucheur, Jean-Pascal

    2016-02-01

    Occipital nerve stimulation (ONS) is a surgical approach to treat patients with medically intractable chronic headache disorders. However, no preoperative test has been yet validated to allow candidates to be selected for implantation. In this study, the analgesic efficacy of transcutaneous electrical nerve stimulation (TENS) was tested for 1 to 3 months in 41 patients with pharmacologically intractable headache disorders of various origins, using a new technique of electrode placement over the occipital nerve. ONS electrodes were subsequently implanted in 33 patients (occipital neuralgia [n=15], cervicogenic headache [n=7], cluster headache [n=6], chronic migraine [n=5]) who had responded at least moderately to TENS. Assessment was performed up to five years after implantation (three years on average), based on the mean and maximum daily pain intensity scored on a 0-10 visual analogue scale and the number of headache days per month. Both TENS and chronic ONS therapy were found to be efficacious (57-76% improvement compared to baseline on the various clinical variables). The efficacy of ONS was better in cases of good or very good preoperative response to TENS than in cases of moderate response to TENS. Implanted ONS may be a valuable therapeutic option in the long term for patients with pharmacologically intractable chronic headache. Although we cannot conclude in patients with poor or no response to TENS, a good or very good response to TENS can support the indication of ONS therapy. This preoperative test could particularly be useful in patients with chronic migraine, in whom it may be difficult to indicate an invasive technique of cranial neurostimulation.

  18. Ovarian stimulation using human chorionic gonadotrophin impairs blastocyst implantation and decidualization by altering ovarian hormone levels and downstream signaling in mice.

    PubMed

    Ezoe, Kenji; Daikoku, Takiko; Yabuuchi, Akiko; Murata, Nana; Kawano, Hiroomi; Abe, Takashi; Okuno, Takashi; Kobayashi, Tamotsu; Kato, Keiichi

    2014-11-01

    Ovarian stimulation induced by follicle-stimulating hormone and human chorionic gonadotrophin (hCG) is commonly used in assisted reproductive technology to increase embryo production. However, recent clinical and animal studies have shown that ovarian stimulation disrupts endometrial function and embryo development and adversely affects pregnancy outcomes. How ovarian stimulation impairs pregnancy establishment and the precise mechanisms by which this stimulation reduces the chances of conception remain unclear. In this study, we first demonstrated that ovarian stimulation using hCG alone impairs implantation, decidualization and fetal development of mice by generating abnormal ovarian hormone levels. We also showed that ovarian hormone levels were altered because of changes in the levels of the enzymes involved in their synthesis in the follicles and corpora lutea. Furthermore, we determined that anomalous ovarian hormone secretion induced by ovarian stimulation alters the spatiotemporal expression of progesterone receptors and their downstream genes, especially in the uterine epithelium. Epithelial estrogenic signaling and cell proliferation were promoted on the day of implantation in stimulated mice and these changes led to the failure of uterine transition from the prereceptive to the receptive state. Collectively, our findings indicate that ovarian stimulation using hCG induces an imbalance in steroid hormone secretion, which causes a failure of the development of uterine receptivity and subsequent implantation and decidualization by altering the expression of steroid receptors and their downstream signaling associated with embryo implantation.

  19. Efficacy of Intrauterine infusion of granulocyte colony stimulating factor on patients with history of implantation failure: A randomized control trial

    PubMed Central

    Eftekhar, Maryam; Miraj, Sepideh; Farid Mojtahedi, Maryam; Neghab, Nosrat

    2016-01-01

    Background: Although pregnancy rate in in vitro fertilization-embryo transfer (IVF-ET) cycles has been increased over the preceding years, but the majority of IVF-ET cycles still fail. Granulocyte colony stimulating factor (GCSF) is a glycoprotein that stimulates cytokine growth factor and induces immune system which may improve pregnancy rate in women with history of implantation failure. Objective: The aim of this study was to evaluate GCSF ability to improve pregnancy rate in women with history of implantation failure Materials and Methods: 0.5 ml (300 µg/ml) GCSF was infused intrauterine in intervention group. Pregnancy outcomes were assessed based on clinical pregnancy. Results: The mean age of participants was 31.95±4.71 years old. There were no significant differences between demographic characteristics in two groups (p>0.05). The pregnancy outcome in GCSF group was improved significantly (p=0.043). Conclusion: GCSF can improve pregnancy outcome in patients with history of implantation failure. PMID:27981253

  20. Effect of stimulation rate on cochlear implant users' phoneme, word and sentence recognition in quiet and in noise.

    PubMed

    Shannon, Robert V; Cruz, Rachel J; Galvin, John J

    2011-01-01

    High stimulation rates in cochlear implants (CI) offer better temporal sampling, can induce stochastic-like firing of auditory neurons and can increase the electric dynamic range, all of which could improve CI speech performance. While commercial CI have employed increasingly high stimulation rates, no clear or consistent advantage has been shown for high rates. In this study, speech recognition was acutely measured with experimental processors in 7 CI subjects (Clarion CII users). The stimulation rate varied between (approx.) 600 and 4800 pulses per second per electrode (ppse) and the number of active electrodes varied between 4 and 16. Vowel, consonant, consonant-nucleus-consonant word and IEEE sentence recognition was acutely measured in quiet and in steady noise (+10 dB signal-to-noise ratio). Subjective quality ratings were obtained for each of the experimental processors in quiet and in noise. Except for a small difference for vowel recognition in quiet, there were no significant differences in performance among the experimental stimulation rates for any of the speech measures. There was also a small but significant increase in subjective quality rating as stimulation rates increased from 1200 to 2400 ppse in noise. Consistent with previous studies, performance significantly improved as the number of electrodes was increased from 4 to 8, but no significant difference showed between 8, 12 and 16 electrodes. Altogether, there was little-to-no advantage of high stimulation rates in quiet or in noise, at least for the present speech tests and conditions.

  1. Effect of Stimulation Rate on Cochlear Implant Users’ Phoneme, Word and Sentence Recognition in Quiet and in Noise

    PubMed Central

    Shannon, Robert V.; Cruz, Rachel J.; Galvin, John J.

    2011-01-01

    High stimulation rates in cochlear implants (CI) offer better temporal sampling, can induce stochastic-like firing of auditory neurons and can increase the electric dynamic range, all of which could improve CI speech performance. While commercial CI have employed increasingly high stimulation rates, no clear or consistent advantage has been shown for high rates. In this study, speech recognition was acutely measured with experimental processors in 7 CI subjects (Clarion CII users). The stimulation rate varied between (approx.) 600 and 4800 pulses per second per electrode (ppse) and the number of active electrodes varied between 4 and 16. Vowel, consonant, consonant-nucleus-consonant word and IEEE sentence recognition was acutely measured in quiet and in steady noise (+10 dB signal-to-noise ratio). Subjective quality ratings were obtained for each of the experimental processors in quiet and in noise. Except for a small difference for vowel recognition in quiet, there were no significant differences in performance among the experimental stimulation rates for any of the speech measures. There was also a small but significant increase in subjective quality rating as stimulation rates increased from 1200 to 2400 ppse in noise. Consistent with previous studies, performance significantly improved as the number of electrodes was increased from 4 to 8, but no significant difference showed between 8, 12 and 16 electrodes. Altogether, there was little-to-no advantage of high stimulation rates in quiet or in noise, at least for the present speech tests and conditions. PMID:20639631

  2. Laser Sintered Porous Ti-6Al-4V Implants Stimulate Vertical Bone Growth.

    PubMed

    Cheng, Alice; Cohen, David J; Kahn, Adrian; Clohessy, Ryan M; Sahingur, Kaan; Newton, Joseph B; Hyzy, Sharon L; Boyan, Barbara D; Schwartz, Zvi

    2017-04-13

    The objective of this study was to examine the ability of 3D implants with trabecular-bone-inspired porosity and micro-/nano-rough surfaces to enhance vertical bone ingrowth. Porous Ti-6Al-4V constructs were fabricated via laser-sintering and processed to obtain micro-/nano-rough surfaces. Male and female human osteoblasts were seeded on constructs to analyze cell morphology and response. Implants were then placed on rat calvaria for 10 weeks to assess vertical bone ingrowth, mechanical stability and osseointegration. All osteoblasts showed higher levels of osteocalcin, osteoprotegerin, vascular endothelial growth factor and bone morphogenetic protein 2 on porous constructs compared to solid laser-sintered controls. Porous implants placed in vivo resulted in an average of 3.1 ± 0.6 mm(3) vertical bone growth and osseointegration within implant pores and had significantly higher pull-out strength values than solid implants. New bone formation and pull-out strength was not improved with the addition of demineralized bone matrix putty. Scanning electron images and histological results corroborated vertical bone growth. This study indicates that Ti-6Al-4V implants fabricated by additive manufacturing to have porosity based on trabecular bone and post-build processing to have micro-/nano-surface roughness can support vertical bone growth in vivo, and suggests that these implants may be used clinically to increase osseointegration in challenging patient cases.

  3. Solcoseryl, a tissue respiration stimulating agent, significantly enhances the effect of capacitively coupled electric field on the promotion of bone formation around dental implants.

    PubMed

    Ochi, Morio; Wang, Pao-Li; Ohura, Kiyoshi; Takashima, Shigenori; Kagami, Hiroyuki; Hirose, Yukito; Kaku, Tohru; Sakaguchi, Kunihiko

    2003-06-01

    In the present study we examined the combined effect of application of a capacitively coupled electric field (CCEF) and the tissue respiration stimulating agent, Solcoseryl, on the promotion of bone formation around dental implants histologically and mechanically. After a dental implant was inserted into each femur of Japanese white rabbits, Solcoseryl (2 ml/kg) was administered intravenously in the ear vein and a CCEF was applied for 4 h per day for 14 days. The degree of bone formation on microscopic observation, bone contact ratio, bone surface area ratio, and the level of removal torque of the implant in the Solcoseryl- and CCEF-treated group were significantly higher than the respective value in the control group, which had not been treated with Solcoseryl nor CCEF. Thus, the combination of CCEF stimulation and Solcoseryl effectively promoted the formation of new bone. It is suggested that the clinical use of a combination of CCEF stimulation and Solcoseryl for dental implants promotes osseointegration.

  4. Effects of Pulse Shape and Polarity on Sensitivity to Cochlear Implant Stimulation: A Chronic Study in Guinea Pigs.

    PubMed

    Macherey, Olivier; Cazals, Yves

    2016-01-01

    Most cochlear implants (CIs) stimulate the auditory nerve with trains of symmetric biphasic pulses consisting of two phases of opposite polarity. Animal and human studies have shown that both polarities can elicit neural responses. In human CI listeners, studies have shown that at suprathreshold levels, the anodic phase is more effective than the cathodic phase. In contrast, animal studies usually show the opposite trend. Although the reason for this discrepancy remains unclear, computational modelling results have proposed that the degeneration of the peripheral processes of the neurons could lead to a higher efficiency of anodic stimulation. We tested this hypothesis in ten guinea pigs who were deafened with an injection of sysomycin and implanted with a single ball electrode inserted in the first turn of the cochlea. Animals were tested at regular intervals between 1 week after deafening and up to 1 year for some of them. Our hypothesis was that if the effect of polarity is determined by the presence or absence of peripheral processes, the difference in polarity efficiency should change over time because of a progressive neural degeneration. Stimuli consisted of charge-balanced symmetric and asymmetric pulses allowing us to observe the response to each polarity individually. For all stimuli, the inferior colliculus evoked potential was measured. Results show that the cathodic phase was more effective than the anodic phase and that this remained so even several months after deafening. This suggests that neural degeneration cannot entirely account for the higher efficiency of anodic stimulation observed in human CI listeners.

  5. Evaluation of focused multipolar stimulation for cochlear implants in long-term deafened cats

    NASA Astrophysics Data System (ADS)

    George, Shefin S.; Wise, Andrew K.; Fallon, James B.; Shepherd, Robert K.

    2015-06-01

    Objective. Focused multipolar (FMP) stimulation has been shown to produce restricted neural activation using intracochlear stimulation in animals with a normal population of spiral ganglion neurons (SGNs). However, in a clinical setting, the widespread loss of SGNs and peripheral fibres following deafness is expected to influence the effectiveness of FMP. Approach. We compared the efficacy of FMP stimulation to both monopolar (MP) and tripolar (TP) stimulation in long-term deafened cat cochleae (n = 8). Unlike our previous study, these cochleae contained <10% of the normal SGN population adjacent to the electrode array. We also evaluated the effect of electrode position on stimulation modes by using either modiolar facing or lateral wall facing half-band electrodes. The spread of neural activity across the inferior colliculus, a major nucleus within the central auditory pathway, was used as a measure of spatial selectivity. Main results. In cochleae with significant SGN degeneration, we observed that FMP and TP stimulation resulted in greater spatial selectivity than MP stimulation (p < 0.001). However, thresholds were significantly higher for FMP and TP stimulation compared to MP stimulation (p < 0.001). No difference between FMP and TP stimulation was found in any measures. The high threshold levels for FMP stimulation was significantly reduced without compromising spatial selectivity by varying the degree of current focusing (referred as ‘partial-FMP’ stimulation). Spatial selectivity of all stimulation modes was unaffected by the electrode position. Finally, spatial selectivity in long-term deafened cochleae was significantly less than that of cochleae with normal SGN population (George S S et al 2014 J. Neural Eng. 11 065003). Significance. The present results indicate that the greater spatial selectivity of FMP and TP stimulation over MP stimulation is maintained in cochleae with significant neural degeneration and is not adversely affected by electrode

  6. Cathodic voltage-controlled electrical stimulation of titanium implants as treatment for methicillin-resistant Staphylococcus aureus periprosthetic infections.

    PubMed

    Ehrensberger, Mark T; Tobias, Menachem E; Nodzo, Scott R; Hansen, Lisa A; Luke-Marshall, Nicole R; Cole, Ross F; Wild, Linda M; Campagnari, Anthony A

    2015-02-01

    Effective treatment options are often limited for implant-associated orthopedic infections. In this study we evaluated the antimicrobial effects of applying cathodic voltage-controlled electrical stimulation (CVCES) of -1.8 V (vs. Ag/AgCl) to commercially pure titanium (cpTi) substrates with preformed biofilm-like structures of methicillin-resistant Staphylococcus aureus (MRSA). The in vitro studies showed that as compared to the open circuit potential (OCP) conditions, CVCES of -1.8 V for 1 h significantly reduced the colony-forming units (CFU) of MRSA enumerated from the cpTi by 97% (1.89 × 106 vs 6.45 × 104 CFU/ml) and from the surrounding solution by 92% (6.63 × 105 vs. 5.15 × 104 CFU/ml). The in vivo studies, utilizing a rodent periprosthetic infection model, showed that as compared to the OCP conditions, CVCES at -1.8 V for 1 h significantly reduced MRSA CFUs in the bone tissue by 87% (1.15 × 105 vs. 1.48 × 104 CFU/ml) and reduced CFU on the cpTi implant by 98% (5.48 × 104 vs 1.16 × 103 CFU/ml). The stimulation was not associated with histological changes in the host tissue surrounding the implant. As compared to the OCP conditions, the -1.8 V stimulation significantly increased the interfacial capacitance (18.93 vs. 98.25 μF/cm(2)) and decreased polarization resistance (868,250 vs. 108 Ω-cm(2)) of the cpTi. The antimicrobial effects are thought to be associated with these voltage-dependent electrochemical surface properties of the cpTi.

  7. Safe transcranial electric stimulation motor evoked potential monitoring during posterior spinal fusion in two patients with cochlear implants.

    PubMed

    Yellin, Joseph L; Wiggins, Cheryl R; Franco, Alier J; Sankar, Wudbhav N

    2016-08-01

    Transcranial electric stimulation (TES) motor evoked potentials (MEPs) have become a regular part of intraoperative neurophysiologic monitoring (IONM) for posterior spinal fusion (PSF) surgery. Almost all of the relative contraindications to TES have come and gone. One exception is in the case of patients with a cochlear implant (CI). Herein we illustrate two cases of pediatric patients with CIs who underwent PSF using TES MEPs as part of IONM. In both instances the patients displayed no untoward effects from TES, and post-operatively both CIs were intact and functioning as they were prior to surgery.

  8. Intracranial Injection of an Optogenetics Viral Vector Followed by Optical Cannula Implantation for Neural Stimulation in Rat Brain Cortex.

    PubMed

    Pawela, Christopher; DeYoe, Edgar; Pashaie, Ramin

    2016-01-01

    Optogenetics is rapidly gaining acceptance as a preferred method to study specific neuronal cell types using light. Optogenetic neuromodulation requires the introduction of a cell-specific viral vector encoding for a light activating ion channel or ion pump and the utilization of a system to deliver light stimulation to brain. Here, we describe a two-part methodology starting with a procedure to inject an optogenetic AAV virus into rat cortex followed by a second procedure to surgically implant an optical cannula for light delivery to the deeper cortical layers.

  9. Interference of programmed electromagnetic stimulation with pacemakers and automatic implantable cardioverter defibrillators.

    PubMed

    Gwechenberger, Marianne; Rauscha, Friedrich; Stix, Günter; Schmid, Gernot; Strametz-Juranek, Jeanette

    2006-07-01

    A commercially available magnetic therapy system, designed for clinical application as well as for private use without medical supervision, was examined with respect to its potential for causing electromagnetic interference with implantable pacemakers (PMs) and automatic implantable cardioverter defibrillators (AICDs). A sample of 15 PMs and 5 AICDs were experimentally investigated. Each of the implants was realistically positioned in a homogeneous, electrically passive torso phantom and exposed to the magnetic fields of the system's applicators (whole body mat, cushion, and bar applicator). The detection thresholds of the implants were programmed to maximum sensitivity and both unipolar as well as bipolar electrode configurations were considered. The evaluation of possible interferences was derived from the internal event storages and pacing statistics recorded by the implants during exposure. Any "heart activity" recorded by the implants during exposure was interpreted as a potential interference, because the implant obviously misinterpreted the external interference signal as a physiological signal. Only cases without any recorded "heart activity" and with nominal pacing rates (as expected from the program parameter settings) of the implants were rated as "interference-free." Exposure to the whole body mat (peak magnetic induction up to 265 microT) did not show an influence on PMs and AICD in any case. The cushion applicator at the highest field intensity (peak magnetic induction up to 360 microT) led to atrial sensing defects in four PM models with unipolar electrode configuration. Under bipolar electrode configuration no disturbances occurred. The bar applicator led to sensing problems and consecutively reduced pacing rates in all tested PM models under unipolar electrode configuration and maximum field intensity (peak magnetic induction up to 980 microT). Bipolar electrode configuration resolved the problem. The investigated AICDs did not show malfunctions

  10. Mesenchymal stromal cell implantation for stimulation of long bone healing aggravates Staphylococcus aureus induced osteomyelitis.

    PubMed

    Seebach, Elisabeth; Holschbach, Jeannine; Buchta, Nicole; Bitsch, Rudi Georg; Kleinschmidt, Kerstin; Richter, Wiltrud

    2015-07-01

    Large bone defects requiring long-term osteosynthetic stabilization or repeated surgeries show a considerable rate of infection. Mesenchymal stromal cells (MSCs) have been successfully used to enhance bone regeneration, but their powerful immunomodulatory effects may impose an enhanced risk for osteomyelitis development. In order to unravel whether implantation of MSCs aggravates a simultaneous bone infection, a hydrogel-supported osteomyelitis ostectomy model was developed in which rats received a femoral bone defect with rigid plate-fixation. After fibrin-assisted transfer of Staphylococcus aureus (SA), effects of MSC implantation on osteomyelitis development were quantified over 3-4 weeks. All SA-infected animals developed an acute local osteomyelitis with significantly increased blood neutrophil count, abscess formation and bone destruction. MSC-treatment of infected defects aggravated osteomyelitis according to a significantly elevated osteomyelitis score and enhanced distal bone loss with spongy alteration of cortical bone architecture. Increased attraction of macrophages, osteoclasts and regulation of pro- and anti-inflammatory mediators were potential MSC actions. Overall trophic actions of MSCs implanted into non-sterile bone defects may enhance an infection and/or exacerbate osteomyelitis. Studies on antibiotic carrier augmentation or antibiotic treatment are warranted to decide whether MSC implantation is a safe and promising therapy for orthopedic implant-stabilized bone defects at high risk for development of infection.

  11. The Prediction of Speech Recognition in Noise With a Semi-Implantable Bone Conduction Hearing System by External Bone Conduction Stimulation With Headband

    PubMed Central

    Ihler, Friedrich; Blum, Jenny; Berger, Max-Ulrich; Weiss, Bernhard G.; Welz, Christian

    2016-01-01

    Semi-implantable transcutaneous bone conduction devices are treatment options for conductive and mixed hearing loss (CHL/MHL). For counseling of patients, realistic simulation of the functional result is desirable. This study compared speech recognition in noise with a semi-implantable transcutaneous bone conduction device to external stimulation with a bone conduction device fixed by a headband. Eight German-language adult patients were enrolled after a semi-implantable transcutaneous bone conduction device (Bonebridge, Med-El) was implanted and fitted. Patients received a bone conduction device for external stimulation (Baha BP110, Cochlear) fixed by a headband for comparison. The main outcome measure was speech recognition in noise (Oldenburg Sentence Test). Pure-tone audiometry was performed and subjective benefit was assessed using the Glasgow Benefit Inventory and Abbreviated Profile of Hearing Aid Benefit questionnaires. Unaided, patients showed a mean signal-to-noise ratio threshold of 4.6 ± 4.2 dB S/N for speech recognition. The aided results were −3.3 ± 7.2 dB S/N by external bone conduction stimulation and −1.2 ± 4.0 dB S/N by the semi-implantable bone conduction device. The difference between the two devices was not statistically significant, while the difference was significant between unaided and aided situation for both devices. Both questionnaires for subjective benefit favored the semi-implantable device over external stimulation. We conclude that it is possible to simulate the result of speech recognition in noise with a semi-implantable transcutaneous bone conduction device by external stimulation. This should be part of preoperative counseling of patients with CHL/MHL before implantation of a bone conduction device. PMID:27698259

  12. The Prediction of Speech Recognition in Noise With a Semi-Implantable Bone Conduction Hearing System by External Bone Conduction Stimulation With Headband: A Prospective Study.

    PubMed

    Ihler, Friedrich; Blum, Jenny; Berger, Max-Ulrich; Weiss, Bernhard G; Welz, Christian; Canis, Martin

    2016-10-03

    Semi-implantable transcutaneous bone conduction devices are treatment options for conductive and mixed hearing loss (CHL/MHL). For counseling of patients, realistic simulation of the functional result is desirable. This study compared speech recognition in noise with a semi-implantable transcutaneous bone conduction device to external stimulation with a bone conduction device fixed by a headband. Eight German-language adult patients were enrolled after a semi-implantable transcutaneous bone conduction device (Bonebridge, Med-El) was implanted and fitted. Patients received a bone conduction device for external stimulation (Baha BP110, Cochlear) fixed by a headband for comparison. The main outcome measure was speech recognition in noise (Oldenburg Sentence Test). Pure-tone audiometry was performed and subjective benefit was assessed using the Glasgow Benefit Inventory and Abbreviated Profile of Hearing Aid Benefit questionnaires. Unaided, patients showed a mean signal-to-noise ratio threshold of 4.6 ± 4.2 dB S/N for speech recognition. The aided results were -3.3 ± 7.2 dB S/N by external bone conduction stimulation and -1.2 ± 4.0 dB S/N by the semi-implantable bone conduction device. The difference between the two devices was not statistically significant, while the difference was significant between unaided and aided situation for both devices. Both questionnaires for subjective benefit favored the semi-implantable device over external stimulation. We conclude that it is possible to simulate the result of speech recognition in noise with a semi-implantable transcutaneous bone conduction device by external stimulation. This should be part of preoperative counseling of patients with CHL/MHL before implantation of a bone conduction device.

  13. Wireless data and power transfer of an optogenetic implantable visual cortex stimulator.

    PubMed

    Fattah, Nabeel; Laha, Soumyasanta; Sokolov, Danil; Chester, Graeme; Degenaar, Patrick

    2015-08-01

    In this paper, the wireless data and power transfer for a novel optogenetic visual cortex implant system was demonstrated by using pork tissue mimic in-vitro at the ISM 2.4 GHz and 13.5 MHz frequency band respectively. The observed data rate was 120 kbps with no loss in data for up to a thickness of 35 mm in both water & pork. To increase the power level of the implant a Class E power amplifier is separately designed and simulated for the transmitter end and has an output power of around 223 mW with an efficiency of 81.83%. The transferred power at the receiver was measured to be 66.80 mW for the pork tissue medium considering a distance of 5 mm between the transmitter and the receiver coils, with a coupling coefficient of ~0.8. This serves the power requirement of the visual cortex implant.

  14. Preoperative parameters and their prognostic value in amyotrophic lateral sclerosis patients undergoing implantation of a diaphragm pacing stimulation system

    PubMed Central

    Şanlı, Aydın; Şengün, Ihsan Şükrü; Karaçam, Volkan; Alpaydın, Aylin Özgen; Tertemiz, Kemal Can; Özalevli, Sevgi; Şanlı, Bahar Ağaoğlu; Kaya, Alper; Özdemir, Nezih

    2017-01-01

    Introduction: Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease with devastating and fatal respiratory complications. Diaphragm pacing stimulation (DPS) is a treatment option in diaphragm insufficient ALS patients. Ventilatory insufficiency depending on diaphragmatic failure is treated by the present study aimed to investigate prognostic value of preoperative clinical and functional characteristics of ALS patients undergoing implantation of a DPS system and to determine appropriate indications for the DPS system. Methods: The study included 34 ALS patients implanted with DPS system. All patients underwent multidisciplinary and laboratory evaluations before the surgery. The laboratory examinations included pulmonary function tests and arterial blood gas analysis. Survival rates were recorded in a 2-year follow-up after the surgery. Results: Twenty-eight of 34 patients with ALS survived after a 2-year follow-up. These patients were younger than those who died and had the disease for a longer time; however, the differences were not significant. Both right and left hemidiaghragms were thicker in the survived patients (P < 0.0001 for each). Pulmonary function tests revealed no significant differences between the patients who survived. Arterial blood gas analysis demonstrated lower partial pressure of carbon dioxide in the survived patients (P = 0.025). Conclusions: DPS implantation was more efficacious in ALS patients with mild respiratory failure and thicker diaphragm. Predictors of long-term effectiveness of DPS system are needed to be addressed by large-scale studies. PMID:28298842

  15. In Situ Characterization of Stimulating Microelectrode Arrays: Study of an Idealized Structure Based on Argus II Retinal implants

    NASA Astrophysics Data System (ADS)

    Kandagor, Vincent; Cela, Carlos J.; Sanders, Charlene A.; Greenbaum, Elias; Lazzi, Gianluca; Zhou, David D.; Castro, Richard; Gaikwad, Sanjay; Little, Jim

    The development of a retinal prosthesis for artificial sight includes a study of the factors affecting the structural and functional stability of chronically implanted microelectrode arrays. Although neuron depolarization and propagation of electrical signals have been studied for nearly a century, the use of multielectrode stimulation as a proposed therapy to treat blindness is a frontier area of modern ophthalmology research. Mapping and characterizing the topographic information contained in the electric field potentials and understanding how this information is transmitted and interpreted in the visual cortex is still very much a work in progress. In order to characterize the electrical field patterns generated by the device, an in vitro prototype that mimics several of the physical and chemical parameters of the in vivo visual implant device was fabricated. We carried out multiple electrical measurements in a model "eye," beginning with a single electrode, followed by a 9-electrode array structure, both idealized components based on the Argus II retinal implants. Correlating the information contained in the topographic features of the electric fields with psychophysical testing in patients may help reduce the time required for patients to convert the electrical patterns into graphic signals.

  16. Masking patterns for monopolar and phantom electrode stimulation in cochlear implants

    PubMed Central

    Saoji, Aniket A.; Landsberger, David M.; Padilla, Monica; Litvak, Leonid M.

    2013-01-01

    Phantom electrode (PE) stimulation consists of out-of-phase stimulation of two electrodes. When presented at the apex of the electrode array, phantom stimulation is known to produce a lower pitch sensation than monopolar (MP) stimulation on the most apical electrode. The ratio of the current between the primary electrode (PEL) and the compensating electrode (CEL) is represented by the coefficient σ, which ranges from 0 (monopolar) to 1 (full bipolar). The exact mechanism by which PE stimulation produces a lower pitch sensation is unclear. In the present study, unmasked and masked thresholds were obtained using a forward masking paradigm to estimate the spread of current for MP and PE stimulation. Masked thresholds were measured for two phantom electrode configurations (1) PEL = 4, CEL = 5 (lower pitch phantom) and (2) PEL = 4, CEL = 3 (higher pitch phantom). The unmasked thresholds were subtracted from the masked thresholds to obtain masking patterns which were normalized to their peak. The masking patterns reveal (1) differences in the spread of excitation that are consistent with the direction of pitch shift produced by PE stimulation, and (2) narrower spread of electrical excitation for PE stimulation relative to MP stimulation. PMID:23299125

  17. Rate discrimination at low pulse rates in normal-hearing and cochlear implant listeners: Influence of intracochlear stimulation site.

    PubMed

    Stahl, Pierre; Macherey, Olivier; Meunier, Sabine; Roman, Stéphane

    2016-04-01

    Temporal pitch perception in cochlear implantees remains weaker than in normal hearing listeners and is usually limited to rates below about 300 pulses per second (pps). Recent studies have suggested that stimulating the apical part of the cochlea may improve the temporal coding of pitch by cochlear implants (CIs), compared to stimulating other sites. The present study focuses on rate discrimination at low pulse rates (ranging from 20 to 104 pps). Two experiments measured and compared pulse rate difference limens (DLs) at four fundamental frequencies (ranging from 20 to 104 Hz) in both CI and normal-hearing (NH) listeners. Experiment 1 measured DLs in users of the (Med-El CI, Innsbruck, Austria) device for two electrodes (one apical and one basal). In experiment 2, DLs for NH listeners were compared for unresolved harmonic complex tones filtered in two frequency regions (lower cut-off frequencies of 1200 and 3600 Hz, respectively) and for different bandwidths. Pulse rate discrimination performance was significantly better when stimulation was provided by the apical electrode in CI users and by the lower-frequency tone complexes in NH listeners. This set of data appears consistent with better temporal coding when stimulation originates from apical regions of the cochlea.

  18. ASIC or PIC? Implantable stimulators based on semi-custom CMOS technology or low-power microcontroller architecture.

    PubMed

    Salmons, S; Gunning, G T; Taylor, I; Grainger, S R; Hitchings, D J; Blackhurst, J; Jarvis, J C

    2001-01-01

    To gain a better understanding of the effects of chronic stimulation on mammalian muscles we needed to generate patterns of greater variety and complexity than simple constant-frequency or burst patterns. We describe here two approaches to the design of implantable neuromuscular stimulators that can satisfy these requirements. Devices of both types were developed and used in long-term experiments. The first device was based on a semi-custom Application Specific Integrated Circuit (ASIC). This approach has the advantage that the circuit can be completely tested at every stage of development and production, assuring a high degree of reliability. It has the drawback of inflexibility: the patterns are produced by state machines implemented in silicon, so each new set of patterns requires a fresh production run, which is costly and time-consuming. The second device was based on a commercial microcontroller (Microchip PIC16C84). The functionality of this type of circuit is specified in software rather than in silicon hardware, allowing a single device to be programmed for different functions. With the use of features designed to improve fault-tolerance we found this approach to be as reliable as that based on ASICs. The encapsulated devices can easily be accommodated subcutaneously on the flank of a rabbit and a recent version is small enough to implant into the peritoneal cavity of rats. The current devices are programmed with a predetermined set of 12 patterns before assembly; the desired pattern is selected after implantation with an electronic flash gun. The operating current drain is less than 40 microA.

  19. Presacral abscess as a rare complication of sacral nerve stimulator implantation.

    PubMed

    Gumber, A; Ayyar, S; Varia, H; Pettit, S

    2017-03-01

    A 50-year-old man with intractable anal pain attributed to proctalgia fugax underwent insertion of a sacral nerve stimulator via the right S3 vertebral foramen for pain control with good symptomatic relief. Thirteen months later, he presented with signs of sepsis. Computed tomography (CT) and magnetic resonance imaging (MRI) showed a large presacral abscess. MRI demonstrated increased enhancement along the pathway of the stimulator electrode, indicating that the abscess was caused by infection introduced at the time of sacral nerve stimulator placement. The patient was treated with broad spectrum antibiotics, and the sacral nerve stimulator and electrode were removed. Attempts were made to drain the abscess transrectally using minimally invasive techniques but these were unsuccessful and CT guided transperineal drainage was then performed. Despite this, the presacral abscess progressed, developing enlarging gas locules and extending to the pelvic brim to involve the aortic bifurcation, causing hydronephrosis and radiological signs of impending sacral osteomyelitis. MRI showed communication between the rectum and abscess resulting from transrectal drainage. In view of the progressive presacral sepsis, a laparotomy was performed with drainage of the abscess, closure of the upper rectum and formation of a defunctioning end sigmoid colostomy. Following this, the presacral infection resolved. Presacral abscess formation secondary to an infected sacral nerve stimulator electrode has not been reported previously. Our experience suggests that in a similar situation, the optimal management is to perform laparotomy with drainage of the presacral abscess together with simultaneous removal of the sacral nerve stimulator and electrode.

  20. Cortical activation in profoundly deaf patients during cochlear implant stimulation demonstrated by H sub 2 (15)O PET

    SciTech Connect

    Herzog, H.; Lamprecht, A.; Kuehn, A.R.; Roden, W.; Vosteen, K.H.; Feinendegen, L.E. )

    1991-05-01

    Cochlear implants (CIs) are used to provide sensations of sound to profoundly deaf patients. The performance of the CI is assessed mainly by the subjective reports of patients. The aim of this study was to look for objective cortical responses to the stimulation of the CI. Two postlingually and two prelingually deaf patients were investigated by positron emission tomography (PET) using {sup 15}O-labeled water (H{sub 2}{sup 15}O) to determine the regional cerebral blood flow (rCBF). Instead of quantifying rCBF in absolute terms, it was estimated by referring the regional tissue concentration of H{sub 2}{sup 15}O to the mean whole brain concentration. CI stimulation encoded from white noise and sequential words led to an increased rCBF in the primary and secondary (Wernicke) auditory cortex. Relative elevations of up to 33% were observed bilaterally, although they were higher contralateral to the CI. These results were obtained not only in the postlingually deaf patients but also in two patients who had never been able to hear. Thus, it could be demonstrated that PET measurements of cerebral H{sub 2}{sup 15}O distribution yield objective responses of the central auditory system during electrical stimulation by CIs in profoundly deaf patients.

  1. Neuronal loss due to prolonged controlled-current stimulation with chronically implanted microelectrodes in the cat cerebral cortex

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas; Pikov, Victor; Troyk, Philip R.

    2010-06-01

    Activated iridium microelectrodes were implanted for 450-1282 days in the sensorimotor cortex of seven adult domestic cats and then pulsed for 240 h (8 h per day for 30 days) at 50 Hz. Continuous stimulation at 2 nC/phase and with a geometric charge density of 100 µC cm-2 produced no detectable change in neuronal density in the tissue surrounding the microelectrode tips. However, pulsing with a continuous 100% duty cycle at 4 nC/phase and with a geometric charge density of 200 µC cm-2 induced loss of cortical neurons over a radius of at least 150 µm from the electrode tips. The same stimulus regimen but with a duty cycle of 50% (1 s of stimulation, and then 1 s without stimulation repeated for 8 h) produced neuronal loss within a smaller radius, approximately 60 µm from the center of the electrode tips. However, there also was significant loss of neurons surrounding the unpulsed electrodes, presumably as a result of mechanical injury due to their insertion into and long-term residence in the tissue, and this was responsible for most of the neuronal loss within 150 µm of the electrodes pulsed with the 50% duty cycle.

  2. Comparison of two methods for selecting minimum stimulation levels used in programming the Nucleus 22 cochlear implant.

    PubMed

    Skinner, M W; Holden, L K; Holden, T A; Demorest, M E

    1999-08-01

    Minimum stimulation levels for active electrodes in a Nucleus 22 cochlear implant were set at threshold (clinical default value) and raised levels (M = +2.04 dB) to determine if raised levels would improve recipients' understanding of soft speech sounds with the SPEAK speech coding strategy. Eight postlinguistically deaf adults participated in a 4-phase A1B1A2B2 test design. Speech recognition was evaluated with consonant-vowel nucleus-consonant (CNC) words in quiet and sentences in noise, both presented at 50, 60, and 70 dB SPL during 2 weekly sessions at the end of each phase. Group mean scores were significantly higher with the raised level program for words and phonemes at 50 and 60 dB SPL and for sentences at 50 and 70 dB SPL. All participants chose to use the raised level program in everyday life at the end of the study. The results suggest that clinical use of a raised level program for Nucleus 22 recipients has the potential to make soft sounds louder and, therefore, more salient in everyday life. Further research is needed to determine if this approach is appropriate for other cochlear implant devices.

  3. Treatment of GnRHa-implanted Senegalese sole (Solea senegalensis) with 11-ketoandrostenedione stimulates spermatogenesis and increases sperm motility.

    PubMed

    Agulleiro, Maria J; Scott, Alexander P; Duncan, Neil; Mylonas, Constantinos C; Cerdà, Joan

    2007-08-01

    The effect of 11-ketoandrostenedione (OA) on plasma concentrations of sexual steroids and spermatogenesis of Senegalese sole (Solea senegalensis) implanted with gonadotropin-releasing hormone agonist (GnRHa) was investigated. Males were treated with saline (control) or with GnRHa implants (50 mug kg(-1)) in the presence or absence of OA (2 or 7 mg kg(-1)) during twenty eight days. Treatment with GnRHa alone slightly stimulated spermatogenesis and milt production with respect to controls, and this was associated with a transient elevation of plasma 11-ketotestosterone (11-KT) at day seven and an increase of 5beta-reduced metabolite(s) of 17,20beta-dihydroxy-pregn-4-en-3-one (17,20betaP) at day twenty eight. However, treatment with GnRHa+OA increased plasma concentrations of 11-KT and free+sulphated 5beta-reduced metabolites of 17,20betaP at days seven, fourteen and twenty one. After twenty eight days, the testis of GnRHa+OA-treated fish showed a lower number of spermatogonia B and spermatocytes I, and a higher number of spermatids, than fish treated with GnRHa alone. In addition, the motility of spermatozoa produced by GnRHa+OA males was enhanced by 2-fold with respect to controls or GnRHa males. These results suggest that treatment of Senegalese sole with GnRHa+OA stimulates spermatogenesis resulting in more motile sperm. Such effects could be mediated by an increased synthesis of 11-KT and/or 17,20betaP in the testis but further studies will be required to elucidate the specific mechanism involved.

  4. Stimulation from Cochlear Implant Electrodes Assists with Recovery from Asymmetric Perceptual Tilt: Evidence from the Subjective Visual Vertical Test

    PubMed Central

    Gnanasegaram, Joshua J.; Parkes, William J.; Cushing, Sharon L.; McKnight, Carmen L.; Papsin, Blake C.; Gordon, Karen A.

    2016-01-01

    Vestibular end organ impairment is highly prevalent in children who have sensorineural hearing loss (SNHL) rehabilitated with cochlear implants (CIs). As a result, spatial perception is likely to be impacted in this population. Of particular interest is the perception of visual vertical because it reflects a perceptual tilt in the roll axis and is sensitive to an imbalance in otolith function. The objectives of the present study were thus to identify abnormalities in perception of the vertical plane in children with SNHL and determine whether such abnormalities could be resolved with stimulation from the CI. Participants included 53 children (15.2 ± 4.0 years of age) with SNHL and vestibular loss, confirmed with vestibular evoked myogenic potential (VEMP) testing. Testing protocol was validated in a sample of nine young adults with normal hearing (28.8 ± 7.7 years). Perception of visual vertical was assessed using the static Subjective Visual Vertical (SVV) test performed with and without stimulation in the participants with cochleovestibular loss. Trains of electrical pulses were delivered by an electrode in the left and/or right ear. Asymmetric spatial orientation deficits were found in nearly half of the participants with CIs (24/53 [45%]). The abnormal perception in this cohort was exacerbated by visual tilts in the direction of their deficit. Electric pulse trains delivered using the CI shifted this abnormal perception towards center (i.e., normal; p = 0.007). Importantly, this benefit was realized regardless of which ear was stimulated. These results suggest a role for CI stimulation beyond the auditory system, in particular, for improving vestibular/balance function. PMID:27679562

  5. An optically powered single-channel stimulation implant as test system for chronic biocompatibility and biostability of miniaturized retinal vision prostheses.

    PubMed

    Schanze, Thomas; Hesse, Lutz; Lau, Carsten; Greve, Nina; Haberer, Werner; Kammer, Sascha; Doerge, Thomas; Rentzos, Andreas; Stieglitz, Thomas

    2007-06-01

    A microsystem based microimplant with an optically powered single-channel stimulator was designed and developed as test system for an epi-retinal vision implant. Biostability of the hybrid assembly and the encapsulation materials were evaluated in pilot experiments in chronic implantations in a cat animal model. The implant was fabricated on a flexible polyimide substrate with integrated platinum electrode, interconnection lines, and contact pads for hybrid integration of electronic components. The receiver part was realized with four photodiodes connected in series. A parylene C coating was deposited on the electronic components as insulation layer. Silicone rubber was used to encapsulate the electronics in the shape of an artificial intraocular lens to allow proper implantation in the eye. Pilot experiments showed the biostability of the encapsulation approach and full electric functionality of the microimplant to generate stimulation currents over the implantation period of three months in two cats. In one cat, electrical stimulation of the retina evoked neuronal responses in the visual cortex and indicated the feasibility of the system approach for chronic use.

  6. Restoration of hearing by hearing aids: conventional hearing aids – implantable hearing aids – cochlear implants – auditory brainstem implants

    PubMed Central

    Leuwer, R.; Müller, J.

    2005-01-01

    Aim of this report is to explain the current concept of hearing restoration using hearing aids. At present the main issues of conventional hearing aids are the relative benefits of analogue versus digital devices and different strategies for the improvement of hearing in noise. Implantable hearing aids provide a better sound quality and less distortion. The lack of directional microphones is the major disadvantage of the partially implantable hearing aids commercially available. Two different clinical studies about fully implantable hearing aids have been started in 2004. One of the most-promising developments seems to be the electric-acoustic stimulation. PMID:22073051

  7. Restoration of ankle movements with the ActiGait implantable drop foot stimulator: a safe and reliable treatment option for permanent central leg palsy.

    PubMed

    Martin, Klaus Daniel; Polanski, Witold Henryk; Schulz, Anne-Kathrin; Jöbges, Michael; Hoff, Hansjoerg; Schackert, Gabriele; Pinzer, Thomas; Sobottka, Stephan B

    2016-01-01

    OBJECT The ActiGait drop foot stimulator is a promising technique for restoration of lost ankle function by an implantable hybrid stimulation system. It allows ankle dorsiflexion by active peroneal nerve stimulation during the swing phase of gait. In this paper the authors report the outcome of the first prospective study on a large number of patients with stroke-related drop foot. METHODS Twenty-seven patients who experienced a stroke and with persisting spastic leg paresis received an implantable ActiGait drop foot stimulator for restoration of ankle movement after successful surface test stimulation. After 3 to 5 weeks, the stimulator was activated, and gait speed, gait endurance, and activation time of the system were evaluated and compared with preoperative gait tests. In addition, patient satisfaction was assessed using a questionnaire. RESULTS Postoperative gait speed significantly improved from 33.9 seconds per 20 meters to 17.9 seconds per 20 meters (p < 0.0001), gait endurance from 196 meters in 6 minutes to 401 meters in 6 minutes (p < 0.0001), and activation time from 20.5 seconds to 10.6 seconds on average (p < 0.0001). In 2 patients with nerve injury, surgical repositioning of the electrode cuff became necessary. One patient showed a delayed wound healing, and in another patient the system had to be removed because of a wound infection. Marked improvement in mobility, social participation, and quality of life was confirmed by 89% to 96% of patients. CONCLUSIONS The ActiGait implantable drop foot stimulator improves gait speed, endurance, and quality of life in patients with stroke-related drop foot. Regarding gait speed, the ActiGait system appears to be advantageous compared with foot orthosis or surface stimulation devices. Randomized trials with more patients and longer observation periods are needed to prove the long-term benefit of this device.

  8. Elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation.

    PubMed

    Li, Yan; Deng, Jianxin; Zhou, Jun; Li, Xueen

    2016-11-01

    Corresponding to pre-puncture and post-puncture insertion, elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation are investigated, respectively. Elastic mechanical properties in pre-puncture are investigated through pre-puncture needle insertion experiments using whole porcine brains. A linear polynomial and a second order polynomial are fitted to the average insertion force in pre-puncture. The Young's modulus in pre-puncture is calculated from the slope of the two fittings. Viscoelastic mechanical properties of brain tissues in post-puncture insertion are investigated through indentation stress relaxation tests for six interested regions along a planned trajectory. A linear viscoelastic model with a Prony series approximation is fitted to the average load trace of each region using Boltzmann hereditary integral. Shear relaxation moduli of each region are calculated using the parameters of the Prony series approximation. The results show that, in pre-puncture insertion, needle force almost increases linearly with needle displacement. Both fitting lines can perfectly fit the average insertion force. The Young's moduli calculated from the slope of the two fittings are worthy of trust to model linearly or nonlinearly instantaneous elastic responses of brain tissues, respectively. In post-puncture insertion, both region and time significantly affect the viscoelastic behaviors. Six tested regions can be classified into three categories in stiffness. Shear relaxation moduli decay dramatically in short time scales but equilibrium is never truly achieved. The regional and temporal viscoelastic mechanical properties in post-puncture insertion are valuable for guiding probe insertion into each region on the implanting trajectory.

  9. OptoZIF Drive: a 3D printed implant and assembly tool package for neural recording and optical stimulation in freely moving mice

    NASA Astrophysics Data System (ADS)

    Freedman, David S.; Schroeder, Joseph B.; Telian, Gregory I.; Zhang, Zhengyang; Sunil, Smrithi; Ritt, Jason T.

    2016-12-01

    Objective. Behavioral neuroscience studies in freely moving rodents require small, light-weight implants to facilitate neural recording and stimulation. Our goal was to develop an integrated package of 3D printed parts and assembly aids for labs to rapidly fabricate, with minimal training, an implant that combines individually positionable microelectrodes, an optical fiber, zero insertion force (ZIF-clip) headstage connection, and secondary recording electrodes, e.g. for electromyography (EMG). Approach. Starting from previous implant designs that position recording electrodes using a control screw, we developed an implant where the main drive body, protective shell, and non-metal components of the microdrives are 3D printed in parallel. We compared alternative shapes and orientations of circuit boards for electrode connection to the headstage, in terms of their size, weight, and ease of wire insertion. We iteratively refined assembly methods, and integrated additional assembly aids into the 3D printed casing. Main results. We demonstrate the effectiveness of the OptoZIF Drive by performing real time optogenetic feedback in behaving mice. A novel feature of the OptoZIF Drive is its vertical circuit board, which facilities direct ZIF-clip connection. This feature requires angled insertion of an optical fiber that still can exit the drive from the center of a ring of recording electrodes. We designed an innovative 2-part protective shell that can be installed during the implant surgery to facilitate making additional connections to the circuit board. We use this feature to show that facial EMG in mice can be used as a control signal to lock stimulation to the animal’s motion, with stable EMG signal over several months. To decrease assembly time, reduce assembly errors, and improve repeatability, we fabricate assembly aids including a drive holder, a drill guide, an implant fixture for microelectode ‘pinning’, and a gold plating fixture. Significance. The

  10. Programmed Ventricular Stimulation to Risk Stratify for Early Cardioverter-Defibrillator Implantation to Prevent Tachyarrhythmias following Acute Myocardial Infarction (PROTECT-ICD): Trial Protocol, Background and Significance.

    PubMed

    Zaman, Sarah; Taylor, Andrew J; Stiles, Martin; Chow, Clara; Kovoor, Pramesh

    2016-11-01

    The 'Programmed Ventricular Stimulation to Risk Stratify for Early Cardioverter-Defibrillator Implantation to Prevent Tachyarrhythmias following Acute Myocardial Infarction' (PROTECT-ICD) trial is an Australian-led multicentre randomised controlled trial targeting prevention of sudden cardiac death in patients who have at least moderately reduced cardiac function following a myocardial infarct (MI). The primary objective of the trial is to assess whether electrophysiological study to guide prophylactic implantation of an implantable cardioverter-defibrillator (ICD) early following MI (first 40 days) will lead to a significant reduction in sudden cardiac death and non-fatal arrhythmia. The secondary objective is to assess the utility of cardiac MRI (CMR) in assessing early myocardial characteristics, and its predictive value for both inducible ventricular tachycardia (VT) at EPS and SCD/ non-fatal arrhythmia at follow-up.

  11. The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices

    PubMed Central

    Kahan, Joshua; Papadaki, Anastasia; White, Mark; Mancini, Laura; Yousry, Tarek; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Thornton, John

    2015-01-01

    Background Deep brain stimulation (DBS) is an established treatment for patients with movement disorders. Patients receiving chronic DBS provide a unique opportunity to explore the underlying mechanisms of DBS using functional MRI. It has been shown that the main safety concern with MRI in these patients is heating at the electrode tips – which can be minimised with strict adherence to a supervised acquisition protocol using a head-transmit/receive coil at 1.5T. MRI using the body-transmit coil with a multi-channel receive head coil has a number of potential advantages including an improved signal-to-noise ratio. Study outline We compared the safety of cranial MRI in an in vitro model of bilateral DBS using both head-transmit and body-transmit coils. We performed fibre-optic thermometry at a Medtronic ActivaPC device and Medtronic 3389 electrodes during turbo-spin echo (TSE) MRI using both coil arrangements at 1.5T and 3T, in addition to gradient-echo echo-planar fMRI exposure at 1.5T. Finally, we investigated the effect of transmit-coil choice on DBS stimulus delivery during MRI. Results Temperature increases were consistently largest at the electrode tips. Changing from head- to body-transmit coil significantly increased the electrode temperature elevation during TSE scans with scanner-reported head SAR 0.2W/kg from 0.45°C to 0.79°C (p<0.001) at 1.5T, and from 1.25°C to 1.44°C (p<0.001) at 3T. The position of the phantom relative to the body coil significantly impacted on electrode heating at 1.5T; however, the greatest heating observed in any position tested remained <1°C at this field strength. Conclusions We conclude that (1) with our specific hardware and SAR-limited protocol, body-transmit cranial MRI at 1.5T does not produce heating exceeding international guidelines, even in cases of poorly positioned patients, (2) cranial MRI at 3T can readily produce heating exceeding international guidelines, (3) patients with ActivaPC Medtronic systems are safe

  12. Pain Control on Demand Based on Pulsed Radio-Frequency Stimulation of the Dorsal Root Ganglion Using a Batteryless Implantable CMOS SoC.

    PubMed

    Hung-Wei Chiu; Mu-Lien Lin; Chii-Wann Lin; I-Hsiu Ho; Wei-Tso Lin; Po-Hsiang Fang; Yi-Chin Lee; Yeong-Ray Wen; Shey-Shi Lu

    2010-12-01

    This paper presents the implementation of a batteryless CMOS SoC with low voltage pulsed radio-frequency (PRF) stimulation. This implantable SoC uses 402 MHz command signals following the medical implanted communication system (MICS) standard and a low frequency (1 MHz) for RF power transmission. A body floating type rectifier achieves 84% voltage conversion ratio. A bi-phasic pulse train of 1.4 V and 500 kHz is delivered by a PRF driver circuit. The PRF parameters include pulse duration, pulse frequency and repetition rate, which are controllable via 402 MHz RF receiver. The minimal required 3 V RF Vin and 2.2 V VDDr is achieved at 18 mm gap. The SoC chip is fabricated in a 0.35 μm CMOS process and mounted on a PCB with a flexible spiral antenna. The packaged PRF SoC was implanted into rats for the animal study. Von Frey was applied to test the mechanical allodynia in a blinded manner. This work has successfully demonstrated that implanted CMOS SoC stimulating DRG with 1.4 V, 500 kHz PRF could significantly reduce spinal nerve ligation (SNL) induced mechanical allodynia for 3-7 days.

  13. Estradiol-stimulated growth of MCF-7 tumors implanted in athymic mice: a model to study the tumoristatic action of tamoxifen.

    PubMed

    Gottardis, M M; Robinson, S P; Jordan, V C

    1988-01-01

    Ovariectomized athymic (nude) mice were inoculated (10(7) cells) with the breast cancer cell line, MCF-7, into the axillary mammary fat pads. Tumors did not grow unless animals were implanted with a 1.7 mg estradiol sustained (8-week)-release cholesterol pellet. Co-implantation with tamoxifen (5 mg, 4-week release) caused an inhibition of estradiol-stimulated growth but did not cause tumor growth when implanted alone. The metabolism of [3H]tamoxifen was determined in the athymic mouse bearing MCF-7 tumors. Metabolites in the liver, uterus and tumor were determined by TLC. The principal metabolite in each of the tissues was 4-hydroxytamoxifen (by comparison of Rfs with authentic standards). Studies with 4-hydroxytamoxifen and N-desmethyltamoxifen (the principal metabolites in patients) showed that each was effective in inhibiting estradiol-stimulated tumor growth. However, tumor growth could be reactivated by treatment with estradiol alone. In a separate experiment, tumor-implanted animals were treated with tamoxifen for 1, 2 and 6 months. Tamoxifen did not cause tumor growth. Nevertheless, tumor growth was reactivated by estradiol on each occasion. These studies confirm the tumoristatic actions of tamoxifen and strongly support the view that therapy must be given indefinitely to patients to control tumor recurrence. The athymic mouse model can be used in the future to determine the efficacy of novel antiestrogens and the development of antiestrogen drug resistance.

  14. Morphological Correlates of Hearing Loss after Cochlear Implantation and Electro-Acoustic Stimulation in a Hearing-Impaired Guinea Pig Model

    PubMed Central

    Reiss, Lina A.J.; Stark, Gemaine; Nguyen-Huynh, Anh T.; Spear, Kayce A.; Zhang, Hongzheng; Tanaka, Chiemi; Li, Hongzhe

    2016-01-01

    Hybrid or electro-acoustic stimulation (EAS) cochlear implants (CIs) are designed to provide high-frequency electric hearing together with residual low-frequency acoustic hearing. However, 30-50% of EAS CI recipients lose residual hearing after implantation. The objective of this study was to determine the mechanisms of EAS-induced hearing loss in an animal model with high-frequency hearing loss. Guinea pigs were exposed to 24 hours of noise (12-24 kHz at 116 dB) to induce a high-frequency hearing loss. After recovery, two groups of animals were implanted (n=6 per group), with one group receiving chronic acoustic and electric stimulation for 10 weeks, and the other group receiving no stimulation during this time frame. A third group (n=6) was not implanted, but received chronic acoustic stimulation. Auditory brainstem responses were recorded biweekly to monitor changes in hearing. The organ of Corti was immunolabeled with phalloidin, anti-CtBP2, and anti-GluR2 to quantify hair cells, ribbons and post-synaptic receptors. The lateral wall was immunolabeled with phalloidin and lectin to quantify stria vascularis capillary diameters. Bimodal or trimodal diameter distributions were observed; the number and location of peaks were objectively determined using the Aikake Information Criterion and Expectation Maximization algorithm. Noise exposure led to immediate hearing loss at 16-32 kHz for all groups. Cochlear implantation led to additional hearing loss at 4-8 kHz; this hearing loss was negatively and positively correlated with minimum and maximum peaks of the bimodal or trimodal distributions of stria vascularis capillary diameters, respectively. After chronic stimulation, no significant group changes in thresholds were seen; however, elevated thresholds at 1 kHz in implanted, stimulated animals were significantly correlated with decreased presynaptic ribbon and postsynaptic receptor counts. Inner and outer hair cell counts did not differ between groups and were not

  15. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model.

    PubMed

    Reiss, Lina A J; Stark, Gemaine; Nguyen-Huynh, Anh T; Spear, Kayce A; Zhang, Hongzheng; Tanaka, Chiemi; Li, Hongzhe

    2015-09-01

    Hybrid or electro-acoustic stimulation (EAS) cochlear implants (CIs) are designed to provide high-frequency electric hearing together with residual low-frequency acoustic hearing. However, 30-50% of EAS CI recipients lose residual hearing after implantation. The objective of this study was to determine the mechanisms of EAS-induced hearing loss in an animal model with high-frequency hearing loss. Guinea pigs were exposed to 24 h of noise (12-24 kHz at 116 dB) to induce a high-frequency hearing loss. After recovery, two groups of animals were implanted (n = 6 per group), with one group receiving chronic acoustic and electric stimulation for 10 weeks, and the other group receiving no stimulation during this time frame. A third group (n = 6) was not implanted, but received chronic acoustic stimulation. Auditory brainstem responses were recorded biweekly to monitor changes in hearing. The organ of Corti was immunolabeled with phalloidin, anti-CtBP2, and anti-GluR2 to quantify hair cells, ribbons and post-synaptic receptors. The lateral wall was immunolabeled with phalloidin and lectin to quantify stria vascularis capillary diameters. Bimodal or trimodal diameter distributions were observed; the number and location of peaks were objectively determined using the Aikake Information Criterion and Expectation Maximization algorithm. Noise exposure led to immediate hearing loss at 16-32 kHz for all groups. Cochlear implantation led to additional hearing loss at 4-8 kHz; this hearing loss was negatively and positively correlated with minimum and maximum peaks of the bimodal or trimodal distributions of stria vascularis capillary diameters, respectively. After chronic stimulation, no significant group changes in thresholds were seen; however, elevated thresholds at 1 kHz in implanted, stimulated animals were significantly correlated with decreased presynaptic ribbon and postsynaptic receptor counts. Inner and outer hair cell counts did not differ between groups and

  16. Effects of Electrical Stimulation in the Inferior Colliculus on Frequency Discrimination by Rhesus Monkeys and Implications for the Auditory Midbrain Implant

    PubMed Central

    Ross, Deborah A.; Puñal, Vanessa M.; Agashe, Shruti; Dweck, Isaac; Mueller, Jerel; Grill, Warren M.; Wilson, Blake S.

    2016-01-01

    Understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5–80 μA, 100–300 Hz, n = 172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals' judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site compared with the reference frequency used in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site's response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency-tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated, and to provide a greater range of evoked percepts. SIGNIFICANCE STATEMENT Patients with hearing loss stemming from causes that interrupt the auditory pathway after the cochlea need a brain prosthetic to restore hearing. Recently, prosthetic stimulation in the human inferior colliculus (IC) was evaluated in a clinical trial. Thus far, speech understanding was limited for the subjects and this limitation is thought to be partly due to challenges in

  17. Vagus Nerve Stimulation

    MedlinePlus

    Vagus nerve stimulation Overview By Mayo Clinic Staff Vagus nerve stimulation is a procedure that involves implantation of a device that stimulates the vagus nerve with electrical impulses. There's one vagus nerve on ...

  18. Stimulation of implant fixation by parathyroid hormone (1-34)-A histomorphometric comparison of PMMA cement and stainless steel.

    PubMed

    Skripitz, Ralf; Böhling, Silvia; Rüther, Wolfgang; Aspenberg, Per

    2005-11-01

    Whereas continuous exposure to PTH results in bone resorption, PTH administration at intermittent doses results in bone formation by increasing osteoblast number and activity. PTH leads to faster fracture repair and better fixation of orthopaedic implants in animal models. The present study evaluates if PTH is able to increase the contact surface between bone and implant and whether the effect of PTH is dependent on implant material characteristics. The implants were made as rods, either of stainless steel or Palacos R bone-cement. The steel rods had a surface roughness of R(a) 0.1 microm and the cement rods R(a) 2.2 microm. In 40 adult male rats, one cement rod was inserted in the left tibia and one steel rod in the right tibia. After implantation, the rats were divided into groups by random. One group was injected three times a week with human PTH (1-34) at a dose of 60 microg/kg BW/injection. The second group was injected with the vehicle only. Both groups were then divided into groups for 2 and 4 weeks time till tibial harvest. The tibial segments around the hole of the rods were then prepared by standard histological techniques. The linear tissue surfaces, that had been in contact with the surface of the rod, were analyzed in a blind fashion. PTH increased the bone contact fraction compared with the vehicle in the steel group from 7.4 (SD 7.6) to 21.1 (SD 10.7) % after 2 weeks and from 9.8 (SD 8.1) to 47.1 (SD 13.3) % after 4 weeks. In the cement group PTH increased the contact index again compared with the vehicle from 7.8 (SD 10.2) to 53.6 (SD 26.3) % already after 2 weeks and from 14.3 (SD 15) to 65.6 (SD 15.7) % after 4 weeks. The bone trabeculae adjacent to the implant had become fewer and thicker after the treatment with PTH (1-34), with an increase of the bone mass in the area next to the bone-implant-interface. The earlier onset of PTH effects in the rougher cement group suggests that intermittent PTH treatment might lead to an increased micro

  19. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of Soybean (Glycine max) at elevated [CO2] and temperatures under fully open air field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on 1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the ma...

  20. The multi-channel cochlear implant: multi-disciplinary development of electrical stimulation of the cochlea and the resulting clinical benefit.

    PubMed

    Clark, Graeme M

    2015-04-01

    This multi-disciplinary research showed sound could be coded by electrical stimulation of the cochlea and peripheral auditory nervous system. But the temporal coding of frequency as seen in the experimental animal, was inadequate for the important speech frequencies. The data indicated the limitation was due in particular to deterministic firing of neurons and failure to reproduce the normal fine temporo-spatial pattern of neural responses seen with sound. However, the data also showed the need for the place coding of frequency, and this meant multi-electrodes inserted into the cochlea. Nevertheless, before this was evaluated on people we undertook biological safety studies to determine the effects of surgical trauma and electrical stimuli, and how to prevent infection. Then our research demonstrated place of stimulation had timbre and was perceived as vowels. This led to our discovery in 1978 of the formant-extraction speech code that first enabled severely-profoundly deaf people to understand running speech. This result in people who had hearing before becoming severely deaf was an outcome not previously considered possible. In 1985 it was the first multi-channel implant to be approved by the US Food and Drug Administration (FDA). It was also the fore runner of our advanced formant and fixed filter strategies When these codes were used from 1985 for those born deaf or deafened early in life we discovered there was a critical period when brain plasticity would allow speech perception and language to be developed near- normally, and this required in particular the acquisition of place coding. In 1990 this led to the first cochlear implant to be approved by the FDA for use in children. Finally, we achieved binaural hearing in 1989 with bilateral cochlear implants, followed by bimodal speech processing in 1990 with a hearing aid in one ear and implant in the other. The above research has been developed industrially, with for example 250,000 people worldwide receiving

  1. Perception of Suprasegmental Speech Features via Bimodal Stimulation: Cochlear Implant on One Ear and Hearing Aid on the Other

    ERIC Educational Resources Information Center

    Most, Tova; Harel, Tamar; Shpak, Talma; Luntz, Michal

    2011-01-01

    Purpose: The purpose of the study was to evaluate the contribution of acoustic hearing to the perception of suprasegmental features by adults who use a cochlear implant (CI) and a hearing aid (HA) in opposite ears. Method: 23 adults participated in this study. Perception of suprasegmental features--intonation, syllable stress, and word…

  2. Are there a guidelines for implantable spinal cord stimulator therapy in patients using chronic anticoagulation therapy? - A review of decision-making in the high-risk patient

    PubMed Central

    Ghaly, Ramsis F.; Lissounov, Alexei; Candido, Kenneth D.; Knezevic, Nebojsa Nick

    2016-01-01

    Background: Spinal cord stimulators (SCSs) are gaining increasing indications and utility in an expanding variety of clinical conditions. Complications and initial expenses have historically prevented the early use of SCS therapy despite ongoing efforts to educate and promote its utilization. At present, there exists no literature evidence of SCS implantation in a chronically anticoagulated patient, and neuromodulation manufacturers are conspicuously silent in providing warnings or recommendations in the face of anticoagulant use chronically. It would appear as through these issues demand scrutiny and industry as well as neuromodulation society advocacy and support in terms of the provision of coherent guidelines on how to proceed. Case Description: A 79-year-old male returned to the neurosurgical clinic with persistent low back pain and leg heaviness due to adjacent level degenerative spondylosis and severe thoracic spinal stenosis. The patient had a notable history of multiple comorbidities along with atrial fibrillation requiring chronic anticoagulation. On initial presentation, he was educated with three choice of conservative medical therapy, intrathecal drug delivery system implantation, or additional lumbar decompression laminectomy with instrumented fusion of T10-L3 and a palliative surgical lead SCS implantation. Description: A 79-year-old male returned to the neurosurgical clinic with persistent low back pain and leg heaviness due to adjacent level degenerative spondylosis and severe thoracic spinal stenosis. The patient had a notable history of multiple comorbidities along with atrial fibrillation requiring chronic anticoagulation. On initial presentation, he was educated with three choice of conservative medical therapy, intrathecal drug delivery system implantation, or additional lumbar decompression laminectomy with instrumented fusion of T10-L3 and a palliative surgical lead SCS implantation. Conclusion: Our literature search did not reveal any

  3. Intracranial electrode implantation produces regional neuroinflammation and memory deficits in rats

    SciTech Connect

    Kuttner-Hirshler, Y.; Biegon, A.; Kuttner-Hirshler, Y.; Polat, U.; Biegon, A.

    2009-12-21

    Deep brain stimulation (DBS) is an established treatment for advanced Parkinson's disease (PD). The procedure entails intracranial implantation of an electrode in a specific brain structure followed by chronic stimulation. Although the beneficial effects of DBS on motor symptoms in PD are well known, it is often accompanied by cognitive impairments, the origin of which is not fully understood. To explore the possible contribution of the surgical procedure itself, we studied the effect of electrode implantation in the subthalamic nucleus (STN) on regional neuroinflammation and memory function in rats implanted bilaterally with stainless steel electrodes. Age-matched sham and intact rats were used as controls. Brains were removed 1 or 8 weeks post-implantation and processed for in vitro autoradiography with [(3)H]PK11195, an established marker of microglial activation. Memory function was assessed by the novel object recognition test (ORT) before surgery and 2 and 8 weeks after surgery. Electrode implantation produced region-dependent changes in ligand binding density in the implanted brains at 1 as well as 8 weeks post-implantation. Cortical regions showed more intense and widespread neuroinflammation than striatal or thalamic structures. Furthermore, implanted animals showed deficits in ORT performance 2 and 8 weeks post-implantation. Thus, electrode implantation resulted in a widespread and persistent neuroinflammation and sustained memory impairment. These results suggest that the insertion and continued presence of electrodes in the brain, even without stimulation, may lead to inflammation-mediated cognitive deficits in susceptible individuals, as observed in patients treated with DBS.

  4. Minimal adverse effects profile following implantation of periauricular percutaneous electrical nerve field stimulators: a retrospective cohort study

    PubMed Central

    Roberts, Arthur; Sithole, Alec; Sedghi, Marcos; Walker, Charles A; Quinn, Theresa M

    2016-01-01

    The periauricular percutaneous implantation of the Neuro-Stim System™ family of devices EAD, MFS, and BRIDGE is a procedure involving the use of a non-opiate, neuromodulation analgesic for relieving acute and chronic pain. It has been approved as a minimal-risk procedure by multiple governmental and institutional facilities. This retrospective report of findings will help quantify the incidence of clinically observed bleeding, localized dermatitis, and infections at the implantation sites of the electrode/needle arrays, dermatitis at the site of the generator, and patient syncope. A total of 1,207 devices, each producing up to 16 percutaneous punctures, for a total of 19,312 punctures were monitored for adverse effects, based on retrospective chart audits conducted at six clinical facilities over a 1-year period. PMID:27843360

  5. Construction and modeling of a reconfigurable MRI coil for lowering SAR in patients with deep brain stimulation implants.

    PubMed

    Golestanirad, Laleh; Iacono, Maria Ida; Keil, Boris; Angelone, Leonardo M; Bonmassar, Giorgio; Fox, Michael D; Herrington, Todd; Adalsteinsson, Elfar; LaPierre, Cristen; Mareyam, Azma; Wald, Lawrence L

    2017-02-15

    Post-operative MRI of patients with deep brain simulation (DBS) implants is useful to assess complications and diagnose comorbidities, however more than one third of medical centers do not perform MRIs on this patient population due to stringent safety restrictions and liability risks. A new system of reconfigurable magnetic resonance imaging head coil composed of a rotatable linearly-polarized birdcage transmitter and a close-fitting 32-channel receive array is presented for low-SAR imaging of patients with DBS implants. The novel system works by generating a region with low electric field magnitude and steering it to coincide with the DBS lead trajectory. We demonstrate that the new coil system substantially reduces the SAR amplification around DBS electrodes compared to commercially available circularly polarized coils in a cohort of 9 patient-derived realistic DBS lead trajectories. We also show that the optimal coil configuration can be reliably identified from the image artifact on B1(+) field maps. Our preliminary results suggest that such a system may provide a viable solution for high-resolution imaging of DBS patients in the future. More data is needed to quantify safety limits and recommend imaging protocols before the novel coil system can be used on patients with DBS implants.

  6. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    PubMed Central

    Pot, Michiel W.; Gonzales, Veronica K.; Buma, Pieter; IntHout, Joanna

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of mechanically inferior fibrocartilage. As a result, this technique offers only temporary clinical improvement. Tissue engineering and regenerative medicine may improve the outcome of microfracture surgery. Filling the subchondral defect with a biomaterial may provide a template for the formation of new hyaline cartilage tissue. In this study, a systematic review and meta-analysis were performed to assess the current evidence for the efficacy of cartilage regeneration in preclinical models using acellular biomaterials implanted after marrow stimulating techniques (microfracturing and subchondral drilling) compared to the natural healing response of defects. The review aims to provide new insights into the most effective biomaterials, to provide an overview of currently existing knowledge, and to identify potential lacunae in current studies to direct future research. A comprehensive search was systematically performed in PubMed and EMBASE (via OvidSP) using search terms related to tissue engineering, cartilage and animals. Primary studies in which acellular biomaterials were implanted in osteochondral defects in the knee or ankle joint in healthy animals were included and study characteristics tabulated (283 studies out of 6,688 studies found). For studies comparing non-treated empty defects to defects containing implanted biomaterials and using semi-quantitative histology as outcome measure, the risk of bias (135 studies) was assessed and outcome data were collected for meta-analysis (151 studies). Random-effects meta-analyses were performed, using cartilage regeneration as outcome measure on an absolute 0–100% scale. Implantation of acellular biomaterials significantly

  7. The effect of step-synchronized vibration on patients with Parkinson's disease: case studies on subjects with freezing of gait or an implanted deep brain stimulator.

    PubMed

    Winfree, Kyle N; Pretzer-Aboff, Ingrid; Hilgart, David; Aggarwal, Rajeev; Behari, Madhuri; Agrawal, Sunil K

    2013-09-01

    Identifying noninvasive treatments to alleviate the symptoms of Parkinson's disease (PD) is important to improving the quality of life for those with PD. Several studies have explored the effects of visual, auditory, and vibratory cueing to improve gait in PD patients. Here, we present a wireless vibratory feedback system, called the PDShoe, and an associated intervention study with four subjects. The PDShoe was used on two control subjects, one subject with PD who experienced freezing of gait (FOG), and one subject with PD with an implanted deep brain stimulator (DBS). This short intervention study showed statistically significant improvements in peak heel pressure timing, peak toe pressure timing, time on the heel sensor, and stance to swing ratio after just one week of twice-daily therapy. Thus, step-synchronized vibration applied to the feet of patients with PD may be an effective way to improve gait in those subjects.

  8. Intonation of musical intervals by musical intervals by deaf subjects stimulated with single bipolar cochlear implant electrodes.

    PubMed

    Pijl, S; Schwarz, D W

    1995-09-01

    Some subjects with cochlear implants have been shown to associate electrical stimulus pulse rates with the pitches of musical tones. In order to clarify the role of these pitch sensations in a musical context, the present investigation examined the intonation accuracy achieved by implant subjects when adjusting pulse rates in the reconstruction of musical intervals. Using a method of adjustment, the subjects altered a variable pulse rate, relative to a fixed reference rate, on one electrode, in the tuning of musical intervals abstracted from familiar melodies. At low pulse rates, subjects generally tuned the intervals to the same frequency ratios which define tonal musical intervals in normal-hearing listeners, with error margins comparable to musically untrained subjects. Two subjects were, in addition, able to transpose these melodic intervals from a standard reference pulse rate to higher and lower reference rates (reference and target pulse rates with geometric means of the intervals ranging from 81 to 466 pulses/s). Generally, the intervals were adjusted on a ratio scale, according to the same frequency ratios which define analogous acoustical musical intervals. These results support the hypothesis that, at low pulse rates, a temporal code in the auditory nerve alone is capable of defining musical pitch.

  9. Energetic analysis for self-powered cochlear implants.

    PubMed

    Accoto, D; Calvano, M; Campolo, D; Salvinelli, F; Guglielmelli, E

    2009-01-01

    Cochlear implants (CIs) are used for compensating the so-called deep sensorineural deafness. CIs are usually powered by rechargeable or long-lasting batteries. In this paper, the feasibility of a fully implanted stand-alone device able to provide the electric power required for stimulating the auditory nerve, without external recharging, is investigated. At first, we demonstrate that the sound wave entering the ear is not a sufficient power source. Then, we propose a solution exploiting the mechanical energy associated to head vibration during walking. The energetic feasibility of this approach is demonstrated based on experimental measurements of head motions. Preliminary considerations on the technical feasibility of a fully implanted energy harvester are finally presented.

  10. [Cochlear implant in adults].

    PubMed

    Bouccara, D; Mosnier, I; Bernardeschi, D; Ferrary, E; Sterkers, O

    2012-03-01

    Cochlear implant in adults is a procedure, dedicated to rehabilitate severe to profound hearing loss. Because of technological progresses and their applications for signal strategies, new devices can improve hearing, even in noise conditions. Binaural stimulation, cochlear implant and hearing aid or bilateral cochlear implants are the best opportunities to access to better level of comprehension in all conditions and space localisation. By now minimally invasive surgery is possible to preserve residual hearing and use a double stimulation modality for the same ear: electrical for high frequencies and acoustic for low frequencies. In several conditions, cochlear implant is not possible due to cochlear nerve tumour or major malformations of the inner ear. In these cases, a brainstem implantation can be considered. Clinical data demonstrate that improvement in daily communication, for both cochlear and brainstem implants, is correlated with cerebral activation of auditory cortex.

  11. A comparative historical and demographic study of the neuromodulation management techniques of deep brain stimulation for dystonia and cochlear implantation for sensorineural deafness in children.

    PubMed

    Hudson, V E; Elniel, A; Ughratdar, I; Zebian, B; Selway, R; Lin, J P

    2017-01-01

    Cochlear implants for sensorineural deafness in children is one of the most successful neuromodulation techniques known to relieve early chronic neurodisability, improving activity and participation. In 2012 there were 324,000 recipients of cochlear implants globally.

  12. Brain imaging correlates of peripheral nerve stimulation

    PubMed Central

    Bari, Ausaf A.; Pouratian, Nader

    2012-01-01

    Direct peripheral nerve stimulation is an effective treatment for a number of disorders including epilepsy, depression, neuropathic pain, cluster headache, and urological dysfunction. The efficacy of this stimulation is ultimately due to modulation of activity in the central nervous system. However, the exact brain regions involved in each disorder and how they are modulated by peripheral nerve stimulation is not fully understood. The use of functional neuroimaging such as SPECT, PET and fMRI in patients undergoing peripheral nerve stimulation can help us to understand these mechanisms. We review the literature for functional neuroimaging performed in patients implanted with peripheral nerve stimulators for the above-mentioned disorders. These studies suggest that brain activity in response to peripheral nerve stimulation is a complex interaction between the stimulation parameters, disease type and severity, chronicity of stimulation, as well as nonspecific effects. From this information we may be able to understand which brain structures are involved in the mechanism of peripheral nerve stimulation as well as define the neural substrates underlying these disorders. PMID:23230531

  13. Effect of implant design on initial stability of tapered implants.

    PubMed

    Chong, Linus; Khocht, Ahmed; Suzuki, Jon B; Gaughan, John

    2009-01-01

    Implant design is one of the parameters for achieving successful primary stability. This study aims to examine the effect of a self-tapping blades implant design on initial stability in tapered implants. Polyurethane blocks of different densities were used to simulate different bone densities. The two different implant designs included one with self-tapping blades and one without self-tapping blades. Implants were placed at 3 different depths: apical third, middle third, and fully inserted at 3 different densities of polyurethane blocks. A resonance frequency (RF) analyzer was then used to measure stability of the implants. Repeated-measures analysis of variance was used to examine the effect of implant design, insertion depth, and block density on RF. Analysis of covariance was used to examine the strength of association between RF and the aforementioned factors. In both medium-density (P = .017) and high-density (P = .002) blocks, fully inserted non-self-tapping implants showed higher initial stability than self-tapping implants. No differences were noted between the 2 implant designs that were not fully inserted. The highest strength of association was with insertion depth (standardized beta [std beta] = -0.60, P = .0001), followed by block density (std beta = -0.15, P = .0002). Implant design showed a weak association (std beta = -0.07, P = .09). In conclusion, fully inserted implants without self-tapping blades have higher initial stability than implants with self-tapping blades. However, the association strength between implant design and initial stability is less relevant than other factors, such as insertion depth and block density. Thus, if bone quality and quantity are optimal, they may compensate for design inadequacy.

  14. Towards biodegradable wireless implants.

    PubMed

    Boutry, Clémentine M; Chandrahalim, Hengky; Streit, Patrick; Schinhammer, Michael; Hänzi, Anja C; Hierold, Christofer

    2012-05-28

    A new generation of partially or even fully biodegradable implants is emerging. The idea of using temporary devices is to avoid a second surgery to remove the implant after its period of use, thereby improving considerably the patient's comfort and safety. This paper provides a state-of-the-art overview and an experimental section that describes the key technological challenges for making biodegradable devices. The general considerations for the design and synthesis of biodegradable components are illustrated with radiofrequency-driven resistor-inductor-capacitor (RLC) resonators made of biodegradable metals (Mg, Mg alloy, Fe, Fe alloys) and biodegradable conductive polymer composites (polycaprolactone-polypyrrole, polylactide-polypyrrole). Two concepts for partially/fully biodegradable wireless implants are discussed, the ultimate goal being to obtain a fully biodegradable sensor for in vivo sensing.

  15. Estimating dose to implantable cardioverter-defibrillator outside the treatment fields using a skin QED diode, optically stimulated luminescent dosimeters, and LiF thermoluminescent dosimeters.

    PubMed

    Chan, Maria F; Song, Yulin; Dauer, Lawrence T; Li, Jingdong; Huang, David; Burman, Chandra

    2012-01-01

    The purpose of this work was to determine the relative sensitivity of skin QED diodes, optically stimulated luminescent dosimeters (OSLDs) (microStar™ DOT, Landauer), and LiF thermoluminescent dosimeters (TLDs) as a function of distance from a photon beam field edge when applied to measure dose at out-of-field points. These detectors have been used to estimate radiation dose to patients' implantable cardioverter-defibrillators (ICDs) located outside the treatment field. The ICDs have a thin outer case made of 0.4- to 0.6-mm-thick titanium (∼2.4-mm tissue equivalent). A 5-mm bolus, being the equivalent depth of the devices under the patient's skin, was placed over the ICDs. Response per unit absorbed dose-to-water was measured for each of the dosimeters with and without bolus on the beam central axis (CAX) and at a distance up to 20 cm from the CAX. Doses were measured with an ionization chamber at various depths for 6- and 15-MV x-rays on a Varian Clinac-iX linear accelerator. Relative sensitivity of the detectors was determined as the ratio of the sensitivity at each off-axis distance to that at the CAX. The detector sensitivity as a function of the distance from the field edge changed by ± 3% (1-11%) for LiF TLD-700, decreased by 10% (5-21%) for OSLD, and increased by 16% (11-19%) for the skin QED diode (Sun Nuclear Corp.) at the equivalent depth of 5 mm for 6- or 15-MV photon energies. Our results showed that the use of bolus with proper thickness (i.e., ∼d(max) of the photon energy) on the top of the ICD would reduce the scattered dose to a lower level. Dosimeters should be calibrated out-of-field and preferably with bolus equal in thickness to the depth of interest. This can be readily performed in clinic.

  16. Estimating dose to implantable cardioverter-defibrillator outside the treatment fields using a skin QED diode, optically stimulated luminescent dosimeters, and LiF thermoluminescent dosimeters

    SciTech Connect

    Chan, Maria F.; Song, Yulin; Dauer, Lawrence T.; Li Jingdong; Huang, David; Burman, Chandra

    2012-10-01

    The purpose of this work was to determine the relative sensitivity of skin QED diodes, optically stimulated luminescent dosimeters (OSLDs) (microStar Trade-Mark-Sign DOT, Landauer), and LiF thermoluminescent dosimeters (TLDs) as a function of distance from a photon beam field edge when applied to measure dose at out-of-field points. These detectors have been used to estimate radiation dose to patients' implantable cardioverter-defibrillators (ICDs) located outside the treatment field. The ICDs have a thin outer case made of 0.4- to 0.6-mm-thick titanium ({approx}2.4-mm tissue equivalent). A 5-mm bolus, being the equivalent depth of the devices under the patient's skin, was placed over the ICDs. Response per unit absorbed dose-to-water was measured for each of the dosimeters with and without bolus on the beam central axis (CAX) and at a distance up to 20 cm from the CAX. Doses were measured with an ionization chamber at various depths for 6- and 15-MV x-rays on a Varian Clinac-iX linear accelerator. Relative sensitivity of the detectors was determined as the ratio of the sensitivity at each off-axis distance to that at the CAX. The detector sensitivity as a function of the distance from the field edge changed by {+-} 3% (1-11%) for LiF TLD-700, decreased by 10% (5-21%) for OSLD, and increased by 16% (11-19%) for the skin QED diode (Sun Nuclear Corp.) at the equivalent depth of 5 mm for 6- or 15-MV photon energies. Our results showed that the use of bolus with proper thickness (i.e., {approx}d{sub max} of the photon energy) on the top of the ICD would reduce the scattered dose to a lower level. Dosimeters should be calibrated out-of-field and preferably with bolus equal in thickness to the depth of interest. This can be readily performed in clinic.

  17. [A comparison of time resolution among auditory, tactile and promontory electrical stimulation--superiority of cochlear implants as human communication aids].

    PubMed

    Matsushima, J; Kumagai, M; Harada, C; Takahashi, K; Inuyama, Y; Ifukube, T

    1992-09-01

    Our previous reports showed that second formant information, using a speech coding method, could be transmitted through an electrode on the promontory. However, second formant information can also be transmitted by tactile stimulation. Therefore, to find out whether electrical stimulation of the auditory nerve would be superior to tactile stimulation for our speech coding method, the time resolutions of the two modes of stimulation were compared. The results showed that the time resolution of electrical promontory stimulation was three times better than the time resolution of tactile stimulation of the finger. This indicates that electrical stimulation of the auditory nerve is much better for our speech coding method than tactile stimulation of the finger.

  18. Biomedical implantable microelectronics.

    PubMed

    Meindl, J D

    1980-10-17

    Innovative applications of microelectronics in new biomedical implantable instruments offer a singular opportunity for advances in medical research and practice because of two salient factors: (i) beyond all other types of biomedical instruments, implants exploit fully the inherent technical advantages--complex functional capability, high reliability, lower power drain, small size and weight-of microelectronics, and (ii) implants bring microelectronics into intimate association with biological systems. The combination of these two factors enables otherwise impossible new experiments to be conducted and new paostheses developed that will improve the quality of human life.

  19. Cochlear Implants.

    ERIC Educational Resources Information Center

    Clark, Catherine; Scott, Larry

    This brochure explains what a cochlear implant is, lists the types of individuals with deafness who may be helped by a cochlear implant, describes the process of evaluating people for cochlear implants, discusses the surgical process for implanting the aid, traces the path of sound through the cochlear implant to the brain, notes the costs of…

  20. [Pacemaker, implanted cardiac defibrillator and irradiation: Management proposal in 2010 depending on the type of cardiac stimulator and prognosis and location of cancer].

    PubMed

    Lambert, P; Da Costa, A; Marcy, P-Y; Kreps, S; Angellier, G; Marcié, S; Bondiau, P-Y; Briand-Amoros, C; Thariat, J

    2011-06-01

    Ionizing radiation may interfere with electric components of pacemakers or implantable cardioverter-defibrillators. The type, severity and extent of radiation damage to pacemakers, have previously been shown to depend on the total dose and dose rate. Over 300,000 new cancer cases are treated yearly in France, among which 60% are irradiated in the course of their disease. One among 400 of these patients has an implanted pacemaker or defibrillator. The incidence of pacemaker and implanted cardioverter defribillator increases in an ageing population. The oncologic prognosis must be weighted against the cardiologic prognosis in a multidisciplinary and transversal setting. Innovative irradiation techniques and technological sophistications of pacemakers and implantable cardioverter-defibrillators (with the introduction of more radiosensitive complementary metal-oxide-semiconductors since 1970) have potentially changed the tolerance profiles. This review of the literature studied the geometric, dosimetric and radiobiological characteristics of the radiation beams for high energy photons, stereotactic irradiation, protontherapy. Standardized protocols and radiotherapy optimization (particle, treatment fields, energy) are advisable in order to improve patient management during radiotherapy and prolonged monitoring is necessary following radiation therapy. The dose received at the pacemaker/heart should be calculated. The threshold for the cumulated dose to the pacemaker/implantable cardioverter-defibrillator (2 to 5 Gy depending on the brand), the necessity to remove/displace the device based on the dose-volume histogram on dosimetry, as well as the use of lead shielding and magnet are discussed.

  1. [Implantation of collagen coated hydroxyapatite particles. A clinical-histological study in humans].

    PubMed

    Sanz, M; Bascones, A; Kessler, A; García Nuñez, J; Newman, M G; Robertson, M A; Carranza, F A

    1989-05-01

    In this study, histologic behaviour of collagen coated hydroxylapatite particles implanted in human periodontal osseous defects has been analyzed. This material was surgically implanted in four patients, and reentry and block biopsies were carried out 4 and 6 months later. The histologic results demonstrate that this material is well tolerated by surrounding tissues, not eliciting an inflammatory reaction. At four months, the hydroxylapatite particles appear encapsulated by a very cellular connective tissue and at 6 months are found in direct contact with osteoid and mature bone. This material acts as a filler material, being fully biocompatible and stimulating an osseoconductive reaction of the adjacent alveolar bone.

  2. Surgical therapy of neurogenic detrusor overactivity (hyperreflexia) in paraplegic patients by sacral deafferentation and implant driven micturition by sacral anterior root stimulation: methods, indications, results, complications, and future prospects.

    PubMed

    Kutzenberger, J

    2007-01-01

    Spinal cord injured patients with a suprasacral lesion usually develop a spastic bladder. The neurogenic detrusor overactivity (NDO) and the overactive external sphincter cause incontinence and threaten these patients with recurrent urinary tract infections (UTI), renal failure and autonomic dysreflexia. All of these severe disturbances may be well managed by sacral deafferentation (SDAF) and implantation of a sacral anterior root stimulator (SARS). Since September 1986 to December 2002, 464 paraplegic patients (220 females, 244 males) received a SDAF-SARS. The SDAF was done intradurally in almost all cases, which means that we used a single operation field to do a two-stages procedure (SDAF and SARS). The results include data on 440 patients with a mean follow-up of 8.6 years (18 months to 18 years) until December 2004. The complete deafferentation was successful in 95.2%. Of these patients, 420 paraplegics use the SARS for voiding, (frequency 4.7 per day) and 401 for defecation (frequency 4.7 per week). Continence was achieved in 364 patients (83%). UTIs decreased from 6.3 per year preoperatively to 1.2 per year postoperatively. Kidney function remained stable. Early complications were 6 CSF leaks and 5 implant infections. Late compli cations included receiver or cable failures and required surgical repair in 44 patients. A step-by-step program for trouble-shooting distinguishes implant failure from myogenic or neurogenic failure. SDAF is able to restore the reservoir function of urinary bladder and makes the patient achieve continence. Autonomic dysreflexia disappeared in most cases. By accurate adjustment of stimulation parameters, it is possible for the patient to have a low resistance micturition. The microsurgical technique requires intensive education. In addition, the therapist should be able to manage late complications.

  3. Fully Regressive Melanoma

    PubMed Central

    Ehrsam, Eric; Kallini, Joseph R.; Lebas, Damien; Modiano, Philippe; Cotten, Hervé

    2016-01-01

    Fully regressive melanoma is a phenomenon in which the primary cutaneous melanoma becomes completely replaced by fibrotic components as a result of host immune response. Although 10 to 35 percent of cases of cutaneous melanomas may partially regress, fully regressive melanoma is very rare; only 47 cases have been reported in the literature to date. AH of the cases of fully regressive melanoma reported in the literature were diagnosed in conjunction with metastasis on a patient. The authors describe a case of fully regressive melanoma without any metastases at the time of its diagnosis. Characteristic findings on dermoscopy, as well as the absence of melanoma on final biopsy, confirmed the diagnosis. PMID:27672418

  4. [Progress and challenges in optical cochlear implant].

    PubMed

    Zhang, Kaiyin; Guo, He; Wu, Shan; Wu, Yanning; Zhao, Shutao; Wang, Qiuling

    2016-01-01

    Optical cochlear implant has been occuring as a new cochlear implant which utilizes laser pulses to stimulate hearing. Compared to electronic cochlear implant, it has demonstrated higher spatial selectivity and less radiation scattering, which could lead to higher fidelity cochlear prostheses. At present, most investigations have focused on experiments in vivo. Although a lot of exciting results have been obtained, the mechanisms of laser stimulation is still open. In this paper, a brief review on the recent new findings of optical cochlear implant is given, and possible mechanisms are discussed. In the end, new experimental proposals are suggested which could help to explore the mechanisms of laser-cochlea stimulation.

  5. CHAPTER: In-Situ Characterization of Stimulating Microelectrode Arrays: Study of an Idealized Structure Based on Argus II Retinal implantsBOOK TITLE: Implantable Neural Prostheses 2: Techniques and Engineering Approaches, D.M. Zhou and E. Greenbaum, Eds., Springer, NY 2009

    SciTech Connect

    Greenbaum, Elias; Sanders, Charlene A; Kandagor, Vincent

    2010-01-01

    The development of a retinal prosthesis for artificial sight includes a study of the factors affecting the structural and functional stability of chronically implanted microelectrode arrays. Although neuron depolarization and propagation of electrical signals have been studied for nearly a century, the use of multielectrode stimulation as a proposed therapy to treat blindness is a frontier area of modern ophthalmology research. Mapping and characterizing the topographic information contained in the electric field potentials and understanding how this information is transmitted and interpreted in the visual cortex is still very much a work in progress. In order to characterize the electrical field patterns generated by the device, an in vitro prototype that mimics several of the physical and chemical parameters of the in vivo visual implant device was fabricated. We carried out multiple electrical measurements in a model 'eye,' beginning with a single electrode, followed by a 9-electrode array structure, both idealized components based on the Argus II retinal implants. Correlating the information contained in the topographic features of the electric fields with psychophysical testing in patients may help reduce the time required for patients to convert the electrical patterns into graphic signals.

  6. Design, fabrication and perivascular implantation of bioactive scaffolds engineered with human adventitial progenitor cells for stimulation of arteriogenesis in peripheral ischemia.

    PubMed

    Carrabba, M; De Maria, C; Oikawa, A; Reni, C; Rodriguez-Arabaolaza, I; Spencer, H; Slater, S; Avolio, E; Dang, Z; Spinetti, G; Madeddu, P; Vozzi, G

    2016-03-24

    Cell therapy represents a promising option for revascularization of ischemic tissues. However, injection of dispersed cells is not optimal to ensure precise homing into the recipient's vasculature. Implantation of cell-engineered scaffolds around the occluded artery may obviate these limitations. Here, we employed the synthetic polymer polycaprolactone for fabrication of 3D woodpile- or channel-shaped scaffolds by a computer-assisted writing system (pressure assisted micro-syringe square), followed by deposition of gelatin (GL) nanofibers by electro-spinning. Scaffolds were then cross-linked with natural (genipin, GP) or synthetic (3-glycidyloxy-propyl-trimethoxy-silane, GPTMS) agents to improve mechanical properties and durability in vivo. The composite scaffolds were next fixed by crown inserts in each well of a multi-well plate and seeded with adventitial progenitor cells (APCs, 3 cell lines in duplicate), which were isolated/expanded from human saphenous vein surgical leftovers. Cell density, alignment, proliferation and viability were assessed 1 week later. Data from in vitro assays showed channel-shaped/GPTMS-crosslinked scaffolds confer APCs with best alignment and survival/growth characteristics. Based on these results, channel-shaped/GPTMS-crosslinked scaffolds with or without APCs were implanted around the femoral artery of mice with unilateral limb ischemia. Perivascular implantation of scaffolds accelerated limb blood flow recovery, as assessed by laser Doppler or fluorescent microspheres, and increased arterial collaterals around the femoral artery and in limb muscles compared with non-implanted controls. Blood flow recovery and perivascular arteriogenesis were additionally incremented by APC-engineered scaffolds. In conclusion, perivascular application of human APC-engineered scaffolds may represent a novel option for targeted delivery of therapeutic cells in patients with critical limb ischemia.

  7. Electrical stimulation of a small brain area reversibly disrupts consciousness.

    PubMed

    Koubeissi, Mohamad Z; Bartolomei, Fabrice; Beltagy, Abdelrahman; Picard, Fabienne

    2014-08-01

    The neural mechanisms that underlie consciousness are not fully understood. We describe a region in the human brain where electrical stimulation reproducibly disrupted consciousness. A 54-year-old woman with intractable epilepsy underwent depth electrode implantation and electrical stimulation mapping. The electrode whose stimulation disrupted consciousness was between the left claustrum and anterior-dorsal insula. Stimulation of electrodes within 5mm did not affect consciousness. We studied the interdependencies among depth recording signals as a function of time by nonlinear regression analysis (h(2) coefficient) during stimulations that altered consciousness and stimulations of the same electrode at lower current intensities that were asymptomatic. Stimulation of the claustral electrode reproducibly resulted in a complete arrest of volitional behavior, unresponsiveness, and amnesia without negative motor symptoms or mere aphasia. The disruption of consciousness did not outlast the stimulation and occurred without any epileptiform discharges. We found a significant increase in correlation for interactions affecting medial parietal and posterior frontal channels during stimulations that disrupted consciousness compared with those that did not. Our findings suggest that the left claustrum/anterior insula is an important part of a network that subserves consciousness and that disruption of consciousness is related to increased EEG signal synchrony within frontal-parietal networks.

  8. Cochlear implantation following cerebellar surgery.

    PubMed

    Saeed, Shahad; Mawman, Deborah; Green, Kevin

    2011-08-01

    Cochlear implantation in patients with known central nervous system conditions can result in wide-ranging outcomes. The aim of this study is to report two cases of cochlear implantation outcomes in patients with acquired cerebellar ataxia following cerebellar surgery. The first is a female implanted with the Nucleus 24 implant in September 2000 and the second is a male implanted with a MED-EL Sonata Flexsoft electro-acoustic stimulation in July 2009. Programming these patients resulted in significant non-auditory stimulation which resulted in less than optimum map fittings. The patients did not gain any open set speech perception benefit although both of them gained an awareness of sound with the device. However, patient 2 elected to become a non-user because of the limited benefit.

  9. Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK- cell migration.

    PubMed Central

    Sieg, D J; Ilić, D; Jones, K C; Damsky, C H; Hunter, T; Schlaepfer, D D

    1998-01-01

    The focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) links transmembrane integrin receptors to intracellular signaling pathways. We show that expression of the FAK-related PTK, Pyk2, is elevated in fibroblasts isolated from murine fak-/- embryos (FAK-) compared with cells from fak+/+ embryos (FAK+). Pyk2 was localized to perinuclear regions in both FAK+ and FAK- cells. Pyk2 tyrosine phosphorylation was enhanced by fibronectin (FN) stimulation of FAK- but not FAK+ cells. Increased Pyk2 tyrosine phosphorylation paralleled the time-course of Grb2 binding to Shc and activation of ERK2 in FAK- cells. Pyk2 in vitro autophosphorylation activity was not enhanced by FN plating of FAK- cells. However, Pyk2 associated with active Src-family PTKs after FN but not poly-L-lysine replating of the FAK- cells. Overexpression of both wild-type (WT) and kinase-inactive (Ala457), but not the autophosphorylation site mutant (Phe402) Pyk2, enhanced endogenous FN-stimulated c-Src in vitro kinase activity in FAK- cells, but only WT Pyk2 overexpression enhanced FN-stimulated activation of co-transfected ERK2. Interestingly, Pyk2 overexpression only weakly augmented FAK- cell migration to FN whereas transient FAK expression promoted FAK- cell migration to FN efficiently compared with FAK+ cells. Significantly, repression of endogenous Src-family PTK activity by p50(csk) overexpression inhibited FN-stimulated cell spreading, Pyk2 tyrosine phosphorylation, Grb2 binding to Shc, and ERK2 activation in the FAK- but not in FAK+ cells. These studies show that Pyk2 and Src-family PTKs combine to promote FN-stimulated signaling events to ERK2 in the absence of FAK, but that these signaling events are not sufficient to overcome the FAK- cell migration defects. PMID:9774338

  10. Preliminary Studies on Base Substitutions and Repair of DNA Mismatch Damage Stimulated by Low Energy N+ Ion Beam Implantation in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Xie, Chuan-xiao; Guo, Jin-hua; Cheng, Bei-jiu; Yu, Zeng-liang

    2003-02-01

    Ever since the low energy N+ ion beam has been accepted that the mutation effects of ionizing radiation are attributed mainly to direct or indirect damage to DNA. Evidences based on naked DNA irradiation in support of a mutation spectrum appears to be consistent, but direct proof of such results in vivo are limited. Using mutS, dam and/or dcm defective Eschericha coli mutator strains, an preliminary experimental system on induction of in vivo mutation spectra of low energy N+ ion beam has been established in this study. It was observed that the mutation rates of rifampicin resistance induced by N+ implantation were quite high, ranging from 9.2 × 10-8 to 4.9 × 10-5 at the dosage of 5.2 × 1014 ions/cm2. Strains all had more than 90-fold higher mutation rate than its spontaneous mutation rate determined by this method. It reveals that base substitutions involve in induction of mutation of low energy nitrogen ion beam implantation. The mutation rates of mutator strains were nearly 500-fold (GM2929), 400-fold (GM5864) and 6-fold larger than that of AB1157. The GM2929 and GM5864 both lose the ability of repair DNA mismatch damage by virtue of both dam and dcm pathways defective (GM2929) or failing to assemble the repair complex (GM5864) respectively. It may explain the both strains had a similar higher mutation rate than GM124 did. It indicated that DNA cytosine methylase might play an important role in mismatch repair of DNA damage induced by N+ implantation. The further related research were also discussed.

  11. Fully Integrated Biochip Platforms for Advanced Healthcare

    PubMed Central

    Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni

    2012-01-01

    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications. PMID:23112644

  12. Dental Implants.

    PubMed

    Zohrabian, Vahe M; Sonick, Michael; Hwang, Debby; Abrahams, James J

    2015-10-01

    Dental implants restore function to near normal in partially or completely edentulous patients. A root-form implant is the most frequently used type of dental implant today. The basis for dental implants is osseointegration, in which osteoblasts grow and directly integrate with the surface of titanium posts surgically embedded into the jaw. Radiologic assessment is critical in the preoperative evaluation of the dental implant patient, as the exact height, width, and contour of the alveolar ridge must be determined. Moreover, the precise locations of the maxillary sinuses and mandibular canals, as well as their relationships to the site of implant surgery must be ascertained. As such, radiologists must be familiar with implant design and surgical placement, as well as augmentation procedures utilized in those patients with insufficient bone in the maxilla and mandible to support dental implants.

  13. Cochlear Implants

    MedlinePlus

    ... NIDCD A cochlear implant is a small, complex electronic device that can help to provide a sense ... are better able to hear, comprehend sound and music, and speak than their peers who receive implants ...

  14. Cochlear implant

    MedlinePlus

    ... antenna. This part of the implant receives the sound, converts the sound into an electrical signal, and sends it to ... implants allow deaf people to receive and process sounds and speech. However, these devices do not restore ...

  15. Enhanced Modiolar Stimulation Effects in the Inferior Colliculus

    DTIC Science & Technology

    2007-11-02

    stimulation. Keywords: Cochlear Implant , Inferior Colliculus, Modiolar Stimulation I. INTRODUCTION Cochlear implants are used to provide hearing sensation...to the sensoneurally deaf. Bipolar electrical stimulation of a scala tympani cochlear implant produces a localized stimulus which has been measured...to diminish at about 9dB/octave [1]. Blamey et al. (1994) describes both a perceived low frequency shift by cochlear implant patients in response to

  16. WANTED: Fully Automated Indexing.

    ERIC Educational Resources Information Center

    Purcell, Royal

    1991-01-01

    Discussion of indexing focuses on the possibilities of fully automated indexing. Topics discussed include controlled indexing languages such as subject heading lists and thesauri, free indexing languages, natural indexing languages, computer-aided indexing, expert systems, and the need for greater creativity to further advance automated indexing.…

  17. Digital Approach for Cochlea’s Stimulation: A Programmable Micro Stimulator Driven by a Flexible Speech Processing

    DTIC Science & Technology

    2007-11-02

    Fig. 3 : Schematic of the Stimulator Principle. III.MAIN FUNCTIONS OF THE STIMULATOR The inner part of the cochlear prosthesis, the implant , includes...pulse generation, in the assigned stimulation channels of the cochlear implant , was estimated thanks to the processed band energies E1, E2, …, EN...driven cochlear prostheses was presented. This implant -under-the-skin-micro- stimulator could be adapted to the external sound analyzer of the

  18. An Electronic System for Ultra-low Power Hearing Implants

    DTIC Science & Technology

    2013-02-15

    cochlear implants , in hybrid cochlear implants and hearing aids, in intelligent personal protective equipment, and in noise dosimeters. Summary of...medical devices including cochlear implants for the deaf, hybrid hearing implants , brain-machine interfaces, and other neural stimulation devices. In...Technical 05/11/2009-09/30/2011 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER An Electronic System for Ultra-low Power Hearing Implants Sb. GRANT NUMBER

  19. Implantable Microimagers

    PubMed Central

    Ng, David C.; Tokuda, Takashi; Shiosaka, Sadao; Tano, Yasuo; Ohta, Jun

    2008-01-01

    Implantable devices such as cardiac pacemakers, drug-delivery systems, and defibrillators have had a tremendous impact on the quality of live for many disabled people. To date, many devices have been developed for implantation into various parts of the human body. In this paper, we focus on devices implanted in the head. In particular, we describe the technologies necessary to create implantable microimagers. Design, fabrication, and implementation issues are discussed vis-à-vis two examples of implantable microimagers; the retinal prosthesis and in vivo neuro-microimager. Testing of these devices in animals verify the use of the microimagers in the implanted state. We believe that further advancement of these devices will lead to the development of a new method for medical and scientific applications. PMID:27879873

  20. Auditory Midbrain Implant: A Review

    PubMed Central

    Lim, Hubert H.; Lenarz, Minoo; Lenarz, Thomas

    2009-01-01

    The auditory midbrain implant (AMI) is a new hearing prosthesis designed for stimulation of the inferior colliculus in deaf patients who cannot sufficiently benefit from cochlear implants. The authors have begun clinical trials in which five patients have been implanted with a single shank AMI array (20 electrodes). The goal of this review is to summarize the development and research that has led to the translation of the AMI from a concept into the first patients. This study presents the rationale and design concept for the AMI as well a summary of the animal safety and feasibility studies that were required for clinical approval. The authors also present the initial surgical, psychophysical, and speech results from the first three implanted patients. Overall, the results have been encouraging in terms of the safety and functionality of the implant. All patients obtain improvements in hearing capabilities on a daily basis. However, performance varies dramatically across patients depending on the implant location within the midbrain with the best performer still not able to achieve open set speech perception without lip-reading cues. Stimulation of the auditory midbrain provides a wide range of level, spectral, and temporal cues, all of which are important for speech understanding, but they do not appear to sufficiently fuse together to enable open set speech perception with the currently used stimulation strategies. Finally, several issues and hypotheses for why current patients obtain limited speech perception along with several feasible solutions for improving AMI implementation are presented. PMID:19762428

  1. Endodontic implants

    PubMed Central

    Yadav, Rakesh K.; Tikku, A. P.; Chandra, Anil; Wadhwani, K. K.; Ashutosh kr; Singh, Mayank

    2014-01-01

    Endodontic implants were introduced back in 1960. Endodontic implants enjoyed few successes and many failures. Various reasons for failures include improper case selection, improper use of materials and sealers and poor preparation for implants. Proper case selection had given remarkable long-term success. Two different cases are being presented here, which have been treated successfully with endodontic implants and mineral trioxide aggregate Fillapex (Andreaus, Brazil), an MTA based sealer. We suggest that carefully selected cases can give a higher success rate and this method should be considered as one of the treatment modalities. PMID:25298723

  2. Toward Fully Synthetic Homogeneous β-Human Follicle-Stimulating Hormone (β-hFSH) with a Biantennary N-linked Dodecasaccharide. Synthesis of β-hFSH with Chitobiose Units at the Natural Linkage Sites

    PubMed Central

    Nagorny, Pavel; Fasching, Bernhard; Li, Xuechen; Chen, Gong; Aussedat, Baptiste; Danishefsky, Samuel J.

    2009-01-01

    A highly convergent synthesis of the sialic acid rich biantennary N-linked glycan found in human glycoprotein hormones, and its use in the synthesis of a fragment derived from the β-domain of human Follicle-Stimulating Hormone (hFSH) are described. The synthesis highlights the use of the Sinaÿ radical glycosidation protocol for the simultaneous installation of both biantennary side-chains of the dodecasaccharide as well as the use of glycal chemistry to construct the tetrasaccharide core in an efficient manner. The synthetic glycan was used to prepare the glycosylated 20–27aa domain of β-subunit of hFSH under a Lansbury aspartylation protocol. The proposed strategy for incorporating the prepared N-linked dodecasaccharide-containing 20–27aa domain into β-hFSH subunit was validated in the context of a model system providing, protected β-hFSH subunit functionalized with chitobiose at positions 7 and 24. PMID:19341309

  3. Implant Design in Cementless Hip Arthroplasty

    PubMed Central

    Kim, Jung Taek

    2016-01-01

    When performing cementless hip arthroplasty, it is critical to achieve firm primary mechanical stability followed by biological fixation. In order to achieve this, it is essential to fully understand characteristics of implant design. In this review, the authors review fixation principles for a variety of implants used for cementless hip replacement and considerations for making an optimal selection. PMID:27536647

  4. Injectable electronic identification, monitoring, and stimulation systems.

    PubMed

    Troyk, P R

    1999-01-01

    Historically, electronic devices such as pacemakers and neuromuscular stimulators have been surgically implanted into animals and humans. A new class of implants made possible by advances in monolithic electronic design and implant packaging is small enough to be implanted by percutaneous injection through large-gauge hypodermic needles and does not require surgical implantation. Among these, commercially available implants, known as radio frequency identification (RFID) tags, are used for livestock, pet, laboratory animal, and endangered-species identification. The RFID tag is a subminiature glass capsule containing a solenoidal coil and an integrated circuit. Acting as the implanted half of a transcutaneous magnetic link, the RFID tag is powered by and communicates with an extracorporeal magnetic reader. The tag transmits a unique identification code that serves the function of identifying the animal. Millions of RFID tags have been sold since the early 1980s. Based on the success of the RFID tags, research laboratories have developed injectable medical implants, known as micromodules. One type of micromodule, the microstimulator, is designed for use in functional-neuromuscular stimulation. Each microstimulator is uniquely addressable and could comprise one channel of a multichannel functional-neuromuscular stimulation system. Using bidirectional telemetry and commands, from a single extracorporeal transmitter, as many as 256 microstimulators could form the hardware basis for a complex functional-neuromuscular stimulation feedback-control system. Uses include stimulation of paralyzed muscle, therapeutic functional-neuromuscular stimulation, and neuromodulatory functions such as laryngeal stimulation and sleep apnea.

  5. Cochlear implant simulator for surgical technique analysis

    NASA Astrophysics Data System (ADS)

    Turok, Rebecca L.; Labadie, Robert F.; Wanna, George B.; Dawant, Benoit M.; Noble, Jack H.

    2014-03-01

    Cochlear Implant (CI) surgery is a procedure in which an electrode array is inserted into the cochlea. The electrode array is used to stimulate auditory nerve fibers and restore hearing for people with severe to profound hearing loss. The primary goals when placing the electrode array are to fully insert the array into the cochlea while minimizing trauma to the cochlea. Studying the relationship between surgical outcome and various surgical techniques has been difficult since trauma and electrode placement are generally unknown without histology. Our group has created a CI placement simulator that combines an interactive 3D visualization environment with a haptic-feedback-enabled controller. Surgical techniques and patient anatomy can be varied between simulations so that outcomes can be studied under varied conditions. With this system, we envision that through numerous trials we will be able to statistically analyze how outcomes relate to surgical techniques. As a first test of this system, in this work, we have designed an experiment in which we compare the spatial distribution of forces imparted to the cochlea in the array insertion procedure when using two different but commonly used surgical techniques for cochlear access, called round window and cochleostomy access. Our results suggest that CIs implanted using round window access may cause less trauma to deeper intracochlear structures than cochleostomy techniques. This result is of interest because it challenges traditional thinking in the otological community but might offer an explanation for recent anecdotal evidence that suggests that round window access techniques lead to better outcomes.

  6. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  7. Breast Implants

    MedlinePlus

    ... sale in the United States: saline-filled and silicone gel-filled. Both types have a silicone outer shell. They vary in size, shell thickness, ... implant them. Provide information on saline-filled and silicone gel-filled breast implants, including data supporting a ...

  8. Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory.

    PubMed

    Jacobs, Joshua; Miller, Jonathan; Lee, Sang Ah; Coffey, Tom; Watrous, Andrew J; Sperling, Michael R; Sharan, Ashwini; Worrell, Gregory; Berry, Brent; Lega, Bradley; Jobst, Barbara C; Davis, Kathryn; Gross, Robert E; Sheth, Sameer A; Ezzyat, Youssef; Das, Sandhitsu R; Stein, Joel; Gorniak, Richard; Kahana, Michael J; Rizzuto, Daniel S

    2016-12-07

    Deep brain stimulation (DBS) has shown promise for treating a range of brain disorders and neurological conditions. One recent study showed that DBS in the entorhinal region improved the accuracy of human spatial memory. Based on this line of work, we performed a series of experiments to more fully characterize the effects of DBS in the medial temporal lobe on human memory. Neurosurgical patients with implanted electrodes performed spatial and verbal-episodic memory tasks. During the encoding periods of both tasks, subjects received electrical stimulation at 50 Hz. In contrast to earlier work, electrical stimulation impaired memory performance significantly in both spatial and verbal tasks. Stimulation in both the entorhinal region and hippocampus caused decreased memory performance. These findings indicate that the entorhinal region and hippocampus are causally involved in human memory and suggest that refined methods are needed to use DBS in these regions to improve memory.

  9. Fully automated protein purification

    PubMed Central

    Camper, DeMarco V.; Viola, Ronald E.

    2009-01-01

    Obtaining highly purified proteins is essential to begin investigating their functional and structural properties. The steps that are typically involved in purifying proteins can include an initial capture, intermediate purification, and a final polishing step. Completing these steps can take several days and require frequent attention to ensure success. Our goal was to design automated protocols that will allow the purification of proteins with minimal operator intervention. Separate methods have been produced and tested that automate the sample loading, column washing, sample elution and peak collection steps for ion-exchange, metal affinity, hydrophobic interaction and gel filtration chromatography. These individual methods are designed to be coupled and run sequentially in any order to achieve a flexible and fully automated protein purification protocol. PMID:19595984

  10. Automatic electrode configuration selection for image-guided cochlear implant programming

    NASA Astrophysics Data System (ADS)

    Zhao, Yiyuan; Dawant, Benoit M.; Noble, Jack H.

    2015-03-01

    Cochlear implants (CIs) are neural prosthetics that stimulate the auditory nerve pathways within the cochlea using an implanted electrode array to restore hearing. After implantation, the CI is programmed by an audiologist who determines which electrodes are active, i.e., the electrode configuration, and selects other stimulation settings. Recent clinical studies by our group have shown that hearing outcomes can be significantly improved by using an image-guided electrode configuration selection technique we have designed. Our goal in this work is to automate the electrode configuration selection step with the long term goal of developing a fully automatic system that can be translated to the clinic. Until now, the electrode configuration selection step has been performed by an expert with the assistance of image analysis-based estimates of the electrode-neural interface. To automatically determine the electrode configuration, we have designed an optimization approach and propose the use of a cost function with feature terms designed to interpret the image analysis data in a similar fashion as the expert. Further, we have designed an approach to select parameters in the cost function using our database of existing electrode configuration plans as training data. The results we present show that our automatic approach results in electrode configurations that are better or equally as good as manually selected configurations in over 80% of the cases tested. This method represents a crucial step towards clinical translation of our image-guided cochlear implant programming system.

  11. Capacitive Feedthroughs for Medical Implants

    PubMed Central

    Grob, Sven; Tass, Peter A.; Hauptmann, Christian

    2016-01-01

    Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging. PMID:27660602

  12. Serving Deaf Students Who Have Cochlear Implants. PEPNet Tipsheet

    ERIC Educational Resources Information Center

    Searls, J. Matt, Comp.

    2010-01-01

    Cochlear implants (CIs) are complex electronic devices surgically implanted under the skin behind the ear. These devices utilize electrodes placed in the inner ear (the cochlea) to stimulate the auditory nerve of individuals with significant permanent hearing loss. Cochlear implants may not be suitable for everyone. They are designed to provide…

  13. Histrelin Implant

    MedlinePlus

    ... implant (Supprelin LA) is used to treat central precocious puberty (CPP; a condition causing children to enter puberty too soon, resulting in faster than normal bone growth and development of sexual characteristics) in girls ...

  14. Penile Implants

    MedlinePlus

    ... placed inside the penis to allow men with erectile dysfunction (ED) to get an erection. Penile implants are ... complications and follow-up care. For most men, erectile dysfunction can be successfully treated with medications or use ...

  15. Cochlear implants.

    PubMed

    Connell, Sarah S; Balkany, Thomas J

    2006-08-01

    Cochlear implants are cost-effective auditory prostheses that safely provide a high-quality sensation of hearing to adults who are severely or profoundly deaf. In the past 5 years, progress has been made in hardware and software design, candidate selection, surgical techniques, device programming, education and rehabilitation,and, most importantly, outcomes. Cochlear implantation in the elderly is well tolerated and provides marked improvement in auditory performance and psychosocial functioning.

  16. [Principles of energy sources of totally implantable hearing aids for inner ear hearing loss].

    PubMed

    Baumann, J W; Leysieffer, H

    1998-02-01

    A fully implantable hearing aid consists of a sound receptor (microphone), an electronic amplifier including active audio-signal processing, an electromechanical transducer (actuator) for stimulating the ear by vibration, and an energy source. The energy source may be either a primary cell or a rechargeable (secondary) cell. As the energy requirements of an implantable hearing aid are dependent on the operating principle of the actuator, the operating principles of electromagnetic and piezoelectric transducers were examined with respect to their relative power consumption. The analysis showed that the energy requirements of an implantable hearing aid are significantly increased when an electromagnetic transducer is used. The power consumption of a piezoelectric transducer was found to be less than that of the electronic components alone. The energy needed to run a fully implantable hearing aid under these conditions would be 38 mWH per day. Primary cells cannot provide the energy needed for a minimum operation time of 5 years (70 WH), and therefore rechargeable cells must be used. A theoretical appraisal was carried out on nickel-cadmium, nickel-metal hydride, and lithium-ion cells to determine their suitability as well as to assess the risks associated with their use in an implant. Safety measures were drawn up from the results. Ni-MH cells were found to be the most suitable for use as an energy source for implantable hearing-aids because they are more robust than Li ion cells and their storage capacity is double that of Ni-Cd cells of similar size.

  17. Contraceptive implants.

    PubMed

    McDonald-Mosley, Raegan; Burke, Anne E

    2010-03-01

    Implantable contraception has been extensively used worldwide. Implants are one of the most effective and reversible methods of contraception available. These devices may be particularly appropriate for certain populations of women, including women who cannot use estrogen-containing contraception. Implants are safe for use by women with many chronic medical problems. The newest implant, Implanon (Organon International, Oss, The Netherlands), is the only device currently available in the United States and was approved in 2006. It is registered for 3 years of pregnancy prevention. Contraceptive implants have failure rates similar to tubal ligation, and yet they are readily reversible with a return to fertility within days of removal. Moreover, these contraceptive devices can be safely placed in the immediate postpartum period, ensuring good contraceptive coverage for women who may be at risk for an unintended pregnancy. Irregular bleeding is a common side effect for all progestin-only contraceptive implants. Preinsertion counseling should address possible side effects, and treatment may be offered to women who experience prolonged or frequent bleeding.

  18. Pallidotomy after chronic deep brain stimulation.

    PubMed

    Bulluss, Kristian J; Pereira, Erlick A; Joint, Carole; Aziz, Tipu Z

    2013-11-01

    Recent publications have demonstrated that deep brain stimulation for Parkinson's disease still exerts beneficial effects on tremor, rigidity, and bradykinesia for up to 10 years after implantation of the stimulator. However with the progression of Parkinson's disease, features such as cognitive decline or "freezing" become prominent, and the presence of an implanted and functioning deep brain stimulator can impose a profound burden of care on the clinical team and family. The authors describe their experience in treating 4 patients who underwent removal of the implanted device due to either progressive dementia requiring full-time nursing or due to infection, and who subsequently underwent a unilateral pallidotomy.

  19. Testing fully depleted CCD

    NASA Astrophysics Data System (ADS)

    Casas, Ricard; Cardiel-Sas, Laia; Castander, Francisco J.; Jiménez, Jorge; de Vicente, Juan

    2014-08-01

    The focal plane of the PAU camera is composed of eighteen 2K x 4K CCDs. These devices, plus four spares, were provided by the Japanese company Hamamatsu Photonics K.K. with type no. S10892-04(X). These detectors are 200 μm thick fully depleted and back illuminated with an n-type silicon base. They have been built with a specific coating to be sensitive in the range from 300 to 1,100 nm. Their square pixel size is 15 μm. The read-out system consists of a Monsoon controller (NOAO) and the panVIEW software package. The deafualt CCD read-out speed is 133 kpixel/s. This is the value used in the calibration process. Before installing these devices in the camera focal plane, they were characterized using the facilities of the ICE (CSIC- IEEC) and IFAE in the UAB Campus in Bellaterra (Barcelona, Catalonia, Spain). The basic tests performed for all CCDs were to obtain the photon transfer curve (PTC), the charge transfer efficiency (CTE) using X-rays and the EPER method, linearity, read-out noise, dark current, persistence, cosmetics and quantum efficiency. The X-rays images were also used for the analysis of the charge diffusion for different substrate voltages (VSUB). Regarding the cosmetics, and in addition to white and dark pixels, some patterns were also found. The first one, which appears in all devices, is the presence of half circles in the external edges. The origin of this pattern can be related to the assembly process. A second one appears in the dark images, and shows bright arcs connecting corners along the vertical axis of the CCD. This feature appears in all CCDs exactly in the same position so our guess is that the pattern is due to electrical fields. Finally, and just in two devices, there is a spot with wavelength dependence whose origin could be the result of a defectous coating process.

  20. Retinal implants: a systematic review.

    PubMed

    Chuang, Alice T; Margo, Curtis E; Greenberg, Paul B

    2014-07-01

    Retinal implants present an innovative way of restoring sight in degenerative retinal diseases. Previous reviews of research progress were written by groups developing their own devices. This systematic review objectively compares selected models by examining publications describing five representative retinal prostheses: Argus II, Boston Retinal Implant Project, Epi-Ret 3, Intelligent Medical Implants (IMI) and Alpha-IMS (Retina Implant AG). Publications were analysed using three criteria for interim success: clinical availability, vision restoration potential and long-term biocompatibility. Clinical availability: Argus II is the only device with FDA approval. Argus II and Alpha-IMS have both received the European CE Marking. All others are in clinical trials, except the Boston Retinal Implant, which is in animal studies. Vision restoration: resolution theoretically correlates with electrode number. Among devices with external cameras, the Boston Retinal Implant leads with 100 electrodes, followed by Argus II with 60 electrodes and visual acuity of 20/1262. Instead of an external camera, Alpha-IMS uses a photodiode system dependent on natural eye movements and can deliver visual acuity up to 20/546. Long-term compatibility: IMI offers iterative learning; Epi-Ret 3 is a fully intraocular device; Alpha-IMS uses intraocular photosensitive elements. Merging the results of these three criteria, Alpha-IMS is the most likely to achieve long-term success decades later, beyond current clinical availability.

  1. A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses.

    PubMed

    Lo, Yi-Kai; Chen, Kuanfu; Gad, Parag; Liu, Wentai

    2013-12-01

    This paper presents a fully functionally integrated 1024-channel mixed-mode and mixed-voltage system-on-a-chip (SoC) for epi-retinal and neural prostheses. Taking an AC input, an integrated power telemetry circuits is capable of generating multiple DC voltages with a voltage conversion efficiency of 83% at a load of 100 mW without external diodes or separate power integrated circuits, reducing the form factor of the prosthetic device. A wireless DPSK receiver with a novel noise reduction scheme supports a data rate of 2 Mb/s at a bit-error-rate of 2 ×10⁻⁷. The 1024-channel stimulator array meets an output compliance voltage of ±10 V and provides flexible stimulation waveforms. Through chip-clustering, the stimulator array can be further expanded to 4096 channels. This SoC is designed and fabricated in TSMC 0.18 μm high-voltage 32 V CMOS process and occupies a chip area of 5.7 mm × 6.6 mm. Using this SoC, a retinal implant bench-top test system is set up with real-time visual verification. In-vitro experiment conducted in artificial vitreous humor is designed and set-up to investigate stimulation waveforms for better visual resolution. In our in-vivo experiment, a hind-limb paralyzed rat with spinal cord transection and implanted chronic epidural electrodes has been shown to regain stepping and standing abilities using stimulus provided by the SoC.

  2. An Implantable Neuroprosthetic Device to Normalize Bladder Function after SCI

    DTIC Science & Technology

    2014-12-01

    experiments using cats . These results have laid the foundation for us to further design and develop an implantable stimulator for human application in...experiments using cats . These results have laid the foundation for us to further design and develop this implantable stimulator into human application in...stimulator system Our previous studies [1-4] in anesthetized chronic SCI cats showed that blocking pudendal nerves using high-frequency (6-10 kHz

  3. Human Tissue Stimulator

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Neurodyne Corporation Human Tissue Stimulator (HTS) is a totally implantable system used for treatment of chronic pain and involuntary motion disorders by electrical stimulation. It was developed by Pacesetter Systems, Inc. in cooperation with the Applied Physics Laboratory. HTS incorporates a nickel cadmium battery, telemetry and command systems technologies of the same type as those used in NASA's Small Astronomy Satellite-3 in microminiature proportions so that the implantable element is the size of a deck of cards. The stimulator includes a rechargeable battery, an antenna and electronics to receive and process commands and to report on its own condition via telemetry, a wireless process wherein instrument data is converted to electrical signals and sent to a receiver where signals are presented as usable information. The HTS is targeted to nerve centers or to particular areas of the brain to provide relief from intractable pain or arrest involuntary motion. The nickel cadmium battery can be recharged through the skin. The first two HTS units were implanted last year and have been successful. Extensive testing is required before HTS can be made available for general use.

  4. Therapy using implanted organic bioelectronics

    PubMed Central

    Jonsson, Amanda; Song, Zhiyang; Nilsson, David; Meyerson, Björn A.; Simon, Daniel T.; Linderoth, Bengt; Berggren, Magnus

    2015-01-01

    Many drugs provide their therapeutic action only at specific sites in the body, but are administered in ways that cause the drug’s spread throughout the organism. This can lead to serious side effects. Local delivery from an implanted device may avoid these issues, especially if the delivery rate can be tuned according to the need of the patient. We turned to electronically and ionically conducting polymers to design a device that could be implanted and used for local electrically controlled delivery of therapeutics. The conducting polymers in our device allow electronic pulses to be transduced into biological signals, in the form of ionic and molecular fluxes, which provide a way of interfacing biology with electronics. Devices based on conducting polymers and polyelectrolytes have been demonstrated in controlled substance delivery to neural tissue, biosensing, and neural recording and stimulation. While providing proof of principle of bioelectronic integration, such demonstrations have been performed in vitro or in anesthetized animals. Here, we demonstrate the efficacy of an implantable organic electronic delivery device for the treatment of neuropathic pain in an animal model. Devices were implanted onto the spinal cord of rats, and 2 days after implantation, local delivery of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) was initiated. Highly localized delivery resulted in a significant decrease in pain response with low dosage and no observable side effects. This demonstration of organic bioelectronics-based therapy in awake animals illustrates a viable alternative to existing pain treatments, paving the way for future implantable bioelectronic therapeutics. PMID:26601181

  5. [Neurotology and cochlear implants].

    PubMed

    Merchán, Miguel A

    2015-05-01

    In this review we analyse cochlear implantation in terms of the fundamental aspects of the functioning of the auditory system. Concepts concerning neuronal plasticity applied to electrical stimulation in perinatal and adult deep hypoacusis are reviewed, and the latest scientific bases that justify early implantation following screening for congenital deafness are discussed. Finally, this review aims to serve as an example of the importance of fostering the sub-specialty of neurotology in our milieu, with the aim of bridging some of the gaps between specialties and thus improving both the knowledge in the field of research on auditory pathologies and in the screening of patients. The objectives of this review, targeted above all towards specialists in the field of otorhinolaryngology, are to analyse some significant neurological foundations in order to reach a better understanding of the clinical events that condition the indications and the rehabilitation of patients with cochlear implants, as well as to use this means to foster the growth of the sub-specialty of neurotology.

  6. Cochlear Implants

    MedlinePlus

    ... outside of the body, behind the ear. A second part is surgically placed under the skin. An implant does not restore normal hearing. It can help a person understand speech. Children and adults can benefit from them. National Institute on Deafness and Other Communication Disorders

  7. Electrical Stimulation as an Aid to Speechreading.

    ERIC Educational Resources Information Center

    Tyler, Richard S.; And Others

    1988-01-01

    This paper, discussing use of electrical stimulation by postlingually deafened adults to supplement speechreading, focuses on: information conveyed by vision, acoustic information needed to resolve visual confusions, basic psychophysical abilities of cochlear implant patients, auditory-alone and audiovisual perception by cochlear-implant patients,…

  8. Transmitter amino acid levels in rat brain regions after amygdala-kindling or chronic electrode implantation without kindling: evidence for a pro-kindling effect of prolonged electrode implantation.

    PubMed

    Löscher, W; Hörstermann, D; Hönack, D; Rundfeldt, C; Wahnschaffe, U

    1993-07-01

    Kindling is a chronic model of epilepsy characterized by a progressive increase in response to the same regularly applied stimulus. The biological basis of the kindling phenomenon requires to be determined, but several studies indicate that alterations in amino acidergic neurotransmission may be involved. In the present experiments, levels of glutamate, aspartate, GABA, glycine, and taurine were determined in 12 brain regions by HPLC in 3 groups of animals: (a) a group which was kindled via electrical stimulation of intraamygdala electrodes and was sacrificed 36 days after the last fully kindled seizure for neurochemical determinations; (b) a group of implanted but nonstimulated rats (surgical control group) in which neurochemical measurements were done at the same time after electrode implantation as the kindled group, and (c) a group of non-implanted, naive control rats. Compared to surgical controls, kindling induced a significant reduction of glutamate, GABA, and taurine in the brain stem (pons/medulla), whereas no differences between both groups were found in any of the other regions. However, both electrode-implanted groups differed significantly from non-implanted naive rats in several regions, indicating that electrode-implantation per se induced long-lasting alterations in transmitter amino acids. The most striking difference to naive controls was an increase of glycine levels in several regions in which this amino acid is known to potentiate glutamatergic transmission. In order to examine the functional consequences of prolonged electrode implantation, seizure thresholds were determined in groups of rats with short and prolonged electrode implantation.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Electrical stimulation to restore respiration.

    PubMed

    Creasey, G; Elefteriades, J; DiMarco, A; Talonen, P; Bijak, M; Girsch, W; Kantor, C

    1996-04-01

    Electrical stimulation has been used for over 25 years to restore breathing to patients with high quadriplegia causing respiratory paralysis and patients with central alveolar hypoventilation. Three groups have developed electrical pacing systems for long-term support of respiration in humans. These systems consist of electrodes implanted on the phrenic nerves, connected by leads to a stimulator implanted under the skin, and powered and controlled from a battery-powered transmitter outside the body. The systems differ principally in the electrode design and stimulation waveform. Approximately 1,000 people worldwide have received one of the three phrenic pacing devices, most with strongly positive results: reduced risk of tracheal problems and chronic infection, the ability to speak and smell more normally, reduced risk of accidental interruption of respiration, greater independence, and reduced costs and time for ventilatory care. For patients with partial lesions of the phrenic nerves, intercostal muscle stimulation may supplement respiration.

  10. Biocompatible implants and methods of making and attaching the same

    SciTech Connect

    Rowley, Adrian P; Laude, Lucien D; Humayun, Mark S; Weiland, James D; Lotfi, Atoosa; Markland, Jr., Francis S

    2014-10-07

    The invention provides a biocompatible silicone implant that can be securely affixed to living tissue through interaction with integral membrane proteins (integrins). A silicone article containing a laser-activated surface is utilized to make the implant. One example is an implantable prosthesis to treat blindness caused by outer retinal degenerative diseases. The device bypasses damaged photoreceptors and electrically stimulates the undamaged neurons of the retina. Electrical stimulation is achieved using a silicone microelectrode array (MEA). A safe, protein adhesive is used in attaching the MEA to the retinal surface and assist in alleviating focal pressure effects. Methods of making and attaching such implants are also provided.

  11. A cochlear implant fabricated using a bulk silicon-surface micromachining process

    NASA Astrophysics Data System (ADS)

    Bell, Tracy Elizabeth

    1999-11-01

    This dissertation presents the design and fabrication of two generations of a silicon microelectrode array for use in a cochlear implant. A cochlear implant is a device that is inserted into the inner ear and uses electrical stimulation to provide sound sensations to the profoundly deaf. The first-generation silicon cochlear implant is a passive device fabricated using silicon microprobe technology developed at the University of Michigan. It contains twenty-two iridium oxide (IrO) stimulating sites that are 250 mum in diameter and spaced at 750 mum intervals. In-vivo recordings were made in guinea pig auditory cortex in response to electrical stimulation with this device, verifying its ability to electrically evoke an auditory response. Auditory thresholds as low as 78 muA were recorded. The second-generation implant is a thirty-two site, four-channel device with on-chip CMOS site-selection circuitry and integrated position sensing. It was fabricated using a novel bulk silicon surface micromachining process which was developed as a part of this dissertation work. While the use of semiconductor technology offers many advantages in fabricating cochlear implants over the methods currently used, it was felt that even further advantages could be gained by developing a new micromachining process which would allow circuitry to be distributed along the full length of the cochlear implant substrate. The new process uses electropolishing of an n+ bulk silicon sacrificial layer to undercut and release n- epitaxial silicon structures from the wafer. An extremely abrupt etch-stop between the n+ and n- silicon is obtained, with no electropolishing taking place in the n-type silicon that is doped lower than 1 x 1017 cm-3 in concentration. Lateral electropolishing rates of up to 50 mum/min were measured using this technique, allowing one millimeter-wide structures to be fully undercut in as little as 10 minutes. The new micromachining process was integrated with a standard p

  12. Language Development in Children Who Are Prelingually Deaf Who Have Used the SPEAK or CIS Stimulation Strategies since Initial Stimulation.

    ERIC Educational Resources Information Center

    Svirsky, Mario A.; Chute, Patricia M.; Green, Janet; Bollard, Priscilla; Miyamoto, Richard T.

    2000-01-01

    A study examined language skills in 44 pediatric cochlear implant users. All participants received implants before age 6 and were programmed with state-of-the-art stimulation strategies (Continuous Interleaved Sampler or Spectral Peak) since the day of initial stimulation. Postimplantation language development proceeded at a pace that was not…

  13. Language acquisition after cochlear implantation of congenitally deaf children: Effect of age at implantation

    NASA Astrophysics Data System (ADS)

    Svirsky, Mario; Holt, Rachael

    2005-04-01

    Evidence shows that early implantation of congenitally deaf children is beneficial. However, infants as young as 6 months of age have started to receive cochlear implants (CIs) in the USA. Such early implantation may be associated with higher risks, including anesthetic risk as well as the increased possibility of a false positive in the diagnosis of profound deafness. On the other hand, delaying implantation may be associated with the risk of missing windows of opportunity or sensitive periods for the development of communication skills. In this study, speech perception and language skills in children who received CIs in the first, second, third, or fourth year of life were compared. Participants were tested at regular 6-month intervals after implantation. The effects of several potential confounds were considered. In general, children implanted earlier outperformed those implanted later, with one exception: infants implanted at 6-12 months showed similar outcomes to children implanted at 12-24 months, at least through 2 to 2-1/2 years of age. This preliminary result may be associated with the difficulty of choosing appropriate stimulation parameters for infants, and its potential influence on the quality of the stimulation patterns delivered by the CI.

  14. Digital photoelastic analysis applied to implant dentistry

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Hariprasad, M. P.; Bhuvanewari, S.

    2016-12-01

    Development of improved designs of implant systems in dentistry have necessitated the study of stress fields in the implant regions of the mandible/maxilla for better understanding of the biomechanics involved. Photoelasticity has been used for various studies related to dental implants in view of whole field visualization of maximum shear stress in the form of isochromatic contours. The potential of digital photoelasticity has not been fully exploited in the field of implant dentistry. In this paper, the fringe field in the vicinity of the connected implants (All-On-Four® concept) is analyzed using recent advances in digital photoelasticity. Initially, a novel 3-D photoelastic model making procedure, to closely mimic all the anatomical features of the human mandible is proposed. By choosing appropriate orientation of the model with respect to the light path, the essential region of interest were sought to be analysed while keeping the model under live loading conditions. Need for a sophisticated software module to carefully identify the model domain has been brought out. For data extraction, five-step method is used and isochromatics are evaluated by twelve fringe photoelasticity. In addition to the isochromatic fringe field, whole field isoclinic data is also obtained for the first time in implant dentistry, which could throw important information in improving the structural stability of the implant systems. Analysis is carried out for the implant in the molar as well as the incisor region. In addition, the interaction effects of loaded molar implant on the incisor area are also studied.

  15. This Neural Implant is designed to be implanted in the Human Central and Nervous System

    SciTech Connect

    2013-10-29

    A new class of neural implants being developed at the Livermore Lab are the first clinical quality devices capable of two-way conversations with the human nervous systems. Unlike existing interfaces that only sense or only stimulate, these devices are capable of stimulating and sensing using both electric and chemical signals.

  16. This Neural Implant is designed to be implanted in the Human Central and Nervous System

    ScienceCinema

    None

    2016-10-19

    A new class of neural implants being developed at the Livermore Lab are the first clinical quality devices capable of two-way conversations with the human nervous systems. Unlike existing interfaces that only sense or only stimulate, these devices are capable of stimulating and sensing using both electric and chemical signals.

  17. Carbon Fiber Biocompatibility for Implants

    PubMed Central

    Petersen, Richard

    2016-01-01

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8) and 0.8 mm at 41.6% vs. 19.5% (p < 10−4), respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration. PMID:26966555

  18. Carbon Fiber Biocompatibility for Implants.

    PubMed

    Petersen, Richard

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10(-8)) and 0.8 mm at 41.6% vs. 19.5% (p < 10(-4)), respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration.

  19. Short Implants: New Horizon in Implant Dentistry.

    PubMed

    Jain, Neha; Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-09-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration.

  20. Short Implants: New Horizon in Implant Dentistry

    PubMed Central

    Gulati, Manisha; Garg, Meenu; Pathak, Chetan

    2016-01-01

    The choice of implant length is an essential factor in deciding the survival rates of these implants and the overall success of the prosthesis. Placing an implant in the posterior part of the maxilla and mandible has always been very critical due to poor bone quality and quantity. Long implants can be placed in association with complex surgical procedures such as sinus lift and bone augmentation. These techniques are associated with higher cost, increased treatment time and greater morbidity. Hence, there is need for a less invasive treatment option in areas of poor bone quantity and quality. Data related to survival rates of short implants, their design and prosthetic considerations has been compiled and structured in this manuscript with emphasis on the indications, advantages of short implants and critical biomechanical factors to be taken into consideration when choosing to place them. Studies have shown that comparable success rates can be achieved with short implants as those with long implants by decreasing the lateral forces to the prosthesis, eliminating cantilevers, increasing implant surface area and improving implant to abutment connection. Short implants can be considered as an effective treatment alternative in resorbed ridges. Short implants can be considered as a viable treatment option in atrophic ridge cases in order to avoid complex surgical procedures required to place long implants. With improvement in the implant surface geometry and surface texture, there is an increase in the bone implant contact area which provides a good primary stability during osseo-integration. PMID:27790598

  1. Importance of cochlear health for implant function.

    PubMed

    Pfingst, Bryan E; Zhou, Ning; Colesa, Deborah J; Watts, Melissa M; Strahl, Stefan B; Garadat, Soha N; Schvartz-Leyzac, Kara C; Budenz, Cameron L; Raphael, Yehoash; Zwolan, Teresa A

    2015-04-01

    Amazing progress has been made in providing useful hearing to hearing-impaired individuals using cochlear implants, but challenges remain. One such challenge is understanding the effects of partial degeneration of the auditory nerve, the target of cochlear implant stimulation. Here we review studies from our human and animal laboratories aimed at characterizing the health of the implanted cochlea and the auditory nerve. We use the data on cochlear and neural health to guide rehabilitation strategies. The data also motivate the development of tissue-engineering procedures to preserve or build a healthy cochlea and improve performance obtained by cochlear implant recipients or eventually replace the need for a cochlear implant. This article is part of a Special Issue entitled .

  2. Implantable multiprogrammable microstimulator dedicated to bladder control.

    PubMed

    Arabi, K; Sawan, M

    1996-01-01

    An implantable multiprogrammable microstimulator that is intended to restore normal bladder functions (retention and incontinence) to spinal cord injured patients is presented. The implantable microstimulator circuitry is externally controlled and is powered by a single encoded radio frequency carrier and has four bipolar (eight monopolar) independently controlled channels. It offers a higher degree of reprogrammability and flexibility and can be used in any neuromuscular applications. The implant system is adaptable to the patient's needs and to future developments in stimulation algorithms, without changing the implant. Features of the microstimulator include its capabilities to generate a wide range of waveforms and to combine up to four different programmable frequencies in each wave train. By using a forward error detection and correction communication protocol, the reliability of the implant is increased. The chip has been designed for structural testability by means of a scan-based test approach and uses circuit techniques to reduce power consumption and ensure long-term stability.

  3. Randomized controlled clinical trial of 2 types of hydroxyapatite-coated implants on moderate periodontitis patients

    PubMed Central

    2016-01-01

    Purpose The aim of this study was to compare and analyze the peri-implant tissue conditions and prospective clinical outcomes associated with 2 types of hydroxyapatite (HA)-coated implants: (1) fully HA-coated implants and (2) partially HA-coated implants with resorbable blast medium on the coronal portion of the threads. Methods Forty-four partially edentulous patients were randomly assigned to undergo the placement of 62 HA-coated implants, and were classified as the control group (partially HA-coated, n=30) and the test group (fully HA-coated, n=32). All patients had chronic periodontitis with moderate crestal bone loss around the edentulous area. The stability and clinical outcomes of the implants were evaluated using the primary and secondary implant stability quotient (ISQ), as well as radiographic, mobility, and peri-implant soft tissue assessments around the implants. The Wilcoxon signed-rank test and the Mann-Whitney test were used to evaluate differences between and within the 2 groups, with P values <0.05 considered to indicate statistical significance. Results The fully HA-coated implants displayed good retention of crestal bone, and insignificant differences were found in annual marginal bone loss between the 2 types of HA-coated implants (P>0.05). No significant differences were found in the survival rate (group I, 100%; group II, 100%) or the success rate (group I, 93.3%; group II, 93.8%). The fully HA-coated implants also did not significantly increase the risk of peri-implantitis (P>0.05). Conclusions The fully HA-coated implants did not lead to an increased risk of peri-implantitis and showed good retention of the crestal bone, as well as good survival and success rates. Our study suggests that fully HA-coated implants could become a reliable treatment alternative for edentulous posterior sites and are capable of providing good retention of the crestal bone. PMID:27800216

  4. Brainjacking: Implant Security Issues in Invasive Neuromodulation.

    PubMed

    Pycroft, Laurie; Boccard, Sandra G; Owen, Sarah L F; Stein, John F; Fitzgerald, James J; Green, Alexander L; Aziz, Tipu Z

    2016-08-01

    The security of medical devices is critical to good patient care, especially when the devices are implanted. In light of recent developments in information security, there is reason to be concerned that medical implants are vulnerable to attack. The ability of attackers to exert malicious control over brain implants ("brainjacking") has unique challenges that we address in this review, with particular focus on deep brain stimulation implants. To illustrate the potential severity of this risk, we identify several mechanisms through which attackers could manipulate patients if unauthorized access to an implant can be achieved. These include blind attacks in which the attacker requires no patient-specific knowledge and targeted attacks that require patient-specific information. Blind attacks include cessation of stimulation, draining implant batteries, inducing tissue damage, and information theft. Targeted attacks include impairment of motor function, alteration of impulse control, modification of emotions or affect, induction of pain, and modulation of the reward system. We also discuss the limitations inherent in designing implants and the trade-offs that must be made to balance device security with battery life and practicality. We conclude that researchers, clinicians, manufacturers, and regulatory bodies should cooperate to minimize the risk posed by brainjacking.

  5. Corrosion of machined titanium dental implants under inflammatory conditions.

    PubMed

    Messer, Regina L W; Tackas, Gyula; Mickalonis, John; Brown, Yolanda; Lewis, Jill B; Wataha, John C

    2009-02-01

    The effects of hyperglycemia, altered cell function, or inflammatory mediators on implant corrosion are not well studied; yet, these effects are critical to implant biocompatibility and osseointegration. Because implant placement is burgeoning, patients with medically compromising systemic conditions such as diabetes are increasingly receiving implants, and the role of other inflammatory diseases on implant corrosion also needs investigation. In the current study, the corrosion properties of commercially available, machined titanium implants were studied in blood, cultures of monocytic cells, and solutions containing elevated dextrose concentrations. Implant corrosion was estimated by open circuit potentials, linear polarization resistance, and electrical impedance spectroscopy (EIS) for 26 h. In selected samples, THP1 monocytic cells were activated for 2 h with Lipopolysaccharide prior to implant exposure, and IL-1beta secretion was measured to assess the affect of the implants on monocyte activation. Implants under conditions of inflammatory stress exhibited more negative E(corr) values, suggesting an increased potential for corrosion. Linear polarization measurements detected increased corrosion rates in the presence of elevated dextrose conditions over PBS conditions. EIS measurements suggested that implants underwent surface passivation reactions that may have limited corrosion over the short term of this test. This result was supported by cyclic polarization tests. IL-1beta secretion was not altered under conditions of corrosion or implant exposure. The results suggest that inflammatory stress and hyperglycemia may increase the corrosion of dental endosseous titanium-based implants, but that longer, more aggressive electrochemical conditions may be necessary to fully assess these effects.

  6. Development of implantable light source for optogenetics

    NASA Astrophysics Data System (ADS)

    Rusakov, Konstantin; Radzewicz, Czesław

    2016-09-01

    The research described here aims at a design and fabrication of a light emitting module for a mobile optogenetic device for animals that are freely moving in the IntelliCage system cages. The device is designed to stimulate selected brain areas of the animal with light. The approach described here is based on a LED chip attached to the tip of a cannula which will be directly implanted into a mouse's brain. The device has been fabricated and tested in a laboratory. In addition, we have observed optogenetic effect on the slice of mice brain tissue in vitro stimulated with our implants.

  7. Sirviendo a los estudiantes sordos que tienen Los implantes cocleares. Hoja de consejos de PEPNet (Serving Deaf Students Who Have Cochlear Implants. PEPNet Tipsheet)

    ERIC Educational Resources Information Center

    Clark, Catherine

    2010-01-01

    This version of "Serving Deaf Students Who Have Cochlear Implants. PEPNet Tipsheet," written in Spanish, describes how cochlear implants (CIs) work. CIs are complex electronic devices surgically implanted under the skin behind the ear. These devices utilize electrodes placed in the inner ear (the cochlea) to stimulate the auditory nerve of…

  8. Dental Implant Surgery

    MedlinePlus

    Dental implant surgery Overview By Mayo Clinic Staff Dental implant surgery is a procedure that replaces tooth roots with ... look and function much like real ones. Dental implant surgery can offer a welcome alternative to dentures ...

  9. Hip Implant Systems

    MedlinePlus

    ... Devices Products and Medical Procedures Implants and Prosthetics Metal-on-Metal Hip Implants Hip Implants Share Tweet Linkedin Pin ... devices available with different bearing surfaces. These are: Metal-on-Polyethylene: The ball is made of metal ...

  10. A Gastrointestinal Electrical Stimulation System Based on Transcutaneous Power Transmission Technology

    PubMed Central

    Zhu, Bingquan; Wang, Yongbing; Yan, Guozheng; Jiang, Pingping; Liu, Zhiqiang

    2014-01-01

    Electrical stimulation has been suggested as a possible treatment for various functional gastrointestinal disorders (FGID). This paper presents a transcutaneous power supplied implantable electrical stimulation system. This technology solves the problem of supplying extended power to an implanted electrical stimulator. After implantation, the stimulation parameters can be reprogrammed by the external controller and then transmitted to the implanted stimulator. This would enable parametric studies to investigate the efficacy of various stimulation parameters in promoting gastrointestinal contractions. A pressure detector in the internal stimulator can provide real-time feedback about variations in the gastrointestinal tract. An optimal stimulation protocol leading to cecal contractions has been proposed: stimulation bursts of 3 ms pulse width, 10 V amplitude, 40 Hz frequency, and 20 s duration. The animal experiment demonstrated the functionality of the system and validated the effects of different stimulation parameters on cecal contractions. PMID:25053939

  11. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty.

    PubMed

    Arabnejad, Sajad; Johnston, Burnett; Tanzer, Michael; Pasini, Damiano

    2016-09-24

    Current hip replacement femoral implants are made of fully solid materials which all have stiffness considerably higher than that of bone. This mechanical mismatch can cause significant bone resorption secondary to stress shielding, which can lead to serious complications such as peri-prosthetic fracture during or after revision surgery. In this work, a high strength fully porous material with tunable mechanical properties is introduced for use in hip replacement design. The implant macro geometry is based off of a short stem taper-wedge implant compatible with minimally invasive hip replacement surgery. The implant micro-architecture is fine-tuned to locally mimic bone tissue properties which results in minimum bone resorption secondary to stress shielding. We present a systematic approach for the design of a 3D printed fully porous hip implant that encompasses the whole activity spectrum of implant development, from concept generation, multiscale mechanics of porous materials, material architecture tailoring, to additive manufacturing, and performance assessment via in vitro experiments in composite femurs. We show that the fully porous implant with an optimized material micro-structure can reduce the amount of bone loss secondary to stress shielding by 75% compared to a fully solid implant. This result also agrees with those of the in vitro quasi-physiological experimental model and the corresponding finite element model for both the optimized fully porous and fully solid implant. These studies demonstrate the merit and the potential of tuning material architecture to achieve a substantial reduction of bone resorption secondary to stress shielding. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  12. Digital speech processing for cochlear implants.

    PubMed

    Dillier, N; Bögli, H; Spillmann, T

    1992-01-01

    A rather general basic working hypothesis for cochlear implant research might be formulated as follows. Signal processing for cochlear implants should carefully select a subset of the total information contained in the sound signal and transform these elements into those physical stimulation parameters which can generate distinctive perceptions for the listener. Several new digital processing strategies have thus been implemented on a laboratory cochlear implant speech processor for the Nucleus 22-electrode system. One of the approaches (PES, pitch excited sampler) is based on the maximum peak channel vocoder concept whereby the spectral energy of a number of frequency bands is transformed into appropriate electrical stimulation parameters for up to 22 electrodes using a voice pitch synchronous pulse rate at any electrode. Another approach (CIS, continuous interleaved sampler) uses a maximally high pitch-independent stimulation pulse rate on a selected number of electrodes. As only one electrode can be stimulated at any instance of time, the rate of stimulation is limited by the required stimulus pulse widths (as determined individually for each subject) and some additional constraints and parameters which have to be optimized and fine tuned by psychophysical measurements. Evaluation experiments with 5 cochlear implant users resulted in significantly improved performance in consonant identification tests with the new processing strategies as compared with the subjects own wearable speech processors whereas improvements in vowel identification tasks were rarely observed. The pitch-synchronous coding (PES) resulted in worse performance compared to the coding without explicit pitch extraction (CIS).(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Shape Optimization of Cochlear Implant Electrode Array Using Genetic Algorithms

    DTIC Science & Technology

    2007-11-02

    Shape Optimization of Cochlear Implant Electrode Array using Genetic Algorithms Charles T.M. Choi, Ph.D., senior member, IEEE Department of...c.t.choi@ieee.org Abstract−Finite element analysis is used to compute the current distribution of the human cochlea during cochlear implant electrical...stimulation. Genetic algorithms are then applied in conjunction with the finite element analysis to optimize the shape of cochlear implant electrode array

  14. [Cochlear implantation in far advanced otosclerosis: series of four cases].

    PubMed

    Yılmaz, İsmail; Akdoğan, M Volkan; Özer, Fulya; Yavuz, Haluk; Çadırcı, Cabbar; Özlüoğlu, Levent N N

    2016-01-01

    In this article, we present four patients who underwent cochlear implantation due to far advanced otosclerosis. Preoperative evaluations, intraoperative findings, complications, and postoperative benefits were analyzed. Cochlear implantation is a treatment option providing excellent audiological results for rehabilitation of patients with far advanced otosclerosis. However, facial nerve stimulation after cochlear implantation is observed more frequently in patients with otosclerosis. Also, caution should be paid in patients with otosclerosis in terms of cochlear ossification and inconsistent results.

  15. Programming, Care, and Troubleshooting of Cochlear Implants for Children.

    ERIC Educational Resources Information Center

    Hedley-Williams, Andrea J.; Sladen, Douglas P.; Tharpe, Anne Marie

    2003-01-01

    This article provides an overview of current cochlear implant technology, programming strategies, troubleshooting, and care techniques. It considers: device components, initial stimulation, speech coding strategies, use and care, troubleshooting, and the classroom environment. (Contains references.) (DB)

  16. Fully Integrating the Design Process

    SciTech Connect

    T.A. Bjornard; R.S. Bean

    2008-03-01

    The basic approach to designing nuclear facilities in the United States does not currently reflect the routine consideration of proliferation resistance and international safeguards. The fully integrated design process is an approach for bringing consideration of international safeguards and proliferation resistance, together with state safeguards and security, fully into the design process from the very beginning, while integrating them sensibly and synergistically with the other project functions. In view of the recently established GNEP principles agreed to by the United States and at least eighteen other countries, this paper explores such an integrated approach, and its potential to help fulfill the new internationally driven design requirements with improved efficiencies and reduced costs.

  17. Music Perception with Cochlear Implants: A Review

    PubMed Central

    McDermott, Hugh J.

    2004-01-01

    The acceptance of cochlear implantation as an effective and safe treatment for deafness has increased steadily over the past quarter century. The earliest devices were the first implanted prostheses found to be successful in compensating partially for lost sensory function by direct electrical stimulation of nerves. Initially, the main intention was to provide limited auditory sensations to people with profound or total sensorineural hearing impairment in both ears. Although the first cochlear implants aimed to provide patients with little more than awareness of environmental sounds and some cues to assist visual speech-reading, the technology has advanced rapidly. Currently, most people with modern cochlear implant systems can understand speech using the device alone, at least in favorable listening conditions. In recent years, an increasing research effort has been directed towards implant users’ perception of nonspeech sounds, especially music. This paper reviews that research, discusses the published experimental results in terms of both psychophysical observations and device function, and concludes with some practical suggestions about how perception of music might be enhanced for implant recipients in the future. The most significant findings of past research are: (1) On average, implant users perceive rhythm about as well as listeners with normal hearing; (2) Even with technically sophisticated multiple-channel sound processors, recognition of melodies, especially without rhythmic or verbal cues, is poor, with performance at little better than chance levels for many implant users; (3) Perception of timbre, which is usually evaluated by experimental procedures that require subjects to identify musical instrument sounds, is generally unsatisfactory; (4) Implant users tend to rate the quality of musical sounds as less pleasant than listeners with normal hearing; (5) Auditory training programs that have been devised specifically to provide implant users with

  18. Wireless Performance of a Fully Passive Neurorecording Microsystem Embedded in Dispersive Human Head Phantom

    NASA Technical Reports Server (NTRS)

    Schwerdt, Helen N.; Chae, Junseok; Miranda, Felix A.

    2012-01-01

    This paper reports the wireless performance of a biocompatible fully passive microsystem implanted in phantom media simulating the dispersive dielectric properties of the human head, for potential application in recording cortical neuropotentials. Fully passive wireless operation is achieved by means of backscattering electromagnetic (EM) waves carrying 3rd order harmonic mixing products (2f(sub 0) plus or minus f(sub m)=4.4-4.9 GHZ) containing targeted neuropotential signals (fm approximately equal to 1-1000 Hz). The microsystem is enclosed in 4 micrometer thick parylene-C for biocompatibility and has a footprint of 4 millimeters x 12 millimeters x 500 micrometers. Preliminary testing of the microsystem implanted in the lossy biological simulating media results in signal-to-noise ratio's (SNR) near 22 (SNR approximately equal to 38 in free space) for millivolt level neuropotentials, demonstrating the potential for fully passive wireless microsystems in implantable medical applications.

  19. Ensuring Fully Soldered Through Holes

    NASA Technical Reports Server (NTRS)

    Blow, Raymond K.

    1987-01-01

    Simple differential-pressure soldering method provides visual evidence that hidden joints are fully soldered. Intended for soldering connector pins in plated through holes in circuit boards. Molten solder flows into plated through holes, drawn by vacuum in manifold over circuit board. Differential-pressure process ensures solder wets entire through hole around connector pin.

  20. Miniaturized neural interfaces and implants

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas; Boretius, Tim; Ordonez, Juan; Hassler, Christina; Henle, Christian; Meier, Wolfgang; Plachta, Dennis T. T.; Schuettler, Martin

    2012-03-01

    Neural prostheses are technical systems that interface nerves to treat the symptoms of neurological diseases and to restore sensory of motor functions of the body. Success stories have been written with the cochlear implant to restore hearing, with spinal cord stimulators to treat chronic pain as well as urge incontinence, and with deep brain stimulators in patients suffering from Parkinson's disease. Highly complex neural implants for novel medical applications can be miniaturized either by means of precision mechanics technologies using known and established materials for electrodes, cables, and hermetic packages or by applying microsystems technologies. Examples for both approaches will be introduced and discussed. Electrode arrays for recording of electrocorticograms during presurgical epilepsy diagnosis have been manufactured using approved materials and a marking laser to achieve an integration density that is adequate in the context of brain machine interfaces, e.g. on the motor cortex. Microtechnologies have to be used for further miniaturization to develop polymer-based flexible and light weighted electrode arrays to interface the peripheral and central nervous system. Polyimide as substrate and insulation material will be discussed as well as several application examples for nerve interfaces like cuffs, filament like electrodes and large arrays for subdural implantation.

  1. [Bilateral cochlear implantation].

    PubMed

    Kronenberg, Jona; Migirov, Lela; Taitelbaum-Swead, Rikey; Hildesheimer, Minka

    2010-06-01

    Cochlear implant surgery became the standard of care in hearing rehabilitation of patients with severe to profound sensorineural hearing loss. This procedure may alter the lives of children and adults enabling them to integrate with the hearing population. In the past, implantation was performed only in one ear, despite the fact that binaural hearing is superior to unilateral, especially in noisy conditions. Cochlear implantation may be performed sequentially or simultaneously. The "sensitive period" of time between hearing loss and implantation and between the two implantations, when performed sequentially, significantly influences the results. Shorter time spans between implantations improve the hearing results after implantation. Hearing success after implantation is highly dependent on the rehabilitation process which includes mapping, implant adjustments and hearing training. Bilateral cochlear implantation in children is recommended as the proposed procedure in spite of the additional financial burden.

  2. Fully depleted back illuminated CCD

    DOEpatents

    Holland, Stephen Edward

    2001-01-01

    A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.

  3. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties

    NASA Astrophysics Data System (ADS)

    Yucesoy, Deniz T.; Hnilova, Marketa; Boone, Kyle; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2015-04-01

    Implant-associated infections can have severe effects on the longevity of implant devices and they also represent a major cause of implant failures. Treating these infections associated with implants by antibiotics is not always an effective strategy due to poor penetration rates of antibiotics into biofilms. Additionally, emerging antibiotic resistance poses serious concerns. There is an urge to develop effective antibacterial surfaces that prevent bacterial adhesion and proliferation. A novel class of bacterial therapeutic agents, known as antimicrobial peptides (AMPs), are receiving increasing attention as an unconventional option to treat septic infection, partly due to their capacity to stimulate innate immune responses and for the difficulty of microorganisms to develop resistance towards them. While host and bacterial cells compete in determining the ultimate fate of the implant, functionalization of implant surfaces with AMPs can shift the balance and prevent implant infections. In the present study, we developed a novel chimeric peptide to functionalize the implant material surface. The chimeric peptide simultaneously presents two functionalities, with one domain binding to a titanium alloy implant surface through a titanium-binding domain while the other domain displays an antimicrobial property. This approach gains strength through control over the bio-material interfaces, a property built upon molecular recognition and self-assembly through a titanium alloy binding domain in the chimeric peptide. The efficiency of chimeric peptide both in-solution and absorbed onto titanium alloy surface was evaluated in vitro against three common human host infectious bacteria, Streptococcus mutans, Staphylococcus epidermidis, and Escherichia coli. In biological interactions such as occur on implants, it is the surface and the interface that dictate the ultimate outcome. Controlling the implant surface by creating an interface composed chimeric peptides may therefore

  4. The multiple-channel cochlear implant: the interface between sound and the central nervous system for hearing, speech, and language in deaf people—a personal perspective

    PubMed Central

    Clark, Graeme M

    2006-01-01

    The multiple-channel cochlear implant is the first sensori-neural prosthesis to effectively and safely bring electronic technology into a direct physiological relation with the central nervous system and human consciousness, and to give speech perception to severely-profoundly deaf people and spoken language to children. Research showed that the place and temporal coding of sound frequencies could be partly replicated by multiple-channel stimulation of the auditory nerve. This required safety studies on how to prevent the effects to the cochlea of trauma, electrical stimuli, biomaterials and middle ear infection. The mechanical properties of an array and mode of stimulation for the place coding of speech frequencies were determined. A fully implantable receiver–stimulator was developed, as well as the procedures for the clinical assessment of deaf people, and the surgical placement of the device. The perception of electrically coded sounds was determined, and a speech processing strategy discovered that enabled late-deafened adults to comprehend running speech. The brain processing systems for patterns of electrical stimuli reproducing speech were elucidated. The research was developed industrially, and improvements in speech processing made through presenting additional speech frequencies by place coding. Finally, the importance of the multiple-channel cochlear implant for early deafened children was established. PMID:16627295

  5. Fully synthetic taped insulation cables

    DOEpatents

    Forsyth, Eric B.; Muller, Albert C.

    1984-01-01

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  6. Fully automated urban traffic system

    NASA Technical Reports Server (NTRS)

    Dobrotin, B. M.; Hansen, G. R.; Peng, T. K. C.; Rennels, D. A.

    1977-01-01

    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible.

  7. Microsystem technologies for ophtalmological implants

    NASA Astrophysics Data System (ADS)

    Mokwa, Wilfried

    2003-01-01

    Due to the low power consumption CMOS electronics is ideal for the use in implanted systems. This paper presents two projects working on ophthalmological implants. Both systems are powered by an external RF-field. One system has been developed to measure the intraocular pressure continuously which is important for the therapy of glaucoma patients. The system consists of a micro coil and an integrated pressure transponder chip built into an artificial soft lens. A second example is a very complex system for epiretinal stimulation of the nerve cells of the retina. With such a system it might be possible to give blind people that are suffering from retinitis pigmentosa some visual contact to their surrounding.

  8. The feasibility of immediately loading dental implants in edentulous jaws

    PubMed Central

    2016-01-01

    Purpose Immediate loading of dental implants has been proved to be feasible in partially edentulous jaws. The purpose of this retrospective investigation was to assess the feasibility of immediately loading dental implants in fully edentulous jaws. Methods A total of 24 patients aged between 53 and 89 years received a total of 154 implants in their edentulous maxillae or mandibles. Among the implants, 45 were set in fresh extracted sockets and 109 in consolidated alveolar bones. The implants were provisionally managed with chair-side made provisional resin bridges and exposed to immediate loading. Implants were followed up for 1–8 years, including radiographic imaging. Marginal bone levels were evaluated based on radiographic imaging. Results A total of 148 out of the 154 implants survived over the follow-up period of 1 to 8 years, giving a survival rate of 96%. The time or region of the implantation, the pre-implant augmentation, and the length and diameter of the implants had no statistically significant influence on the survival or the success rate. The marginal bone level remained stable with only minimal loss of 0.3 mm after 60 months of loading. Conclusions Within the limitations of this study, immediate loading is feasible for dental implants in edentulous jaws. PMID:27588213

  9. Implantable Myoelectric Sensors (IMESs) for Intramuscular Electromyogram Recording

    PubMed Central

    Weir, Richard F. ff.; Troyk, Phil R.; DeMichele, Glen A.; Kerns, Douglas A.; Schorsch, Jack F.; Maas, Huub

    2011-01-01

    We have developed a multichannel electrogmyography sensor system capable of receiving and processing signals from up to 32 implanted myoelectric sensors (IMES). The appeal of implanted sensors for myoelectric control is that electromyography (EMG) signals can be measured at their source providing relatively cross-talk-free signals that can be treated as independent control sites. An external telemetry controller receives telemetry sent over a transcutaneous magnetic link by the implanted electrodes. The same link provides power and commands to the implanted electrodes. Wireless telemetry of EMG signals from sensors implanted in the residual musculature eliminates the problems associated with percutaneous wires, such as infection, breakage, and marsupialization. Each implantable sensor consists of a custom-designed application-specified integrated circuit that is packaged into a bio-compatible RF BION capsule from the Alfred E. Mann Foundation. Implants are designed for permanent long-term implantation with no servicing requirements. We have a fully operational system. The system has been tested in animals. Implants have been chronically implanted in the legs of three cats and are still completely operational four months after implantation. PMID:19224729

  10. Electrical resistance increases at the tissue-electrode interface as an early response to nucleus accumbens deep brain stimulation.

    PubMed

    Kale, Rajas P; Kouzani, Abbas Z; Berk, Julian; Walder, Ken; Berk, Michael; Tye, Susannah J

    2016-08-01

    The therapeutic actions of deep brain stimulation are not fully understood. The early inflammatory response of electrode implantation is associated with symptom relief without electrical stimulation, but is negated by anti-inflammatory drugs. Early excitotoxic necrosis and subsequent glial scarring modulate the conductivity of the tissue-electrode interface, which can provide some detail into the inflammatory response of individual patients. The feasibility of this was demonstrated by measuring resistance values across a bipolar electrode which was unilaterally implanted into the nucleus accumbens of a rat while receiving continuous deep brain stimulation with a portable back-mounted device using clinical parameters (130Hz, 200μA, 90μs) for 3 days. Daily resistance values rose significantly (p<;0.0001), while hourly resistance analysis demonstrated a plateau after an initial spike in resistance, which was then followed by a steady increase (p<;0.05; p<;0.0001). We discuss that the biphasic nature of the inflammatory response may contribute to these observations and conclude that this method may translate to a safe predictive screening for more effective clinical deep brain stimulation.

  11. Toward a fully integrated neurostimulator with inductive power recovery front-end.

    PubMed

    Mounaïm, Fayçal; Sawan, Mohamad

    2012-08-01

    In order to investigate new neurostimulation strategies for micturition recovery in spinal cord injured patients, custom implantable stimulators are required to carry-on chronic animal experiments. However, higher integration of the neurostimulator becomes increasingly necessary for miniaturization purposes, power consumption reduction, and for increasing the number of stimulation channels. As a first step towards total integration, we present in this paper the design of a highly-integrated neurostimulator that can be assembled on a 21-mm diameter printed circuit board. The prototype is based on three custom integrated circuits fabricated in High-Voltage (HV) CMOS technology, and a low-power small-scale commercially available FPGA. Using a step-down approach where the inductive voltage is left free up to 20 V, the inductive power and data recovery front-end is fully integrated. In particular, the front-end includes a bridge rectifier, a 20-V voltage limiter, an adjustable series regulator (5 to 12 V), a switched-capacitor step-down DC/DC converter (1:3, 1:2, or 2:3 ratio), as well as data recovery. Measurements show that the DC/DC converter achieves more than 86% power efficiency while providing around 3.9-V from a 12-V input at 1-mA load, 1:3 conversion ratio, and 50-kHz switching frequency. With such efficiency, the proposed step-down inductive power recovery topology is more advantageous than its conventional step-up counterpart. Experimental results confirm good overall functionality of the system.

  12. Simplifying fixed implant dental prosthetics.

    PubMed

    Tischler, Michael

    2011-01-01

    Through following the FPPD protocol for multiple adjacent implants, and delivering final abutments, picking up the metal framework, and delivering provisionals, many benefits are gained. The benefits of following the FPPD protocol are as follows: The restorative dentist is trying-in and delivering the final abutments in one visit as opposed to removing them and placing them multiple times. This requires less chair time and time for the patient. It also reduces the mechanical stress on the abutment screw and implant body due to the elimination of multiple try-in appointments. When the metal framework is tried-in and verified for fit, the restorative dentist has the opportunity check the retention, check the margins, and make any corrections that might be needed. The abutments will be staying in the mouth when the framework is picked up. This metal try-in allows for a verification of the bite to be given to the dental lab. The delivery of provisionals manufactured by the dental laboratory offers many advantages in the FPPD technique. The patient has a form of tooth much earlier in the traditional appointment sequence. The patient can now offer feedback to the doctor and laboratory for fabrication of the permanent prosthesis with regards to shape and color. The laboratory-fabricated provisionals offer progressive loading to the implants through having a reduced occlusion yet allowing food to stimulate the implants. Overall, the FPPD technique offers shorter appointment times, more rapid delivery of fixed supported teeth, improved doctor-technician communication, and less mechanical wear on the implant parts.

  13. Neural stimulation and recording electrodes.

    PubMed

    Cogan, Stuart F

    2008-01-01

    Electrical stimulation of nerve tissue and recording of neural electrical activity are the basis of emerging prostheses and treatments for spinal cord injury, stroke, sensory deficits, and neurological disorders. An understanding of the electrochemical mechanisms underlying the behavior of neural stimulation and recording electrodes is important for the development of chronically implanted devices, particularly those employing large numbers of microelectrodes. For stimulation, materials that support charge injection by capacitive and faradaic mechanisms are available. These include titanium nitride, platinum, and iridium oxide, each with certain advantages and limitations. The use of charge-balanced waveforms and maximum electrochemical potential excursions as criteria for reversible charge injection with these electrode materials are described and critiqued. Techniques for characterizing electrochemical properties relevant to stimulation and recording are described with examples of differences in the in vitro and in vivo response of electrodes.

  14. Adherent endotoxin on dental implant surfaces: a reappraisal.

    PubMed

    Morra, Marco; Cassinelli, Clara; Bollati, Daniele; Cascardo, Giovanna; Bellanda, Marco

    2015-02-01

    Osteoimmunology is the crosstalk between cells from the immune and skeletal systems, suggesting a role of pro-inflammatory cytokines in the stimulation of osteoclast activity. Endotoxin or bacterial challenges to inflammatory cells are directly relevant to dental implant pathologies involving bone resorption, such as osseointegration failure and peri-implantitis. While the endotoxin amount on implant devices is regulated by standards, it is unknown whether commercially available dental implants elicit different levels of adherent-endotoxin stimulated cytokines. The objective of this work is to develop a model system and evaluate endotoxin-induced expression of pro-inflammatory cytokine genes relevant to osteoclast activation on commercially available dental implants. Murine J774-A1 macrophages were cultured on Ti disks with different level of lipopolysaccharide (LPS) contamination to define the time-course of the inflammatory response to endotoxin, as evaluated by reverse transcription polymerase chain reaction analysis. The developed protocol was then used to measure adherent endotoxin on commercially available packaged and sterile dental implants in the "as-implanted" condition. Results show that tested dental implants induce variable expression of endotoxin-stimulated genes, sometimes above the level expected to promote bone resorption in vivo. Results are unaffected by the specific surface treatment; rather, they likely reflect care in cleaning and packaging protocols. In conclusion, expression of genes that enhance osteoclast activity through endotoxin stimulation of inflammatory cells is widely different on commercially available dental implants. A reappraisal of the clinical impact of adherent endotoxins on dental (and bone) implant devices is required in light of increasing knowledge on crosstalk between cells from the immune and skeletal systems.

  15. Electrical brain stimulation for epilepsy.

    PubMed

    Fisher, Robert S; Velasco, Ana Luisa

    2014-05-01

    Neurostimulation enables adjustable and reversible modulation of disease symptoms, including those of epilepsy. Two types of brain neuromodulation, comprising anterior thalamic deep brain stimulation and responsive neurostimulation at seizure foci, are supported by Class I evidence of effectiveness, and many other sites in the brain have been targeted in small trials of neurostimulation therapy for seizures. Animal studies have mainly assisted in the identification of potential neurostimulation sites and parameters, but much of the clinical work is only loosely based on fundamental principles derived from the laboratory, and the mechanisms by which brain neurostimulation reduces seizures remain poorly understood. The benefits of stimulation tend to increase over time, with maximal effect seen typically 1-2 years after implantation. Typical reductions of seizure frequency are approximately 40% acutely, and 50-69% after several years. Seizure intensity might also be reduced. Complications from brain neurostimulation are mainly associated with the implantation procedure and hardware, including stimulation-related paraesthesias, stimulation-site infections, electrode mistargeting and, in some patients, triggered seizures or even status epilepticus. Further preclinical and clinical experience with brain stimulation surgery should lead to improved outcomes by increasing our understanding of the optimal surgical candidates, sites and parameters.

  16. Speech quality evaluation of subcutaneously implanted microphone using in vivo experiment.

    PubMed

    Woo, Seong Tak; Lee, Gihyoun; Jung, Eui Sung; Lim, Hyung-Gyu; Seong, Ki Woong; Lee, Jyung Hyun; Kim, Myoung Nam; Cho, Jin-Ho

    2014-01-01

    The microphone in a fully implantable hearing device (FIHD) is generally implanted under the skin covering the temporal bone. However, the implanted microphone can be affected by the skin, which causes both sound attenuation and distortion, particularly at high frequencies. As the degree of attenuation and distortion through the skin is severe, speech quality evaluation parameters are needed for the received signal when designing an implantable microphone. However, the performance of most implantable microphones is only assessed based on the sensitivity and frequency response. Thus, practical indicators based on human auditory characteristics are needed for an objective evaluation of the performance of implantable microphones. In this study, a subcutaneously implantable microphone was designed, and its frequency response investigated using an in vivo experiment. Plus, to evaluate the objective indicators, the speech quality of the signals measured by the implanted microphone was calculated using a MATLAB program, and the indicators compared before and after implantation.

  17. [Biomaterials in cochlear implants].

    PubMed

    Stöver, T; Lenarz, T

    2009-05-01

    Cochlear implants (CI) represent the "gold standard" for the treatment of congenitally deaf children and postlingually deafened adults. Thus, cochlear implantation is a success story of new bionic prosthesis development. Owing to routine application of cochlear implants in adults but also in very young children (below the age of one), high demands are placed on the implants. This is especially true for biocompatibility aspects of surface materials of implant parts which are in contact with the human body. In addition, there are various mechanical requirements which certain components of the implants must fulfil, such as flexibility of the electrode array and mechanical resistance of the implant housing. Due to the close contact of the implant to the middle ear mucosa and because the electrode array is positioned in the perilymphatic space via cochleostomy, there is a potential risk of bacterial transferral along the electrode array into the cochlea. Various requirements that have to be fulfilled by cochlear implants, such as biocompatibility, electrode micromechanics, and although a very high level of technical standards has been carried out there is still demand for the improvement of implants as well as of the materials used for manufacturing, ultimately leading to increased implant performance. General considerations of material aspects related to cochlear implants as well as potential future perspectives of implant development will be discussed.

  18. In vivo stimulation on rabbit retina using CMOS LSI-based multi-chip flexible stimulator for retinal prosthesis.

    PubMed

    Tokuda, T; Asano, R; Sugitani, S; Terasawa, Y; Nunoshita, M; Nakauchi, K; Fujikado, T; Tano, Y; Ohta, J

    2007-01-01

    We have performed in vivo electric stimulation experiments on rabbit retina to demonstrate feasibility of CMOS LSI-based multi-chip flexible neural stimulator for retinal prosthesis. We have developed new packaging structure with an improved flexibility and device control system which totally controls the LSI-based multi-chip stimulator, counter electrode, and stimulation generator. We have implanted the fabricated multi-chip stimulator into sclera pocket for STS (Suprachoroidal Transretinal Stimulation) configuration. We successfully obtained EEP (Electrically Evoked Potential) on visual cortex evoked by the multi-chip stimulator.

  19. Breast Implants: Saline vs. Silicone

    MedlinePlus

    ... to women of any age for breast reconstruction. Silicone breast implants Silicone implants are pre-filled with ... likely be inserted at the same time. Ruptured silicone implant If a silicone breast implant ruptures, you ...

  20. Fully integrated, fully automated generation of short tandem repeat profiles

    PubMed Central

    2013-01-01

    Background The generation of short tandem repeat profiles, also referred to as ‘DNA typing,’ is not currently performed outside the laboratory because the process requires highly skilled technical operators and a controlled laboratory environment and infrastructure with several specialized instruments. The goal of this work was to develop a fully integrated system for the automated generation of short tandem repeat profiles from buccal swab samples, to improve forensic laboratory process flow as well as to enable short tandem repeat profile generation to be performed in police stations and in field-forward military, intelligence, and homeland security settings. Results An integrated system was developed consisting of an injection-molded microfluidic BioChipSet cassette, a ruggedized instrument, and expert system software. For each of five buccal swabs, the system purifies DNA using guanidinium-based lysis and silica binding, amplifies 15 short tandem repeat loci and the amelogenin locus, electrophoretically separates the resulting amplicons, and generates a profile. No operator processing of the samples is required, and the time from swab insertion to profile generation is 84 minutes. All required reagents are contained within the BioChipSet cassette; these consist of a lyophilized polymerase chain reaction mix and liquids for purification and electrophoretic separation. Profiles obtained from fully automated runs demonstrate that the integrated system generates concordant short tandem repeat profiles. The system exhibits single-base resolution from 100 to greater than 500 bases, with inter-run precision with a standard deviation of ±0.05 - 0.10 bases for most alleles. The reagents are stable for at least 6 months at 22°C, and the instrument has been designed and tested to Military Standard 810F for shock and vibration ruggedization. A nontechnical user can operate the system within or outside the laboratory. Conclusions The integrated system represents the

  1. Fully analogue photonic reservoir computer.

    PubMed

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-03-03

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers.

  2. Fully analogue photonic reservoir computer

    PubMed Central

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-01-01

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers. PMID:26935166

  3. Implants for lucky few

    NASA Astrophysics Data System (ADS)

    Brandon, David

    2011-08-01

    In his article "Vision of beauty" (May pp22-27), Richard Taylor points the way to fractal design for retinal implants and makes an enthusiastic case for incorporating such features into the next generation of such implants.

  4. Additively manufactured porous tantalum implants.

    PubMed

    Wauthle, Ruben; van der Stok, Johan; Amin Yavari, Saber; Van Humbeeck, Jan; Kruth, Jean-Pierre; Zadpoor, Amir Abbas; Weinans, Harrie; Mulier, Michiel; Schrooten, Jan

    2015-03-01

    The medical device industry's interest in open porous, metallic biomaterials has increased in response to additive manufacturing techniques enabling the production of complex shapes that cannot be produced with conventional techniques. Tantalum is an important metal for medical devices because of its good biocompatibility. In this study selective laser melting technology was used for the first time to manufacture highly porous pure tantalum implants with fully interconnected open pores. The architecture of the porous structure in combination with the material properties of tantalum result in mechanical properties close to those of human bone and allow for bone ingrowth. The bone regeneration performance of the porous tantalum was evaluated in vivo using an orthotopic load-bearing bone defect model in the rat femur. After 12 weeks, substantial bone ingrowth, good quality of the regenerated bone and a strong, functional implant-bone interface connection were observed. Compared to identical porous Ti-6Al-4V structures, laser-melted tantalum shows excellent osteoconductive properties, has a higher normalized fatigue strength and allows for more plastic deformation due to its high ductility. It is therefore concluded that this is a first step towards a new generation of open porous tantalum implants manufactured using selective laser melting.

  5. Cellular responses evoked by different surface characteristics of intraosseous titanium implants.

    PubMed

    Feller, Liviu; Jadwat, Yusuf; Khammissa, Razia A G; Meyerov, Robin; Schechter, Israel; Lemmer, Johan

    2015-01-01

    The properties of biomaterials, including their surface microstructural topography and their surface chemistry or surface energy/wettability, affect cellular responses such as cell adhesion, proliferation, and migration. The nanotopography of moderately rough implant surfaces enhances the production of biological mediators in the peri-implant microenvironment with consequent recruitment of differentiating osteogenic cells to the implant surface and stimulates osteogenic maturation. Implant surfaces with moderately rough topography and with high surface energy promote osteogenesis, increase the ratio of bone-to-implant contact, and increase the bonding strength of the bone to the implant at the interface. Certain features of implant surface chemistry are also important in enhancing peri-implant bone wound healing. It is the purpose of this paper to review some of the more important features of titanium implant surfaces which have an impact on osseointegration.

  6. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1984-01-01

    CPI's human-implantable automatic implantable defibrillator (AID) is a heart assist system, derived from NASA's space circuitry technology, that can prevent erratic heart action known as arrhythmias. Implanted AID, consisting of microcomputer power source and two electrodes for sensing heart activity, recognizes onset of ventricular fibrillation (VF) and delivers corrective electrical countershock to restore rhythmic heartbeat.

  7. An Implantable Neuroprosthetic Device to Normalize Bladder Function after SCI

    DTIC Science & Technology

    2013-10-01

    high frequency blocking stimulation has also been verified by recent clinical studies to block the vagus nerve for diabetes treatment. 12,13 The...alternating current on axonal conduction through the vagus nerve . J Neural Eng 2011; 8:056013. FIGURE CAPTIONS Fig.1. The implantable stimulator (A...on our previous studies, we propose in this project to use pudendal nerve stimulation and blockade to restore both continence and micturition after

  8. From Guided Surgery to Final Prosthesis with a Fully Digital Procedure: A Prospective Clinical Study on 15 Partially Edentulous Patients

    PubMed Central

    2016-01-01

    Scope. To demonstrate guided implant placement and the application of fixed, implant-supported prosthetic restorations with a fully digital workflow. Methods. Over a 2-year period, all patients with partial edentulism of the posterior maxilla, in need of fixed implant-supported prostheses, were considered for inclusion in this study. The protocol required intraoral scanning and cone beam computed tomography (CBCT), the superimposition of dental-gingival information on bone anatomy, surgical planning, 3D-printed teeth-supported surgical templates, and modelling and milling of polymethylmethacrylate (PMMA) temporaries for immediate loading. After 3 months, final optical impression was taken and milled zirconia frameworks and 3D-printed models were fabricated. The frameworks were veneered with ceramic and delivered to the patients. Results. Fifteen patients were selected for this study. The surgical templates were stable. Thirty implants were placed (BTK Safe®, BTK, Vicenza, Italy) and immediately loaded with PMMA temporaries. After 3 months, the temporaries were replaced by the final restorations in zirconia-ceramic, fabricated with a fully digital process. At 6 months, none of the patients reported any biological or functional problems with the implant-supported prostheses. Conclusions. The present procedure for fully digital planning of implants and short-span fixed implant-supported restorations has been shown to be reliable. Further studies are needed to validate these results. PMID:27493665

  9. Therapeutic effect of low frequency electric stimulation on the epileptogenic focus in amygdale-kindled rats

    PubMed Central

    Han, Yanfei; Wang, Yuping

    2014-01-01

    This study was to examine the therapeutic effect of low-frequency electric stimulation (LFS) on the epileptogenic focus in amygdale-kindled rats, and to find out the optimal stimulus parameters. A microelectrode was implanted into the right amygdale of adult male rats. After fully kindling, LFS was delivered to the right amygdale (through the electrode) between seizures to induce stimulus trains (10 repetitive sequences). Next, we undertook controlled experiment in order to exclude the influence of seizure induction intervals on seizure. Fully kindled rats experienced trials for 4 days, the intervals of the repetitive seizure inducing stimulation was randomized for 5 min, 10 min, 15 min, and 20 min respectively. Finally, we applied an orthogonal design to test the 4 factors of parameters (frequency, pulse duration, current intensity and persistence time), in order to find out the best stimulus parameters. Results showed that compared to control group, the stage-4 seizure induction rate decreased dramatically in LFS group and animals in experiment group were more likely to be non-responsive to seizure-inducing stimuli. There were no statistical differences in the different seizure induction intervals. Significant differences were observed in different stimulus frequencies and stimulus train persistence times on the stage-4 seizure induction rate. These findings indicated that 1 Hz LFS is the best. Training for 5 min is more efficacious in controlling seizure. Thus, our results suggest that LFS applied directly to the site of seizure was effective and further studies are required to explore the most effective parameters for developing implanted stimulator. PMID:25550918

  10. Biomechanical determinants of the stability of dental implants: influence of the bone-implant interface properties.

    PubMed

    Mathieu, Vincent; Vayron, Romain; Richard, Gilles; Lambert, Grégory; Naili, Salah; Meningaud, Jean-Paul; Haiat, Guillaume

    2014-01-03

    Dental implants are now widely used for the replacement of missing teeth in fully or partially edentulous patients and for cranial reconstructions. However, risks of failure, which may have dramatic consequences, are still experienced and remain difficult to anticipate. The stability of biomaterials inserted in bone tissue depends on multiscale phenomena of biomechanical (bone-implant interlocking) and of biological (mechanotransduction) natures. The objective of this review is to provide an overview of the biomechanical behavior of the bone-dental implant interface as a function of its environment by considering in silico, ex vivo and in vivo studies including animal models as well as clinical studies. The biomechanical determinants of osseointegration phenomena are related to bone remodeling in the vicinity of the implants (adaptation of the bone structure to accommodate the presence of a biomaterial). Aspects related to the description of the interface and to its space-time multiscale nature will first be reviewed. Then, the various approaches used in the literature to measure implant stability and the bone-implant interface properties in vitro and in vivo will be described. Quantitative ultrasound methods are promising because they are cheap, non invasive and because of their lower spatial resolution around the implant compared to other biomechanical approaches.

  11. Combining acoustic and electric stimulation in the service of speech recognition

    PubMed Central

    Dorman, Michael F.; Gifford, Rene H.

    2010-01-01

    The majority of recently implanted, cochlear implant patients can potentially benefit from a hearing aid in the ear contralateral to the implant. When patients combine electric and acoustic stimulation, word recognition in quiet and sentence recognition in noise increase significantly. Several studies suggest that the acoustic information that leads to the increased level of performance resides mostly in the frequency region of the voice fundamental, e.g. 125 Hz for a male voice. Recent studies suggest that this information aids speech recognition in noise by improving the recognition of lexical boundaries or word onsets. In some noise environments, patients with bilateral implants can achieve similar levels of performance as patients who combine electric and acoustic stimulation. Patients who have undergone hearing preservation surgery, and who have electric stimulation from a cochlear implant and who have low-frequency hearing in both the implanted and not-implanted ears, achieve the best performance in a high noise environment. PMID:20874053

  12. An implantable electrical bioreactor for enhancement of cell viability.

    PubMed

    Kim, Jung Hoon; Lee, Tae Hyung; Song, Yun Mi; Kim, In Sook; Cho, Tae Hyung; Hwang, Sune Jung; Kim, Sung June

    2011-01-01

    Low survival of injected cells which are prepared by ex-vivo culture is main obstacle in cell-based tissue regeneration. To elevate cell adaptation, we designed an implantable electrical bioreactor where human mesenchymal stromal cells (hMSCs) can be cultured and stimulated electrically. Bioreactor was composed of biocompatible cylindrical Teflon body containing a flexible polyimide electrode and implantable stimulator. The Teflon body has about 300 holes with a diameter of 300 um for effective nutrients supply inside the bioreactor and has a length of 17 mm and a diameter of 8mm for implantation. After hMSCs seeded on the collagen sponge that serves as scaffold to form a bone tissue graft, they are cultured in the bioreactor with biphasic electric current (BEC) stimulation. BEC stimulation with amplitude of 20/40 uA, duration of 100 us and a frequency of 100 Hz was applied for one week in the early stage of cultivation. Subsequently, after hMSCS were cultured for another week without electrical stimulation, cell response such as cell proliferation, cell attachment and gene expression are evaluated. In vitro and In vivo culture of hMSCs showed 19% and 22% increase in cell proliferation at stimulated groups, compared to unstimulated control. The expression of type I collagen increased significantly at stimulated group. These results suggest that the usage of implantable electrical bioreactor can be a good strategy to enhance the efficiency of stem cell-based tissue engineering.

  13. Longitudinal performance of an implantable vestibular prosthesis.

    PubMed

    Phillips, Christopher; Ling, Leo; Oxford, Trey; Nowack, Amy; Nie, Kaibao; Rubinstein, Jay T; Phillips, James O

    2015-04-01

    Loss of vestibular function may be treatable with an implantable vestibular prosthesis that stimulates semicircular canal afferents with biphasic pulse trains. Several studies have demonstrated short-term activation of the vestibulo-ocular reflex (VOR) with electrical stimulation. Fewer long-term studies have been restricted to small numbers of animals and stimulation designed to produce adaptive changes in the electrically elicited response. This study is the first large consecutive series of implanted rhesus macaque to be studied longitudinally using brief stimuli designed to limit adaptive changes in response, so that the efficacy of electrical activation can be studied over time, across surgeries, canals and animals. The implantation of a vestibular prosthesis in animals with intact vestibular end organs produces variable responses to electrical stimulation across canals and animals, which change in threshold for electrical activation of eye movements and in elicited slow phase velocities over time. These thresholds are consistently lower, and the slow phase velocities higher, than those obtained in human subjects. The changes do not appear to be correlated with changes in electrode impedance. The variability in response suggests that empirically derived transfer functions may be required to optimize the response of individual canals to a vestibular prosthesis, and that this function may need to be remapped over time. This article is part of a Special Issue entitled .

  14. Biocompatibility of implantable biomedical devices

    NASA Astrophysics Data System (ADS)

    Lyu, Suping

    2008-03-01

    Biomedical devices have been broadly used to treat human disease, especially chronic diseases where pharmaceuticals are less effective. Heart valve and artificial joint are examples. Biomedical devices perform by delivering therapies such as electric stimulations, mechanical supports and biological actions. While the uses of biomedical devices are highly successful they can trigger adverse biological reactions as well. The property that medical devices perform with intended functions but not causing unacceptable adverse effects was called biocompatibility in the early time. As our understanding of biomaterial-biological interactions getting broader, biocompatibility has more meanings. In this talk, I will present some adverse biological reactions observed with implantable biomedical devices. Among them are surface fouling of implantable sensors, calcification with vascular devices, restenosis with stents, foreign particle migration and mechanical fractures of devices due to inflammation reactions. While these effects are repeatable, there are very few quantitative data and theories to define them. The purpose of this presentation is to introduce this biocompatibility concept to biophysicists to stimulate research interests at different angles. An open question is how to quantitatively understand the biocompatibility that, like many other biological processes, has not been quantified experimentally.

  15. Fully Employing Software Inspections Data

    NASA Technical Reports Server (NTRS)

    Shull, Forrest; Feldmann, Raimund L.; Seaman, Carolyn; Regardie, Myrna; Godfrey, Sally

    2009-01-01

    Software inspections provide a proven approach to quality assurance for software products of all kinds, including requirements, design, code, test plans, among others. Common to all inspections is the aim of finding and fixing defects as early as possible, and thereby providing cost savings by minimizing the amount of rework necessary later in the lifecycle. Measurement data, such as the number and type of found defects and the effort spent by the inspection team, provide not only direct feedback about the software product to the project team but are also valuable for process improvement activities. In this paper, we discuss NASA's use of software inspections and the rich set of data that has resulted. In particular, we present results from analysis of inspection data that illustrate the benefits of fully utilizing that data for process improvement at several levels. Examining such data across multiple inspections or projects allows team members to monitor and trigger cross project improvements. Such improvements may focus on the software development processes of the whole organization as well as improvements to the applied inspection process itself.

  16. Mechanical and Biological Interactions of Implants with the Brain and Their Impact on Implant Design.

    PubMed

    Prodanov, Dimiter; Delbeke, Jean

    2016-01-01

    Neural prostheses have already a long history and yet the cochlear implant remains the only success story about a longterm sensory function restoration. On the other hand, neural implants for deep brain stimulation are gaining acceptance for variety of disorders including Parkinsons disease and obsessive-compulsive disorder. It is anticipated that the progress in the field has been hampered by a combination of technological and biological factors, such as the limited understanding of the longterm behavior of implants, unreliability of devices, biocompatibility of the implants among others. While the field's understanding of the cell biology of interactions at the biotic-abiotic interface has improved, relatively little attention has been paid on the mechanical factors (stress, strain), and hence on the geometry that can modulate it. This focused review summarizes the recent progress in the understanding of the mechanisms of mechanical interaction between the implants and the brain. The review gives an overview of the factors by which the implants interact acutely and chronically with the tissue: blood-brain barrier (BBB) breach, vascular damage, micromotions, diffusion etc. We propose some design constraints to be considered in future studies. Aspects of the chronic cell-implant interaction will be discussed in view of the chronic local inflammation and the ways of modulating it.

  17. Mechanical and Biological Interactions of Implants with the Brain and Their Impact on Implant Design

    PubMed Central

    Prodanov, Dimiter; Delbeke, Jean

    2016-01-01

    Neural prostheses have already a long history and yet the cochlear implant remains the only success story about a longterm sensory function restoration. On the other hand, neural implants for deep brain stimulation are gaining acceptance for variety of disorders including Parkinsons disease and obsessive-compulsive disorder. It is anticipated that the progress in the field has been hampered by a combination of technological and biological factors, such as the limited understanding of the longterm behavior of implants, unreliability of devices, biocompatibility of the implants among others. While the field's understanding of the cell biology of interactions at the biotic-abiotic interface has improved, relatively little attention has been paid on the mechanical factors (stress, strain), and hence on the geometry that can modulate it. This focused review summarizes the recent progress in the understanding of the mechanisms of mechanical interaction between the implants and the brain. The review gives an overview of the factors by which the implants interact acutely and chronically with the tissue: blood-brain barrier (BBB) breach, vascular damage, micromotions, diffusion etc. We propose some design constraints to be considered in future studies. Aspects of the chronic cell-implant interaction will be discussed in view of the chronic local inflammation and the ways of modulating it. PMID:26903786

  18. Trends in Cochlear Implants

    PubMed Central

    Zeng, Fan-Gang

    2004-01-01

    More than 60,000 people worldwide use cochlear implants as a means to restore functional hearing. Although individual performance variability is still high, an average implant user can talk on the phone in a quiet environment. Cochlear-implant research has also matured as a field, as evidenced by the exponential growth in both the patient population and scientific publication. The present report examines current issues related to audiologic, clinical, engineering, anatomic, and physiologic aspects of cochlear implants, focusing on their psychophysical, speech, music, and cognitive performance. This report also forecasts clinical and research trends related to presurgical evaluation, fitting protocols, signal processing, and postsurgical rehabilitation in cochlear implants. Finally, a future landscape in amplification is presented that requires a unique, yet complementary, contribution from hearing aids, middle ear implants, and cochlear implants to achieve a total solution to the entire spectrum of hearing loss treatment and management. PMID:15247993

  19. A Systematic Review of Electric-Acoustic Stimulation

    PubMed Central

    Ching, Teresa Y. C.; Cowan, Robert

    2013-01-01

    Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devices that combine electric and acoustic stimulation, we conducted a systematic review addressing three clinical questions: what is the range of acoustic hearing in the implanted ear that can be effectively preserved for an electric-acoustic fitting?; what benefits are provided by combining acoustic stimulation with electric stimulation?; and what clinical fitting practices have been developed for devices that combine electric and acoustic stimulation? A search of the literature was conducted and 27 articles that met the strict evaluation criteria adopted for the review were identified for detailed analysis. The range of auditory thresholds in the implanted ear that can be successfully used for an electric-acoustic application is quite broad. The effectiveness of combined electric and acoustic stimulation as compared with electric stimulation alone was consistently demonstrated, highlighting the potential value of preservation and utilization of low frequency hearing in the implanted ear. However, clinical procedures for best fitting of electric-acoustic devices were varied. This clearly identified a need for further investigation of fitting procedures aimed at maximizing outcomes for recipients of electric-acoustic devices. PMID:23539259

  20. An in vivo assessment of the effects of using different implant abutment occluding materials on implant microleakage and the peri-implant microbiome

    NASA Astrophysics Data System (ADS)

    Rubino, Caroline

    Microleakage may be a factor in the progression of peri-implant pathology. Microleakage in implant dentistry refers to the passage of bacteria, fluids, molecules or ions between the abutment-implant interface to and from the surrounding periodontal tissues. This creates a zone of inflammation and reservoir of bacteria at the implant-abutment interface. Bone loss typically occurs within the first year of abutment connection and then stabilizes. It has not yet been definitively proven that the occurrence of microleakage cannot contribute to future bone loss or impede the treatment of peri-implant disease. Therefore, strategies to reduce or eliminate microleakage are sought out. Recent evidence demonstrates that the type of implant abutment channel occluding material can affect the amount of microleakage in an in vitro study environment. Thus, we hypothesize that different abutment screw channel occluding materials will affect the amount of observed microleakage, vis-a-vis the correlation between the microflora found on the abutment screw channel occluding material those found in the peri-implant sulcus. Additional objectives include confirming the presence of microleakage in vivo and assessing any impact that different abutment screw channel occluding materials may have on the peri-implant microbiome. Finally, the present study provides an opportunity to further characterize the peri-implant microbiome. Eight fully edentulous patients restored with at dental implants supporting screw-retained fixed hybrid prostheses were included in the study. At the initial appointment (T1), the prostheses were removed and the implants and prostheses were cleaned. The prostheses were then inserted with polytetrafluoroethylene tape (PTFE, TeflonRTM), cotton, polyvinyl siloxane (PVS), or synthetic foam as the implant abutment channel occluding material and sealed over with composite resin. About six months later (T2), the prostheses were removed and the materials collected. Paper

  1. Electroacoustic Stimulation: Now and into the Future

    PubMed Central

    Irving, S.; Gillespie, L.; Richardson, R.; Rowe, D.; Fallon, J. B.; Wise, A. K.

    2014-01-01

    Cochlear implants have provided hearing to hundreds of thousands of profoundly deaf people around the world. Recently, the eligibility criteria for cochlear implantation have been relaxed to include individuals who have some useful residual hearing. These recipients receive inputs from both electric and acoustic stimulation (EAS). Implant recipients who can combine these hearing modalities demonstrate pronounced benefit in speech perception, listening in background noise, and music appreciation over implant recipients that rely on electrical stimulation alone. The mechanisms bestowing this benefit are unknown, but it is likely that interaction of the electric and acoustic signals in the auditory pathway plays a role. Protection of residual hearing both during and following cochlear implantation is critical for EAS. A number of surgical refinements have been implemented to protect residual hearing, and the development of hearing-protective drug and gene therapies is promising for EAS recipients. This review outlines the current field of EAS, with a focus on interactions that are observed between these modalities in animal models. It also outlines current trends in EAS surgery and gives an overview of the drug and gene therapies that are clinically translatable and may one day provide protection of residual hearing for cochlear implant recipients. PMID:25276779

  2. Peri-implant bone changes following tooth extraction, immediate placement and loading of implants in the edentulous maxilla.

    PubMed

    Barbier, Lieven; Abeloos, Johan; De Clercq, Calix; Jacobs, Reinhilde

    2012-08-01

    The aim of this study was to clinically and radiographically evaluate peri-implant bone level changes after rehabilitation of a fully edentulous maxilla by placement of six implants in either fresh extraction sites or healed edentulous ridges up till 18 months after implant placement. Twenty patients with a terminal dentition in the maxillae (11 men, 9 women) received a total of 120 OsseoSpeed implants; 118 implants could be loaded immediately of which 59 were placed in extraction sockets and 59 were placed in healed sites. Within 24 h after surgery, all patients received a chairside-assembled, fibre-reinforced temporary fixed prosthetic reconstruction in occlusion. Six months post-surgery, final screw-retained CoCr (15) or Ti (5) computer numerical control-milled and acrylic-veneered frameworks were placed directly at implant level without interposing abutments. Intraoral radiographs were taken 6 and 18 months after implant placement. Implant survival rate was 100%. Mean marginal bone level was located on average -0.35 mm below the reference point (standard deviation 0.29, range -1.20 to +0.02 mm) 18 months after loading. Whether implants were placed in healed bone sites or fresh extraction sockets did not significantly affect the bone level changes. Furthermore, the use of either CoCr or Ti at the implant level did not significantly affect marginal bone loss. Within the limits of this prospective clinical trial, results seem to indicate that immediate placement and occlusal loading of five to six implants in the edentulous maxilla can be carried out successfully. Whether or not those implants are placed in fresh extraction sockets does not seem to alter the outcome. The present data show a successful 1-year outcome of a treatment protocol involving tooth extraction immediately combined with implant placement and loading.

  3. Computational Models for Predicting Outcomes of Neuroprosthesis Implantation: the Case of Cochlear Implants.

    PubMed

    Ceresa, Mario; Mangado, Nerea; Andrews, Russell J; Gonzalez Ballester, Miguel A

    2015-10-01

    Electrical stimulation of the brain has resulted in the most successful neuroprosthetic techniques to date: deep brain stimulation (DBS) and cochlear implants (CI). In both cases, there is a lack of pre-operative measures to predict the outcomes after implantation. We argue that highly detailed computational models that are specifically tailored for a patient can provide useful information to improve the precision of the nervous system electrode interface. We apply our framework to the case of CI, showing how we can predict nerve response for patients with both intact and degenerated nerve fibers. Then, using the predicted response, we calculate a metric for the usefulness of the stimulation protocol and use this information to rerun the simulations with better parameters.

  4. Implantable radio frequency identification sensors: wireless power and communication.

    PubMed

    Hutchens, Chriswell; Rennaker, Robert L; Venkataraman, Srinivasan; Ahmed, Rehan; Liao, Ran; Ibrahim, Tamer

    2011-01-01

    There are significant technical challenges in the development of a fully implantable wirelessly powered neural interface. Challenges include wireless transmission of sufficient power to the implanted device to ensure reliable operation for decades without replacement, minimizing tissue heating, and adequate reliable communications bandwidth. Overcoming these challenges is essential for the development of implantable closed loop system for the treatment of disorders ranging from epilepsy, incontinence, stroke and spinal cord injury. We discuss the development of the wireless power, communication and control for a Radio-Frequency Identification Sensor (RFIDS) system with targeted power range for a 700 mV, 30 to 40 uA load attained at -2 dBm.

  5. Modeling of nanocluster formation by ion beam implantation

    SciTech Connect

    Li, Kun-Dar

    2011-08-15

    A theoretical model was developed to investigate the mechanism of the formation of nanoclusters via ion beam implantation. The evolution of nanoclusters, including the nucleation and growth process known as Ostwald ripening, was rebuilt using numerical simulations. The effects of implantation parameters such as the ion energy, ion fluence, and temperature on the morphology of implanted microstructures were also studied through integration with the Monte Carlo Transport of Ions in Matter code calculation for the distribution profiles of implanted ions. With an appropriate ion fluence, a labyrinth-like nanostructure with broad size distributions of nanoclusters formed along the ion implantation range. In a latter stage, a buried layer of implanted impurity developed. With decreasing ion energy, the model predicted the formation of precipitates on the surface. These simulation results were fully consistent with many experimental observations. With increased temperature, the characteristic length and size of nanostructures would increase due to the high mobility. This theoretical model provides an efficient numerical approach for fully understanding the mechanism of the formation of nanoclusters, allowing for the design of ion beam experiments to form specific nanostructures through ion-implantation technology.

  6. Place-pitch manipulations with cochlear implants

    PubMed Central

    Macherey, Olivier; Carlyon, Robert P.

    2012-01-01

    Pitch can be conveyed to cochlear implant (CI) listeners via both place of excitation and temporal cues. The transmission of place cues may be hampered by several factors including limitations on the insertion depth and number of implanted electrodes, and the broad current spread produced by monopolar stimulation. The following series of experiments investigate several methods to partially overcome these limitations. Experiment 1 compares two recently published techniques that aim to activate more apical fibers than produced by monopolar or bipolar stimulation of the most apical contacts. The first technique (phantom stimulation) manipulates the current spread by simultaneously stimulating two electrodes with opposite-polarity pulses of different amplitudes. The second technique manipulates the neural spread of excitation by using asymmetric pulses and exploiting the polarity-sensitive properties of auditory nerve fibers. The two techniques yielded similar results and were shown to produce lower place pitch percepts than stimulation of monopolar and bipolar symmetric pulses. Furthermore, combining these two techniques may be advantageous in a clinical setting. Experiment 2 proposes a novel method to create place pitches intermediate to those produced by physical electrodes by using charge-balanced asymmetric pulses in bipolar mode with different degrees of asymmetry. PMID:22423718

  7. Conducting polymer electrodes for auditory brainstem implants

    PubMed Central

    Guex, Amélie A.; Vachicouras, Nicolas; Hight, Ariel E.; Brown, M. Christian; Lee, Daniel J.; Lacour, Stéphanie P.

    2015-01-01

    The auditory brainstem implant (ABI) restores hearing in patients with damaged auditory nerves. One of the main ideas to improve the efficacy of ABIs is to increase spatial specificity of stimulation, in order to minimize extra-auditory side-effects and to maximize the tonotopy of stimulation. This study reports on the development of a microfabricated conformable electrode array with small (100 μm diameter) electrode sites. The latter are coated with a conducting polymer, PEDOT:PSS, to offer high charge injection properties and to safely stimulate the auditory system with small stimulation sites. We report on the design and fabrication of the polymer implant, and characterize the coatings in physiological conditions in vitro and under mechanical deformation. We characterize the coating electrochemically and during bending tests. We present a proof of principle experiment where the auditory system is efficiently activated by the flexible polymeric interface in a rat model. These results demonstrate the potential of using conducting polymer coatings on small electrode sites for electrochemically safe and efficient stimulation of the central auditory system. PMID:26207184

  8. Microflora of Retained Intracochlear Electrodes from Infected Cochlear Implants.

    PubMed

    Varadarajan, Varun V; Dirain, Carolyn O; Antonelli, Patrick J

    2017-02-01

    Objectives Cochlear implant infections may be refractory to medical management and require device removal with subsequent reimplantation. During device removal, the intracochlear electrode array is commonly left in place to prevent obliteration of the cochlear lumen. If the electrode is colonized with pathogens, this risks contaminating the replacement implant. In this study, we compare the microorganisms detected on infected cochlear implants against those on the retained electrode using culture and microbial gene-sequencing techniques. Study Design Prospective single-cohort study. Setting Tertiary medical center. Subjects and Methods Six patients with refractory cochlear implant infections had the receiver-stimulator and extracochlear electrode removed to facilitate treatment of the infection. The intracochlear electrode was removed at (delayed) reimplantation. Implant specimens were analyzed by microbial culture and 16S DNA gene sequencing. Results Staphylococcus aureus was the organism most commonly identified. None of the 6 patients' intracochlear electrodes yielded microbes by culture. Two intracochlear electrodes revealed bacterial species, and 1 revealed fungal species by gene sequencing. There was no correlation between the microbes on the infected extracochlear implants and the retained intracochlear electrodes. All subjects underwent reimplantation after resolution of their infections. One of 6 subjects developed a second infection after reimplantation, with S aureus in the primary and secondary infections. Conclusions The intracochlear electrodes of infected cochlear implants carry a low microbial burden. Preserving intracochlear electrodes upon removal of infected cochlear implants appears to carry a low risk of contaminating a replacement cochlear implant.

  9. RANKL in the osteolysis of AES total ankle replacement implants.

    PubMed

    Koivu, H; Mackiewicz, Z; Takakubo, Y; Trokovic, N; Pajarinen, J; Konttinen, Y T

    2012-09-01

    Peri-implant tissue reactions in failed total ankle replacement (TAR) are characterized by early developing peri-implant osteolysis. The hypothesis of the study was that this reaction is mediated by receptor activator of nuclear factor kappa B ligand (RANKL). Samples of peri-prosthetic tissues from failed TAR implants were stained for macrophages, RANKL, its receptor RANK and osteoprotegerin (OPG), and compared to control samples. The failed TAR implants were surrounded by implant capsule, synovial lining-like interface membrane or necrotic tissues. Infiltrating scavenger receptor I positive CD163(+) macrophages were frequent, in particular around necrotic soft tissues or bone sequestrate, and possibly in part formed due to ischemia and mechanical factors. In contrast, implant-derived wear debris was scanty. Still many RANK(+) macrophages were often seen in close contact with RANKL(+) mesenchymal cells, whereas OPG was mostly located at a distance in vascular endothelial cells. Foreign body giant cells were frequent. RANKL seems to stimulate locally accumulated CD163(+) RANK-expressing cells to fusion, which leads to the local formation of multinuclear foreign body giant cells (and probably of osteoclasts). Therefore, peri-implant osteolysis in early TAR implant failure seems to be caused by the RANKL-driven chronic foreign body inflammation directed against, not implant-derived particles, but against necrotic autologous tissues.

  10. Cochlear Implants:System Design, Integration and Evaluation

    PubMed Central

    Rebscher, Stephen; Harrison, William V.; Sun, Xiaoan; Feng, Haihong

    2009-01-01

    As the most successful neural prosthesis, cochlear implants have provided partial hearing to more than 120,000 persons worldwide; half of which being pediatric users who are able to develop nearly normal language. Biomedical engineers have played a central role in the design, integration and evaluation of the cochlear implant system, but the overall success is a result of collaborative work with physiologists, psychologists, physicians, educators, and entrepreneurs. This review presents broad yet in-depth academic and industrial perspectives on the underlying research and ongoing development of cochlear implants. The introduction accounts for major events and advances in cochlear implants, including dynamic interplays among engineers, scientists, physicians, and policy makers. The review takes a system approach to address critical issues from design and specifications to integration and evaluation. First, the cochlear implant system design and specifications are laid out. Second, the design goals, principles, and methods of the subsystem components are identified from the external speech processor and radio frequency transmission link to the internal receiver, stimulator and electrode arrays. Third, system integration and functional evaluation are presented with respect to safety, reliability, and challenges facing the present and future cochlear implant designers and users. Finally, issues beyond cochlear implants are discussed to address treatment options for the entire spectrum of hearing impairment as well as to use the cochlear implant as a model to design and evaluate other similar neural prostheses such as vestibular and retinal implants. PMID:19946565

  11. Immediate implants at fresh extraction sockets: from myth to reality.

    PubMed

    Vignoletti, Fabio; Sanz, Mariano

    2014-10-01

    In recent years, immediate implant placement has become a common clinical therapeutic protocol representing an alternative to the classical delayed surgical protocol of implant placement. This protocol, however, has not been fully validated, either in terms of fully understanding the influence of implant placement on the socket-healing process or on the clinical outcomes. This narrative review evaluates the different experimental studies in humans and animals assessing the bone-healing dynamics of the socket after tooth extraction and the dimensional changes occurring at the socket bone walls. These experimental studies describe, in detail, the hard- and soft-tissue healing of implants placed into fresh extraction sockets, demonstrating that marked morphological changes of the alveolar ridge will occur, independently of the implant installation, thus demonstrating that postextraction bone loss is an inevitable biological process. This evidence has also been corroborated in clinical studies in humans, demonstrating the risk of significant peri-implant tissue loss, mainly in the areas of high esthetic demand. There is a lack of long-term evidence on the impact of this protocol on the preservation of the peri-implant tissues. In conclusion, despite the obvious advantages of this surgical protocol, it also has limitations and is more technically demanding than placing an implant into a healed crest. When selecting this protocol, clinicians should always consider: (a) the gingival biotype of the patient; (b) the thickness and integrity of the socket bony walls; (c) the implant selection as well as the adequate vertical and horizontal position of the implant; and (d) the ideal patient (a nonsmoker with good plaque control).

  12. High-efficiency wireless power delivery for medical implants using hybrid coils.

    PubMed

    Artan, N Sertac; Patel, Ramesh C; Ning, Chengzhi; Chao, H Jonathan

    2012-01-01

    With the exciting developments in the implant technology allowing sophisticated signal processing, stimulation, and drug delivery capabilities, there is new hope for many patients of epilepsy, Parkinson's disease, and stroke to improve their quality of life. Such implants require high power to deliver the promised rich functionality. Yet, delivering high power to implants without damaging the tissue due to heating while keeping the implant footprint small is a challenge. In this paper, we propose a hybrid multi-layer coil as the secondary coil to provide a power and space-efficient solution. The proposed coils can deliver power to an implant for long durations without increasing the skin temperature over 1C.

  13. Behavioral and Electrophysiological Responses Evoked by Chronic Infrared Neural Stimulation of the Cochlea

    PubMed Central

    Matic, Agnella Izzo; Robinson, Alan M.; Young, Hunter K.; Badofsky, Ben; Rajguru, Suhrud M.; Stock, Stuart; Richter, Claus-Peter

    2013-01-01

    Infrared neural stimulation (INS) has been proposed as a novel method for neural stimulation. In order for INS to translate to clinical use, which would involve the use of implanted devices over years or decades, the efficacy and safety of chronic INS needs to be determined. We examined a population of cats that were chronically implanted with an optical fiber to stimulate the cochlea with infrared radiation, the first known chronic application of INS. Through behavioral responses, the cats demonstrate that stimulation occurs and a perceptual event results. Long-term stimulation did not result in a change in the electrophysiological responses, either optically-evoked or acoustically-evoked. Spiral ganglion neuron counts and post implantation tissue growth, which was localized at the optical fiber, were similar in chronically stimulated and sham implanted cochleae. Results from chronic INS experiments in the cat cochlea support future work toward INS-based neuroprostheses for humans. PMID:23505466

  14. Implant treatment planning considerations.

    PubMed

    Kao, Richard T

    2008-04-01

    As dental implants become a more accepted treatment modality, there is a need for all parties involved with implant dentistry to be familiar with various treatment planning issues. Though the success can be highly rewarding, failure to forecast treatment planning issues can result in an increase of surgical needs, surgical cost, and even case failure. In this issue, the focus is on implant treatment planning considerations.

  15. Where we are with the development of a fully functional artificial eye prosthesis

    NASA Astrophysics Data System (ADS)

    Rawicz, Andrew H.

    2005-09-01

    This paper summarizes the accomplishments to date in the development of the "artificial eye" - a fully functional eye prosthesis - which we hope to use in the future as an implant in people who have lost their vision due to eye damage. The future work necessary to bring the eye project to fruition is explained, and two important tasks, which we do not yet know how to solve, are described in the hope of stimulating a broad discussion within the scientific community. The summary of the historical developments in this field is followed by our accomplishment. The components of the eye that have been developed and tested to date are color processing receptive fields, variable-focus lenses, and local and global brightness adaptation systems. A constraint imposed on the components of the artificial eye is the requirement of minimal or no power draw. Following this condition, the components were developed using mainly passive, photonic properties of nonlinear optical materials. Color receptive fields are fabricated of photo-luminescent concentrators and photovoltaic detectors set in a multilayer stacked system allowing for color processing. Local and global adaptation is accommodated using the photochromic properties of some nonlinear optical materials. A variable focus lens is made of transparent elastic membranes filled with a refractive liquid, and focal length is changed by radial stretching. This modification to the lens was made to accommodate cataract patients. Two important aspects of the research, which are yet unsolved, include proper encoding of visual signals before transmission to the brain and methods for physical transmission of the encoded signals to the visual cortex.

  16. Osseointegrated implant prosthodontics.

    PubMed

    Rogoff, G S

    1992-06-01

    This review covers recent literature on prosthodontic aspects of osseointegrated implants. Long-term prognosis, diagnosis and treatment planning, and clinical impression techniques and fabrication technology are discussed.

  17. Electrodeposited silk coatings for functionalized implant applications

    NASA Astrophysics Data System (ADS)

    Elia, Roberto

    modulated over a 10-fold range and implant insertion into bone mimics demonstrated that the coatings were able to withstand delamination forces experienced during these mock implantations. Antibiotic release from coated implant studs inhibited bacterial growth and dexamethasone release was shown to stimulate calcium deposition in mesenchymal stem cells.

  18. Principles of therapeutic use of transcranial and epidural cortical stimulation.

    PubMed

    Lefaucheur, Jean-Pascal

    2008-10-01

    Among the alternatives to drugs in the treatment of neurological and psychiatric disorders, neuromodulation techniques, including brain stimulation, have been used increasingly this past decade. Cortical targets are especially appealing, because they are easily accessible by noninvasive or invasive methods. Applicable techniques include repetitive transcranial magnetic stimulation (rTMS), transcranial electrical stimulation using pulsed or direct current, and epidural cortical stimulation (ECS) with surgically implanted electrodes. In contrast to deep brain stimulation in movement disorders or electroconvulsive therapy in depression, the efficacy of cortical stimulation to treat neurological or psychiatric disorders has not been yet clearly demonstrated. However, encouraging results have been reported in neuropathic pain (for ECS) and depression (for rTMS). In this review, we will consider some principles and mechanisms of action of these methods. First, it must be noted that fibers of intracortical or cortico-subcortical networks are more prone to be activated by the stimulation than cell bodies of local cortical neurons. Hence, the site(s) of action may be distant from the site of stimulation. In addition, various parameters of stimulation (such as stimulation frequency, intensity, or electrode polarity) and the configuration of the induced electrical field greatly influence the nature of the recruited circuits, and therefore, the overall efficacy. Finally, clinical changes may be delayed and prolonged beyond the time of stimulation, complicating programming algorithms in the case of implanted stimulation device. All these features need to be taken into account when considering cortical stimulation as a method of treatment.

  19. Helium damage and helium effusion in fully stabilised zirconia

    NASA Astrophysics Data System (ADS)

    Damen, P. M. G.; Matzke, Hj.; Ronchi, C.; Hiernaut, J.-P.; Wiss, T.; Fromknecht, R.; van Veen, A.; Labohm, F.

    2002-05-01

    Fully stabilised zirconia (FSZ) samples have been implanted with helium-ions of different energies (200 keV and 1 MeV) and with different fluences (1.4×10 13-1.4×10 16 He +/cm 2). Neutron depth profiling (NDP) for different annealing temperatures and effusion experiments in two different experimental systems with different thermal annealings have been performed on these samples. The samples were analysed by electron microscopy during the various annealing stages. For the low-fluence samples, the diffusion of helium is probably caused by vacancy assisted interstitial diffusion with an activation energy of 1.6 eV. In the highest fluence samples probably high pressure bubbles are formed during thermal annealing.

  20. [Osseointegrated endosseous implants, University of Liège concepts. Various clinical applications].

    PubMed

    Lahmouzi, J; Simain, F; Legrand, R

    1998-04-01

    Based on fundamental experimental studies performed by the research teams of Professor Bränemark (Göteborg, Sweden), the use of dental implants has become a scientifically accepted treatment concept in Dentistry to replace lost or missing teeth in fully and partially edentulous patients. The use of dental implants was initiated by the discovery that dental implants made of titanium can be anchored in the jawbone with direct bone contact (osseointegration).

  1. Optogenetic Stimulation of the Auditory Nerve

    PubMed Central

    Hernandez, Victor H.; Gehrt, Anna; Jing, Zhizi; Hoch, Gerhard; Jeschke, Marcus; Strenzke, Nicola; Moser, Tobias

    2014-01-01

    Direct electrical stimulation of spiral ganglion neurons (SGNs) by cochlear implants (CIs) enables open speech comprehension in the majority of implanted deaf subjects1-6. Nonetheless, sound coding with current CIs has poor frequency and intensity resolution due to broad current spread from each electrode contact activating a large number of SGNs along the tonotopic axis of the cochlea7-9. Optical stimulation is proposed as an alternative to electrical stimulation that promises spatially more confined activation of SGNs and, hence, higher frequency resolution of coding. In recent years, direct infrared illumination of the cochlea has been used to evoke responses in the auditory nerve10. Nevertheless it requires higher energies than electrical stimulation10,11 and uncertainty remains as to the underlying mechanism12. Here we describe a method based on optogenetics to stimulate SGNs with low intensity blue light, using transgenic mice with neuronal expression of channelrhodopsin 2 (ChR2)13 or virus-mediated expression of the ChR2-variant CatCh14. We used micro-light emitting diodes (µLEDs) and fiber-coupled lasers to stimulate ChR2-expressing SGNs through a small artificial opening (cochleostomy) or the round window. We assayed the responses by scalp recordings of light-evoked potentials (optogenetic auditory brainstem response: oABR) or by microelectrode recordings from the auditory pathway and compared them with acoustic and electrical stimulation. PMID:25350571

  2. Brain Stimulation Therapies

    MedlinePlus

    ... Magnetic Seizure Therapy Deep Brain Stimulation Additional Resources Brain Stimulation Therapies Overview Brain stimulation therapies can play ... for a shorter recovery time than ECT Deep Brain Stimulation Deep brain stimulation (DBS) was first developed ...

  3. Spatial channel interactions in cochlear implants

    NASA Astrophysics Data System (ADS)

    Tang, Qing; Benítez, Raul; Zeng, Fan-Gang

    2011-08-01

    The modern multi-channel cochlear implant is widely considered to be the most successful neural prosthesis owing to its ability to restore partial hearing to post-lingually deafened adults and to allow essentially normal language development in pre-lingually deafened children. However, the implant performance varies greatly in individuals and is still limited in background noise, tonal language understanding, and music perception. One main cause for the individual variability and the limited performance in cochlear implants is spatial channel interaction from the stimulating electrodes to the auditory nerve and brain. Here we systematically examined spatial channel interactions at the physical, physiological, and perceptual levels in the same five modern cochlear implant subjects. The physical interaction was examined using an electric field imaging technique, which measured the voltage distribution as a function of the electrode position in the cochlea in response to the stimulation of a single electrode. The physiological interaction was examined by recording electrically evoked compound action potentials as a function of the electrode position in response to the stimulation of the same single electrode position. The perceptual interactions were characterized by changes in detection threshold as well as loudness summation in response to in-phase or out-of-phase dual-electrode stimulation. To minimize potentially confounding effects of temporal factors on spatial channel interactions, stimulus rates were limited to 100 Hz or less in all measurements. Several quantitative channel interaction indexes were developed to define and compare the width, slope and symmetry of the spatial excitation patterns derived from these physical, physiological and perceptual measures. The electric field imaging data revealed a broad but uniformly asymmetrical intracochlear electric field pattern, with the apical side producing a wider half-width and shallower slope than the basal

  4. Teeth and implants.

    PubMed

    Palmer, R

    1999-08-28

    An osseointegrated implant restoration may closely resemble a natural tooth. However, the absence of a periodontal ligament and connective tissue attachment via cementum, results in fundamental differences in the adaptation of the implant to occlusal forces, and the structure of the gingival cuff.

  5. A no bleed implant.

    PubMed

    Ersek, R A; Navarro, J A; Nemeth, D Z; Sas, G

    1993-01-01

    Breast implants have evolved from the original saline-filled, smooth-surfaced silicone rubber bag to silicone gel-filled smooth-walled sacs to a combination of a silicone gel-filled bag within a saline-filled sac, and, most recently, a reversed, double-lumen implant with a saline bag inside of a gel-filled bag. Texture-surfaced implants were first used in 1970 when the standard silicone gel-filled implant was covered with a polyurethane foam. Because of concerns about the degradation products of this foam, they were removed from the market in 1991. In 1975 double-lumen silicone textured implants were developed, followed by silicone gel-filled textured implants. In 1990 a new radiolucent, biocompatible gel was produced that reduced the problem of radioopacity of silicone implants. Because of the gel's sufficiently low coefficient of friction, leakage caused by fold flaw fracture may also be decreased. We present a case where this new biocompatible gel implant was repositioned after four months. The resulting scar capsule in this soft breast was thin [< 0.002 cm (0.008 in.)] and evenly textured as a mirror image of the textured silicone surface. Scanning electron microscopy and x-ray defraction spectrophotometry revealed no silicone bleed.

  6. Smoking and dental implants

    PubMed Central

    Kasat, V.; Ladda, R.

    2012-01-01

    Smoking is a prevalent behaviour in the population. The aim of this review is to bring to light the effects of smoking on dental implants. These facts will assist dental professionals when implants are planned in tobacco users. A search of “PubMed” was made with the key words “dental implant,” “nicotine,” “smoking,” “tobacco,” and “osseointegration.” Also, publications on tobacco control by the Government of India were considered. For review, only those articles published from 1988 onward in English language were selected. Smoking has its influence on general as well as oral health of an individual. Tobacco negatively affects the outcome of almost all therapeutic procedures performed in the oral cavity. The failure rate of implant osseointegration is considerably higher among smokers, and maintenance of oral hygiene around the implants and the risk of peri-implantitis are adversely affected by smoking. To increase implant survival in smokers, various protocols have been recommended. Although osseointegrated dental implants have become the state of the art for tooth replacement, they are not without limitations or complications. In this litigious era, it is extremely important that the practitioner clearly understands and is able and willing to convey the spectrum of possible complications and their frequency to the patients. PMID:24478965

  7. Batteryless implanted echosonometer

    NASA Technical Reports Server (NTRS)

    Kojima, G. K.

    1977-01-01

    Miniature ultrasonic echosonometer implanted within laboratory animals obtains energy from RF power oscillator that is electronically transduced via induction loop to power receiving loop located just under animal's skin. Method of powering device offers significant advantages over those in which battery is part of implanted package.

  8. Implantable CMOS Biomedical Devices

    PubMed Central

    Ohta, Jun; Tokuda, Takashi; Sasagawa, Kiyotaka; Noda, Toshihiko

    2009-01-01

    The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented. PMID:22291554

  9. Implantable, Ingestible Electronic Thermometer

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard

    1987-01-01

    Small quartz-crystal-controlled oscillator swallowed or surgically implanted provides continuous monitoring of patient's internal temperature. Receiver placed near patient measures oscillator frequency, and temperature inferred from previously determined variation of frequency with temperature. Frequency of crystal-controlled oscillator varies with temperature. Circuit made very small and implanted or ingested to measure internal body temperature.

  10. [The Subretinal Implant - Clinical Results].

    PubMed

    Sachs, H G

    2016-11-01

    Since the end of the last century, subretinal electronic chips have been used to restore vision in patients blinded by degenerative retinal diseases such as retinitis pigmentosa. Various procedures have been suggested by different international scientific groups. The promising were the retinal-based concepts, for which there are now human data. The two distinct retina-based concepts not only differ in the site of stimulation (epi- or subretinal), but in their physiological concept. Whereas in camera-based systems (epiretinal, transchoroidal), eye movements cannot be used to detect objects, this is possible with subretinal access. It is as yet unclear as to whether this is relevant to restoring some kind of useful visual perception. This and other questions can only be answered by carefully designed human studies with sufficient patient numbers. Comparison of the visual results of the different groups is neither simple nor trivial. The implantations in each project need well trained and skilled retinal surgeons.

  11. Chemokines Associated with Pathologic Responses to Orthopedic Implant Debris

    PubMed Central

    Hallab, Nadim J.; Jacobs, Joshua J.

    2017-01-01

    Despite the success in returning people to health saving mobility and high quality of life, the over 1 million total joint replacements implanted in the US each year are expected to eventually fail after approximately 15–25 years of use, due to slow progressive subtle inflammation to implant debris compromising the bone implant interface. This local inflammatory pseudo disease state is primarily caused by implant debris interaction with innate immune cells, i.e., macrophages. This implant debris can also activate an adaptive immune reaction giving rise to the concept of implant-related metal sensitivity. However, a consensus of studies agree the dominant form of this response is due to innate reactivity by macrophages to implant debris danger signaling (danger-associated molecular pattern) eliciting cytokine-based and chemokine inflammatory responses. This review covers implant debris-induced release of the cytokines and chemokines due to activation of the innate (and the adaptive) immune system and how this leads to subsequent implant failure through loosening and osteolysis, i.e., what is known of central chemokines (e.g., IL-8, monocyte chemotactic protein-1, MIP-1, CCL9, CCL10, CCL17, and CCL22) associated with implant debris reactivity as related to the innate immune system activation/cytokine expression, e.g., danger signaling (e.g., IL-1β, IL-18, IL-33, etc.), toll-like receptor activation (e.g., IL-6, tumor necrosis factor α, etc.), bone catabolism (e.g., TRAP5b), and hypoxia responses (HIF-1α). More study is needed, however, to fully understand these interactions to effectively counter cytokine- and chemokine-based orthopedic implant-related inflammation. PMID:28154552

  12. Microscopic magnetic stimulation of neural tissue

    PubMed Central

    Bonmassar, Giorgio; Lee, Seung Woo; Freeman, Daniel K.; Polasek, Miloslav; Fried, Shelley I.; Gale, John T.

    2012-01-01

    Electrical stimulation is currently used to treat a wide range of cardiovascular, sensory and neurological diseases. Despite its success, there are significant limitations to its application, including incompatibility with magnetic resonance imaging, limited control of electric fields and decreased performance associated with tissue inflammation. Magnetic stimulation overcomes these limitations but existing devices (that is, transcranial magnetic stimulation) are large, reducing their translation to chronic applications. In addition, existing devices are not effective for deeper, sub-cortical targets. Here we demonstrate that sub-millimeter coils can activate neuronal tissue. Interestingly, the results of both modelling and physiological experiments suggest that different spatial orientations of the coils relative to the neuronal tissue can be used to generate specific neural responses. These results raise the possibility that micro-magnetic stimulation coils, small enough to be implanted within the brain parenchyma, may prove to be an effective alternative to existing stimulation devices. PMID:22735449

  13. Percutaneous and skeletal biocarbon implants

    NASA Technical Reports Server (NTRS)

    Mooney, V.

    1977-01-01

    Review of carbon implants developed by NASA discussed four different types of implants and subsequent improvements. Improvements could be of specific interest to rehabilitation centers and similar organizations.

  14. Understanding music with cochlear implants

    PubMed Central

    Bruns, Lisa; Mürbe, Dirk; Hahne, Anja

    2016-01-01

    Direct stimulation of the auditory nerve via a Cochlear Implant (CI) enables profoundly hearing-impaired people to perceive sounds. Many CI users find language comprehension satisfactory, but music perception is generally considered difficult. However, music contains different dimensions which might be accessible in different ways. We aimed to highlight three main dimensions of music processing in CI users which rely on different processing mechanisms: (1) musical discrimination abilities, (2) access to meaning in music, and (3) subjective music appreciation. All three dimensions were investigated in two CI user groups (post- and prelingually deafened CI users, all implanted as adults) and a matched normal hearing control group. The meaning of music was studied by using event-related potentials (with the N400 component as marker) during a music-word priming task while music appreciation was gathered by a questionnaire. The results reveal a double dissociation between the three dimensions of music processing. Despite impaired discrimination abilities of both CI user groups compared to the control group, appreciation was reduced only in postlingual CI users. While musical meaning processing was restorable in postlingual CI users, as shown by a N400 effect, data of prelingual CI users lack the N400 effect and indicate previous dysfunctional concept building. PMID:27558546

  15. Graphene for Biomedical Implants

    NASA Astrophysics Data System (ADS)

    Moore, Thomas; Podila, Ramakrishna; Alexis, Frank; Rao, Apparao; Clemson Bioengineering Team; Clemson Physics Team

    2013-03-01

    In this study, we used graphene, a one-atom thick sheet of carbon atoms, to modify the surfaces of existing implant materials to enhance both bio- and hemo-compatibility. This novel effort meets all functional criteria for a biomedical implant coating as it is chemically inert, atomically smooth and highly durable, with the potential for greatly enhancing the effectiveness of such implants. Specifically, graphene coatings on nitinol, a widely used implant and stent material, showed that graphene coated nitinol (Gr-NiTi) supports excellent smooth muscle and endothelial cell growth leading to better cell proliferation. We further determined that the serum albumin adsorption on Gr-NiTi is greater than that of fibrinogen, an important and well understood criterion for promoting a lower thrombosis rate. These hemo-and biocompatible properties and associated charge transfer mechanisms, along with high strength, chemical inertness and durability give graphene an edge over most antithrombogenic coatings for biomedical implants and devices.

  16. Enteric bacterial translocation after intraperitoneal implantation of rubber drain pieces.

    PubMed

    Guo, W; Andersson, R; Ljungh, A; Wang, X D; Bengmark, S

    1993-05-01

    To study the kinetics and mechanisms of bacterial translocation from the gut after intraperitoneal (IP) implantation of prosthetic materials, different sizes of rubber drain pieces were intraperitoneally implanted in the rat, followed by evaluation of ileal mucosal permeability after 2 days and of the occurrence of bacterial translocation and gut oxygen extraction at various time points. Enteric bacteria translocated to mesenteric lymph nodes and disseminated to systemic organs (liver, spleen, lungs, and kidneys), the portal vein, and inferior vena cava 2, 4, and 6 h after IP implantation of rubber drain pieces with 10-, 7-, and 3-cm2 areas, respectively, and subsequently to the IP rubber drain piece and the peritoneal cavity on the 2nd postoperative day. The incidence of translocation correlated with the size of the implanted material and time after implantation. The gut oxygen extraction increased significantly after IP implantation of 7- and 10-cm2 rubber drain pieces. The ileal mucosal permeability was enhanced in the groups implanted with 7- and 10-cm2 drain pieces. Thus, bacterial translocation occurs already in the early period after IP implantation of rubber drain and increased with time. The increased gut oxygen extraction implies that the gut is susceptible to IP inflammatory stimulation, and the enhanced ileal permeability suggests that the integrity of the gastrointestinal tract is compromised, which might facilitate bacterial translocation.

  17. A fully organic retinal prosthesis restores vision in a rat model of degenerative blindness.

    PubMed

    Maya-Vetencourt, José Fernando; Ghezzi, Diego; Antognazza, Maria Rosa; Colombo, Elisabetta; Mete, Maurizio; Feyen, Paul; Desii, Andrea; Buschiazzo, Ambra; Di Paolo, Mattia; Di Marco, Stefano; Ticconi, Flavia; Emionite, Laura; Shmal, Dmytro; Marini, Cecilia; Donelli, Ilaria; Freddi, Giuliano; Maccarone, Rita; Bisti, Silvia; Sambuceti, Gianmario; Pertile, Grazia; Lanzani, Guglielmo; Benfenati, Fabio

    2017-03-06

    The degeneration of photoreceptors in the retina is one of the major causes of adult blindness in humans. Unfortunately, no effective clinical treatments exist for the majority of retinal degenerative disorders. Here we report on the fabrication and functional validation of a fully organic prosthesis for long-term in vivo subretinal implantation in the eye of Royal College of Surgeons rats, a widely recognized model of retinitis pigmentosa. Electrophysiological and behavioural analyses reveal a prosthesis-dependent recovery of light sensitivity and visual acuity that persists up to 6-10 months after surgery. The rescue of the visual function is accompanied by an increase in the basal metabolic activity of the primary visual cortex, as demonstrated by positron emission tomography imaging. Our results highlight the possibility of developing a new generation of fully organic, highly biocompatible and functionally autonomous photovoltaic prostheses for subretinal implants to treat degenerative blindness.

  18. Preliminary Thermal Characterization of a Fully-Passive Wireless Backscattering Neuro-Recording Microsystem

    NASA Technical Reports Server (NTRS)

    Schwerdt, H. N.; Xu, W.; Shekhar, S.; Chae, J.; Miranda, F. A.

    2011-01-01

    We present analytical and experimental thermal characteristics of a battery-less, fully-passive wireless backscattering microsystem for recording of neuropotentials. A major challenge for cortically implantable microsystems involves minimizing the heat dissipated by on-chip circuitry, which can lead to permanent brain damage. Therefore, knowledge of temperature changes induced by implantable microsystems while in operation is of utmost importance. In this work, a discrete diode appended to the neuro-recording microsystem has been used to indirectly monitor the aforesaid temperature changes. Using this technique, the maximum temperature rise measured for the microsystem while in operation was 0.15 +/- 0.1 C, which is significantly less than current safety guidelines. Specific absorption ratio (SAR) due to the microsystem was also computed to further demonstrate fully-passive functionality of the neuro-recording microsystem.

  19. Retinal prostheses: progress toward the next generation implants

    PubMed Central

    Ghezzi, Diego

    2015-01-01

    In the last decade, various clinical trials proved the capability of visual prostheses, in particular retinal implants, to restore a useful form of vision. These encouraging results promoted the emerging of several strategies for neuronal stimulation aiming at the restoration of sight. Besides the traditional approach based on electrical stimulation through metal electrodes in the different areas of the visual path (e.g., the visual cortex, the lateral geniculate nucleus, the optic nerve, and the retina), novel concepts for neuronal stimulation have been mostly exploited as building blocks of the next generation of retinal implants. This review is focused on critically discussing recent major advancements in the field of retinal stimulation with particular attention to the findings in the application of novel concepts and materials. Last, the major challenges in the field and their clinical implications will be outlined. PMID:26347602

  20. Turning an organic semiconductor into a low-resistance material by ion implantation.

    PubMed

    Fraboni, Beatrice; Scidà, Alessandra; Cosseddu, Piero; Wang, Yongqiang; Nastasi, Michael; Milita, Silvia; Bonfiglio, Annalisa

    2015-12-01

    We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case for Ne implants. Fully operational pentacene thin film transistors have also been implanted and we show how a controlled N ion implantation process can induce stable modifications in the threshold voltage, without affecting the device performance.

  1. Turning an organic semiconductor into a low-resistance material by ion implantation

    PubMed Central

    Fraboni, Beatrice; Scidà, Alessandra; Cosseddu, Piero; Wang, Yongqiang; Nastasi, Michael; Milita, Silvia; Bonfiglio, Annalisa

    2015-01-01

    We report on the effects of low energy ion implantation on thin films of pentacene, carried out to investigate the efficacy of this process in the fabrication of organic electronic devices. Two different ions, Ne and N, have been implanted and compared, to assess the effects of different reactivity within the hydrocarbon matrix. Strong modification of the electrical conductivity, stable in time, is observed following ion implantation. This effect is significantly larger for N implants (up to six orders of magnitude), which are shown to introduce stable charged species within the hydrocarbon matrix, not only damage as is the case for Ne implants. Fully operational pentacene thin film transistors have also been implanted and we show how a controlled N ion implantation process can induce stable modifications in the threshold voltage, without affecting the device performance. PMID:27877850

  2. [Comparison of differental intracochlear pressures between round window stimulation and ear canal stimulation].

    PubMed

    Wang, Xuelin

    2012-12-01

    Stimulation of the round window (RW) for coupling an implantable hearing system to the cochlea has gained increasing clinical importance. To compare the vibration transfer to the cochlear fluids and partition in response to normal acoustic stimulation and to mechanical stimulation of the RW, we carried out an acoustic-structure coupled finite element analysis using a recently developed finite element (FE) model in our laboratory, which consisted of external ear canal, middle ear and cochlea. Intracochlear pressures were derived during normal forward sound stimulation as well as reverse RW stimulation. A model was utilized to calculate the force required of an actuator at the RW to produce a differential intracochlear pressure that is equivalent to a stimulus produced in normal ear by a given external ear-canal pressure. The current results provided further information to support the optimization of the actuators and adapt existing prostheses for RW stimulation in order to insure sufficient acoustic output.

  3. Protocol for Bone Augmentation with Simultaneous Early Implant Placement: A Retrospective Multicenter Clinical Study

    PubMed Central

    2015-01-01

    Purpose. To present a novel protocol for alveolar bone regeneration in parallel to early implant placement. Methods. 497 patients in need of extraction and early implant placement with simultaneous bone augmentation were treated in a period of 10 years. In all patients the same specific method was followed and grafting was performed utilizing in situ hardening fully resorbable alloplastic grafting materials consisting of β-tricalcium phosphate and calcium sulfate. The protocol involved atraumatic extraction, implant placement after 4 weeks with simultaneous bone augmentation, and loading of the implant 12 weeks after placement and grafting. Follow-up periods ranged from 6 months to 10 years (mean of 4 years). Results. A total of 601 postextraction sites were rehabilitated in 497 patients utilizing the novel protocol. Three implants failed before loading and three implants failed one year after loading, leaving an overall survival rate of 99.0%. Conclusions. This standardized protocol allows successful long-term functional results regarding alveolar bone regeneration and implant rehabilitation. The concept of placing the implant 4 weeks after extraction, augmenting the bone around the implant utilizing fully resorbable, biomechanically stable, alloplastic materials, and loading the implant at 12 weeks seems to offer advantages when compared with traditional treatment modalities. PMID:26858757

  4. Evoked potentials in the management of patients with cochlear implants: research and clinical applications.

    PubMed

    Kileny, Paul R

    2007-04-01

    Evoked potential measures are integral to the treatment of patients with cochlear implants. In particular, these techniques are useful in the management of the pediatric patient. This brief report describes three categories of evoked potentials including clinical and research examples: electrically evoked auditory brain stem responses with transtympanic stimulation, middle-latency responses with cochlear implant stimulation, and cognitive evoked potentials elicited by speech stimuli.

  5. Histological and three-dimensional evaluation of osseointegration to nanostructured calcium phosphate-coated implants.

    PubMed

    Jimbo, Ryo; Coelho, Paulo G; Vandeweghe, Stefan; Schwartz-Filho, Humberto Osvaldo; Hayashi, Mariko; Ono, Daisuke; Andersson, Martin; Wennerberg, Ann

    2011-12-01

    Nanostructures on implant surfaces have been shown to enhance osseointegration; however, commonly used evaluation techniques are probably not sufficiently sensitive to fully determine the effects of this process. This study aimed to observe the osseointegration properties of nanostructured calcium phosphate (CaP)-coated implants, by using a combination of three-dimensional imaging and conventional histology. Titanium implants were coated with stable CaP nanoparticles using an immersion technique followed by heat treatment. Uncoated implants were used as the control. After topographical and chemical characterizations, implants were inserted into the rabbit femur. After 2 and 4weeks, the samples were retrieved for micro-computed tomography and histomorphometric evaluation. Scanning electron microscopy evaluation indicated that the implant surface was modified at the nanoscale by CaP to obtain surface textured with rod-shaped structures. Relative to the control, the bone-to-implant contact for the CaP-coated implant was significantly higher at 4weeks after the implant surgery. Further, corresponding 3-D images showed active bone formation surrounding the implant. 3-D quantification and 2-D histology demonstrated statistical correlation; moreover, 3-D quantification indicated a statistical decrease in bone density in the non-coated control implant group between 2 and 4weeks after the surgery. The application of 3-D evaluation further clarified the temporal characteristics and biological reaction of implants in bone.

  6. An accuracy study of computer-planned implant placement in the augmented maxilla using osteosynthesis screws.

    PubMed

    Verhamme, L M; Meijer, G J; Soehardi, A; Bergé, S J; Xi, T; Maal, T J J

    2017-04-01

    Previous research on the accuracy of flapless implant placement of virtually planned implants in the augmented maxilla revealed unfavourable discrepancies between implant planning and placement. By using the osteosynthesis screws placed during the augmentation procedure, the surgical template could be optimally stabilized. The purpose of this study was to validate this method by evaluating its clinically relevant accuracy. Twelve consecutive fully edentulous patients with extreme resorption of the maxilla were treated with a bone augmentation procedure. Virtual implant planning was performed and a surgical template was manufactured. Subsequently, six implants were installed using the surgical template, which was only supported by the osteosynthesis screws. Implant deviations between planning and placement were calculated. A total of 72 implants were installed. Mean deviations found in the mesiodistal direction were 0.817mm at the implant tip and 0.528mm at the implant shoulder. The angular deviation was 2.924°. In the buccolingual direction, a deviation of 1.038mm was registered at the implant tip and 0.633mm at the implant shoulder. The angular deviation was 3.440°. This study showed that implant placement in the augmented maxilla using a surgical template supported by osteosynthesis screws is accurate.

  7. Single implant tooth replacement.

    PubMed

    Briley, T F

    1998-01-01

    It has been shown that direct bone anchorage of dental implants will provide long-term predictability for single tooth implants and multi-unit implants. The function of implant-supported restoration is now routinely achieved. The real challenge facing the restorative dentist and laboratory technician is to achieve optimal aesthetics. The learning objective of this article is to review the prosthodontic procedures essential to maximizing natural aesthetics in implant supported restorations. It will provide a review of master impression techniques, prepable titanium abutments and designing the cement on restoration. Particular emphasis is directed to the soft tissue model from which a series of sequenced techniques can be followed to achieve optimal aesthetics. Analysis of the implant alignment with regard to the neighboring teeth will result in having to make a choice of which prepable abutment will maximize the aesthetic result. The following case outlines how to replace a single missing tooth using an externally hexed implant system and a prefabricated titanium abutment on a 26-year-old male patient.

  8. Boron implanted strontium titanate

    NASA Astrophysics Data System (ADS)

    Cooper, C. J. M.

    Single crystals of strontium titanate implanted with boron were found to have highly conductive surface layers. The effects of varying dose from 10 to the 16th power to 10 to the 17th power ions/sq cm, implantation voltage from 50 to 175 keV and annealing conditions on the room temperature surface resistance and Hall mobility are presented. Variation of the implantation voltage did not have a major effect on the sheet resistances obtained by boron implantation of strontium titanate, while dose and annealing conditions have major effects. Doses of 5 x 10 to the 16th power ions/sq cm required annealing on the order of one hour at 500 K for maximum reduction of the room temperature resistance in the implanted layer. Samples implanted with a dose of 1 x 10 to the 17th power ions/sq cm required slightly higher temperatures (approximately 575 K) to obtain a minimum resistance at room temperature. Long term (several weeks) room temperature annealing was found to occur in high dose samples. After one to two months at room temperature followed by an anneal to 575 K, the surface resistances were found to be lower than those produced by the annealing of a freshly implanted sample to 575 K.

  9. Dental Implant Systems

    PubMed Central

    Oshida, Yoshiki; Tuna, Elif B.; Aktören, Oya; Gençay, Koray

    2010-01-01

    Among various dental materials and their successful applications, a dental implant is a good example of the integrated system of science and technology involved in multiple disciplines including surface chemistry and physics, biomechanics, from macro-scale to nano-scale manufacturing technologies and surface engineering. As many other dental materials and devices, there are crucial requirements taken upon on dental implants systems, since surface of dental implants is directly in contact with vital hard/soft tissue and is subjected to chemical as well as mechanical bio-environments. Such requirements should, at least, include biological compatibility, mechanical compatibility, and morphological compatibility to surrounding vital tissues. In this review, based on carefully selected about 500 published articles, these requirements plus MRI compatibility are firstly reviewed, followed by surface texturing methods in details. Normally dental implants are placed to lost tooth/teeth location(s) in adult patients whose skeleton and bony growth have already completed. However, there are some controversial issues for placing dental implants in growing patients. This point has been, in most of dental articles, overlooked. This review, therefore, throws a deliberate sight on this point. Concluding this review, we are proposing a novel implant system that integrates materials science and up-dated surface technology to improve dental implant systems exhibiting bio- and mechano-functionalities. PMID:20480036

  10. Nanotechnology for dental implants.

    PubMed

    Tomsia, Antoni P; Lee, Janice S; Wegst, Ulrike G K; Saiz, Eduardo

    2013-01-01

    With the advent of nanotechnology, an opportunity exists for the engineering of new dental implant materials. Metallic dental implants have been successfully used for decades, but they have shortcomings related to osseointegration and mechanical properties that do not match those of bone. Absent the development of an entirely new class of materials, faster osseointegration of currently available dental implants can be accomplished by various surface modifications. To date, there is no consensus regarding the preferred method(s) of implant surface modification, and further development will be required before the ideal implant surface can be created, let alone become available for clinical use. Current approaches can generally be categorized into three areas: ceramic coatings, surface functionalization, and patterning on the micro- to nanoscale. The distinctions among these are imprecise, as some or all of these approaches can be combined to improve in vivo implant performance. These surface improvements have resulted in durable implants with a high percentage of success and long-term function. Nanotechnology has provided another set of opportunities for the manipulation of implant surfaces in its capacity to mimic the surface topography formed by extracellular matrix components of natural tissue. The possibilities introduced by nanotechnology now permit the tailoring of implant chemistry and structure with an unprecedented degree of control. For the first time, tools are available that can be used to manipulate the physicochemical environment and monitor key cellular events at the molecular level. These new tools and capabilities will result in faster bone formation, reduced healing time, and rapid recovery to function.

  11. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson's disease.

    PubMed

    Fregni, Felipe; Boggio, Paulo S; Santos, Marcelo C; Lima, Moises; Vieira, Adriana L; Rigonatti, Sergio P; Silva, M Teresa A; Barbosa, Egberto R; Nitsche, Michael A; Pascual-Leone, Alvaro

    2006-10-01

    Electrical stimulation of deep brain structures, such as globus pallidus and subthalamic nucleus, is widely accepted as a therapeutic tool for patients with Parkinson's disease (PD). Cortical stimulation either with epidural implanted electrodes or repetitive transcranial magnetic stimulation can be associated with motor function enhancement in PD. We aimed to study the effects of another noninvasive technique of cortical brain stimulation, transcranial direct current stimulation (tDCS), on motor function and motor-evoked potential (MEP) characteristics of PD patients. We tested tDCS using different electrode montages [anodal stimulation of primary motor cortex (M1), cathodal stimulation of M1, anodal stimulation of dorsolateral prefrontal cortex (DLPFC), and sham-stimulation] and evaluated the effects on motor function--as indexed by Unified Parkinson's Disease Rating Scale (UPDRS), simple reaction time (sRT) and Purdue Pegboard test--and on corticospinal motor excitability (MEP characteristics). All experiments were performed in a double-blinded manner. Anodal stimulation of M1 was associated with a significant improvement of motor function compared to sham-stimulation in the UPDRS (P < 0.001) and sRT (P = 0.019). This effect was not observed for cathodal stimulation of M1 or anodal stimulation of DLPFC. Furthermore, whereas anodal stimulation of M1 significantly increased MEP amplitude and area, cathodal stimulation of M1 significantly decreased them. There was a trend toward a significant correlation between motor function improvement after M1 anodal-tDCS and MEP area increase. These results confirm and extend the notion that cortical brain stimulation might improve motor function in patients with PD.

  12. External trial deep brain stimulation device for the application of desynchronizing stimulation techniques

    NASA Astrophysics Data System (ADS)

    Hauptmann, C.; Roulet, J.-C.; Niederhauser, J. J.; Döll, W.; Kirlangic, M. E.; Lysyansky, B.; Krachkovskyi, V.; Bhatti, M. A.; Barnikol, U. B.; Sasse, L.; Bührle, C. P.; Speckmann, E.-J.; Götz, M.; Sturm, V.; Freund, H.-J.; Schnell, U.; Tass, P. A.

    2009-12-01

    In the past decade deep brain stimulation (DBS)—the application of electrical stimulation to specific target structures via implanted depth electrodes—has become the standard treatment for medically refractory Parkinson's disease and essential tremor. These diseases are characterized by pathological synchronized neuronal activity in particular brain areas. We present an external trial DBS device capable of administering effectively desynchronizing stimulation techniques developed with methods from nonlinear dynamics and statistical physics according to a model-based approach. These techniques exploit either stochastic phase resetting principles or complex delayed-feedback mechanisms. We explain how these methods are implemented into a safe and user-friendly device.

  13. Gold-implanted shallow conducting layers in polymethylmethacrylate

    SciTech Connect

    Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.

    2009-03-15

    PMMA (polymethylmethacrylate) was ion implanted with gold at very low energy and over a range of different doses using a filtered cathodic arc metal plasma system. A nanometer scale conducting layer was formed, fully buried below the polymer surface at low implantation dose, and evolving to include a gold surface layer as the dose was increased. Depth profiles of the implanted material were calculated using the Dynamic TRIM computer simulation program. The electrical conductivity of the gold-implanted PMMA was measured in situ as a function of dose. Samples formed at a number of different doses were subsequently characterized by Rutherford backscattering spectrometry, and test patterns were formed on the polymer by electron beam lithography. Lithographic patterns were imaged by atomic force microscopy and demonstrated that the contrast properties of the lithography were well maintained in the surface-modified PMMA.

  14. 76 FR 36176 - Fully Developed Claim (Fully Developed Claims-Applications for Compensation, Pension, DIC, Death...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Fully Developed Claim (Fully Developed Claims--Applications for Compensation, Pension, DIC, Death Pension, and/or Accrued Benefits); Correction AGENCY: Veterans Benefits Administration, Department...

  15. Mesenchymal Stem Cells Increase Collagen Infiltration and Improve Wound Healing Response to Porous Titanium Percutaneous Implants

    PubMed Central

    Isackson, Dorthyann; Cook, Kevin J.; McGill, Lawrence D.; Bachus, Kent N.

    2012-01-01

    Epidermal downgrowth, commonly associated with long-term percutaneous implants, weakens the skin-implant seal and greatly increases the vulnerability of the site to infection. To improve the skin attachment and early tissue integration with porous metal percutaneous implants, we evaluated the effect of bone marrow-derived mesenchymal stem cells (BMMSCs) to provide wound healing cues and vascularization to the dermal and epidermal tissues in establishing a barrier with the implant. Two porous metal percutaneous implants, one treated with BMMSCs and one untreated, were placed subdermally on the dorsum of Lewis rats. Implants were evaluated at 0, 3, 7, 28, and 56 days after implantation. Histological analyses evaluated cellular infiltrates, vascularization, quantity and quality of tissue ingrowth, epidermal downgrowth, and fibrous encapsulation. The amount of collagen infiltrating the porous coating was significantly greater for the BMMSC-treated implants at 3 and 28 days post implantation compared to untreated implants. There was an early influx and resolution of cellular inflammatory infiltrates in the treated implants compared to the untreated, though not statistically significant. Vascularization increased over time in both treated and untreated implants, with no statistical significance. Epidermal downgrowth was minimally observed in all implants with or without the BMMSC treatment. Our results suggest that BMMSCs can influence an early and rapid resolution of acute and chronic inflammation in wound healing, and can stimulate early collagen deposition and granulation tissue associated with later stages of wound repair. These findings provide evidence that BMMSCs can stimulate a more rapid and improved barrier between the skin and porous metal percutaneous implant. PMID:22940446

  16. Fully Depleted Charge-Coupled Devices

    SciTech Connect

    Holland, Stephen E.

    2006-05-15

    We have developed fully depleted, back-illuminated CCDs thatbuild upon earlier research and development efforts directed towardstechnology development of silicon-strip detectors used inhigh-energy-physics experiments. The CCDs are fabricated on the same typeof high-resistivity, float-zone-refined silicon that is used for stripdetectors. The use of high-resistivity substrates allows for thickdepletion regions, on the order of 200-300 um, with corresponding highdetection efficiency for near-infrared andsoft x-ray photons. We comparethe fully depleted CCD to thep-i-n diode upon which it is based, anddescribe the use of fully depleted CCDs in astronomical and x-ray imagingapplications.

  17. Chip-scale hermetic feedthroughs for implantable bionics.

    PubMed

    Guenther, Thomas; Dodds, Christopher W D; Lovell, Nigel H; Suaning, Gregg J

    2011-01-01

    Most implantable medical devices such as cochlear implants and visual prostheses require protection of the stimulating electronics. This is achieved by way of a hermetic feedthrough system which typically features three important attributes: biocompatibility with the human body, device hermeticity and density of feedthrough conductors. On the quest for building a visual neuroprosthesis, a high number of stimulating channels is required. This has encouraged new technologies with higher rates of production yield and further miniaturization. An Al(2)O(3) based feedthrough system has been developed comprising up to 20 platinum feedthroughs per square millimeter. Ceramics substrates are shown to have leak rates below 1 × 10(-12) atm × cc/s, thus exceeding the resolution limits of most commercially available leak detectors. A sheet resistance of 0.05 Ω can be achieved. This paper describes the design, fabrication process and hermeticity testing of high density feedthroughs for use in neuroprosthetic implants.

  18. Perioperative Management of Multiple Noncardiac Implantable Electronic Devices.

    PubMed

    Ramos, Juan A; Brull, Sorin J

    2015-12-01

    The number of patients with noncardiac implantable electronic devices is increasing, and the absence of perioperative management standards, guidelines, practice parameters, or expert consensus statements presents clinical challenges. A 69-year-old woman presented for latissimus dorsi breast reconstruction. The patient had previously undergone implantation of a spinal cord stimulator, a gastric pacemaker, a sacral nerve stimulator, and an intrathecal morphine pump. After consultation with device manufacturers, the devices with patient programmability were switched off. Bipolar cautery was used intraoperatively. Postoperatively, all devices were interrogated to ensure appropriate functioning before home discharge. Perioperative goals include complete preoperative radiologic documentation of device component location, minimizing electromagnetic interference, and avoiding mechanical damage to implanted device components.

  19. Implantable cardioverter-defibrillator

    MedlinePlus

    ... ncbi.nlm.nih.gov/pubmed/23265327 . Swerdlow CD, Wang PJ, Zipes DP. Pacemakers and implantable cardioverter-defibrillators. ... and lifestyle Controlling your high blood pressure Dietary fats explained Fast food tips Heart attack - discharge Heart ...

  20. Biocompatibility of surgical implants

    NASA Technical Reports Server (NTRS)

    Kaelble, D. H.

    1979-01-01

    Method of selecting biocompatible materials for surgical implants uses fracture mechanic relationships and surface energies of candidate materials in presence of blood plasma. Technique has been used to characterize 190 materials by parameters that reflect their biocompatibility.

  1. Risks of Breast Implants

    MedlinePlus

    ... has traveled to other parts of the body. Connective Tissue Disease The FDA has not detected any association between silicone gel-filled breast implants and connective tissue disease, breast cancer, or reproductive problems. In order ...

  2. Breast Reconstruction with Implants

    MedlinePlus

    ... removes your breast to treat or prevent breast cancer. One type of breast reconstruction uses breast implants — silicone devices filled with silicone gel or salt water (saline) — to reshape your breasts. Breast reconstruction ...

  3. Urinary incontinence - injectable implant

    MedlinePlus

    Intrinsic sphincter deficiency repair; ISD repair; Injectable bulking agents for stress urinary incontinence ... Urine leakage that gets worse Pain where the injection was done Allergic reaction to the material Implant ...

  4. Breast reconstruction - implants

    MedlinePlus

    ... cosmetic surgery after breast cancer can improve your sense of well-being and your quality of life. Alternative Names Breast implants surgery References Roehl KR, Wilhelmi BJ, Phillips LG. Breast reconstruction. ...

  5. Superelastic Orthopedic Implant Coatings

    NASA Astrophysics Data System (ADS)

    Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew

    2014-07-01

    The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.

  6. Suppression and facilitation of auditory neurons through coordinated acoustic and midbrain stimulation: investigating a deep brain stimulator for tinnitus

    NASA Astrophysics Data System (ADS)

    Offutt, Sarah J.; Ryan, Kellie J.; Konop, Alexander E.; Lim, Hubert H.

    2014-12-01

    Objective. The inferior colliculus (IC) is the primary processing center of auditory information in the midbrain and is one site of tinnitus-related activity. One potential option for suppressing the tinnitus percept is through deep brain stimulation via the auditory midbrain implant (AMI), which is designed for hearing restoration and is already being implanted in deaf patients who also have tinnitus. However, to assess the feasibility of AMI stimulation for tinnitus treatment we first need to characterize the functional connectivity within the IC. Previous studies have suggested modulatory projections from the dorsal cortex of the IC (ICD) to the central nucleus of the IC (ICC), though the functional properties of these projections need to be determined. Approach. In this study, we investigated the effects of electrical stimulation of the ICD on acoustic-driven activity within the ICC in ketamine-anesthetized guinea pigs. Main Results. We observed ICD stimulation induces both suppressive and facilitatory changes across ICC that can occur immediately during stimulation and remain after stimulation. Additionally, ICD stimulation paired with broadband noise stimulation at a specific delay can induce greater suppressive than facilitatory effects, especially when stimulating in more rostral and medial ICD locations. Significance. These findings demonstrate that ICD stimulation can induce specific types of plastic changes in ICC activity, which may be relevant for treating tinnitus. By using the AMI with electrode sites positioned with the ICD and the ICC, the modulatory effects of ICD stimulation can be tested directly in tinnitus patients.

  7. Integration between a percutaneous implant and the porcine small bowel.

    PubMed

    Johansson, Martin L; Thomsen, Peter; Hultén, Leif; Halvorsen, Per Steinar; Fosse, Erik; Edwin, Bjørn

    2011-07-01

    Inflammatory bowel diseases, cancer or trauma may require removal of all or part of the intestines, leaving the patient with a need to wear external stoma appliances for collection of bowel contents. By connecting the small bowel to a percutaneous port, equipped with a sealing lid, a fully continent and leak proof stoma can be created without a need for permanently wearing stoma appliance. The prerequisites for a connection between a permanent, transabdominal implant and a visceral organ are largely unexplored. Stoma ports made of titanium were implanted in the abdominal wall of domestic pigs and a branch of distal ileum was inserted through the ports. After being followed for 1-3 weeks, the ports were removed and subjected to histological evaluation to study the influence of their shape, structure, and position on the tissue response. Particular focus was attended to the attachment of the ileal serosal surface to the implants inner structure consisting of a titanium mesh. Macroscopic examination revealed fistulas and formation of abscesses in 4 of 11 the retrieved implants. Histological examination revealed regenerated and well-vascularized collagenous tissue around the mesh structure inside the implant. The integration was complete or partial for 10 of 11 ports. Despite various degrees of inflammation and tissue ingrowth, it was demonstrated for the first time that the serosal surface of ileum was firmly attached to the internal structure of the implant. These experiments provide a basis for optimization of the implant and surgical procedure before long-term functional animal experiments.

  8. Genetic responses to nanostructured calcium-phosphate-coated implants.

    PubMed

    Jimbo, R; Xue, Y; Hayashi, M; Schwartz-Filho, H O; Andersson, M; Mustafa, K; Wennerberg, A

    2011-12-01

    Nanostructured calcium phosphate (CaP) has been histologically and biomechanically proven to enhance osseointegration of implants; however, conventional techniques were not sufficiently sensitive to capture its biological effects fully. Here, we compared the conventional removal torque (RTQ) evaluation and gene expression in tissues around nanostructured CaP-coated implants, using real-time RT-PCR, with those of uncoated implants, in a rabbit model. At 2 wks, RTQ values were significantly higher, alkaline phosphatase (ALP) expression was significantly higher, and runt-related transcription factor 2 and tumor necrosis factor-α expressions were significantly lower in the coated than in the uncoated implants. This indicates that inflammatory responses were suppressed and osteoprogenitor activity increased around the CaP-coated surface. At 4 wks, although RTQ values did not significantly differ between the 2 groups, ALP and osteocalcin (OCN) were significantly up-regulated in the coated group, indicating progressive mineralization of the bone around the implant. Moreover, an osteoclast marker, adenosine triphosphatase, which indicates acidification of the resorption lacunae, was significantly higher for the coated implants, suggesting gradual resorption of the CaP coating. This study reveals detailed genetic responses to nanostructured CaP-coated implants and provides evidence that the effect of nanotopography is significant during the osseointegration cascade.

  9. High-voltage-compatible, fully depleted CCDs

    SciTech Connect

    Holland, Stephen E.; Bebek, Chris J.; Dawson, Kyle S.; Emes, JohnE.; Fabricius, Max H.; Fairfield, Jessaym A.; Groom, Don E.; Karcher, A.; Kolbe, William F.; Palaio, Nick P.; Roe, Natalie A.; Wang, Guobin

    2006-05-15

    We describe charge-coupled device (CCD) developmentactivities at the Lawrence Berkeley National Laboratory (LBNL).Back-illuminated CCDs fabricated on 200-300 mu m thick, fully depleted,high-resistivity silicon substrates are produced in partnership with acommercial CCD foundry.The CCDs are fully depleted by the application ofa substrate bias voltage. Spatial resolution considerations requireoperation of thick, fully depleted CCDs at high substrate bias voltages.We have developed CCDs that are compatible with substrate bias voltagesof at least 200V. This improves spatial resolution for a given thickness,and allows for full depletion of thicker CCDs than previously considered.We have demonstrated full depletion of 650-675 mu m thick CCDs, withpotential applications in direct x-ray detection. In this work we discussthe issues related to high-voltage operation of fully depleted CCDs, aswell as experimental results on high-voltage-compatible CCDs.

  10. Industrial applications of ion implantation into metal surfaces

    SciTech Connect

    Williams, J.M.

    1987-07-01

    The modern materials processing technique, ion implantation, has intriguing and attractive features that stimulate the imaginations of scientists and technologists. Success of the technique for introducing dopants into semiconductors has resulted in a stable and growing infrastructure of capital equipment and skills for use of the technique in the economy. Attention has turned to possible use of ion implantation for modification of nearly all surface related properties of materials - optical, chemical and corrosive, tribological, and several others. This presentation provides an introduction to fundamental aspects of equipment, technique, and materials science of ion implantation. Practical and economic factors pertaining to the technology are discussed. Applications and potential applications are surveyed. There are already available a number of ion-implanted products, including ball-and-roller bearings and races, punches-and-dies, injection screws for plastics molding, etc., of potential interest to the machine tool industry.

  11. Bioceramic Implant Induces Bone Healing of Cranial Defects.

    PubMed

    Engstrand, Thomas; Kihlström, Lars; Lundgren, Kalle; Trobos, Margarita; Engqvist, Håkan; Thomsen, Peter

    2015-08-01

    Autologous bone or inert alloplastic materials used in cranial reconstructions are techniques that are associated with resorption, infection, and implant exposure. As an alternative, a calcium phosphate-based implant was developed and previously shown to potentially stimulate bone growth. We here uncover evidence of induced bone formation in 2 patients. Histological examination 9 months postoperatively showed multinuclear cells in the central defect zone and bone ingrowth in the bone-implant border zone. An increased expression of bone-associated markers was detected. The other patient was investigated 50 months postoperatively. Histological examination revealed ceramic materials covered by vascularized compact bone. The bone regenerative effect induced by the implant may potentially improve long-term clinical outcome compared with conventional techniques, which needs to be verified in a clinical study.

  12. Automated fully-stressed design with NASTRAN

    NASA Technical Reports Server (NTRS)

    Wallerstein, D. V.; Haggenmacher, G. W.

    1976-01-01

    An automated strength sizing capability is described. The technique determines the distribution of material among the elements of a structural model. The sizing is based on either a fully stressed design or a scaled feasible fully stressed design. Results obtained from the application of the strength sizing to the structural sizing of a composite material wing box using material strength allowables are presented. These results demonstrate the rapid convergence of the structural sizes to a usable design.

  13. Progress in Fully Automated Abdominal CT Interpretation

    PubMed Central

    Summers, Ronald M.

    2016-01-01

    OBJECTIVE Automated analysis of abdominal CT has advanced markedly over just the last few years. Fully automated assessment of organs, lymph nodes, adipose tissue, muscle, bowel, spine, and tumors are some examples where tremendous progress has been made. Computer-aided detection of lesions has also improved dramatically. CONCLUSION This article reviews the progress and provides insights into what is in store in the near future for automated analysis for abdominal CT, ultimately leading to fully automated interpretation. PMID:27101207

  14. Simple Implant Augmentation Rhinoplasty

    PubMed Central

    Nguyen, Anh H.; Bartlett, Erica L.; Kania, Katarzyna; Bae, Sang Mo

    2015-01-01

    Augmentation rhinoplasty among Asian patients is often performed to improve the height of the nasal dorsum. As the use of autogenous tissues poses certain limitations, alloplastic materials are a viable alternative with a long history of use in Asia. The superiority of one implant prosthesis over another for augmentation rhinoplasty is a matter of debate, with each material representing varying strengths and weaknesses, indications for use, and precautions to consider in nasal implant placement. An implant prosthesis should be used on a case-by-case basis. Augmentation rhinoplasty requires the consideration of specific anatomical preoperative factors, including the external nose, nasal length, nasofrontal angle, humps, and facial proportions. It is equally important to consider several operative guidelines to appropriately shape implants to minimize the occurrence of adverse effects and postoperative complications. The most common postoperative complications include infection, nasal height change, movement of implant prosthesis, and silicone implant protrusion. In addition, the surgeon should consider the current standards of Asian beauty aesthetics to better understand the patient's desired outcome. PMID:26648804

  15. Biomaterials in cochlear implants

    PubMed Central

    Stöver, Timo; Lenarz, Thomas

    2011-01-01

    The cochlear implant (CI) represents, for almost 25 years now, the gold standard in the treatment of children born deaf and for postlingually deafened adults. These devices thus constitute the greatest success story in the field of ‘neurobionic’ prostheses. Their (now routine) fitting in adults, and especially in young children and even babies, places exacting demands on these implants, particularly with regard to the biocompatibility of a CI’s surface components. Furthermore, certain parts of the implant face considerable mechanical challenges, such as the need for the electrode array to be flexible and resistant to breakage, and for the implant casing to be able to withstand external forces. As these implants are in the immediate vicinity of the middle-ear mucosa and of the junction to the perilymph of the cochlea, the risk exists – at least in principle – that bacteria may spread along the electrode array into the cochlea. The wide-ranging requirements made of the CI in terms of biocompatibility and the electrode mechanism mean that there is still further scope – despite the fact that CIs are already technically highly sophisticated – for ongoing improvements to the properties of these implants and their constituent materials, thus enhancing the effectiveness of these devices. This paper will therefore discuss fundamental material aspects of CIs as well as the potential for their future development. PMID:22073103

  16. Contraceptive implants and lactation.

    PubMed

    Díaz, Soledad

    2002-01-01

    The safety and efficacy of four contraceptive implants, plant, Implanon, Nestorone and Elcometrine, have been evaluated during use in the postpartum period by lactating women. These implants provide highly effective contraceptive protection with no negative effect on breastfeeding or infant growth and development. Breastfeeding women initiating Norplant use in the second postpartum month experience significantly longer periods of amenorrhea than do untreated women or intrauterine device users. After weaning, the bleeding pattern is similar to that observed in non-nursing women. Norplant use does not affect bone turnover and density during lactation. Norplant and Implanon release orally active progestins while Nestorone and Elcometrine implants release an orally inactive progestin, which represents an advantage since the infant should be free of steroidal effects. The infant's daily intake of steroids (estimated from concentrations in maternal milk during the first month of use) range from 90 to 100 ng of levonorgestrel (Norplant), 75-120 ng of etonogestrel (Implanon), and 50 ng and 110 ng of Nestorone (Nestorone and Elcometrine implants, respectively). Nursing women needing contraception may use progestin-only implants when nonhormonal methods are not available or acceptable. Implants that deliver orally active steroids should only be used after 6 weeks postpartum to avoid transferring of steroids to the newborn.

  17. Biocompatible implant surface treatments.

    PubMed

    Pattanaik, Bikash; Pawar, Sudhir; Pattanaik, Seema

    2012-01-01

    Surface plays a crucial role in biological interactions. Surface treatments have been applied to metallic biomaterials in order to improve their wear properties, corrosion resistance, and biocompatibility. A systematic review was performed on studies investigating the effects of implant surface treatments on biocompatibility. We searched the literature using PubMed, electronic databases from 1990 to 2009. Key words such as implant surface topography, surface roughness, surface treatment, surface characteristics, and surface coatings were used. The search was restricted to English language articles published from 1990 to December 2009. Additionally, a manual search in the major dental implant journals was performed. When considering studies, clinical studies were preferred followed by histological human studies, animal studies, and in vitro studies. A total of 115 articles were selected after elimination: clinical studies, 24; human histomorphometric studies, 11; animal histomorphometric studies, 46; in vitro studies, 34. The following observations were made in this review: · The focus has shifted from surface roughness to surface chemistry and a combination of chemical manipulations on the porous structure. More investigations are done regarding surface coatings. · Bone response to almost all the surface treatments was favorable. · Future trend is focused on the development of osteogenic implant surfaces. Limitation of this study is that we tried to give a broader overview related to implant surface treatments. It does not give any conclusion regarding the best biocompatible implant surface treatment investigated till date. Unfortunately, the eventually selected studies were too heterogeneous for inference of data.

  18. [Larynx: implants and stents].

    PubMed

    Sittel, C

    2009-05-01

    There is a wide variety of devices and materials to be implanted into the human larynx. Some are intended to remain only for a period of time, like laryngeal stents. If removal is not intended the device meets the definition for a medical implant. The majority of implants is used for the treatment of unilateral vocal fold immobility. There a 2 types of implants serving this purpose: Implants in a stricter sense are devices of solid material, which are brought into the paraglottic space through a window in the laryngeal framework (medialization thyroplasty). Several different products are presented in this review. In contrast, there are different substances available for endoscopic injection into the paralyzed vocal fold (injection laryngoplasty). Since some of these substances show a corpuscular consistency and a high viscosity they need to be deposited into the lateral paraglottic space. Therefore, the term "injectable implants" has been coined for these materials. The different substances available are discussed in detail in this review. Laryngeal stents are primarily used in the early postoperative phase after open reconstruction of the larynx. The different devices available on the market are described with their specific characteristics and intended use.

  19. Auditory neuroplasticity, hearing loss and cochlear implants.

    PubMed

    Ryugo, David

    2015-07-01

    Data from our laboratory show that the auditory brain is highly malleable by experience. We establish a base of knowledge that describes the normal structure and workings at the initial stages of the central auditory system. This research is expanded to include the associated pathology in the auditory brain stem created by hearing loss. Utilizing the congenitally deaf white cat, we demonstrate the way that cells, synapses, and circuits are pathologically affected by sound deprivation. We further show that the restoration of auditory nerve activity via electrical stimulation through cochlear implants serves to correct key features of brain pathology caused by hearing loss. The data suggest that rigorous training with cochlear implants and/or hearing aids offers the promise of heretofore unattained benefits.

  20. Computational stochastic model of ions implantation

    SciTech Connect

    Zmievskaya, Galina I. Bondareva, Anna L.; Levchenko, Tatiana V.; Maino, Giuseppe

    2015-03-10

    Implantation flux ions into crystal leads to phase transition /PT/ 1-st kind. Damaging lattice is associated with processes clustering vacancies and gaseous bubbles as well their brownian motion. System of stochastic differential equations /SDEs/ Ito for evolution stochastic dynamical variables corresponds to the superposition Wiener processes. The kinetic equations in partial derivatives /KE/, Kolmogorov-Feller and Einstein-Smolukhovskii, were formulated for nucleation into lattice of weakly soluble gases. According theory, coefficients of stochastic and kinetic equations uniquely related. Radiation stimulated phase transition are characterized by kinetic distribution functions /DFs/ of implanted clusters versus their sizes and depth of gas penetration into lattice. Macroscopic parameters of kinetics such as the porosity and stress calculated in thin layers metal/dielectric due to Xe{sup ++} irradiation are attracted as example. Predictions of porosity, important for validation accumulation stresses in surfaces, can be applied at restoring of objects the cultural heritage.

  1. Implantable optoelectronic probes for in vivo optogenetics.

    PubMed

    Iseri, Ege; Kuzum, Duygu

    2017-02-15

    More than a decade has passed since optics and genetics came together and lead to the emerging technologies of optogenetics. The advent of light-sensitive opsins made it possible to optically trigger the neurons into activation or inhibition by using visible light. The importance of spatiotemporally isolating a segment of a neural network and controlling nervous signaling in a precise manner has driven neuroscience researchers and engineers to invest great efforts in designing high precision in vivo implantable devices. These efforts have focused on delivery of sufficient power to deep brain regions, while monitoring neural activity with high resolution and fidelity. In this review, we report the progress made in the field of hybrid optoelectronic neural interfaces that combine optical stimulation with electrophysiological recordings. Different approaches that incorporate optical or electrical components on implantable devices are discussed in detail. Advantages of various different designs as well as practical and fundamental limitations are summarized to illuminate the future of neurotechnology development.

  2. Implantable optoelectronic probes for in vivo optogenetics

    NASA Astrophysics Data System (ADS)

    Iseri, Ege; Kuzum, Duygu

    2017-06-01

    More than a decade has passed since optics and genetics came together and lead to the emerging technologies of optogenetics. The advent of light-sensitive opsins made it possible to optically trigger the neurons into activation or inhibition by using visible light. The importance of spatiotemporally isolating a segment of a neural network and controlling nervous signaling in a precise manner has driven neuroscience researchers and engineers to invest great efforts in designing high precision in vivo implantable devices. These efforts have focused on delivery of sufficient power to deep brain regions, while monitoring neural activity with high resolution and fidelity. In this review, we report the progress made in the field of hybrid optoelectronic neural interfaces that combine optical stimulation with electrophysiological recordings. Different approaches that incorporate optical or electrical components on implantable devices are discussed in detail. Advantages of various different designs as well as practical and fundamental limitations are summarized to illuminate the future of neurotechnology development.

  3. Osseointegration into a Novel Titanium Foam Implant in the Distal Femur of a Rabbit

    PubMed Central

    Willie, Bettina M.; Yang, Xu; Kelly, Natalie H.; Merkow, Justin; Gagne, Shawn; Ware, Robin; Wright, Timothy M.; Bostrom, Mathias P.G.

    2010-01-01

    A novel porous titanium foam implant has recently been developed to enhance biological fixation of orthopaedic implants to bone. The aim of this study was to examine the mechanical and histological characteristics of bone apposition into two different pore sizes of this titanium foam (565 and 464 micron mean void intercept length) and to compare these characteristics to those obtained with a fully porous conventionally sintered titanium bead implant. Cylindrical implants were studied in a rabbit distal femoral intramedullary osseointegration model at time zero and at 3, 6, and 12 weeks. The amount of bone ingrowth, amount of periprosthetic bone, and mineral apposition rate of periprosthetic bone measured did not differ among the three implant designs at 3, 6, or 12 weeks. By 12 weeks, the interface stiffness and maximum load of the beaded implant was significantly greater than either foam implant. No significant difference was found in the interface stiffness or maximum load between the two foam implant designs at 3, 6, or 12 weeks. The lower compressive modulus of the foam compared to the more dense sintered beaded implants likely contributed to the difference in failure mode. However, the foam implants have a similar compressive modulus to other clinically successful coatings, suggesting they are nonetheless clinically adequate. Additional studies are required to confirm this in weight-bearing models. Histological data suggest that these novel titanium foam implants are a promising alternative to current porous coatings and should be further investigated for clinical application in cementless joint replacement. PMID:20024964

  4. Towards a Switched-Capacitor Based Stimulator for Efficient Deep-Brain Stimulation

    PubMed Central

    Vidal, Jose; Ghovanloo, Maysam

    2013-01-01

    We have developed a novel 4-channel prototype stimulation circuit for implantable neurological stimulators (INS). This Switched-Capacitor based Stimulator (SCS) aims to utilize charge storage and charge injection techniques to take advantage of both the efficiency of conventional voltage-controlled stimulators (VCS) and the safety and controllability of current-controlled stimulators (CCS). The discrete SCS prototype offers fine control over stimulation parameters such as voltage, current, pulse width, frequency, and active electrode channel via a LabVIEW graphical user interface (GUI) when connected to a PC through USB. Furthermore, the prototype utilizes a floating current sensor to provide charge-balanced biphasic stimulation and ensure safety. The stimulator was analyzed using an electrode-electrolyte interface (EEI) model as well as with a pair of pacing electrodes in saline. The primary motivation of this research is to test the feasibility and functionality of a safe, effective, and power-efficient switched-capacitor based stimulator for use in Deep Brain Stimulation. PMID:21095987

  5. Early experiences with tachycardia-triggered vagus nerve stimulation using the AspireSR stimulator.

    PubMed

    El Tahry, Riëm; Hirsch, Martin; Van Rijckevorsel, Kenou; Santos, Susana Ferrao; de Tourtchaninoff, Marianne; Rooijakkers, Herbert; Coenen, Volker; Schulze-Bonhage, Andreas

    2016-06-01

    Many epilepsy patients treated with vagus nerve stimulation additionally use an "on-demand" function, triggering an extra stimulation to terminate a seizure or diminish its severity. Nevertheless, a substantial number of patients are not able to actively trigger stimulations by use of a magnet, due to the absence of an aura or inability for voluntary actions in the early phase of a seizure. To address this need, a novel implantable pulse generator, the AspireSR VNS system, was developed to provide automated ictal stimulation triggered by a seizure-detecting algorithm. We report our experience with three patients in assessing the functionality of ictal stimulation, illustrating the detection system in practice. Detection of ictal tachycardia and variable additional detections of physiological tachycardia depended on the individual seizure-detecting algorithm settings.

  6. Sputtered iridium oxide for stimulation electrode coatings.

    PubMed

    Mokwa, Wilfried; Wessling, Boerge; Schnakenberg, Uwe

    2007-01-01

    This work deals with the reactive RF-powered sputter deposition of iridium oxide for use as the active stimulation layer in functional medical implants. The oxygen gettered by the growing films is determined by an approach based on generic curves. Films deposited at different stages of oxygen integration show strong differences in electrochemical behaviour, caused by different morphologies. The dependence of electrochemical activity on morphology is further illustrated by RF sputtering onto heated substrates, as well as DC sputtering onto cold substrates.

  7. Does the Implant Surgical Technique Affect the Primary and/or Secondary Stability of Dental Implants? A Systematic Review

    PubMed Central

    Shadid, Rola Muhammed; Sadaqah, Nasrin Rushdi; Othman, Sahar Abdo

    2014-01-01

    Background. A number of surgical techniques for implant site preparation have been advocated to enhance the implant of primary and secondary stability. However, there is insufficient scientific evidence to support the association between the surgical technique and implant stability. Purpose. This review aimed to investigate the influence of different surgical techniques including the undersized drilling, the osteotome, the piezosurgery, the flapless procedure, and the bone stimulation by low-level laser therapy on the primary and/or secondary stability of dental implants. Materials and methods. A search of PubMed, Cochrane Library, and grey literature was performed. The inclusion criteria comprised observational clinical studies and randomized controlled trials (RCTs) conducted in patients who received dental implants for rehabilitation, studies that evaluated the association between the surgical technique and the implant primary and/or secondary stability. The articles selected were carefully read and classified as low, moderate, and high methodological quality and data of interest were tabulated. Results. Eight clinical studies were included then they were classified as moderate or high methodological quality and control of bias. Conclusions. There is a weak evidence suggesting that any of previously mentioned surgical techniques could influence the primary and/or secondary implant stability. PMID:25126094

  8. Fully Implantable Arterial Blood Glucose Device for Metabolic Research Applications in Rats for Two Months

    PubMed Central

    Brockway, Robert; Tiesma, Scott; Bogie, Heather; White, Kimberly; Fine, Megan; O’Farrell, Libbey; Michael, Mervyn; Cox, Amy; Coskun, Tamer

    2015-01-01

    Background: Chronic continuous glucose monitoring options for animal research have been very limited due to various technical and biological challenges. We provide an evaluation of a novel telemetry device for continuous monitoring of temperature, activity, and plasma glucose levels in the arterial blood of rats for up to 2 months. Methods: In vivo testing in rats including oral glucose tolerance tests (OGTTs) and intraperitoneal glucose tolerance tests (IPGTTs) and ex vivo waterbath testing were performed to evaluate acute and chronic sensor performance. Animal studies were in accordance with the guidelines for the care and use of laboratory animals and approved by the corresponding animal care and use committees (Data Sciences International, Eli Lilly). Results: Results demonstrated the ability to record continuous measurements for 75 days or longer. Bench testing demonstrated a high degree of linearity over a range of 20-850 mg/dL with R2 = .998 for linear fit and .999 for second order fit (n = 8 sensors). Evaluation of 6 rats over 28 days with 52 daily and OGTT test strip measurements each resulted in mean error of 3.8% and mean absolute relative difference of 16.6%. Conclusions: This device provides significant advantages in the quality and quantity of data that can be obtained relative to existing alternatives such as intermittent blood sampling. These devices provide the opportunity to expand the understanding of both glucose metabolism and homeostasis and to work toward improved therapies and cures for diabetes. PMID:26021562

  9. A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure.

    PubMed

    Mehra, Mandeep R; Naka, Yoshifumi; Uriel, Nir; Goldstein, Daniel J; Cleveland, Joseph C; Colombo, Paolo C; Walsh, Mary N; Milano, Carmelo A; Patel, Chetan B; Jorde, Ulrich P; Pagani, Francis D; Aaronson, Keith D; Dean, David A; McCants, Kelly; Itoh, Akinobu; Ewald, Gregory A; Horstmanshof, Douglas; Long, James W; Salerno, Christopher

    2017-02-02

    .1%) in the axial-flow pump group. Conclusions Among patients with advanced heart failure, implantation of a fully magnetically levitated centrifugal-flow pump was associated with better outcomes at 6 months than was implantation of an axial-flow pump, primarily because of the lower rate of reoperation for pump malfunction. (Funded by St. Jude Medical; MOMENTUM 3 ClinicalTrials.gov number, NCT02224755 .).

  10. Calibration of clinical cerebellar and deep brain stimulation systems.

    PubMed Central

    McLellan, D L; Wright, G D; Renouf, F

    1981-01-01

    The increasing use of electrical stimulation of the brain for relief of pain, spasticity and epilepsy has introduced unfamiliar techniques into clinical neurological and neurosurgical practice. In view of the evidence that excessive levels of stimulation can damage brain tissue, it is of great importance to monitor the dose of stimulation. A review of recent clinical papers suggests that many centres do not measure the dose accurately, relying on arbitrary dial settings on external transmitters. This paper reviews that factors that affect the dose received by the patient and suggests methods of measuring them, at operation and subsequently, which should routinely be employed by clinicians implanting stimulators. Images PMID:6973614

  11. Deep brain stimulation for movement disorders.

    PubMed

    Larson, Paul S

    2014-07-01

    Deep brain stimulation (DBS) is an implanted electrical device that modulates specific targets in the brain resulting in symptomatic improvement in a particular neurologic disease, most commonly a movement disorder. It is preferred over previously used lesioning procedures due to its reversibility, adjustability, and ability to be used bilaterally with a good safety profile. Risks of DBS include intracranial bleeding, infection, malposition, and hardware issues, such migration, disconnection, or malfunction, but the risk of each of these complications is low--generally ≤ 5% at experienced, large-volume centers. It has been used widely in essential tremor, Parkinson's disease, and dystonia when medical treatment becomes ineffective, intolerable owing to side effects, or causes motor complications. Brain targets implanted include the thalamus (most commonly for essential tremor), subthalamic nucleus (most commonly for Parkinson's disease), and globus pallidus (Parkinson's disease and dystonia), although new targets are currently being explored. Future developments include brain electrodes that can steer current directionally and systems capable of "closed loop" stimulation, with systems that can record and interpret regional brain activity and modify stimulation parameters in a clinically meaningful way. New, image-guided implantation techniques may have advantages over traditional DBS surgery.

  12. [Review of the design of power supply in retinal implants].

    PubMed

    Zhang, Ying; Peng, Chenglin; Wang, Xing; Hu, Ning; Zhang, Sijie; Zheng, Erxin

    2008-08-01

    The energy supply for the stimulation arrays is the key component in retinal implants. Usually, the thin film solar cell is used to supply energy, but it can not supply enough stimulation power. One of the general idea of incident energy supply is radio frequency (RF) circuit. Another method is to convert near infrared (NIR) radiation and enable retina cell stimulation. In this paper, firstly, we aim at listing these two energy supply methods, and introduce the characteristics of RF circuit and NIR conversion method. Especially, we present the design procedure in detail. The next part is a discussion on the advantage and disadvantage of adopting these two methods. At last, we explicate the new research and application of the energy supply for the use as retinal implants, and we envisage the future.

  13. Bioactive macroporous titanium implants highly interconnected.

    PubMed

    Caparrós, Cristina; Ortiz-Hernandez, Mónica; Molmeneu, Meritxell; Punset, Miguel; Calero, José Antonio; Aparicio, Conrado; Fernández-Fairén, Mariano; Perez, Román; Gil, Francisco Javier

    2016-10-01

    Intervertebral implants should be designed with low load requirements, high friction coefficient and low elastic modulus in order to avoid the stress shielding effect on bone. Furthermore, the presence of a highly interconnected porous structure allows stimulating bone in-growth and enhancing implant-bone fixation. The aim of this study was to obtain bioactive porous titanium implants with highly interconnected pores with a total porosity of approximately 57 %. Porous Titanium implants were produced by powder sintering route using the space holder technique with a binder phase and were then evaluated in an in vivo study. The size of the interconnection diameter between the macropores was about 210 μm in order to guarantee bone in-growth through osteblastic cell penetration. Surface roughness and mechanical properties were analyzed. Stiffness was reduced as a result of the powder sintering technique which allowed the formation of a porous network. Compression and fatigue tests exhibited suitable properties in order to guarantee a proper compromise between mechanical properties and pore interconnectivity. Bioactivity treatment effect in novel sintered porous titanium materials was studied by thermo-chemical treatments and were compared with the same material that had undergone different bioactive treatments. Bioactive thermo-chemical treatment was confirmed by the presence of sodium titanates on the surface of the implants as well as inside the porous network. Raman spectroscopy results suggested that the identified titanate structures would enhance in vivo apatite formation by promoting ion exchange for the apatite formation process. In vivo results demonstrated that the bioactive titanium achieved over 75 % tissue colonization compared to the 40 % value for the untreated titanium.

  14. Learning retina implants with epiretinal contacts.

    PubMed

    Eckmiller, R

    1997-01-01

    Retina implants are currently being developed by several interdisciplinary research consortia worldwide for blind humans with various retinal degenerative diseases. It is the aim of our retina implant project to develop a novel type of visual prosthesis to regain a moderate amount of vision such as perception of location and shape of large objects in the first stage and to approach reading quality in a subsequent stage. In our planned retina implant, a retina encoder (RE) outside the eye has to replace the information processing of the retina. A retina stimulator (RS), implanted adjacently to the retinal ganglion cell layer, has to contact a sufficient number of retinal ganglion cells/fibers for electrical elicitation of spikes. A wireless signal and energy transmission system has to provide the communication between the RE and RS. This paper outlines the retina implant project of our consortium of 14 expert groups and describes first results of the learning RE. The RE approximates the typical receptive field (RF) properties of primate retinal ganglion cells by means of individually tunable spatiotemporal RF filters. The RE as a cluster of RF filters maps visual patterns onto spike trains for a number of contacted ganglion cells. A concept is presented to train the individual RF filters in an unsupervised learning process, which employs neural networks in a dialog with the individual human subject. The desired aim of this dialog is an optimization of the visual perception by matching the various RF filter properties with those 'expected' by the central visual system for each contacted ganglion cell.

  15. Electrochemical properties of titanium nitride nerve stimulation electrodes: an in vitro and in vivo study

    PubMed Central

    Meijs, Suzan; Fjorback, Morten; Jensen, Carina; Sørensen, Søren; Rechendorff, Kristian; Rijkhoff, Nico J. M.

    2015-01-01

    The in vivo electrochemical behavior of titanium nitride (TiN) nerve stimulation electrodes was compared to their in vitro behavior for a period of 90 days. Ten electrodes were implanted in two Göttingen minipigs. Four of these were used for electrical stimulation and electrochemical measurements. Five electrodes were kept in Ringer's solution at 37.5°C, of which four were used for electrical stimulation and electrochemical measurements. The voltage transients measured in vivo were 13 times greater than in vitro at implantation and they continued to increase with time. The electrochemical properties in vivo and the tissue resistance (Rtissue) followed a similar trend with time. There was no consistent significant difference between the electrochemical properties of the in vivo and in vitro electrodes after the implanted period. The differences between the in vivo and in vitro electrodes during the implanted period show that the evaluation of electrochemical performance of implantable stimulation electrodes cannot be substituted with in vitro measurements. After the implanted period, however, the performance of the in vivo and in vitro electrodes in saline was similar. In addition, the changes observed over time during the post-implantation period regarding the electrochemical properties of the in vivo electrodes and Rtissue were similar, which indicates that these changes are due to the foreign body response to implantation. PMID:26300717

  16. Electrochemical properties of titanium nitride nerve stimulation electrodes: an in vitro and in vivo study.

    PubMed

    Meijs, Suzan; Fjorback, Morten; Jensen, Carina; Sørensen, Søren; Rechendorff, Kristian; Rijkhoff, Nico J M

    2015-01-01

    The in vivo electrochemical behavior of titanium nitride (TiN) nerve stimulation electrodes was compared to their in vitro behavior for a period of 90 days. Ten electrodes were implanted in two Göttingen minipigs. Four of these were used for electrical stimulation and electrochemical measurements. Five electrodes were kept in Ringer's solution at 37.5°C, of which four were used for electrical stimulation and electrochemical measurements. The voltage transients measured in vivo were 13 times greater than in vitro at implantation and they continued to increase with time. The electrochemical properties in vivo and the tissue resistance (Rtissue) followed a similar trend with time. There was no consistent significant difference between the electrochemical properties of the in vivo and in vitro electrodes after the implanted period. The differences between the in vivo and in vitro electrodes during the implanted period show that the evaluation of electrochemical performance of implantable stimulation electrodes cannot be substituted with in vitro measurements. After the implanted period, however, the performance of the in vivo and in vitro electrodes in saline was similar. In addition, the changes observed over time during the post-implantation period regarding the electrochemical properties of the in vivo electrodes and Rtissue were similar, which indicates that these changes are due to the foreign body response to implantation.

  17. A Programmable High-Voltage Compliance Neural Stimulator for Deep Brain Stimulation in Vivo

    PubMed Central

    Gong, Cihun-Siyong Alex; Lai, Hsin-Yi; Huang, Sy-Han; Lo, Yu-Chun; Lee, Nicole; Chen, Pin-Yuan; Tu, Po-Hsun; Yang, Chia-Yen; Lin, James Chang-Chieh; Chen, You-Yin

    2015-01-01

    Deep brain stimulation (DBS) is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design. PMID:26029954

  18. A programmable high-voltage compliance neural stimulator for deep brain stimulation in vivo.

    PubMed

    Gong, Cihun-Siyong Alex; Lai, Hsin-Yi; Huang, Sy-Han; Lo, Yu-Chun; Lee, Nicole; Chen, Pin-Yuan; Tu, Po-Hsun; Yang, Chia-Yen; Lin, James Chang-Chieh; Chen, You-Yin

    2015-05-28

    Deep brain stimulation (DBS) is one of the most effective therapies for movement and other disorders. The DBS neurosurgical procedure involves the implantation of a DBS device and a battery-operated neurotransmitter, which delivers electrical impulses to treatment targets through implanted electrodes. The DBS modulates the neuronal activities in the brain nucleus for improving physiological responses as long as an electric discharge above the stimulation threshold can be achieved. In an effort to improve the performance of an implanted DBS device, the device size, implementation cost, and power efficiency are among the most important DBS device design aspects. This study aims to present preliminary research results of an efficient stimulator, with emphasis on conversion efficiency. The prototype stimulator features high-voltage compliance, implemented with only a standard semiconductor process, without the use of extra masks in the foundry through our proposed circuit structure. The results of animal experiments, including evaluation of evoked responses induced by thalamic electrical stimuli with our fabricated chip, were shown to demonstrate the proof of concept of our design.

  19. Plasma immersion ion implantation for sub-22 nm node devices: FD-SOI and Tri-Gate

    SciTech Connect

    Duchaine, J.; Milesi, F.; Coquand, R.; Barraud, S.; Reboh, S.; Gonzatti, F.; Mazen, F.; Torregrosa, Frank

    2012-11-06

    Here, we present and discuss the electrical characteristics of fully depleted MOSFET transistors of planar and tridimensional architecture, doped by Plasma Immersion Ion Implantation (PIII) or Beam Line Ion Implantation (BLII). Both techniques delivered similar and satisfactory results in considering the planar architecture. For tri-dimensional Tri-Gate transistors, the results obtained with PIII are superior.

  20. Photoreflectance Study of Boron Ion-Implanted (100) Cadmium Telluride

    NASA Technical Reports Server (NTRS)

    Amirtharaj, P. M.; Odell, M. S.; Bowman, R. C., Jr.; Alt, R. L.

    1988-01-01

    Ion implanted (100) cadmium telluride was studied using the contactless technique of photoreflectance. The implantations were performed using 50- to 400-keV boron ions to a maximum dosage of 1.5 x 10(16)/sq cm, and the annealing was accomplished at 500 C under vacuum. The spectral measurements were made at 77 K near the E(0) and E(1) critical points; all the spectra were computer-fitted to Aspnes' theory. The spectral line shapes from the ion damaged, partially recovered and undamaged, or fully recovered regions could be identified, and the respective volume fraction of each phase was estimated.

  1. Changes in gene expression and hearing thresholds after cochlear implantation

    PubMed Central

    Zhang, Hongzheng; Stark, Gemaine; Reiss, Lina

    2016-01-01

    Hypothesis Gene expression changes occur in conjunction with hearing threshold changes after cochlear implantation. Background Between 30–50% of individuals who receive electro-acoustic stimulation (EAS) cochlear implants lose residual hearing after cochlear implantation, reducing the benefits of EAS. The mechanism underlying this hearing loss is unknown; potential pathways include mechanical damage, inflammation, or tissue remodeling changes. Methods Guinea pigs were implanted in one ear with cochlear implant electrode arrays, with non-implanted ears serving as controls, and allowed to recover for 1, 3, 7, or 14 days. Hearing threshold changes were measured over time. Cochlear ribonucleic acid was analyzed using real-time quantitative reverse transcription-polymerase chain reaction from the following gene families: cytokines, tight junction claudins, ion and water (aquaporin) transport channels, gap junction connexins, and tissue remodeling genes. Results Significant increases in expression were observed for cochlear inflammatory genes (Cxcl1, IL-1b, TNFα and Tnfrsf1a/b) and ion homeostasis genes (Scnn1γ, Aqp3 and Gjb3). Upregulation of tissue remodeling genes (TGF-β, MMP2, MMP9) as well as a paracrine gene (CTGF) was also observed. Hearing loss occurred rapidly, peaking at 3 days with some recovery at 7 and 14 days after implantation. MM9 exhibited extreme upregulation of expression and was qualitatively associated with changes in hearing thresholds. Conclusion Cochlear implantation induces similar changes as middle ear inflammation for genes involved in inflammation and ion and water transport function, whereas tissue remodeling changes differ markedly. The upregulation of MMP9 with hearing loss is consistent with previous findings linking stria vascularis vessel changes with cochlear implant-induced hearing loss. PMID:25970030

  2. Extraoral prostheses using extraoral implants.

    PubMed

    Pekkan, G; Tuna, S H; Oghan, F

    2011-04-01

    The aim of this study was to evaluate extraoral prostheses and the use of extraoral implants in patients with facial defects. 10 cases were treated utilizing maxillofacial prostheses employing extraoral implants in five cases. 16 extraoral implants were installed. Seven implants were placed in irradiated sites in the orbital regions. Six implants were placed in mastoid regions and three in a zygoma region that was irradiated. Two implants failed before initial integration was achieved in irradiated areas. Using 14 extraoral implants as anchors, five extraoral prostheses were set. The other five cases were treated with extraoral prostheses without using extraoral implants due to cost and patient-related factors. The data included age, sex, primary disease, implant length, implant failure, prosthetic attachment, radiation therapy, and peri-implant skin reactions. The use of extraoral implants for the retention of extraoral prostheses has simplified the placement, removal, and cleaning of the prosthesis by the patient. The stability of the prostheses was improved by anchors. Clinical and technical problems are presented with the techniques used for their resolution. Using extraoral implants resulted in a high rate of success in retaining facial prostheses and gave good stability and aesthetic satisfaction.

  3. Electrical Implications of Corrosion for Osseointegration of Titanium Implants

    PubMed Central

    Gittens, R.A.; Olivares-Navarrete, R.; Tannenbaum, R.; Boyan, B.D.; Schwartz, Z.

    2011-01-01

    The success rate of titanium implants for dental and orthopedic applications depends on the ability of surrounding bone tissue to integrate with the surface of the device, and it remains far from ideal in patients with bone compromised by physiological factors. The electrical properties and electrical stimulation of bone have been shown to control its growth and healing and can enhance osseointegration. Bone cells are also sensitive to the chemical products generated during corrosion events, but less is known about how the electrical signals associated with corrosion might affect osseointegration. The metallic nature of the materials used for implant applications and the corrosive environments found in the human body, in combination with the continuous and cyclic loads to which these implants are exposed, may lead to corrosion and its corresponding electrochemical products. The abnormal electrical currents produced during corrosion can convert any metallic implant into an electrode, and the negative impact on the surrounding tissue due to these extreme signals could be an additional cause of poor performance and rejection of implants. Here, we review basic aspects of the electrical properties and electrical stimulation of bone, as well as fundamental concepts of aqueous corrosion and its electrical and clinical implications. PMID:21555775

  4. 76 FR 35086 - Proposed Information Collection (Fully Developed Claim (Fully Developed Claims-Applications for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... Compensation, Pension, DIC, Death Pension, and/or Accrued Benefits)) Activity: Comment Request AGENCY: Veterans... Developed Claim (Fully Developed Claims--Applications for Compensation, Pension, DIC, Death Pension,...

  5. Failure of Urological Implants in Spinal Cord Injury Patients due to Infection, Malfunction, and Implants Becoming Obsolete due to Medical Progress and Age-Related Changes in Human Body Making Implant Futile: Report of Three Cases.

    PubMed

    Vaidyanathan, Subramanian; Soni, Bakul; Singh, Gurpreet; Hughes, Peter; Selmi, Fahed; Mansour, Paul

    2013-01-01

    Any new clinical data, whether positive or negative, generated about a medical device should be published because health professionals should know which devices do not work, as well as those which do. We report three spinal cord injury patients in whom urological implants failed to work. In the first, paraplegic, patient, a sacral anterior root stimulator failed to produce erection, and a drug delivery system for intracavernosal administration of vasoactive drugs was therefore implanted; however, this implant never functioned (and, furthermore, such penile drug delivery systems to produce erection had effectively become obsolete following the advent of phosphodiesterase type 5 inhibitors). Subsequently, the sacral anterior root stimulator developed a malfunction and the patient therefore learned to perform self-catheterisation. In the second patient, also paraplegic, an artificial urinary sphincter was implanted but the patient developed a postoperative sacral pressure sore. Eight months later, a suprapubic cystostomy was performed as urethral catheterisation was very difficult. The pressure sore had not healed completely even after five years. In the third case, a sacral anterior root stimulator was implanted in a tetraplegic patient in whom, after five years, a penile sheath could not be fitted because of penile retraction. This patient was therefore established on urethral catheter drainage. Later, infection with Staphylococcus aureus around the receiver block necessitated its removal. In conclusion, spinal cord injury patients are at risk of developing pressure sores, wound infections, malfunction of implants, and the inability to use implants because of age-related changes, as well as running the risk of their implants becoming obsolete due to advances in medicine. Some surgical procedures such as dorsal rhizotomy are irreversible. Alternative treatments such as intermittent catheterisations may be less damaging than bladder stimulator in the long term.

  6. Anterior cingulate implants for tinnitus: report of 2 cases.

    PubMed

    De Ridder, Dirk; Joos, Kathleen; Vanneste, Sven

    2016-04-01

    Tinnitus can be distressful, and tinnitus distress has been linked to increased beta oscillatory activity in the dorsal anterior cingulate cortex (dACC). The amount of distress is linked to alpha activity in the medial temporal lobe (amygdala and parahippocampal area), as well as the subgenual (sg)ACC and insula, and the functional connectivity between the parahippocampal area and the sgACC at 10 and 11.5 Hz. The authors describe 2 patients with very severely distressing intractable tinnitus who underwent transcranial magnetic stimulation (TMS) with a double-cone coil targeting the dACC and subsequent implantation of electrodes on the dACC. One of the patients responded to the implant and one did not, even though phenomenologically they both expressed the same tinnitus loudness and distress. The responder has remained dramatically improved for more than 2 years with 6-Hz burst stimulation of the dACC. The 2 patients differed in functional connectivity between the area of the implant and a tinnitus network consisting of the parahippocampal area as well as the sgACC and insula; that is, the responder had increased functional connectivity between these areas, whereas the nonresponder had decreased functional connectivity between these areas. Only the patient with increased functional connectivity linked to the target area of repetitive TMS or implantation might transmit the stimulation current to the entire tinnitus network and thus clinically improve.

  7. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Medrad utilized NASA's Apollo technology to develop a new device called the AID implantable automatic pulse generator which monitors the heart continuously, recognizes the onset of ventricular fibrillation and delivers a corrective electrical shock. AID pulse generator is, in effect, a miniaturized version of the defibrillator used by emergency squads and hospitals to restore rhythmic heartbeat after fibrillation, but has the unique advantage of being permanently available to the patient at risk. Once implanted, it needs no specially trained personnel or additional equipment. AID system consists of a microcomputer, a power source and two electrodes which sense heart activity.

  8. Hydroxylapatite Otologic Implants

    SciTech Connect

    McMillan, A.D.; Lauf, R.J.; Beale, B.; Johnson, R.

    2000-01-01

    A Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Research Corporation (LMER) and Smith and Nephew Richards Inc. of Bartlett, TN, was initiated in March 1997. The original completion date for the Agreement was March 25, 1998. The purpose of this work is to develop and commercialize net shape forming methods for directly creating dense hydroxylapatite (HA) ceramic otologic implants. The project includes three tasks: (1) modification of existing gelcasting formulations to accommodate HA slurries; (2) demonstration of gelcasting to fabricate green HA ceramic components of a size and shape appropriate to otologic implants: and (3) sintering and evaluation of the HA components.

  9. Design and Evaluation of a Personal Digital Assistant-based Research Platform for Cochlear Implants

    PubMed Central

    Ali, Hussnain; Lobo, Arthur P.; Loizou, Philipos C.

    2014-01-01

    This paper discusses the design, development, features, and clinical evaluation of a personal digital assistant (PDA)-based platform for cochlear implant research. This highly versatile and portable research platform allows researchers to design and perform complex experiments with cochlear implants manufactured by Cochlear Corporation with great ease and flexibility. The research platform includes a portable processor for implementing and evaluating novel speech processing algorithms, a stimulator unit which can be used for electrical stimulation and neurophysio-logic studies with animals, and a recording unit for collecting electroencephalogram/evoked potentials from human subjects. The design of the platform for real time and offline stimulation modes is discussed for electric-only and electric plus acoustic stimulation followed by results from an acute study with implant users for speech intelligibility in quiet and noisy conditions. The results are comparable with users’ clinical processor and very promising for undertaking chronic studies. PMID:23674422

  10. Current trends in dental implants

    PubMed Central

    Gaviria, Laura; Salcido, John Paul; Guda, Teja

    2014-01-01

    Tooth loss is very a very common problem; therefore, the use of dental implants is also a common practice. Although research on dental implant designs, materials and techniques has increased in the past few years and is expected to expand in the future, there is still a lot of work involved in the use of better biomaterials, implant design, surface modification and functionalization of surfaces to improve the long-term outcomes of the treatment. This paper provides a brief history and evolution of dental implants. It also describes the types of implants that have been developed, and the parameters that are presently used in the design of dental implants. Finally, it describes the trends that are employed to improve dental implant surfaces, and current technologies used for the analysis and design of the implants. PMID:24868501

  11. Conduction in fully ionized liquid metals

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Ashcroft, N. W.

    1973-01-01

    Electron transport is considered in high density fully ionized liquid metals. Ionic structure is described in terms of hard-sphere correlation functions and the scattering is determined from self-consistently screened point ions. Applications to the physical properties of the deep interior of Jupiter are briefly considered.

  12. Conduction in fully ionized liquid metals

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Ashcroft, N. W.

    1974-01-01

    Electron transport is considered in high-density fully ionized liquid metals. Ionic structure is described in terms of hard-sphere-correlation functions and the scattering is determined from self-consistently screened point ions. Applications to the physical properties of the deep interior of Jupiter are briefly considered.

  13. Evaluation of Intradural Stimulation Efficiency and Selectivity in a Computational Model of Spinal Cord Stimulation

    PubMed Central

    Howell, Bryan; Lad, Shivanand P.; Grill, Warren M.

    2014-01-01

    Spinal cord stimulation (SCS) is an alternative or adjunct therapy to treat chronic pain, a prevalent and clinically challenging condition. Although SCS has substantial clinical success, the therapy is still prone to failures, including lead breakage, lead migration, and poor pain relief. The goal of this study was to develop a computational model of SCS and use the model to compare activation of neural elements during intradural and extradural electrode placement. We constructed five patient-specific models of SCS. Stimulation thresholds predicted by the model were compared to stimulation thresholds measured intraoperatively, and we used these models to quantify the efficiency and selectivity of intradural and extradural SCS. Intradural placement dramatically increased stimulation efficiency and reduced the power required to stimulate the dorsal columns by more than 90%. Intradural placement also increased selectivity, allowing activation of a greater proportion of dorsal column fibers before spread of activation to dorsal root fibers, as well as more selective activation of individual dermatomes at different lateral deviations from the midline. Further, the results suggest that current electrode designs used for extradural SCS are not optimal for intradural SCS, and a novel azimuthal tripolar design increased stimulation selectivity, even beyond that achieved with an intradural paddle array. Increased stimulation efficiency is expected to increase the battery life of implantable pulse generators, increase the recharge interval of rechargeable implantable pulse generators, and potentially reduce stimulator volume. The greater selectivity of intradural stimulation may improve the success rate of SCS by mitigating the sensitivity of pain relief to malpositioning of the electrode. The outcome of this effort is a better quantitative understanding of how intradural electrode placement can potentially increase the selectivity and efficiency of SCS, which, in turn

  14. Thermal desorption of deuterium implanted into beryllium

    SciTech Connect

    Markin, A.V.; Chernikov, V.N.; Zakharov, A.P.

    1995-09-01

    By means of TDS measurements it is shown that the desorption of deuterium from Be implanted with 5 keV D ions to fluences, {Phi}, from 1x10{sup 20} D/m{sup 2} to 1x10{sup 21} D/m{sup 2} proceeds in one high temperature stage B, while at {Phi} {ge} 1.2x10{sup 21}D/m{sup 2} one more stage A is added. The desorption maximum A is narrow and consists of two peaks A{sub 1} and A{sub 2} at about 460 K and 490 K, respectively. Peak A{sub 1} is attributed to the desorption of deuterium from the walls of opened channels formed under D ion implantation. Peak {sub A}2 is a consequence of the opening of a part of closed bubbles/channels to the outer surface. The position of maximum B shifts noticeably and nonsteadily on the fluence in a range from 850 to 1050 K. The origin of this maximum is the liberation of D atoms bound at vacancy complexes discussed previously by Wampler. The dependence of Tm(B) on the fluence is governed by the interaction of freely migrating D atoms with partly opened or fully closed gas cavity arrangements which are created under temperature ramping, but differently in specimens implanted with D ions to different fluences.

  15. Application of ion implantation in tooling industry

    NASA Astrophysics Data System (ADS)

    Straede, Christen A.

    1996-06-01

    In papers published during the last half of the 1980s it is often stated that the application of ion beams to non-semiconductor purposes seems ready for full-scale industrial exploitation. However, progress with respect to commercialisation of ion implantation has been slower than predicted, although the process is quite clearly building up niche markets, especially in the tooling industry. It is the main purpose of this paper to discuss the implementation of the process in the tooling market, and to describe strategies used to ensure its success. The basic idea has been to find niches where ion implantation out-performs other processes both technically and in prices. For instance, it has been clearly realised that one should avoid competing with physical vapour deposition or other coating techniques in market areas where they perform excellently, and instead find niches where the advantages of the ion implantation technique can be fully utilised. The paper will present typical case stories in order to illustrate market niches where the technique has its greatest successes and potential.

  16. Fully depleted and backside biased monolithic CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Stefanov, Konstantin D.; Clarke, Andrew S.; Holland, Andrew D.

    2016-07-01

    We are presenting a novel concept for a fully depleted, monolithic, pinned photodiode CMOS image sensor using reverse substrate bias. The principle of operation allows the manufacture of backside illuminated CMOS sensors with active thickness in excess of 100 μm. This helps increase the QE at near-IR and soft X-ray wavelengths, while preserving the excellent characteristics associated with the pinned photodiode sensitive elements. Such sensors are relevant to a wide range of applications, including scientific imaging, astronomy, Earth observation and surveillance. A prototype device with 10 μm and 5.4 μm pixels using this concept has been designed and is being manufactured on a 0.18 μm CMOS image sensor process. Only one additional implantation step has been introduced to the normal manufacturing flow to make this device. The paper discusses the design of the sensor and the challenges that had to be overcome to realise it in practice, and in particular the method of achieving full depletion without parasitic substrate currents. It is expected that this new technology can be competitive with modern backside illuminated thick CCDs for use at visible to near-IR telescopes and synchrotron light sources.

  17. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation.

    PubMed

    Oliveira, Marta I; Santos, Susana G; Oliveira, Maria J; Torres, Ana L; Barbosa, Mário A

    2012-07-24

    Macrophages and dendritic cells (DC) share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch), with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration.

  18. The Relationship between Insertion Angles, Default Frequency Allocations, and Spiral Ganglion Place Pitch in Cochlear Implants

    PubMed Central

    Landsberger, David M.; Svrakic, Svrakic; Roland, J. Thomas; Svirsky, Mario

    2015-01-01

    Objectives Commercially available cochlear implant systems attempt to deliver frequency information going down to a few hundred Hz, but the electrode arrays are not designed to reach the most apical regions of the cochlea which correspond to these low frequencies. This may cause a mismatch between the frequencies presented by a cochlear implant electrode array and the frequencies represented at the corresponding location in a normal hearing cochlea. In the following study, the mismatch between the frequency presented at a given cochlear angle and the frequency expected by an acoustic hearing ear at the corresponding angle is examined for the cochlear implant systems that are most commonly used in the United States. Design The angular insertion of each of the electrodes on four different electrode arrays (MED-EL Standard, MED-EL Flex28, Advanced Bionics HiFocus 1J, and Cochlear Contour Advance) was estimated from x-rays. For the angular location of each electrode on each electrode array, the predicted spiral ganglion frequency was estimated. The predicted spiral ganglion frequency was compared with the center frequency provided by the corresponding electrode using the manufacturer’s default frequency-to-electrode allocation. Results Differences across devices were observed for the place of stimulation for frequencies below 650 Hz. Longer electrode arrays (i.e. the MED-EL Standard and Flex28) demonstrated smaller deviations from the spiral ganglion map than the other electrode arrays. For insertion angles up to approximately 270°, the frequencies presented at a given location were typically approximately an octave below what would be expected by a spiral ganglion frequency map, while the deviations were larger for angles deeper than 270°. For frequencies above 650 Hz, the frequency to angle relationship was consistent across all four electrode models. Conclusions A mismatch was observed between the predicted frequency and default frequency provided by every

  19. Fully integrated microfluidic platform enabling automated phosphoprofiling of macrophage response.

    PubMed

    Srivastava, Nimisha; Brennan, James S; Renzi, Ronald F; Wu, Meiye; Branda, Steven S; Singh, Anup K; Herr, Amy E

    2009-05-01

    The ability to monitor cell signaling events is crucial to the understanding of immune defense against invading pathogens. Conventional analytical techniques such as flow cytometry, microscopy, and Western blot are powerful tools for signaling studies. Nevertheless, each approach is currently stand-alone and limited by multiple time-consuming and labor-intensive steps. In addition, these techniques do not provide correlated signaling information on total intracellular protein abundance and subcellular protein localization. We report on a novel phosphoFlow Chip (pFC) that relies on monolithic microfluidic technology to rapidly conduct signaling studies. The pFC platform integrates cell stimulation and preparation, microscopy, and subsequent flow cytometry. pFC allows host-pathogen phosphoprofiling in 30 min with an order of magnitude reduction in the consumption of reagents. For pFC validation, we monitor the mitogen-activated protein kinases ERK1/2 and p38 in response to Escherichia coli lipopolysaccharide (LPS) stimulation of murine macrophage cells (RAW 264.7). pFC permits ERK1/2 phosphorylation monitoring starting at 5 s after LPS stimulation, with phosphorylation observed at 5 min. In addition, ERK1/2 phosphorylation is correlated with subsequent recruitment into the nucleus, as observed from fluorescence microscopy performed on cells upstream of flow cytometric analysis. The fully integrated cell handling has the added advantage of reduced cell aggregation and cell loss, with no detectable cell activation. The pFC approach is a step toward unified, automated infrastructure for high-throughput systems biology.

  20. The silicone breast implant controversy.

    PubMed

    Guerette, P H

    1995-02-01

    Feminists call it objectification. Consumer advocates call it victimization. Medical personnel call it augmentation. Women, implantation. Whatever the term, media hype and the increasing number of lawsuits against U.S. manufacturers of silicone breast implants has caused widespread concern among women and raised serious questions about the long term health risks and safety of breast implant devices.

  1. Land cover classification comparisons among dual polarimetric, pseudo-fully polarimetric, and fully polarimetric SAR imagery

    NASA Astrophysics Data System (ADS)

    Mishra, Bhogendra; Susaki, Junichi

    2012-10-01

    In this paper, an approach is proposed that predicts fully polarimetric data from dual polarimetric data, and then applies selected supervised algorithm for dual polarimetric, pseudo-fully polarimetric and fully polarimetric dataset for the land cover classification comparison. A regression model has been developed to predict the complex variables of VV polarimetric component and amplitude independently using corresponding complex variables and amplitude in HH and HV bands. Support vector machine (SVM)is implemented for the land cover classification. Coherency matrix and amplitude were used for all dataset for the land cover classification independently.They are used to compare the data from different perspective. Finally, a post processing technique is implemented to remove the isolated pixels appeared as a noise. AVNIR-2 optical data over the same area is used as ground truth data to access the classification accuracy.The result from SVM indicates that the fully polarimetric mode gives the maximum classification accuracy followed by pseudo-fully polarimetric and dual polarimetric datasets using coherency matrix input for fully polarimetric image and pseudo-fully polarimetric image and covariance matrix input for dual polarimetric image. Additionally, it is observed that pseudo-fully polarimetric image with amplitude input does not show the significant improvement over dual polarimetric image with same input.

  2. A programmable and configurable multi-port System-on-Chip for stimulating electrokinetically-driven microfluidic devices.

    PubMed

    Lopez, Martha Salome; Gerstlauer, Andreas; Avila, Alfonso; Martinez-Chapa, Sergio O

    2011-01-01

    Recent research has demonstrated the use of microfluidic devices and electro-kinetics in areas such as medicine, genetics, embryology, epidemiology and pollution analysis, where manipulation of particles suspended in liquid media is required. Micro-fabrication technology has made it possible to increase system complexity and functionality by allowing integration of different processing and analysis stages in a single chip. However, fully integrated and autonomous microfluidic systems supporting ad-hoc stimulation have yet to be developed. This paper presents a flexible, configurable and programmable stimulator for electro-kinetically driven microfluidic devices. The stimulator is a dedicated System-on-Chip (SoC) architecture that generates sine, triangle, and sawtooth signals within a frequency range of 1 Hz to 20 MHz, capable of delivering single, dual, and superimposed waveforms, in a user defined test sequence for a selected time period. The system is designed to be integrated into complete, autonomous Lab-on-Chip, portable or implantable devices. As such, it is expected to help significantly advance current and future research on particle manipulation.

  3. Inductive link design for miniature implants.

    PubMed

    Troyk, Philip R; Rush, Alexander D

    2009-01-01

    Advances in microfabrication have allowed the integration of large numbers of electrodes onto one platform. The small size and high channel density of these microelectrode arrays which promise improved performance of a neural prosthesis also complicate the design of an inductive link to achieve efficient powering and communication with the implant. Stimulating or recording with many channels requires high data rate transmission. At the same time, power must be transmitted to the implanted device without exceeding power dissipation limits within the body. Using conventional design techniques, achieving all of these competing requirements simultaneously can require many time consuming iterations. It is proposed that a transcutaneous power and data link can be optimized to meet system level design parameters (power dissipation, data rate, secondary voltage, etc.) by having an analytic understanding of the interacting link level design parameters (receiver radius, carrier frequency, number of turns, implant location, etc.). We demonstrated this technique with the design of a transcutaneous power and data link for an intracortical visual prosthesis.

  4. Semiconductor Ion Implanters

    NASA Astrophysics Data System (ADS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  5. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  6. Cochlear Implantation in Neurobrucellosis

    PubMed Central

    Bajin, Münir Demir; Savaş, Özden; Aslan, Filiz; Sennaroğlu, Levent

    2016-01-01

    Background: Neurobrucellosis is a disease consisting of a wide spectrum of complications such as peripheral neuropathy, cranial nerve involvement, ataxia, meningeal irritation, paraplegia, seizures, coma, and even death. The vestibulocochlear nerve seems to be the most commonly affected cranial nerve (10%). We present a patient with neurobrucellosis whose auditory perception and speech intelligibility skill performances improved after cochlear implantation. Case Report: A 35 year-old woman was admitted to another hospital 2 years ago with the symptoms of headache, nausea, and altered consciousness, who was finally diagnosed with neurobrucellosis. She developed bilateral profound sensorineural hearing loss during the following 6 months. There was no benefit of using hearing aids. After successful treatment of her illness, she was found to be suitable for cochlear implantation. After the operation, her auditory perception skills improved significantly with a Categories of Auditory Performance (CAP) score of 5. According to clinical observations and her family members’ statements, her Speech Intelligibility Rating (SIR) score was 3. Her speech intelligibility skills are still improving. Conclusion: Our case report represents the second case of hearing rehabilitation with cochlear implantation after neurobrucellosis. Cochlear implantation is a cost-effective and time-proven successful intervention in post-lingual adult patients with sensorineural hearing loss. Early timing of the surgery after appropriate treatment of meningitis helps the patient to achieve better postoperative results. PMID:26966626

  7. Remote actuated valve implant

    DOEpatents

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  8. Implantable Drug Dispenser

    NASA Technical Reports Server (NTRS)

    Collins, E. R. J.

    1983-01-01

    Drugs such as insulin are injected as needed directly into bloodstream by compact implantable dispensing unit. Two vapor cavities produce opposing forces on drug-chamber diaphragm. Heaters in cavities allow control of direction and rate of motion of bellows. Dispensing capsule fitted with coil so batteries can be recharged by induction.

  9. Practicing implant dentistry profitably.

    PubMed

    Stump, G; Adams, M; Alwan, M

    1997-03-01

    The success of dental implants has opened up countless treatment possibilities for restorative dentists to offer to their patients. Just as our clinical paradigms have had to change because of this new technology, so too must our paradigms concerning the way we communicate with our patients change if we are to get them to say "yes" to treatment that we know that they need. Success in clinical treatment using implants requires a systematic approach. A systematic approach to communicating with your patients will allow you to have the same high degree of success with treatment acceptance that is possible with dental implants. The key to the systems we have discussed is Relationship Centered Care. A relationship is fostered and enhanced through a Comprehensive Examination Process, a structured Consultation Process utilizing the influencing process and Financial Arrangements that allow the patient to receive what they want while the office maintains the profitability that it needs. A system for calculating rational fees can be utilized that allows the practice to have control over an area that traditionally was controlled by anecdotal factors. The Pride Institute has developed this material and is presenting it to the profession so that restorative dentists can truly practice implant dentistry profitably.

  10. Animal Experimental Study of the Fully Biodegradable Atrial Septal Defect (ASD) Occluder

    PubMed Central

    Zhu, Yu-feng; Huang, Xin-miao; Cao, Jiang; Hu, Jian-qiang; Bai, Yuan; Jiang, Hai-bing; Li, Zhao-feng; Chen, Ying; Wang, Wei; Qin, Yong-wen; Zhao, Xian-xian

    2012-01-01

    This study was conducted to evaluate the feasibility, safety, biocompatibility, and degradation features of a fully biodegradable occluder for closure of atrial septal defect (ASD) in an acute canine model. The ASD was created in 20 healthy mongrel dogs by the brockenbrough needle, and the fully biodegradable occluders were implanted by self-made delivery system. The success rate and complications were observed. Acute ASD models were successfully created in 18 dogs, and 16 occluders were successfully implanted in the ASD models. Animals were sacrificed at different times after procedure. The cardiac gross anatomy showed that all occluders were stable in the interatrial septum, no vegetation or thrombus formation was observed on the surface of all occluders. They were embedded into endogenous host tissue gradually at 12-week follow-up. Different periods of pathological observations suggested that the occluders degraded gradually over about 24 weeks and essentially became an integral part of the septum. Transcatheter closure of ASD in acute canine model using the fully biodegradable ASD occluder has the potential of a high successful rate of technique, excellent biocompatibility, and fewer complications with adequate, immediate, and short-term results. PMID:23093859

  11. In vivo impedance spectroscopy of deep brain stimulation electrodes.

    PubMed

    Lempka, Scott F; Miocinovic, Svjetlana; Johnson, Matthew D; Vitek, Jerrold L; McIntyre, Cameron C

    2009-08-01

    Deep brain stimulation (DBS) represents a powerful clinical technology, but a systematic characterization of the electrical interactions between the electrode and the brain is lacking. The goal of this study was to examine the in vivo changes in the DBS electrode impedance that occur after implantation and during clinically relevant stimulation. Clinical DBS devices typically apply high-frequency voltage-controlled stimulation, and as a result, the injected current is directly regulated by the impedance of the electrode-tissue interface. We monitored the impedance of scaled-down clinical DBS electrodes implanted in the thalamus and subthalamic nucleus of a rhesus macaque using electrode impedance spectroscopy (EIS) measurements ranging from 0.5 Hz to 10 kHz. To further characterize our measurements, equivalent circuit models of the electrode-tissue interface were used to quantify the role of various interface components in producing the observed electrode impedance. Following implantation, the DBS electrode impedance increased and a semicircular arc was observed in the high-frequency range of the EIS measurements, commonly referred to as the tissue component of the impedance. Clinically relevant stimulation produced a rapid decrease in electrode impedance with extensive changes in the tissue component. These post-operative and stimulation-induced changes in impedance could play an important role in the observed functional effects of voltage-controlled DBS and should be considered during clinical stimulation parameter selection and chronic animal research studies.

  12. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear.

    PubMed

    Pinyon, Jeremy L; Tadros, Sherif F; Froud, Kristina E; Y Wong, Ann C; Tompson, Isabella T; Crawford, Edward N; Ko, Myungseo; Morris, Renée; Klugmann, Matthias; Housley, Gary D

    2014-04-23

    The cochlear implant is the most successful bionic prosthesis and has transformed the lives of people with profound hearing loss. However, the performance of the "bionic ear" is still largely constrained by the neural interface itself. Current spread inherent to broad monopolar stimulation of the spiral ganglion neuron somata obviates the intrinsic tonotopic mapping of the cochlear nerve. We show in the guinea pig that neurotrophin gene therapy integrated into the cochlear implant improves its performance by stimulating spiral ganglion neurite regeneration. We used the cochlear implant electrode array for novel "close-field" electroporation to transduce mesenchymal cells lining the cochlear perilymphatic canals with a naked complementary DNA gene construct driving expression of brain-derived neurotrophic factor (BDNF) and a green fluorescent protein (GFP) reporter. The focusing of electric fields by particular cochlear implant electrode configurations led to surprisingly efficient gene delivery to adjacent mesenchymal cells. The resulting BDNF expression stimulated regeneration of spiral ganglion neurites, which had atrophied 2 weeks after ototoxic treatment, in a bilateral sensorineural deafness model. In this model, delivery of a control GFP-only vector failed to restore neuron structure, with atrophied neurons indistinguishable from unimplanted cochleae. With BDNF therapy, the regenerated spiral ganglion neurites extended close to the cochlear implant electrodes, with localized ectopic branching. This neural remodeling enabled bipolar stimulation via the cochlear implant array, with low stimulus thresholds and expanded dynamic range of the cochlear nerve, determined via electrically evoked auditory brainstem responses. This development may broadly improve neural interfaces and extend molecular medicine applications.

  13. Cochlear implantation in patients with inner ear bone malformations with posterior labyrinth involvement: an exploratory study.

    PubMed

    Palomeque Vera, Juan Miguel; Platero Sánchez-Escribano, María; Gómez Hervás, Javier; Fernández Prada, María; González Ramírez, Amanda Rocío; Sainz Quevedo, Manuel

    2016-04-01

    Inner ear bone malformations are one cause of profound sensorineural hearing loss. This investigation focused on those affecting the posterior labyrinth, especially enlarged vestibular aqueduct syndrome, which is associated with fluctuating and progressive hearing loss. The objectives of this study were to analyze the behavior of the electrical stimulation, auditory functionality and linguistic development in patients with inner ear malformations involving the posterior labyrinth. The study included ten patients undergoing cochlear implantation (cases: five with enlarged vestibular aqueduct, two with vestibular aqueduct stenosis/aplasia, and three with semicircular canal disorders). Post-implantation, data were gathered on the electrical stimulation threshold and maximum comfort levels and on the number of functioning electrodes. Evaluation of Auditory Responses to Speech (EARS) subtests were used to assess auditory functionality and language acquisition at 6, 12, and 24 months post-implantation. Results were compared with findings in a control group of 28 cochlear implantation patients without these malformations. No significant differences were found between case and control groups in electrical stimulation parameters; auditory functionality subtest scores were lower in cases than controls, although the difference was only statistically significant for some subtests. In conclusion, cochlear implantation patients with posterior labyrinth bone malformations and profound hearing loss, including those with enlarged vestibular aqueduct syndrome, showed no significant difference in electrical stimulation threshold with controls. Although some auditory functionality test results were lower in cases than in controls, cochlear implantation appears to be beneficial for all patients with these malformations.

  14. Dual Positive Regulation of Embryo Implantation by Endocrine and Immune Systems--Step-by-Step Maternal Recognition of the Developing Embryo.

    PubMed

    Fujiwara, Hiroshi; Araki, Yoshihiko; Imakawa, Kazuhiko; Saito, Shigeru; Daikoku, Takiko; Shigeta, Minoru; Kanzaki, Hideharu; Mori, Takahide

    2016-03-01

    In humans, HCG secreted from the implanting embryo stimulates progesterone production of the corpus luteum to maintain embryo implantation. Along with this endocrine system, current evidence suggests that the maternal immune system positively contributes to the embryo implantation. In mice, immune cells that have been sensitized with seminal fluid and then the developing embryo induce endometrial differentiation and promote embryo implantation. After hatching, HCG activates regulatory T and B cells through LH/HCG receptors and then stimulates uterine NK cells and monocytes through sugar chain receptors, to promote and maintain pregnancy. In accordance with the above, the intrauterine administration of HCG-treated PBMC was demonstrated to improve implantation rates in women with repeated implantation failures. These findings suggest that the maternal immune system undergoes functional changes by recognizing the developing embryos in a stepwise manner even from a pre-fertilization stage and facilitates embryo implantation in cooperation with the endocrine system.

  15. Auditory Implant Research at the House Ear Institute 1989–2013

    PubMed Central

    Shannon, Robert V.

    2014-01-01

    The House Ear Institute (HEI) had a long and distinguished history of auditory implant innovation and development. Early clinical innovations include being one of the first cochlear implant (CI) centers, being the first center to implant a child with a cochlear implant in the US, developing the auditory brainstem implant, and developing multiple surgical approaches and tools for Otology. This paper reviews the second stage of auditory implant research at House – in-depth basic research on perceptual capabilities and signal processing for both cochlear implants and auditory brainstem implants. Psychophysical studies characterized the loudness and temporal perceptual properties of electrical stimulation as a function of electrical parameters. Speech studies with the noise-band vocoder showed that only four bands of tonotopically arrayed information were sufficient for speech recognition, and that most implant users were receiving the equivalent of 8–10 bands of information. The noise-band vocoder allowed us to evaluate the effects of the manipulation of the number of bands, the alignment of the bands with the original tonotopic map, and distortions in the tonotopic mapping, including holes in the neural representation. Stimulation pulse rate was shown to have only a small effect on speech recognition. Electric fields were manipulated in position and sharpness, showing the potential benefit of improved tonotopic selectivity. Auditory training shows great promise for improving speech recognition for all patients. And the Auditory Brainstem Implant was developed and improved and its application expanded to new populations. Overall, the last 25 years of research at HEI helped increase the basic scientific understanding of electrical stimulation of hearing and contributed to the improved outco