Science.gov

Sample records for fully open-air conditions

  1. Uniform, stable, and efficient planar-heterojunction perovskite solar cells by facile low-pressure chemical vapor deposition under fully open-air conditions.

    PubMed

    Luo, Paifeng; Liu, Zhaofan; Xia, Wei; Yuan, Chenchen; Cheng, Jigui; Lu, Yingwei

    2015-02-01

    Recently, hybrid perovskite solar cells (PSCs) have attracted extensive attention due to their high efficiency and simple preparing process. Herein, a facile low-pressure chemical vapor deposition (LPCVD) technology is first developed to fabricate PSCs, which can effectively reduce the over-rapid intercalating reaction rate and easily overcome this blocking issue during the solution process. As a result, the prepared uniform perovskite films exhibit good crystallization, strong absorption, and long carrier diffusion length. More strikingly, CH3NH3PbI3 absorbers by LPCVD demonstrate excellent moisture-resistant feature even under laser illumination and high-temperature conditions, which indicates that our proprietary method is very suitable for the future low-cost, nonvacuum production of the new generation photovoltaic devices. Finally, high efficiency of 12.73% is successfully achieved under fully open-air conditions. To the best of our knowledge, this is the first report of efficient PSCs with such a high humidity above 60%.

  2. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of Soybean (Glycine max) at elevated [CO2] and temperatures under fully open air field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on 1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the ma...

  3. Effects of elevated ozone concentration on CH4 and N2O emission from paddy soil under fully open-air field conditions.

    PubMed

    Tang, Haoye; Liu, Gang; Zhu, Jianguo; Kobayashi, Kazuhiko

    2015-04-01

    We investigated the effects of elevated ozone concentration (E-O3) on CH4 and N2O emission from paddies with two rice cultivars: an inbred Indica cultivar Yangdao 6 (YD6) and a hybrid one II-you 084 (IIY084), under fully open-air field conditions in China. A mean 26.7% enhancement of ozone concentration above the ambient level (A-O3) significantly reduced CH4 emission at tillering and flowering stages leading to a reduction of seasonal integral CH4 emission by 29.6% on average across the two cultivars. The reduced CH4 emission is associated with O3-induced reduction in the whole-plant biomass (-13.2%), root biomass (-34.7%), and maximum tiller number (-10.3%), all of which curbed the carbon supply for belowground CH4 production and its release from submerged soil to atmosphere. Although no significant difference was detected between the cultivars in the CH4 emission response to E-O3, a larger decrease in CH4 emission with IIY084 (-33.2%) than that with YD6 (-7.0%) was observed at tillering stage, which may be due to the larger reduction in tiller number in IIY084 by E-O3. Additionally, E-O3 reduced seasonal mean NOx flux by 5.7% and 11.8% with IIY084 and YD6, respectively, but the effects were not significant statistically. We found that the relative response of CH4 emission to E-O3 was not significantly different from those reported in open-top chamber experiments. This study has thus confirmed that increasing ozone concentration would mitigate the global warming potential of CH4 and suggested consideration of the feedback mechanism between ozone and its precursor emission into the projection of future ozone effects on terrestrial ecosystem.

  4. Effects of elevated ozone concentration on CH4 and N2O emission from paddy soil under fully open-air field conditions.

    PubMed

    Tang, Haoye; Liu, Gang; Zhu, Jianguo; Kobayashi, Kazuhiko

    2015-04-01

    We investigated the effects of elevated ozone concentration (E-O3) on CH4 and N2O emission from paddies with two rice cultivars: an inbred Indica cultivar Yangdao 6 (YD6) and a hybrid one II-you 084 (IIY084), under fully open-air field conditions in China. A mean 26.7% enhancement of ozone concentration above the ambient level (A-O3) significantly reduced CH4 emission at tillering and flowering stages leading to a reduction of seasonal integral CH4 emission by 29.6% on average across the two cultivars. The reduced CH4 emission is associated with O3-induced reduction in the whole-plant biomass (-13.2%), root biomass (-34.7%), and maximum tiller number (-10.3%), all of which curbed the carbon supply for belowground CH4 production and its release from submerged soil to atmosphere. Although no significant difference was detected between the cultivars in the CH4 emission response to E-O3, a larger decrease in CH4 emission with IIY084 (-33.2%) than that with YD6 (-7.0%) was observed at tillering stage, which may be due to the larger reduction in tiller number in IIY084 by E-O3. Additionally, E-O3 reduced seasonal mean NOx flux by 5.7% and 11.8% with IIY084 and YD6, respectively, but the effects were not significant statistically. We found that the relative response of CH4 emission to E-O3 was not significantly different from those reported in open-top chamber experiments. This study has thus confirmed that increasing ozone concentration would mitigate the global warming potential of CH4 and suggested consideration of the feedback mechanism between ozone and its precursor emission into the projection of future ozone effects on terrestrial ecosystem. PMID:25403809

  5. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO₂] and temperatures under fully open air field conditions.

    PubMed

    Rosenthal, David M; Ruiz-Vera, Ursula M; Siebers, Matthew H; Gray, Sharon B; Bernacchi, Carl J; Ort, Donald R

    2014-09-01

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on (1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the maximum carboxylation capacity of Rubisco (Vc,max) and the maximum potential linear electron flux through photosystem II (Jmax), (2) the associated responses of leaf structural and chemical properties related to A, as well as (3) the stomatal limitation (l) imposed on A, for soybean over two growing seasons in a conventionally managed agricultural field in Illinois, USA. Acclimation to elevated [CO2] was consistent over two growing seasons with respect to Vc,max and Jmax. However, elevated temperature significantly decreased Jmax contributing to lower photosynthetic stimulation by elevated CO2. Large seasonal differences in precipitation altered soil moisture availability modulating the complex effects of elevated temperature and CO2 on biochemical and structural properties related to A. Elevated temperature also reduced the benefit of elevated [CO2] by eliminating decreases in stomatal limitation at elevated [CO2]. These results highlight the critical importance of considering multiple environmental factors (i.e. temperature, moisture, [CO2]) when trying to predict plant productivity in the context of climate change.

  6. Global food insecurity. Treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields

    PubMed Central

    Long, Stephen P; Ainsworth, Elizabeth A; Leakey, Andrew D.B; Morgan, Patrick B

    2005-01-01

    Predictions of yield for the globe's major grain and legume arable crops suggest that, with a moderate temperature increase, production may increase in the temperate zone, but decline in the tropics. In total, global food supply may show little change. This security comes from inclusion of the direct effect of rising carbon dioxide (CO2) concentration, [CO2], which significantly stimulates yield by decreasing photorespiration in C3 crops and transpiration in all crops. Evidence for a large response to [CO2] is largely based on studies made within chambers at small scales, which would be considered unacceptable for standard agronomic trials of new cultivars or agrochemicals. Yet, predictions of the globe's future food security are based on such inadequate information. Free-Air Concentration Enrichment (FACE) technology now allows investigation of the effects of rising [CO2] and ozone on field crops under fully open-air conditions at an agronomic scale. Experiments with rice, wheat, maize and soybean show smaller increases in yield than anticipated from studies in chambers. Experiments with increased ozone show large yield losses (20%), which are not accounted for in projections of global food security. These findings suggest that current projections of global food security are overoptimistic. The fertilization effect of CO2 is less than that used in many models, while rising ozone will cause large yield losses in the Northern Hemisphere. Unfortunately, FACE studies have been limited in geographical extent and interactive effects of CO2, ozone and temperature have yet to be studied. Without more extensive study of the effects of these changes at an agronomic scale in the open air, our ever-more sophisticated models will continue to have feet of clay. PMID:16433090

  7. Meteorological conditions are associated with physical activities performed in open-air settings

    NASA Astrophysics Data System (ADS)

    Suminski, Richard R.; Poston, Walker C.; Market, Patrick; Hyder, Melissa; Sara, Pyle A.

    2008-01-01

    Meteorological conditions (MC) are believed to modify physical activity. However, studies in this area are limited and none have looked at the associations between MC and physical activity in open-air settings. Therefore, we examined the relationships between MC and physical activities performed on sidewalks/streets and outdoor oval tracks. Observation techniques were used to count individuals walking to school, exercising on oval tracks and walking/jogging/biking on sidewalks/streets. Meteorological conditions were obtained from an Automated Surface Observing System located at a nearby airport for the same time periods physical activities were observed. On weekdays, fewer children were seen walking to school and more bicyclists were observed on sidewalks/streets as wind speed increased ( p < 0.05). Ambient and apparent temperatures were positively ( p < 0.05) and humidity and barometric pressure negatively ( p < 0.005) related to the number of individuals walking on the track. Meteorological conditions were not significantly associated with physical activities observed on weekends. Multiple linear regression analyses showed that apparent temperature (+), barometric pressure (-) and dew point (-) accounted for 58.0% of the variance in the number of walkers on the track. A significant proportion of the variance (>30%) in the number of joggers and the length of time they jogged was accounted for by apparent temperature (+) and dew point (-). We found that meteorological conditions are related to physical activity in open-air settings. The results embellish the context in which environmental-physical activity relationships should be interpreted and provide important information for researchers applying the observation method in open-air settings.

  8. Over-expressing the C3 photosynthesis cycle enzyme Sedoheptulose-1-7 Bisphosphatase improves photosynthetic carbon gain and yield under fully open air CO2 fumigation (FACE)

    PubMed Central

    2011-01-01

    Background Biochemical models predict that photosynthesis in C3 plants is most frequently limited by the slower of two processes, the maximum capacity of the enzyme Rubisco to carboxylate RuBP (Vc,max), or the regeneration of RuBP via electron transport (J). At current atmospheric [CO2] levels Rubisco is not saturated; consequently, elevating [CO2] increases the velocity of carboxylation and inhibits the competing oxygenation reaction which is also catalyzed by Rubisco. In the future, leaf photosynthesis (A) should be increasingly limited by RuBP regeneration, as [CO2] is predicted to exceed 550 ppm by 2050. The C3 cycle enzyme sedoheptulose-1,7 bisphosphatase (SBPase, EC 3.1.3.17) has been shown to exert strong metabolic control over RuBP regeneration at light saturation. Results We tested the hypothesis that tobacco transformed to overexpressing SBPase will exhibit greater stimulation of A than wild type (WT) tobacco when grown under field conditions at elevated [CO2] (585 ppm) under fully open air fumigation. Growth under elevated [CO2] stimulated instantaneous A and the diurnal photosynthetic integral (A') more in transformants than WT. There was evidence of photosynthetic acclimation to elevated [CO2] via downregulation of Vc,max in both WT and transformants. Nevertheless, greater carbon assimilation and electron transport rates (J and Jmax) for transformants led to greater yield increases than WT at elevated [CO2] compared to ambient grown plants. Conclusion These results provide proof of concept that increasing content and activity of a single photosynthesis enzyme can enhance carbon assimilation and yield of C3 crops grown at [CO2] expected by the middle of the 21st century. PMID:21884586

  9. A comparative study of the decomposition of pig carcasses in a methyl methacrylate box and open air conditions.

    PubMed

    Li, Liangliang; Wang, Jiangfeng; Wang, Yu

    2016-08-01

    Analysis of the process of decomposition is essential in establishing the postmortem interval. However, despite the fact that insects are important players in body decomposition, their exact function within the decay process is still unclear. There is also limited knowledge as to how the decomposition process occurs in the absence of insects. In the present study, we compared the decomposition of a pig carcass in open air with that of one placed in a methyl methacrylate box to prevent insect contact. The pig carcass in the methyl methacrylate box was in the fresh stage for 1 day, the bloated stage from 2 d to 11 d, and underwent deflated decay from 12 d. In contrast, the pig carcass in open air went through the fresh, bloated, active decay and post-decay stages; and 22.3 h (0.93 d), 62.47 h (2.60 d), 123.63 h (5.15 d) and 246.5 h (10.27 d) following the start of the experiment respectively, prior to entering the skeletonization stage. A large amount of soft tissue were remained on the pig carcass in the methyl methacrylate box on 26 d, while only scattered bones remained on the pig carcass in open air. The results indicate that insects greatly accelerate the decomposition process.

  10. [Influence of industrial pollution of ambient air on health of workers engaged into open air activities in cold conditions].

    PubMed

    Chashchin, V P; Siurin, S A; Gudkov, A B; Popova, O N; Voronin, A Iu

    2014-01-01

    The article presents the results of a study on assessment of occupational exposure to air pollutants and related health effects in3792 outdoor workers engaged in operations performed in the vicinity of non-ferrous metallurgical facilities in Far North. Findings are that during cold season repeated climate and weather conditions are associated with higher level of chemical hazards and dust in surface air. At the air temperature below -17 degrees C, maximal single concentrations of major pollutants can exceed MAC up to 10 times. With that, transitory disablement morbidity parameters and occupational accidents frequency increase significantly. The workers with long exposure to cooling meteorological factors and air pollution demonstrate significantly increased prevalence of respiratory and circulatory diseases, despite relatively low levels of sculpture dioxide and dust in the air, not exceeding the occupational exposure limits. It has been concluded that severe cold is to be considered asa factor increasing occupational risk at air polluted outdoor worksites dueto more intense air pollution, higher traumatism risk and lower efficiency of filter antidust masks respiratory PPE and due to modification of the toxic effects.

  11. Conditions for the use of infrared camera diagnostics in energy auditing of the objects exposed to open air space at isothermal sky

    NASA Astrophysics Data System (ADS)

    Kruczek, Tadeusz

    2015-03-01

    Convective and radiation heat transfer take place between various objects placed in open air space and their surroundings. These phenomena bring about heat losses from pipelines, building walls, roofs and other objects. One of the main tasks in energy auditing is the reduction of excessive heat losses. In the case of a low sky temperature, the radiation heat exchange is very intensive and the temperature of the top part of the horizontal pipelines or walls is lower than the temperature of their bottom parts. Quite often this temperature is also lower than the temperature of the surrounding atmospheric air. In the case of overhead heat pipelines placed in open air space, it is the ground and sky that constitute the surroundings. The aforementioned elements of surroundings usually have different values of temperature. Thus, these circumstances bring about difficulties during infrared inspections because only one ambient temperature which represents radiation of all surrounding elements must be known during the thermovision measurements. This work is aimed at the development of a method for determination of an equivalent ambient temperature representing the thermal radiation of the surrounding elements of the object under consideration placed in open air space, which could be applied at a fairly uniform temperature of the sky during the thermovision measurements as well as for the calculation of radiative heat losses.

  12. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions.

    PubMed

    Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong

    2011-08-15

    Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.

  13. Italy: An Open Air Museum

    NASA Astrophysics Data System (ADS)

    Pizzorusso, Ann

    2016-04-01

    Imagine if you could see the River Styx, bathe in the Fountain of Youth, collect water which enhances fertility, wear a gem that heals bodily ailments, understand how our health is affected by geomagnetic fields, venture close to the flames of Hell on Earth and much, much, more. Know something? These things exist - on Earth - today - in Italy and you can visit them because Italy is an open air museum. Ann C. Pizzorusso, in her recent book, reveals how Italy's geology has affected its art, literature, architecture, religion, medicine and just about everything else. She explores the geologic birth of the land, describing the formation of the Alps and Apennines, romantic bays of Tuscany and Lazio, volcanoes of the south and Caribbean-like beaches of Puglia. But that's not all, from the first pages of this visually stunning book, the reader has the impression of being in an art museum, where one can wander from page to page to satisfy one's curiosity-- guided from time to time by the Etruscan priests, Virgil, Dante, Goethe or Leonardo da Vinci himself. Pizzorusso stitches together widely diverse topics - such as gemology, folk remedies, grottoes, painting, literature, physics and religion - using geology as a thread. Quoting everyone from Pliny the Elder to NASA physicist Friedemann Freund, the work is solidly backed scholarship that reads as easily as a summer novel. Wonderfully illustrated with many photos licensed from Italian museums, HRH Elizabeth II and the Ministero Beni Culturali the book highlights the best works in Italian museums and those outside in the "open air museums." This approach can be used in any other country in the world and can be used for cultural tourism (a tour following the book has been organized for cultural and university groups), an ideal way of linking museums to the surrounding landscape.

  14. America's Open-Air Classrooms

    ERIC Educational Resources Information Center

    Matthews, William H., III

    1970-01-01

    Discusses U.S. National Parks as natural laboratories for the study of ecology, geology, earth science, and botany. Suggests activities which will enable children to more fully appreciate the great age of the earth, its history, the complexity of its structure and composition, and the myriad plants and animals which inhabit it. (BR)

  15. Efficient Semantic Segmentation of Man-Made Scenes Using Fully-Connected Conditional Random Field

    NASA Astrophysics Data System (ADS)

    Li, Weihao; Yang, Michael Ying

    2016-06-01

    In this paper we explore semantic segmentation of man-made scenes using fully connected conditional random field (CRF). Images of man-made scenes display strong contextual dependencies in the spatial structures. Fully connected CRFs can model long-range connections within the image of man-made scenes and make use of contextual information of scene structures. The pairwise edge potentials of fully connected CRF models are defined by a linear combination of Gaussian kernels. Using filter-based mean field algorithm, the inference is very efficient. Our experimental results demonstrate that fully connected CRF performs better than previous state-of-the-art approaches on both eTRIMS dataset and LabelMeFacade dataset.

  16. Production of silver nanoparticles by laser ablation in open air

    NASA Astrophysics Data System (ADS)

    Boutinguiza, M.; Comesaña, R.; Lusquiños, F.; Riveiro, A.; del Val, J.; Pou, J.

    2015-05-01

    Silver nanoparticles have attracted much attention as a subject of investigation due to their well-known properties, such as good conductivity, antibacterial and catalytic effects, etc. They are used in many different areas, such as medicine, industrial applications, scientific investigation, etc. There are different techniques for producing Ag nanoparticles, chemical, electrochemical, sonochemical, etc. These methods often lead to impurities together with nanoparticles or colloidal solutions. In this work, laser ablation of solids in open air conditions (LASOA) is used to produce silver nanoparticles and collect them on glass substrates. Production and deposition of silver nanoparticles are integrated in the same step to reduce the process. The obtained particles are analysed and the nanoparticles formation mechanism is discussed. The obtained nanoparticles were characterized by means of transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and UV/VIS absorption spectroscopy. The obtained nanoparticles consisted of Ag nanoparticles showing rounded shape with diameters ranging from few to 50 nm

  17. Open air demolition of facilities highly contaminated with plutonium

    SciTech Connect

    Lloyd, E.R.; Lackey, M.B.; Stevens, J.M.; Zinsli, L.C.

    2007-07-01

    The demolition of highly contaminated plutonium buildings usually is a long and expensive process that involves decontaminating the building to near free- release standards and then using conventional methods to remove the structure. It doesn't, however, have to be that way. Fluor has torn down buildings highly contaminated with plutonium without excessive decontamination. By removing the select source term and fixing the remaining contamination on the walls, ceilings, floors, and equipment surfaces; open-air demolition is not only feasible, but it can be done cheaper, better (safer), and faster. Open-air demolition techniques were used to demolish two highly contaminated buildings to slab-on-grade. These facilities on the Department of Energy's Hanford Site were located in, or very near, compounds of operating nuclear facilities that housed hundreds of people working on a daily basis. To keep the facilities operating and the personnel safe, the projects had to be creative in demolishing the structures. Several key techniques were used to control contamination and keep it within the confines of the demolition area: spraying fixatives before demolition; applying fixative and misting with a fine spray of water as the buildings were being taken down; and demolishing the buildings in a controlled and methodical manner. In addition, detailed air-dispersion modeling was done to establish necessary building and meteorological conditions and to confirm the adequacy of the proposed methods. Both demolition projects were accomplished without any spread of contamination outside the modest buffer areas established for contamination control. Furthermore, personnel exposure to radiological and physical hazards was significantly reduced by using heavy equipment rather than 'hands on' techniques. (authors)

  18. OPEN AIR DEMOLITION OF FACILITIES HIGHLY CONTAMINATED WITH PLUTONIUM

    SciTech Connect

    LLOYD, E.R.

    2007-05-31

    The demolition of highly contaminated plutonium buildings usually is a long and expensive process that involves decontaminating the building to near free- release standards and then using conventional methods to remove the structure. It doesn't, however, have to be that way. Fluor has torn down buildings highly contaminated with plutonium without excessive decontamination. By removing the select source term and fixing the remaining contamination on the walls, ceilings, floors, and equipment surfaces; open-air demolition is not only feasible, but it can be done cheaper, better (safer), and faster. Open-air demolition techniques were used to demolish two highly contaminated buildings to slab-on-grade. These facilities on the Department of Energy's Hanford Site were located in, or very near, compounds of operating nuclear facilities that housed hundreds of people working on a daily basis. To keep the facilities operating and the personnel safe, the projects had to be creative in demolishing the structures. Several key techniques were used to control contamination and keep it within the confines of the demolition area: spraying fixatives before demolition; applying fixative and misting with a fine spray of water as the buildings were being taken down; and demolishing the buildings in a controlled and methodical manner. In addition, detailed air-dispersion modeling was done to establish necessary building and meteorological conditions and to confirm the adequacy of the proposed methods. Both demolition projects were accomplished without any spread of contamination outside the modest buffer areas established for contamination control. Furthermore, personnel exposure to radiological and physical hazards was significantly reduced by using heavy equipment rather than ''hands on'' techniques.

  19. Fully Electrical Modeling of Thermoelectric Generators with Contact Thermal Resistance Under Different Operating Conditions

    NASA Astrophysics Data System (ADS)

    Siouane, Saima; Jovanović, Slaviša; Poure, Philippe

    2016-09-01

    The Seebeck effect is used in thermoelectric generators (TEGs) to supply electronic circuits by converting the waste thermal into electrical energy. This generated electrical power is directly proportional to the temperature difference between the TEG module's hot and cold sides. Depending on the applications, TEGs can be used either under constant temperature gradient between heat reservoirs or constant heat flow conditions. Moreover, the generated electrical power of a TEG depends not only on these operating conditions, but also on the contact thermal resistance. The influence of the contact thermal resistance on the generated electrical power have already been extensively reported in the literature. However, as reported in Park et al. (Energy Convers Manag 86:233, 2014) and Montecucco and Knox (IEEE Trans Power Electron 30:828, 2015), while designing TEG-powered circuit and systems, a TEG module is mostly modeled with a Thévenin equivalent circuit whose resistance is constant and voltage proportional to the temperature gradient applied to the TEG's terminals. This widely used simplified electrical TEG model is inaccurate and not suitable under constant heat flow conditions or when the contact thermal resistance is considered. Moreover, it does not provide realistic behaviour corresponding to the physical phenomena taking place in a TEG. Therefore, from the circuit designer's point of view, faithful and fully electrical TEG models under different operating conditions are needed. Such models are mainly necessary to design and evaluate the power conditioning electronic stages and the maximum power point tracking algorithms of a TEG power supply. In this study, these fully electrical models with the contact thermal resistance taken into account are presented and the analytical expressions of the Thévenin equivalent circuit parameters are provided.

  20. Open air refuse burning video: Proton Dan the science man explores open air refuse burning

    SciTech Connect

    Eastburn, M.D.; Sipple, J.L.; Deramo, A.R.

    1999-07-01

    The goal of this video is to educate school children to the potential hazards of open air trash burning; to demonstrate alternative ways to dispose of trash; and to motivate students to take action to change the behavior of their parents with regard to trash burning. The burning of household trash, although illegal, is still a common practice in rural areas of Delaware. Enforcement has been difficult because the practice is often performed at night and is done across a wide rural area that is difficult to patrol on a continuing basis. The prohibition on trash burning (revised Regulation 13 of The Delaware Code of Regulations Governing The Control of Air Pollution) has been in effect since 1968, but the public has been slow to comply because trash burning has been practiced for many generations and because much of the public is unaware of the environmental impacts and/or the human health risks. This video may be valuable for other States to use as a public outreach tool regarding their problems with open air refuse burning. The focus of the video is a 7th grade science class is given various assignments relating to Earth Day and preservation of natural resources. Two children in particular are given the assignment to research and report on the hazards of open air trash burning and are asked to investigate alternative ways to dispose of refuse. Upon brainstorming how to find information on the topic, the kids decide to contact the host of a popular children's science show on broadcast television named Proton Dan the Science Man (a fictitious character and show based on Bill Nye the Science Guy). The host then invites the kids to the studio where he films his show and takes them through the topic. The TV host character takes the children to several external locations like a landfill, recycling centers, etc..

  1. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions.

    PubMed

    Yoshimitsu, Ryosuke; Hattori, Koji; Sugiura, Shinji; Kondo, Yuki; Yamada, Rotaro; Tachikawa, Saoko; Satoh, Taku; Kurisaki, Akira; Ohnuma, Kiyoshi; Asashima, Makoto; Kanamori, Toshiyuki

    2014-05-01

    Human induced pluripotent stem cells (hiPSCs) are a promising cell source for drug screening. For this application, self-renewal or differentiation of the cells is required, and undefined factors in the culture conditions are not desirable. Microfluidic perfusion culture allows the production of small volume cultures with precisely controlled microenvironments, and is applicable to high-throughput cellular environment screening. Here, we developed a microfluidic perfusion culture system for hiPSCs that uses a microchamber array chip under defined extracellular matrix (ECM) and culture medium conditions. By screening various ECMs we determined that fibronectin and laminin are appropriate for microfluidic devices made out of the most popular material, polydimethylsiloxane (PDMS). We found that the growth rate of hiPSCs under pressure-driven perfusion culture conditions was higher than under static culture conditions in the microchamber array. We applied our new system to self-renewal and differentiation cultures of hiPSCs, and immunocytochemical analysis showed that the state of the hiPSCs was successfully controlled. The effects of three antitumor drugs on hiPSCs were comparable between microchamber array and 96-well plates. We believe that our system will be a platform technology for future large-scale screening of fully defined conditions for differentiation cultures on integrated microfluidic devices.

  2. Fully frustrated Josephson junction ladders with Mobius boundary conditions as topologically protected qubits

    NASA Astrophysics Data System (ADS)

    Cristofano, Gerardo; Marotta, Vincenzo; Naddeo, Adele; Niccoli, Giuliano

    2008-03-01

    We show how to realize a “protected” qubit by using a fully frustrated Josephson junction ladder (JJL) with Mobius boundary conditions. Such a system has been recently studied within a twisted conformal field theory (CFT) approach [G. Cristofano, G. Maiella, V. Marotta, Mod. Phys. Lett. A 15 (2000) 1679; G. Cristofano, G. Maiella, V. Marotta, G. Niccoli, Nucl. Phys. B 641 (2002) 547] and shown to develop the phenomenon of flux fractionalization [G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, Eur. Phys. J. B 49 (2006) 83]. The relevance of a “closed” geometry has been fully exploited in relating the topological properties of the ground state of the system to the presence of half flux quanta and the emergence of a topological order has been predicted [G. Cristofano, V. Marotta, A. Naddeo, J. Stat. Mech.: Theory Exp. (2005) P03006]. In this Letter the stability and transformation properties of the ground states under adiabatic magnetic flux change are analyzed and the deep consequences on the realization of a solid state qubit, protected from decoherence, are presented.

  3. Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2015-09-01

    In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.

  4. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions.

    PubMed

    de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M

    2011-11-01

    Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation.

  5. Gap-dependent transitions of atmospheric microplasma in open air

    SciTech Connect

    Chu, Hong-Yu; Huang, Bo-Shiun

    2011-04-15

    We report on the gap dependence of the planar atmospheric microplasma in air. We investigate the transitions of the dielectric barrier discharge in open air, including the random walk filaments (plasma columns), localized filaments, stochastic filaments, and diffuse discharge. A star-shaped filamentary discharge pattern is observed after the formation of the localized filaments. The liquid drops found on the dielectric surface further become a confining pattern for star-shaped discharge. We also demonstrate the applications of the insulating pattern for the use of the plasma display in open air by the handwritten characters with UV adhesive.

  6. 35. James River Visitor Center. Opened as an open air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. James River Visitor Center. Opened as an open air visitor center in 1962, it was enclosed and a heating system installed in 1984 to allow use through the cooler months and help reduce vandalism. Looking northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  7. Experimental and numerical study of open-air active cooling

    NASA Astrophysics Data System (ADS)

    Al-Fifi, Salman Amsari

    The topic of my thesis is Experimental and Numerical Study of Open Air Active Cooling. The present research is intended to investigate experimentally and Numerically the effectiveness of cooling large open areas like stadiums, shopping malls, national gardens, amusement parks, zoos, transportation facilities and government facilities or even in buildings outdoor gardens and patios. Our cooling systems are simple cooling fans with different diameters and a mist system. This type of cooling systems has been chosen among the others to guarantee less energy consumption, which will make it the most favorable and applicable for cooling such places mentioned above. In the experiments, the main focus is to study the temperature domain as a function of different fan diameters aerodynamically similar in different heights till we come up with an empirical relationship that can determine the temperature domain for different fan diameters and for different heights of these fans. The experimental part has two stages. The first stage is devoted to investigate the maximum range of airspeed and profile for three different fan diameters and for different heights without mist, while the second stage is devoted to investigate the maximum range of temperature and profile for the three different diameter fans and for different heights with mist. The computational study is devoted to built an experimentally verified mathematical model to be used in the design and optimization of water mist cooling systems, and to compare the mathematical results to the experimental results and to get an insight of how to apply such evaporative mist cooling for different places for different conditions. In this study, numerical solution is presented based on experimental conditions, such dry bulb temperature, wet bulb temperature, relative humidity, operating pressure and fan airspeed. In the computational study, all experimental conditions are kept the same for the three fans except the fan airspeed

  8. Scanning electron microscopy of cells and tissues under fully hydrated conditions.

    PubMed

    Thiberge, Stephan; Nechushtan, Amotz; Sprinzak, David; Gileadi, Opher; Behar, Vered; Zik, Ory; Chowers, Yehuda; Michaeli, Shulamit; Schlessinger, Joseph; Moses, Elisha

    2004-03-01

    A capability for scanning electron microscopy of wet biological specimens is presented. A membrane that is transparent to electrons protects the fully hydrated sample from the vacuum. The result is a hybrid technique combining the ease of use and ability to see into cells of optical microscopy with the higher resolution of electron microscopy. The resolution of low-contrast materials is approximately 100 nm, whereas in high-contrast materials the resolution can reach 10 nm. Standard immunogold techniques and heavy-metal stains can be applied and viewed in the fluid to improve the contrast. Images present a striking combination of whole-cell morphology with a wealth of internal details. A possibility for direct inspection of tissue slices transpires, imaging only the external layer of cells. Simultaneous imaging with photons excited by the electrons incorporates data on material distribution, indicating a potential for multilabeling and specific scintillating markers.

  9. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    PubMed

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.

  10. Surface-engineered substrates for improved human pluripotent stem cell culture under fully defined conditions.

    PubMed

    Saha, Krishanu; Mei, Ying; Reisterer, Colin M; Pyzocha, Neena Kenton; Yang, Jing; Muffat, Julien; Davies, Martyn C; Alexander, Morgan R; Langer, Robert; Anderson, Daniel G; Jaenisch, Rudolf

    2011-11-15

    The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications. PMID:22065768

  11. Treatment of “Bacterial Cystitis” in Fully Automatic Mechanical Models Simulating Conditions of Bacterial Growth in the Urinary Bladder

    PubMed Central

    O'Grady, F.; Mackintosh, I. P.; Greenwood, D.; Watson, B. W.

    1973-01-01

    Two fully automatic models are described in which growing cultures can be continuously diluted and periodically discharged producing conditions of growth resembling those of the infected urinary bladder. Both models generate a continuous record of the opacity of the growing culture and the second model also generates a record of the Eh. The effect of adding ampicillin to a sensitive strain of Escherichia coli growing in these conditions is described and the relation of the results to human therapy is discussed. ImagesFig. 1 PMID:4577943

  12. Oscillations of a sessile droplet in open air

    NASA Astrophysics Data System (ADS)

    Korenchenko, A. E.; Beskachko, V. P.

    2013-11-01

    The open system consisting of a sessile drop, a neutral gas, and a substrate is analyzed by numerical methods. The mode with constant contact angle is considered. The model takes into account evaporation from drop surface, free and forced convection in gas, buoyancy, and Marangoni effect in the liquid phase. It was established that every considered mechanical and thermodynamical disturbance of the system leads to the drop surface oscillations, and thus a drop in an open air oscillates almost inevitably. The displacement of the liquid-gas interface due to oscillations is analyzed in terms of its impact on the accuracy of measurement of the surface tension by sessile drop method.

  13. Oscillations of a sessile droplet in open air

    SciTech Connect

    Korenchenko, A. E.; Beskachko, V. P.

    2013-11-15

    The open system consisting of a sessile drop, a neutral gas, and a substrate is analyzed by numerical methods. The mode with constant contact angle is considered. The model takes into account evaporation from drop surface, free and forced convection in gas, buoyancy, and Marangoni effect in the liquid phase. It was established that every considered mechanical and thermodynamical disturbance of the system leads to the drop surface oscillations, and thus a drop in an open air oscillates almost inevitably. The displacement of the liquid-gas interface due to oscillations is analyzed in terms of its impact on the accuracy of measurement of the surface tension by sessile drop method.

  14. Thermal traction contact performance evaluation under fully flooded and starved conditions

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1985-01-01

    Ultra high speed traction tests were performed on two traction fluids commonly employed. Traction data on these fluids is required for purposes of traction drive design optimization techniques. To obtain the traction data, an existing twin disc traction test machine was employed. This machine was modified to accommodate the range of test variables. All the data reported was obtained under conditions of side slip, a technique whereby only low power levels are required to simulate real traction drive contacts. Theoretical traction predictions were performed for a representative number of curves that showed the influence of rolling velocity, of contact pressure and of aspect ratio. To establish the accuracy of the thermal model the predictions were performed ith increasing levels of independence of experimentally determined parameters. In the final resulting prediction only two non linear thermal parameters were used for the prediction of 15 different traction curves covering the entire range of variables as used in the investigation, with the exception of the influence of asperity traction. Comparison of these theoretical curves and corresponding experimental traces show very good agreement.

  15. Application of multiple imputation using the two-fold fully conditional specification algorithm in longitudinal clinical data

    PubMed Central

    Welch, Catherine; Bartlett, Jonathan; Petersen, Irene

    2014-01-01

    Electronic health records of longitudinal clinical data are a valuable resource for health care research. One obstacle of using databases of health records in epidemiological analyses is that general practitioners mainly record data if they are clinically relevant. We can use existing methods to handle missing data, such as multiple imputation (mi), if we treat the unavailability of measurements as a missing-data problem. Most software implementations of MI do not take account of the longitudinal and dynamic structure of the data and are difficult to implement in large databases with millions of individuals and long follow-up. Nevalainen, Kenward, and Virtanen (2009, Statistics in Medicine 28: 3657–3669) proposed the two-fold fully conditional specification algorithm to impute missing data in longitudinal data. It imputes missing values at a given time point, conditional on information at the same time point and immediately adjacent time points. In this article, we describe a new command, twofold, that implements the two-fold fully conditional specification algorithm. It is extended to accommodate MI of longitudinal clinical records in large databases. PMID:25420071

  16. Surface charge accumulation of particles containing radionuclides in open air

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less

  17. Surface charge accumulation of particles containing radionuclides in open air

    SciTech Connect

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.

  18. Surface charge accumulation of particles containing radionuclides in open air.

    PubMed

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.

  19. Open-Air Biowarfare Testing and the Evolution of Values

    PubMed Central

    2016-01-01

    The United States and the United Kingdom ended outdoor biological warfare testing in populated areas nearly half a century ago. Yet, the conduct, health effects, and propriety of those tests remain controversial. The varied views reflect the limits of currently available test information and evolving societal values on research involving human subjects. Western political culture has changed since the early days of the American and British testing programs. People have become less reluctant to question authority, and institutional review boards must now pre-approve research involving human subjects. Further, the heightened stringency of laboratory containment has accentuated the safety gap between a confined test space and one without physical boundaries. All this makes it less likely that masses of people would again be unwittingly subjected to secret open-air biological warfare tests. PMID:27564984

  20. The open-air treatment of pandemic influenza.

    PubMed

    Hobday, Richard A; Cason, John W

    2009-10-01

    The H1N1 "Spanish flu" outbreak of 1918-1919 was the most devastating pandemic on record, killing between 50 million and 100 million people. Should the next influenza pandemic prove equally virulent, there could be more than 300 million deaths globally. The conventional view is that little could have been done to prevent the H1N1 virus from spreading or to treat those infected; however, there is evidence to the contrary. Records from an "open-air" hospital in Boston, Massachusetts, suggest that some patients and staff were spared the worst of the outbreak. A combination of fresh air, sunlight, scrupulous standards of hygiene, and reusable face masks appears to have substantially reduced deaths among some patients and infections among medical staff. We argue that temporary hospitals should be a priority in emergency planning. Equally, other measures adopted during the 1918 pandemic merit more attention than they currently receive.

  1. Open-Air Biowarfare Testing and the Evolution of Values.

    PubMed

    Cole, Leonard A

    2016-01-01

    The United States and the United Kingdom ended outdoor biological warfare testing in populated areas nearly half a century ago. Yet, the conduct, health effects, and propriety of those tests remain controversial. The varied views reflect the limits of currently available test information and evolving societal values on research involving human subjects. Western political culture has changed since the early days of the American and British testing programs. People have become less reluctant to question authority, and institutional review boards must now pre-approve research involving human subjects. Further, the heightened stringency of laboratory containment has accentuated the safety gap between a confined test space and one without physical boundaries. All this makes it less likely that masses of people would again be unwittingly subjected to secret open-air biological warfare tests. PMID:27564984

  2. Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions

    NASA Astrophysics Data System (ADS)

    Biondini, Gino; Fagerstrom, Emily; Prinari, Barbara

    2016-10-01

    We formulate the inverse scattering transform (IST) for the defocusing nonlinear Schrödinger (NLS) equation with fully asymmetric non-zero boundary conditions (i.e., when the limiting values of the solution at space infinities have different non-zero moduli). The theory is formulated without making use of Riemann surfaces, and instead by dealing explicitly with the branched nature of the eigenvalues of the associated scattering problem. For the direct problem, we give explicit single-valued definitions of the Jost eigenfunctions and scattering coefficients over the whole complex plane, and we characterize their discontinuous behavior across the branch cut arising from the square root behavior of the corresponding eigenvalues. We pose the inverse problem as a Riemann-Hilbert Problem on an open contour, and we reduce the problem to a standard set of linear integral equations. Finally, for comparison purposes, we present the single-sheet, branch cut formulation of the inverse scattering transform for the initial value problem with symmetric (equimodular) non-zero boundary conditions, as well as for the initial value problem with one-sided non-zero boundary conditions, and we also briefly describe the formulation of the inverse scattering transform when a different choice is made for the location of the branch cuts.

  3. Extra-Curricular Social Studies in an Open Air History Museum

    ERIC Educational Resources Information Center

    Morris, Ronald Vaughan

    2008-01-01

    This article discusses extra-curricular social studies in an Open Air History Museum. Open Air History Museum, Conner Prairie Interpretive Park in Fishers, Indiana, is a cultural institution that encourages and supports talented students as they participate in an extra-curricular program. Ten-to sixteen-year-old youths "apply for jobs" as youth…

  4. Engineering characteristics of Ankara Greywacke under the foundation of the Beytepe open air theatre, Ankara, Turkey

    NASA Astrophysics Data System (ADS)

    Sonmez, H.; Gurkan, B.; Sonmez, B.

    2008-08-01

    The construction of a large open air theatre having with an audience capacity of 7,000 is planned at the Beytepe Campus of Hacettepe University located near Ankara, Turkey, in the heart of Anatolia. The foundation of the open air theatre is composed of weak and heavily jointed Ankara Greywacke. An estimation of the strength and deformation of the Ankara Greywacke was required for assessments of short- and long-term stability. Accordingly, rock mass characterization of the Ankara Greywacke was investigated in detail by scan-line surveys and back-analyses of in situ tests performed on the excavated surface of the rock mass. The final version of the Hoek and Brown Criterion (Hoek et al., In: Proceedings of the north American rock mechanics society meeting, Toronto, Canada, pp 1 6, 2002) together with and improvements proposed by Sonmez and Gokceoglu (Int J Rock Mech Min Sci, 43:671 676, 2006) were considered together for the back analyses of small slope benches subjected to plate loading test loaded to failure. In addition, the plate loading test data were used with some well-known empirical equations for predicting of deformation modulus of rock masses to calculate ranges of values of the Geological Strength Index (GSI) The static and pseudostatic slope stabilities of the audience seating structures to be supported by benches excavated into the rock were also analyzed. The stability assessments revealed the unlikelihood of large rock mass failures for the short-term construction stages or for the long-term, as-constructed conditions under static or pseudo-static conditions. Additionally, the analyses showed that there was no need for anchors between the concrete seating structures and greywacke rock mass.

  5. Numerical Analysis of Thermal Comfort at Open Air Spaces

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, K.; Belias, C.; Pantos-Kikkos, S.; Assana, A.

    2008-09-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (urban park), named "Attiko Alsos," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  6. Modeling Airborne Beryllium Concentrations From Open Air Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Becker, N. M.

    2003-12-01

    A heightened awareness of airborne beryllium contamination from industrial activities was reestablished during the late 1980's and early 1990's when it became recognized that Chronic Beryllium Disease (CBD) had not been eradicated, and that the Occupational Health and Safety Administration standards for occupational air exposure to beryllium may not be sufficiently protective. This was in response to the observed CBD increase in multiple industrial settings where beryllium was manufactured and/or machined, thus producing beryllium particulates which are then available for redistribution by airborne transport. Sampling and modeling design activities were expanded at Los Alamos National Laboratory in New Mexico to evaluate potential airborne beryllium exposure to workers who might be exposed during dynamic testing activities associated with nuclear weapons Stockpile Stewardship. Herein is presented the results of multiple types of collected air measurements that were designed to characterize the production and dispersion of beryllium used in components whose performance is evaluated during high explosive detonation at open air firing sites. Data from fallout, high volume air, medium volume air, adhesive film, particle size impactor, and fine-particulate counting techniques will be presented, integrated, and applied in dispersion modeling to assess potential onsite and offsite personal exposures resulting from dynamic testing activities involving beryllium.

  7. Tailored synthesis of nanostructures by laser irradiation of a precursor microdroplet stream in open-air.

    PubMed

    Palanco, S; Marino, S; Gabás, M; Ayala, L; Ramos-Barrado, J R

    2015-01-14

    A method to synthesize multicomponent nanostructures in open-air is presented. A microdroplet precursor target is irradiated with a nanosecond laser pulse to induce plasma. At low droplet dispensing rates, the precursor and solvent are fully atomized without debris to produce nanoparticles and nanofilaments during plasma cooling. More complex structures like nanolayers or nanofoams can be synthetised at kilohertz droplet dispensing rates as additional droplets in the vicinity of the target droplet are subjected to the laser-induced plasma and its associated shockwave. Examples of both low- and fast-rate mechanisms are presented for Mn-Fe bi-metal oxide nanoparticles and zinc oxide nanoparticles, nanofilaments and nanofoams. Real-time diagnostics were carried out with time-resolved imaging, atomic emission spectroscopy, light scattering and shadowgraphy. In addition to overcoming some of the difficulties associated with pulsed-laser deposition (PLD), the use of a liquid precursor whose composition can be tailored on a droplet-to-droplet basis opens a number of possibilities.

  8. A dynamic thermal model for design and control of an 800-element open-air radio telescope

    NASA Astrophysics Data System (ADS)

    Bremer, Michael; Greve, Albert

    2011-09-01

    In earlier work we have described the thermal modelling for design and control of a fully insulated, and sometimes ventilated, high precision radio telescope. For such an insulated telescope the modelling of the time-variable dynamic influence of the thermal environment (air, sky and ground radiation, insolation) is relatively simple. The modelling becomes however quite complex for an open-air radio telescope where each individual member of the reflector backup structure (BUS) and the support structure (fork or yoke) is exposed under a different and time-dependent aspect angle to the thermal environment, which applies in particular to solar radiation. We present a time-dependent 800-element thermal model of an open-air telescope. Using the IRAM 30-m radio telescope as the basic mechanical structure, we explain how the temperature induced, real-time pointing and reflector surface deformations can be derived when using as input the day of the year, the thermal environment, and the geographic position of the telescope and its changing pointing direction. Thermal modelling and results similar to those reported here can be used for radio telescope design and real-time control of pointing and surface adjustment of a telescope with active panels.

  9. An Investigation of Physics and Control of Flow Passing a NACA 0015 in Fully-Reversed Condition

    NASA Astrophysics Data System (ADS)

    Clifford, Christopher J.

    Flow control experiments were performed on a NACA 0015 airfoil in fully-reversed condition, which is anticipated to occur on the retreating blade side of advanced helicopters such as slowed-rotor compound rotorcraft. Control was achieved using nanosecond dielectric barrier discharge (NS-DBD) plasma actuators. The Reynolds number based on a chord length of 203 mm was fixed at 5.0 · 105, corresponding to a freestream velocity of ˜38 m/s. Two angles of attack were considered: α = 0° and 15°, each of which is relevant to a particular implementation of slowed-rotor technology. At α = 0°, the flow resembles that of a flow behind a cylinder. A von Karman vortex street formed in the wake where alternating vortex shedding occurred at a Strouhal number of 0.12. Excitation was performed using an NS-DBD on one side of the airfoil, with plasma formation just upstream of the separation line. However, there was no discernible influence upon the baseline behavior. At α = 15°, fully separated flow on the suction side extended well beyond the airfoil with naturally shed vortices at a Strouhal number of 0.19. Plasma actuation was evaluated at both the aerodynamic leading-edge (ALE) and aerodynamic trailing-edge (ATE) of the airfoil. The flow responded to the plasma actuation at the ALE by generating organized coherent structures in the shear layer over the separated region. Moderate excitation around the natural shedding Strouhal number had the most significant effects: synchronizing the shedding from the ALE and ATE, creating moderately sized structures that convected far downstream, greatly reducing the separation area, increasing lift, and decreasing drag. Excitation at much higher Strouhal numbers resulted in the flow returning to its natural shedding state, but with less coherent structures that diffused in the wake. This reduced the separation area and significantly reduced drag. Plasma actuation at the ATE caused a reduction in the magnitude of the fundamental and

  10. Evaluation of a Fully Automated Research Prototype for the Immediate Identification of Microorganisms from Positive Blood Cultures under Clinical Conditions

    PubMed Central

    Hyman, Jay M.; Walsh, John D.; Ronsick, Christopher; Wilson, Mark; Hazen, Kevin C.; Borzhemskaya, Larisa; Link, John; Clay, Bradford; Ullery, Michael; Sanchez-Illan, Mirta; Rothenberg, Steven; Robinson, Ron; van Belkum, Alex

    2016-01-01

    ABSTRACT A clinical laboratory evaluation of an intrinsic fluorescence spectroscopy (IFS)-based identification system paired to a BacT/Alert Virtuo microbial detection system (bioMérieux, Inc., Durham, NC) was performed to assess the potential for fully automated identification of positive blood cultures. The prototype IFS system incorporates a novel method combining a simple microbial purification procedure with rapid in situ identification via spectroscopy. Results were available within 15 min of a bottle signaling positive and required no manual intervention. Among cultures positive for organisms contained within the database and producing acceptable spectra, 75 of 88 (85.2%) and 79 of 88 (89.8%) were correctly identified to the species and genus level, respectively. These results are similar to the performance of existing rapid methods. PMID:27094332

  11. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China.

    PubMed

    Ti, Chaopu; Luo, Yongxia; Yan, Xiaoyuan

    2015-12-01

    Nitrogen (N) loss from vegetable cropping systems has become a significant environmental issue in China. In this study, estimation of N balances in both open-air and greenhouse vegetable cropping systems in China was established. Results showed that the total N input in open-air and greenhouse vegetable cropping systems in 2010 was 5.44 and 2.60 Tg, respectively. Chemical fertilizer N input in the two cropping systems was 201 kg N ha(-1) per season (open-air) and 478 kg N ha(-1) per season (greenhouse). The N use efficiency (NUE) was 25.9 ± 13.3 and 19.7 ± 9.4% for open-air and greenhouse vegetable cropping systems, respectively, significantly lower than that of maize, wheat, and rice. Approximately 30.6% of total N input was accumulated in soils and 0.8% was lost by ammonia volatilization in greenhouse vegetable system, while N accumulation and ammonia volatilization accounted for 19.1 and 11.1%, respectively, of total N input in open-air vegetable systems.

  12. [Condition setting for the measurement of blood coagulation factor XIII activity using a fully automated blood coagulation analyzer, COAGTRON-350].

    PubMed

    Kanno, Nobuko; Kaneko, Makoto; Tanabe, Kumiko; Jyona, Masahiro; Yokota, Hiromitsu; Yatomi, Yutaka

    2012-12-01

    The automated laboratory analyzer COAGTRON-350 (Trinity Biotech) is used for routine and specific coagulation testing for the detection of fibrin formation utilizing either mechanical principles (ball method) or photo-optical principles, chromogenic kinetic enzyme analysis, and immune-turbidimetric detection systems in one benchtop unit. In this study, we demonstrated and established a parameter for the measurement of factor XIII (FXIII) activity using Berichrom FXIII reagent and the COAGTRON-350 analyzer. The usual protocol used for this reagent, based on the handling method, was slightly modified for this device. The analysis showed that fundamental study for the measurement of FXIII activity under our condition setting was favorable in terms of reproducibility, linearity, and correlation with another assays. Since FXIII is the key enzyme that plays important roles in hemostasis by stabilizing fibrin formation, the measurement of FXIII is essential for the diagnosis of bleeding disorders. Therefore, FXIII activity assessment as well as a routine coagulation testing can be conducted simultaneously with one instrument, which is useful in coagulopathy assessment.

  13. Development of methods for predicting large crack growth in elastic-plastic work-hardening materials in fully plastic conditions

    NASA Technical Reports Server (NTRS)

    Ford, Hugh; Turner, C. E.; Fenner, R. T.; Curr, R. M.; Ivankovic, A.

    1995-01-01

    The objects of the first, exploratory, stage of the project were listed as: (1) to make a detailed and critical review of the Boundary Element method as already published and with regard to elastic-plastic fracture mechanics, to assess its potential for handling present concepts in two-dimensional and three-dimensional cases. To this was subsequently added the Finite Volume method and certain aspects of the Finite Element method for comparative purposes; (2) to assess the further steps needed to apply the methods so far developed to the general field, covering a practical range of geometries, work hardening materials, and composites: to consider their application under higher temperature conditions; (3) to re-assess the present stage of development of the energy dissipation rate, crack tip opening angle and J-integral models in relation to the possibilities of producing a unified technology with the previous two items; and (4) to report on the feasibility and promise of this combined approach and, if appropriate, make recommendations for the second stage aimed at developing a generalized crack growth technology for its application to real-life problems.

  14. Open Air Laboratories (OPAL): a community-driven research programme.

    PubMed

    Davies, L; Bell, J N B; Bone, J; Head, M; Hill, L; Howard, C; Hobbs, S J; Jones, D T; Power, S A; Rose, N; Ryder, C; Seed, L; Stevens, G; Toumi, R; Voulvoulis, N; White, P C L

    2011-01-01

    OPAL is an English national programme that takes scientists into the community to investigate environmental issues. Biological monitoring plays a pivotal role covering topics of: i) soil and earthworms; ii) air, lichens and tar spot on sycamore; iii) water and aquatic invertebrates; iv) biodiversity and hedgerows; v) climate, clouds and thermal comfort. Each survey has been developed by an inter-disciplinary team and tested by voluntary, statutory and community sectors. Data are submitted via the web and instantly mapped. Preliminary results are presented, together with a discussion on data quality and uncertainty. Communities also investigate local pollution issues, ranging from nitrogen deposition on heathlands to traffic emissions on roadside vegetation. Over 200,000 people have participated so far, including over 1000 schools and 1000 voluntary groups. Benefits include a substantial, growing database on biodiversity and habitat condition, much from previously unsampled sites particularly in urban areas, and a more engaged public.

  15. Acute O 3 damage on first year coppice sprouts of aspen and maple sprouts in an open-air experiment.

    PubMed

    Darbah, Joseph N T; Jones, Wendy S; Burton, Andrew J; Nagy, John; Kubiske, Mark E

    2011-09-01

    We studied the effect of high ozone (O(3)) concentration (110-490 nmol mol(-1)) on regenerating aspen (Populus tremuloides) and maple (Acer saccharum) trees at an open-air O(3) pollution experiment near Rhinelander WI USA. This study is the first of its kind to examine the effects of acute O(3) exposure on aspen and maple sprouts after the parent trees, which were grown under elevated O(3) and/or CO(2) for 12 years, were harvested. Acute O(3) damage was not uniform within the crowns of aspen suckers; it was most severe in the mature, fully expanded photosynthesizing leaves. Young expanding leaves showed no visible signs of acute O(3) damage contrary to expectations. Stomatal conductance played a primary role in the severity of acute O(3) damage as it directly controlled O(3) uptake. Maple sprouts, which had lower stomatal conductance, smaller stomatal aperture, higher stomatal density and larger leaf surface area, were tolerant of acute O(3) exposure. Moreover, elevated CO(2) did not ameliorate the adverse effects of acute O(3) dose on aspen and maple sprouts, in contrast to its ability to counteract the effects of long-term chronic exposure to lower O(3) levels.

  16. Acute O3 damage on first year coppice sprouts of aspen and maple sprouts in an open-air experiment

    SciTech Connect

    Darbah, J.N.; Nagy, J.; Jones, W. S.; Burton, A. J.; Kubiske, M. E.

    2011-10-01

    We studied the effect of high ozone (O{sub 3}) concentration (110-490 nmol mol{sup -1}) on regenerating aspen (Populus tremuloides) and maple (Acer saccharum) trees at an open-air O{sub 3} pollution experiment near Rhinelander WI USA. This study is the first of its kind to examine the effects of acute O{sub 3} exposure on aspen and maple sprouts after the parent trees, which were grown under elevated O{sub 3} and/or CO{sub 2} for 12 years, were harvested. Acute O{sub 3} damage was not uniform within the crowns of aspen suckers; it was most severe in the mature, fully expanded photosynthesizing leaves. Young expanding leaves showed no visible signs of acute O{sub 3} damage contrary to expectations. Stomatal conductance played a primary role in the severity of acute O{sub 3} damage as it directly controlled O{sub 3} uptake. Maple sprouts, which had lower stomatal conductance, smaller stomatal aperture, higher stomatal density and larger leaf surface area, were tolerant of acute O{sub 3} exposure. Moreover, elevated CO{sub 2} did not ameliorate the adverse effects of acute O{sub 3} dose on aspen and maple sprouts, in contrast to its ability to counteract the effects of long-term chronic exposure to lower O{sub 3} levels.

  17. Background-oriented schlieren with natural background for quantitative visualization of open-air explosions

    NASA Astrophysics Data System (ADS)

    Mizukaki, T.; Wakabayashi, K.; Matsumura, T.; Nakayama, K.

    2014-01-01

    This study describes an attempt of quantitative visualization of open-air explosions via the background-oriented schlieren method (BOS). The shock wave propagation curve and overpressure distribution were extracted from the obtained images and compared with the results of the numerical analysis. The potential of extracting the density distribution behind the shock front is also demonstrated. Two open-air explosions were conducted; one with a -kg emulsion explosive and the other with a -kg composition C4 explosive. A high-speed digital video camera was used with a frame rate of and a pixel size of . A natural background, including trees and grass, was used for BOS measurements instead of the random dots used in a laboratory. The overpressure distribution given by the passing shock was estimated from the visualized images. The estimated overpressures agreed with the values recorded by pressure transducers in the test field. The background displacement caused by light diffraction inside the spherical shock waves was in good agreement, except at the shock front. The results shown here suggest that the BOS method for open-air experiments could provide increasingly better quantitative and conventional visualization results with increasing spatial resolution of high-speed cameras.

  18. Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization

    NASA Astrophysics Data System (ADS)

    He, X. N.; Xie, Z. Q.; Gao, Y.; Hu, W.; Guo, L. B.; Jiang, L.; Lu, Y. F.

    2012-01-01

    Mass spectrometry of solid samples in open air was carried out using combined laser ionization and metastable ionization time-of-flight mass spectrometry (LI-MI-TOFMS) in ambient environment for qualitative and semiquantitative (relative analyte information, not absolute information) analysis. Ambient metastable ionization using a direct analysis in realtime (DART) ion source was combined with laser ionization time-of-flight mass spectrometry (LI-TOFMS) to study the effects of combining metastable and laser ionization. A series of metallic samples from the National Institute of Standards and Technology (NIST 494, 495, 498, 499, and 500) and a pure carbon target were characterized using LI-TOFMS in open air. LI-MI-TOFMS was found to be superior to laser-induced breakdown spectroscopy (LIBS). Laser pulse energies between 10 and 200 mJ at the second harmonic (532 nm) of an Nd:YAG laser were applied in the experiment to obtain a high degree of ionization in plasmas. Higher laser pulse energy improves signal intensities of trace elements (such as Fe, Cr, Mn, Ni, Ca, Al, and Ag). Data were analyzed by numerically calculating relative sensitivity coefficients (RSCs) and limit of detections (LODs) from mass spectrometry (MS) and LIBS spectra. Different parameters, such as boiling point, ionization potential, RSC, LOD, and atomic weight, were shown to analyze the ionization and MS detection processes in open air.

  19. Storage corrosion of materials and equipment: Temperature-humidity and aerochemical regimes indoors and in the open air

    SciTech Connect

    Strekalov, P.V.

    1994-07-01

    The following storage factors are considered: (1) the temperature-humidity complex (THC) in the open air at representative sites with cold, moderate, and subtropical humid climate; (2) the temperature and humidity differences between the open air and an atmospheric of semiclosed spaces; (3) the THC inside storage-spaces in a humid tropical climate; (4) the concentration of SO{sub 2} and Cl{sup -} in the open air and in different storage-spaces; (5) the categories of corrosivity of the atmosphere and methods for its evaluation indoors and outdoors.

  20. The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: a hypothesis-driven observatory

    NASA Astrophysics Data System (ADS)

    Blöschl, G.; Blaschke, A. P.; Broer, M.; Bucher, C.; Carr, G.; Chen, X.; Eder, A.; Exner-Kittridge, M.; Farnleitner, A.; Flores-Orozco, A.; Haas, P.; Hogan, P.; Kazemi Amiri, A.; Oismüller, M.; Parajka, J.; Silasari, R.; Stadler, P.; Strauss, P.; Vreugdenhil, M.; Wagner, W.; Zessner, M.

    2016-01-01

    Hydrological observatories bear a lot of resemblance to the more traditional research catchment concept, but tend to differ in providing more long-term facilities that transcend the lifetime of individual projects, are more strongly geared towards performing interdisciplinary research, and are often designed as networks to assist in performing collaborative science. This paper illustrates how the experimental and monitoring set-up of an observatory, the 66 ha Hydrological Open Air Laboratory (HOAL) in Petzenkirchen, Lower Austria, has been established in a way that allows meaningful hypothesis testing. The overarching science questions guided site selection, identification of dissertation topics and the base monitoring. The specific hypotheses guided the dedicated monitoring and sampling, individual experiments, and repeated experiments with controlled boundary conditions. The purpose of the HOAL is to advance the understanding of water-related flow and transport processes involving sediments, nutrients and microbes in small catchments. The HOAL catchment is ideally suited for this purpose, because it features a range of different runoff generation processes (surface runoff, springs, tile drains, wetlands), the nutrient inputs are known, and it is convenient from a logistic point of view as all instruments can be connected to the power grid and a high-speed glassfibre local area network (LAN). The multitude of runoff generation mechanisms in the catchment provides a genuine laboratory where hypotheses of flow and transport can be tested, either by controlled experiments or by contrasting sub-regions of different characteristics. This diversity also ensures that the HOAL is representative of a range of catchments around the world, and the specific process findings from the HOAL are applicable to a variety of agricultural catchment settings. The HOAL is operated jointly by the Vienna University of Technology and the Federal Agency for Water Management and takes

  1. The Hydrological Open Air Laboratory (HOAL) in Petzenkirchen: a hypotheses driven observatory

    NASA Astrophysics Data System (ADS)

    Blöschl, G.; Blaschke, A. P.; Broer, M.; Bucher, C.; Carr, G.; Chen, X.; Eder, A.; Exner-Kittridge, M.; Farnleitner, A.; Flores-Orozco, A.; Haas, P.; Hogan, P.; Kazemi Amiri, A.; Oismüller, M.; Parajka, J.; Silasari, R.; Stadler, P.; Strauß, P.; Vreugdenhil, M.; Wagner, W.; Zessner, M.

    2015-07-01

    Hydrological observatories bear a lot of resemblance to the more traditional research catchment concept but tend to differ in providing more long term facilities that transcend the lifetime of individual projects, are more strongly geared towards performing interdisciplinary research, and are often designed as networks to assist in performing collaborative science. This paper illustrates how the experimental and monitoring setup of an observatory, the 66 ha Hydrological Open Air Laboratory (HOAL) in Petzenkirchen, Lower Austria, has been established in a way that allows meaningful hypothesis testing. The overarching science questions guided site selection, identifying dissertation topics and the base monitoring. The specific hypotheses guided the dedicated monitoring and sampling, individual experiments, and repeated experiments with controlled boundary conditions. The purpose of the HOAL is to advance the understanding of water related flow and transport processes involving sediments, nutrients and microbes in small catchments. The HOAL catchment is ideally suited for this purpose, because it features a range of different runoff generation processes (surface runoff, springs, tile drains, wetlands), the nutrient inputs are known, and it is convenient from a logistic point of view as all instruments can be connected to the power grid and a high speed glassfibre Local Area Network. The multitude of runoff generation mechanisms in the catchment provide a genuine laboratory where hypotheses of flow and transport can be tested, either by controlled experiments or by contrasting sub-regions of different characteristics. This diversity also ensures that the HOAL is representative of a range of catchments around the world and the specific process findings from the HOAL are applicable to a variety of agricultural catchment settings. The HOAL is operated jointly by the Vienna University of Technology and the Federal Agency for Water Management and takes advantage of the

  2. An Autosampler and Field Sample Carrier for Maximizing Throughput Using an Open-Air, Surface Sampling Ion Source for MS

    EPA Science Inventory

    A recently developed, commercially available, open-air, surface sampling ion source for mass spectrometers provides individual analyses in several seconds. To realize its full throughput potential, an autosampler and field sample carrier were designed and built. The autosampler ...

  3. Paired microfossil evidence for a delayed development of fully marine surface water conditions in the Nordic seas during the Last interglacial (MIS 5e)

    NASA Astrophysics Data System (ADS)

    van Nieuwenhove, N.; Bauch, H. A.; Kandiano, E. S.

    2010-12-01

    Dinoflagellate cyst (dinocyst) and foraminiferal records of sediment cores from The Vøring and Iceland Plateau and south of the Fram Strait were used to reconstruct the evolution of the surface circulation in the Nordic seas during the last interglacial (Marine Isotopic Stage or MIS 5e). The location of the cores, under the modern pathway of the warm Norwegian Atlantic Current (NwAC) and within the mixing zone of the NwAC and the cold East Greenland Current (EGC), allows to reconstruct the spreading of inflowing North Atlantic surface waters across the Nordic seas during the climate progression of MIS 5e. The microfossil records, supported by stable isotope and IRD data, reveal that during the first ~6000 years of MIS 5e a more pronounced stratification and seasonality existed in the eastern Nordic seas, presumably as a result of long-lasting deglacial effects. Thus, the northward heat flux was reduced during this time in this area. It was only during late MIS 5e, and when IRD-input into the eastern Nordic seas had come to a halt, that the northward flow of warm Atlantic water masses intensified so that interglacial conditions became also eminent in the surface waters south of the Fram Strait. Our data further suggest that the stronger NwAC of late MIS 5e entailed an intensification of the EGC. While this brought comparatively colder conditions towards the Iceland Plateau it was also the only time when proper, that is fully marine, warm interglacial surface conditions co-existed in the eastern Nordic seas.

  4. Respiratory Symptoms of Vendors in an Open-Air Hawker Center in Brunei Darussalam

    PubMed Central

    Nazurah bt Abdul Wahid, Nurul Nor; Balalla, N. B. P; Koh, David

    2014-01-01

    Objectives: We studied respiratory problems among vendors exposed to cooking fumes in an open-air hawker center. Exposure to cooking fumes from either the use of fossil fuels or liquefied petroleum gas (LPG) has been shown to be associated with adverse respiratory health effects. Methods: We conducted a cross-sectional study among 67 food vendors exposed to cooking fumes as well as 18 merchandise sellers at an open-air hawker center in Brunei Darussalam. Past medical and smoking history and exposure to cooking fumes were obtained. The validated American Thoracic Society Questionnaire with a translated Malay version was used to ask for respiratory symptoms. Results: Compared to merchandise sellers (n = 18), cooking vendors (n = 67) had a higher self-reported respiratory symptoms (50.7% for those cooking and 33.3% for merchandise sellers). Cough (28.3%) was the main respiratory symptom experienced in cooking vendors and breathlessness (22.2%) among merchandise sellers. Half (50.0%) of cooking vendors who worked for more than 10 years had cough and 27.3% had phlegm. Those cooking with charcoal were two times more likely to have cough than those cooking with LPG. Cooking vendors with a job duration of more than 10 years were thrice more likely to have cough. Conclusion: Cooking vendors in the open-air hawker center exposed to cooking fumes had more respiratory symptoms compared to non-exposed merchandise sellers. The type of fuel used for cooking and duration of work was associated with increased prevalence of cough. PMID:25325051

  5. Long-term self-renewal of human pluripotent stem cells on peptide-decorated poly(OEGMA-co-HEMA) brushes under fully defined conditions.

    PubMed

    Deng, Y; Zhang, X; Zhao, X; Li, Q; Ye, Z; Li, Z; Liu, Y; Zhou, Y; Ma, H; Pan, G; Pei, D; Fang, J; Wei, S

    2013-11-01

    Realization of the full potential of human induced pluripotent stem cells (hiPSC) in clinical applications requires the development of well-defined culture conditions for their long-term growth and directed differentiation. This paper describes a novel fully defined synthetic peptide-decorated substrate that supports self-renewal of hiPSC in commercially available xeno-free, chemically defined medium. The Au surface was deposited by a poly(OEGMA-co-HEMA) film, using the surface-initiated polymerization method (SIP) with the further step of carboxylation. The hiPSC generated from umbilical cord mesenchymal cells were successfully cultured for 10 passages on the peptide-tethered poly(OEGMA-co-HEMA) brushes for the first time. Cells maintained their characteristic morphology, proliferation and expressed high levels of markers of pluripotency, similar to the cells cultured on Matrigel™. Moreover, the cell adhesion could be tuned by the pattern and peptide concentration on the substrate. This well-defined, xeno-free and safe substrate, which supports long-term proliferation and self-renewal of hiPSC, will not only help to accelerate the translational perspectives of hiPSC, but also provide a platform to elucidate the underlying molecular mechanisms that regulate stem cell proliferation and differentiation via SIP technology. PMID:23891809

  6. Permeability Evolution During Reactive Flow Experiments on Cores Under CO2 Sequestration Conditions and Development of Fully Coupled Reactive Flow Simulations at the Reservoir Scale

    NASA Astrophysics Data System (ADS)

    Saar, M. O.; Kong, X. Z.; Luhmann, A. J.; Tutolo, B. M.; Seyfried, W. E., Jr.

    2015-12-01

    Physical, chemical, thermal, and mechanical processes can modify permeability and affect CO2 injectivity and reactive fluid flow during geologic CO2 sequestration. Here we report permeability evolutions observed in core-flood experiments using CO2-charged fluids under various formation conditions. Temperature-series experiments on consolidated dolomite cores show a permeability increase due to dissolution, followed by a two-step permeability decrease due to CO2 exsolution and secondary dolomite precipitation, as temperature is increased from 21 to 50°C and then to 100°C, respectively. CO2 mass balance calculations suggest that, under dynamic steady-state conditions, CO2 saturation and its relative permeability can only reach up to ~0.5 and ~0.0065, respectively. Permeability reductions of ~1/3 and mass losses of ~2% are observed both in a 52-day recycling and in two 3-day single-pass experiments with K-feldspar-rich sandstone (150°C, 200 bar). Water chemistry, SEM, and XRCT data suggest feldspar dissolution and precipitation of either boehmite (recycling) or kaolinite (single-pass) during the experiments. These observations indicate that permeability can decrease with increasing porosity due to mineral precipitation in critical pore throats. Single-pass experiments on nine dolomite cores (150°C and 150 bar with NaCl) reveal permeability enhancements and dissolution patterns at different flow rates. Permeability-porosity data indicate an increase in permeability enhancement rate per increase in porosity with reaction progress as dissolution channels lengthen along the core. These experimental observations provide the requisite data for informing up-scaled, fully-coupled reactive transport simulations of CO2 sequestration in interbedded siliclastic-carbonate sedimentary reservoirs, which we present.

  7. Biomass production of multipopulation microalgae in open air pond for biofuel potential.

    PubMed

    Selvakumar, P; Umadevi, K

    2016-04-01

    Biodiesel gains attention as it is made from renewable resources and has considerable environmental benefits. The present investigation has focused on large scale cultivation of multipopulation microalgae in open air pond using natural sea water without any additional nutritive supplements for low cost biomass production as a possible source of biofuel in large scale. Open air algal pond attained average chlorophyll concentration of 11.01 µg/L with the maximum of 43.65 µg/L as well as a higher lipid concentration of 18% (w/w) with lipid content 9.3 mg/L on the 10th day of the culture; and maximum biomass of 0.36 g/L on the 7th day of the culture. Composition analysis of fatty acid methyl ester (FAME) was performed by gas chromatography and mass spectrometry (GCMS). Multipopulation of algal biomass had 18% of total lipid content with 55% of total saturated fatty acids (SFA), 35.3% of monounsaturated fatty acids (MUFA) and 9.7% of polyunsaturated fatty acids (PUFA), revealing a potential source of biofuel production at low cost.

  8. Biomass production of multipopulation microalgae in open air pond for biofuel potential.

    PubMed

    Selvakumar, P; Umadevi, K

    2016-04-01

    Biodiesel gains attention as it is made from renewable resources and has considerable environmental benefits. The present investigation has focused on large scale cultivation of multipopulation microalgae in open air pond using natural sea water without any additional nutritive supplements for low cost biomass production as a possible source of biofuel in large scale. Open air algal pond attained average chlorophyll concentration of 11.01 µg/L with the maximum of 43.65 µg/L as well as a higher lipid concentration of 18% (w/w) with lipid content 9.3 mg/L on the 10th day of the culture; and maximum biomass of 0.36 g/L on the 7th day of the culture. Composition analysis of fatty acid methyl ester (FAME) was performed by gas chromatography and mass spectrometry (GCMS). Multipopulation of algal biomass had 18% of total lipid content with 55% of total saturated fatty acids (SFA), 35.3% of monounsaturated fatty acids (MUFA) and 9.7% of polyunsaturated fatty acids (PUFA), revealing a potential source of biofuel production at low cost. PMID:27295924

  9. Microbiological quality of fresh produce from open air markets and supermarkets in the Philippines.

    PubMed

    Vital, Pierangeli G; Dimasuay, Kris Genelyn B; Widmer, Kenneth W; Rivera, Windell L

    2014-01-01

    This study is the first in the Philippines to conduct a comprehensive assessment of the prevalence of bacterial pathogens and somatic phages in retailed fresh produce used in salad preparation, namely, bell pepper, cabbage, carrot, lettuce, and tomato, using culture and molecular methods. Out of 300 samples from open air and supermarkets, 16.7% tested positive for thermotolerant Escherichia coli, 24.7% for Salmonella spp., and 47% for somatic phages. Results show that counts range from 0.30 to 4.03 log10 CFU/g for E. coli, 0.66 to ≥ 2.34 log10 MPN/g for Salmonella spp., and 1.30 to ≥ 3.00 log 10 PFU/g for somatic phages. Statistical analyses show that there was no significant difference in the microbial counts between open air and supermarkets (α = 0.05). TaqMan and AccuPower Plus DualStar real-time polymerase chain reaction (RT-PCR) was used to confirm the presence of these organisms. The relatively high prevalence of microorganisms observed in produce surveyed signifies reduction in shelf-life and a potential hazard to food safety. This information may benefit farmers, consumers, merchants, and policy makers for foodborne disease detection and prevention. PMID:24963502

  10. Highly efficient photocatalytic TiO2 coatings deposited by open air atmospheric pressure plasma jet with aerosolized TTIP precursor

    NASA Astrophysics Data System (ADS)

    Fakhouri, H.; Ben Salem, D.; Carton, O.; Pulpytel, J.; Arefi-Khonsari, F.

    2014-07-01

    A simple method to deposit photocatalytic TiO2 coatings, at a high rate (20-40 µm s-1), and with a high porosity, is reported in this paper. This method, which allows the treatment of membranes (with an 800 nm pore size), is based on the introduction of a liquid precursor sprayed into an open-air atmospheric pressure plasma jet (APPJ). The photocatalytic activity of the TiO2 thin films prepared by APPJ have been compared with our best N-doped TiO2 thin films, deposited by reactive radio frequency (RF) magnetron sputtering, previously reported in the literature. The morphology, chemical composition, photoelectrochemical, and photocatalytic properties of the coatings have been studied in this paper. Significant control of the porosity and crystallinity was achieved by varying the deposition parameters and the annealing temperature. Under optimized conditions, the TiO2 coatings deposited by APPJ are characterized by a higher photocatalytic activity as compared to the optimized thin films deposited by RF sputtering. This difference can be explained by the higher specific surface of the APPJ coatings. Finally, the most interesting characteristic of this APPJ-liquid spray process is its capacity to treat membranes without blocking the pores, and to produce photocatalytic membranes which can efficiently combine filtration and photocatalysis for water treatment.

  11. Synthesis of Nano-Crystalline Materials in Open-Air Laboratory: A Case Study of Tobacco.

    PubMed

    Satpati, Biswarup; Bhattacherjee, Ashis; Roy, Madhusudan

    2015-02-01

    The work deals with synthesis of nano-crystalline materials in open-air laboratory and in-depth investigation of the tobacco sample of one branded cigarette and its ash using high-resolution transmission electron microscopy and associated techniques. It exhibits the presence of nanocrystals and nanorods of various oxides in cigarette ash. The structure, shape, size and composition of these nanocrystals and nanorods are explored. The energy dispersive X-ray spectra from different regions of the tobacco sample and its ash using high-angle annular dark field scanning/transmission electron microscopy mode are utilized to obtain elemental composition and their relative abundances. For a detailed distribution of different elements in the nanorods, elemental mapping using energy-filtered transmission electron microscopy is also presented. The results highlight the conversion of amorphous constituents of tobacco to nanomaterials on combustion at low temperatures, thus mixing up in the atmosphere.

  12. Determination of Nanogram Microparticles from Explosives after Real Open-Air Explosions by Confocal Raman Microscopy.

    PubMed

    Zapata, Félix; García-Ruiz, Carmen

    2016-07-01

    Explosives are increasingly being used for terrorist attacks to cause devastating explosions. The detection of their postblast residues after an explosion is a high challenge, which has been barely investigated, particularly using spectroscopic techniques. In this research, a novel methodology using confocal Raman microscopy has been developed for the analysis of postblast residues from 10 open-air explosions caused by 10 different explosives (TNT, RDX, PETN, TATP, HMTD, dynamite, black powder, ANFO, chloratite, and ammonal) commonly used in improvised explosive devices. The methodology for the determination of postblast particles from explosives consisted of examining the samples surfaces with both the naked eye, first, and microscopically (10× and 50×), immediately afterward; and finally, analyzing the selected residues by confocal Raman spectroscopy in order to identify the postblast particles from explosives. Interestingly, confocal Raman microscopy has demonstrated to be highly suitable to rapidly, selectively, and noninvasively analyze postblast microscopic particles from explosives up to the nanogram range. PMID:27281604

  13. Determination of Nanogram Microparticles from Explosives after Real Open-Air Explosions by Confocal Raman Microscopy.

    PubMed

    Zapata, Félix; García-Ruiz, Carmen

    2016-07-01

    Explosives are increasingly being used for terrorist attacks to cause devastating explosions. The detection of their postblast residues after an explosion is a high challenge, which has been barely investigated, particularly using spectroscopic techniques. In this research, a novel methodology using confocal Raman microscopy has been developed for the analysis of postblast residues from 10 open-air explosions caused by 10 different explosives (TNT, RDX, PETN, TATP, HMTD, dynamite, black powder, ANFO, chloratite, and ammonal) commonly used in improvised explosive devices. The methodology for the determination of postblast particles from explosives consisted of examining the samples surfaces with both the naked eye, first, and microscopically (10× and 50×), immediately afterward; and finally, analyzing the selected residues by confocal Raman spectroscopy in order to identify the postblast particles from explosives. Interestingly, confocal Raman microscopy has demonstrated to be highly suitable to rapidly, selectively, and noninvasively analyze postblast microscopic particles from explosives up to the nanogram range.

  14. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    NASA Astrophysics Data System (ADS)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  15. Visualizing Discipline of the Body in a German Open-Air School (1923-1939): Retrospection and Introspection

    ERIC Educational Resources Information Center

    Thyssen, Geert

    2007-01-01

    This article considers how historians might use imagery in the context of an open-air school in Germany, Senne I-Bielefeld (1922-1939). In considering the "nature" of such images, issues and problems associated with their interpretation are illuminated and discussed. First, two images selected from the pre-Nazi period of the school are examined…

  16. Margaret and Rachel McMillan: Their Influences on Open-Air Nursery Education and Early Years Teacher Education

    ERIC Educational Resources Information Center

    Liebovich, Betty

    2014-01-01

    Rachel and Margaret McMillan created an open-air nursery in Deptford, London that has influenced early years education for 100 years. Their vision for young children living in poverty and deprivation to have access to fresh air through outdoor learning, nutritious meals, and an enriching environment to explore and develop has been embraced and…

  17. [Investigations of some chemical compounds produced by the incineration of old tires in the open air (author's transl)].

    PubMed

    Möse, J R; Binder, H; Raber, H; Eder, J

    1977-08-01

    The chemical compounds which are discharged from the site at which old tires are incinerated in the open air roughly corresponded to those of waste water. In the smoke "mushroom" above the site of incineration, at a height of 31 to 40 metres, many types and large quantities of polycyclic aromatic and also cancerogenic hydrocarbons were found adsorbed on soot particles. PMID:910585

  18. Trapping the Pasture Odorscape Using Open-Air Solid-Phase Micro Extraction, a Tool to Assess Grassland Value.

    PubMed

    Cornu, Agnès; Farruggia, Anne; Leppik, Ene; Pinier, Centina; Fournier, Florence; Genoud, David; Frérot, Brigitte

    2015-01-01

    Besides supporting cattle feeding, grasslands are home to a diversity of plants and insects that interact with each other by emitting volatile compounds. The aim of this work was to develop a method to determine permanent grassland odorscape and relate it to flower-visiting insects. Two grasslands were chosen for their contrasting levels of botanical diversity, resulting from differing grazing managements. Measurements were made over two periods of three consecutive days at the beginning of grazing, and just after the cows had left the plots. Volatile compounds were trapped using solid-phase microextraction (SPME) fibers exposed eight hours a day in three exclosures per plot, and then analyzed by gas-chromatography-mass spectrometry (GC-MS). Insects were trapped using pan traps and a net, sorted and counted. The open air SPME method yielded volatile compound profiles that were richer than maize field profiles, comprising the common green leaf volatiles (GLV) and more specific ones. Differences between the odorscapes of the two grasslands were found, but they were not as marked as expected from their botanical composition. By contrast, there were sharp differences between the two periods, resulting from the combined effects of changes in weather conditions, plant phenological stage and grazing progress. Several correlations between insect counts and volatile compounds were found. Although their correlation coefficients were low, some of them were confirmed when tested by Spearman rank correlation, and could be logically explained. This method of grassland odorscape deserves to be developed because it can provide information on many aspects of grassland function and on the stresses that grassland plants undergo.

  19. Trapping the Pasture Odorscape Using Open-Air Solid-Phase Micro Extraction, a Tool to Assess Grassland Value

    PubMed Central

    Cornu, Agnès; Farruggia, Anne; Leppik, Ene; Pinier, Centina; Fournier, Florence; Genoud, David; Frérot, Brigitte

    2015-01-01

    Besides supporting cattle feeding, grasslands are home to a diversity of plants and insects that interact with each other by emitting volatile compounds. The aim of this work was to develop a method to determine permanent grassland odorscape and relate it to flower-visiting insects. Two grasslands were chosen for their contrasting levels of botanical diversity, resulting from differing grazing managements. Measurements were made over two periods of three consecutive days at the beginning of grazing, and just after the cows had left the plots. Volatile compounds were trapped using solid-phase microextraction (SPME) fibers exposed eight hours a day in three exclosures per plot, and then analyzed by gas-chromatography-mass spectrometry (GC-MS). Insects were trapped using pan traps and a net, sorted and counted. The open air SPME method yielded volatile compound profiles that were richer than maize field profiles, comprising the common green leaf volatiles (GLV) and more specific ones. Differences between the odorscapes of the two grasslands were found, but they were not as marked as expected from their botanical composition. By contrast, there were sharp differences between the two periods, resulting from the combined effects of changes in weather conditions, plant phenological stage and grazing progress. Several correlations between insect counts and volatile compounds were found. Although their correlation coefficients were low, some of them were confirmed when tested by Spearman rank correlation, and could be logically explained. This method of grassland odorscape deserves to be developed because it can provide information on many aspects of grassland function and on the stresses that grassland plants undergo. PMID:26536369

  20. Fully solution-processed organic light-emitting electrochemical cells (OLEC) with inkjet-printed micro-lenses for disposable lab-on-chip applications at ambient conditions

    NASA Astrophysics Data System (ADS)

    Shu, Zhe; Pabst, Oliver; Beckert, Erik; Eberhardt, Ramona; Tünnermann, Andreas

    2016-02-01

    Microfluidic lab-on-chip devices can be used for chemical and biological analyses such as DNA tests or environmental monitoring. Such devices integrate most of the basic functionalities needed for scientific analysis on a microfluidic chip. When using such devices, cost and space-intensive lab equipment is no longer necessary. However, in order to make a monolithic and cost-efficient/disposable microfluidic sensing device, direct integration of the excitation light source for fluorescent sensing is often required. To achieve this, we introduce a fully solution processable deviation of OLEDs, organic light-emitting electrochemical cells (OLECs), as a low-cost excitation light source for a disposable microfluidic sensing platform. By mixing metal ions and a solid electrolyte with light-emitting polymers as active materials, an in-situ doping and in-situ PN-junction can be generated within a three layer sandwich device. Thanks to this doping effect, work function adaptation is not necessary and air-stable electrode can be used. An ambient manufacturing process for fully solution-processed OLECs is presented, which consist of a spin-coated blue light-emitting polymer plus dopants on an ITO cathode and an inkjet-printed PEDOT:PSS transparent top anode. A fully transparent blue OLEC is able to obtain light intensity > 2500 cd/m2 under pulsed driving mode and maintain stable after 1000 cycles, which fulfils requirements for simple fluorescent on-chip sensing applications. However, because of the large refractive index difference between substrates and air, about 80% of emitted light is trapped inside the device. Therefore, inkjet printed micro-lenses on the rear side are introduced here to further increase light-emitting brightness.

  1. Exposure of workers to airborne microorganisms in open-air swine houses.

    PubMed

    Chang, C W; Chung, H; Huang, C F; Su, H J

    2001-01-01

    This study quantified the levels of airborne microorganisms in six swine farms with more than 10,000 pigs in subtropical Taiwan. We evaluated breeding, growing, and finishing stalls, which were primarily open-air buildings, as well as partially enclosed farrowing and nursery piggeries. Airborne culturable bacteria, gram-negative bacteria, and fungi were placed on appropriate media by using an all-glass impinger or single-stage Andersen microbial sampler. Results showed that mean concentrations of culturable bacteria and gram-negative bacteria were 3.3 x 10(5) and 143.7 CFU/m(3), respectively. The concentration of airborne culturable fungi was about 10(3) CFU/m(3), with Cladosporium the predominant genus. The highest airborne levels of culturable bacteria and gram-negative bacteria were identified in the finishing units. The air of the nursery stalls was the least contaminated with culturable and gram-negative bacteria. Irregular and infrequent cleaning, high pig density, no separation of wastes from pen floors, and accumulation of water as a result of the processes for cleaning and reducing pig temperature possibly compromise the benefits of the open characteristic of the finishing units with respect to airborne bacterial concentration.

  2. Dynamic simulation and safety evaluation of high-speed trains meeting in open air

    NASA Astrophysics Data System (ADS)

    Li, Songyan; Zheng, Zhijun; Yu, Jilin; Qian, Chunqiang

    2016-04-01

    Dynamic responses of a carriage under excitation with the German high-speed low-interference track spectrum together with the air pressure pulse generated as high-speed trains passing each other are investigated with a multi-body dynamics method. The variations of degrees of freedom (DOFs: horizontal movement, roll angle, and yaw angle), the lateral wheel-rail force, the derailment coefficient, and the rate of wheel load reduction with time when two carriages meet in open air are obtained and compared with the results of a single train travelling at specified speeds. Results show that the rate of wheel load reduction increases with the increase of train speed and meets some safety standard at a certain speed, but exceeding the value of the rate of wheel load reduction does not necessarily mean derailment. The evaluation standard of the rate of wheel load reduction is somewhat conservative and may be loosened. The pressure pulse has significant effects on the train DOFs, and the evaluations of these safety indexes are strongly suggested in practice. The pressure pulse has a limited effect on the derailment coefficient and the lateral wheel-rail force, and, thus, their further evaluations may be not necessary.

  3. Inkjet patterned superhydrophobic paper for open-air surface microfluidic devices.

    PubMed

    Elsharkawy, Mohamed; Schutzius, Thomas M; Megaridis, Constantine M

    2014-03-21

    We present a facile approach for the fabrication of low-cost surface biomicrofluidic devices on superhydrophobic paper created by drop-casting a fluoroacrylic copolymer onto microtextured paper. Wettability patterning is performed with a common household printer, which produces regions of varying wettability by simply controlling the intensity of ink deposited over prespecified domains. The procedure produces surfaces that are capable of selective droplet sliding and adhesion, when inclined. Using this methodology, we demonstrate the ability to tune the sliding angles of 10 μL water droplets in the range from 13° to 40° by printing lines of constant ink intensity and varied width from 0.1 mm to 2 mm. We also formulate a simple model to predict the onset of droplet sliding on printed lines of known width and wettability. Experiments demonstrate open-air surface microfluidic devices that are capable of pumpless transport, mixing and rapid droplet sampling (~0.6 μL at 50 Hz). Lastly, post treatment of printed areas with pH indicator solutions exemplifies the utility of these substrates in point-of-care diagnostics, which are needed at geographical locations where access to sophisticated testing equipment is limited or non-existent.

  4. Evaluating the Surface Conditions of Temperate Ice Cap Hofsjḋ {{o}}kull, Central Iceland, using H/A/barh {α } Decomposition of Fully-Polarimetric UAVSAR Data

    NASA Astrophysics Data System (ADS)

    Minchew, B. M.; Buckley, S. M.; Hensley, S.

    2010-12-01

    Fully-polarimetric SAR offers a means to study the dynamic changes in the near-surface of glaciers. Various decomposition methods can be used to relate the polarimetric signals to some general physical properties of the scattering mechanisms. Further research is needed to define the relationship between these polarimetric radar scattering properties, the radar penetration depth, and the near-surface properties (such as smoothness, contiguity, and moisture content). As a first step in establishing this relationship, we evaluate the scattering mechanisms of the temperate ice cap Hofsjḋokull, located in central Iceland, and compare them to the expected properties of the glacier. We decomposed fully-polarimetric L-band SAR data acquired from JPL's UAVSAR platform over Hofsjḋokull in the early mornings of June 10-12, 2009 using the Cloude-Pottier H/A/barh {α } eigenvector-based decomposition method. The three parameters of this method--entropy (H), anisotropy (A), and the scattering parameter (barh {α })--indicate if a dominant scattering mechanism exists and identify the mechanism of the most dominant scatterer(s)--surface, volumetric, or dihedral. We evaluate the three decomposed parameters as a function of elevation. These results show that the lowest elevation regions have mostly random scatterers in areas with steep topography and pseudo-random scatterers in areas with more moderate topographic slopes. Both terrain types show combinations of surface and volumetric scatterers but the dominant scatterer is indistinguishable. This behavior is consistent with the rough, wet surface of the ablation zone which should have little overlying snow cover in early summer. As the elevation increases towards the accumulation zone, surface scattering dominates. This dominance of surface scattering occurs at 1300-1500 m MSL: an area which has frequent freeze/thaw cycles and orographically-estimated air temperatures between -2 and 0 o C (based on data acquired at the nearby

  5. Sensitivity of rainfall-runoff processes in the Hydrological Open Air Laboratory

    NASA Astrophysics Data System (ADS)

    Széles, Borbála; Parajka, Juraj; Blöschl, Günter; Oismüller, Markus; Hajnal, Géza

    2016-04-01

    The objective of the present study was to simulate the rainfall response and analyse the sensitivity of rainfall-runoff processes of the Hydrological Open Air Laboratory (HOAL) in Petzenkirchen, a small experimental watershed (66 ha) located in the western part of Lower Austria and dominated by agricultural land use. Due to the extensive monitoring network in the HOAL, the spatial and temporal heterogeneity of hydro-meteorological elements are exceptionally well represented on the catchment scale. The study aimed to exploit the facilities of the available database collected by innovative sensing techniques to advance the understanding of various rainfall-runoff processes. The TUWmodel, a lumped, conceptual hydrological model, following the structure of the HBV model was implemented on the catchment. In addition to the surface runoff at the catchment outlet, several different runoff generation mechanisms (tile drainage flow, saturation excess runoff from wetlands and groundwater discharge from springs) were also simulated, which gave an opportunity to describe the spatial distribution of model parameters in the study area. This helped to proceed from the original lumped model concept towards a spatially distributed one. The other focus of this work was to distinguish the dominant model parameters from the less sensitive ones for each tributary with different runoff type by applying two different sensitivity analysis methods, the simple local perturbation and the global Latin-Hypercube-One-Factor-At-a-Time (LH-OAT) tools. Moreover, the impacts of modifying the initial parameters of the LH-OAT method and the applied objective functions were also taken into consideration. The results and findings of the model and sensitivity analyses were summarized and future development perspectives were outlined. Key words: spatial heterogeneity of rainfall-runoff mechanisms, sensitivity analysis, lumped conceptual hydrological model

  6. Deactivating bacteria with RF Driven Hollow Slot Microplasmas in Open Air at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Yu, Zengqi; Pruden, Amy; Sharma, Ashish; Collins, George

    2003-10-01

    A hollow slot discharge operating in open air at atmospheric pressure has demonstrated its ability to deactivate bacterial growth on nearby surfaces exposed to the RF driven plasma. The cold plasma exits from a hollow slot with a width of 0.2 mm and variable length of 1-35 cm. An internal electrode was powered by 13.56 MHz radio-frequency power at a voltage below 200 V. External electrically grounded slots face the work piece. The plasma plume extends millimeters to centimeter beyond the hollow slot toward the work piece to be irradiated. Argon-Oxygen gas mixtures, at 33 liters per minute flow, were passed through the electrodes and the downstream plasma was employed for the process, with treatment exposure time varied from 0.06 to 0.18 seconds. Bacterial cultures were fixed to 0.22 micron cellulose filter membranes and passed under the plasma at a controlled rate at a distance of about 5-10 millimeters from the grounded slot electrode. Preliminary studies on the effectiveness of the plasma for sterilization were carried out on E. coli. Cultures were grown overnight on the membranes after exposure and the resulting colony forming units (cfu) were determined in treated and untreated groups. In the plasma treated group, a 98.2% kill rate was observed with the lowest exposure time, and increased to 99.8% when the exposure time was tripled. These studies clearly demonstrate the ability of the RF-driven hollow slot atmospheric plasma to inhibit bacterial growth on surfaces.

  7. Open air mineral treatment operations and ambient air quality: assessment and source apportionment.

    PubMed

    Escudero, M; Alastuey, A; Moreno, T; Querol, X; Pérez, P

    2012-11-01

    We present a methodology for evaluating and quantifying the impact of inhalable mineral dust resuspension close to a potentially important industrial point source, in this case an open air plant producing sand, flux and kaolin in the Capuchinos district of Alcañiz (Teruel, NE Spain). PM(10) levels at Capuchinos were initially high (42 μg m(-3) as the annual average with 91 exceedances of the EU daily limit value during 2007) but subsequently decreased (26 μg m(-3) with 16 exceedances in 2010) due to a reduced demand for minerals from the ceramic industry and construction sector during the first stages of the economic crisis. Back trajectory and local wind pattern analyses revealed only limited contribution from exotic PM sources such as African dust intrusions whereas there was clearly a strong link with the mineral stockpiles of the local industry. This link was reinforced by chemical and mineral speciation and source apportionment analysis which showed a dominance of mineral matter (sum of CO(3)(2-), SiO(2), Al(2)O(3), Ca, Fe, K, Mg, P, and Ti: mostly aluminosilicates) which in 2007 contributed 76% of the PM(10) mass (44 μg m(-3) on average). The contribution from Secondary Inorganic Aerosols (SIA, sum of SO(4)(2-), NO(3)(-) and NH(4)(+)) reached 8.4 μg m(-3), accounting for 14% of the PM(10) mass, similar to the amount of calcareous road dust estimated to be present (8 μg m(-3); 13%). Organic matter and elemental carbon contributed 5.3 μg m(-3) (9%) whereas marine aerosol (Na + Cl) levels were minor with an average concentration of 0.4 μg m(-3) (1% of the PM(10) mass). Finally, chemical and mineralogical analysis of stockpile samples and comparison with filter samples confirmed the local industry to be the major source of ambient PM(10) in the area.

  8. Experimental Evaluation of Pool Fire Suppression Performance of Sodium Leak Collection Tray in Open Air

    SciTech Connect

    Parida, F.C.; Rao, P.M.; Ramesh, S.S.; Malarvizhi, B.; Gopalakrishnan, V.; Rao, E.H.V.M.; Kasinathan, N.; Kannan, S.E.

    2006-07-01

    In the event of sodium leakage from heat transfer circuits of fast breeder reactors (FBR), liquid sodium catches fire in ambient air leading to production of flame, smoke and heat. One of the passive fire protection methods involves immediate collection of the leaking sodium to a sodium hold-up vessel (SHV) covered with a sloping cover tray (SCT) having a few drain pipes and one vent pipe (as in Fig. 1). As soon as the liquid sodium falls on the sloping cover tray, gravity guides the sodium through drain pipes into the bottom tray in which self-extinction occurs due to oxygen starvation. This sodium fire protection equipment called leak collection tray (LCT) works without the intervention of an operator and external power source. A large number of LCTs are strategically arranged under the sodium circulating pipe lines in the FBR plants to serve as passive suppression devices. In order to test the efficacy of the LCT, four tests were conducted. Two tests were with LCT having three drain pipes and rest with one. In each experiment, nearly 40 kg of hot liquid sodium at 550 deg. C was discharged on the LCT in the open air. Continuous on-line monitoring of temperature at strategic locations ({approx} 28 points) were carried out. Colour video-graphy was employed for taking motion pictures of various time-dependent events like sodium dumping, appearance of flame and release of smoke through vent pipes. After self-extinction of sodium fire, the LCT was allowed to cool overnight in an argon atmosphere. Solid samples of sodium debris in the SCT and SHV were collected by manual core drilling machine. The samples were subjected to chemical analysis for determination of unburnt and burnt sodium. The results of the four tests revealed an interesting feature: LCT with three drain pipes showed far lower sodium collection efficiency and much higher sodium combustion than that with just one drain pipe. Thermal fluctuations in temperature sensor located near the tip of the drain pipe

  9. Fully Regressive Melanoma

    PubMed Central

    Ehrsam, Eric; Kallini, Joseph R.; Lebas, Damien; Modiano, Philippe; Cotten, Hervé

    2016-01-01

    Fully regressive melanoma is a phenomenon in which the primary cutaneous melanoma becomes completely replaced by fibrotic components as a result of host immune response. Although 10 to 35 percent of cases of cutaneous melanomas may partially regress, fully regressive melanoma is very rare; only 47 cases have been reported in the literature to date. AH of the cases of fully regressive melanoma reported in the literature were diagnosed in conjunction with metastasis on a patient. The authors describe a case of fully regressive melanoma without any metastases at the time of its diagnosis. Characteristic findings on dermoscopy, as well as the absence of melanoma on final biopsy, confirmed the diagnosis.

  10. Fully Regressive Melanoma

    PubMed Central

    Ehrsam, Eric; Kallini, Joseph R.; Lebas, Damien; Modiano, Philippe; Cotten, Hervé

    2016-01-01

    Fully regressive melanoma is a phenomenon in which the primary cutaneous melanoma becomes completely replaced by fibrotic components as a result of host immune response. Although 10 to 35 percent of cases of cutaneous melanomas may partially regress, fully regressive melanoma is very rare; only 47 cases have been reported in the literature to date. AH of the cases of fully regressive melanoma reported in the literature were diagnosed in conjunction with metastasis on a patient. The authors describe a case of fully regressive melanoma without any metastases at the time of its diagnosis. Characteristic findings on dermoscopy, as well as the absence of melanoma on final biopsy, confirmed the diagnosis. PMID:27672418

  11. Antilymphocytic antibodies and marrow transplantation. VIII. Recipient conditioning with Clq-affine monoclonal anti-pan T antibodies prevents GVHD in homozygous fully mismatched mice

    SciTech Connect

    Thierfelder, S.; Kummer, U.; Schuh, R.; Mysliwietz, J.

    1986-10-01

    An approach to suppressing secondary disease with antibodies was studied that differed from conventional antibody treatment of donor marrow in vitro. It consisted of the selection of anti-Thy-1 antibodies with high affinity for Clq, the first subunit of the complement cascade, and a single injection of such antibodies into prospective irradiated marrow recipients. Monoclonal mouse IgM and rat IgG 2c antibodies of high titers in complement-dependent test systems but with low affinity for Clq caused little immunosuppression. Monoclonal rat IgG2b or mouse IgG2a anti-Thy-1 antibodies with high affinity for Clq prevented acute and chronic mortality of graft-v-host disease (GVHD), however, when injected in irradiated CBA or AKR mice prior to C57BL/6 spleen and/or bone marrow cell transfusion. This treatment simultaneously suppressed residual host-v-graft reactivity of the irradiated mice, so that permanent hematopoietic engraftment ensued even at 5 or 6 Gy. Full chimerism and specific tolerance were obtained. Primary immune response to SRBC was clearly depressed in the chimeras; secondary immune response was not. Clearance of T cell antibody activity (greater than 6 days), timing, and dose of injected antibody, as well as other modalities of the conditioning treatment that may have contributed to the remarkable immunosuppression, are discussed.

  12. Occurrence of Thermotolerant Campylobacter in Raw Poultry Meat, Environmental and Pigeon Stools Collected in Open-Air Markets

    PubMed Central

    Bellio, Alberto; Traversa, Amaranta; Adriano, Daniela; Bianchi, Daniela Manila; Colzani, Alberto; Gili, Stefano; Dondo, Alessandro; Gallina, Silvia; Grattarola, Carla; Maurella, Cristiana; Zoppi, Simona; Decastelli, Lucia

    2014-01-01

    Campylobacteriosis was the most commonly reported zoonosis for confirmed human cases in European Union during 2011. Poultry meat was very often implicated in Campylobacter infections in humans. In Italy commerce of raw poultry meat is common in open-air markets: these areas can be considered at high risk of bacterial contamination due to the high presence birds like pigeons. The aim of this study was to collect data about the contamination by thermotolerant Campylobacter of raw poultry meat commercialised in open-air markets, of work-surfaces in contact with poultry meat and of pigeon stools sampled in the market areas in Turin, Northern Italy. Between September 2011 and December 2012, 86 raw poultry meat samples, 86 environmental swabs and 108 animal samples were collected in 38 open-air markets. Analysis were carried out according to ISO10272-1:2006 standard. C.coli was detected in 2.3% (2/86) of raw poultry meat samples, whereas no swab (0/86) resulted positive. Of pigeon stool 28% (30/107) was positive for C.jejuni (83.3% C.jejuni subsp. jejuni and 16.7% C.jejuni subsp. doylei). C.jejuni subsp. jejuni was isolated from 1 dead pigeon. Our results showed lower rates of contamination than those reported at retail in Europe. Although samples were collected in areas at high risk of contamination, raw poultry meat and work surfaces reported a low level of presence of thermotolerant Campylobacter. The high percentage of C.jejuni isolated from pigeon stools showed the importance of a continuous application of preventive measures by the food business operators and the surveillance activity by the Competent Authority. PMID:27800355

  13. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells

    NASA Astrophysics Data System (ADS)

    Hoye, Robert L. Z.; Brandt, Riley E.; Ievskaya, Yulia; Heffernan, Shane; Musselman, Kevin P.; Buonassisi, Tonio; MacManus-Driscoll, Judith L.

    2015-02-01

    Electrochemically deposited Cu2O solar cells are receiving growing attention owing to a recent doubling in efficiency. This was enabled by the controlled chemical environment used in depositing doped ZnO layers by atomic layer deposition, which is not well suited to large-scale industrial production. While open air fabrication with atmospheric pressure spatial atomic layer deposition overcomes this limitation, we find that this approach is limited by an inability to remove the detrimental CuO layer that forms on the Cu2O surface. Herein, we propose strategies for achieving efficiencies in atmospherically processed cells that are equivalent to the high values achieved in vacuum processed cells.

  14. Analysis of an open-air swimming pool solar heating system by using an experimentally validated TRNSYS model

    SciTech Connect

    Ruiz, Elisa; Martinez, Pedro J.

    2010-01-15

    In the case of private outdoor swimming pools, seldom larger than 100 m{sup 2}, conventional auxiliary heating systems are being installed less and less. Solar heating is an option to extend the swimming season. The temperature evolution of an open-air swimming pool highly depends on the wind speed directly on the water surface, which at the same time is influenced by the surroundings of the pool. In this paper, the TRNSYS model of a private open-air pool with a 50-m{sup 2} surface was validated by registering the water temperature evolution and the meteorological data at the pool site. Evaporation is the main component of energy loss in swimming pools. Six different sets of constants found in literature were considered to evaluate the evaporative heat transfer coefficient with the purpose of finding the most suitable one for the TRNSYS pool model. In order to do that, the evolution of the pool water temperature predicted by the TRNSYS pool model was compared with the experimentally registered one. The simulation with TRNSYS of the total system, including the swimming pool and the absorber circuit integrated into the existing filter circuit, provided information regarding the increase of the pool temperature for different collector areas during the swimming season. This knowledge, together with the economic costs, support the decision about the absorber field size. (author)

  15. Studies on potential emission of hazardous gases due to uncontrolled open-air burning of waste vehicle tyres and their possible impacts on the environment

    NASA Astrophysics Data System (ADS)

    Shakya, Pawan R.; Shrestha, Pratima; Tamrakar, Chirika S.; Bhattarai, Pradeep K.

    Uncontrolled open-air burning of waste vehicle tyres causing environmental pollution has become a popular practice in Nepal despite official ban considering the environment and public health hazards. In this study, an experimental model was set up in a laboratory scale in an attempt to understand the potential emission of hazardous gases such as CO, SO 2 and NO 2 due to such activities in Kathmandu Valley and their possible impacts on the environment. For this purpose, four types of tyre were collected representing two from passenger car and two from motorbike category. The emission level of CO in the tyre smoke was measured with a CO gas detector tube while SO 2 and NO 2 were determined by UV-visible spectrophotometer. Among the three types of the gases analyzed, SO 2 was emitted in significantly high levels by all the representative tyre samples. The emission levels of CO, SO 2 and NO 2 ranged from 21to 49, 102to 820 and 3to 9 μg g -1, respectively. Results revealed that the emission levels also varied with the tyre types and qualities. The potential emission of the hazardous gases per representative scrap tyre mass was also estimated. Results indicate that the gaseous pollutants due to the tyre fires could make a significant contribution for deterioration of the environmental condition of the Valley or elsewhere.

  16. Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought.

    PubMed

    Leakey, Andrew D B; Uribelarrea, Martin; Ainsworth, Elizabeth A; Naidu, Shawna L; Rogers, Alistair; Ort, Donald R; Long, Stephen P

    2006-02-01

    While increasing temperatures and altered soil moisture arising from climate change in the next 50 years are projected to decrease yield of food crops, elevated CO2 concentration ([CO2]) is predicted to enhance yield and offset these detrimental factors. However, C4 photosynthesis is usually saturated at current [CO2] and theoretically should not be stimulated under elevated [CO2]. Nevertheless, some controlled environment studies have reported direct stimulation of C4 photosynthesis and productivity, as well as physiological acclimation, under elevated [CO2]. To test if these effects occur in the open air and within the Corn Belt, maize (Zea mays) was grown in ambient [CO2] (376 micromol mol(-1)) and elevated [CO2] (550 micromol mol(-1)) using Free-Air Concentration Enrichment technology. The 2004 season had ideal growing conditions in which the crop did not experience water stress. In the absence of water stress, growth at elevated [CO2] did not stimulate photosynthesis, biomass, or yield. Nor was there any CO2 effect on the activity of key photosynthetic enzymes, or metabolic markers of carbon and nitrogen status. Stomatal conductance was lower (-34%) and soil moisture was higher (up to 31%), consistent with reduced crop water use. The results provide unique field evidence that photosynthesis and production of maize may be unaffected by rising [CO2] in the absence of drought. This suggests that rising [CO2] may not provide the full dividend to North American maize production anticipated in projections of future global food supply. PMID:16407441

  17. Environmental assessment for the depleted uranium testing program at the Nevada Test Site by the United States Army Ballistics Research Laboratory. [Open-Air Tests and X-Tunnel Tests

    SciTech Connect

    Not Available

    1992-11-24

    This proposed action provides the Department of Energy (DOE) authorization to the US Army to conduct a testing program using Depleted Uranium (DU) in Area 25 at the Nevada Test Site (NTS). The US Army Ballistic Research Laboratory (BRL) would be the managing agency for the program. The proposed action site would utilize existing facilities, and human activity would be confined to areas identified as having no tortoise activity. Two classifications of tests would be conducted under the testing program: (1) open-air tests, and (2) X-Tunnel tests. A series of investigative tests would be conducted to obtain information on DU use under the conditions of each classification. The open-air tests would include DU ammunition hazard classification and combat systems activity tests. Upon completion of each test or series of tests, the area would be decontaminated to meet requirements of DOE Order 5400.5, Radiation Protection of the Public and Environment. All contaminated materials would be decontaminated or disposed of as radioactive waste in an approved low-level Radioactive Waste Management Site (RWMS) by personnel trained specifically for this purpose.

  18. Perspective: Maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells

    SciTech Connect

    Hoye, Robert L. Z. E-mail: jld35@cam.ac.uk; Ievskaya, Yulia; MacManus-Driscoll, Judith L. E-mail: jld35@cam.ac.uk; Brandt, Riley E.; Buonassisi, Tonio; Heffernan, Shane; Musselman, Kevin P.

    2015-02-01

    Electrochemically deposited Cu{sub 2}O solar cells are receiving growing attention owing to a recent doubling in efficiency. This was enabled by the controlled chemical environment used in depositing doped ZnO layers by atomic layer deposition, which is not well suited to large-scale industrial production. While open air fabrication with atmospheric pressure spatial atomic layer deposition overcomes this limitation, we find that this approach is limited by an inability to remove the detrimental CuO layer that forms on the Cu{sub 2}O surface. Herein, we propose strategies for achieving efficiencies in atmospherically processed cells that are equivalent to the high values achieved in vacuum processed cells.

  19. Electrical and optical emission characteristics of radio-frequency-driven hollow slot microplasmas operating in open air

    NASA Astrophysics Data System (ADS)

    Yalin, A. P.; Yu, Z. Q.; Stan, O.; Hoshimiya, K.; Rahman, A.; Surla, V. K.; Collins, G. J.

    2003-10-01

    We employ hollow slot electrodes, with pd values of ˜10 Torr cm and average E/N values of ˜70 Td, to create plasmas in open air. We measure the 13.56 MHz Irf-Vrf electrical characteristics of the plasma. Stable discharges, with sinusoidal currents, are obtained up to power densities of 14 kW/cm3, and root-mean-square radio-frequency (rf) currents of 1.5 A/cm of slot length, before nonsinusoidal currents and rf glow-to-arc transitions occur. We report the absolute optical emission in the vacuum ultraviolet region located between 110 and 155 nm, with a focus on the 149 nm atomic nitrogen line. For this atomic N line alone, we find an emitter efficiency of 0.0024.

  20. Time and space in the middle paleolithic: Spatial structure and occupation dynamics of seven open-air sites.

    PubMed

    Clark, Amy E

    2016-05-01

    The spatial structure of archeological sites can help reconstruct the settlement dynamics of hunter-gatherers by providing information on the number and length of occupations. This study seeks to access this information through a comparison of seven sites. These sites are open-air and were all excavated over large spatial areas, up to 2,000 m(2) , and are therefore ideal for spatial analysis, which was done using two complementary methods, lithic refitting and density zones. Both methods were assessed statistically using confidence intervals. The statistically significant results from each site were then compiled to evaluate trends that occur across the seven sites. These results were used to assess the "spatial consistency" of each assemblage and, through that, the number and duration of occupations. This study demonstrates that spatial analysis can be a powerful tool in research on occupation dynamics and can help disentangle the many occupations that often make up an archeological assemblage.

  1. Development of open air silicon deposition technology by silane-free atmospheric pressure plasma enhanced chemical transport under local ambient gas control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2016-07-01

    Open air silicon deposition was performed by combining silane-free atmospheric pressure plasma-enhanced chemical transport and a newly developed local ambient gas control technology. The effect of air contamination on silicon deposition was investigated using a vacuum chamber, and the allowable air contamination level was confirmed to be 3 ppm. The capability of the local ambient gas control head was investigated numerically and experimentally. A safe and clean process environment with air contamination less than 1 ppm was achieved. Combining these technologies, a microcrystalline silicon film was deposited in open air, the properties of which were comparable to those of silicon films deposited in a vacuum chamber.

  2. Archaeological horizons and fluvial processes at the Lower Paleolithic open-air site of Revadim (Israel).

    PubMed

    Marder, Ofer; Malinsky-Buller, Ariel; Shahack-Gross, Ruth; Ackermann, Oren; Ayalon, Avner; Bar-Matthews, Miryam; Goldsmith, Yonaton; Inbar, Moshe; Rabinovich, Rivka; Hovers, Erella

    2011-04-01

    In this paper we present new data pertaining to the paleo-landscape characteristics at the Acheulian site of Revadim, on the southern coastal plain of Israel. Sedimentological, isotopic, granulometric and micromorphological studies showed that the archaeological remains accumulated in an active fluvial environment where channel action, overbank flooding and episodic inundation occurred. Measurements of total organic matter and its carbon isotopic composition indicate that the hominin activity at the site started at a period of relatively drier conditions, which coincided with erosion of the preceding soil sequence. This process led to the formation of a gently-undulating topography, as reconstructed by a GIS model. Later deposition documents relatively wetter conditions, as indicated by carbon isotopic composition. Formation processes identified at the site include fluvial processes, inundation episodes that resulted in anaerobic conditions and formation of oxide nodules, as well as small-scale bioturbation and later infiltration of carbonate-rich solutions that resulted in the formation of calcite nodules and crusts. The combination of micro-habitats created favorable conditions that repeatedly drew hominins to the area, as seen by a series of super-imposed archaeological horizons. This study shows that site-specific paleo-landscape reconstructions should play an important role in understanding regional variation among hominin occupations and in extrapolating long-term behavioral patterns during the Middle Pleistocene. PMID:20304463

  3. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  4. 14 CFR 105.21 - Parachute operations over or into a congested area or an open-air assembly of persons.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Parachute operations over or into a... PARACHUTE OPERATIONS Operating Rules § 105.21 Parachute operations over or into a congested area or an open-air assembly of persons. (a) No person may conduct a parachute operation, and no pilot in command...

  5. 14 CFR 105.21 - Parachute operations over or into a congested area or an open-air assembly of persons.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Parachute operations over or into a... PARACHUTE OPERATIONS Operating Rules § 105.21 Parachute operations over or into a congested area or an open-air assembly of persons. (a) No person may conduct a parachute operation, and no pilot in command...

  6. 14 CFR 105.21 - Parachute operations over or into a congested area or an open-air assembly of persons.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Parachute operations over or into a... PARACHUTE OPERATIONS Operating Rules § 105.21 Parachute operations over or into a congested area or an open-air assembly of persons. (a) No person may conduct a parachute operation, and no pilot in command...

  7. 14 CFR 105.21 - Parachute operations over or into a congested area or an open-air assembly of persons.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Parachute operations over or into a... PARACHUTE OPERATIONS Operating Rules § 105.21 Parachute operations over or into a congested area or an open-air assembly of persons. (a) No person may conduct a parachute operation, and no pilot in command...

  8. 14 CFR 105.21 - Parachute operations over or into a congested area or an open-air assembly of persons.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Parachute operations over or into a... PARACHUTE OPERATIONS Operating Rules § 105.21 Parachute operations over or into a congested area or an open-air assembly of persons. (a) No person may conduct a parachute operation, and no pilot in command...

  9. Landscapes, depositional environments and human occupation at Middle Paleolithic open-air sites in the southern Levant, with new insights from Nesher Ramla, Israel

    NASA Astrophysics Data System (ADS)

    Zaidner, Yossi; Frumkin, Amos; Friesem, David; Tsatskin, Alexander; Shahack-Gross, Ruth

    2016-04-01

    Middle Paleolithic human occupation in the Levant (250-50 ka ago) has been recorded in roofed (cave and rockshelter) and open-air sites. Research at these different types of sites yielded different perspectives on the Middle Paleolithic human behavior and evolution. Until recently, open-air Middle Paleolithic sites in the Levant were found in three major sedimentary environments: fluvial, lake-margin and spring. Here we describe a unique depositional environment and formation processes at the recently discovered open-air site of Nesher Ramla (Israel) and discuss their contribution to understanding site formation processes in open-air sites in the Levant. The site is 8-m-thick Middle Paleolithic sequence (OSL dated to 170-80 ka) that is located in a karst sinkhole formed by gravitational deformation and sagging into underground voids. The sedimentary sequence was shaped by gravitational collapse, cyclic colluviation of soil and gravel into the depression, waterlogging, in situ pedogenesis and human occupation. Original bedding and combustion features are well-preserved in the Lower archaeological sequence, a rare occurrence in comparison to other open-air archaeological sites. This phenomenon coincides with episodes of fast sedimentation/burial, which also allowed better preservation of microscopic remains such as ash. The Upper archaeological sequence does not exhibit bedding or preservation of ash, despite presence of heat-affected lithic artifacts, which makes it similar to other open-air sites in the Levant. We suggest that rate of burial is the major factor that caused the difference between the Upper and Lower sequences. The differences in the burial rate may be connected to environmental and vegetation changes at the end of MIS 6. We also identified an interplay between sediment in-wash and density of human activity remains, i.e. during episodes of low natural sediment input the density of artifacts is higher relative to episodes with high rate of sediment in

  10. Antenna Deployment for the Localization of Partial Discharges in Open-Air Substations.

    PubMed

    Robles, Guillermo; Fresno, José Manuel; Sánchez-Fernández, Matilde; Martínez-Tarifa, Juan Manuel

    2016-04-15

    Partial discharges are ionization processes inside or on the surface of dielectrics that can unveil insulation problems in electrical equipment. The charge accumulated is released under certain environmental and voltage conditions attacking the insulation both physically and chemically. The final consequence of a continuous occurrence of these events is the breakdown of the dielectric. The electron avalanche provokes a derivative of the electric field with respect to time, creating an electromagnetic impulse that can be detected with antennas. The localization of the source helps in the identification of the piece of equipment that has to be decommissioned. This can be done by deploying antennas and calculating the time difference of arrival (TDOA) of the electromagnetic pulses. However, small errors in this parameter can lead to great displacements of the calculated position of the source. Usually, four antennas are used to find the source but the array geometry has to be correctly deployed to have minimal errors in the localization. This paper demonstrates, by an analysis based on simulation and also experimentally, that the most common layouts are not always the best options and proposes a simple antenna layout to reduce the systematic error in the TDOA calculation due to the positions of the antennas in the array.

  11. Antenna Deployment for the Localization of Partial Discharges in Open-Air Substations.

    PubMed

    Robles, Guillermo; Fresno, José Manuel; Sánchez-Fernández, Matilde; Martínez-Tarifa, Juan Manuel

    2016-01-01

    Partial discharges are ionization processes inside or on the surface of dielectrics that can unveil insulation problems in electrical equipment. The charge accumulated is released under certain environmental and voltage conditions attacking the insulation both physically and chemically. The final consequence of a continuous occurrence of these events is the breakdown of the dielectric. The electron avalanche provokes a derivative of the electric field with respect to time, creating an electromagnetic impulse that can be detected with antennas. The localization of the source helps in the identification of the piece of equipment that has to be decommissioned. This can be done by deploying antennas and calculating the time difference of arrival (TDOA) of the electromagnetic pulses. However, small errors in this parameter can lead to great displacements of the calculated position of the source. Usually, four antennas are used to find the source but the array geometry has to be correctly deployed to have minimal errors in the localization. This paper demonstrates, by an analysis based on simulation and also experimentally, that the most common layouts are not always the best options and proposes a simple antenna layout to reduce the systematic error in the TDOA calculation due to the positions of the antennas in the array. PMID:27092501

  12. A sensor management architecture concept for monitoring emissions from open-air demil operations.

    SciTech Connect

    Johnson, Michael M.; Robinson, Jerry D.; Stoddard, Mary Clare; Horn, Brent A.; Lipkin, Joel; Foltz, Greg W.

    2005-09-01

    Sandia National Laboratories, CA proposed a sensor concept to detect emissions from open-burning/open-detonation (OB/OD) events. The system would serve two purposes: (1) Provide data to demilitarization operations about process efficiency, allowing process optimization for cleaner emissions and higher efficiency. (2) Provide data to regulators and neighboring communities about materials dispersing into the environment by OB/OD operations. The proposed sensor system uses instrument control hardware and data visualization software developed at Sandia National Laboratories to link together an array of sensors to monitor emissions from OB/OD events. The suite of sensors would consist of various physical and chemical detectors mounted on stationary or mobile platforms. The individual sensors would be wirelessly linked to one another and controlled through a central command center. Real-time data collection from the sensors, combined with integrated visualization of the data at the command center, would allow for feedback to the sensors to alter operational conditions to adjust for changing needs (i.e., moving plume position, increased spatial resolution, increased sensitivity). This report presents a systems study of the problem of implementing a sensor system for monitoring OB/OD emissions. The goal of this study was to gain a fuller understanding of the political, economic, and technical issues for developing and fielding this technology.

  13. Antenna Deployment for the Localization of Partial Discharges in Open-Air Substations

    PubMed Central

    Robles, Guillermo; Fresno, José Manuel; Sánchez-Fernández, Matilde; Martínez-Tarifa, Juan Manuel

    2016-01-01

    Partial discharges are ionization processes inside or on the surface of dielectrics that can unveil insulation problems in electrical equipment. The charge accumulated is released under certain environmental and voltage conditions attacking the insulation both physically and chemically. The final consequence of a continuous occurrence of these events is the breakdown of the dielectric. The electron avalanche provokes a derivative of the electric field with respect to time, creating an electromagnetic impulse that can be detected with antennas. The localization of the source helps in the identification of the piece of equipment that has to be decommissioned. This can be done by deploying antennas and calculating the time difference of arrival (TDOA) of the electromagnetic pulses. However, small errors in this parameter can lead to great displacements of the calculated position of the source. Usually, four antennas are used to find the source but the array geometry has to be correctly deployed to have minimal errors in the localization. This paper demonstrates, by an analysis based on simulation and also experimentally, that the most common layouts are not always the best options and proposes a simple antenna layout to reduce the systematic error in the TDOA calculation due to the positions of the antennas in the array. PMID:27092501

  14. Nanosecond-pulse gliding discharges between point-to-point electrodes in open air

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Shao, Tao; Yan, Ping; Zhou, Yuanxiang

    2014-06-01

    In this paper, gliding discharges with a point-to-point electrode geometry were produced by a repetitively pulsed power supply with a rise time of ˜100 ns and a full-width at half-maximum of ˜200 ns. The characteristics of such discharges were investigated by measuring their voltage-current waveforms and taking photographs of their discharge images. Experimental results showed that once the breakdown occurred, the nanosecond-pulse gliding discharges went into a stable stage at all air gaps, behaving in a mode of repetitive sparks. Under certain conditions, a non-stable stage would appear some time after the discharge went into the stable stage, in which the gliding discharges transitioned from repetitive sparks to diffuse discharges. Furthermore, several factors (gap spacing, pulse repetition frequency (PRF) and gas flow rate) influencing the discharge characteristics were investigated. It was observed that both the breakdown voltage and ignition voltage increased with the gap spacing, and a diffuse discharge was absent when the gap spacing was less than 6 mm. The breakdown voltage decreased with the increase in the PRF and its decrease ratio was larger in large gap spacing than in small gap spacing. Discharges would transit from repetitive sparks to diffuse discharges as the flow rate increased. Furthermore, a comparison of nanosecond-pulse and ac gliding discharges was conducted with respect to the power supply. The consumption and energy, the relationship between the power supply and the load, and the time interval between two pulses were three main factors which could lead to different characteristics between the nanosecond-pulse and ac gliding discharges.

  15. Functionalization of Hydrogen-free Diamond-like Carbon Films using Open-air Dielectric Barrier Discharge Atmospheric Plasma Treatments

    SciTech Connect

    Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Instituto de Materiales de Madrid, C.S.I.C., Cantoblanco, 28049 Madrid, Spain; Instituto de Quimica-Fisica"Rocasolano"C.S.I.C., 28006 Madrid, Spain; Mahasarakham University, Mahasarakham 44150, Thailand; CASTI, CNR-INFM Regional Laboratory, L'Aquila 67100, Italy; SUNY Upstate Medical University, Syracuse, NY 13210, USA; Endrino, Jose; Endrino, J. L.; Marco, J. F.; Poolcharuansin, P.; Phani, A.R.; Allen, M.; Albella, J. M.; Anders, A.

    2007-12-28

    A dielectric barrier discharge (DBD) technique has been employed to produce uniform atmospheric plasmas of He and N2 gas mixtures in open air in order to functionalize the surface of filtered-arc deposited hydrogen-free diamond-like carbon (DLC) films. XPS measurements were carried out on both untreated and He/N2 DBD plasma treated DLC surfaces. Chemical states of the C 1s and N 1s peaks were collected and used to characterize the surface bonds. Contact angle measurements were also used to record the short- and long-term variations in wettability of treated and untreated DLC. In addition, cell viability tests were performed to determine the influence of various He/N2 atmospheric plasma treatments on the attachment of osteoblast MC3T3 cells. Current evidence shows the feasibility of atmospheric plasmas in producing long-lasting variations in the surface bonding and surface energy of hydrogen-free DLC and consequently the potential for this technique in the functionalization of DLC coated devices.

  16. Engineering Schottky Contacts in Open-Air Fabricated Heterojunction Solar Cells to Enable High Performance and Ohmic Charge Transport

    PubMed Central

    2014-01-01

    The efficiencies of open-air processed Cu2O/Zn1–xMgxO heterojunction solar cells are doubled by reducing the effect of the Schottky barrier between Zn1–xMgxO and the indium tin oxide (ITO) top contact. By depositing Zn1–xMgxO with a long band-tail, charge flows through the Zn1–xMgxO/ITO Schottky barrier without rectification by hopping between the sub-bandgap states. High current densities are obtained by controlling the Zn1–xMgxO thickness to ensure that the Schottky barrier is spatially removed from the p–n junction, allowing the full built-in potential to form, in addition to taking advantage of the increased electrical conductivity of the Zn1–xMgxO films with increasing thickness. This work therefore shows that the Zn1–xMgxO window layer sub-bandgap state density and thickness are critical parameters that can be engineered to minimize the effect of Schottky barriers on device performance. More generally, these findings show how to improve the performance of other photovoltaic system reliant on transparent top contacts, e.g., CZTS and CIGS. PMID:25418326

  17. Engineering Schottky contacts in open-air fabricated heterojunction solar cells to enable high performance and ohmic charge transport.

    PubMed

    Hoye, Robert L Z; Heffernan, Shane; Ievskaya, Yulia; Sadhanala, Aditya; Flewitt, Andrew; Friend, Richard H; MacManus-Driscoll, Judith L; Musselman, Kevin P

    2014-12-24

    The efficiencies of open-air processed Cu2O/Zn(1-x)Mg(x)O heterojunction solar cells are doubled by reducing the effect of the Schottky barrier between Zn(1-x)Mg(x)O and the indium tin oxide (ITO) top contact. By depositing Zn(1-x)Mg(x)O with a long band-tail, charge flows through the Zn(1-x)Mg(x)O/ITO Schottky barrier without rectification by hopping between the sub-bandgap states. High current densities are obtained by controlling the Zn(1-x)Mg(x)O thickness to ensure that the Schottky barrier is spatially removed from the p-n junction, allowing the full built-in potential to form, in addition to taking advantage of the increased electrical conductivity of the Zn(1-x)Mg(x)O films with increasing thickness. This work therefore shows that the Zn(1-x)Mg(x)O window layer sub-bandgap state density and thickness are critical parameters that can be engineered to minimize the effect of Schottky barriers on device performance. More generally, these findings show how to improve the performance of other photovoltaic system reliant on transparent top contacts, e.g., CZTS and CIGS. PMID:25418326

  18. Testing fully depleted CCD

    NASA Astrophysics Data System (ADS)

    Casas, Ricard; Cardiel-Sas, Laia; Castander, Francisco J.; Jiménez, Jorge; de Vicente, Juan

    2014-08-01

    The focal plane of the PAU camera is composed of eighteen 2K x 4K CCDs. These devices, plus four spares, were provided by the Japanese company Hamamatsu Photonics K.K. with type no. S10892-04(X). These detectors are 200 μm thick fully depleted and back illuminated with an n-type silicon base. They have been built with a specific coating to be sensitive in the range from 300 to 1,100 nm. Their square pixel size is 15 μm. The read-out system consists of a Monsoon controller (NOAO) and the panVIEW software package. The deafualt CCD read-out speed is 133 kpixel/s. This is the value used in the calibration process. Before installing these devices in the camera focal plane, they were characterized using the facilities of the ICE (CSIC- IEEC) and IFAE in the UAB Campus in Bellaterra (Barcelona, Catalonia, Spain). The basic tests performed for all CCDs were to obtain the photon transfer curve (PTC), the charge transfer efficiency (CTE) using X-rays and the EPER method, linearity, read-out noise, dark current, persistence, cosmetics and quantum efficiency. The X-rays images were also used for the analysis of the charge diffusion for different substrate voltages (VSUB). Regarding the cosmetics, and in addition to white and dark pixels, some patterns were also found. The first one, which appears in all devices, is the presence of half circles in the external edges. The origin of this pattern can be related to the assembly process. A second one appears in the dark images, and shows bright arcs connecting corners along the vertical axis of the CCD. This feature appears in all CCDs exactly in the same position so our guess is that the pattern is due to electrical fields. Finally, and just in two devices, there is a spot with wavelength dependence whose origin could be the result of a defectous coating process.

  19. Cyclic organic peroxides identification and trace analysis by Raman microscopy and open-air chemical ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pena-Quevedo, Alvaro Javier

    The persistent use of cyclic organic peroxides in explosive devices has increased the interest in study these compounds. Development of methodologies for the detection of triacetone triperoxide (TATP) and hexamethylene triperoxide diamine (HMTD) has become an urgent priority. However, differences in physical properties between cyclic organic peroxides make difficult the development of a general method for peroxide analysis and detection. Following this urgency, the first general technique for the analysis of any peroxide, regarding its structural differences is reported. Characterization and detection of TATP and HMTD was performed using an Open-Air Chemical Ionization High-Resolution Time-of-Flight Mass Spectrometer. The first spectrometric analysis for tetramethylene diperoxide dicarbamide (TMDD) and other nitrogen based peroxides using Raman Microscopy and Mass Spectrometry is reported. Analysis of cyclic peroxides by GC-MS was also conducted to compare results with OACI-HRTOF data. In the OACI mass spectrum, HMTD showed a clear signal at m/z 209 MH + and a small adduct peak at m/z 226 [M+NH4]+ that allowed its detection in commercial standard solutions and lab made standards. TMDD presented a molecular peak of m/z 237 MH+ and an adduct peak of m/z 254 [M+NH4]+. TATP showed a single peak at m/z 240 [M+NH4]+, while the peak of m/z 223 or 222 was completely absent. This evidence suggests that triperoxides are stabilized by the ammonium ion. TATP samples with deuterium enrichment were analyzed to compare results that could differentiate from HMTD. Raman microscopy was used as a complementary characterization method and was an essential tool for cyclic peroxides identification, particularly for those which could not be extensively purified. All samples were characterized by Raman spectroscopy to confirm the Mass Spectrometry results. Peroxide O-O vibrations were observed around 750-970 cm-1. D18-TATP studies had identified ketone triperoxide nu(O-O) vibration around

  20. Views to the past: Faunal and geophysical analysis of the open-air Upper Paleolithic site of Verberie

    NASA Astrophysics Data System (ADS)

    Thompson, Jason Randall

    , real-time process of prey item evaluation. Not all animals are equal in nutritional terms hence not all carcasses are evaluated equally. A Ground-penetrating radar study is also included to answer two substantive questions: 1) How representative of the entire site assemblage is the currently excavated sample?; and 2) Are there data visible that are indicative of multiple, interacting "households" as at Pincevent, or does the material scale, configuration, and distribution appear limited to a single household? GPR has proven to be a highly informative and productive near-surface geophysical technique for investigating many archaeological sites, and this research details one of the earliest such applications in a Paleolithic open-air context. At VBC, GPR was highly effective in locating anthropogenic accumulations of unexcavated archaeological materials which were field-tested through excavations during the 2009 field season.

  1. Fully automatic telemetry data processor

    NASA Technical Reports Server (NTRS)

    Cox, F. B.; Keipert, F. A.; Lee, R. C.

    1968-01-01

    Satellite Telemetry Automatic Reduction System /STARS 2/, a fully automatic computer-controlled telemetry data processor, maximizes data recovery, reduces turnaround time, increases flexibility, and improves operational efficiency. The system incorporates a CDC 3200 computer as its central element.

  2. Mineralogical and geochemical characterisation of open-air tailing and waste-rock dumps from the Libiola Fe-Cu sulphide mine (Eastern Liguria, Italy)

    NASA Astrophysics Data System (ADS)

    Marescotti, P.; Carbone, C.; de Capitani, L.; Grieco, G.; Lucchetti, G.; Servida, D.

    2008-02-01

    Active acid mine drainage (AMD) processes at the Libiola Fe-Cu sulphides mine are mainly triggered by water rock interaction occurring within open-air tailing and waste-rock dumps. These processes are mainly controlled by exposure to weathering agents, the grain size of the dumped materials, and by the quantity of sulphides, the sulphide types, and their mode of occurrence. Due to these factors, several paragenetic stages of evolution have been recognised at different depths at different sites and within the same site. The dump samples were investigated with mineralogical (reflected- and transmitted-light optical microscopy, XRPD, and SEM-EDS) and geochemical (ICP-AES, Leco) techniques. The AMD evaluation of the tailing and waste-rock samples was performed by calculating the Maximum Potential Acidity, the Acid Neutralising Capacity, (and the Net Acid Producing Potential. The results allowed us to demonstrate that the open-air tailings had already superseded their AMD apex and are now practically inert material composed mainly of stable goethite ± lepidocrocite ± hematite assemblages. On the contrary, the sulphide-rich waste rocks still have a strong potential to produce long term AMD, causing the acidification of circulating waters and the release of several hazardous elements.

  3. Fully Integrating the Design Process

    SciTech Connect

    T.A. Bjornard; R.S. Bean

    2008-03-01

    The basic approach to designing nuclear facilities in the United States does not currently reflect the routine consideration of proliferation resistance and international safeguards. The fully integrated design process is an approach for bringing consideration of international safeguards and proliferation resistance, together with state safeguards and security, fully into the design process from the very beginning, while integrating them sensibly and synergistically with the other project functions. In view of the recently established GNEP principles agreed to by the United States and at least eighteen other countries, this paper explores such an integrated approach, and its potential to help fulfill the new internationally driven design requirements with improved efficiencies and reduced costs.

  4. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System.

    PubMed

    Lavrynenko, O M; Pavlenko, O Yu; Shchukin, Yu S

    2016-12-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations. PMID:26847693

  5. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System.

    PubMed

    Lavrynenko, O M; Pavlenko, O Yu; Shchukin, Yu S

    2016-12-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.

  6. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System

    NASA Astrophysics Data System (ADS)

    Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.

    2016-02-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.

  7. Chip-based ingroove microplasma with orthogonal signal collection: new approach for carbon-containing species detection through open air reaction for performance enhancement

    PubMed Central

    Meng, Fanying; Li, Xuemei; Duan, Yixiang

    2014-01-01

    A novel microplasma generator based on ceramic chips has been developed and coupled with optical emission spectrometry through orthogonal detection. Stable microplasma was generated between two electrodes in the ingroove discharge chamber and the optical fiber was set in perpendicular to the gas outlet to collect emitted light. The emission signal of CN is surprisingly enhanced by reacting carbon-containing species with back-diffusion nitrogen from open air, and the enhanced CN signal is successfully applied to sensitively detect organic compounds for the first time. This article focuses to study the structural characteristic and the signal enhancement mechanism through back-diffusion reaction. Several organic compounds were detected directly with the limits of detection down to ppb level. Besides, the advantages of low energy consumption and the chip-based discharge chamber show great potential to be applied in portable devices. This development may lead to a new way for the sensitive detection of organic compounds. PMID:24763181

  8. Open Air Rock Art Between Alva and Ceira Rivers: a Voyage Through Mining, Trading, Transhumance Routes and the Orientation in the Landscape

    NASA Astrophysics Data System (ADS)

    Pimenta, F.; Ribeiro, N.; Smith, A.; Joaquinito, A.; Pereira, S.; Tirapicos, L.

    2015-05-01

    Open air rock carvings, the object of the present study, were artistic expressions made by the itinerant shepherds, miners, traders and the resident populations along trading and transhumance routes and nearby areas. These rock art sites were used as markers to denote routes or territorial claims and in some cases may have been associated with ritual celebrations. In this paper we will present the results of the analysis of the orientations in the landscape of 688 engraved outcrops, distributed in 11 mountainous areas between the Alva and Ceira rivers. We will discuss possible solsticial markers and will address a possible relationship between the orientation of the podomorph carvings with the Summer Full Moon or Alpha Centauri.

  9. Fully depleted back illuminated CCD

    DOEpatents

    Holland, Stephen Edward

    2001-01-01

    A backside illuminated charge coupled device (CCD) is formed of a relatively thick high resistivity photon sensitive silicon substrate, with frontside electronic circuitry, and an optically transparent backside ohmic contact for applying a backside voltage which is at least sufficient to substantially fully deplete the substrate. A greater bias voltage which overdepletes the substrate may also be applied. One way of applying the bias voltage to the substrate is by physically connecting the voltage source to the ohmic contact. An alternate way of applying the bias voltage to the substrate is to physically connect the voltage source to the frontside of the substrate, at a point outside the depletion region. Thus both frontside and backside contacts can be used for backside biasing to fully deplete the substrate. Also, high resistivity gaps around the CCD channels and electrically floating channel stop regions can be provided in the CCD array around the CCD channels. The CCD array forms an imaging sensor useful in astronomy.

  10. Fully synthetic taped insulation cables

    DOEpatents

    Forsyth, Eric B.; Muller, Albert C.

    1984-01-01

    A high voltage oil-impregnated electrical cable with fully polymer taped insulation operable to 765 kV. Biaxially oriented, specially processed, polyethylene, polybutene or polypropylene tape with an embossed pattern is wound in multiple layers over a conductive core with a permeable screen around the insulation. Conventional oil which closely matches the dielectric constant of the tape is used, and the cable can be impregnated after field installation because of its excellent impregnation characteristics.

  11. Fully automated urban traffic system

    NASA Technical Reports Server (NTRS)

    Dobrotin, B. M.; Hansen, G. R.; Peng, T. K. C.; Rennels, D. A.

    1977-01-01

    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible.

  12. Fully dynamical simulation of central nuclear collisions.

    PubMed

    van der Schee, Wilke; Romatschke, Paul; Pratt, Scott

    2013-11-27

    We present a fully dynamical simulation of central nuclear collisions around midrapidity at LHC energies. Unlike previous treatments, we simulate all phases of the collision, including the equilibration of the system. For the simulation, we use numerical relativity solutions to anti-de Sitter space/conformal field theory for the preequilibrium stage, viscous hydrodynamics for the plasma equilibrium stage, and kinetic theory for the low-density hadronic stage. Our preequilibrium stage provides initial conditions for hydrodynamics, resulting in sizable radial flow. The resulting light particle spectra reproduce the measurements from the ALICE experiment at all transverse momenta. PMID:24329444

  13. Late Pleistocene steppe lion Panthera leo spelaea (Goldfuss, 1810) footprints and bone records from open air sites in northern Germany - Evidence of hyena-lion antagonism and scavenging in Europe

    NASA Astrophysics Data System (ADS)

    Diedrich, Cajus G.

    2011-07-01

    Bone remains and a trackway of Pantheraichnus bottropensis nov. ichg. ichnsp. of the Late Pleistocene lion Panthera leo spelaea ( Goldfuss, 1810) have been recovered from Bottrop and other open air sites in northern Germany. Some of these bones are from open air hyena den sites. A relative high proportion of lion bones (20%) exhibit bite, chew or nibble marks, or bone crushing and nibbling caused by a large carnivore. Repeated patterns of similar bone damage have been compared to bone remains found at hyena dens in gypsum karst areas and cave sites in northern Germany. Ice Age spotted hyenas have been the main antagonists and the main scavengers on lion carcasses. The remains appear to have been imported often by hyenas into their communal dens, supporting the theory of strong hyena-lion antagonism, similar to the well documented antagonism between modern African lions and spotted hyenas. Most of the lion bones from the open air hyena den at Bottrop are probably a result of such antagonism, as are the rare remains of these carnivores found within large hyena prey bone accumulations along the Pleistocene rivers. The Emscher River terrace also has the largest quantity of hyena remains from open air river terrace sites in northern Germany. Their cub remains, and incomplete chewed prey bones from mammoths and woolly rhinoceroses, typical of hyena activity, underline the character of these sites as cub-raising and communal dens, where their prey was accumulated along the riverbanks in a similar manner to modern African hyenas.

  14. Le site acheuléen de plein air d'Holon (Israël) : premiers résultatsThe Acheulian open-air site from Holon (Israel): preliminary results

    NASA Astrophysics Data System (ADS)

    Chazan, Michael; Monchot, Hervé; Porat, Naomi; Lister, Adrian; Davies, Paul; Kolska Horwitz, Liora

    2001-02-01

    The open-air site of Holon (Israel), dated to an age of 200 000 years has yielded a large Acheulean bone and lithic assemblage. The association between the lithics and fauna clearly demonstrates that Hominids were the prime agents in creating the assemblage. The site of Holon plays a major role in understanding the Lower Palaeolithic of the Levantine coastal area.

  15. Fully analogue photonic reservoir computer.

    PubMed

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-03-03

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers.

  16. Fully analogue photonic reservoir computer

    PubMed Central

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-01-01

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers. PMID:26935166

  17. Fully integrated, fully automated generation of short tandem repeat profiles

    PubMed Central

    2013-01-01

    Background The generation of short tandem repeat profiles, also referred to as ‘DNA typing,’ is not currently performed outside the laboratory because the process requires highly skilled technical operators and a controlled laboratory environment and infrastructure with several specialized instruments. The goal of this work was to develop a fully integrated system for the automated generation of short tandem repeat profiles from buccal swab samples, to improve forensic laboratory process flow as well as to enable short tandem repeat profile generation to be performed in police stations and in field-forward military, intelligence, and homeland security settings. Results An integrated system was developed consisting of an injection-molded microfluidic BioChipSet cassette, a ruggedized instrument, and expert system software. For each of five buccal swabs, the system purifies DNA using guanidinium-based lysis and silica binding, amplifies 15 short tandem repeat loci and the amelogenin locus, electrophoretically separates the resulting amplicons, and generates a profile. No operator processing of the samples is required, and the time from swab insertion to profile generation is 84 minutes. All required reagents are contained within the BioChipSet cassette; these consist of a lyophilized polymerase chain reaction mix and liquids for purification and electrophoretic separation. Profiles obtained from fully automated runs demonstrate that the integrated system generates concordant short tandem repeat profiles. The system exhibits single-base resolution from 100 to greater than 500 bases, with inter-run precision with a standard deviation of ±0.05 - 0.10 bases for most alleles. The reagents are stable for at least 6 months at 22°C, and the instrument has been designed and tested to Military Standard 810F for shock and vibration ruggedization. A nontechnical user can operate the system within or outside the laboratory. Conclusions The integrated system represents the

  18. Multiday Fully Closed Loop Insulin Delivery in Monitored Outpatient Conditions

    ClinicalTrials.gov

    2014-04-29

    To Demonstrate That the Closed Loop System Can be Used Safely Over a Few Consecutive Days.; To Assess Effectiveness in Maintaining Patients' Glucose Levels in the Target Range of 70 to 180 mg/dl, Measured by Blood Glucose Sensor.; To Evaluate the User Experience With a Closed Loop System

  19. [Daily observations (1970-1992) of fluctuations in frequency of occurrence of a sector structure in bacterial colonies selected from open air and from S. aureus cultures].

    PubMed

    Faraone, P

    1995-01-01

    The frequencies of sector structure occurrence in different bacteria colonies (SSC) denuded from open air every day in period from 1970 to 1982 years and also in laboratory cultures Staphylococcus Aureus from 1984 to 1992 were investigated. The value SSC was expressed in percents to general number of colonies. Variations of average SSC is found out distinctly expressed opposition to 11-years cycle of Solar activity for the same period of time. The year cycle SSC was registered also with local maxima in June, August and November and global minimum in March. SSC also were observed on level of sea, on height about 1000 m over the level of sea and in gallery under the rock of thickness 1400 m (Gran Cacco, National laboratory, Assergi). The value of SSC has its maximum on height 1000 M and its minimum in gallery under the rock; it is possible, SSC depends on the intensity of space galactic rays. The results of experience, executed in April-July 1992 on cultures S.aureus have compared with average (on ten-day time periods) values for the same months of 1984-1991. Good correlation of these two curves of SSC was received. Array of measurements received from 1970 to 1992 and made conclusions can be used for long-term forecasts of cosmophysical fluctuating phenomena at least on latitude between Rome and Milano.

  20. Fully automated solid weighing workstation.

    PubMed

    Wong, Stephen K-F; Lu, YiFeng; Heineman, William; Palmer, Janice; Courtney, Carter

    2005-08-01

    A fully automated, solid-to-solid weighing workstation (patent pending) is described in this article. The core of this automated process is the use of an electrostatically charged pipette tip to attract solid particles on its outside surface. The particles were then dislodged into a 1.2-mL destination vial in a microbalance by spinning the pipette tip. Textures of solid that could be weighed included powder, crystalline, liquid, and semi-solid substances. The workstation can pick up submilligram quantities of sample (=0.3mg) from source vials containing as little as 1mg. The destination vials containing the samples were stored in a 96-well rack to enable subsequent automated liquid handling. Using bovine serum albumin as test solid, the coefficient of variation of the protein concentration for 48 samples is less than 6%. The workstation was used successfully to weigh out 48 different synthetic compounds. Time required for automated weighing was similar to manual weighing. The use of this workstation reduced 90% hands-on time and thus exposure to potentially toxic compounds. In addition, it minimized sample waste and reduced artifacts due to the poor solubility of compound in solvents. Moreover, it enabled compounds synthesized in milligram quantities to be weighed out and tested in biological assays.

  1. Fully Employing Software Inspections Data

    NASA Technical Reports Server (NTRS)

    Shull, Forrest; Feldmann, Raimund L.; Seaman, Carolyn; Regardie, Myrna; Godfrey, Sally

    2009-01-01

    Software inspections provide a proven approach to quality assurance for software products of all kinds, including requirements, design, code, test plans, among others. Common to all inspections is the aim of finding and fixing defects as early as possible, and thereby providing cost savings by minimizing the amount of rework necessary later in the lifecycle. Measurement data, such as the number and type of found defects and the effort spent by the inspection team, provide not only direct feedback about the software product to the project team but are also valuable for process improvement activities. In this paper, we discuss NASA's use of software inspections and the rich set of data that has resulted. In particular, we present results from analysis of inspection data that illustrate the benefits of fully utilizing that data for process improvement at several levels. Examining such data across multiple inspections or projects allows team members to monitor and trigger cross project improvements. Such improvements may focus on the software development processes of the whole organization as well as improvements to the applied inspection process itself.

  2. Fully transparent and rollable electronics.

    PubMed

    Mativenga, Mallory; Geng, Di; Kim, Byungsoon; Jang, Jin

    2015-01-28

    Major obstacles toward the manufacture of transparent and flexible display screens include the difficulty of finding transparent and flexible semiconductors and electrodes, temperature restrictions of flexible plastic substrates, and bulging or warping of the flexible electronics during processing. Here we report the fabrication and performance of fully transparent and rollable thin-film transistor (TFT) circuits for display applications. The TFTs employ an amorphous indium-gallium-zinc oxide semiconductor (with optical band gap of 3.1 eV) and amorphous indium-zinc oxide transparent conductive electrodes, and are built on 15-μm-thick solution-processed colorless polyimide (CPI), resulting in optical transmittance >70% in the visible range. As the CPI supports processing temperatures >300 °C, TFT performance on plastic is similar to that on glass, with typical field-effect mobility, turn-on voltage, and subthreshold voltage swing of 12.7 ± 0.5 cm(2)/V·s, -1.7 ± 0.2 V, and 160 ± 29 mV/dec, respectively. There is no significant degradation after rolling the TFTs 100 times on a cylinder with a radius of 4 mm or when shift registers, each consisting of 40 TFTs, are operated while bent to a radius of 2 mm. For handling purposes, carrier glass is used during fabrication, together with a very thin (∼1 nm) solution-processed carbon nanotube (CNT)/graphene oxide (GO) backbone that is first spin-coated on the glass to decrease adhesion of the CPI to the glass; peel strength of the CPI from glass decreases from 0.43 to 0.10 N/cm, which eases the process of detachment performed after device fabrication. Given that the CNT/GO remains embedded under the CPI after detachment, it minimizes wrinkling and decreases the substrate's tensile elongation from 8.0% to 4.6%. Device performance is also stable under electrostatic discharge exposures up to 10 kV, as electrostatic charge can be released via the conducting CNTs. PMID:25526282

  3. Open air carbon monoxide poisoning.

    PubMed

    Jumbelic, M I

    1998-01-01

    An unusual manner of carbon monoxide poisoning claimed the lives of two adults in two separate incidents. In the first case, a young man was four wheeling in a swampy area when his jeep became stuck in the mud as he continued to floor the accelerator. Carbon monoxide fumes entered the vehicle through the rusted floorboards, killing the driver. In the second case, two teens were skinny dipping behind a motor boat when they became affected by the boat exhaust. One of the youths was overcome and submerged into the lake. Both incidents were initially attributed to incorrect causes--a car accident and a drowning--because of the false notion that carbon monoxide is not a hazard in a ventilated area. The carboxyhemoglobin levels in these victims were 78 and 62% respectively. It was only through laboratory testing that carbon monoxide poisoning was identified as the cause of their demise. Physicians as well as the public need to be aware of the potential for this life threatening hazard to occur so that there can be proper emergency treatment and the prevention of fatalities.

  4. Towards printable open air microfluidics.

    SciTech Connect

    Collord, Andrew; Cook, Adam W.; Clem, Paul Gilbert; Fenton, Kyle Ross; Apblett, Christopher Alan; Branson, Eric D.

    2010-04-01

    We have demonstrated a novel microfluidic technique for aqueous media, which uses super-hydrophobic materials to create microfluidic channels that are open to the atmosphere. We have demonstrated the ability to perform traditional electrokinetic operations such as ionic separations and electrophoresis using these devices. The rate of evaporation was studied and found to increase with decreasing channel size, which places a limitation on the minimum size of channel that could be used for such a device.

  5. Fully Mechanically Controlled Automated Electron Microscopic Tomography

    PubMed Central

    Liu, Jinxin; Li, Hongchang; Zhang, Lei; Rames, Matthew; Zhang, Meng; Yu, Yadong; Peng, Bo; Celis, César Díaz; Xu, April; Zou, Qin; Yang, Xu; Chen, Xuefeng; Ren, Gang

    2016-01-01

    Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins’ functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000–160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisition without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging. PMID:27403922

  6. Fully Mechanically Controlled Automated Electron Microscopic Tomography

    NASA Astrophysics Data System (ADS)

    Liu, Jinxin; Li, Hongchang; Zhang, Lei; Rames, Matthew; Zhang, Meng; Yu, Yadong; Peng, Bo; Celis, César Díaz; Xu, April; Zou, Qin; Yang, Xu; Chen, Xuefeng; Ren, Gang

    2016-07-01

    Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins’ functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000–160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisition without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging.

  7. Fully Mechanically Controlled Automated Electron Microscopic Tomography.

    PubMed

    Liu, Jinxin; Li, Hongchang; Zhang, Lei; Rames, Matthew; Zhang, Meng; Yu, Yadong; Peng, Bo; Celis, César Díaz; Xu, April; Zou, Qin; Yang, Xu; Chen, Xuefeng; Ren, Gang

    2016-01-01

    Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins' functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000-160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisition without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging. PMID:27403922

  8. Experimental Study of Fully Developed Wind Turbine Array Boundary Layer

    NASA Astrophysics Data System (ADS)

    Turner v, John; Wosnik, Martin

    2014-11-01

    Results from an experimental study of an array of up to 100 model wind turbines with 0.25 m diameter, conducted in the turbulent boundary layer of the 6.0 m wide × 2.7 m tall × 72.0 m long test section of the UNH Flow Physics Facility, are reported. The study aims to address two questions. First, for a given configuration (turbine spacing, initial conditions, etc.), when will the model wind farm reach a ``fully developed'' condition, in which turbulence statistics remain the same from one row to the next within and above the wind turbine array. Second, how is kinetic energy transported in the wind turbine array boundary layer (WTABL). Measurements in the fully developed WTABL can provide valuable insight to the optimization of wind farm energy production. Previous experimental studies with smaller model wind farms were unable to reach the fully developed condition. Due to the size of the UNH facility and the current model array, the fully developed WTABL condition can be achieved. The wind turbine array was simulated by a combination of drag-matched porous disks, used in the upstream part of the array, and by a smaller array of realistic, scaled 3-bladed wind turbines immediately upstream of the measurement location.

  9. Printing Tablets with Fully Customizable Release Profiles for Personalized Medicine.

    PubMed

    Sun, Yajuan; Soh, Siowling

    2015-12-16

    Personalizing the release profiles of drugs is important for different people with different medical and biological conditions. A technically simple and low-cost method to fabricate fully customizable tablets that can deliver drugs with any type of release profile is described. The customization is intuitively straightforward: the desired profile can simply be "drawn" and printed by a 3D printer.

  10. Fully Regressive Melanoma: A Case Without Metastasis.

    PubMed

    Ehrsam, Eric; Kallini, Joseph R; Lebas, Damien; Khachemoune, Amor; Modiano, Philippe; Cotten, Hervé

    2016-08-01

    Fully regressive melanoma is a phenomenon in which the primary cutaneous melanoma becomes completely replaced by fibrotic components as a result of host immune response. Although 10 to 35 percent of cases of cutaneous melanomas may partially regress, fully regressive melanoma is very rare; only 47 cases have been reported in the literature to date. AH of the cases of fully regressive melanoma reported in the literature were diagnosed in conjunction with metastasis on a patient. The authors describe a case of fully regressive melanoma without any metastases at the time of its diagnosis. Characteristic findings on dermoscopy, as well as the absence of melanoma on final biopsy, confirmed the diagnosis. PMID:27672418

  11. Newtonian limit of fully nonlinear cosmological perturbations in Einstein's gravity

    SciTech Connect

    Hwang, Jai-chan; Noh, Hyerim E-mail: hr@kasi.re.kr

    2013-04-01

    We prove that in the infinite speed-of-light limit (i.e., non-relativistic and subhorizon limits), the relativistic fully nonlinear cosmological perturbation equations in two gauge conditions, the zero-shear gauge and the uniform-expansion gauge, exactly reproduce the Newtonian hydrodynamic perturbation equations in the cosmological background; as a consequence, in the same two gauge conditions, the Newtonian hydrodynamic equations are exactly recovered in the Minkowsky background.

  12. Interactive effects of elevated ozone and temperature on carbon allocation of silver birch (Betula pendula) genotypes in an open-air field exposure.

    PubMed

    Kasurinen, Anne; Biasi, Christina; Holopainen, Toini; Rousi, Matti; Mäenpää, Maarit; Oksanen, Elina

    2012-06-01

    In the present experiment, the single and combined effects of elevated temperature and ozone (O(3)) on four silver birch genotypes (gt12, gt14, gt15 and gt25) were studied in an open-air field exposure design. Above- and below-ground biomass accumulation, stem growth and soil respiration were measured in 2008. In addition, a (13)C-labelling experiment was conducted with gt15 trees. After the second exposure season, elevated temperature increased silver birch above- and below-ground growth and soil respiration rates. However, some of these variables showed that the temperature effect was modified by tree genotype and prevailing O(3) level. For instance, in gt14 soil respiration was increased in elevated temperature alone (T) and in elevated O(3) and elevated temperature in combination (O(3) + T) treatments, but in other genotypes O(3) either partly (gt12) or totally nullified (gt25) temperature effects on soil respiration, or acted synergistically with temperature (gt15). Before leaf abscission, all genotypes had the largest leaf biomass in T and O(3) + T treatments, whereas at the end of the season temperature effects on leaf biomass depended on the prevailing O(3) level. Temperature increase thus delayed and O(3) accelerated leaf senescence, and in combination treatment O(3) reduced the temperature effect. Photosynthetic : non-photosynthetic tissue ratios (P : nP ratios) showed that elevated temperature increased foliage biomass relative to woody mass, particularly in gt14 and gt12, whereas O(3) and O(3) + T decreased it most clearly in gt25. O(3)-caused stem growth reductions were clearest in the fastest-growing gt14 and gt25, whereas mycorrhizal root growth and sporocarp production increased under O(3) in all genotypes. A labelling experiment showed that temperature increased tree total biomass and hence (13)C fixation in the foliage and roots and also label return was highest under elevated temperature. Ozone seemed to change tree (13)C allocation, as it

  13. Fully automated three-dimensional microscopy system

    NASA Astrophysics Data System (ADS)

    Kerschmann, Russell L.

    2000-04-01

    Tissue-scale structures such as vessel networks are imaged at micron resolution with the Virtual Tissue System (VT System). VT System imaging of cubic millimeters of tissue and other material extends the capabilities of conventional volumetric techniques such as confocal microscopy, and allows for the first time the integrated 2D and 3D analysis of important tissue structural relationships. The VT System eliminates the need for glass slide-mounted tissue sections and instead captures images directly from the surface of a block containing a sample. Tissues are en bloc stained with fluorochrome compounds, embedded in an optically conditioned polymer that suppresses image signals form dep within the block , and serially sectioned for imaging. Thousands of fully registered 2D images are automatically captured digitally to completely convert tissue samples into blocks of high-resolution information. The resulting multi gigabyte data sets constitute the raw material for precision visualization and analysis. Cellular function may be seen in a larger anatomical context. VT System technology makes tissue metrics, accurate cell enumeration and cell cycle analyses possible while preserving full histologic setting.

  14. 77 FR 41881 - Safety Advisory 2012-03; Buckling-Prone Conditions in Continuous Welded Rail Track

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... railroads to be caused by the rail buckling under extreme heat conditions (commonly referred to as ``sun... experience because they are exposed to the open air and radiant heat from the sun. These temperature changes... approximately 5:30 p.m., a BNSF Railway Company (BNSF) train crew noticed a sun kink (buckled track) in the...

  15. Fully Depleted Charge-Coupled Devices

    SciTech Connect

    Holland, Stephen E.

    2006-05-15

    We have developed fully depleted, back-illuminated CCDs thatbuild upon earlier research and development efforts directed towardstechnology development of silicon-strip detectors used inhigh-energy-physics experiments. The CCDs are fabricated on the same typeof high-resistivity, float-zone-refined silicon that is used for stripdetectors. The use of high-resistivity substrates allows for thickdepletion regions, on the order of 200-300 um, with corresponding highdetection efficiency for near-infrared andsoft x-ray photons. We comparethe fully depleted CCD to thep-i-n diode upon which it is based, anddescribe the use of fully depleted CCDs in astronomical and x-ray imagingapplications.

  16. High-voltage-compatible, fully depleted CCDs

    SciTech Connect

    Holland, Stephen E.; Bebek, Chris J.; Dawson, Kyle S.; Emes, JohnE.; Fabricius, Max H.; Fairfield, Jessaym A.; Groom, Don E.; Karcher, A.; Kolbe, William F.; Palaio, Nick P.; Roe, Natalie A.; Wang, Guobin

    2006-05-15

    We describe charge-coupled device (CCD) developmentactivities at the Lawrence Berkeley National Laboratory (LBNL).Back-illuminated CCDs fabricated on 200-300 mu m thick, fully depleted,high-resistivity silicon substrates are produced in partnership with acommercial CCD foundry.The CCDs are fully depleted by the application ofa substrate bias voltage. Spatial resolution considerations requireoperation of thick, fully depleted CCDs at high substrate bias voltages.We have developed CCDs that are compatible with substrate bias voltagesof at least 200V. This improves spatial resolution for a given thickness,and allows for full depletion of thicker CCDs than previously considered.We have demonstrated full depletion of 650-675 mu m thick CCDs, withpotential applications in direct x-ray detection. In this work we discussthe issues related to high-voltage operation of fully depleted CCDs, aswell as experimental results on high-voltage-compatible CCDs.

  17. Progress in Fully Automated Abdominal CT Interpretation

    PubMed Central

    Summers, Ronald M.

    2016-01-01

    OBJECTIVE Automated analysis of abdominal CT has advanced markedly over just the last few years. Fully automated assessment of organs, lymph nodes, adipose tissue, muscle, bowel, spine, and tumors are some examples where tremendous progress has been made. Computer-aided detection of lesions has also improved dramatically. CONCLUSION This article reviews the progress and provides insights into what is in store in the near future for automated analysis for abdominal CT, ultimately leading to fully automated interpretation. PMID:27101207

  18. Optimal fully adaptive wormhole routing for meshes

    SciTech Connect

    Schwiebert, L.; Jayasimha, D.N.

    1993-12-31

    A deadlock-free fully adaptive routing algorithm for 2D meshes which is optimal in the number of virtual channels required and in the number of restrictions placed on the use of these virtual channels is presented. The routing algorithm imposes less than half as many routing restrictions as any previous fully adaptive routing algorithm. It is also proved that, ignoring symmetry, this routing algorithm is the only fully adaptive routing algorithm that achieves both of these goals. The implementation of the routing algorithm requires relatively simple router control logic. The new algorithm is extended, in a straightforward manner to arbitrary dimension meshes. It needs only 4n-2 virtual channels, the minimum number for an n-dimensional mesh. All previous algorithms require an exponential number of virtual channels in the dimension of the mesh.

  19. Optimality of a Fully Stressed Design

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    1998-01-01

    For a truss a fully stressed state is reached and when all its members are utilized to their full strength capacity. Historically, engineers considered such a design optimum. But recently this optimality has been questioned, especially since the weight of the structure is not explicitly used in fully stressed design calculations. This paper examines optimality of the full stressed design (FSD) with analytical and graphical illustrations. Solutions for a set of examples obtained by using the FSD method and optimization methods numerically confirm the optimality of the FSD. The FSD, which can be obtained with a small amount of calculation, can be extended to displacement constraints and to nontruss-type structures.

  20. 76 FR 35086 - Proposed Information Collection (Fully Developed Claim (Fully Developed Claims-Applications for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... Compensation, Pension, DIC, Death Pension, and/or Accrued Benefits)) Activity: Comment Request AGENCY: Veterans... Developed Claim (Fully Developed Claims--Applications for Compensation, Pension, DIC, Death Pension,...

  1. Steps toward Creating Fully Accessible Reading Assessments

    ERIC Educational Resources Information Center

    Thurlow, Martha L.

    2010-01-01

    The National Accessible Reading Assessment Projects (NARAP) have been conducting research and engaging in other activities to pull together a full view of the issues and potential solutions for developing reading assessments that are fully accessible and produce valid results for students with disabilities. To introduce this topic, the assumptions…

  2. Fully Integrated Biochip Platforms for Advanced Healthcare

    PubMed Central

    Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni

    2012-01-01

    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications. PMID:23112644

  3. Conduction in fully ionized liquid metals

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Ashcroft, N. W.

    1973-01-01

    Electron transport is considered in high density fully ionized liquid metals. Ionic structure is described in terms of hard-sphere correlation functions and the scattering is determined from self-consistently screened point ions. Applications to the physical properties of the deep interior of Jupiter are briefly considered.

  4. Conduction in fully ionized liquid metals

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Ashcroft, N. W.

    1974-01-01

    Electron transport is considered in high-density fully ionized liquid metals. Ionic structure is described in terms of hard-sphere-correlation functions and the scattering is determined from self-consistently screened point ions. Applications to the physical properties of the deep interior of Jupiter are briefly considered.

  5. Learner Perspectives on Fully Online Language Learning

    ERIC Educational Resources Information Center

    Sun, Susan Y. H.

    2014-01-01

    This study builds on this author's 2011 article in which the author reflects on the pedagogical challenges and resultant changes made while teaching two fully online foreign language papers over a four-year period (Y. H. S. Sun (2011). Online language teaching: The pedagogical challenges. "Knowledge Management & E-Learning: An…

  6. Fully integrated biochip platforms for advanced healthcare.

    PubMed

    Carrara, Sandro; Ghoreishizadeh, Sara; Olivo, Jacopo; Taurino, Irene; Baj-Rossi, Camilla; Cavallini, Andrea; de Beeck, Maaike Op; Dehollain, Catherine; Burleson, Wayne; Moussy, Francis Gabriel; Guiseppi-Elie, Anthony; De Micheli, Giovanni

    2012-01-01

    Recent advances in microelectronics and biosensors are enabling developments of innovative biochips for advanced healthcare by providing fully integrated platforms for continuous monitoring of a large set of human disease biomarkers. Continuous monitoring of several human metabolites can be addressed by using fully integrated and minimally invasive devices located in the sub-cutis, typically in the peritoneal region. This extends the techniques of continuous monitoring of glucose currently being pursued with diabetic patients. However, several issues have to be considered in order to succeed in developing fully integrated and minimally invasive implantable devices. These innovative devices require a high-degree of integration, minimal invasive surgery, long-term biocompatibility, security and privacy in data transmission, high reliability, high reproducibility, high specificity, low detection limit and high sensitivity. Recent advances in the field have already proposed possible solutions for several of these issues. The aim of the present paper is to present a broad spectrum of recent results and to propose future directions of development in order to obtain fully implantable systems for the continuous monitoring of the human metabolism in advanced healthcare applications.

  7. 76 FR 36176 - Fully Developed Claim (Fully Developed Claims-Applications for Compensation, Pension, DIC, Death...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ..., NW., Washington, DC 20420, at 202-461-7485. Correction In FR Doc. 2011-14760, published on June 15... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF VETERANS AFFAIRS Fully Developed Claim (Fully Developed Claims--Applications for Compensation, Pension, DIC,...

  8. Systems Architecture for Fully Autonomous Space Missions

    NASA Technical Reports Server (NTRS)

    Esper, Jamie; Schnurr, R.; VanSteenberg, M.; Brumfield, Mark (Technical Monitor)

    2002-01-01

    The NASA Goddard Space Flight Center is working to develop a revolutionary new system architecture concept in support of fully autonomous missions. As part of GSFC's contribution to the New Millenium Program (NMP) Space Technology 7 Autonomy and on-Board Processing (ST7-A) Concept Definition Study, the system incorporates the latest commercial Internet and software development ideas and extends them into NASA ground and space segment architectures. The unique challenges facing the exploration of remote and inaccessible locales and the need to incorporate corresponding autonomy technologies within reasonable cost necessitate the re-thinking of traditional mission architectures. A measure of the resiliency of this architecture in its application to a broad range of future autonomy missions will depend on its effectiveness in leveraging from commercial tools developed for the personal computer and Internet markets. Specialized test stations and supporting software come to past as spacecraft take advantage of the extensive tools and research investments of billion-dollar commercial ventures. The projected improvements of the Internet and supporting infrastructure go hand-in-hand with market pressures that provide continuity in research. By taking advantage of consumer-oriented methods and processes, space-flight missions will continue to leverage on investments tailored to provide better services at reduced cost. The application of ground and space segment architectures each based on Local Area Networks (LAN), the use of personal computer-based operating systems, and the execution of activities and operations through a Wide Area Network (Internet) enable a revolution in spacecraft mission formulation, implementation, and flight operations. Hardware and software design, development, integration, test, and flight operations are all tied-in closely to a common thread that enables the smooth transitioning between program phases. The application of commercial software

  9. Measurement of pixel response functions of a fully depleted CCD

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yukiyasu; Niwa, Yoshito; Yano, Taihei; Gouda, Naoteru; Hara, Takuji; Yamada, Yoshiyuki

    2014-07-01

    We describe the measurement of detailed and precise Pixel Response Functions (PRFs) of a fully depleted CCD. Measurements were performed under different physical conditions, such as different wavelength light sources or CCD operating temperatures. We determined the relations between these physical conditions and the forms of the PRF. We employ two types of PRFs: one is the model PRF (mPRF) that can represent the shape of a PRF with one characteristic parameter and the other is the simulated PRF (sPRF) that is the resultant PRF from simulating physical phenomena. By using measured, model, and simulated PRFs, we determined the relations between operational parameters and the PRFs. Using the obtained relations, we can now estimate a PRF under conditions that will be encountered during the course of Nano-JASMINE observations. These estimated PRFs will be utilized in the analysis of the Nano-JASMINE data.

  10. Molecular Insights into Fully Human and Humanized Monoclonal Antibodies

    PubMed Central

    Davies, Julian; Glasebrook, Andrew; Tang, Ying; Glaesner, Wolfgang; Nickoloff, Brian J.

    2016-01-01

    In recent years, a large number of therapeutic monoclonal antibodies have come to market to treat a variety of conditions including patients with immune-mediated chronic inflammation. Distinguishing the relative clinical efficacy and safety profiles of one monoclonal antibody relative to another can be difficult and complex due to different clinical designs and paucity of head-to-head comparator studies. One distinguishing feature in interpreting clinical trial data by dermatologists may begin by determining whether a monoclonal antibody is fully human or humanized, which can be discerned by the generic name of the drug. Herein, this commentary highlights the distinctions and similarities of fully human and humanized monoclonal antibodies in their nomenclature, engineering, and clinical profiles. While there are a number of differences between these types of monoclonal antibodies, current evidence indicates that this designation does not impart any measurable impact on overall clinical efficacy and safety profiles of a given drug. Based on molecular insights provided in this commentary, it is clear that each monoclonal antibody, irrespective of being fully human or humanized, should be individually assessed for its clinical impact regarding safety and efficacy. Going beyond the type of generic name ascribed to a monoclonal antibody will be an ever-increasing theme for dermatologists as more therapeutic monoclonal antibodies emerge to potentially treat a wider scope of diseases with cutaneous manifestations. PMID:27672407

  11. Ability of TiO2(110) Surface to Be Fully Hydroxylated and Fully Reduced

    SciTech Connect

    Wang, Zhitao; Garcia, Juan C.; Deskins, N. A.; Lyubinetsky, Igor

    2015-08-06

    Many TiO2 applications (e.g., in heterogeneous catalysis) involve contact with ambient atmosphere and/or water. The resulting hydroxylation can significantly alter its surface properties. While behavior of single, isolated OH species on the model metal oxide surface of rutile TiO2(110) is relatively well understood, much less is known regarding highly-hydroxylated surfaces and/or whether TiO2(110) could be fully-hydroxylated under ultra-high vacuum conditions. Here we report in situ formation of a well-ordered, fully-hydroxylated TiO2(110)-(1 x 1) surface using an enhanced photochemical approach, key parts of which are pre-dosing of water and multi-step dissociative adsorption and subsequent photolysis of the carboxylic (trimethyl acetic) acid. Combining scanning tunneling microscopy, ultra-violet photoelectron spectroscopy and density functional theory results, we show that the attained “super OH” surface is also fully-reduced, as a result of the photochemical trapping of electrons at the OH groups.

  12. Stereoselective Formation of Fully Substituted Ketone Enolates.

    PubMed

    Haimov, Elvira; Nairoukh, Zackaria; Shterenberg, Alexander; Berkovitz, Tiran; Jamison, Timothy F; Marek, Ilan

    2016-04-25

    The application of stereochemically defined acyclic fully substituted enolates of ketones to the enantioselective synthesis of quaternary carbon stereocenters would be highly valuable. Herein, we describe an approach leading to the formation of several new stereogenic centers through a combined metalation-addition of a carbonyl-carbamoyl transfer to reveal in situ stereodefined α,α-disubstituted enolates of ketone as a single stereoisomer. This approach could produce a series of aldol and Mannich products from enol carbamate with excellent diastereomeric ratios. PMID:27027778

  13. Stereoselective Formation of Fully Substituted Ketone Enolates.

    PubMed

    Haimov, Elvira; Nairoukh, Zackaria; Shterenberg, Alexander; Berkovitz, Tiran; Jamison, Timothy F; Marek, Ilan

    2016-04-25

    The application of stereochemically defined acyclic fully substituted enolates of ketones to the enantioselective synthesis of quaternary carbon stereocenters would be highly valuable. Herein, we describe an approach leading to the formation of several new stereogenic centers through a combined metalation-addition of a carbonyl-carbamoyl transfer to reveal in situ stereodefined α,α-disubstituted enolates of ketone as a single stereoisomer. This approach could produce a series of aldol and Mannich products from enol carbamate with excellent diastereomeric ratios.

  14. Fully implicit adaptive mesh refinement MHD algorithm

    NASA Astrophysics Data System (ADS)

    Philip, Bobby

    2005-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.

  15. Fully flooded elastohydrodynamic lubricated elliptical contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1980-01-01

    Emphasis is on fully flooded, elastohydrodynamic lubricated, elliptical contacts. A fully flooded conjunction is one in which the film thickness is not significantly changed when the amount of lubricant is increased. A brief description of the relevant equations used in the elastohydrodynamic lubrication of elliptical contacts is given. The most important practical aspect of the elastohydrodynamic theory is the determination of the minimum film thickness within the contact. The maintenance of a fluid film of adequate magnitude is an essential feature of the correct operation of lubricated machine elements. The results presented show the influence of contact geometry on minimum film thickness as expressed by the ellipticity parameter and the dimensionless speed, load, and materials parameters. Film thickness equations are developed for materials of high elastic modulus, such as metal, and for materials of low elastic modulus, such as rubber. In addition to the film thickness equations that are developed, plots of pressure and film thickness are presented. These theoretical solutions for film thickness have all the essential features of previously reported experimental observations based on optical interferometry. Correlation between theory and experiments is also presented.

  16. Fully CMOS-compatible titanium nitride nanoantennas

    NASA Astrophysics Data System (ADS)

    Briggs, Justin A.; Naik, Gururaj V.; Petach, Trevor A.; Baum, Brian K.; Goldhaber-Gordon, David; Dionne, Jennifer A.

    2016-02-01

    CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.

  17. Communication: Fully coherent quantum state hopping.

    PubMed

    Martens, Craig C

    2015-10-14

    In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) "probability" of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.

  18. Communication: Fully coherent quantum state hopping

    SciTech Connect

    Martens, Craig C.

    2015-10-14

    In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) “probability” of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.

  19. Osmotic Flow through Fully Permeable Nanochannels

    NASA Astrophysics Data System (ADS)

    Lee, C.; Cottin-Bizonne, C.; Biance, A.-L.; Joseph, P.; Bocquet, L.; Ybert, C.

    2014-06-01

    Osmosis across membranes is intrinsically associated with the concept of semipermeability. Here, however, we demonstrate that osmotic flow can be generated by solute gradients across nonselective, fully permeable nanochannels. Using a fluorescence imaging technique, we are able to measure the water flow rate inside single nanochannels to an unprecedented sensitivity of femtoliters per minute flow rates. Our results indicate the onset of a convective liquid motion under salinity gradients, from the higher to lower electrolyte concentration, which is attributed to diffusio-osmotic transport. To our knowledge, this is the first experimental evidence and quantitative investigation of this subtle interfacially driven transport, which need to be accounted for in nanoscale dynamics. Finally, diffusio-osmotic transport under a neutral polymer gradient is also demonstrated. The experiments highlight the entropic depletion of polymers that occurs at the nanochannel surface, resulting in convective flow in the opposite direction to that seen for electrolytes.

  20. Fully automated determination of pesticides in wine.

    PubMed

    Kaufmann, A

    1997-01-01

    A fully automated solid-phase extraction gas chromatographic/mass spectrometric (SPE/GC/MS) method was developed for determination of pesticides in wine. All steps from aspiration of infiltrated wine to printout of the integrated chromatogram were performed without human interaction. A dedicated robot performed addition of internal standard, application of wine onto the SPE cartridge, elution of analytes, drying and concentrating of eluate, and passing of concentrate to the GC sampler. All steps were performed in standard liquid chromatography/GC vials, using a minimum of organic solvent. The method permits determination of 21 different pesticides. Individual detection limits were 0.005-0.01 mg/L. The regression coefficients relating to linearity were > 0.99; only 4,4-dichloro-benzphenone and dicofol showed lower coefficients. The recoveries for 17 pesticides ranged from 80 to 115%.

  1. Osmotic flow through fully permeable nanochannels.

    PubMed

    Lee, C; Cottin-Bizonne, C; Biance, A-L; Joseph, P; Bocquet, L; Ybert, C

    2014-06-20

    Osmosis across membranes is intrinsically associated with the concept of semipermeability. Here, however, we demonstrate that osmotic flow can be generated by solute gradients across nonselective, fully permeable nanochannels. Using a fluorescence imaging technique, we are able to measure the water flow rate inside single nanochannels to an unprecedented sensitivity of femtoliters per minute flow rates. Our results indicate the onset of a convective liquid motion under salinity gradients, from the higher to lower electrolyte concentration, which is attributed to diffusio-osmotic transport. To our knowledge, this is the first experimental evidence and quantitative investigation of this subtle interfacially driven transport, which need to be accounted for in nanoscale dynamics. Finally, diffusio-osmotic transport under a neutral polymer gradient is also demonstrated. The experiments highlight the entropic depletion of polymers that occurs at the nanochannel surface, resulting in convective flow in the opposite direction to that seen for electrolytes. PMID:24996091

  2. Solutions of The Fully Fuzzy Linear System

    NASA Astrophysics Data System (ADS)

    Mikaeilvand, Nasser; Allahviranloo, Tofigh

    2009-05-01

    As can be seen from the definition of extended operations on fuzzy numbers, subtraction and division of fuzzy numbers are not the inverse operations to addition and multiplication, respectively. Hence for solving equations or system of equations, we must use methods without using inverse operators. In this paper, we propose a novel method to find the nonzero solutions of fully fuzzy linear systems (shown as FFLS). System's parameters are Split to two groups of non positives and non negatives by solving one multi objective linear program (MOLP) and employing embedding method to transform n×n (FFLS) to 2n×2n parametric form linear system and hence, transform operations on fuzzy numbers to operations on functions. And finally, numerical examples are used to illustrate this approach.

  3. A novel fully integrated handheld gamma camera

    NASA Astrophysics Data System (ADS)

    Massari, R.; Ucci, A.; Campisi, C.; Scopinaro, F.; Soluri, A.

    2016-10-01

    In this paper, we present an innovative, fully integrated handheld gamma camera, namely designed to gather in the same device the gamma ray detector with the display and the embedded computing system. The low power consumption allows the prototype to be battery operated. To be useful in radioguided surgery, an intraoperative gamma camera must be very easy to handle since it must be moved to find a suitable view. Consequently, we have developed the first prototype of a fully integrated, compact and lightweight gamma camera for radiopharmaceuticals fast imaging. The device can operate without cables across the sterile field, so it may be easily used in the operating theater for radioguided surgery. The prototype proposed consists of a Silicon Photomultiplier (SiPM) array coupled with a proprietary scintillation structure based on CsI(Tl) crystals. To read the SiPM output signals, we have developed a very low power readout electronics and a dedicated analog to digital conversion system. One of the most critical aspects we faced designing the prototype was the low power consumption, which is mandatory to develop a battery operated device. We have applied this detection device in the lymphoscintigraphy technique (sentinel lymph node mapping) comparing the results obtained with those of a commercial gamma camera (Philips SKYLight). The results obtained confirm a rapid response of the device and an adequate spatial resolution for the use in the scintigraphic imaging. This work confirms the feasibility of a small gamma camera with an integrated display. This device is designed for radioguided surgery and small organ imaging, but it could be easily combined into surgical navigation systems.

  4. Reactive Transport Modeling of Induced Calcite Precipitation Reaction Fronts in Porous Media Using A Parallel, Fully Coupled, Fully Implicit Approach

    NASA Astrophysics Data System (ADS)

    Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.; Fox, D. T.; Fujita, Y.

    2010-12-01

    Inducing mineral precipitation in the subsurface is one potential strategy for immobilizing trace metal and radionuclide contaminants. Generating mineral precipitates in situ can be achieved by manipulating chemical conditions, typically through injection or in situ generation of reactants. How these reactants transport, mix and react within the medium controls the spatial distribution and composition of the resulting mineral phases. Multiple processes, including fluid flow, dispersive/diffusive transport of reactants, biogeochemical reactions and changes in porosity-permeability, are tightly coupled over a number of scales. Numerical modeling can be used to investigate the nonlinear coupling effects of these processes which are quite challenging to explore experimentally. Many subsurface reactive transport simulators employ a de-coupled or operator-splitting approach where transport equations and batch chemistry reactions are solved sequentially. However, such an approach has limited applicability for biogeochemical systems with fast kinetics and strong coupling between chemical reactions and medium properties. A massively parallel, fully coupled, fully implicit Reactive Transport simulator (referred to as “RAT”) based on a parallel multi-physics object-oriented simulation framework (MOOSE) has been developed at the Idaho National Laboratory. Within this simulator, systems of transport and reaction equations can be solved simultaneously in a fully coupled, fully implicit manner using the Jacobian Free Newton-Krylov (JFNK) method with additional advanced computing capabilities such as (1) physics-based preconditioning for solution convergence acceleration, (2) massively parallel computing and scalability, and (3) adaptive mesh refinements for 2D and 3D structured and unstructured mesh. The simulator was first tested against analytical solutions, then applied to simulating induced calcium carbonate mineral precipitation in 1D columns and 2D flow cells as analogs

  5. Fully Coupled Well Models for Fluid Injection and Production

    SciTech Connect

    White, Mark D.; Bacon, Diana H.; White, Signe K.; Zhang, Z. F.

    2013-08-05

    Wells are the primary engineered component of geologic sequestration systems with deep subsurface reservoirs. Wells provide a conduit for injecting greenhouse gases and producing reservoirs fluids, such as brines, natural gas, and crude oil, depending on the target reservoir. Well trajectories, well pressures, and fluid flow rates are parameters over which well engineers and operators have control during the geologic sequestration process. Current drilling practices provided well engineers flexibility in designing well trajectories and controlling screened intervals. Injection pressures and fluids can be used to purposely fracture the reservoir formation or to purposely prevent fracturing. Numerical simulation of geologic sequestration processes involves the solution of multifluid transport equations within heterogeneous geologic media. These equations that mathematically describe the flow of fluid through the reservoir formation are nonlinear in form, requiring linearization techniques to resolve. In actual geologic settings fluid exchange between a well and reservoir is a function of local pressure gradients, fluid saturations, and formation characteristics. In numerical simulators fluid exchange between a well and reservoir can be specified using a spectrum of approaches that vary from totally ignoring the reservoir conditions to fully considering reservoir conditions and well processes. Well models are a numerical simulation approach that account for local conditions and gradients in the exchange of fluids between the well and reservoir. As with the mathematical equations that describe fluid flow in the reservoir, variation in fluid properties with temperature and pressure yield nonlinearities in the mathematical equations that describe fluid flow within the well. To numerically simulate the fluid exchange between a well and reservoir the two systems of nonlinear multifluid flow equations must be resolved. The spectrum of numerical approaches for resolving

  6. Fully 3D refraction correction dosimetry system

    NASA Astrophysics Data System (ADS)

    Manjappa, Rakesh; Sharath Makki, S.; Kumar, Rajesh; Mohan Vasu, Ram; Kanhirodan, Rajan

    2016-02-01

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  7. Fully 3D refraction correction dosimetry system.

    PubMed

    Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan

    2016-02-21

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  8. Injector for scattering measurements on fully solvated biospecies

    SciTech Connect

    Weierstall, U.; Spence, J. C. H.; Doak, R. B.

    2012-03-15

    We describe a liquid jet injector system developed to deliver fully solvated microscopic target species into a probe beam under either vacuum or ambient conditions. The injector was designed specifically for x-ray scattering studies of biological nanospecies using x-ray free electron lasers and third generation synchrotrons, but is of interest to any application in which microscopic samples must be delivered in a fully solvated state and with microscopic precision. By utilizing a gas dynamic virtual nozzle (GDVN) to generate a sample-containing liquid jet of diameter ranging from 300 nm to 20 {mu}m, the injector avoids the clogging problems associated in this size range with conventional Rayleigh jets. A differential pumping system incorporated into the injector shields the experimental chamber from the gas load of the GDVN, making the injector compatible with high vacuum systems. The injector houses a fiber-optically coupled pump laser to illuminate the jet for pump-probe experiments and a hermetically sealed microscope to observe the liquid jet for diagnostics and alignment during operation. This injector system has now been used during several experimental runs at the Linac Coherent Light Source. Recent refinements in GDVN design are also presented.

  9. Injector for scattering measurements on fully solvated biospecies.

    PubMed

    Weierstall, U; Spence, J C H; Doak, R B

    2012-03-01

    We describe a liquid jet injector system developed to deliver fully solvated microscopic target species into a probe beam under either vacuum or ambient conditions. The injector was designed specifically for x-ray scattering studies of biological nanospecies using x-ray free electron lasers and third generation synchrotrons, but is of interest to any application in which microscopic samples must be delivered in a fully solvated state and with microscopic precision. By utilizing a gas dynamic virtual nozzle (GDVN) to generate a sample-containing liquid jet of diameter ranging from 300 nm to 20 μm, the injector avoids the clogging problems associated in this size range with conventional Rayleigh jets. A differential pumping system incorporated into the injector shields the experimental chamber from the gas load of the GDVN, making the injector compatible with high vacuum systems. The injector houses a fiber-optically coupled pump laser to illuminate the jet for pump-probe experiments and a hermetically sealed microscope to observe the liquid jet for diagnostics and alignment during operation. This injector system has now been used during several experimental runs at the Linac Coherent Light Source. Recent refinements in GDVN design are also presented.

  10. Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency

    NASA Astrophysics Data System (ADS)

    Clarke, A.; Stefanov, K.; Johnston, N.; Holland, A.

    2015-04-01

    The Centre for Electronic Imaging (CEI) has an active programme of evaluating and designing Complementary Metal-Oxide Semiconductor (CMOS) image sensors with high quantum efficiency, for applications in near-infrared and X-ray photon detection. This paper describes the performance characterisation of CMOS devices made on a high resistivity 50 μ m thick p-type substrate with a particular focus on determining the depletion depth and the quantum efficiency. The test devices contain 8 × 8 pixel arrays using CCD-style charge collection, which are manufactured in a low voltage CMOS process by ESPROS Photonics Corporation (EPC). Measurements include determining under which operating conditions the devices become fully depleted. By projecting a spot using a microscope optic and a LED and biasing the devices over a range of voltages, the depletion depth will change, causing the amount of charge collected in the projected spot to change. We determine if the device is fully depleted by measuring the signal collected from the projected spot. The analysis of spot size and shape is still under development.

  11. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    NASA Technical Reports Server (NTRS)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for

  12. Towards fully automatic object detection and segmentation

    NASA Astrophysics Data System (ADS)

    Schramm, Hauke; Ecabert, Olivier; Peters, Jochen; Philomin, Vasanth; Weese, Juergen

    2006-03-01

    An automatic procedure for detecting and segmenting anatomical objects in 3-D images is necessary for achieving a high level of automation in many medical applications. Since today's segmentation techniques typically rely on user input for initialization, they do not allow for a fully automatic workflow. In this work, the generalized Hough transform is used for detecting anatomical objects with well defined shape in 3-D medical images. This well-known technique has frequently been used for object detection in 2-D images and is known to be robust and reliable. However, its computational and memory requirements are generally huge, especially in case of considering 3-D images and various free transformation parameters. Our approach limits the complexity of the generalized Hough transform to a reasonable amount by (1) using object prior knowledge during the preprocessing in order to suppress unlikely regions in the image, (2) restricting the flexibility of the applied transformation to only scaling and translation, and (3) using a simple shape model which does not cover any inter-individual shape variability. Despite these limitations, the approach is demonstrated to allow for a coarse 3-D delineation of the femur, vertebra and heart in a number of experiments. Additionally it is shown that the quality of the object localization is in nearly all cases sufficient to initialize a successful segmentation using shape constrained deformable models.

  13. A fully implantable rodent neural stimulator

    NASA Astrophysics Data System (ADS)

    Perry, D. W. J.; Grayden, D. B.; Shepherd, R. K.; Fallon, J. B.

    2012-02-01

    The ability to electrically stimulate neural and other excitable tissues in behaving experimental animals is invaluable for both the development of neural prostheses and basic neurological research. We developed a fully implantable neural stimulator that is able to deliver two channels of intra-cochlear electrical stimulation in the rat. It is powered via a novel omni-directional inductive link and includes an on-board microcontroller with integrated radio link, programmable current sources and switching circuitry to generate charge-balanced biphasic stimulation. We tested the implant in vivo and were able to elicit both neural and behavioural responses. The implants continued to function for up to five months in vivo. While targeted to cochlear stimulation, with appropriate electrode arrays the stimulator is well suited to stimulating other neurons within the peripheral or central nervous systems. Moreover, it includes significant on-board data acquisition and processing capabilities, which could potentially make it a useful platform for telemetry applications, where there is a need to chronically monitor physiological variables in unrestrained animals.

  14. PCB with fully integrated optical interconnects

    NASA Astrophysics Data System (ADS)

    Langer, Gregor; Satzinger, Valentin; Schmidt, Volker; Schmid, Gerhard; Leeb, Walter R.

    2011-01-01

    The increasing demand for miniaturization and design flexibility of polymer optical waveguides integrated into electrical printed circuit boards (PCB) calls for new coupling and integration concepts. We report on a method that allows the coupling of optical waveguides to electro-optical components as well as the integration of an entire optical link into the PCB. The electro-optical devices such as lasers and photodiodes are assembled on the PCB and then embedded in an optically transparent material. A focused femtosecond laser beam stimulates a polymerization reaction based on a two-photon absorption effect in the optical material and locally increases the refractive index of the material. In this way waveguide cores can be realized and the embedded components can be connected optically. This approach does not only allow a precise alignment of the waveguide end faces to the components but also offers a truly 3-dimensional routing capability of the waveguides. Using this technology we were able to realize butt-coupling and mirror-coupling interface solutions in several demonstrators. We were also manufacturing demonstrator boards with fully integrated driver and preamplifier chips, which show very low power consumption of down to 10 mW for about 2.5 Gbit/s. Furthermore, demonstrators with interconnects at two different optical layers were realized.

  15. Quantum Optimization of Fully Connected Spin Glasses

    NASA Astrophysics Data System (ADS)

    Venturelli, Davide; Mandrà, Salvatore; Knysh, Sergey; O'Gorman, Bryan; Biswas, Rupak; Smelyanskiy, Vadim

    2015-07-01

    Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer's hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave TwoTM annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors) optimized simulated annealing algorithms.

  16. Fully traceable miniature CMM with submicrometer uncertainty

    NASA Astrophysics Data System (ADS)

    Lewis, Andrew J.

    2003-11-01

    A CMM has been developed which operates over a working volume of 50 × 50 × 50 mm, and achieves an uncertainty in 3D probing of ~100 nm. This miniature CMM is based around the concept of a metrology frame, mounted on a host CMM, with a miniature probe system held on the host CMM's ram. The probing system is rigidly connected to 3 orthogonal mirrors, the positions and rotations of which are measured using 3 dual axis interferometers (length, angle) and 3 dual axis angular sensors. Corrections for the mis-alignments of the interferometers, flatness errors of the mirrors and the performance of the miniature probe system are all determined in situ, by reference to the calibrated laser wavelength. This process performs a full error map of the CMM and requires only two artefacts: a precision sphere and a good quality optical cube. The error map is used online to determine the 3D position of the probe tip, based on measurements of the interferometers and angle sensing systems. The CMM is fully programmable and operates as a normal CMM, albeit with considerably improved accuracy. The design, manufacture and calibration of the CMM are described, followed by examples of measurements made with the machine and a determination of the uncertainty sources. This CMM is designed as the first step in bridging the gap between conventional (millimetre scale metrology) and nanometrology.

  17. FULLY COMPRESSIVE TIDES IN GALAXY MERGERS

    SciTech Connect

    Renaud, F.; Boily, C. M.; Naab, T.; Theis, Ch.

    2009-11-20

    The disruptive effect of galactic tides is a textbook example of gravitational dynamics. However, depending on the shape of the potential, tides can also become fully compressive. When that is the case, they might trigger or strengthen the formation of galactic substructures (star clusters and tidal dwarf galaxies), instead of destroying them. We perform N-body simulations of interacting galaxies to quantify this effect. We demonstrate that tidal compression occurs repeatedly during a galaxy merger, independently of the specific choice of parameterization. With a model tailored to the Antennae galaxies, we show that the distribution of compressive tides matches the locations and timescales of observed substructures. After extending our study to a broad range of parameters, we conclude that neither the importance of the compressive tides (approx15% of the stellar mass) nor their duration (approx10{sup 7} yr) is strongly affected by changes in the progenitors' configurations and orbits. Moreover, we show that individual clumps of matter can enter compressive regions several times in the course of a simulation. We speculate that this may spawn multiple star formation episodes in some star clusters, through, e.g., enhanced gas retention.

  18. Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide?

    PubMed

    Davey, P A; Olcer, H; Zakhleniuk, O; Bernacchi, C J; Calfapietra, C; Long, S P; Raines, C A

    2006-07-01

    Poplar trees sustain close to the predicted increase in leaf photosynthesis when grown under long-term elevated CO2 concentration ([CO2]). To investigate the mechanisms underlying this response, carbohydrate accumulation and protein expression were determined over four seasons of growth. No increase in the levels of soluble carbohydrates was observed in the young expanding or mature sun leaves of the three poplar genotypes during this period. However, substantial increases in starch levels were observed in the mature leaves of all three poplar genotypes grown in elevated [CO2]. Despite the very high starch levels, no changes in the expression of photosynthetic Calvin cycle proteins, or in the starch biosynthetic enzyme ADP-glucose pyrophosphorylase (AGPase), were observed. This suggested that no long-term photosynthetic acclimation to CO2 occurred in these plants. Our data indicate that poplar trees are able to 'escape' from long-term, acclimatory down-regulation of photosynthesis through a high capacity for starch synthesis and carbon export. These findings show that these poplar genotypes are well suited to the elevated [CO2] conditions forecast for the middle of this century and may be particularly suited for planting for the long-term carbon sequestration into wood.

  19. A Fully Transparent Resistive Memory for Harsh Environments

    PubMed Central

    Yang, Po-Kang; Ho, Chih-Hsiang; Lien, Der-Hsien; Durán Retamal, José Ramón; Kang, Chen-Fang; Chen, Kuan-Ming; Huang, Teng-Han; Yu, Yueh-Chung; Wu, Chih-I; He, Jr-Hau

    2015-01-01

    A fully transparent resistive memory (TRRAM) based on Hafnium oxide (HfO2) with excellent transparency, resistive switching capability, and environmental stability is demonstrated. The retention time measured at 85 °C is over 3 × 104 sec, and no significant degradation is observed in 130 cycling test. Compared with ZnO TRRAM, HfO2 TRRAM shows reliable performance under harsh conditions, such as high oxygen partial pressure, high moisture (relative humidity = 90% at 85 °C), corrosive agent exposure, and proton irradiation. Moreover, HfO2 TRRAM fabricated in cross-bar array structures manifests the feasibility of future high density memory applications. These findings not only pave the way for future TRRAM design, but also demonstrate the promising applicability of HfO2 TRRAM for harsh environments. PMID:26455819

  20. Long term monitoring of open-air monuments under threat: the case study of the "Tombs of the Kings" in Cyprus

    NASA Astrophysics Data System (ADS)

    Agapiou, A.; Lysandrou, V.; Hadjimitsis, D. G.; Alexakis, D. D.; Themistocleous, K.; Michaelides, S.

    2012-04-01

    Since antiquity, Cyprus has been a crossroad were various cultures, arts and ideas were deposited. This is evidenced by its huge archaeological residues spread all over the island. Open to air monuments are being exposed to environmental conditions and without any appropriate measures various deterioration factors may become disastrous. Monitoring Cultural Heritage (CH) Sites and Monuments in Cyprus is commonly based on site observations. However, this procedure which includes data collection, periodical observations and multivariate risk assessment analysis, is difficult to be accomplished with the traditional practices and methods, since it is time consuming and expensive. In contrast, new technologies like satellite sensing sensors and in situ measurements can successfully confront this problem by providing to the scientists an integrated and multi-layer monitoring system for vast areas simultaneously. The present paper describes the registration of deterioration processes in one of the most important archaeological areas in Cyprus, listed in the World's Cultural Heritage Sites, the so called "Tomb of the Kings" at Nea Pafos. This work is a part of the research programme "Managing Cultural Heritage Sites through Space and ground Technologies using Geographical Information Systems: A Pilot application at the archaeological sites of Paphos", funded by the Research Promotion Foundation of Cyprus. The project concerns the region of Paphos district in western Cyprus and it deals with cultural heritage sites managements using integrated space and ground technologies, aiming at risk assessment of the areas under examination. The paper presents the methodological framework of the project with some preliminary results for the long term monitoring of Cultural Heritage Sites based, not only in situ observations, but also on using new technologies such as satellite images for retrieving air pollution, laser scanner, thermo-cameras etc.

  1. Hydrocarbon characterization experiments in fully turbulent fires.

    SciTech Connect

    Ricks, Allen; Blanchat, Thomas K.

    2007-05-01

    As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. The model for the fuel evaporation rate in a liquid fuel pool fire is significant because in well-ventilated fires the evaporation rate largely controls the total heat release rate from the fire. A set of experiments are outlined in this report which will provide data for the development and validation of models for the fuel regression rates in liquid hydrocarbon fuel fires. The experiments will be performed on fires in the fully turbulent scale range (> 1 m diameter) and with a number of hydrocarbon fuels ranging from lightly sooting to heavily sooting. The importance of spectral absorption in the liquid fuels and the vapor dome above the pool will be investigated and the total heat flux to the pool surface will be measured. The importance of convection within the liquid fuel will be assessed by restricting large scale liquid motion in some tests. These data sets will provide a sound, experimentally proven basis for assessing how much of the liquid fuel needs to be modeled to enable a predictive simulation of a fuel fire given the couplings between evaporation of fuel from the pool and the heat release from the fire which drives the evaporation.

  2. Highly efficient fully transparent inverted OLEDs

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Winkler, T.; Hamwi, S.; Schmale, S.; Kröger, M.; Görrn, P.; Johannes, H.-H.; Riedl, T.; Lang, E.; Becker, D.; Dobbertin, T.; Kowalsky, W.

    2007-09-01

    One of the unique selling propositions of OLEDs is their potential to realize highly transparent devices over the visible spectrum. This is because organic semiconductors provide a large Stokes-Shift and low intrinsic absorption losses. Hence, new areas of applications for displays and ambient lighting become accessible, for instance, the integration of OLEDs into the windshield or the ceiling of automobiles. The main challenge in the realization of fully transparent devices is the deposition of the top electrode. ITO is commonly used as transparent bottom anode in a conventional OLED. To obtain uniform light emission over the entire viewing angle and a low series resistance, a TCO such as ITO is desirable as top contact as well. However, sputter deposition of ITO on top of organic layers causes damage induced by high energetic particles and UV radiation. We have found an efficient process to protect the organic layers against the ITO rf magnetron deposition process of ITO for an inverted OLED (IOLED). The inverted structure allows the integration of OLEDs in more powerful n-channel transistors used in active matrix backplanes. Employing the green electrophosphorescent material Ir(ppy) 3 lead to IOLED with a current efficiency of 50 cd/A and power efficiency of 24 lm/W at 100 cd/m2. The average transmittance exceeds 80 % in the visible region. The on-set voltage for light emission is lower than 3 V. In addition, by vertical stacking we achieved a very high current efficiency of more than 70 cd/A for transparent IOLED.

  3. Hierarchical structures in fully developed turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Li

    Analysis of the probability density functions (PDFs) of the velocity increment dvl and of their deformation is used to reveal the statistical structure of the intermittent energy cascade dynamics of turbulence. By analyzing a series of turbulent data sets including that of an experiment of fully developed low temperature helium turbulent gas flow (Belin, Tabeling, & Willaime, Physica D 93, 52, 1996), of a three-dimensional isotropic Navier-Stokes simulation with a resolution of 2563 (Cao, Chen, & She, Phys. Rev. Lett. 76, 3711, 1996) and of a GOY shell model simulation (Leveque & She, Phys. Rev. E 55, 1997) of a very big sample size (up to 5 billions), the validity of the Hierarchical Structure model (She & Leveque, Phys. Rev. Lett. 72, 366, 1994) for the inertial-range is firmly demonstrated. Furthermore, it is shown that parameters in the Hierarchical Structure model can be reliably measured and used to characterize the cascade process. The physical interpretations of the parameters then allow to describe differential changes in different turbulent systems so as to address non-universal features of turbulent systems. It is proposed that the above study provides a framework for the study of non-homogeneous turbulence. A convergence study of moments and scaling exponents is also carried out with detailed analysis of effects of finite statistical sample size. A quantity Pmin is introduced to characterize the resolution of a PDF, and hence the sample size. The fact that any reported scaling exponent depends on the PDF resolution suggests that the validation (or rejection) of a model of turbulence needs to carry out a resolution dependence analysis on its scaling prediction.

  4. Mechanical Fluidity of Fully Suspended Biological Cells

    PubMed Central

    Maloney, John M.; Lehnhardt, Eric; Long, Alexandra F.; Van Vliet, Krystyn J.

    2013-01-01

    Mechanical characteristics of single biological cells are used to identify and possibly leverage interesting differences among cells or cell populations. Fluidity—hysteresivity normalized to the extremes of an elastic solid or a viscous liquid—can be extracted from, and compared among, multiple rheological measurements of cells: creep compliance versus time, complex modulus versus frequency, and phase lag versus frequency. With multiple strategies available for acquisition of this nondimensional property, fluidity may serve as a useful and robust parameter for distinguishing cell populations, and for understanding the physical origins of deformability in soft matter. Here, for three disparate eukaryotic cell types deformed in the suspended state via optical stretching, we examine the dependence of fluidity on chemical and environmental influences at a timescale of ∼1 s. We find that fluidity estimates are consistent in the time and frequency domains under a structural damping (power-law or fractional-derivative) model, but not under an equivalent-complexity, lumped-component (spring-dashpot) model; the latter predicts spurious time constants. Although fluidity is suppressed by chemical cross-linking, we find that ATP depletion in the cell does not measurably alter the parameter, and we thus conclude that active ATP-driven events are not a crucial enabler of fluidity during linear viscoelastic deformation of a suspended cell. Finally, by using the capacity of optical stretching to produce near-instantaneous increases in cell temperature, we establish that fluidity increases with temperature—now measured in a fully suspended, sortable cell without the complicating factor of cell-substratum adhesion. PMID:24138852

  5. Towards a Fully Conservative Water Balance

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. B.; Vionnet, C. A.; Younger, P. L.; Parkin, G.

    2001-12-01

    Hydrological modeling is nowadays an essential tool in many aspects of water resources assessment and management. For practical purposes, hydrological models may be defined as mathematical procedures, which transform meteorological input data such as precipitation and evapotranspiration into hydrological output values such as riverflows. Conceptual water balance models are one kind of hydrological models still quite popular among engineers and scientists for three main reasons: firstly the "book-keeping" procedure they are based upon makes them computationally inexpensive, secondly, they require far less data than any physically based model, and thirdly, once calibrated and validated, they can yield the proper order of magnitude of the water cycle component on the basin under investigation. A common criticism of water balance models is their lack of sound theoretical basis. In this work a fully conservative water balance model for basin applications which takes into account physical processes is presented. The two-storage level model contains four calibration parameters: a, b, l and Umax. The saturated storage component resembles the abcd model by Thomas, corrected by the presence of the aquifer storativity coefficient s and the river-aquifer interface conductance l. The resulting model is capable of estimating monthly basin-average of actual evapotranspiration, soil moisture, effective groundwater recharge, groundwater level fluctuations, baseflows and direct runoff using an integral form of the mass conservation law in the saturated/unsaturated layers. The model was applied to a 600 Km2 catchment in the United Kingdom. An eight-year record was used for calibration, while a similar record was reserved for validation of model results. Total streamflows as well as baseflows calculated by the model were compared with observed and estimated data. A quite good agreement was obtained. Finally, simulated groundwater levels were compared with observation data collected at

  6. Altered Water Extraction and Hydraulic Redistribution of Agricultural Crop Soybean at Daily Time Scales in Open-Air Elevation of CO2 under Drought

    NASA Astrophysics Data System (ADS)

    Schmitz, P. G.; Gray, S. B.; Bernacchi, C.; Leakey, A. D.; Kumar, P.; Long, S. P.

    2010-12-01

    Corn-soy land, at 70 Mha is arguably the largest single ecosystem type in the contiguous 48 states. It is anticipated that global climate change will lead to an increasing occurrence of hydrologic extremes such as droughts at the regional and local scale, significantly altering the availability of soil water to agricultural crops. By contrast rising CO2 through its suppression of stomatal conductance may counteract this. The response of this ecosystem to increase in atmospheric CO2, to the expected mid-century levels (550 μmol mol-1) has been shown at field scale using Free Air Concentration Enrichment (FACE) to decrease ET by 9-16%, for soybean (Glycine max), relative to controls. However, the feedback of soil-moisture to reduction in ecosystem ET has not been tested when increased drought and CO2 are combined in the open. While drought will lead to a reduction of volumetric water content (VWC) along the soil moisture profile, the distribution of this reduction will be innately driven by both patterns of water uptake and hydraulic redistribution by the rooting system. The ability of the crop to dynamically alter soil moisture through these strategies feed back on crop rooting strategy and the ability to extract moisture for transpiration. To examine the extent to which crops are capable of dynamically altering the distribution of soil moisture in response to both drought and elevated atmospheric CO2, soybean was grown in field conditions under ambient (approximately 385 μmol CO2 mol-1 air) and elevated [CO2] (approximately 550 μmol mol-1) using FACE. Four replicated blocks each contained a 20m diameter elevated CO2 plot and a similar control plot. Within each plot, were nested ambient precipitation and drought sub-plots (approximately 60% precipitation reduction, p textless 0.05). Drought was imposed by, the use of rain interception, canopies that were automatically deployed during night-time precipitation events and by the use of sub-surface soil

  7. Towards a Scalable Fully-Implicit Fully-coupled Resistive MHD Formulation with Stabilized FE Methods

    SciTech Connect

    Shadid, J N; Pawlowski, R P; Banks, J W; Chacon, L; Lin, P T; Tuminaro, R S

    2009-06-03

    This paper presents an initial study that is intended to explore the development of a scalable fully-implicit stabilized unstructured finite element (FE) capability for low-Mach-number resistive MHD. The discussion considers the development of the stabilized FE formulation and the underlying fully-coupled preconditioned Newton-Krylov nonlinear iterative solver. To enable robust, scalable and efficient solution of the large-scale sparse linear systems generated by the Newton linearization, fully-coupled algebraic multilevel preconditioners are employed. Verification results demonstrate the expected order-of-acuracy for the stabilized FE discretization of a 2D vector potential form for the steady and transient solution of the resistive MHD system. In addition, this study puts forth a set of challenging prototype problems that include the solution of an MHD Faraday conduction pump, a hydromagnetic Rayleigh-Bernard linear stability calculation, and a magnetic island coalescence problem. Initial results that explore the scaling of the solution methods are presented on up to 4096 processors for problems with up to 64M unknowns on a CrayXT3/4. Additionally, a large-scale proof-of-capability calculation for 1 billion unknowns for the MHD Faraday pump problem on 24,000 cores is presented.

  8. Fully nonlinear and exact perturbations of the Friedmann world model: non-flat background

    NASA Astrophysics Data System (ADS)

    Noh, Hyerim

    2014-07-01

    We extend the fully non-linear and exact cosmological perturbation equations in a Friedmann background universe to include the background curvature. The perturbation equations are presented in a gauge ready form, so any temporal gauge condition can be adopted freely depending on the problem to be solved. We consider the scalar, and vector perturbations without anisotropic stress. As an application, we analyze the equations in the special case of irrotational zero-pressure fluid in the comoving gauge condition. We also present the fully nonlinear formulation for a minimally coupled scalar field.

  9. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft

    NASA Astrophysics Data System (ADS)

    Su, Weihua

    This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation

  10. Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing

    SciTech Connect

    Terrani, Kurt A; Kiggans Jr, James O; McMurray, Jake W; Jolly, Brian C; Hunt, Rodney Dale; Trammell, Michael P; Snead, Lance Lewis

    2016-01-01

    Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhance heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.

  11. Fully "Eqwipped" to See the Heat

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Developed by NASA's Jet Propulsion Laboratory over the past decade with an excess of $15 million of government research and development investment, quantum well infrared photodetectors (QWIPs) are infrared imaging sensors that can operate in the long wavelength portion of the electromagnetic spectrum, where objects at an ambient temperature emit the most energy. QWIPTECH was formed in July 1998 to offer JPL's QWIPs in a commercial format. The company currently holds an exclusive worldwide license to manufacture and sell the infrared photodetector sensors as part of a focal plane array called a QWIP Chip(TM). The QWIP Chip provides high thermal sensitivity (0.001 C) and possesses a broad dynamic range, permitting precise observations over a wide range of temperatures. Since the technology uses heat rather than light, it can "see" in complete darkness and through conditions such as dust, smoke, and light fog.

  12. A framework for fully integrating environmental assessment.

    PubMed

    Cormier, Susan M; Suter, Glenn W

    2008-10-01

    A new framework for environmental assessment is needed because no existing framework explicitly includes all types of environmental assessments. We propose a framework that focuses on resolving environmental problems by integrating different types of assessments. Four general types of assessments are included: (1) condition assessments to detect chemical, physical, and biological impairments; (2) causal pathway assessments to determine causes and identify their sources; (3) predictive assessments to estimate environmental, economic, and societal risks, and benefits associated with different possible management actions; and (4) outcome assessments to evaluate the results of the decisions of an integrative assessment. The four types of assessments can be neatly arrayed in a two-by-two matrix based on the direction of analysis of causal relationships (rows) and whether the assessment identifies problems or solves them (columns). We suggest that all assessments have a common structure of planning, analysis, and synthesis, thus simplifying terminology and facilitating communication between types of assessments and environmental programs. The linkage between assessments is based on intermediate decisions that initiate another assessment or a final decision signaling the resolution of the problem. The framework is applied to three cases: management of a biologically impaired river, remediation of a contaminated site, and reregistration of a pesticide. We believe that this framework clarifies the relationships among the various types of assessment processes and their links to specific decisions.

  13. Fully carbonated peridotite (listvenite) from the Samail ophiolite, Oman

    NASA Astrophysics Data System (ADS)

    Falk, E. S.; Kelemen, P. B.

    2013-12-01

    Extensive outcrops of listvenite--fully carbonated peridotite, with all Mg in carbonate minerals and all Si in quartz--occur along the basal thrust of the Samail Ophiolite in Oman. The presence of these listvenites demonstrates that peridotite carbonation reactions can proceed to completion on a large scale under natural conditions. Thus, understanding the conditions of listvenite formation can provide insights into the feasibility of achieving complete carbonation of peridotite through engineered approaches for carbon capture and storage. The Oman listvenites likely formed during emplacement of the ophiolite, as CO2-bearing fluids derived from underlying metasediments reacted with peridotite in the hanging wall. Listvenite outcrops occur within 500 meters of the basal thrust, where peridotite overlies carbonate-bearing metasediments. 87Sr/86Sr values in listvenite are higher than seawater values and consistent with values in these underlying metasediments. Carbon and oxygen stable isotope data are also consistent with values in some of the metasediments. An internal Rb-Sr isochron from one listvenite sample yields an age of 97 × 29 Ma, consistent with the timing of emplacement of the ophiolite. Carbonate clumped isotope thermometry in listvenites yields temperatures around 100°C, and thermodynamically stable coexistence of antigorite, talc, and quartz in serpentinite along the margins of the listvenite would require reaction temperatures around 80°C, as calculated in THERMOCALC. While constraints on the pressure of listvenite formation are lacking, these moderate temperatures suggest that listvenites probably formed at relatively shallow depths, making release of carbonate-saturated pore-water due to compaction of subducted sediment or low-pressure phase transitions of hydrous minerals more probable sources of the CO2-bearing fluid than deeper metamorphic reactions without significant transport of fluids along the slab interface. Through EQ3/6 geochemical

  14. Flow Partitioning in Fully Saturated Soil Aggregates

    SciTech Connect

    Yang, Xiaofan; Richmond, Marshall C.; Scheibe, Timothy D.; Perkins, William A.; Resat, Haluk

    2014-03-30

    Microbes play an important role in facilitating organic matter decomposition in soils, which is a major component of the global carbon cycle. Microbial dynamics are intimately coupled to environmental transport processes, which control access to labile organic matter and other nutrients that are needed for the growth and maintenance of microorganisms. Transport of soluble nutrients in the soil system is arguably most strongly impacted by preferential flow pathways in the soil. Since the physical structure of soils can be characterized as being formed from constituent micro aggregates which contain internal porosity, one pressing question is the partitioning of the flow among the “inter-aggregate” and “intra-aggregate” pores and how this may impact overall solute transport within heterogeneous soil structures. The answer to this question is particularly important in evaluating assumptions to be used in developing upscaled simulations based on highly-resolved mechanistic models. We constructed a number of diverse multi-aggregate structures with different packing ratios by stacking micro-aggregates containing internal pores and varying the size and shape of inter-aggregate pore spacing between them. We then performed pore-scale flow simulations using computational fluid dynamics methods to determine the flow patterns in these aggregate-of-aggregates structures and computed the partitioning of the flow through intra- and inter-aggregate pores as a function of the spacing between the aggregates. The results of these numerical experiments demonstrate that soluble nutrients are largely transported via flows through inter-aggregate pores. Although this result is consistent with intuition, we have also been able to quantify the relative flow capacity of the two domains under various conditions. For example, in our simulations, the flow capacity through the aggregates (intra-aggregate flow) was less than 2% of the total flow when the spacing between the aggregates

  15. Electromagnetic fire-hose instability in a fully relativistic bi-Maxwellian plasma

    NASA Technical Reports Server (NTRS)

    Yoon, Peter H.

    1990-01-01

    Detailed properties of the classical hydromagnetic Alfven wave and the fire-hose instability, driven by an excess in the parallel energy are well understood in the nonrelativistic regime. In this brief communication, the analysis is extended to the fully relativistic regime. The analysis is carried out for fully relativistic bi-Maxwellian distributions of electrons and ions (or positrons). It is shown that the relativistic effect has a nonnegligible effect on the wave and stability properties of the low-frequency modes under certain conditions.

  16. Modelling blast induced damage from a fully coupled explosive charge

    PubMed Central

    Onederra, Italo A.; Furtney, Jason K.; Sellers, Ewan; Iverson, Stephen

    2015-01-01

    This paper presents one of the latest developments in the blasting engineering modelling field—the Hybrid Stress Blasting Model (HSBM). HSBM includes a rock breakage engine to model detonation, wave propagation, rock fragmentation, and muck pile formation. Results from two controlled blasting experiments were used to evaluate the code’s ability to predict the extent of damage. Results indicate that the code is capable of adequately predicting both the extent and shape of the damage zone associated with the influence of point-of-initiation and free-face boundary conditions. Radial fractures extending towards a free face are apparent in the modelling output and matched those mapped after the experiment. In the stage 2 validation experiment, the maximum extent of visible damage was of the order of 1.45 m for the fully coupled 38-mm emulsion charge. Peak radial velocities were predicted within a relative difference of only 1.59% at the nearest history point at 0.3 m from the explosive charge. Discrepancies were larger further away from the charge, with relative differences of −22.4% and −42.9% at distances of 0.46 m and 0.61 m, respectively, meaning that the model overestimated particle velocities at these distances. This attenuation deficiency in the modelling produced an overestimation of the damage zone at the corner of the block due to excessive stress reflections. The extent of visible damage in the immediate vicinity of the blasthole adequately matched the measurements. PMID:26412978

  17. Fully nonlinear simulation for fluid/structure impact: A review

    NASA Astrophysics Data System (ADS)

    Sun, Shili; Wu, Guoxiong

    2014-09-01

    This paper presents a review of the work on fluid/structure impact based on inviscid and imcompressible liquid and irrotational flow. The focus is on the velocity potential theory together with boundary element method (BEM). Fully nonlinear boundary conditions are imposed on the unknown free surface and the wetted surface of the moving body. The review includes (1) vertical and oblique water entry of a body at constant or a prescribed varying speed, as well as free fall motion, (2) liquid droplets or column impact as well as wave impact on a body, (3) similarity solution of an expanding body. It covers two dimensional (2D), axisymmetric and three dimensional (3D) cases. Key techniques used in the numerical simulation are outlined, including mesh generation on the multivalued free surface, the stretched coordinate system for expanding domain, the auxiliary function method for decoupling the mutual dependence of the pressure and the body motion, and treatment for the jet or the thin liquid film developed during impact.

  18. A fully automated TerraSAR-X based flood service

    NASA Astrophysics Data System (ADS)

    Martinis, Sandro; Kersten, Jens; Twele, André

    2015-06-01

    In this paper, a fully automated processing chain for near real-time flood detection using high resolution TerraSAR-X Synthetic Aperture Radar (SAR) data is presented. The processing chain including SAR data pre-processing, computation and adaption of global auxiliary data, unsupervised initialization of the classification as well as post-classification refinement by using a fuzzy logic-based approach is automatically triggered after satellite data delivery. The dissemination of flood maps resulting from this service is performed through an online service which can be activated on-demand for emergency response purposes (i.e., when a flood situation evolves). The classification methodology is based on previous work of the authors but was substantially refined and extended for robustness and transferability to guarantee high classification accuracy under different environmental conditions and sensor configurations. With respect to accuracy and computational effort, experiments performed on a data set of 175 different TerraSAR-X scenes acquired during flooding all over the world with different sensor configurations confirm the robustness and effectiveness of the proposed flood mapping service. These promising results have been further confirmed by means of an in-depth validation performed for three study sites in Germany, Thailand, and Albania/Montenegro.

  19. Fully On-the-Job Training: Experiences and Steps Ahead

    ERIC Educational Resources Information Center

    Wood, Susanne

    2004-01-01

    Fully on-the-job training, the majority of which is conducted in the workplace as part of the normal experience of the employee, is perceived to offer benefits to apprentices/ trainees, employers and registered training organisations. This report finds fully on-the-job training is viewed by learners and registered training organisations as a good…

  20. FULLY COUPLED "ONLINE" CHEMISTRY WITHIN THE WRF MODEL

    EPA Science Inventory

    A fully coupled "online" Weather Research and Forecasting/Chemistry (WRF/Chem) model has been developed. The air quality component of the model is fully consistent with the meteorological component; both components use the same transport scheme (mass and scalar preserving), the s...

  1. Corn response to nitrogen management under fully-irrigated vs. water-stressed conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterizing corn grain yield response to nitrogen (N) fertilizer rate is critical for maximizing profits, optimizing N use efficiency and minimizing environmental impacts. Although a large data base of yield response to N has been compiled for highly productive soils in the upper Midwest U.S., f...

  2. Parameter estimation in a structural acoustic system with fully nonlinear coupling conditions

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, Ralph C.

    1994-01-01

    A methodology for estimating physical parameters in a class of structural acoustic systems is presented. The general model under consideration consists of an interior cavity which is separated from an exterior noise source by an enclosing elastic structure. Piezoceramic patches are bonded to or embedded in the structure; these can be used both as actuators and sensors in applications ranging from the control of interior noise levels to the determination of structural flaws through nondestructive evaluation techniques. The presence and excitation of patches, however, changes the geometry and material properties of the structure as well as involves unknown patch parameters, thus necessitating the development of parameter estimation techniques which are applicable in this coupled setting. In developing a framework for approximation, parameter estimation and implementation, strong consideration is given to the fact that the input operator is unbonded due to the discrete nature of the patches. Moreover, the model is weakly nonlinear. As a result of the coupling mechanism between the structural vibrations and the interior acoustic dynamics. Within this context, an illustrating model is given, well-posedness and approximations results are discussed and an applicable parameter estimation methodology is presented. The scheme is then illustrated through several numerical examples with simulations modeling a variety of commonly used structural acoustic techniques for systems excitations and data collection.

  3. 14. VIEW OF SOUTH FACE OF MST, FULLY ERECTED UMBILICAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF SOUTH FACE OF MST, FULLY ERECTED UMBILICAL MAST, LAUNCHER, AND FLAME BUCKET - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. Purification and characterization of two fully deuterated enzymes

    NASA Technical Reports Server (NTRS)

    Crespi, H. L.; Katz, J. J.; Parmerter, S.; Rokop, S.

    1969-01-01

    Comparative data reveal little difference between kinetic and thermal stabilities of pure preparations of two ordinary enzymes and their fully deuterated counterparts. The effects of temperature on the enzymes proved to be consistent with earlier results.

  5. Fully deuterated microorganisms: Tools in magnetic resonance and neutron scattering

    SciTech Connect

    Crespi, H.L.

    1988-01-01

    Current work at Argonne emphasizes the use of fully deuterated algae and cyanobacteria as tools in the study of photosynthesis and as a source of complex substrates for the culture of engineered overproducing bacteria. 17 refs., 1 fig., 1 tab.

  6. A quadruple cascade protocol for the one-pot synthesis of fully-substituted hexahydroisoindolinones from simple substrates.

    PubMed

    Zhang, Hong-Bo; Luo, Yong-Chun; Hu, Xiu-Qin; Liang, Yong-Min; Xu, Peng-Fei

    2016-01-01

    A new and efficient synthetic method to obtain fully-substituted hexahydroisoindolinones was developed by using bifunctional tertiary amine-thioureas as powerful catalysts. As far as we know, there is no efficient synthetic method developed toward fully-substituted hexahydroisoindolinones. The products were obtained in good yield and diastereoselectivity. The one-pot cascade quadruple protocol features readily available starting materials, simple manipulation, mild conditions and good atom economy.

  7. Fully-printed, all-polymer integrated twilight switch

    NASA Astrophysics Data System (ADS)

    Dell'Erba, Giorgio; Perinot, Andrea; Grimoldi, Andrea; Natali, Dario; Caironi, Mario

    2015-10-01

    In this contribution we demonstrate an integrated photoactive switch employing a fully-printed planar photodetector and complementary Schmitt trigger. A photoactive switch is fundamental to several light driven systems, such as twilight sensors or industrial machinery control devices. This paper explores a fabrication methodology that enables reliable complementary logic building blocks and photodetectors with a fully-printed, all-polymer approach, resulting in a semi-transparent integrated system on a single plastic foil.

  8. Fully coupled analysis of reservoir compaction and subsidence

    SciTech Connect

    Gutierrez, M.; Hansteen, H.

    1994-12-31

    This paper discusses the differences between fully-coupled and uncoupled formulations of models of production and subsidence. For highly compacting hydrocarbon reservoirs, production can cause compaction of the reservoir and subsidence of the overburden, and in turn, compaction and subsidence can affect the productivity of the reservoir by increasing the reservoir pressure. Intuitively, analyses of production and subsidence should be done in a fully-coupled fashion. However, most, if not all, of the analyses done so far on compacting reservoirs are uncoupled where production and subsidence are calculated in a staggered manner. The results of the numerical analyses using an uncoupled reservoir simulation, and a fully-coupled finite element simulation based on Biot`s formulation of a typical compacting reservoir are presented and compared. Different pore pressure response were obtained depending on whether an uncoupled or a fully-coupled analysis was performed, and also depending on whether there is arching of the overburden or not. The results of fully-coupled analyses of compaction and subsidence showed that the generation of additional pore pressure due to compaction cannot be correctly analyzed by simply adjusting the rock compressibilities in reservoir simulation. The most pronounced effect of coupling, obtained from the numerical simulations, is on the possibility of pore pressure increase close to the reservoir flanks even during production. The implications of the differences in the results of fully-coupled and uncoupled simulations are discussed.

  9. Calculation of fully developed flow and heat transfer in streamwise-periodic dimpled channels

    NASA Astrophysics Data System (ADS)

    Choudhury, Dipankar; Karki, Kailash C.

    1991-01-01

    An analysis is presented for fluid flow and heat transfer in a parallel plate channel with periodically spaced dimples. The flow is assumed to be constant property, two dimensional and laminar, with uniform wall temperature thermal boundary condition in the periodic fully developed region. A control-volume finite-difference method based on generalized curvilinear coordinates with the capability to handle periodic boundary conditions has been developed in order to solve the problem. Computations have been carried out for a variety of geometric parameter, Reynolds number, and Prandtl number combinations. Local results presented for the periodic fully developed velocity and temperature fields provide a good physical understanding of the fluid flow and heat transfer phenomena. The average heat transfer and pressure drop results are presented for all the cases studied. Decrease in the channel width and the dimple spacing are both accompanied by increase in the heat transfer and pressure drop.

  10. Fully non-linear cosmological perturbations of multicomponent fluid and field systems

    NASA Astrophysics Data System (ADS)

    Hwang, Jai-chan; Noh, Hyerim; Park, Chan-Gyung

    2016-09-01

    We present fully non-linear and exact cosmological perturbation equations in the presence of multiple components of fluids and minimally coupled scalar fields. We ignore the tensor-type perturbation. The equations are presented without taking the temporal gauge condition in the Friedmann background with general curvature and the cosmological constant. We include the anisotropic stress. Even in the absence of anisotropic stress of individual component, the multiple component nature introduces the anisotropic stress in the collective fluid quantities. We prove the Newtonian limit of multiple fluids in the zero-shear gauge and the uniform-expansion gauge conditions, present the Newtonian hydrodynamic equations in the presence of general relativistic pressure in the zero-shear gauge, and present the fully non-linear equations and the third-order perturbation equations of the non-relativistic pressure fluids in the CDM-comoving gauge.

  11. Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism.

    PubMed

    Rintala, Eija; Jouhten, Paula; Toivari, Mervi; Wiebe, Marilyn G; Maaheimo, Hannu; Penttilä, Merja; Ruohonen, Laura

    2011-01-01

    In industrial fermentations of Saccharomyces cerevisiae, transient changes in oxygen concentration commonly occur and it is important to understand the behavior of cells during these changes. Glucose-limited chemostat cultivations were used to study the time-dependent effect of sudden oxygen depletion on the transcriptome of S. cerevisiae cells initially in fully aerobic or oxygen-limited conditions. The overall responses to anaerobic conditions of cells initially in different conditions were very similar. Independent of initial culture conditions, transient downregulation of genes related to growth and cell proliferation, mitochondrial translation and protein import, and sulphate assimilation was seen. In addition, transient or permanent upregulation of genes related to protein degradation, and phosphate and amino acid uptake was observed in all cultures. However, only in the initially oxygen-limited cultures was a transient upregulation of genes related to fatty acid oxidation, peroxisomal biogenesis, oxidative phosphorylation, TCA cycle, response to oxidative stress, and pentose phosphate pathway observed. Furthermore, from the initially oxygen-limited conditions, a rapid response around the metabolites of upper glycolysis and the pentose phosphate pathway was seen, while from the initially fully aerobic conditions, a slower response around the pathways for utilization of respiratory carbon sources was observed.

  12. In field conditions, commercial pigment grade TiO2 was not harmful to terrestrial isopods but reduced leaf litter fragmentation.

    PubMed

    Jemec, Anita; Kos, Monika; Drobne, Damjana; Koponen, Ismo Kalevi; Vukić, Jovan; Ferreira, Nuno G C; Loureiro, Susana; McShane, Heather V A

    2016-11-15

    We investigated the effects of a commercial pigment grade rutile TiO2 on the terrestrial isopod Porcellio scaber in three locations that differed in terms of abiotic and biotic conditions: the laboratory, open air, and the closed barn. Mortality and isopod energy reserves (digestive gland total proteins, lipids and carbohydrates) were not affected following 14days exposure to up to 1000mg TiO2 per kg dry leaves (mg/kg) under any experimental scenario. However, in the field tests, isopods consumption of TiO2-coated leaves was reduced compared to that of uncoated leaves and the decrease was not dose-dependent. The highest reduction was in the closed barn (45-56%) rather than in the open-air (38-40%). In laboratory-based food choice tests, isopods neither preferred nor avoided leaves coated with TiO2, suggesting that rather than sensing the TiO2 on the leaves directly, the isopods under open-air and barn exposure responded to altered attractiveness and/or palatability of the TiO2 amended leaves. We propose that this could be due to altered microbial population on the leaves, a hypothesis that requires further investigation. Although short-term exposure to atmospheric deposition of up to 1000mg/kg commercial TiO2 is unlikely to pose an immediate threat to isopod mortality and energy balance, reduced leaf feeding may have implications for the decomposition of plant material. PMID:27481455

  13. In field conditions, commercial pigment grade TiO2 was not harmful to terrestrial isopods but reduced leaf litter fragmentation.

    PubMed

    Jemec, Anita; Kos, Monika; Drobne, Damjana; Koponen, Ismo Kalevi; Vukić, Jovan; Ferreira, Nuno G C; Loureiro, Susana; McShane, Heather V A

    2016-11-15

    We investigated the effects of a commercial pigment grade rutile TiO2 on the terrestrial isopod Porcellio scaber in three locations that differed in terms of abiotic and biotic conditions: the laboratory, open air, and the closed barn. Mortality and isopod energy reserves (digestive gland total proteins, lipids and carbohydrates) were not affected following 14days exposure to up to 1000mg TiO2 per kg dry leaves (mg/kg) under any experimental scenario. However, in the field tests, isopods consumption of TiO2-coated leaves was reduced compared to that of uncoated leaves and the decrease was not dose-dependent. The highest reduction was in the closed barn (45-56%) rather than in the open-air (38-40%). In laboratory-based food choice tests, isopods neither preferred nor avoided leaves coated with TiO2, suggesting that rather than sensing the TiO2 on the leaves directly, the isopods under open-air and barn exposure responded to altered attractiveness and/or palatability of the TiO2 amended leaves. We propose that this could be due to altered microbial population on the leaves, a hypothesis that requires further investigation. Although short-term exposure to atmospheric deposition of up to 1000mg/kg commercial TiO2 is unlikely to pose an immediate threat to isopod mortality and energy balance, reduced leaf feeding may have implications for the decomposition of plant material.

  14. Growth conditions, elemental accumulation and induced physiological changes in Chinese cabbage.

    PubMed

    Moreno, Diego A; Víllora, Gemma; Ruiz, Juan M; Romero, Luis

    2003-08-01

    Soils contaminated with low levels of heavy metals and other trace elements are now frequently used for vegetable growing. In this situation, heavy metals and trace elements from these polluted soils may accumulate in the agricultural plants being grown in them and thereby enter the human food chain. The objectives of this study are to elucidate the effects of growth conditions, manipulated by the crop covers, on the phytoaccumulation of elements, and to investigate the conceivable influences of these conditions on the plant biochemistry. In three consecutive years of field experiments, open air (T(0)), and floating rowcover treatments (T(1): perforated polyethylene 50 micrometers; T(2): polypropylene 17 gm(-2)) were used to produce different environmental conditions for the growth of Chinese cabbage [Brassica rapa L. (Pekinensis group) cv. 'Nagaoka 50']. Five samplings (whole tops) were carried out from transplanting to harvest and measurements of B, Al, Ag, Si and Ca concentration as well as phenolics (orto-diphenols, total phenols and anthocyanins), pectic fractions, amino acids (histidine, phenylalanine and tyrosine) and polyphenol oxidase activity, were carried out in samples. The T(1) (perforated polyethylene sheet) gave greater B, Al, Ag and Si concentration and phytoextraction (in weight units) than the open-air control. These findings can help to develop new cost-effective techniques for phytoremediation as the application of plastic covers in the field. The build-up of heavy metals in those crops would make the product less suitable for human consumption.

  15. Growth conditions, elemental accumulation and induced physiological changes in Chinese cabbage.

    PubMed

    Moreno, Diego A; Víllora, Gemma; Ruiz, Juan M; Romero, Luis

    2003-08-01

    Soils contaminated with low levels of heavy metals and other trace elements are now frequently used for vegetable growing. In this situation, heavy metals and trace elements from these polluted soils may accumulate in the agricultural plants being grown in them and thereby enter the human food chain. The objectives of this study are to elucidate the effects of growth conditions, manipulated by the crop covers, on the phytoaccumulation of elements, and to investigate the conceivable influences of these conditions on the plant biochemistry. In three consecutive years of field experiments, open air (T(0)), and floating rowcover treatments (T(1): perforated polyethylene 50 micrometers; T(2): polypropylene 17 gm(-2)) were used to produce different environmental conditions for the growth of Chinese cabbage [Brassica rapa L. (Pekinensis group) cv. 'Nagaoka 50']. Five samplings (whole tops) were carried out from transplanting to harvest and measurements of B, Al, Ag, Si and Ca concentration as well as phenolics (orto-diphenols, total phenols and anthocyanins), pectic fractions, amino acids (histidine, phenylalanine and tyrosine) and polyphenol oxidase activity, were carried out in samples. The T(1) (perforated polyethylene sheet) gave greater B, Al, Ag and Si concentration and phytoextraction (in weight units) than the open-air control. These findings can help to develop new cost-effective techniques for phytoremediation as the application of plastic covers in the field. The build-up of heavy metals in those crops would make the product less suitable for human consumption. PMID:12781236

  16. Is a fully wrapped SSB–DNA complex essential for Escherichia coli survival?

    PubMed Central

    Waldman, Vincent M.; Weiland, Elizabeth; Kozlov, Alexander G.; Lohman, Timothy M.

    2016-01-01

    Escherichia coli single-stranded DNA binding protein (SSB) is an essential homotetramer that binds ssDNA and recruits multiple proteins to their sites of action during genomic maintenance. Each SSB subunit contains an N-terminal globular oligonucleotide/oligosaccharide binding fold (OB-fold) and an intrinsically disordered C-terminal domain. SSB binds ssDNA in multiple modes in vitro, including the fully wrapped (SSB)65 and (SSB)56 modes, in which ssDNA contacts all four OB-folds, and the highly cooperative (SSB)35 mode, in which ssDNA contacts an average of only two OB-folds. These modes can both be populated under physiological conditions. While these different modes might be used for different functions, this has been difficult to assess. Here we used a dimeric SSB construct with two covalently linked OB-folds to disable ssDNA binding in two of the four OB-folds thus preventing formation of fully wrapped DNA complexes in vitro, although they retain a wild-type-like, salt-dependent shift in cooperative binding to ssDNA. These variants complement wild-type SSB in vivo indicating that a fully wrapped mode is not essential for function. These results do not preclude a normal function for a fully wrapped mode, but do indicate that E. coli tolerates some flexibility with regards to its SSB binding modes. PMID:27084941

  17. Modified Fully Utilized Design (MFUD) Method for Stress and Displacement Constraints

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya; Gendy, Atef; Berke, Laszlo; Hopkins, Dale

    1997-01-01

    The traditional fully stressed method performs satisfactorily for stress-limited structural design. When this method is extended to include displacement limitations in addition to stress constraints, it is known as the fully utilized design (FUD). Typically, the FUD produces an overdesign, which is the primary limitation of this otherwise elegant method. We have modified FUD in an attempt to alleviate the limitation. This new method, called the modified fully utilized design (MFUD) method, has been tested successfully on a number of designs that were subjected to multiple loads and had both stress and displacement constraints. The solutions obtained with MFUD compare favorably with the optimum results that can be generated by using nonlinear mathematical programming techniques. The MFUD method appears to have alleviated the overdesign condition and offers the simplicity of a direct, fully stressed type of design method that is distinctly different from optimization and optimality criteria formulations. The MFUD method is being developed for practicing engineers who favor traditional design methods rather than methods based on advanced calculus and nonlinear mathematical programming techniques. The Integrated Force Method (IFM) was found to be the appropriate analysis tool in the development of the MFUD method. In this paper, the MFUD method and its optimality are presented along with a number of illustrative examples.

  18. Pulsed laser deposition and refractive index measurement of fully substituted bismuth iron garnet films

    NASA Astrophysics Data System (ADS)

    Tepper, T.; Ross, C. A.

    2003-08-01

    A systematic study of the pulsed-laser deposition of fully substituted bismuth iron garnet (BIG, or Bi 3Fe 5O 12) has been carried out. Garnet-structure BIG films grow epitaxially onto gallium gadolinium garnet substrates under deposition conditions that lead to a stoichiometric film. The variation of stoichiometry with deposition conditions is discussed. The refractive index, n, of BIG decreases from 2.819 at 633 nm to 2.584 at 1550 nm, with an imaginary part, k, less than 0.05.

  19. Fully kinetic simulations of megajoule-scale dense plasma focus

    SciTech Connect

    Schmidt, A.; Link, A.; Tang, V.; Halvorson, C.; May, M.; Welch, D.; Meehan, B. T.; Hagen, E. C.

    2014-10-15

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 10{sup 12} neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  20. Fully kinetic simulations of megajoule-scale dense plasma focus

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Link, A.; Welch, D.; Meehan, B. T.; Tang, V.; Halvorson, C.; May, M.; Hagen, E. C.

    2014-10-01

    Dense plasma focus (DPF) Z-pinch devices are sources of copious high energy electrons and ions, x-rays, and neutrons. Megajoule-scale DPFs can generate 1012 neutrons per pulse in deuterium gas through a combination of thermonuclear and beam-target fusion. However, the details of the neutron production are not fully understood and past optimization efforts of these devices have been largely empirical. Previously, we reported on the first fully kinetic simulations of a kilojoule-scale DPF and demonstrated that both kinetic ions and kinetic electrons are needed to reproduce experimentally observed features, such as charged-particle beam formation and anomalous resistivity. Here, we present the first fully kinetic simulation of a MegaJoule DPF, with predicted ion and neutron spectra, neutron anisotropy, neutron spot size, and time history of neutron production. The total yield predicted by the simulation is in agreement with measured values, validating the kinetic model in a second energy regime.

  1. Fabrication of Fully Solution Processed Inorganic Nanocrystal Photovoltaic Devices.

    PubMed

    Townsend, Troy K; Durastanti, Dario; Heuer, William B; Foos, Edward E; Yoon, Woojun; Tischler, Joseph G

    2016-01-01

    We demonstrate a method for the preparation of fully solution processed inorganic solar cells from a spin and spray coating deposition of nanocrystal inks. For the photoactive absorber layer, colloidal CdTe and CdSe nanocrystals (3-5 nm) are synthesized using an inert hot injection technique and cleaned with precipitations to remove excess starting reagents. Similarly, gold nanocrystals (3-5 nm) are synthesized under ambient conditions and dissolved in organic solvents. In addition, precursor solutions for transparent conductive indium tin oxide (ITO) films are prepared from solutions of indium and tin salts paired with a reactive oxidizer. Layer-by-layer, these solutions are deposited onto a glass substrate following annealing (200-400 °C) to build the nanocrystal solar cell (glass/ITO/CdSe/CdTe/Au). Pre-annealing ligand exchange is required for CdSe and CdTe nanocrystals where films are dipped in NH4Cl:methanol to replace long-chain native ligands with small inorganic Cl(-) anions. NH4Cl(s) was found to act as a catalyst for the sintering reaction (as a non-toxic alternative to the conventional CdCl2(s) treatment) leading to grain growth (136±39 nm) during heating. The thickness and roughness of the prepared films are characterized with SEM and optical profilometry. FTIR is used to determine the degree of ligand exchange prior to sintering, and XRD is used to verify the crystallinity and phase of each material. UV/Vis spectra show high visible light transmission through the ITO layer and a red shift in the absorbance of the cadmium chalcogenide nanocrystals after thermal annealing. Current-voltage curves of completed devices are measured under simulated one sun illumination. Small differences in deposition techniques and reagents employed during ligand exchange have been shown to have a profound influence on the device properties. Here, we examine the effects of chemical (sintering and ligand exchange agents) and physical treatments (solution concentration

  2. Fully magnetized plasma flow in a magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Merino, Mario; Ahedo, Eduardo

    2016-02-01

    A model of the expansion of a plasma in a magnetic nozzle in the full magnetization limit is presented. The fully magnetized and the unmagnetized-ions limits are compared, recovering the whole range of variability in plasma properties, thrust, and plume efficiency, and revealing the differences in the physics of the two cases. The fully magnetized model is the natural limit of the general, 2D, two-fluid model of Ahedo and Merino [Phys. Plasmas 17, 073501 (2010)], and it is proposed as an analytical, conservative estimator of the propulsive figures of merit of partially magnetized plasma expansions in the near region of the magnetic nozzle.

  3. Liouville properties and critical value of fully nonlinear elliptic operators

    NASA Astrophysics Data System (ADS)

    Bardi, Martino; Cesaroni, Annalisa

    2016-10-01

    We prove some Liouville properties for sub- and supersolutions of fully nonlinear degenerate elliptic equations in the whole space. Our assumptions allow the coefficients of the first order terms to be large at infinity, provided they have an appropriate sign, as in Ornstein-Uhlenbeck operators. We give two applications. The first is a stabilization property for large times of solutions to fully nonlinear parabolic equations. The second is the solvability of an ergodic Hamilton-Jacobi-Bellman equation that identifies a unique critical value of the operator.

  4. Turning a remotely controllable observatory into a fully autonomous system

    NASA Astrophysics Data System (ADS)

    Swindell, Scott; Johnson, Chris; Gabor, Paul; Zareba, Grzegorz; Kubánek, Petr; Prouza, Michael

    2014-08-01

    We describe a complex process needed to turn an existing, old, operational observatory - The Steward Observatory's 61" Kuiper Telescope - into a fully autonomous system, which observers without an observer. For this purpose, we employed RTS2,1 an open sourced, Linux based observatory control system, together with other open sourced programs and tools (GNU compilers, Python language for scripting, JQuery UI for Web user interface). This presentation provides a guide with time estimates needed for a newcomers to the field to handle such challenging tasks, as fully autonomous observatory operations.

  5. 41 CFR 301-73.102 - May we grant a traveler an exception from required use of TMS or ETS once we have fully deployed...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES AGENCY RESPONSIBILITIES 73-TRAVEL PROGRAMS eTravel Service and Travel... it is fully deployed within the agency, but only when travel meets one of the following conditions... an exception from required use of TMS or ETS once we have fully deployed ETS within the agency?...

  6. Fully Nonlinear Modeling and Analysis of Precision Membranes

    NASA Technical Reports Server (NTRS)

    Pai, P. Frank; Young, Leyland G.

    2003-01-01

    High precision membranes are used in many current space applications. This paper presents a fully nonlinear membrane theory with forward and inverse analyses of high precision membrane structures. The fully nonlinear membrane theory is derived from Jaumann strains and stresses, exact coordinate transformations, the concept of local relative displacements, and orthogonal virtual rotations. In this theory, energy and Newtonian formulations are fully correlated, and every structural term can be interpreted in terms of vectors. Fully nonlinear ordinary differential equations (ODES) governing the large static deformations of known axisymmetric membranes under known axisymmetric loading (i.e., forward problems) are presented as first-order ODES, and a method for obtaining numerically exact solutions using the multiple shooting procedure is shown. A method for obtaining the undeformed geometry of any axisymmetric membrane with a known inflated geometry and a known internal pressure (i.e., inverse problems) is also derived. Numerical results from forward analysis are verified using results in the literature, and results from inverse analysis are verified using known exact solutions and solutions from the forward analysis. Results show that the membrane theory and the proposed numerical methods for solving nonlinear forward and inverse membrane problems are accurate.

  7. 26. View of fully flooded drydock with caisson opened. Newly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. View of fully flooded drydock with caisson opened. Newly arrived submarine is being placed in position. Berthed submarine on right is same as that seen in photo WA-116-25. Camera is pointed S from bulkhead. - Puget Sound Naval Shipyard, Drydock No. 3, Farragut Avenue, Bremerton, Kitsap County, WA

  8. Buoyancy Effects in Fully-Modulated, Turbulent Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Ghaem-Maghami, E.; Stocker, D. P.; Hegde, U. G.; Page, K. L.

    2003-01-01

    Pulsed combustion appears to have the potential to provide for rapid fuel/air mixing, compact and economical combustors, and reduced exhaust emissions. The objective of this experiment (PuFF, for Pulsed-Fully Flames) is to increase the fundamental understanding of the fuel/air mixing and combustion behavior of pulsed, turbulent diffusion flames by conducting experiments in microgravity. In this research the fuel jet is fully-modulated (i.e., completely shut off between pulses) by an externally controlled valve system. This gives rise to drastic modification of the combustion and flow characteristics of flames, leading to enhanced fuel/air mixing compared to acoustically excited or partially-modulated jets. Normal-gravity experiments suggest that the fully-modulated technique also has the potential for producing turbulent jet flames significantly more compact than steady flames with no increase in exhaust emissions. The technique also simplifies the combustion process by avoiding the acoustic forcing generally present in pulsed combustors. Fundamental issues addressed in this experiment include the impact of buoyancy on the structure and flame length, temperatures, radiation, and emissions of fully-modulated flames.

  9. 7. DETAIL OF WEST WALL, FLOOR FULLY EXCAVATED, FIRST AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL OF WEST WALL, FLOOR FULLY EXCAVATED, FIRST AND SECOND LAYER OF PLANKS (Original Fabric) - Bald Eagle Cross-Cut Canal Lock, North of Water Street along West Branch of Susquehanna River South bank, 500 feet East of Jay Street Bridge, Lock Haven, Clinton County, PA

  10. 6. VIEW WEST, INTERIOR CANAL WALL, FLOOR FULLY EXCAVATED (Original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW WEST, INTERIOR CANAL WALL, FLOOR FULLY EXCAVATED (Original Fabric) - Bald Eagle Cross-Cut Canal Lock, North of Water Street along West Branch of Susquehanna River South bank, 500 feet East of Jay Street Bridge, Lock Haven, Clinton County, PA

  11. 8. DETAIL OF WEST WALL, FLOOR FULLY EXCAVATED, CROSS MEMBER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL OF WEST WALL, FLOOR FULLY EXCAVATED, CROSS MEMBER (Original Fabric) - Bald Eagle Cross-Cut Canal Lock, North of Water Street along West Branch of Susquehanna River South bank, 500 feet East of Jay Street Bridge, Lock Haven, Clinton County, PA

  12. General view of a fully assembled Solid Rocket Booster sitting ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a fully assembled Solid Rocket Booster sitting atop the Mobile Launch Platform in the Vehicle Assembly Building at Kennedy Space Center - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  13. Fully depleted back-illuminated p-channel CCD development

    SciTech Connect

    Bebek, Chris J.; Bercovitz, John H.; Groom, Donald E.; Holland, Stephen E.; Kadel, Richard W.; Karcher, Armin; Kolbe, William F.; Oluseyi, Hakeem M.; Palaio, Nicholas P.; Prasad, Val; Turko, Bojan T.; Wang, Guobin

    2003-07-08

    An overview of CCD development efforts at Lawrence Berkeley National Laboratory is presented. Operation of fully-depleted, back-illuminated CCD's fabricated on high resistivity silicon is described, along with results on the use of such CCD's at ground-based observatories. Radiation damage and point-spread function measurements are described, as well as discussion of CCD fabrication technologies.

  14. 42 CFR 412.340 - Fully prospective payment methodology.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false Fully prospective payment methodology. 412.340 Section 412.340 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... System for Inpatient Hospital Capital Costs Determination of Transition Period Payment Rates for...

  15. 42 CFR 412.340 - Fully prospective payment methodology.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Fully prospective payment methodology. 412.340 Section 412.340 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... System for Inpatient Hospital Capital Costs Determination of Transition Period Payment Rates for...

  16. VCM Process Design: An ABET 2000 Fully Compliant Project

    ERIC Educational Resources Information Center

    Benyahia, Farid

    2005-01-01

    A long experience in undergraduate vinyl chloride monomer (VCM) process design projects is shared in this paper. The VCM process design is shown to be fully compliant with ABET 2000 criteria by virtue of its abundance in chemical engineering principles, integration of interpersonal and interdisciplinary skills in design, safety, economics, and…

  17. Semiautomated inspection versus fully automated inspection of lyophilized products.

    PubMed

    Seidenader, N W

    1994-01-01

    The development of fully automated inspection systems for parenteral products has created a situation of high expectations regarding productivity and quality improvements. However, not all products and production situations are suited for automation. A guideline for inspection and automation strategies will be discussed, structuring the field of lyophilized products according to the critical decision parameters.

  18. Peirce and Rationalism: Is Peirce a Fully Semiotic Philosopher?

    ERIC Educational Resources Information Center

    Stables, Andrew

    2014-01-01

    While Peirce is a seminal figure for contemporary semiotic philosophers, it is axiomatic of a fully semiotic perspective that no philosopher or philosophy (semiotics included) can provide any final answer, as signs are always interpreted and the context of interpretation always varies. Semiosis is evolutionary: it may or may not be construed as…

  19. 42 CFR 412.340 - Fully prospective payment methodology.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false Fully prospective payment methodology. 412.340 Section 412.340 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... System for Inpatient Hospital Capital Costs Determination of Transition Period Payment Rates for...

  20. 42 CFR 412.340 - Fully prospective payment methodology.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false Fully prospective payment methodology. 412.340 Section 412.340 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... System for Inpatient Hospital Capital Costs Determination of Transition Period Payment Rates for...

  1. 42 CFR 412.340 - Fully prospective payment methodology.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false Fully prospective payment methodology. 412.340 Section 412.340 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN... System for Inpatient Hospital Capital Costs Determination of Transition Period Payment Rates for...

  2. Generation of Partially Reprogrammed Cells and Fully Reprogrammed iPS Cells by Plasmid Transfection.

    PubMed

    Kim, Jong Soo; Choi, Hyun Woo; Hong, Yean Ju; Do, Jeong Tae

    2016-01-01

    Induced pluripotent stem (iPS) cells can be directly generated from somatic cells by overexpression of defined transcription factors. iPS cells can perpetually self-renew and differentiate into all cell types of an organism. iPS cells were first generated through infection with retroviruses that contain reprogramming factors. However, development of an exogene-free iPS cell generation method is crucial for future therapeutic applications, because integrated exogenes result in the formation of tumors in chimeras and regain pluripotency after differentiation in vitro. Here, we describe a method to generate iPS cells by transfection of plasmid vectors and to convert partially reprogrammed cells into fully reprogrammed iPS cells by switching from mouse ESC culture conditions to KOSR-based media with bFGF. We also describe basic methods used to characterize fully reprogrammed iPS cells.

  3. Modeling of Calcite Precipitation Driven by Bacteria-facilitated Urea Hydrolysis in A Flow Column Using A Fully Coupled, Fully Implicit Parallel Reactive Transport Simulator

    NASA Astrophysics Data System (ADS)

    Guo, L.; Huang, H.; Gaston, D.; Redden, G. D.

    2009-12-01

    One approach for immobilizing subsurface metal contaminants involves stimulating the in situ production of mineral phases that sequester or isolate contaminants. One example is using calcium carbonate to immobilize strontium. The success of such approaches depends on understanding how various processes of flow, transport, reaction and resulting porosity-permeability change couple in subsurface systems. Reactive transport models are often used for such purpose. Current subsurface reactive transport simulators typically involve a de-coupled solution approach, such as operator-splitting, that solves the transport equations for components and batch chemistry sequentially, which has limited applicability for many biogeochemical processes with fast kinetics and strong medium property-reaction interactions. A massively parallel, fully coupled, fully implicit reactive transport simulator has been developed based on a parallel multi-physics object oriented software environment computing framework (MOOSE) developed at the Idaho National Laboratory. Within this simulator, the system of transport and reaction equations is solved simultaneously in a fully coupled manner using the Jacobian Free Newton-Krylov (JFNK) method with preconditioning. The simulator was applied to model reactive transport in a one-dimensional column where conditions that favor calcium carbonate precipitation are generated by urea hydrolysis that is catalyzed by urease enzyme. Simulation results are compared to both laboratory column experiments and those obtained using the reactive transport simulator STOMP in terms of: the spatial and temporal distributions of precipitates and reaction rates and other major species in the reaction system; the changes in porosity and permeability; and the computing efficiency based on wall clock simulation time.

  4. A Flexible Proximity Sensor Fully Fabricated by Inkjet Printing

    PubMed Central

    Wang, Chin-Tsan; Huang, Kuo-Yi; Lin, David T. W.; Liao, Wei-Chia; Lin, Hua-Wei; Hu, Yuh-Chung

    2010-01-01

    A flexible proximity sensor fully fabricated by inkjet printing is proposed in this paper. The flexible proximity sensor is composed of a ZnO layer sandwiched in between a flexible aluminum sheet and a web-shaped top electrode layer. The flexible aluminum sheet serves as the bottom electrode. The material of the top electrode layer is nano silver. Both the ZnO and top electrode layers are deposited by inkjet printing. The fully inkjet printing process possesses the advantages of direct patterning and low-cost. It does not require photolithography and etching processes since the pattern is directly printed on the flexible aluminum sheet. The prototype demonstrates that the presented flexible sensor is sensitive to the human body. It may be applied to proximity sensing or thermal eradiation sensing. PMID:22399923

  5. Fully Characterizing Axially Symmetric Szekeres Models with Three Data Sets

    NASA Astrophysics Data System (ADS)

    Célérier, Marie-Nöelle Mishra, Priti; Singh, Tejinder P.

    2015-01-01

    Inhomogeneous exact solutions of General Relativity with zero cosmological constant have been used in the literature to challenge the ΛCDM model. From one patch Lemaître-Tolman-Bondi (LTB) models to axially symmetric quasi-spherical Szekeres (QSS) Swiss-cheese models, some of them are able to reproduce to a good accuracy the cosmological data. It has been shown in the literature that a zero Λ LTB model with a central observer can be fully determined by two data sets. We demonstrate that an axially symmetric zero Λ QSS model with an observer located at the origin can be fully reconstructed from three data sets, number counts, luminosity distance and redshift drift. This is a first step towards a future demonstration involving five data sets and the most general Szekeres model.

  6. Brain source localization based on fast fully adaptive approach.

    PubMed

    Ravan, Maryam; Reilly, James P

    2012-01-01

    In the electroencephalogram (EEG) or magnetoencephalogram (MEG) context, brain source localization (beamforming) methods often fail when the number of observations is small. This is particularly true when measuring evoked potentials, especially when the number of electrodes is large. Due to the nonstationarity of the EEG/MEG, an adaptive capability is desirable. Previous work has addressed these issues by reducing the adaptive degrees of freedom (DoFs). This paper develops and tests a new multistage adaptive processing for brain source localization that has been previously used for radar statistical signal processing application with uniform linear antenna array. This processing, referred to as the fast fully adaptive (FFA) approach, could significantly reduce the required sample support and computational complexity, while still processing all available DoFs. The performance improvement offered by the FFA approach in comparison to the fully adaptive minimum variance beamforming (MVB) with limited data is demonstrated by bootstrapping simulated data to evaluate the variability of the source location.

  7. Magnetohydrodynamics in stationary and axisymmetric spacetimes: A fully covariant approach

    SciTech Connect

    Gourgoulhon, Eric; Markakis, Charalampos; Uryu, Koji; Eriguchi, Yoshiharu

    2011-05-15

    A fully geometrical treatment of general relativistic magnetohydrodynamics is developed under the hypotheses of perfect conductivity, stationarity, and axisymmetry. The spacetime is not assumed to be circular, which allows for greater generality than the Kerr-type spacetimes usually considered in general relativistic magnetohydrodynamics. Expressing the electromagnetic field tensor solely in terms of three scalar fields related to the spacetime symmetries, we generalize previously obtained results in various directions. In particular, we present the first relativistic version of the Soloviev transfield equation, subcases of which lead to fully covariant versions of the Grad-Shafranov equation and of the Stokes equation in the hydrodynamical limit. We have also derived, as another subcase of the relativistic Soloviev equation, the equation governing magnetohydrodynamical equilibria with purely toroidal magnetic fields in stationary and axisymmetric spacetimes.

  8. Polymeric Packaging for Fully Implantable Wireless Neural Microsensors

    PubMed Central

    Aceros, Juan; Yin, Ming; Borton, David A.; Patterson, William R.; Bull, Christopher; Nurmikko, Arto V.

    2014-01-01

    We present polymeric packaging methods used for subcutaneous, fully implantable, broadband, and wireless neurosensors. A new tool for accelerated testing and characterization of biocompatible polymeric packaging materials and processes is described along with specialized test units to simulate our fully implantable neurosensor components, materials and fabrication processes. A brief description of the implantable systems is presented along with their current encapsulation methods based on polydimethylsiloxane (PDMS). Results from in-vivo testing of multiple implanted neurosensors in swine and non-human primates are presented. Finally, a novel augmenting polymer thin film material to complement the currently employed PDMS is introduced. This thin layer coating material is based on the Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Hexamethyldisiloxane (HMDSO) and Oxygen (O2). PMID:23365999

  9. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    DOE PAGES

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less

  10. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  11. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2013-12-14

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called “textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  12. Efficient variational diagonalization of fully many-body localized Hamiltonians

    NASA Astrophysics Data System (ADS)

    Pollmann, Frank; Khemani, Vedika; Cirac, J. Ignacio; Sondhi, S. L.

    2016-07-01

    We introduce a variational unitary matrix product operator based variational method that approximately finds all the eigenstates of fully many-body localized one-dimensional Hamiltonians. The computational cost of the variational optimization scales linearly with system size for a fixed depth of the UTN ansatz. We demonstrate the usefulness of our approach by considering the Heisenberg chain in a strongly disordered magnetic field for which we compare the approximation to exact diagonalization results.

  13. Schwinger boson approach to the fully screened Kondo model.

    PubMed

    Rech, J; Coleman, P; Zarand, G; Parcollet, O

    2006-01-13

    We apply the Schwinger boson scheme to the fully screened Kondo model and generalize the method to include antiferromagnetic interactions between ions. Our approach captures the Kondo crossover from local moment behavior to a Fermi liquid with a nontrivial Wilson ratio. When applied to the two-impurity model, the mean-field theory describes the "Varma-Jones" quantum phase transition between a valence bond state and a heavy Fermi liquid.

  14. Point kinetics calculations with fully coupled thermal fluids reactivity feedback

    SciTech Connect

    Zhang, H.; Zou, L.; Andrs, D.; Zhao, H.; Martineau, R.

    2013-07-01

    The point kinetics model has been widely used in the analysis of the transient behavior of a nuclear reactor. In the traditional nuclear reactor system safety analysis codes such as RELAP5, the reactivity feedback effects are calculated in a loosely coupled fashion through operator splitting approach. This paper discusses the point kinetics calculations with the fully coupled thermal fluids and fuel temperature feedback implemented into the RELAP-7 code currently being developed with the MOOSE framework. (authors)

  15. A fully automated robotic system for high throughput fermentation.

    PubMed

    Zimmermann, Hartmut F; Rieth, Jochen

    2007-03-01

    High throughput robotic systems have been used since the 1990s to carry out biochemical assays in microtiter plates. However, before the application of such systems in industrial fermentation process development, some important specific demands should be taken into account. These are sufficient oxygen supply, optimal growth temperature, minimized sample evaporation, avoidance of contaminations, and simple but reliable process monitoring. A fully automated solution where all these aspects have been taken into account is presented.

  16. Fully developed turbulence in slugs of pipe flows

    NASA Astrophysics Data System (ADS)

    Cerbus, Rory; Liu, Chien-Chia; Sakakibara, Jun; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Despite over a century of research, transition to turbulence in pipe flows remains a mystery. In theory the flow remains laminar for arbitrarily large Reynolds number, Re. In practice, however, the flow transitions to turbulence at a finite Re whose value depends on the disturbance, natural or artificial, in the experimental setup. The flow remains in the transition state for a range of Re ~ 0 (1000) ; for larger Re the flow becomes fully developed. The transition state for Re > 3000 consists of axially segregated regions of laminar and turbulent patches. These turbulent patches, known as slugs, grow as they move downstream. Their lengths span anywhere between a few pipe diameters to the whole length of the pipe. Here we report Stereo Particle Image Velocimetry measurements in the cross-section of the slugs. Notwithstanding the continuous growth of the slugs, we find that the mean velocity and stress profiles in the slugs are indistinguishable from that of statistically-stationary fully-developed turbulent flows. Our results are independent of the length of the slugs. We contrast our results with the well-known work of Wygnanski & Champagne (1973), whose measurements, we argue, are insufficient to draw a clear conclusion regarding fully developed turbulence in slugs.

  17. A Fully-Implanted Intramuscular Bipolar Myoelectric Signal Recording Electrode

    PubMed Central

    Memberg, William D.; Stage, Thomas G.; Kirsch, Robert F.

    2014-01-01

    Objectives To develop a fully-implanted, intramuscular, bipolar, myoelectric signal recording electrode (IM-MES) for functional electrical stimulation (FES), prosthetic myoelectric control, and other permanently implantable systems. Materials and Methods An existing fully-implanted intramuscular stimulating electrode was modified at each end to allow bipolar recording. The design change also required a modification of the implantation method. Mechanical and in vivo testing was performed on the novel components of the electrode. The first clinical application is also described. Results The electrode design modifications did not create any areas of excess mechanical strain on the wires at the distal end where the leads were wound into electrode surfaces. In vivo testing showed that the IM-MES electrode recorded myoelectric signals that were equivalent to an existing epimysial MES electrode. The modified implantation method was simple to implement. The IM-MES electrode was used in an upper extremity FES system in an individual with a spinal cord injury, and provided signals that were suitable for a command signal. Conclusions A fully-implanted, bipolar intramuscular recording electrode (IM-MES) was developed. Implantation of the IM-MES is straightforward and almost any muscle can be targeted. Testing has been performed to demonstrate the suitability of the IM-MES electrode for clinical use. Initial clinical applications were successful. PMID:24612356

  18. Gain compensation technique by bias correction in arrays of Silicon Photomultipliers using fully differential fast shaper

    NASA Astrophysics Data System (ADS)

    Baszczyk, M.; Dorosz, P.; Glab, S.; Kucewicz, W.; Mik, L.; Sapor, M.

    2016-07-01

    Proposed algorithm compensates the gain by changing the bias voltage of Silicon Photomultipliers (SiPM). The signal from SiPM is amplified in fully differential preamplifier then is formed in time by the fully differential fast shaper. The compensation method was tested with four channels common cathode multi-pixel photon counter from Hamamatsu. The measurement system requires only one high voltage power supply. The polarization voltage is adjusted individually in each channel indirectly by tuning the output common mode voltage (VOCM) of fully differential amplifier. The changes of VOCM affect the input voltage through the feedback network. Actual gain of the SiPM is calculated by measuring the mean amplitude of the signal resulting from detection of single photoelectron. The VOCM is adjusted by DAC so as to reach the desired value of gain by each channel individually. The advantage of the algorithm is the possibility to set the bias of each SiPM in the array independently so they all could operate in very similar conditions (have similar gain and dark count rate). The algorithm can compensate the variations of gain of SiPM by using thermally generated pulses. There is no need to use additional current to voltage conversion which could introduce extra noises.

  19. Fully aromatic block copolymers for fuel cell membranes with densely sulfonated nanophase domains.

    PubMed

    Takamuku, Shogo; Jannasch, Patric

    2011-03-01

    Two multiblock copoly(arylene ether sulfone)s with similar block lengths and ion exchange capacities (IECs) were prepared by a coupling reaction between a non-sulfonated precursor block and a highly sulfonated precursor block containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The latter two precursor blocks were sulfonated via lithiation-sulfination reactions whereby the sulfonic acid groups were exclusively placed in ortho positions to the many sulfone bridges, giving these blocks IECs of 4.1 and 4.6 meq·g⁻¹, respectively. Copolymer membranes with IECs of 1.4 meq·g⁻¹ displayed well-connected hydrophilic nanophase domains and had decomposition temperatures at, or above, 300 °C under air. The copolymer with the tetrasulfonated tetraaryldisulfone segments showed a proton conductivity of 0.13 S·cm⁻¹ at 80 °C under fully humidified conditions, and surpassed that of a perfluorosulfonic acid membrane (NRE212) by a factor of 5 at -20 °C over time.

  20. Fully discrete energy stable high order finite difference methods for hyperbolic problems in deforming domains

    NASA Astrophysics Data System (ADS)

    Nikkar, Samira; Nordström, Jan

    2015-06-01

    A time-dependent coordinate transformation of a constant coefficient hyperbolic system of equations which results in a variable coefficient system of equations is considered. By applying the energy method, well-posed boundary conditions for the continuous problem are derived. Summation-by-Parts (SBP) operators for the space and time discretization, together with a weak imposition of boundary and initial conditions using Simultaneously Approximation Terms (SATs) lead to a provable fully-discrete energy-stable conservative finite difference scheme. We show how to construct a time-dependent SAT formulation that automatically imposes boundary conditions, when and where they are required. We also prove that a uniform flow field is preserved, i.e. the Numerical Geometric Conservation Law (NGCL) holds automatically by using SBP-SAT in time and space. The developed technique is illustrated by considering an application using the linearized Euler equations: the sound generated by moving boundaries. Numerical calculations corroborate the stability and accuracy of the new fully discrete approximations.

  1. Chromosomal Conditions

    MedlinePlus

    ... 150 babies is born with a chromosomal condition. Down syndrome is an example of a chromosomal condition. Because ... all pregnant women be offered prenatal tests for Down syndrome and other chromosomal conditions. A screening test is ...

  2. Sea Spotter: A fully staring Naval IRST System

    NASA Astrophysics Data System (ADS)

    Engel, Michael; Navot, Amir; Saban, Izhak; Engel, Yaakov; Arad, Eyal; Shahar, Nir

    2013-06-01

    Infrared sensor technology, high performance computing hardware and advanced detection and tracking algorithms have enabled a new generation of infrared warning systems for navy surface vessels. In this paper we describe Sea Spotter - a new third-generation naval IRST system, which is unique in offering a fully staring electro-optical imaging unit. Starting from naval IRST operational requirements, we describe the considerations and constraints that led us to the configuration of the sensor head and the supporting hardware. The second part of the paper is dedicated to the target acquisition methodology, including the use of originally developed machine learning technology for target acquisition and tracking.

  3. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    SciTech Connect

    Adkins, H.E.; Bearden, T.E.

    1990-10-01

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable US Department of Transportation regulations without the use of a DOE Alternative.'' The US Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992. 4 refs., 4 figs., 2 tabs.

  4. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    NASA Astrophysics Data System (ADS)

    Adkins, Harold E.; Bearden, Thomas E.

    1991-01-01

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable U.S. Department of Transportation regulations without the use of a ``DOE Alternative.'' The U.S. Department of Transportation has special ``double containment'' requirements for plutonium. The system packaging uses a doubly contained ``bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992.

  5. Hyperon-Nulceon Scattering from Fully-Dynamical Lattice QCD

    SciTech Connect

    Silas Beane; Paulo Bedaque; Thomas Luu; Konstantinos Orginos; Elizabetta Pallante; Assumpta Parreno; Martin Savage

    2007-10-01

    We present results of the first fully-dynamical lattice QCD determination of hyperon-nucleon scattering. One s-wave phase shift was determined for n{Lambda} scattering in both spin-channels at pion masses of 350, 490, and 590 MeV, and for n{Sigma}^- scattering in both spin channels at pion masses of 490, and 590 MeV. The calculations were performed with domain-wall valence quarks on dynamical, staggered gauge configurations with a lattice spacing of b ~0.125 fm.

  6. Synthesis of fully functionalized aglycone of lycoperdinoside A and B.

    PubMed

    Chandrasekhar, Balla; Athe, Sudhakar; Reddy, P Purushotham; Ghosh, Subhash

    2015-01-01

    This article reported the synthesis of fully functionalized aglycone of lycoperdinoside A and B. Pd-catalyzed Stille-Migita cross coupling between E-vinyl iodide 6 and E-vinyl stannane 23 established the highly substituted E,E-diene unit present in lycoperdinoside A and B. The other two Z-olefins present in the molecule were introduced by means of cis-selective Horner-Wadsworth-Emmons reaction with Still-Gennari phosphonate. Evans syn- and anti-aldol reactions were utilized to fix six of the seven stereo centres present in the aglycone. PMID:25340961

  7. Fully digital foliage-penetrating synthetic aperature radar processor

    NASA Astrophysics Data System (ADS)

    Arnold, Stephen; Hsu, Charles C.; Zaghloul, Mona E.; Szu, Harold H.; Karangelen, Nicholas E.; Buss, James R.

    2001-03-01

    A high performance, fully digital Foliage Penetrating Synthetic Aperture Radar (FOPEN SAR) system is described. The FOPEN SAR algorithm is illustrated using Matlab. Digital implementation is derived and simulated using VHDL. The complex mathematical functions required by the algorithm have been demonstrated. Simulations have achieved an SNR equals 290 dB when compared to the baseline results from Matlab. The accuracy of the simulation was limited by the resolution of certain trigonometric and exponential functions implemented using VHDL, and thus can be improved upon. This would allow greater flexibility between speed/area considerations without degradation of the target resolution (100dB-signal accuracy).

  8. Optical characterization of fully programmable MEMS diffraction gratings.

    PubMed

    Zamkotsian, F; Timotijevic, B; Lockhart, R; Stanley, R P; Lanzoni, P; Luetzelschwab, M; Canonica, M; Noell, W; Tormen, M

    2012-11-01

    We have fabricated and characterized fully programmable diffraction gratings consisting of 64 silicon micro-mirrors. The mirrors are 700µm long and 50µm wide with a fill factor of 90%. They are actuated electrostatically and move down by 1.25μm while showing negligible cross-talk and bowing as small as 0.14μm over 700μm. Extinction ratio up to 100 has been achieved by adjusting only 3 adjacent micro-mirrors. The gratings could operate either as light modulators up to 5μm or spectra generators up to 2.5μm.

  9. Towards A Fully Automated High-Throughput Phototransfection System

    PubMed Central

    Cappelleri, David J.; Halasz, Adam; Sul, Jai-Yoon; Kim, Tae Kyung; Eberwine, James; Kumar, Vijay

    2010-01-01

    We have designed and implemented a framework for creating a fully automated high-throughput phototransfection system. Integrated image processing, laser target position calculation, and stage movements show a throughput increase of > 23X over the current manual phototransfection method while the potential for even greater throughput improvements (> 110X) is described. A software tool for automated off-line single cell morphological measurements, as well as real-time image segmentation analysis, has also been constructed and shown to be able quantify changes in the cell before and after the process, successfully characterizing them, using metrics such as cell perimeter, area, major and minor axis length, and eccentricity values. PMID:20706617

  10. Fully localised nonlinear energy growth optimals in pipe flow

    NASA Astrophysics Data System (ADS)

    Pringle, Chris C. T.; Willis, Ashley P.; Kerswell, Rich R.

    2015-06-01

    A new, fully localised, energy growth optimal is found over large times and in long pipe domains at a given mass flow rate. This optimal emerges at a threshold disturbance energy below which a nonlinear version of the known (streamwise-independent) linear optimal [P. J. Schmid and D. S. Henningson, "Optimal energy density growth in Hagen-Poiseuille flow," J. Fluid Mech. 277, 192-225 (1994)] is selected and appears to remain the optimal up until the critical energy at which transition is triggered. The form of this optimal is similar to that found in short pipes [Pringle et al., "Minimal seeds for shear flow turbulence: Using nonlinear transient growth to touch the edge of chaos," J. Fluid Mech. 702, 415-443 (2012)], but now with full localisation in the streamwise direction. This fully localised optimal perturbation represents the best approximation yet of the minimal seed (the smallest perturbation which is arbitrarily close to states capable of triggering a turbulent episode) for "real" (laboratory) pipe flows. Dependence of the optimal with respect to several parameters has been computed and establishes that the structure is robust.

  11. A fully photonics-based coherent radar system.

    PubMed

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-20

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system. PMID:24646997

  12. Fully printed flexible and disposable wireless cyclic voltammetry tag

    PubMed Central

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-01

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to −500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health. PMID:25630250

  13. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy.

    PubMed

    Pociask, Elżbieta; Jaworek-Korjakowska, Joanna; Malinowski, Krzysztof Piotr; Roleder, Tomasz; Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects. PMID:27610191

  14. A fully photonics-based coherent radar system

    NASA Astrophysics Data System (ADS)

    Ghelfi, Paolo; Laghezza, Francesco; Scotti, Filippo; Serafino, Giovanni; Capria, Amerigo; Pinna, Sergio; Onori, Daniel; Porzi, Claudio; Scaffardi, Mirco; Malacarne, Antonio; Vercesi, Valeria; Lazzeri, Emma; Berizzi, Fabrizio; Bogoni, Antonella

    2014-03-01

    The next generation of radar (radio detection and ranging) systems needs to be based on software-defined radio to adapt to variable environments, with higher carrier frequencies for smaller antennas and broadened bandwidth for increased resolution. Today's digital microwave components (synthesizers and analogue-to-digital converters) suffer from limited bandwidth with high noise at increasing frequencies, so that fully digital radar systems can work up to only a few gigahertz, and noisy analogue up- and downconversions are necessary for higher frequencies. In contrast, photonics provide high precision and ultrawide bandwidth, allowing both the flexible generation of extremely stable radio-frequency signals with arbitrary waveforms up to millimetre waves, and the detection of such signals and their precise direct digitization without downconversion. Until now, the photonics-based generation and detection of radio-frequency signals have been studied separately and have not been tested in a radar system. Here we present the development and the field trial results of a fully photonics-based coherent radar demonstrator carried out within the project PHODIR. The proposed architecture exploits a single pulsed laser for generating tunable radar signals and receiving their echoes, avoiding radio-frequency up- and downconversion and guaranteeing both the software-defined approach and high resolution. Its performance exceeds state-of-the-art electronics at carrier frequencies above two gigahertz, and the detection of non-cooperating aeroplanes confirms the effectiveness and expected precision of the system.

  15. PAU, a fully depleted mosaic imager with narrow band filters

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Casas, R.; Castander, F. J.; Serrano, S.

    2014-03-01

    The PAU Survey studies the existence and properties of dark energy from the observations of redshift space distortions and weak lensing magnification from galaxy cross-correlations as main cosmological probes. The PAU Team is building an instrument, PAUCam, equipped with fully depleted CCD detectors, designed to be mounted at the prime focus of the 4.2 m diameter William Herschel Telescope (WHT) in La Palma. Simulations indicate that PAUCam at the WHT will be able to image about 2 square degrees per night in 40 narrow-band filters plus six wide-band filters to an AB magnitude depth of i ~ 22.5, providing low-resolution (R ~ 50) photometric spectra for around 30,000 galaxies, 5,000 stars and 1,000 quasars per square degree. Accurate photometric calibration of the PAU data is vital to achieve the survey science goals. This calibration is challenging due to the large and unusual filter set. We outline the data management pipelines being developed for the survey, both for nightly data reduction and co-addition of multiple epochs, with emphasis on the photometric calibration strategies. We also describe the main tests and results in the characterization of our Hamamatsu fully depleted detectors.

  16. Limiting amplitudes of fully nonlinear interfacial tides and solitons

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Gerkema, Theo

    2016-08-01

    A new two-fluid layer model consisting of forced rotation-modified Boussinesq equations is derived for studying tidally generated fully nonlinear, weakly nonhydrostatic dispersive interfacial waves. This set is a generalization of the Choi-Camassa equations, extended here with forcing terms and Coriolis effects. The forcing is represented by a horizontally oscillating sill, mimicking a barotropic tidal flow over topography. Solitons are generated by a disintegration of the interfacial tide. Because of strong nonlinearity, solitons may attain a limiting table-shaped form, in accordance with soliton theory. In addition, we use a quasi-linear version of the model (i.e. including barotropic advection but linear in the baroclinic fields) to investigate the role of the initial stages of the internal tide prior to its nonlinear disintegration. Numerical solutions reveal that the internal tide then reaches a limiting amplitude under increasing barotropic forcing. In the fully nonlinear regime, numerical experiments suggest that this limiting amplitude in the underlying internal tide extends to the nonlinear case in that internal solitons formed by a disintegration of the internal tide may not reach their table-shaped form with increased forcing, but appear limited well below that state.

  17. High-resolution fully vectorial scanning Kerr magnetometer.

    PubMed

    Flajšman, Lukáš; Urbánek, Michal; Křižáková, Viola; Vaňatka, Marek; Turčan, Igor; Šikola, Tomáš

    2016-05-01

    We report on the development of a high-resolution scanning magnetometer, which fully exploits the vectorial nature of the magneto-optical Kerr effect. The three-dimensional nature of magnetization is at the basis of many micromagnetic phenomena and from these data, we can fully characterize magnetization processes of nanostructures in static and dynamic regimes. Our scanning Kerr magnetometer uses a high numerical aperture microscope objective where the incident light beam can be deterministically deviated from the objective symmetry axis, therefore, both in-plane (via the longitudinal Kerr effect) and out-of-plane (via the polar Kerr effect) components of the magnetization vector may be detected. These components are then separated by exploiting the symmetries of the polar and longitudinal Kerr effects. From four consecutive measurements, we are able to directly obtain the three orthogonal components of the magnetization vector with a resolution of 600 nm. Performance of the apparatus is demonstrated by a measurement of 3D magnetization vector maps showing out-of-plane domains and in-plane domain walls in an yttrium-iron-garnet film and on a study of magnetization reversal in a 4-μm-wide magnetic disk. PMID:27250432

  18. High-resolution fully vectorial scanning Kerr magnetometer

    NASA Astrophysics Data System (ADS)

    Flajšman, Lukáš; Urbánek, Michal; Křižáková, Viola; VaÅatka, Marek; Turčan, Igor; Šikola, Tomáš

    2016-05-01

    We report on the development of a high-resolution scanning magnetometer, which fully exploits the vectorial nature of the magneto-optical Kerr effect. The three-dimensional nature of magnetization is at the basis of many micromagnetic phenomena and from these data, we can fully characterize magnetization processes of nanostructures in static and dynamic regimes. Our scanning Kerr magnetometer uses a high numerical aperture microscope objective where the incident light beam can be deterministically deviated from the objective symmetry axis, therefore, both in-plane (via the longitudinal Kerr effect) and out-of-plane (via the polar Kerr effect) components of the magnetization vector may be detected. These components are then separated by exploiting the symmetries of the polar and longitudinal Kerr effects. From four consecutive measurements, we are able to directly obtain the three orthogonal components of the magnetization vector with a resolution of 600 nm. Performance of the apparatus is demonstrated by a measurement of 3D magnetization vector maps showing out-of-plane domains and in-plane domain walls in an yttrium-iron-garnet film and on a study of magnetization reversal in a 4-μm-wide magnetic disk.

  19. Fully localised nonlinear energy growth optimals in pipe flow

    SciTech Connect

    Pringle, Chris C. T.; Willis, Ashley P.; Kerswell, Rich R.

    2015-06-15

    A new, fully localised, energy growth optimal is found over large times and in long pipe domains at a given mass flow rate. This optimal emerges at a threshold disturbance energy below which a nonlinear version of the known (streamwise-independent) linear optimal [P. J. Schmid and D. S. Henningson, “Optimal energy density growth in Hagen-Poiseuille flow,” J. Fluid Mech. 277, 192–225 (1994)] is selected and appears to remain the optimal up until the critical energy at which transition is triggered. The form of this optimal is similar to that found in short pipes [Pringle et al., “Minimal seeds for shear flow turbulence: Using nonlinear transient growth to touch the edge of chaos,” J. Fluid Mech. 702, 415–443 (2012)], but now with full localisation in the streamwise direction. This fully localised optimal perturbation represents the best approximation yet of the minimal seed (the smallest perturbation which is arbitrarily close to states capable of triggering a turbulent episode) for “real” (laboratory) pipe flows. Dependence of the optimal with respect to several parameters has been computed and establishes that the structure is robust.

  20. Unsteady undular bores in fully nonlinear shallow-water theory

    NASA Astrophysics Data System (ADS)

    El, G. A.; Grimshaw, R. H. J.; Smyth, N. F.

    2006-02-01

    We consider unsteady undular bores for a pair of coupled equations of Boussinesq-type which contain the familiar fully nonlinear dissipationless shallow-water dynamics and the leading-order fully nonlinear dispersive terms. This system contains one horizontal space dimension and time and can be systematically derived from the full Euler equations for irrotational flows with a free surface using a standard long-wave asymptotic expansion. In this context the system was first derived by Su and Gardner. It coincides with the one-dimensional flat-bottom reduction of the Green-Naghdi system and, additionally, has recently found a number of fluid dynamics applications other than the present context of shallow-water gravity waves. We then use the Whitham modulation theory for a one-phase periodic travelling wave to obtain an asymptotic analytical description of an undular bore in the Su-Gardner system for a full range of "depth" ratios across the bore. The positions of the leading and trailing edges of the undular bore and the amplitude of the leading solitary wave of the bore are found as functions of this "depth ratio." The formation of a partial undular bore with a rapidly varying finite-amplitude trailing wavefront is predicted for "depth ratios" across the bore exceeding 1.43. The analytical results from the modulation theory are shown to be in excellent agreement with full numerical solutions for the development of an undular bore in the Su-Gardner system.

  1. Fully Digital: Policy and Process Implications for the AAS

    NASA Astrophysics Data System (ADS)

    Biemesderfer, Chris

    Over the past two decades, every scholarly publisher has migrated at least the mechanical aspects of their journal publishing so that they utilize digital means. The academy was comfortable with that for a while, but publishers are under increasing pressure to adapt further. At the American Astronomical Society (AAS), we think that means bringing our publishing program to the point of being fully digital, by establishing procedures and policies that regard the digital objects of publication primarily. We have always thought about our electronic journals as databases of digital articles, from which we can publish and syndicate articles one at a time, and we must now put flesh on those bones by developing practices that are consistent with the realities of article at a time publication online. As a learned society that holds the long-term rights to the literature, we have actively taken responsibility for the preservation of the digital assets that constitute our journals, and in so doing we have not forsaken the legacy pre-digital assets. All of us who serve as the long-term stewards of scholarship must begin to evolve into fully digital publishers.

  2. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy

    PubMed Central

    Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects. PMID:27610191

  3. Fully Premixed Low Emission, High Pressure Multi-Fuel Burner

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet (Inventor)

    2012-01-01

    A low-emissions high-pressure multi-fuel burner includes a fuel inlet, for receiving a fuel, an oxidizer inlet, for receiving an oxidizer gas, an injector plate, having a plurality of nozzles that are aligned with premix face of the injector plate, the plurality of nozzles in communication with the fuel and oxidizer inlets and each nozzle providing flow for one of the fuel and the oxidizer gas and an impingement-cooled face, parallel to the premix face of the injector plate and forming a micro-premix chamber between the impingement-cooled face and the in injector face. The fuel and the oxidizer gas are mixed in the micro-premix chamber through impingement-enhanced mixing of flows of the fuel and the oxidizer gas. The burner can be used for low-emissions fuel-lean fully-premixed, or fuel-rich fully-premixed hydrogen-air combustion, or for combustion with other gases such as methane or other hydrocarbons, or even liquid fuels.

  4. Fully printed flexible and disposable wireless cyclic voltammetry tag

    NASA Astrophysics Data System (ADS)

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-01

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.

  5. Fully printed flexible and disposable wireless cyclic voltammetry tag.

    PubMed

    Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin

    2015-01-29

    A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.

  6. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    DOE PAGES

    David, Tanya M. S.; Zhang, Cheng; Sun, Sam-Shajing

    2014-01-01

    Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene) or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO) level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO) level of −3.33 eV based on optical energy gap. The polymer wasmore » synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.« less

  7. Fully Polarimetric Differential Intensity W-band Imager

    SciTech Connect

    Bernacki, Bruce E.; Tedeschi, Jonathan R.; Kelly, James F.; Sheen, David M.; Hall, Thomas E.; Valdez, Patrick LJ; Lechelt, Wayne M.; McMakin, Douglas L.

    2013-05-31

    We present a novel architecture based upon a Dicke-switched heterodyne radiometer architecture employing two identical input sections consisting of horn and orthomode transducer to detect the difference between the H and V polarization states of two separate object patches imaged by the radiometer. We have constructed and described previously a fully polarimetric W-band passive millimeter wave imager constructed to study the phenomenology of anomaly detection using polarimetric image exploitation of the Stokes images. The heterodyne radiometer used a PIN diode switch between the input millimeter wave energy and that of a reference load in order to eliminate the effects of component drifts and reduce the effects of 1/f noise. The differential approach differs from our previous work by comparing H and V polarization states detected by each of the two input horns instead of a reference load to form signals delta H and delta V from closely adjacent paired object patches. This novel imaging approach reduces common mode noise and enhances detection of small changes between the H and V polarization states of two object patches, now given as difference terms of the fully polarimetric radiometer. We present the theory of operation, initial proof of concept experimental results, and extension of the differential radiometer to a system with a binocular fore optics that allow adjustment of the convergence or shear of the object patches viewed by the differential polarimetric imager.

  8. High-resolution fully vectorial scanning Kerr magnetometer.

    PubMed

    Flajšman, Lukáš; Urbánek, Michal; Křižáková, Viola; Vaňatka, Marek; Turčan, Igor; Šikola, Tomáš

    2016-05-01

    We report on the development of a high-resolution scanning magnetometer, which fully exploits the vectorial nature of the magneto-optical Kerr effect. The three-dimensional nature of magnetization is at the basis of many micromagnetic phenomena and from these data, we can fully characterize magnetization processes of nanostructures in static and dynamic regimes. Our scanning Kerr magnetometer uses a high numerical aperture microscope objective where the incident light beam can be deterministically deviated from the objective symmetry axis, therefore, both in-plane (via the longitudinal Kerr effect) and out-of-plane (via the polar Kerr effect) components of the magnetization vector may be detected. These components are then separated by exploiting the symmetries of the polar and longitudinal Kerr effects. From four consecutive measurements, we are able to directly obtain the three orthogonal components of the magnetization vector with a resolution of 600 nm. Performance of the apparatus is demonstrated by a measurement of 3D magnetization vector maps showing out-of-plane domains and in-plane domain walls in an yttrium-iron-garnet film and on a study of magnetization reversal in a 4-μm-wide magnetic disk.

  9. Fully Automated Lipid Pool Detection Using Near Infrared Spectroscopy

    PubMed Central

    Wojakowski, Wojciech

    2016-01-01

    Background. Detecting and identifying vulnerable plaque, which is prone to rupture, is still a challenge for cardiologist. Such lipid core-containing plaque is still not identifiable by everyday angiography, thus triggering the need to develop a new tool where NIRS-IVUS can visualize plaque characterization in terms of its chemical and morphologic characteristic. The new tool can lead to the development of new methods of interpreting the newly obtained data. In this study, the algorithm to fully automated lipid pool detection on NIRS images is proposed. Method. Designed algorithm is divided into four stages: preprocessing (image enhancement), segmentation of artifacts, detection of lipid areas, and calculation of Lipid Core Burden Index. Results. A total of 31 NIRS chemograms were analyzed by two methods. The metrics, total LCBI, maximal LCBI in 4 mm blocks, and maximal LCBI in 2 mm blocks, were calculated to compare presented algorithm with commercial available system. Both intraclass correlation (ICC) and Bland-Altman plots showed good agreement and correlation between used methods. Conclusions. Proposed algorithm is fully automated lipid pool detection on near infrared spectroscopy images. It is a tool developed for offline data analysis, which could be easily augmented for newer functions and projects.

  10. A fully Sinc-Galerkin method for Euler-Bernoulli beam models

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Bowers, K. L.; Lund, J.

    1990-01-01

    A fully Sinc-Galerkin method in both space and time is presented for fourth-order time-dependent partial differential equations with fixed and cantilever boundary conditions. The Sinc discretizations for the second-order temporal problem and the fourth-order spatial problems are presented. Alternate formulations for variable parameter fourth-order problems are given which prove to be especially useful when applying the forward techniques to parameter recovery problems. The discrete system which corresponds to the time-dependent partial differential equations of interest are then formulated. Computational issues are discussed and a robust and efficient algorithm for solving the resulting matrix system is outlined. Numerical results which highlight the method are given for problems with both analytic and singular solutions as well as fixed and cantilever boundary conditions.

  11. Effective stress model for partially and fully saturated rocks

    SciTech Connect

    Dey, T.N.

    1989-01-01

    An effective stress model which calculates the pressure-volume (P-V) and deviatoric stress response of partially and fully saturated rocks is described here. The model includes pore pressure effects on pore crushing and shear strength as well as effects of shear enhanced void collapse and shear caused dilatancy. The model can directly use tabular data for the P-V behavior of the rock solids and the water, and for the drained pore crushing behavior and shear strength, which simplifies model fitting. Phase transitions in the solids and vaporization of the water are also allowed. Use of the model is illustrated by an example of wave propagation in limestone. 6 refs., 4 figs.

  12. Physical properties of alternatives to the fully halogenated chlorofluorocarbons

    NASA Technical Reports Server (NTRS)

    Mclinden, Mark O.

    1990-01-01

    Presented here are recommended values and correlations of selected physical properties of several alternatives to the fully halogenated chlorocarbons. The quality of the data used in this compilation varies widely, ranging from well-documented, high accuracy measurements from published sources to completely undocumented values listed on anonymous data sheets. That some of the properties for some fluids are available only from the latter type of source is clearly not the desired state of affairs. While some would reject all such data, the compilation given here is presented in the spirit of laying out the present state of knowledge and making available a set of data in a timely manner, even though its quality is sometimes uncertain. The correlations presented here are certain to change quickly as additional information becomes available.

  13. Fully automated algorithm for wound surface area assessment.

    PubMed

    Deana, Alessandro Melo; de Jesus, Sérgio Henrique Costa; Sampaio, Brunna Pileggi Azevedo; Oliveira, Marcelo Tavares; Silva, Daniela Fátima Teixeira; França, Cristiane Miranda

    2013-01-01

    Worldwide, clinicians, dentists, nurses, researchers, and other health professionals need to monitor the wound healing progress and to quantify the rate of wound closure. The aim of this study is to demonstrate, step by step, a fully automated numerical method to estimate the size of the wound and the percentage damaged relative to the body surface area (BSA) in images, without the requirement for human intervention. We included the formula for BSA in rats in the algorithm. The methodology was validated in experimental wounds and human ulcers and was compared with the analysis of an experienced pathologist, with good agreement. Therefore, this algorithm is suitable for experimental wounds and burns and human ulcers, as they have a high contrast with adjacent normal skin.

  14. High quality factor, fully switchable terahertz superconducting metasurface

    SciTech Connect

    Scalari, G. Maissen, C.; Faist, J.; Cibella, S.; Leoni, R.

    2014-12-29

    We present a complementary THz metasurface realised with Niobium thin film which displays a quality factor Q = 54 and a fully switchable behaviour as a function of the temperature. The switching behaviour and the high quality factor are due to a careful design of the metasurface aimed at maximising the ohmic losses when the Nb is above the critical temperature and minimising the radiative coupling. The superconductor allows the operation of the cavity with high Q and the use of inductive elements with a high aspect ratio. Comparison with three dimensional finite element simulations highlights the crucial role of the inductive elements and of the kinetic inductance of the Cooper pairs in achieving the high quality factor and the high field enhancement.

  15. Passive Fully Polarimetric W-Band Millimeter-Wave Imaging

    SciTech Connect

    Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.; McMakin, Douglas L.; Tedeschi, Jonathan R.; Harris, Robert V.; Mendoza, Albert; Hall, Thomas E.; Hatchell, Brian K.; Valdez, Patrick LJ

    2012-04-01

    We present the theory, design, and experimental results obtained from a scanning passive W-band fully polarimetric imager. Passive millimeter-wave imaging offers persistent day/nighttime imaging and the ability to penetrate dust, clouds and other obscurants, including clothing and dry soil. The single-pixel scanning imager includes both far-field and near-field fore-optics for investigation of polarization phenomena. Using both fore-optics, a variety of scenes including natural and man-made objects was imaged and these results are presented showing the utility of polarimetric imaging for anomaly detection. Analysis includes conventional Stokes-parameter based approaches as well as multivariate image analysis methods.

  16. Gromita: a fully integrated graphical user interface to gromacs 4.

    PubMed

    Sellis, Diamantis; Vlachakis, Dimitrios; Vlassi, Metaxia

    2009-09-07

    Gromita is a fully integrated and efficient graphical user interface (GUI) to the recently updated molecular dynamics suite Gromacs, version 4. Gromita is a cross-platform, perl/tcl-tk based, interactive front end designed to break the command line barrier and introduce a new user-friendly environment to run molecular dynamics simulations through Gromacs. Our GUI features a novel workflow interface that guides the user through each logical step of the molecular dynamics setup process, making it accessible to both advanced and novice users. This tool provides a seamless interface to the Gromacs package, while providing enhanced functionality by speeding up and simplifying the task of setting up molecular dynamics simulations of biological systems. Gromita can be freely downloaded from http://bio.demokritos.gr/gromita/.

  17. Fully Hydrated Yeast Cells Imaged with Electron Microscopy

    PubMed Central

    Peckys, Diana B.; Mazur, Peter; Gould, Kathleen L.; de Jonge, Niels

    2011-01-01

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccaromyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells. PMID:21575587

  18. Can Observed Randomness Be Certified to Be Fully Intrinsic?

    NASA Astrophysics Data System (ADS)

    Dhara, Chirag; de la Torre, Gonzalo; Acín, Antonio

    2014-03-01

    In general, any observed random process includes two qualitatively different forms of randomness: apparent randomness, which results both from ignorance or lack of control of degrees of freedom in the system, and intrinsic randomness, which is not ascribable to any such cause. While classical systems only possess the first kind of randomness, quantum systems may exhibit some intrinsic randomness. In this Letter, we provide quantum processes in which all the observed randomness is fully intrinsic. These results are derived under minimal assumptions: the validity of the no-signaling principle and an arbitrary (but not absolute) lack of freedom of choice. Our results prove that quantum predictions cannot be completed already in simple finite scenarios, for instance of three parties performing two dichotomic measurements. Moreover, the observed randomness tends to a perfect random bit when increasing the number of parties, thus, defining an explicit process attaining full randomness amplification.

  19. Fully distrustful quantum bit commitment and coin flipping.

    PubMed

    Silman, J; Chailloux, A; Aharon, N; Kerenidis, I; Pironio, S; Massar, S

    2011-06-01

    In the distrustful quantum cryptography model the parties have conflicting interests and do not trust one another. Nevertheless, they trust the quantum devices in their labs. The aim of the device-independent approach to cryptography is to do away with the latter assumption, and, consequently, significantly increase security. It is an open question whether the scope of this approach also extends to protocols in the distrustful cryptography model, thereby rendering them "fully" distrustful. In this Letter, we show that for bit commitment-one of the most basic primitives within the model-the answer is positive. We present a device-independent (imperfect) bit-commitment protocol, where Alice's and Bob's cheating probabilities are ≃0.854 and 3/4, which we then use to construct a device-independent coin flipping protocol with bias ≲0.336.

  20. Fully distrustful quantum bit commitment and coin flipping.

    PubMed

    Silman, J; Chailloux, A; Aharon, N; Kerenidis, I; Pironio, S; Massar, S

    2011-06-01

    In the distrustful quantum cryptography model the parties have conflicting interests and do not trust one another. Nevertheless, they trust the quantum devices in their labs. The aim of the device-independent approach to cryptography is to do away with the latter assumption, and, consequently, significantly increase security. It is an open question whether the scope of this approach also extends to protocols in the distrustful cryptography model, thereby rendering them "fully" distrustful. In this Letter, we show that for bit commitment-one of the most basic primitives within the model-the answer is positive. We present a device-independent (imperfect) bit-commitment protocol, where Alice's and Bob's cheating probabilities are ≃0.854 and 3/4, which we then use to construct a device-independent coin flipping protocol with bias ≲0.336. PMID:21702585

  1. Fully hydrated yeast cells imaged with electron microscopy.

    PubMed

    Peckys, Diana B; Mazur, Peter; Gould, Kathleen L; de Jonge, Niels

    2011-05-18

    We demonstrate electron microscopy of fully hydrated eukaryotic cells with nanometer resolution. Living Schizosaccharomyces pombe cells were loaded in a microfluidic chamber and imaged in liquid with scanning transmission electron microscopy (STEM). The native intracellular (ultra)structures of wild-type cells and three different mutants were studied without prior labeling, fixation, or staining. The STEM images revealed various intracellular components that were identified on the basis of their shape, size, location, and mass density. The maximal achieved spatial resolution in this initial study was 32 ± 8 nm, an order of magnitude better than achievable with light microscopy on pristine cells. Light-microscopy images of the same samples were correlated with the corresponding electron-microscopy images. Achieving synergy between the capabilities of light and electron microscopy, we anticipate that liquid STEM will be broadly applied to explore the ultrastructure of live cells.

  2. Fast and fully-scalable synthesis of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Abdolhosseinzadeh, Sina; Asgharzadeh, Hamed; Seop Kim, Hyoung

    2015-05-01

    Exfoliation of graphite is a promising approach for large-scale production of graphene. Oxidation of graphite effectively facilitates the exfoliation process, yet necessitates several lengthy washing and reduction processes to convert the exfoliated graphite oxide (graphene oxide, GO) to reduced graphene oxide (RGO). Although filtration, centrifugation and dialysis have been frequently used in the washing stage, none of them is favorable for large-scale production. Here, we report the synthesis of RGO by sonication-assisted oxidation of graphite in a solution of potassium permanganate and concentrated sulfuric acid followed by reduction with ascorbic acid prior to any washing processes. GO loses its hydrophilicity during the reduction stage which facilitates the washing step and reduces the time required for production of RGO. Furthermore, simultaneous oxidation and exfoliation significantly enhance the yield of few-layer GO. We hope this one-pot and fully-scalable protocol paves the road toward out of lab applications of graphene.

  3. Fully resolved simulation of self-propulsion of aquatic organisms

    NASA Astrophysics Data System (ADS)

    Curet, Oscar M.; Alali, Ibrahim; Patankar, Neelesh A.; Maciver, Malcolm A.

    2008-11-01

    We present a computational approach for fully resolved simulation of self-propulsion of organisms through a fluid. Our implicit algorithm solves for the translational and rotational motion of the organism for prescribed deformation kinematics. In addition, the solution for the surrounding flow field is also obtained. The approach is easy to apply to the body forms of a variety of organisms. Our final goal is to use this computational tool to help in understanding the mechanisms of movement and its control in aquatic animals. In this abstract we present validation of this method for different organisms. To validate the method with respect to analytical solutions, we consider two cases: 1) a flagellum which propagates plane waves, and 2) a flagellum that propagates helical waves. To validate the method with respect to empirical measurements we consider data from two organisms: 1) jellyfish (data from John Dabiri at Caltech), and 2) zebrafish (data from Melina Hale at The University of Chicago).

  4. Fully photonics-based physical random bit generator.

    PubMed

    Li, Pu; Sun, Yuanyuan; Liu, Xianglian; Yi, Xiaogang; Zhang, Jianguo; Guo, Xiaomin; Guo, Yanqiang; Wang, Yuncai

    2016-07-15

    We propose a fully photonics-based approach for ultrafast physical random bit generation. This approach exploits a compact nonlinear loop mirror (called a terahertz optical asymmetric demultiplexer, TOAD) to sample the chaotic optical waveform in an all-optical domain and then generate random bit streams through further comparison with a threshold level. This method can efficiently overcome the electronic jitter bottleneck confronted by existing RBGs in practice. A proof-of-concept experiment demonstrates that this method can continuously extract 5 Gb/s random bit streams from the chaotic output of a distributed feedback laser diode (DFB-LD) with optical feedback. This limited generation rate is caused by the bandwidth of the used optical chaos. PMID:27420532

  5. Fully ordered to disordered granular sphere packings with random deposition

    NASA Astrophysics Data System (ADS)

    Kudrolli, Arshad; Panaitescu, Andreea

    2013-03-01

    Granular packings are typically obtained by pouring grains into a container in a gravitational field as when sugar is poured into a jar, or grains into a silo. We deconstruct this method and study the impact on packing by simply varying the pour rate and energy of particles dropped randomly but spatially uniformly in a large container whose substrate can act as a template. We find that fully disordered packings are observed when large number of particles are added all at once but an ordered fcc crystal is observed when particles are added sequentially at random locations and allowed to come to rest before adding the next layer. By scanning the packings obtained by 3D X-ray tomography, we identify the positions of all the particles and the growth of order and defects. We present an analysis of the structures formed and compare and contrast it with packings obtained using other protocols including by cyclic shear.

  6. Fully articulated four-point-bend loading fixture

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M. (Inventor)

    1991-01-01

    A fully articulated four-point bend loading fixture for Modulus of Rupture (MOR) and fracture toughness specimens utilizes an upper loading plate in combination with a lower loading plate. The lower plate has a pair of spring loaded ball bearings which seat in V-shaped grooves located in the upper plate. The ball bearings are carried in the arms of the lower plate. A load is applied to the specimen through steel rollers, one large roller and one smaller roller each located on both the upper and lower plates. The large rollers have needle roller bearings which enable a single loading roller to rotate relative to the plate to which it is attached.

  7. Special Issue: Planar Fully-Depleted SOI technology

    NASA Astrophysics Data System (ADS)

    Allibert, F.; Hiramoto, T.; Nguyen, B. Y.

    2016-03-01

    We are in the era of mobile computing with smart handheld devices and remote data storage "in the cloud," with devices that are almost always on and driven by needs of high data transmission rate, instant access/connection and long battery life. With all the ambitious requirements for better performance with lower power consumption, the SoC solution must also be cost-effective in order to capture the large, highly-competitive consumer mobile and wearable markets. The Fully-Depleted SOI device/circuit is a unique option that can satisfy all these requirements and has made tremendous progress in development for various applications and adoption by foundries, integrated device manufacturers (IDM), and fabless companies in the last 3 years.

  8. Shear instabilities in a fully compressible polytropic atmosphere

    NASA Astrophysics Data System (ADS)

    Witzke, V.; Silvers, L. J.; Favier, B.

    2015-05-01

    Shear flows have a significant impact on the dynamics in an assortment of different astrophysical objects, including accretion discs and stellar interiors. Investigating shear flow instabilities in a polytropic atmosphere provides a fundamental understanding of the motion in stellar interiors where turbulent motions, mixing processes, and magnetic field generation take place. Here, a linear stability analysis for a fully compressible fluid in a two-dimensional Cartesian geometry is carried out. Our study focuses on determining the critical Richardson number for different Mach numbers and the destabilising effects of high thermal diffusion. We find that there is a deviation in the predicted stability threshold for moderate Mach number flows, along with a significant effect on the growth rate of the linear instability for small Péclet numbers. We show that in addition to a Kelvin-Helmholtz instability, a Holmboe instability can appear, and we discuss the implication of this in stellar interiors.

  9. A fully integrated IQ-receiver for NMR microscopy.

    PubMed

    Anders, Jens; SanGiorgio, Paul; Boero, Giovanni

    2011-03-01

    We present a fully integrated CMOS receiver for micro-magnetic resonance imaging together with a custom-made micro-gradient system. The receiver is designed for an operating frequency of 300 MHz. The chip consists of an on-chip detection coil and tuning capacitor as well as a low-noise amplifier and a quadrature downconversion mixer with corresponding low-frequency amplification stages. The design is realized in a 0.13 μm CMOS technology, it occupies a chip area of 950 × 800 μm² and it draws 50 mA from a supply voltage of 1.8 V. The achieved time-domain spin sensitivity is 5×10(14)spins/Hz. Images of phantoms obtained in our custom-made gradient system with 8 μm isotropic resolution are reported.

  10. Fabrication and Characterization of Fully Ceramic Microencapsulated Fuels

    SciTech Connect

    Terrani, Kurt A; Kiggans, Jim; Katoh, Yutai; Shimoda, Kazuya; Montgomery, Fred C; Armstrong, Beth L; Parish, Chad M; Hinoki, Tatsuya; Hunn, John D; Snead, Lance Lewis

    2012-01-01

    The current generation of fully ceramic microencapsulated fuels, consisting of Tristructural Isotropic fuel particles embedded in a silicon carbide matrix, is fabricated by hot pressing. Matrix powder feedstock is comprised of alumina - yttria additives thoroughly mixed with silicon carbide nanopowder using polyethyleneimine as a dispersing agent. Fuel compacts are fabricated by hot pressing the powder - fuel particle mixture at a temperature of 1800-1900 C using compaction pressures of 10-20 MPa. Detailed microstructural characterization of the final fuel compacts shows that oxide additives are limited in extent and are distributed uniformly at silicon carbide grain boundaries, at triple joints between silicon carbide grains, and at the fuel particle-matrix interface.

  11. Fully Quantified Spectral Imaging Reveals in Vivo Membrane Protein Interactions

    PubMed Central

    King, Christopher; Stoneman, Michael; Raicu, Valerica; Hristova, Kalina

    2016-01-01

    Here we introduce the Fully Quantified Spectral Imaging (FSI) method as a new tool to probe the stoichiometry and stability of protein complexes in biological membranes. The FSI method yields two dimensional membrane concentrations and FRET efficiencies in native plasma membranes. It can be used to characterize the association of membrane proteins: to differentiate between monomers, dimers, or oligomers, to produce binding (association) curves, and to measure the free energies of association in the membrane. We use the FSI method to study the lateral interactions of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), a member of the receptor tyrosine kinase (RTK) superfamily, in plasma membranes, in vivo. The knowledge gained through the use of the new method challenges the current understanding of VEGFR2 signaling. PMID:26787445

  12. A New Wideband, Fully Steerable, Decametric Array at Clark Lake

    NASA Technical Reports Server (NTRS)

    Erickson, W. C.; Fisher, J. R.

    1974-01-01

    A fully steerable, decametric array for radio astronomy is under construction at the Clark Lake Radio Observatory near Borrego Springs, California. This array will be a T of 720 conical spiral antennas (teepee-shaped antennas, hence the array is called the TPT), 3.0 km by 1.8 km capable of operating between 15 and 125 MHz. Both its operating frequency and beam position will be adjustable in less than one millisecond, and the TPT will provide a 49-element picture around the central beam position for extended source observations. Considerable experience was gained in the operation of completed portions of the array, and successful operation of the final array is assured. The results are described of the tests which were conducted with the conical spirals, and the planned electronics and data processing systems are described.

  13. Developing a fully online course for senior medical students.

    PubMed

    Chapman, Chris; White, Casey B; Engleberg, Cary; Fantone, Joseph C; Cinti, Sandro K

    2011-05-06

    In 2002 the University of Michigan Medical School created a one-month course in advanced medical therapeutics (AMT). All senior medical students were required to complete the course. To provide some flexibility for students who were interviewing for residency positions the AMT course was created using a distance-learning model, and in the 2008-2009 academic year it was offered in a fully online format. The components of the course are weekly case-based modules, a weekly online seminar, quizzes based on modules and seminars, and a research project based on a therapeutic question. The paper discusses the development and components of the AMT course, a survey of fourth-year medical students who participated in the course between 2007 and 2010, and how the course evolved over three years.

  14. First Characterization of a Fully Superconducting RF Photoinjector Cavity

    SciTech Connect

    Neumann, A; Barday, R; Jankowiak, A; Kamps, T; Knobloch, J; Kugeler, O; Matveenko, A N; Quast, T; Rudolph, J; Schubert, S G; Volker, J; Kneisel, P; Nietubyc, R; Sekutowicz, J K; Smedley, J; Volkov, V; Weinberg, G; Will, I

    2011-09-01

    As a first step towards a high brightness, high average current electron source for the BERLinPro ERL a fully superconducting photo-injector was developed by HZB in collaboration with JLab, DESY and the A. Soltan Institute. This cavity-injector ensemble is made up of a 1.6-cell superconducting cavity with a superconducting lead cathode deposited on the half-cell backwall. A superconducting solenoid is used for emittance compensation. This system, including a diagnostics beamline, has been installed in the HoBiCaT facility to serve as a testbed for beam dynamics studies and to test the combination SRF cavity and superconducting solenoid. This paper summarizes the characterization of the cavity in this configuration including Q measurements, dark current tests and field-stability analyses.

  15. A fully superconducting bearing system for flywheel applications

    NASA Astrophysics Data System (ADS)

    Xu, Ke-xi; Wu, Dong-jie; Jiao, Y. L.; Zheng, M. H.

    2016-06-01

    A fully superconducting magnetic suspension structure has been designed and constructed for the purpose of superconducting bearing applications in flywheel energy storage systems. A thrust type bearing and two journal type bearings, those that are composed of melt textured high-Tc superconductor YBCO bulks and Nd-Fe-B permanent magnets, are used in the bearing system. The rotor dynamical behaviors, including critical speeds and rotational loss, are studied. Driven by a variable-frequency three-phase induction motor, the rotor shaft attached with a 25 kg flywheel disc can be speeded up to 15 000 rpm without serious resonance occurring. Although the flywheel system runs stably in the supercritical speeds region, very obvious rotational loss is unavoidable. The loss mechanism has been discussed in terms of eddy current loss and hysteresis loss.

  16. Fully automated adipose tissue measurement on abdominal CT

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Sussman, Daniel L.; Summers, Ronald M.

    2011-03-01

    Obesity has become widespread in America and has been associated as a risk factor for many illnesses. Adipose tissue (AT) content, especially visceral AT (VAT), is an important indicator for risks of many disorders, including heart disease and diabetes. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. CT provides a means to measure AT accurately and consistently. We present a fully automated method to segment and measure abdominal AT in CT. Our method integrates image preprocessing which attempts to correct for image artifacts and inhomogeneities. We use fuzzy cmeans to cluster AT regions and active contour models to separate subcutaneous and visceral AT. We tested our method on 50 abdominal CT scans and evaluated the correlations between several measurements.

  17. Hand radiograph analysis for fully automatic bone age assessment

    NASA Astrophysics Data System (ADS)

    Chassignet, Philippe; Nitescu, Teodor; Hassan, Max; Stanescu, Ruxandra

    1999-05-01

    This paper describes a method for the fully automatic and reliable segmentation of the bones in a radiograph of the child's hand. The problem consists in identifying the contours of the bones and the difficulty lies in the large variability of the anatomical structures, according to age, hand pose or individual. The model shall not force any standard interpretation, hence we use a simple hierarchical geometric model that provides the only information required for the identification of the chunks of contours. The phalangeal and metacarpal resulting segmentation is proved robust over a set of many hundred of images and measurements of shapes, sizes, areas, ..., are now quite allowed. The next step consists in extending the model for more accurate measurements and also for the localization of the carpal bones.

  18. Fully automated low-cost setup for fringe projection profilometry.

    PubMed

    Rivera-Ortega, Uriel; Dirckx, Joris; Meneses-Fabian, Cruz

    2015-02-20

    In this paper an alternative low-cost, easy-to-use, and fully automated profilometry setup is proposed. The setup is based on a phase-shifting fringe projection technique with four projected fringe parameters. It uses the well-known triangulation arrangement and low-cost electronic and image acquisition components such as a data acquisition board, a motor controller board, a printer rail, a CMOS webcam, and an LCD projector. The position of the camera, the generation of the fringe pattern, the acquisition of the images, and the calculation of the wrapped and unwrapped phase are all performed in LabVIEW. The setup is portable and can be perfectly adapted to be used in other profilometry techniques such as electronic speckle pattern interferometry and laser scanning profilometry. PMID:25968198

  19. An object oriented fully 3D tomography visual toolkit.

    PubMed

    Agostinelli, S; Paoli, G

    2001-04-01

    In this paper we present a modern object oriented component object model (COMM) C + + toolkit dedicated to fully 3D cone-beam tomography. The toolkit allows the display and visual manipulation of analytical phantoms, projection sets and volumetric data through a standard Windows graphical user interface. Data input/output is performed using proprietary file formats but import/export of industry standard file formats, including raw binary, Windows bitmap and AVI, ACR/NEMA DICOMM 3 and NCSA HDF is available. At the time of writing built-in implemented data manipulators include a basic phantom ray-tracer and a Matrox Genesis frame grabbing facility. A COMM plug-in interface is provided for user-defined custom backprojector algorithms: a simple Feldkamp ActiveX control, including source code, is provided as an example; our fast Feldkamp plug-in is also available.

  20. Fully photonics-based physical random bit generator.

    PubMed

    Li, Pu; Sun, Yuanyuan; Liu, Xianglian; Yi, Xiaogang; Zhang, Jianguo; Guo, Xiaomin; Guo, Yanqiang; Wang, Yuncai

    2016-07-15

    We propose a fully photonics-based approach for ultrafast physical random bit generation. This approach exploits a compact nonlinear loop mirror (called a terahertz optical asymmetric demultiplexer, TOAD) to sample the chaotic optical waveform in an all-optical domain and then generate random bit streams through further comparison with a threshold level. This method can efficiently overcome the electronic jitter bottleneck confronted by existing RBGs in practice. A proof-of-concept experiment demonstrates that this method can continuously extract 5 Gb/s random bit streams from the chaotic output of a distributed feedback laser diode (DFB-LD) with optical feedback. This limited generation rate is caused by the bandwidth of the used optical chaos.

  1. Development of 30 kVA class fully superconducting generator

    SciTech Connect

    Tsukamoto, O.; Amemiya, N.; Takao, T. . Faculty of Engineering); Akita, S. ); Ohishi, K.; Shimuzu, H.; Tanaka, Y. ); Uchikawa, Y. )

    1992-01-01

    This paper reports that the authors are developing a 4 poles 30 kVA class fully superconducting generator to investigate the characteristics of superconducting armature winding subject to the rotating magnetic field produced by the superconducting rotor and behavior of a superconducting generator connected to an electric power utility grid. A static test of the armature winding have been performed by applying 50 Hz AC current. AC quench currents of the armature windings have reached to 200 Arms after several quenches which was well over the rated current. A static test of the field windings have been also performed to verify its rated performance. In the paper, detailed configurations and electrical test results of the generator are shown.

  2. Fast and fully-scalable synthesis of reduced graphene oxide

    PubMed Central

    Abdolhosseinzadeh, Sina; Asgharzadeh, Hamed; Seop Kim, Hyoung

    2015-01-01

    Exfoliation of graphite is a promising approach for large-scale production of graphene. Oxidation of graphite effectively facilitates the exfoliation process, yet necessitates several lengthy washing and reduction processes to convert the exfoliated graphite oxide (graphene oxide, GO) to reduced graphene oxide (RGO). Although filtration, centrifugation and dialysis have been frequently used in the washing stage, none of them is favorable for large-scale production. Here, we report the synthesis of RGO by sonication-assisted oxidation of graphite in a solution of potassium permanganate and concentrated sulfuric acid followed by reduction with ascorbic acid prior to any washing processes. GO loses its hydrophilicity during the reduction stage which facilitates the washing step and reduces the time required for production of RGO. Furthermore, simultaneous oxidation and exfoliation significantly enhance the yield of few-layer GO. We hope this one-pot and fully-scalable protocol paves the road toward out of lab applications of graphene. PMID:25976732

  3. Preliminary Analysis of a Fully Solid State Magnetocaloric Refrigeration

    SciTech Connect

    Abdelaziz, Omar

    2016-01-01

    Magnetocaloric refrigeration is an alternative refrigeration technology with significant potential energy savings compared to conventional vapor compression refrigeration technology. Most of the reported active magnetic regenerator (AMR) systems that operate based on the magnetocaloric effect use heat transfer fluid to exchange heat, which results in complicated mechanical subsystems and components such as rotating valves and hydraulic pumps. In this paper, we propose an alternative mechanism for heat transfer between the AMR and the heat source/sink. High-conductivity moving rods/sheets (e.g. copper, brass, iron, graphite, aluminum or composite structures from these) are utilized instead of heat transfer fluid significantly enhancing the heat transfer rate hence cooling/heating capacity. A one-dimensional model is developed to study the solid state AMR. In this model, the heat exchange between the solid-solid interfaces is modeled via a contact conductance, which depends on the interface apparent pressure, material hardness, thermal conductivity, surface roughness, surface slope between the interfaces, and material filled in the gap between the interfaces. Due to the tremendous impact of the heat exchange on the AMR cycle performance, a sensitivity analysis is conducted employing a response surface method, in which the apparent pressure, effective surface roughness and grease thermal conductivity are the uncertainty factors. COP and refrigeration capacity are presented as the response in the sensitivity analysis to reveal the important factors influencing the fully solid state AMR and optimize the solid state AMR efficiency. The performances of fully solid state AMR and traditional AMR are also compared and discussed in present work. The results of this study will provide general guidelines for designing high performance solid state AMR systems.

  4. A fully integrated standalone portable cavity ringdown breath acetone analyzer

    NASA Astrophysics Data System (ADS)

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  5. Fully Parallel Electrical Impedance Tomography Using Code Division Multiplexing.

    PubMed

    Tšoeu, M S; Inggs, M R

    2016-06-01

    Electrical Impedance Tomography (EIT) has been dominated by the use of Time Division Multiplexing (TDM) and Frequency Division Multiplexing (FDM) as methods of achieving orthogonal injection of excitation signals. Code Division Multiplexing (CDM), presented in this paper is an alternative that eliminates temporal data inconsistencies of TDM for fast changing systems. Furthermore, this approach eliminates data inconsistencies that arise in FDM when frequency bands of current injecting electrodes are chosen over frequencies that have large changes in the imaged object's impedance. To the authors knowledge no fully functional wideband system or simulation platform using simultaneous injection of Gold codes currents has been reported. In this paper, we formulate, simulate and develop a fully functional pseudo-random (Gold) code driven EIT system with 15 excitation currents and 16 separate voltage measurement electrodes. In the work we verify the use of CDM as a multiplexing modality in simultaneous injection EIT, using a prototype system with an overall bandwidth of 15 kHz, and attainable speed of 462 frames/s using codes with a period of 31 chips. Simulations and experiments are performed using the Electrical Impedance and Diffuse Optics Reconstruction Software (EIDORS). We also propose the use of image processing on reconstructed images to establish their quality quantitatively without access to raw reconstruction data. The results of this study show that CDM can be successfully used in EIT, and gives results of similar visual quality to TDM and FDM. Achieved performance shows average position error of 3.5% and size error of 6.2%. PMID:26731774

  6. A fully integrated standalone portable cavity ringdown breath acetone analyzer.

    PubMed

    Sun, Meixiu; Jiang, Chenyu; Gong, Zhiyong; Zhao, Xiaomeng; Chen, Zhuying; Wang, Zhennan; Kang, Meiling; Li, Yingxin; Wang, Chuji

    2015-09-01

    Breath analysis is a promising new technique for nonintrusive disease diagnosis and metabolic status monitoring. One challenging issue in using a breath biomarker for potential particular disease screening is to find a quantitative relationship between the concentration of the breath biomarker and clinical diagnostic parameters of the specific disease. In order to address this issue, we need a new instrument that is capable of conducting real-time, online breath analysis with high data throughput, so that a large scale of clinical test (more subjects) can be achieved in a short period of time. In this work, we report a fully integrated, standalone, portable analyzer based on the cavity ringdown spectroscopy technique for near-real time, online breath acetone measurements. The performance of the portable analyzer in measurements of breath acetone was interrogated and validated by using the certificated gas chromatography-mass spectrometry. The results show that this new analyzer is useful for reliable online (online introduction of a breath sample without pre-treatment) breath acetone analysis with high sensitivity (57 ppb) and high data throughput (one data per second). Subsequently, the validated breath analyzer was employed for acetone measurements in 119 human subjects under various situations. The instrument design, packaging, specifications, and future improvements were also described. From an optical ringdown cavity operated by the lab-set electronics reported previously to this fully integrated standalone new instrument, we have enabled a new scientific tool suited for large scales of breath acetone analysis and created an instrument platform that can even be adopted for study of other breath biomarkers by using different lasers and ringdown mirrors covering corresponding spectral fingerprints.

  7. Precision of archerfish C-starts is fully temperature compensated.

    PubMed

    Krupczynski, Philipp; Schuster, Stefan

    2013-09-15

    Hunting archerfish precisely adapt their predictive C-starts to the initial movement of dislodged prey so that turn angle and initial speed are matched to the place and time of the later point of catch. The high accuracy and the known target point of the starts allow a sensitive straightforward assay of how temperature affects the underlying circuits. Furthermore, archerfish face rapid temperature fluctuations in their mangrove biotopes that could compromise performance. Here, we show that after a brief acclimation period the function of the C-starts was fully maintained over a range of operating temperatures: (i) full responsiveness was maintained at all temperatures, (ii) at all temperatures the fish selected accurate turns and were able to do so over the full angular range, (iii) at all temperatures speed attained immediately after the end of the C-start was matched - with equal accuracy - to 'virtual speed', i.e. the ratio of remaining distance to the future landing point and remaining time. While precision was fully temperature compensated, C-start latency was not and increased by about 4 ms per 1°C cooling. Also, kinematic aspects of the C-start were only partly temperature compensated. Above 26°C, the duration of the two major phases of the C-start were temperature compensated. At lower temperatures, however, durations increased similar to latency. Given the accessibility of the underlying networks, the archerfish predictive start should be an excellent model to assay the degree of plasticity and functional stability of C-start motor patterns. PMID:23737557

  8. FACTS: Fully Automatic CT Segmentation of a Hip Joint.

    PubMed

    Chu, Chengwen; Chen, Cheng; Liu, Li; Zheng, Guoyan

    2015-05-01

    Extraction of surface models of a hip joint from CT data is a pre-requisite step for computer assisted diagnosis and planning (CADP) of periacetabular osteotomy (PAO). Most of existing CADP systems are based on manual segmentation, which is time-consuming and hard to achieve reproducible results. In this paper, we present a Fully Automatic CT Segmentation (FACTS) approach to simultaneously extract both pelvic and femoral models. Our approach works by combining fast random forest (RF) regression based landmark detection, multi-atlas based segmentation, with articulated statistical shape model (aSSM) based fitting. The two fundamental contributions of our approach are: (1) an improved fast Gaussian transform (IFGT) is used within the RF regression framework for a fast and accurate landmark detection, which then allows for a fully automatic initialization of the multi-atlas based segmentation; and (2) aSSM based fitting is used to preserve hip joint structure and to avoid penetration between the pelvic and femoral models. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 6-fold cross validation. When the present approach was compared to manual segmentation, a mean segmentation accuracy of 0.40, 0.36, and 0.36 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. When the models derived from both segmentations were used to compute the PAO diagnosis parameters, a difference of 2.0 ± 1.5°, 2.1 ± 1.6°, and 3.5 ± 2.3% were found for anteversion, inclination, and acetabular coverage, respectively. The achieved accuracy is regarded as clinically accurate enough for our target applications. PMID:25366904

  9. Fully automatic contour detection in intravascular ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Brusseau, Elisabeth F.; de Korte, Chris L.; Mastik, Fritz; Schaar, Johannes; van der Steen, Anton F.

    2004-04-01

    Segmentation of deformable structures remains a challenging task in ultrasound imaging especially in low signal-to-noise ratio applications. In this paper a fully automatic method, dedicated to the luminal contour segmentation in intracoronary ultrasound imaging is introduced. The method is based on an active contour with a priori properties that evolves according to the statistics of the ultrasound texture brightness, determined as being mainly Rayleigh distributed. However, contrary to classical snake-based algorithms, the presented technique neither requires from the user the pre-selection of a region of interest tight around the boundary, nor parameter tuning. This fully automatic character is achieved by an initial contour that is not set, but estimated and thus adapted to each image. Its estimation combines two statistical criteria extracted from the a posteriori probability, function of the contour position. These criteria are the location of the function maximum (or maximum a posteriori estimator) and the first zero-crossing of the function derivative. Then starting form the initial contour, a region of interest is automatically selected and the process iterated until the contour evolution can be ignored. In vivo coronary images from 15 patients, acquired with a 20 MHz central frequency Jomed Invision ultrasound scanner were segmented with the developed method. Automatic contours were compared to those manually drawn by two physician in terms of mean absolute difference. Results demonstrate that the error between automatic contours and the average of manual ones (0.099+/-0.032mm) and the inter-expert error (0.097+/-0.027mm) are similar and of small amplitude.

  10. Magnetar giant flares in multipolar magnetic fields. I. Fully and partially open eruptions of flux ropes

    SciTech Connect

    Huang, Lei; Yu, Cong E-mail: cyu@ynao.ac.cn

    2014-04-01

    We propose a catastrophic eruption model for the enormous energy release of magnetars during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefully establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole-dominated background fields. Nevertheless, it is hard to generate fully open magnetic eruptions for multipolar background fields. Given the observational importance of the multipolar magnetic fields in the vicinity of the magnetar surface, it would be worthwhile to explore the possibility of the alternative eruption approach in multipolar background fields. Fortunately, we find that flux ropes may give rise to partially open eruptions in the multipolar fields, which involve only partial opening of background fields. The energy release fractions are greater for cases with central-arcaded multipoles than those with central-caved multipoles that emerged in background fields. Eruptions would fail only when the centrally caved multipoles become extremely strong.

  11. Survival of Hessian fly (Diptera: Cecidomyiidae) puparia exposed to simulated hay harvest conditions, location and windrow drying in Washington and California.

    PubMed

    Yokoyama, Victoria Y; Cambron, Sue E

    2013-06-01

    Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae) puparia are of regulatory concern in exported hay, and drying after harvest was evaluated as a cultural control technique for bales shipped from the western states. In total 16,836; 31,122; and 48,051 puparia were tested under drying conditions in environmental chambers, open air on location, and hay windrows, respectively. Regression lines for percentage of total adults emerging from puparia exposed to simulated drying conditions for 1-7 d in environmental chambers was significant for 1 September, Kittitas Valley, WA; 3 June, East Columbia Basin, WA; 15 May and 15 July, San Joaquin Valley, CA; and 15 May, 20 July, and 15 September, Imperial Valley, CA. In open air drying on location for 1-7 d, total percentage of puparia surviving to adults for all exposure days was 0.4% for 18 June, Kittitas Valley; 1.2% for 15 May, San Joaquin Valley; and 0% for 16 July, Imperial Valley; and significantly different between controls and exposure durations. In hay windrow drying for 1-6 d, total percentage of puparia surviving to adults for all exposure days was 5.4% on 28 June and 24.2% on 7 September in timothy, Phleum pretense, in the Kittitas Valley; 3.8% on 28 June in timothy in the East Columbia Basin; 2.2% on 20 July in alfalfa, Medicago sativa, in the San Joaquin Valley; and 6.3% on 21 July in Sudan grass, Sorghum bicolor sudanensis, in the Imperial Valley. The number of puparia surviving to adults in open air drying and in windrows was significantly different between controls and exposure durations for all test dates and locations. Puparial survival in field tests was related to mild temperatures and high humidities. Hay drying with subsequent field baling, storage, and export bale compression is discussed in relation to a systems approach for quarantine control of Hessian fly in exported hay.

  12. Dynamics of the fully stripped ion-hydrogen atom charge exchange process in dense quantum plasmas

    SciTech Connect

    Zhang, Ling-yu; Wan, Jiang-feng; Zhao, Xiao-ying; Xiao, Guo-qing; Duan, Wen-shan; Qi, Xin; Yang, Lei

    2014-09-15

    The plasma screening effects of dense quantum plasmas on charge exchange processes of a fully stripped ion colliding with a hydrogen atom are studied by the classical trajectory Monte Carlo method. The inter-particle interactions are described by the exponential cosine-screened Coulomb potentials. It is found that in weak screening conditions, cross sections increase with the increase of the ionic charge Z. However, in strong screening conditions, the dependence of cross sections on the ionic charge is related to the incident particle energy. At high energies, cross sections show a linear increase with the increase of Z, whereas at low energies, cross sections for Z≥4 become approximately the same. The He{sup 2+} and C{sup 6+} impacting charge exchange cross sections in dense quantum plasmas are also compared with those in weakly coupled plasmas. The interactions are described by the static screened Coulomb potential. It is found that for both He{sup 2+} and C{sup 6+}, the oscillatory screening effects of dense quantum plasmas are almost negligible in weak screening conditions. However, in strong screening conditions, the oscillatory screening effects enhance the screening effects of dense quantum plasmas, and the enhancement becomes more and more significant with the increase of the screening parameter and the ionic charge.

  13. Validated HPAEC-PAD Method for the Determination of Fully Deacetylated Chitooligosaccharides

    PubMed Central

    Cao, Lidong; Wu, Jinlong; Li, Xiuhuan; Zheng, Li; Wu, Miaomiao; Liu, Pingping; Huang, Qiliang

    2016-01-01

    An efficient and sensitive analytical method based on high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was established for the simultaneous separation and determination of glucosamine (GlcN)1 and chitooligosaccharides (COS) ranging from (GlcN)2 to (GlcN)6 without prior derivatization. Detection limits were 0.003 to 0.016 mg/L (corresponding to 0.4–0.6 pmol), and the linear range was 0.2 to 10 mg/L. The optimized analysis was carried out on a CarboPac-PA100 analytical column (4 × 250 mm) using isocratic elution with 0.2 M aqueous sodium hydroxide-water mixture (10:90, v/v) as the mobile phase at a 0.4 mL/min flow rate. Regression equations revealed a good linear relationship (R2 = 0.9979–0.9995, n = 7) within the test ranges. Quality parameters, including precision and accuracy, were fully validated and found to be satisfactory. The fully validated HPAEC-PAD method was readily applied for the quantification of (GlcN)1–6 in a commercial COS technical concentrate. The established method was also used to monitor the acid hydrolysis of a COS technical concentrate to ensure optimization of reaction conditions and minimization of (GlcN)1 degradation. PMID:27735860

  14. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  15. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  16. Investigation of fully-polarimetric signatures from targets with some relevance to security applications

    NASA Astrophysics Data System (ADS)

    Peichl, Markus; Dill, Stephan; Rudolf, Daniel

    2011-05-01

    The actual and continuous threat by international terrorism and the increasing number of terroristic attacks raise the danger to the public and create a new and more complex dimension of threat. This evolution must and can only be combatted by the application of new counter-measures like advanced imaging technologies for wide-area surveillance and the detection of concealed dangerous objects. Passive microwave remote sensing allows a daytime independent non-destructive observation and examination of the objects of interest under nearly all weather conditions without artificial exposure of persons and observation areas, hence fully avoiding health risks. Furthermore the acquisition of polarimetric object characteristics can increase the detection capability by gathering complementary object information. The recent development and construction of a fully-polarimetric receiver at W band allows the acquisition of a new dimension of information compared to former imaging capabilities. The new receiver can be part of various imaging systems used at DLR over the years. This paper will show some imaging results recorded recently from different sceneries.

  17. Meeting people's needs in a fully interoperable domotic environment.

    PubMed

    Miori, Vittorio; Russo, Dario; Concordia, Cesare

    2012-01-01

    The key idea underlying many Ambient Intelligence (AmI) projects and applications is context awareness, which is based mainly on their capacity to identify users and their locations. The actual computing capacity should remain in the background, in the periphery of our awareness, and should only move to the center if and when necessary. Computing thus becomes 'invisible', as it is embedded in the environment and everyday objects. The research project described herein aims to realize an Ambient Intelligence-based environment able to improve users' quality of life by learning their habits and anticipating their needs. This environment is part of an adaptive, context-aware framework designed to make today's incompatible heterogeneous domotic systems fully interoperable, not only for connecting sensors and actuators, but for providing comprehensive connections of devices to users. The solution is a middleware architecture based on open and widely recognized standards capable of abstracting the peculiarities of underlying heterogeneous technologies and enabling them to co-exist and interwork, without however eliminating their differences. At the highest level of this infrastructure, the Ambient Intelligence framework, integrated with the domotic sensors, can enable the system to recognize any unusual or dangerous situations and anticipate health problems or special user needs in a technological living environment, such as a house or a public space. PMID:22969322

  18. A fully integrated neural recording amplifier with DC input stabilization.

    PubMed

    Mohseni, Pedram; Najafi, Khalil

    2004-05-01

    This paper presents a low-power low-noise fully integrated bandpass operational amplifier for a variety of biomedical neural recording applications. A standard two-stage CMOS amplifier in a closed-loop resistive feedback configuration provides a stable ac gain of 39.3 dB at 1 kHz. A subthreshold PMOS input transistor is utilized to clamp the large and random dc open circuit potentials that normally exist at the electrode-electrolyte interface. The low cutoff frequency of the amplifier is programmable up to 50 Hz, while its high cutoff frequency is measured to be 9.1 kHz. The tolerable dc input range is measured to be at least +/- 0.25 V with a dc rejection factor of at least 29 dB. The amplifier occupies 0.107 mm2 in die area, and dissipates 115 microW from a 3 V power supply. The total measured input-referred noise voltage in the frequency range of 0.1-10 kHz is 7.8 microVrms. It is fabricated using AMI 1.5 microm double-poly double-metal n-well CMOS process. This paper presents full characterization of the dc, ac, and noise performance of this amplifier through in vitro measurements in saline using two different neural recording electrodes. PMID:15132510

  19. Fully automated diabetic retinopathy screening using morphological component analysis.

    PubMed

    Imani, Elaheh; Pourreza, Hamid-Reza; Banaee, Touka

    2015-07-01

    Diabetic retinopathy is the major cause of blindness in the world. It has been shown that early diagnosis can play a major role in prevention of visual loss and blindness. This diagnosis can be made through regular screening and timely treatment. Besides, automation of this process can significantly reduce the work of ophthalmologists and alleviate inter and intra observer variability. This paper provides a fully automated diabetic retinopathy screening system with the ability of retinal image quality assessment. The novelty of the proposed method lies in the use of Morphological Component Analysis (MCA) algorithm to discriminate between normal and pathological retinal structures. To this end, first a pre-screening algorithm is used to assess the quality of retinal images. If the quality of the image is not satisfactory, it is examined by an ophthalmologist and must be recaptured if necessary. Otherwise, the image is processed for diabetic retinopathy detection. In this stage, normal and pathological structures of the retinal image are separated by MCA algorithm. Finally, the normal and abnormal retinal images are distinguished by statistical features of the retinal lesions. Our proposed system achieved 92.01% sensitivity and 95.45% specificity on the Messidor dataset which is a remarkable result in comparison with previous work.

  20. Fully implicit adaptive mesh refinement algorithm for reduced MHD

    NASA Astrophysics Data System (ADS)

    Philip, Bobby; Pernice, Michael; Chacon, Luis

    2006-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)

  1. Characterization of fully functional spray-on antibody thin films

    NASA Astrophysics Data System (ADS)

    Figueroa, Jhon; Magaña, Sonia; Lim, Daniel V.; Schlaf, Rudy

    2014-02-01

    The authors recently demonstrated that fully functional Escherichia coli O157:H7 antibody thin films can be prepared using a simple pneumatic nebulizer on glass surface [1]. This paper focuses on the investigation of the morphology and physical properties of these films with the aim to better understand their performance. A series of E. coli O157:H7 antibody spray-on thin films were investigated by ellipsometry, X-ray photoelectron spectroscopy (XPS), immunoassays, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), fluorescence microscopy, atomic force microscope (AFM) and contact angle analysis. These data were compared to measurements on films prepared with the biotin-avidin covalent bonding scheme. The investigation showed that films created by a 2 min pneumatic spray deposition time can capture antigens similar as the avidin-biotin wet-chemical method. The results also suggests that an influential factor for the comparable capture cell ability between sprayed and covalent films is an increased antibody surface coverage for the sprayed films (non-equilibrium technique), which compensates for the lack of its antibody orientation. There was no significant antibody denaturation detected on any of the sprayed films. Both techniques led to the formation of cluster-aggregates, a factor that seems unavoidable due to the natural tendency of protein to cluster. The avidin-biotin bridge films generally had a higher roughness, which manifested itself in a higher wettability compared to the sprayed films.

  2. Apodized grating coupler using fully-etched nanostructures

    NASA Astrophysics Data System (ADS)

    Wu, Hua; Li, Chong; Li, Zhi-Yong; Guo, Xia

    2016-08-01

    A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating grooves of the grating couplers are realized by columns of fully etched nanostructures, which are utilized to digitally tailor the effective refractive index of each groove in order to obtain the Gaussian-like output diffractive mode and then enhance the coupling efficiency. Compared with that of the uniform grating coupler, the coupling efficiency of the apodized grating coupler is increased by 4.3% and 5.7%, respectively, for the nanoholes and nanorectangles as refractive index tunes layer. Project supported by the National Natural Science Foundation of China (Grant Nos. 61222501, 61335004, and 61505003), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111103110019), the Postdoctoral Science Foundation of Beijing Funded Project, China (Grant No. Q6002012201502), and the Science and Technology Research Project of Jiangxi Provincial Education Department, China (Grant No. GJJ150998).

  3. Global Properties of Fully Convective Accretion Disks from Local Simulations

    NASA Astrophysics Data System (ADS)

    Bodo, G.; Cattaneo, F.; Mignone, A.; Ponzo, F.; Rossi, P.

    2015-08-01

    We present an approach to deriving global properties of accretion disks from the knowledge of local solutions derived from numerical simulations based on the shearing box approximation. The approach consists of a two-step procedure. First, a local solution valid for all values of the disk height is constructed by piecing together an interior solution obtained numerically with an analytical exterior radiative solution. The matching is obtained by assuming hydrostatic balance and radiative equilibrium. Although in principle the procedure can be carried out in general, it simplifies considerably when the interior solution is fully convective. In these cases, the construction is analogous to the derivation of the Hayashi tracks for protostars. The second step consists of piecing together the local solutions at different radii to obtain a global solution. Here we use the symmetry of the solutions with respect to the defining dimensionless numbers—in a way similar to the use of homology relations in stellar structure theory—to obtain the scaling properties of the various disk quantities with radius.

  4. Theoretical Fully Differential Cross Sections for Four-Body Processes

    NASA Astrophysics Data System (ADS)

    Harris, A. L.; Peacher, J. L.; Schulz, M.; Madison, D. H.

    2008-04-01

    Atomic collisions present a valuable opportunity to study the few body problem. Advances on the theoretical side now allow for an essentially exact numerical calculation of one of the simplest the few-body problems - the three-body problem. However, study of the four-body problem is still in its infancy, and the agreement between experiment and theory for kinematically complete experiments is far from satisfactory. The simplest four-body problem is a charged particle collision with helium in which both atomic electrons change state. Two theoretical models will be discussed for several possible outcomes of this type of collision. The first Born approximation (FBA) treats the projectile as a plane wave, and ignores the post collision Coulomb interaction between the two final state continuum electrons. The more sophisticated four-body distorted wave (4DW) model treats all continuum particles as distorted waves and explicitly includes the post collision Coulomb interaction between the two outgoing electrons. Fully differential cross sections calculated using the FBA and 4DW models will be compared to absolute experimental results, as well as other theories.

  5. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics

    PubMed Central

    Park, Sung Il; Brenner, Daniel S.; Shin, Gunchul; Morgan, Clinton D.; Copits, Bryan A.; Chung, Ha Uk; Pullen, Melanie Y.; Noh, Kyung Nim; Davidson, Steve; Oh, Soong Ju; Yoon, Jangyeol; Jang, Kyung-In; Samineni, Vijay K.; Norman, Megan; Grajales-Reyes, Jose G.; Vogt, Sherri K; Sundaram, Saranya S.; Wilson, Kellie M.; Ha, Jeong Sook; Xu, Renxiao; Pan, Taisong; Kim, Tae-il; Huang, Yonggang; Montana, Michael C.; Golden, Judith P.; Bruchas, Michael R.; Gereau, Robert W.; Rogers, John A.

    2016-01-01

    Optogenetics allows rapid, temporally specific control of neuronal activity via targeted expression and activation of light-sensitive proteins. Implementation typically requires remote light sources and fiber-optic delivery schemes that impose significant physical constraints on natural behaviors. In this report we bypass these limitations using novel technologies that combine thin, mechanically soft neural interfaces with fully implantable, stretchable wireless radio power and control systems. The resulting devices achieve optogenetic modulation of the spinal cord and peripheral nervous system. This is demonstrated with two form factors; stretchable film appliques that interface directly with peripheral nerves, and flexible filaments that insert into the narrow confines of the spinal epidural space. These soft, thin devices are minimally invasive, and histological tests suggest they can be used in chronic studies. We demonstrate the power of this technology by modulating peripheral and spinal pain circuitry, providing evidence for the potential widespread use of these devices in research and future clinical applications of optogenetics outside the brain. PMID:26551059

  6. Meeting People's Needs in a Fully Interoperable Domotic Environment

    PubMed Central

    Miori, Vittorio; Russo, Dario; Concordia, Cesare

    2012-01-01

    The key idea underlying many Ambient Intelligence (AmI) projects and applications is context awareness, which is based mainly on their capacity to identify users and their locations. The actual computing capacity should remain in the background, in the periphery of our awareness, and should only move to the center if and when necessary. Computing thus becomes ‘invisible’, as it is embedded in the environment and everyday objects. The research project described herein aims to realize an Ambient Intelligence-based environment able to improve users' quality of life by learning their habits and anticipating their needs. This environment is part of an adaptive, context-aware framework designed to make today's incompatible heterogeneous domotic systems fully interoperable, not only for connecting sensors and actuators, but for providing comprehensive connections of devices to users. The solution is a middleware architecture based on open and widely recognized standards capable of abstracting the peculiarities of underlying heterogeneous technologies and enabling them to co-exist and interwork, without however eliminating their differences. At the highest level of this infrastructure, the Ambient Intelligence framework, integrated with the domotic sensors, can enable the system to recognize any unusual or dangerous situations and anticipate health problems or special user needs in a technological living environment, such as a house or a public space. PMID:22969322

  7. Fully differential single-photon double ionization of magnesium

    NASA Astrophysics Data System (ADS)

    Yip, Frank L.; Rescigno, Thomas N.; McCurdy, C. William

    2016-05-01

    The valence-shell double ionization of atomic magnesium is calculated using a grid-based representation of the 3s2 electron configuration in the presence of a fully-occupied frozen-core configuration. Atomic orbitals are constructed from an underlying finite element discrete variable representation (FEM-DVR) that facilitate accurate representation of the interaction between the inner shell electrons with those entering the continuum. Comparison between the similar processes of double ionization of the ns2 atoms helium, beryllium and magnesium are presented to further illuminate the role of valence-shell electron correlation in atomic targets with analogous configurations and symmetries. Both a time-independent and time-dependent formalism for evaluating double ionization amplitudes is applied to these many-electron targets. Results are compared with recent theoretical calculations and experimental measurements. Work supported by the US Dept. of Energy, Division of Chemical Sciences Contract DE-AC02-05CH11231 and the National Science Foundation, No. PHY-1509971.

  8. Revisiting the quantum Szilard engine with fully quantum considerations

    NASA Astrophysics Data System (ADS)

    Li, Hai; Zou, Jian; Li, Jun-Gang; Shao, Bin; Wu, Lian-Ao

    2012-12-01

    By considering level shifting during the insertion process we revisit the quantum Szilard engine (QSZE) with fully quantum consideration. We derive the general expressions of the heat absorbed from thermal bath and the total work done to the environment by the system in a cycle with two different cyclic strategies. We find that only the quantum information contributes to the absorbed heat, and the classical information acts like a feedback controller and has no direct effect on the absorbed heat. This is the first demonstration of the different effects of quantum information and classical information for extracting heat from the bath in the QSZE. Moreover, when the well width L→∞ or the temperature of the bath T→∞ the QSZE reduces to the classical Szilard engine (CSZE), and the total work satisfies the relation W=kBTln2 as obtained by Sang Wook Kim et al. [S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Phys. Rev. Lett. 106 (2011) 070401] for one particle case.

  9. An efficient fully atomistic potential model for dense fluid methane

    NASA Astrophysics Data System (ADS)

    Jiang, Chuntao; Ouyang, Jie; Zhuang, Xin; Wang, Lihua; Li, Wuming

    2016-08-01

    A fully atomistic model aimed to obtain a general purpose model for the dense fluid methane is presented. The new optimized potential for liquid simulation (OPLS) model is a rigid five site model which consists of five fixed point charges and five Lennard-Jones centers. The parameters in the potential model are determined by a fit of the experimental data of dense fluid methane using molecular dynamics simulation. The radial distribution function and the diffusion coefficient are successfully calculated for dense fluid methane at various state points. The simulated results are in good agreement with the available experimental data shown in literature. Moreover, the distribution of mean number hydrogen bonds and the distribution of pair-energy are analyzed, which are obtained from the new model and other five reference potential models. Furthermore, the space-time correlation functions for dense fluid methane are also discussed. All the numerical results demonstrate that the new OPLS model could be well utilized to investigate the dense fluid methane.

  10. Shear-driven Dynamo Waves in the Fully Nonlinear Regime

    NASA Astrophysics Data System (ADS)

    Pongkitiwanichakul, P.; Nigro, G.; Cattaneo, F.; Tobias, S. M.

    2016-07-01

    Large-scale dynamo action is well understood when the magnetic Reynolds number (Rm) is small, but becomes problematic in the astrophysically relevant large Rm limit since the fluctuations may control the operation of the dynamo, obscuring the large-scale behavior. Recent works by Tobias & Cattaneo demonstrated numerically the existence of large-scale dynamo action in the form of dynamo waves driven by strongly helical turbulence and shear. Their calculations were carried out in the kinematic regime in which the back-reaction of the Lorentz force on the flow is neglected. Here, we have undertaken a systematic extension of their work to the fully nonlinear regime. Helical turbulence and large-scale shear are produced self-consistently by prescribing body forces that, in the kinematic regime, drive flows that resemble the original velocity used by Tobias & Cattaneo. We have found four different solution types in the nonlinear regime for various ratios of the fluctuating velocity to the shear and Reynolds numbers. Some of the solutions are in the form of propagating waves. Some solutions show large-scale helical magnetic structure. Both waves and structures are permanent only when the kinetic helicity is non-zero on average.

  11. PLIP: fully automated protein-ligand interaction profiler.

    PubMed

    Salentin, Sebastian; Schreiber, Sven; Haupt, V Joachim; Adasme, Melissa F; Schroeder, Michael

    2015-07-01

    The characterization of interactions in protein-ligand complexes is essential for research in structural bioinformatics, drug discovery and biology. However, comprehensive tools are not freely available to the research community. Here, we present the protein-ligand interaction profiler (PLIP), a novel web service for fully automated detection and visualization of relevant non-covalent protein-ligand contacts in 3D structures, freely available at projects.biotec.tu-dresden.de/plip-web. The input is either a Protein Data Bank structure, a protein or ligand name, or a custom protein-ligand complex (e.g. from docking). In contrast to other tools, the rule-based PLIP algorithm does not require any structure preparation. It returns a list of detected interactions on single atom level, covering seven interaction types (hydrogen bonds, hydrophobic contacts, pi-stacking, pi-cation interactions, salt bridges, water bridges and halogen bonds). PLIP stands out by offering publication-ready images, PyMOL session files to generate custom images and parsable result files to facilitate successive data processing. The full python source code is available for download on the website. PLIP's command-line mode allows for high-throughput interaction profiling.

  12. Apodized grating coupler using fully-etched nanostructures

    NASA Astrophysics Data System (ADS)

    Wu, Hua; Li, Chong; Li, Zhi-Yong; Guo, Xia

    2016-08-01

    A two-dimensional apodized grating coupler for interfacing between single-mode fiber and photonic circuit is demonstrated in order to bridge the mode gap between the grating coupler and optical fiber. The grating grooves of the grating couplers are realized by columns of fully etched nanostructures, which are utilized to digitally tailor the effective refractive index of each groove in order to obtain the Gaussian-like output diffractive mode and then enhance the coupling efficiency. Compared with that of the uniform grating coupler, the coupling efficiency of the apodized grating coupler is increased by 4.3% and 5.7%, respectively, for the nanoholes and nanorectangles as refractive index tunes layer. Project supported by the National Natural Science Foundation of China (Grant Nos. 61222501, 61335004, and 61505003), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111103110019), the Postdoctoral Science Foundation of Beijing Funded Project, China (Grant No. Q6002012201502), and the Science and Technology Research Project of Jiangxi Provincial Education Department, China (Grant No. GJJ150998).

  13. A fully cosmological model of a Monoceros-like ring

    NASA Astrophysics Data System (ADS)

    Gómez, Facundo A.; White, Simon D. M.; Marinacci, Federico; Slater, Colin T.; Grand, Robert J. J.; Springel, Volker; Pakmor, Rüdiger

    2016-03-01

    We study the vertical structure of a stellar disc obtained from a fully cosmological high-resolution hydrodynamical simulation of the formation of a Milky Way-like galaxy. At the present day, the disc's mean vertical height shows a well defined and strong pattern, with amplitudes as large as 3 kpc in its outer regions. This pattern is the result of a satellite- host halo-disc interaction and reproduces, qualitatively, many of the observable properties of the Monoceros Ring. In particular we find disc material at the distance of Monoceros (R ˜ 12-16 kpc, galactocentric) extending far above the mid plane (30°, ˜ 1-2 kpc) in both hemispheres, as well as well-defined arcs of disc material at heliocentric distances ≳5 kpc. The pattern was first excited ≈3 Gyr ago as an m = 1 mode that later winds up into a leading spiral pattern. Interestingly, the main driver behind this perturbation is a low-mass low-velocity fly-by encounter. The satellite has total mass, pericentre distance and pericentric velocity of ˜5 per cent of the host, ˜80 kpc and 215 km s-1, respectively. The satellite is not massive enough to directly perturb the galactic disc but we show that the density field of the host dark matter halo responds to this interaction resulting in a strong amplification of the perturbative effects. This subsequently causes the onset and development of the Monoceros-like feature.

  14. Fully covering the MSSM Higgs sector at the LHC

    NASA Astrophysics Data System (ADS)

    Djouadi, A.; Maiani, L.; Polosa, A.; Quevillon, J.; Riquer, V.

    2015-06-01

    In the context of the Minimal Supersymmetric extension of the Standard Model (MSSM), we reanalyze the search for the heavier CP-even H and CP-odd A neutral Higgs bosons at the LHC in their production in the gluon-fusion mechanism and their decays into gauge and lighter h bosons and into top quark pairs. We show that only when considering these processes, that one can fully cover the entire parameter space of the Higgs sector of the model. Indeed, they are sensitive to the low tan β and high Higgs mass ranges, complementing the traditional searches for high mass resonances decaying into τ -lepton pairs which are instead sensitive to the large and moderate tan β regions. The complementarity of the various channels in the probing of the complete [tan β, M A ] MSSM parameter space at the previous and upcoming phases of the LHC is illustrated in a recently proposed simple and model independent approach for the Higgs sector, the hMSSM, that we also refine in this paper.

  15. Meeting people's needs in a fully interoperable domotic environment.

    PubMed

    Miori, Vittorio; Russo, Dario; Concordia, Cesare

    2012-01-01

    The key idea underlying many Ambient Intelligence (AmI) projects and applications is context awareness, which is based mainly on their capacity to identify users and their locations. The actual computing capacity should remain in the background, in the periphery of our awareness, and should only move to the center if and when necessary. Computing thus becomes 'invisible', as it is embedded in the environment and everyday objects. The research project described herein aims to realize an Ambient Intelligence-based environment able to improve users' quality of life by learning their habits and anticipating their needs. This environment is part of an adaptive, context-aware framework designed to make today's incompatible heterogeneous domotic systems fully interoperable, not only for connecting sensors and actuators, but for providing comprehensive connections of devices to users. The solution is a middleware architecture based on open and widely recognized standards capable of abstracting the peculiarities of underlying heterogeneous technologies and enabling them to co-exist and interwork, without however eliminating their differences. At the highest level of this infrastructure, the Ambient Intelligence framework, integrated with the domotic sensors, can enable the system to recognize any unusual or dangerous situations and anticipate health problems or special user needs in a technological living environment, such as a house or a public space.

  16. Efficient Fully Implicit Time Integration Methods for Modeling Cardiac Dynamics

    PubMed Central

    Rose, Donald J.; Henriquez, Craig S.

    2013-01-01

    Implicit methods are well known to have greater stability than explicit methods for stiff systems, but they often are not used in practice due to perceived computational complexity. This paper applies the Backward Euler method and a second-order one-step two-stage composite backward differentiation formula (C-BDF2) for the monodomain equations arising from mathematically modeling the electrical activity of the heart. The C-BDF2 scheme is an L-stable implicit time integration method and easily implementable. It uses the simplest Forward Euler and Backward Euler methods as fundamental building blocks. The nonlinear system resulting from application of the Backward Euler method for the monodomain equations is solved for the first time by a nonlinear elimination method, which eliminates local and non-symmetric components by using a Jacobian-free Newton solver, called Newton-Krylov solver. Unlike other fully implicit methods proposed for the monodomain equations in the literature, the Jacobian of the global system after the nonlinear elimination has much smaller size, is symmetric and possibly positive definite, which can be solved efficiently by standard optimal solvers. Numerical results are presented demonstrating that the C-BDF2 scheme can yield accurate results with less CPU times than explicit methods for both a single patch and spatially extended domains. PMID:19126449

  17. Dynamical Systems Analysis of Fully 3D Ocean Features

    NASA Astrophysics Data System (ADS)

    Pratt, L. J.

    2011-12-01

    Dynamical systems analysis of transport and stirring processes has been developed most thoroughly for 2D flow fields. The calculation of manifolds, turnstile lobes, transport barriers, etc. based on observations of the ocean is most often conducted near the sea surface, whereas analyses at depth, usually carried out with model output, is normally confined to constant-z surfaces. At the meoscale and larger, ocean flows are quasi 2D, but smaller scale (submesoscale) motions, including mixed layer phenomena with significant vertical velocity, may be predominantly 3D. The zoology of hyperbolic trajectories becomes richer in such cases and their attendant manifolds are much more difficult to calculate. I will describe some of the basic geometrical features and corresponding Lagrangian Coherent Features expected to arise in upper ocean fronts, eddies, and Langmuir circulations. Traditional GFD models such as the rotating can flow may capture the important generic features. The dynamical systems approach is most helpful when these features are coherent and persistent and the implications and difficulties for this requirement in fully 3D flows will also be discussed.

  18. A Fully Sensorized Cooperative Robotic System for Surgical Interventions

    PubMed Central

    Tovar-Arriaga, Saúl; Vargas, José Emilio; Ramos, Juan M.; Aceves, Marco A.; Gorrostieta, Efren; Kalender, Willi A.

    2012-01-01

    In this research a fully sensorized cooperative robot system for manipulation of needles is presented. The setup consists of a DLR/KUKA Light Weight Robot III especially designed for safe human/robot interaction, a FD-CT robot-driven angiographic C-arm system, and a navigation camera. Also, new control strategies for robot manipulation in the clinical environment are introduced. A method for fast calibration of the involved components and the preliminary accuracy tests of the whole possible errors chain are presented. Calibration of the robot with the navigation system has a residual error of 0.81 mm (rms) with a standard deviation of ±0.41 mm. The accuracy of the robotic system while targeting fixed points at different positions within the workspace is of 1.2 mm (rms) with a standard deviation of ±0.4 mm. After calibration, and due to close loop control, the absolute positioning accuracy was reduced to the navigation camera accuracy which is of 0.35 mm (rms). The implemented control allows the robot to compensate for small patient movements. PMID:23012551

  19. Fully Automated Cloud-Drift Winds in NESDIS Operations.

    NASA Astrophysics Data System (ADS)

    Nieman, Steven J.; Menzel, W. Paul; Hayden, Christopher M.; Gray, Donald; Wanzong, Steven T.; Velden, Christopher S.; Daniels, Jaime

    1997-06-01

    Cloud-drift winds have been produced from geostationary satellite data in the Western Hemisphere since the early 1970s. During the early years, winds were used as an aid for the short-term forecaster in an era when numerical forecasts were often of questionable quality, especially over oceanic regions. Increased computing resources over the last two decades have led to significant advances in the performance of numerical forecast models. As a result, continental forecasts now stand to gain little from the inspection or assimilation of cloud-drift wind fields. However, the oceanic data void remains, and although numerical forecasts in such areas have improved, they still suffer from a lack of in situ observations. During the same two decades, the quality of geostationary satellite data has improved considerably, and the cloud-drift wind production process has also benefited from increased computing power. As a result, fully automated wind production is now possible, yielding cloud-drift winds whose quality and quantity is sufficient to add useful information to numerical model forecasts in oceanic and coastal regions. This article will detail the automated cloud-drift wind production process, as operated by the National Environmental Satellite Data and Information Service within the National Oceanic and Atmospheric Administration.

  20. Toward Fully in Silico Melting Point Prediction Using Molecular Simulations.

    PubMed

    Zhang, Yong; Maginn, Edward J

    2013-03-12

    Melting point is one of the most fundamental and practically important properties of a compound. Molecular simulation methods have been developed for the accurate computation of melting points. However, all of these methods need an experimental crystal structure as input, which means that such calculations are not really predictive since the melting point can be measured easily in experiments once a crystal structure is known. On the other hand, crystal structure prediction (CSP) has become an active field and significant progress has been made, although challenges still exist. One of the main challenges is the existence of many crystal structures (polymorphs) that are very close in energy. Thermal effects and kinetic factors make the situation even more complicated, such that it is still not trivial to predict experimental crystal structures. In this work, we exploit the fact that free energy differences are often small between crystal structures. We show that accurate melting point predictions can be made by using a reasonable crystal structure from CSP as a starting point for a free energy-based melting point calculation. The key is that most crystal structures predicted by CSP have free energies that are close to that of the experimental structure. The proposed method was tested on two rigid molecules and the results suggest that a fully in silico melting point prediction method is possible.

  1. Toward Fully in Silico Melting Point Prediction Using Molecular Simulations

    SciTech Connect

    Zhang, Y; Maginn, EJ

    2013-03-01

    Melting point is one of the most fundamental and practically important properties of a compound. Molecular computation of melting points. However, all of these methods simulation methods have been developed for the accurate need an experimental crystal structure as input, which means that such calculations are not really predictive since the melting point can be measured easily in experiments once a crystal structure is known. On the other hand, crystal structure prediction (CSP) has become an active field and significant progress has been made, although challenges still exist. One of the main challenges is the existence of many crystal structures (polymorphs) that are very close in energy. Thermal effects and kinetic factors make the situation even more complicated, such that it is still not trivial to predict experimental crystal structures. In this work, we exploit the fact that free energy differences are often small between crystal structures. We show that accurate melting point predictions can be made by using a reasonable crystal structure from CSP as a starting point for a free energy-based melting point calculation. The key is that most crystal structures predicted by CSP have free energies that are close to that of the experimental structure. The proposed method was tested on two rigid molecules and the results suggest that a fully in silico melting point prediction method is possible.

  2. Fully autonomous navigation for the NASA cargo transfer vehicle

    NASA Technical Reports Server (NTRS)

    Wertz, James R.; Skulsky, E. David

    1991-01-01

    A great deal of attention has been paid to navigation during the close approach (less than or equal to 1 km) phase of spacecraft rendezvous. However, most spacecraft also require a navigation system which provides the necessary accuracy for placing both satellites within the range of the docking sensors. The Microcosm Autonomous Navigation System (MANS) is an on-board system which uses Earth-referenced attitude sensing hardware to provide precision orbit and attitude determination. The system is capable of functioning from LEO to GEO and beyond. Performance depends on the number of available sensors as well as mission geometry; however, extensive simulations have shown that MANS will provide 100 m to 400 m (3(sigma)) position accuracy and 0.03 to 0.07 deg (3(sigma)) attitude accuracy in low Earth orbit. The system is independent of any external source, including GPS. MANS is expected to have a significant impact on ground operations costs, mission definition and design, survivability, and the potential development of very low-cost, fully autonomous spacecraft.

  3. 'Intelligent Memory Chips' Give Fully Programmable Synaptic Weights

    NASA Astrophysics Data System (ADS)

    Morton, Steven G.

    1989-09-01

    A fundamental stumbling block - defining a new set of extremely powerful and flexible building blocks with which to build neurocomputers - has recently been removed by Oxford Computer. The result is a family of digital, memory-plus-processor chips, or "Intelligent Memory Chips". These chips combine a high-capacity memory with massively parallel, slice-type processor logic. Unlike common memory chips that only store information, Intelligent Memory Chips perform intensive computations upon matrices they store. As a result, neural networks with fully programmable, signed synaptic weights can be built. The weights are modified as easily, precisely and stably as writing data into ordinary memory chips. Many forms of matrix-vector multipliers, 1- and 2-dimensional convolvers, and Fast Fourier and other transformers can be built as well to implement classical digital signal processing, pattern recognition, adaptive control and 3-dimensional graphics structures. Multiple Intelligent Memory Chips work together to provide the precision, matrix size and performance desired. Extremely large numbers of densely interconnected, artificial neurons in many layers can be provided. Networks easily interface to existing, non-neural machines. Network performance ranging from tens-of-billions to tens-of-trillions of operations per second may be built using current to near term semiconductor technology. Initial chips are being built using 1-micron, silicon CMOS and static RAM technology. The impacts of alternative memory technologies, and improvements in memory and fabrication technology are also discussed.

  4. Fully On-line Introductory Physics with a Lab

    NASA Astrophysics Data System (ADS)

    Schatz, Michael

    We describe the development and implementation of a college-level introductory physics (mechanics) course and laboratory that is suited for both on-campus and on-line environments. The course emphasizes a ``Your World is Your Lab'' approach whereby students first examine and capture on video (using cellphones) motion in their immediate surroundings, and then use free, open-source software both to extract data from the video and to apply physics principles to build models that describe, predict, and visualize the observations. Each student reports findings by creating a video lab report and posting it online; these video lab reports are then distributed to the rest of the class for peer review. In this talk, we will discuss the student and instructor experiences in courses offered to three distinct audiences in different venues: (1) a Massively Open On-line Course (MOOC) for off-campus participants, (2) a flipped/blended course for on-campus students, and, most recently, (3) a fully-online course for off-campus students.

  5. Countermeasures to avoid noncooperation in fully self-organized VANETs.

    PubMed

    Molina-Gil, Jezabel; Caballero-Gil, Pino; Caballero-Gil, Cándido

    2014-01-01

    The secure and efficient exchange of information in vehicular ad hoc networks (VANETs) involves more challenges than in any other type of ad hoc networks. This paper proposes a new vehicular communication system based on mobile phones for fully distributed and decentralized networks. In these networks, communications depend on individual nodes, which could decrease the efficiency and reliability of transmitted information. Besides, the limitation in the resources of mobile devices is an additional obstacle in the forwarding problem, and the content of the information generated by individual nodes must be considered inherently unreliable. In particular, this paper proposes the application of groups as a basis structure for a cooperation mechanism useful in event generation and in packet retransmission. Its aim is to promote the involvement of nodes in network performance. Given that such participation involves consumption of node resources, a group-based structure is here used not only to reduce communication overload but also to prevent sending false information and to encourage nodes in relaying packets. Several simulations of the proposal have been done, and the results have confirmed that this is a promising approach to increase network efficiency and trust in transmitted information, while reducing the number of selfish nodes in VANETs.

  6. PLIP: fully automated protein-ligand interaction profiler.

    PubMed

    Salentin, Sebastian; Schreiber, Sven; Haupt, V Joachim; Adasme, Melissa F; Schroeder, Michael

    2015-07-01

    The characterization of interactions in protein-ligand complexes is essential for research in structural bioinformatics, drug discovery and biology. However, comprehensive tools are not freely available to the research community. Here, we present the protein-ligand interaction profiler (PLIP), a novel web service for fully automated detection and visualization of relevant non-covalent protein-ligand contacts in 3D structures, freely available at projects.biotec.tu-dresden.de/plip-web. The input is either a Protein Data Bank structure, a protein or ligand name, or a custom protein-ligand complex (e.g. from docking). In contrast to other tools, the rule-based PLIP algorithm does not require any structure preparation. It returns a list of detected interactions on single atom level, covering seven interaction types (hydrogen bonds, hydrophobic contacts, pi-stacking, pi-cation interactions, salt bridges, water bridges and halogen bonds). PLIP stands out by offering publication-ready images, PyMOL session files to generate custom images and parsable result files to facilitate successive data processing. The full python source code is available for download on the website. PLIP's command-line mode allows for high-throughput interaction profiling. PMID:25873628

  7. 19-vertex version of the fully frustrated XY model

    NASA Astrophysics Data System (ADS)

    Knops, Yolanda M. M.; Nienhuis, Bernard; Knops, Hubert J. F.; Blöte, Henk W. J.

    1994-07-01

    We investigate a 19-vertex version of the two-dimensional fully frustrated XY (FFXY) model. We construct Yang-Baxter equations for this model and show that there is no solution. Therefore we have chosen a numerical approach based on the transfer matrix. The results show that a coupled XY Ising model is in the same universality class as the FFXY model. We find that the phase coupling over an Ising wall is irrelevant at criticality. This leads to a correction of earlier determinations of the dimension x*h,Is of the Ising disorder operator. We find x*h,Is=0.123(5) and a conformal anomaly c=1.55(5). These results are consistent with the hypothesis that the FFXY model behaves as a superposition of an Ising model and an XY model. However, the dimensions associated with the energy, xt=0.77(3), and with the XY magnetization xh,XY~=0.17, refute this hypothesis.

  8. Fully Threaded Tree for Adaptive Refinement Fluid Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Khokhlov, A. M.

    1997-01-01

    A fully threaded tree (FTT) for adaptive refinement of regular meshes is described. By using a tree threaded at all levels, tree traversals for finding nearest neighbors are avoided. All operations on a tree including tree modifications are O(N), where N is a number of cells, and are performed in parallel. An efficient implementation of the tree is described that requires 2N words of memory. A filtering algorithm for removing high frequency noise during mesh refinement is described. A FTT can be used in various numerical applications. In this paper, it is applied to the integration of the Euler equations of fluid dynamics. An adaptive mesh time stepping algorithm is described in which different time steps are used at different l evels of the tree. Time stepping and mesh refinement are interleaved to avoid extensive buffer layers of fine mesh which were otherwise required ahead of moving shocks. Test examples are presented, and the FTT performance is evaluated. The three dimensional simulation of the interaction of a shock wave and a spherical bubble is carried out that shows the development of azimuthal perturbations on the bubble surface.

  9. Interoccurrence time statistics in fully-developed turbulence

    PubMed Central

    Manshour, Pouya; Anvari, Mehrnaz; Reinke, Nico; Sahim, Muhammad; Tabar, M. Reza Rahimi

    2016-01-01

    Emergent extreme events are a key characteristic of complex dynamical systems. The main tool for detailed and deep understanding of their stochastic dynamics is the statistics of time intervals of extreme events. Analyzing extensive experimental data, we demonstrate that for the velocity time series of fully-developed turbulent flows, generated by (i) a regular grid; (ii) a cylinder; (iii) a free jet of helium, and (iv) a free jet of air with the Taylor Reynolds numbers Reλ from 166 to 893, the interoccurrence time distributions P(τ) above a positive threshold Q in the inertial range is described by a universal q- exponential function, P(τ) = β(2 − q)[1 − β(1 − q)τ]1/(1−q), which may be due to the superstatistical nature of the occurrence of extreme events. Our analysis provides a universal description of extreme events in turbulent flows. PMID:27282347

  10. High-pressure Raman study of fully deuterated methane hydrate

    NASA Astrophysics Data System (ADS)

    Yabashi, Ryo; Yoshida, Masashi; Kume, Tetsuji; Sasaki, Shigeo

    2013-06-01

    Methane hydrate (MH: CH4- nH2O) crystallizes in a cubic structure I (sI) which consists of hydrogen-bonded water cages which enclathrate methane molecules as guests. With increasing pressure, the initial sI of MH transforms to a hexagonal structure H (sH) at 0.9 GPa, and eventually to an orthorhombic cage-less structure O at 1.9 GPa. The sH consists of three small S1, two small S2, and one large LL water cages in a hexagonal unit cell. The previous high-pressure Raman measurements for C-H stretching vibration of MH-sH indicated that the capacity of methane molecules in the large LL cage abruptly increased at 1.3 GPa, and its occupation number of methane molecule was about 2.5 above 1.3 GPa. However, this result disagrees with the previous high-pressure neutron diffraction experiments for sH of fully deutarated methane hydrate (FDMH: CD4- nD2O). To solve this discrepancy, we have carried out the high pressure Raman measurements for C-D stretching vibration in the sI and sH phases of FDMH. As a result, we have obtained the different Raman spectral patterns between FDMH and MH, which suggests that the occupancy of CD4 in water cages is somewhat different from CH4.

  11. Fully automated grey and white matter spinal cord segmentation

    PubMed Central

    Prados, Ferran; Cardoso, M. Jorge; Yiannakas, Marios C.; Hoy, Luke R.; Tebaldi, Elisa; Kearney, Hugh; Liechti, Martina D.; Miller, David H.; Ciccarelli, Olga; Wheeler-Kingshott, Claudia A. M. Gandini; Ourselin, Sebastien

    2016-01-01

    Axonal loss in the spinal cord is one of the main contributing factors to irreversible clinical disability in multiple sclerosis (MS). In vivo axonal loss can be assessed indirectly by estimating a reduction in the cervical cross-sectional area (CSA) of the spinal cord over time, which is indicative of spinal cord atrophy, and such a measure may be obtained by means of image segmentation using magnetic resonance imaging (MRI). In this work, we propose a new fully automated spinal cord segmentation technique that incorporates two different multi-atlas segmentation propagation and fusion techniques: The Optimized PatchMatch Label fusion (OPAL) algorithm for localising and approximately segmenting the spinal cord, and the Similarity and Truth Estimation for Propagated Segmentations (STEPS) algorithm for segmenting white and grey matter simultaneously. In a retrospective analysis of MRI data, the proposed method facilitated CSA measurements with accuracy equivalent to the inter-rater variability, with a Dice score (DSC) of 0.967 at C2/C3 level. The segmentation performance for grey matter at C2/C3 level was close to inter-rater variability, reaching an accuracy (DSC) of 0.826 for healthy subjects and 0.835 people with clinically isolated syndrome MS. PMID:27786306

  12. Fully Electromagnetic Nonlinear Gyrokinetic Equations for Tokamak Edge Turbulence

    SciTech Connect

    Hahm, T. S.; Wang, Lu; Madsen, J.

    2008-08-01

    An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E Χ B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Our generalized ordering takes ρi<< ρθ¡ ~ LE ~ Lp << R (here ρi is the thermal ion Larmor radius and ρθ¡ = B/Bθ] ρi), as typically observed in the tokamak H-mode edge, with LE and Lp being the radial electric field and pressure gradient lengths. We take κ perpendicular to ρi ~ 1 for generality, and keep the relative fluctuation amplitudes eδφ /Τi ~ δΒ / Β up to the second order. Extending the electrostatic theory in the presence of high E Χ B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pull-back transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation.

  13. Countermeasures to Avoid Noncooperation in Fully Self-Organized VANETs

    PubMed Central

    Molina-Gil, Jezabel; Caballero-Gil, Pino; Caballero-Gil, Cándido

    2014-01-01

    The secure and efficient exchange of information in vehicular ad hoc networks (VANETs) involves more challenges than in any other type of ad hoc networks. This paper proposes a new vehicular communication system based on mobile phones for fully distributed and decentralized networks. In these networks, communications depend on individual nodes, which could decrease the efficiency and reliability of transmitted information. Besides, the limitation in the resources of mobile devices is an additional obstacle in the forwarding problem, and the content of the information generated by individual nodes must be considered inherently unreliable. In particular, this paper proposes the application of groups as a basis structure for a cooperation mechanism useful in event generation and in packet retransmission. Its aim is to promote the involvement of nodes in network performance. Given that such participation involves consumption of node resources, a group-based structure is here used not only to reduce communication overload but also to prevent sending false information and to encourage nodes in relaying packets. Several simulations of the proposal have been done, and the results have confirmed that this is a promising approach to increase network efficiency and trust in transmitted information, while reducing the number of selfish nodes in VANETs. PMID:25089293

  14. Shape design sensitivities using fully automatic 3-D mesh generation

    NASA Technical Reports Server (NTRS)

    Botkin, M. E.

    1990-01-01

    Previous work in three dimensional shape optimization involved specifying design variables by associating parameters directly with mesh points. More recent work has shown the use of fully-automatic mesh generation based upon a parameterized geometric representation. Design variables have been associated with a mathematical model of the part rather than the discretized representation. The mesh generation procedure uses a nonuniform grid intersection technique to place nodal points directly on the surface geometry. Although there exists an associativity between the mesh and the geometrical/topological entities, there is no mathematical functional relationship. This poses a problem during certain steps in the optimization process in which geometry modification is required. For the large geometrical changes which occur at the beginning of each optimization step, a completely new mesh is created. However, for gradient calculations many small changes must be made and it would be too costly to regenerate the mesh for each design variable perturbation. For that reason, a local remeshing procedure has been implemented which operates only on the specific edges and faces associated with the design variable being perturbed. Two realistic design problems are presented which show the efficiency of this process and test the accuracy of the gradient computations.

  15. Stress intensity magnification factors for fully circumferential cracks in valve bodies (thick cylinders)

    SciTech Connect

    Toor, P.M.

    1998-11-01

    The stress intensity solutions presented herein were obtained using an energy method in conjunction with a two-dimensional finite element program in order to explicitly account for curvature effect for fully circumferential cracks. The magnification factors for a specific crack depth were calculated by successively loading the crack surface by a uniform, linear, quadratic, and a cubic loading distribution. The magnification factors can be used to calculate the stress intensity factors by superposition method. The functions for each load condition in terms of radius to thickness ratio (R/t) and a fractional distance in terms of crack depth to thickness ratio (a/t) were developed. The validity of these functions is R/t = 1.5 to 10.0 and for 0.0125 {le} a/t {le} 0.8125. The functions agree to within 1% of the finite elements solutions for most magnification factors.

  16. Thermal Characteristics and Structure of Fully-Modulated, Turbulent Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Hermanson, J. C.; Johari, H.; Stocker, D. P.; Hegde, U. G.

    2003-01-01

    Turbulent jet diffusion flames are studied in microgravity and normal gravity under fully-modulated conditions for a range of injection times and a 50% duty cycle. Diluted ethylene was injected through a 2-mm nozzle at a Reynolds number of 5,000 into an open duct, with a slow oxidizer co-flow. Microgravity tests are conducted in NASA's 2.2 Second Drop Tower. Flames with short injection times and high duty cycle exhibit a marked increase in the ensemble-averaged flame length due to the removal of buoyancy. The cycle-averaged centerline temperature profile reveals higher temperatures in the microgravity flames, especially at the flame tip where the difference is about 200 K. In addition, the cycle-averaged measurements of flame radiation were about 30% to 60% greater in microgravity than in normal gravity.

  17. A Comparison Study of Magnetic Bearing Controllers for a Fully Suspended Dynamic Spin Rig

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin; Johnson, Dexter; Morrison, Carlos; Mehmed, Oral; Huff, Dennis (Technical Monitor)

    2002-01-01

    NASA Glenn Research Center (GRC) has developed a fully suspended magnetic bearing system for the Dynamic Spin Rig (DSR) that is used to perform vibration tests of turbomachinery blades and components under spinning conditions in a vacuum. Two heteropolar radial magnetic bearings and a thrust bearing and the associated control system were integrated into the DSR to provide noncontact magnetic suspension and mechanical excitation of the 35 lb vertical rotor with blades to induce turbomachinery blade vibration. A simple proportional-integral-derivative (PID) controller with a special feature for multidirectional radial excitation worked very well to both support and shake the shaft with blades. However, more advanced controllers were developed and successfully tested to determine the optimal controller in terms of sensor and processing noise reduction, smaller rotor orbits, and energy savings for the system. The test results of a variety of controllers we demonstrated up to the rig's maximum allowable speed of 10,000 rpm are shown.

  18. Variational formulation of hybrid problems for fully 3-D transonic flow with shocks in rotor

    NASA Technical Reports Server (NTRS)

    Liu, Gao-Lian

    1991-01-01

    Based on previous research, the unified variable domain variational theory of hybrid problems for rotor flow is extended to fully 3-D transonic rotor flow with shocks, unifying and generalizing the direct and inverse problems. Three variational principles (VP) families were established. All unknown boundaries and flow discontinuities (such as shocks, free trailing vortex sheets) are successfully handled via functional variations with variable domain, converting almost all boundary and interface conditions, including the Rankine Hugoniot shock relations, into natural ones. This theory provides a series of novel ways for blade design or modification and a rigorous theoretical basis for finite element applications and also constitutes an important part of the optimal design theory of rotor bladings. Numerical solutions to subsonic flow by finite elements with self-adapting nodes given in Refs., show good agreement with experimental results.

  19. Fully atomistic molecular dynamics simulation of nanosilica-filled crosslinked polybutadiene

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexander S.; Khalatur, Pavel G.

    2016-06-01

    We report on the first fully atomistic simulation of sulfur-crosslinked cis-1,4-polybutadiene (PB) rubbers, both unfilled and nanosilica-filled. A well-integrated network is built by crosslinking the coarse-grained precursor PB chains. The initial configurations for subsequent molecular dynamics simulations are obtained by reverse mapping of well-equilibrated coarse-grained systems. Thermal and mechanical properties of the PB-based elastomers are predicted in reasonable agreement with experiment. The inclusion of silica nanoparticles into the model rubber increases the glass transition temperature and elastic modulus. Under tensile loading conditions, the formation of structural defects (microcavities) within the polymer bulk is observed for nanocomposite at the elastomer/nanoparticle interfaces.

  20. Detection and analysis of coherent groups in three-dimensional fully-nonlinear potential wave fields

    NASA Astrophysics Data System (ADS)

    Sanina, E. V.; Suslov, S. A.; Chalikov, D.; Babanin, A. V.

    2016-07-01

    We investigate the emergence of coherent groups in three-dimensional fully-nonlinear potential deep water waves whose initial spectrum is assumed to be of the JONSWAP type with directional distribution given by cos nθ, where n is the integer varying from 1 to 16. The analysis is based on the results of long-term wave simulations performed using a numerical solution of a three-dimensional Laplace equation for the velocity potential subject to nonlinear kinematic and dynamic boundary conditions at the free surface. The main characteristics of wave groups such as their average velocity, maximum group wave height, lifetime and length are analysed. The statistics of extreme waves occurring in the detected groups are discussed. Spatial and temporal scale characteristics of wave groups are compared to the previous results.

  1. Fully relativistic non-linear cosmological evolution in spherical symmetry using the BSSN formalism

    NASA Astrophysics Data System (ADS)

    Rekier, J.; Cordero-Carrión, I.; Füzfa, A.

    2015-01-01

    We present a fully relativistic numerical method for the study of cosmological problems using the Baumgarte-Shapiro-Shibata-Nakamura formalism on a dynamical Friedmann-Lemaître-Robertson-Walker background. This has many potential applications, including the study of the growth of structures beyond the linear regime. We present one such application by reproducing the Lemaître-Tolman-Bondi solution for the collapse of pressureless matter with arbitrary lapse function. The regular and smooth numerical solution at the center of coordinates proceeds in a natural way by relying on the partially implicit Runge-Kutta algorithm described in Montero and Cordero-Carrión [arXiv:1211.5930]. We generalize the usual radiative outer boundary condition to the case of a dynamical background and show the stability and convergence properties of the method in the study of pure gauge dynamics on a de Sitter background.

  2. Pressure drop in fully developed, turbulent, liquid-vapor annular flows in zero gravity

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.; Chao, B. T.; Soo, S. L.

    1992-01-01

    The prediction of frictional pressure drop in fully developed, turbulent, annular liquid-vapor flows in zero gravity using simulation experiments conducted on earth is described. The scheme extends the authors' earlier work on dispersed flows. The simulation experiments used two immiscible liquids of identical density, namely, water and n-butyl benzoate. Because of the lack of rigorous analytical models for turbulent, annular flows, the proposed scheme resorts to existing semiempirical correlations. Results based on two different correlations are presented and compared. Others may be used. It was shown that, for both dispersed and annular flow regimes, the predicted frictional pressure gradients in 0-g are lower than those in 1-g under otherwise identical conditions. The physical basis for this finding is given.

  3. Low-drag insertion turbine flow measurement technology for ciculating water systems without fully-developed flow profiles

    SciTech Connect

    Diaz-Tous, I.A.; Leggett, M.; Hill, D.

    1996-05-01

    Measurement of circulating water flow rate can provide indications of cooling system problems and can be used to calculate turbine cycle heat rate. Unfortunately, this parameter is often difficult to accurately measure in power plants. A particular problem arises when a circulating water system cannot provide the necessary location and conditions (i.e., fully-developed flow profile) for the use of conventional measurement technology that are essential for obtaining highly accurate results. A low drag insertion turbine flow measurement system can overcome this problem because it is not dependent upon a fully-developed flow profile to obtain highly accurate results. This paper describes the applications and results of performing circulating water flow measurement using a high accuracy low drag insertion flow metering system in locations without a fully-developed flow profile. A case study of this type of measurement at Dairyland Power Cooperative`s Genoa Station is presented and compared with the results of a dedicated magnetic influent flowmeter measuring flow in a large cross-section of a round tunnel more than one quarter of a mile straight where fully-developed flow is present. The results indicate a close agreement ({approx}{plus_minus}2% from each other).

  4. Low-drag insertion turbine flow measurement technology for circulating water systems without fully-developed flow profiles

    SciTech Connect

    Diaz-Tous, I.A.; Leggett, M.; Hill, D.

    1996-08-01

    Measurement of circulating water flow rate can provide indications of cooling system problems and can be used to calculate turbine cycle heat rate. Unfortunately, this parameter is often difficult to accurately measure in power plants. A particular problem arises when a circulating water system cannot provide the necessary location and conditions (i.e., fully-developed flow profile) for the use of conventional measurement technology that are essential for obtaining highly accurate results. A low drag insertion turbine flow measurement system can overcome this problem because it is not dependent upon a fully-developed flow profile to obtain highly accurate results. This paper describes the applications and results of performing circulating water flow measurement using a high accuracy low drag insertion flow metering system in locations without a fully-developed flow profile. A case study of this type of measurement at Dairyland Power Cooperative`s Genoa Station is presented and compared with the results of a dedicated magnetic influent flowmeter measuring flow in a large cross-section of a round tunnel more than one quarter of a mile straight where fully-developed flow is present. The results indicate a close agreement ({approx}{+-}2% from each other). 4 refs., 15 figs., 6 tabs.

  5. Fully Coupled Simulation of Lithium Ion Battery Cell Performance

    SciTech Connect

    Trembacki, Bradley L.; Murthy, Jayathi Y.; Roberts, Scott Alan

    2015-09-01

    Lithium-ion battery particle-scale (non-porous electrode) simulations applied to resolved electrode geometries predict localized phenomena and can lead to better informed decisions on electrode design and manufacturing. This work develops and implements a fully-coupled finite volume methodology for the simulation of the electrochemical equations in a lithium-ion battery cell. The model implementation is used to investigate 3D battery electrode architectures that offer potential energy density and power density improvements over traditional layer-by-layer particle bed battery geometries. Advancement of micro-scale additive manufacturing techniques has made it possible to fabricate these 3D electrode microarchitectures. A variety of 3D battery electrode geometries are simulated and compared across various battery discharge rates and length scales in order to quantify performance trends and investigate geometrical factors that improve battery performance. The energy density and power density of the 3D battery microstructures are compared in several ways, including a uniform surface area to volume ratio comparison as well as a comparison requiring a minimum manufacturable feature size. Significant performance improvements over traditional particle bed electrode designs are observed, and electrode microarchitectures derived from minimal surfaces are shown to be superior. A reduced-order volume-averaged porous electrode theory formulation for these unique 3D batteries is also developed, allowing simulations on the full-battery scale. Electrode concentration gradients are modeled using the diffusion length method, and results for plate and cylinder electrode geometries are compared to particle-scale simulation results. Additionally, effective diffusion lengths that minimize error with respect to particle-scale results for gyroid and Schwarz P electrode microstructures are determined.

  6. Probing mechanical properties of fully hydrated gels and biological tissues.

    PubMed

    Constantinides, Georgios; Kalcioglu, Z Ilke; McFarland, Meredith; Smith, James F; Van Vliet, Krystyn J

    2008-11-14

    A longstanding challenge in accurate mechanical characterization of engineered and biological tissues is maintenance of both stable sample hydration and high instrument signal resolution. Here, we describe the modification of an instrumented indenter to accommodate nanomechanical characterization of biological and synthetic tissues in liquid media, and demonstrate accurate acquisition of force-displacement data that can be used to extract viscoelastoplastic properties of hydrated gels and tissues. We demonstrate the validity of this approach via elastoplastic analysis of relatively stiff, water-insensitive materials of elastic moduli E>1000 kPa (borosilicate glass and polypropylene), and then consider the viscoelastic response and representative mechanical properties of compliant, synthetic polymer hydrogels (polyacrylamide-based hydrogels of varying mol%-bis crosslinker) and biological tissues (porcine skin and liver) of E<500 kPa. Indentation responses obtained via loading/unloading hystereses and contact creep loading were highly repeatable, and the inferred E were in good agreement with available macroscopic data for all samples. As expected, increased chemical crosslinking of polyacrylamide increased stiffness (E40 kPa) and decreased creep compliance. E of porcine liver (760 kPa) and skin (222 kPa) were also within the range of macroscopic measurements reported for a limited subset of species and disease states. These data show that instrumented indentation of fully immersed samples can be reliably applied for materials spanning several orders of magnitude in stiffness (E=kPa-GPa). These capabilities are particularly important to materials design and characterization of macromolecules, cells, explanted tissues, and synthetic extracellular matrices as a function of spatial position, degree of hydration, or hydrolytic/enzymatic/corrosion reaction times.

  7. Accurate, Fully-Automated NMR Spectral Profiling for Metabolomics

    PubMed Central

    Ravanbakhsh, Siamak; Liu, Philip; Bjordahl, Trent C.; Mandal, Rupasri; Grant, Jason R.; Wilson, Michael; Eisner, Roman; Sinelnikov, Igor; Hu, Xiaoyu; Luchinat, Claudio; Greiner, Russell; Wishart, David S.

    2015-01-01

    Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites) that appear in a person’s biofluids, which means such diseases can often be readily detected from a person’s “metabolic profile"—i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR) spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person’s metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid), BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the “signatures” of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF), defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error), in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively—with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications

  8. The cellulose synthase superfamily in fully sequenced plants and algae

    PubMed Central

    2009-01-01

    Background The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl) families and one cellulose synthase (CesA) family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses. Results A single-copy gene is found in the six chlorophyte green algae, which is most closely related to the CslA and CslC families that are present in the seven land plants investigated in our analyses. Six proteins from poplar, grape and sorghum form a distinct family (CslJ), providing further support for the conclusions from two recent studies. CslB/E/G/H/J families have evolved significantly more rapidly than their widely distributed relatives, and tend to have intragenomic duplications, in particular in the grape genome. Conclusion Our data suggest that the CslA and CslC families originated through an ancient gene duplication event in land plants. We speculate that the single-copy Csl gene in green algae may encode a mannan synthase. We confirm that the rest of the Csl families have a different evolutionary origin than CslA and CslC, and have proposed a model for the divergence order among them. Our study provides new insights about the evolution of this important gene family in plants. PMID:19646250

  9. Fully-coupled hydrometeorological prediction of catastrophic Mediterranean floods

    NASA Astrophysics Data System (ADS)

    Rebora, N.; Gabellani, S.; Rudari, R.; Silvestro, F.; Parodi, A.; Gochis, D.

    2012-12-01

    On November 4th, 2011, the city of Genoa, Italy, located between the Tyrrhenian Sea and the Apennine mountains, was witness to a catastrophic flash flood. About 500 millimeters of rain -a third of the average annual rainfall- fell in approximately six hours. The waters that flooded the town center equated to an approximately 300 year flood event. Six people perished, commercial property was inundated, cars were swept away and many trees were uprooted. We analyze the performance of cloud-permitting (1 km) model simulations of the convective system responsible for this extreme event using the Advanced Research Weather and Forecasting Model (ARW-WRF, version 3.3) with its associated hydrological modeling extension ('WRF-Hydro') focusing on the utility of model quantitative precipitation forecasts (QPFs) for flash flood prediction. WRF model skill is assessed with respect to specification of cloud microphysics, convection and land surface physics parameterizations. The QPF results strongly suggest an event dominated by comparatively shallow warm rain processes where local maxima were the product of both synoptic scale dynamics and orographic enhancement over the Apennine mountain range. Land and sea surface temperature forcing was assess but found to be secondary in importance. Streamflow prediction skill from the fully coupled WRF-Hydro modeling system was compared against observations and against offline or 'uncoupled' hydrological model runs, driven by several quantitative precipitation estimate (QPEs) products. The results illustrate the significant sensitivity of the predicted (simulated) streamflow event to QPF (QPE) skill and emphasize the importance of taking into account many factors and sources of error in the hydrometeorological prediction chain. The end product of this study is a comprehensive evaluation and justification for optimal configurations of the WRF-Hydro modeling system for high-impact Mediterranean flood events for use in future forecasting

  10. Probing mechanical properties of fully hydrated gels and biological tissues.

    PubMed

    Constantinides, Georgios; Kalcioglu, Z Ilke; McFarland, Meredith; Smith, James F; Van Vliet, Krystyn J

    2008-11-14

    A longstanding challenge in accurate mechanical characterization of engineered and biological tissues is maintenance of both stable sample hydration and high instrument signal resolution. Here, we describe the modification of an instrumented indenter to accommodate nanomechanical characterization of biological and synthetic tissues in liquid media, and demonstrate accurate acquisition of force-displacement data that can be used to extract viscoelastoplastic properties of hydrated gels and tissues. We demonstrate the validity of this approach via elastoplastic analysis of relatively stiff, water-insensitive materials of elastic moduli E>1000 kPa (borosilicate glass and polypropylene), and then consider the viscoelastic response and representative mechanical properties of compliant, synthetic polymer hydrogels (polyacrylamide-based hydrogels of varying mol%-bis crosslinker) and biological tissues (porcine skin and liver) of E<500 kPa. Indentation responses obtained via loading/unloading hystereses and contact creep loading were highly repeatable, and the inferred E were in good agreement with available macroscopic data for all samples. As expected, increased chemical crosslinking of polyacrylamide increased stiffness (E40 kPa) and decreased creep compliance. E of porcine liver (760 kPa) and skin (222 kPa) were also within the range of macroscopic measurements reported for a limited subset of species and disease states. These data show that instrumented indentation of fully immersed samples can be reliably applied for materials spanning several orders of magnitude in stiffness (E=kPa-GPa). These capabilities are particularly important to materials design and characterization of macromolecules, cells, explanted tissues, and synthetic extracellular matrices as a function of spatial position, degree of hydration, or hydrolytic/enzymatic/corrosion reaction times. PMID:18922534

  11. Accurate, fully-automated NMR spectral profiling for metabolomics.

    PubMed

    Ravanbakhsh, Siamak; Liu, Philip; Bjorndahl, Trent C; Bjordahl, Trent C; Mandal, Rupasri; Grant, Jason R; Wilson, Michael; Eisner, Roman; Sinelnikov, Igor; Hu, Xiaoyu; Luchinat, Claudio; Greiner, Russell; Wishart, David S

    2015-01-01

    Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites) that appear in a person's biofluids, which means such diseases can often be readily detected from a person's "metabolic profile"-i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR) spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person's metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid), BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the "signatures" of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF), defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error), in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively-with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications of NMR in

  12. Towards a fully printable battery : robocast deposition of separators.

    SciTech Connect

    Atanassov, Plamen Borissov; Fenton, Kyle Ross; Apblett, Christopher Alan

    2010-04-01

    to keep the transport rates high within the cell during charge and discharge. In order to evaluate the effect of each layer being printed using the robocasting technique, coin cells using printed separator materials were assembled and cycled vs. Li/Li{sup +}. This allows for the standardization of a test procedure in order to evaluate each layer of a printed cell one layer at a time. A typical charge/discharge curve can be seen in Figure 2 using a printed LiFePO{sub 4} cathode and a printed separator with a commercial Celgard separator. This experiment was run to evaluate the loss in capacity and slowdown of transport within the cell due to the addition of the printed separator. This cell was cycled multiple times and showed a capacity of 75 mAh/g. The ability for this cell to cycle with good capacity indicates that a fully printable separator material is viable for use in a full lithium cell due to the retention of capacity. Most of the fully printed cathode and separator cells exhibit working capacities between 65 and 95 mAh/g up to this point. This capacity should increase as the efficiency of the printed separator increases. The ability to deposit each layer within the cell allows for intimate contact of each layer and ensures for a reduction of interfacial impedance of each layer within the cell. The overall effect of printing multiple layers within the cell will be an overall increase in the ionic conductivity during charge and discharge cycles. Several different polymer membranes have been investigated for use as a printed separator. The disadvantage of using polymer separators or solid electrolyte batteries is that they have relatively low conductivities at room temperature (10{sup -6} - 10{sup -8} S cm{sup -1}). This is orders of magnitude lower than the typically accepted 10{sup -3} S cm{sup -1} needed for proper ionic transport during battery discharge Because of their low conductivity, typical polymer separators such as polyethylene oxide (PEO) have a

  13. [Positive feedback is not fully effective in all situations].

    PubMed

    Yamaura, Kazuho; Horishita, Tomoko; Kanayama, Masaki

    2013-02-01

    This experimental study investigated how leader-member exchange (LMX) and positive feedback pertinent to the goal is related to subordinates' responsibility, assessment of their supervisors, and feeling of being implicitly scolded, to elaborate and confirm the findings of Bezuijen et al. (2010). We hypothesized that positive feedback pertinent to the goal would be more effective compared to unrelated feedback. Secondly, we hypothesized that this effect would be moderated by the quality of LMX. Undergraduate students (29 male, 51 female; 20.4 +/- .63 yrs) participated as subordinates in an experiment consisting of two sessions. The results supported our hypotheses. We found that the positive feedback pertinent to the goal led to increased levels of responsibility. This effect was greater under high-quality LMX conditions, but was inhibited under low-quality LMX conditions. In the high-quality LMX condition, subordinates who did not get any feedback decreased their responsibility, gave lower supervisor assessment ratings, and felt more strongly scolded than under conditions where they received feedback. We discussed the importance of the combination of the quality of the relationship and positive feedback related to the goal, and provided directions for future research.

  14. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y. -D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, delta J(sub eff) as the governing parameter. The methodology contains original and literature J and delta J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  15. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y.-D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, (Delta)J(sub eff), as the governing parameter. The methodology contains original and literature J and (Delta)J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  16. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    SciTech Connect

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  17. Theoretical effects of fully ductile versus fully brittle behaviors of bone tissue on the strength of the human proximal femur and vertebral body.

    PubMed

    Nawathe, Shashank; Yang, Haisheng; Fields, Aaron J; Bouxsein, Mary L; Keaveny, Tony M

    2015-05-01

    The influence of the ductility of bone tissue on whole-bone strength represents a fundamental issue of multi-scale biomechanics. To gain insight, we performed a computational study of 16 human proximal femurs and 12 T9 vertebral bodies, comparing the whole-bone strength for the two hypothetical bounding cases of fully brittle versus fully ductile tissue-level failure behaviors, all other factors, including tissue-level elastic modulus and yield stress, held fixed. For each bone, a finite element model was generated (60-82 μm element size; up to 120 million elements) and was virtually loaded in habitual (stance for femur, compression for vertebra) and non-habitual (sideways fall, only for femur) loading modes. Using a geometrically and materially non-linear model, the tissue was assumed to be either fully brittle or fully ductile. We found that, under habitual loading, changing the tissue behavior from fully ductile to fully brittle reduced whole-bone strength by 38.3±2.4% (mean±SD) and 39.4±1.9% for the femur and vertebra, respectively (p=0.39 for site difference). These reductions were remarkably uniform across bones, but (for the femur) were greater for non-habitual (57.1±4.7%) than habitual loading (p<0.001). At overall structural failure, there was 5-10-fold less failed tissue for the fully brittle than fully ductile cases. These theoretical results suggest that the whole-bone strength of the proximal femur and vertebra can vary substantially between fully brittle and fully ductile tissue-level behaviors, an effect that is relatively insensitive to bone morphology but greater for non-habitual loading.

  18. A Fully-Coupled, Fully-Implicit, Finite Element Model for Solving Multiphase Fluid Flow, Heat Transport and Rock Deformation in Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Lu, C.; Deng, S.; Podgorney, R. K.; Huang, H.

    2011-12-01

    Reliable reservoir performance predictions of enhanced geothermal reservoir systems require accurate and robust modeling for the coupled thermal-hydrological-mechanical processes. Conventionally, in order to reduce computational cost, these types of problems are solved using operator splitting method, usually by sequentially coupling a subsurface flow and heat transport simulator with a solid mechanics simulator via input files. However, such operator splitting approaches are applicable only to loosely coupled problems and usually converge slowly. As in most enhanced geothermal systems (EGS), fluid flow, heat transport, and rock deformation are typically strongly nonlinearly coupled, an alternative is to solve the system of nonlinear partial differential equations that govern the system simultaneously using a fully coupled solution procedure for fluid flow, heat transport, and solid mechanics. This procedure solves for all solution variables (fluid pressure, temperature and rock displacement fields) simultaneously, which leads to one large nonlinear algebraic system that needs to be solved by a strongly convergent nonlinear solver. Development over the past 10 years in the area of physics-based conditioning, strongly convergent nonlinear solvers (such as Jacobian Free Newton methods) and efficient linear solvers (such as GMRES, AMG), makes such an approach competitive. In this presentation, we will introduce a continuum-scaled parallel physics-based, fully coupled, modeling tool for predicting the dynamics of fracture initiation and propagation, fluid flow, rock deformation, and heat transport in a single integrated code named FALCON (Fracturing And Liquid-steam CONvection). FALCON is built upon a parallel computing framework developed at Idaho National Laboratory (INL) for solving coupled systems of nonlinear equations with finite element method with unstructured and adaptively refined/coarsened grids. Currently, FALCON contains poro- and thermal- elastic models

  19. Fully integrated single-walled carbon nanotube thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Rodriguez-Macias, Fernando J.

    The development of composites of single-walled carbon nanotubes (SWNTs) with thermoplastics requires methods for good dispersion and achieving good interaction between SWNTs and the matrix. This thesis presents a new method to achieve good dispersion by a preliminary treatment called incipient wetting. The SWNTs dispersed in a solvent are mixed with polymer particles and deposited over them as the solvent is evaporated to give an initial dispersion. Factors that make this more effective are: good wetting of the polymer by the solvent, swelling of the polymer, high surface area of the polymer. Swelling enhances the initial dispersion with some initial mixing. A high surface area is achieved using polymer powder. High shear mixing alone does not achieve the same uniform and repeatable level of dispersion that the combination with incipient wetting allows. The incipient wetting method was studied and applied to different polymers. The possibility of recovering SWNTs from thermoplastics by dissolving or burning away the matrix is an extension of this study. A new comprehensive approach to control the interface of thermoplastics with SWNTs is studied. This is based on achieving direct chemical bonding between polymer molecules and functional groups on oxidized open ends, sidewalls, or both, in the SWNTs. Different concepts and approaches to these "fully integrated nanotube composites" are discussed. The concepts have been applied to epoxies elsewhere and are tested here with nylon-6,6 as a model system. Nylon was synthesized by interfacial polymerization in the presence of SWNTs resulting in excellent dispersion in the composite without further processing. The essential requirement for good dispersion is that the SWNTs are well dispersed in the solvent. Interfacial polymerization opens the way to many types of polymer-SWNT composites. Tests of full integration of SWNTs with open ended nanotubes showed promising results and hints of integration but were limited by

  20. Toward Fully Automated Multicriterial Plan Generation: A Prospective Clinical Study

    SciTech Connect

    Voet, Peter W.J.; Dirkx, Maarten L.P.; Breedveld, Sebastiaan; Fransen, Dennie; Levendag, Peter C.; Heijmen, Ben J.M.

    2013-03-01

    Purpose: To prospectively compare plans generated with iCycle, an in-house-developed algorithm for fully automated multicriterial intensity modulated radiation therapy (IMRT) beam profile and beam orientation optimization, with plans manually generated by dosimetrists using the clinical treatment planning system. Methods and Materials: For 20 randomly selected head-and-neck cancer patients with various tumor locations (of whom 13 received sequential boost treatments), we offered the treating physician the choice between an automatically generated iCycle plan and a manually optimized plan using standard clinical procedures. Although iCycle used a fixed “wish list” with hard constraints and prioritized objectives, the dosimetrists manually selected the beam configuration and fine tuned the constraints and objectives for each IMRT plan. Dosimetrists were not informed in advance whether a competing iCycle plan was made. The 2 plans were simultaneously presented to the physician, who then selected the plan to be used for treatment. For the patient group, differences in planning target volume coverage and sparing of critical tissues were quantified. Results: In 32 of 33 plan comparisons, the physician selected the iCycle plan for treatment. This highly consistent preference for the automatically generated plans was mainly caused by the improved sparing for the large majority of critical structures. With iCycle, the normal tissue complication probabilities for the parotid and submandibular glands were reduced by 2.4% ± 4.9% (maximum, 18.5%, P=.001) and 6.5% ± 8.3% (maximum, 27%, P=.005), respectively. The reduction in the mean oral cavity dose was 2.8 ± 2.8 Gy (maximum, 8.1 Gy, P=.005). For the swallowing muscles, the esophagus and larynx, the mean dose reduction was 3.3 ± 1.1 Gy (maximum, 9.2 Gy, P<.001). For 15 of the 20 patients, target coverage was also improved. Conclusions: In 97% of cases, automatically generated plans were selected for treatment because of

  1. Explaining Verification Conditions

    NASA Technical Reports Server (NTRS)

    Deney, Ewen; Fischer, Bernd

    2006-01-01

    The Hoare approach to program verification relies on the construction and discharge of verification conditions (VCs) but offers no support to trace, analyze, and understand the VCs themselves. We describe a systematic extension of the Hoare rules by labels so that the calculus itself can be used to build up explanations of the VCs. The labels are maintained through the different processing steps and rendered as natural language explanations. The explanations can easily be customized and can capture different aspects of the VCs; here, we focus on their structure and purpose. The approach is fully declarative and the generated explanations are based only on an analysis of the labels rather than directly on the logical meaning of the underlying VCs or their proofs. Keywords: program verification, Hoare calculus, traceability.

  2. Superficially porous particles vs. fully porous particles for bonded high performance liquid chromatographic chiral stationary phases: isopropyl cyclofructan 6.

    PubMed

    Spudeit, Daniel A; Dolzan, Maressa D; Breitbach, Zachary S; Barber, William E; Micke, Gustavo A; Armstrong, Daniel W

    2014-10-10

    This work reports a comparison of HPLC separations of enantiomers with chiral stationary phases (CSPs) prepared by chemically bonding cyclofructan-6, functionalized with isopropyl carbamate groups on fully and superficially porous particles (SPPs). The chromatographic performance of the superficially porous CSP based column was compared with columns packed with 5 μm and 3 μm fully porous particles (FPPs). At a flow rate of 3.0 mL/min the number of plates on column afforded by the SPP column was ∼7× greater than the number of plates on column (same length) obtained when using the 5 μm FPP based column. The flow rate providing the highest efficiency separation was ∼1.0 mL/min for the SPP column while it was ∼0.5 mL/min for both FPP columns. It was found that the selectivity and resolution of the separations were comparable between fully porous and superficially porous based columns (under constant mobile phase conditions), even though the SPP column contained lower absolute amounts of chiral selector. When tested under constant retention conditions, the SPP based CSP greatly improved resolution compared to the FPP based columns. At high flow rates the efficiency gained by using superficially porous CSP was accentuated. The advantages of columns based on SPPs become more obvious from the viewpoint of plate numbers and resolution per analysis time.

  3. WRF-HMS, a fully-coupled regional atmospheric-hydrological modeling system for long-term scale applications

    NASA Astrophysics Data System (ADS)

    Wagner, Sven; Fersch, Benjamin; Yuan, Fei; Yu, Zhongbo; Kunstmann, Harald

    2016-04-01

    Feedback among the atmosphere, land surface and subsurface is important to understand the non-linear connections within the hydrological cycle. Investigations of climate and land-use changes on the regional water balance require fully-coupled atmospheric-hydrological modeling systems, which describe such feedback mechanisms and allow long-term simulations at climate-relevant scales. We have developed such a fully-coupled, meso-scale modeling system extending the atmospheric model WRF-ARW with the hydrological model HMS, which includes lateral water fluxes at the land surface and subsurface. Both models are bound to the Noah land surface model (Noah-LSM) and share compatible water and energy flux formulations. In addition, two-way interaction between the saturated and the unsaturated zone is implemented by replacing the free drainage bottom boundary of the Noah-LSM with two approaches, a Fixed-head boundary condition assuming an equilibrium soil moisture distribution or a Darcy-flux at the boundary assuming a quasi-steady-state moisture profile below the LSM. The comparatively small additional computational demand of this coupled model system allows long-term simulations. A first application of the fully-coupled modeling system was performed for the Poyang Lake basin (160,000 km²) in Southern China for the years 1979-1986. For the WRF model, a double-nesting approach is applied covering East Asia at 30 km resolution and the Poyang Lake basin at 10 km using ERA Interim data as global forcing. The HMS and fully-coupled simulations are performed on the 10 km grid. The performance of the stand-alone and the fully coupled simulations are presented. Furthermore, the impact of groundwater coupling on soil moisture, evapotranspiration, temperature and precipitation is investigated.

  4. Tritium tracer test to estimate aquifer recharge under irrigated conditions

    NASA Astrophysics Data System (ADS)

    Jimenez-Martinez, J.; Tamoh, K.; Candela, L.

    2009-12-01

    Environmental tracers, as tritium, have been generally used to estimate aquifer recharge under natural conditions. A tritium tracer test to estimate recharge under semi-arid and irrigated conditions is presented. The test was carried out in an experimental plot under drip irrigation, located in SE Spain, with annual row crops (rotation lettuce and melon), following common agricultural practices in open air. Tritiated water was applied as an irrigation pulse, soil cores were taken at different depths and a liquid scintillation analyzer was used to measure the concentration of tritium in soil samples. Transport of tritium was simulated with SOLVEG code, a one-dimensional numerical model for simulating transport of heat, water and tritiated water in liquid and gas phase, which has been modified and adapted for this experience, including ground cover, root growth and root water uptake. One crop has been used to calibrate the modeling approach and other three crops to validate it. Results of flow and transport modelling show a good agreement between observed and estimated tritium concentration profile. For the period October 2007-September 2008, total drainage obtained value was 441 mm.

  5. Fully Printed, Flexible, Phased Array Antenna for Lunar Surface Communication

    NASA Technical Reports Server (NTRS)

    Subbaraman, Harish; Hen, Ray T.; Lu, Xuejun; Chen, Maggie Yihong

    2013-01-01

    NASAs future exploration missions focus on the manned exploration of the Moon, Mars, and beyond, which will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit, and back to Earth. Flexible antennas are highly desired in many scenarios. Active phased array antennas (active PAAs) with distributed control and processing electronics at the surface of an antenna aperture offer numerous advantages for radar communications. Large-area active PAAs on flexible substrates are of particular interest in NASA s space radars due to their efficient inflatable package that can be rolled up during transportation and deployed in space. Such an inflatable package significantly reduces stowage volume and mass. Because of these performance and packaging advantages, large-area inflatable active PAAs are highly desired in NASA s surface-to-orbit and surface-to-relay communications. To address the issues of flexible electronics, a room-temperature printing process of active phased-array antennas on a flexible Kapton substrate was developed. Field effect transistors (FETs) based on carbon nanotubes (CNTs), with many unique physical properties, were successfully proved feasible for the PAA system. This innovation is a new type of fully inkjet-printable, two-dimensional, high-frequency PAA on a flexible substrate at room temperature. The designed electronic circuit components, such as the FET switches in the phase shifter, metal interconnection lines, microstrip transmission lines, etc., are all printed using a special inkjet printer. Using the developed technology, entire 1x4, 2x2, and 4x4 PAA systems were developed, packaged, and demonstrated at 5.3 GHz. Several key solutions are addressed in this work to solve the fabrication issues. The source/drain contact is developed using droplets of silver ink printed on the source/drain areas prior to applying CNT thin-film. The wet silver ink droplets allow the silver to

  6. Force-controlled absorption in a fully-nonlinear numerical wave tank

    SciTech Connect

    Spinneken, Johannes Christou, Marios; Swan, Chris

    2014-09-01

    An active control methodology for the absorption of water waves in a numerical wave tank is introduced. This methodology is based upon a force-feedback technique which has previously been shown to be very effective in physical wave tanks. Unlike other methods, an a-priori knowledge of the wave conditions in the tank is not required; the absorption controller being designed to automatically respond to a wide range of wave conditions. In comparison to numerical sponge layers, effective wave absorption is achieved on the boundary, thereby minimising the spatial extent of the numerical wave tank. In contrast to the imposition of radiation conditions, the scheme is inherently capable of absorbing irregular waves. Most importantly, simultaneous generation and absorption can be achieved. This is an important advance when considering inclusion of reflective bodies within the numerical wave tank. In designing the absorption controller, an infinite impulse response filter is adopted, thereby eliminating the problem of non-causality in the controller optimisation. Two alternative controllers are considered, both implemented in a fully-nonlinear wave tank based on a multiple-flux boundary element scheme. To simplify the problem under consideration, the present analysis is limited to water waves propagating in a two-dimensional domain. The paper presents an extensive numerical validation which demonstrates the success of the method for a wide range of wave conditions including regular, focused and random waves. The numerical investigation also highlights some of the limitations of the method, particularly in simultaneously generating and absorbing large amplitude or highly-nonlinear waves. The findings of the present numerical study are directly applicable to related fields where optimum absorption is sought; these include physical wavemaking, wave power absorption and a wide range of numerical wave tank schemes.

  7. Large-eddy simulations of a fully appended submarine model

    NASA Astrophysics Data System (ADS)

    Posa, Antonio; Balaras, Elias

    2013-11-01

    In the present study we report large-eddy simulations (LES) the flow around an idealized submarine geometry (DARPA SUBOFF) at a Reynolds number -based on the model length and free stream velocity- equal to 1.2 million. A finite-difference formulation on a cylindrical coordinate grid of 2.8 billion nodes is utilized, and boundary conditions on the submarine model are imposed using an immersed-boundary technique. The boundary layers are ``tripped'' near the leading edge to mimic the conditions in experiments reported in the literature. Our computations resolve the detailed dynamics of the turbulent boundary layers on the suboff body as well as their interaction with the large scale vortices generated at the sail and fin junctions. The time-averaged velocity profiles in the intermediate wake reach self-similarity, except for the region affected by the wake of the sail. The comparison with the exponential law from the experimental study in the literature is satisfactory. It is also confirmed that the flow coming from the fins causes a deviation from the self-similar profile, which is more evident than in the experiments. Details on the turbulent boundary layer on the surface of the body will be provided, showing a good qualitative agreement with the results in the literature. Supported by ONR Grant N000141110455, monitored by Dr. Ki-Han Kim.

  8. Large Eddy Simulation study of fully developed thermal wind-turbine array boundary layers

    NASA Astrophysics Data System (ADS)

    Meneveau, Charles; Calaf, Marc; Parlange, Marc B.

    2010-05-01

    It is well known that when wind turbines are deployed in large arrays, their efficiency decreases due to complex interactions among themselves and with the atmospheric boundary layer (ABL). For wind farms whose length exceeds the height of the ABL by over an order of magnitude, a "fully developed" flow regime can be established. In this asymptotic regime, changes in the stream-wise direction can be neglected and the relevant exchanges occur in the vertical direction. Such a fully developed wind-turbine array boundary layer (WTABL) has recently been studied using Large Eddy Simulations (LES) under neutral stability conditions (Calaf et al. Physics of Fluids 22, 2010). Related wind-tunnel experiments on the WTABL are reported in Cal et al., J. Renewable and Sustainable Energy 2, 2010). The simulations showed the existence of two log-laws, one above and one below the wind turbine region. These results confirm basic assumptions made in prior work by Frandsen (J. Wind Eng. Ind. Aerodyn. 39, 1992) and Frandsen et al. (Wind Energy 9, 2006), and have enabled the development of more accurate parameterizations of the effective roughness scale for a wind farm. Now, a suite of Large Eddy Simulations, in which wind turbines are also modeled using the classical "drag disk" concept are performed but for non-neutral conditions. The aim is to study the effects of different thermal ABL stratifications, and thus to better understand the efficiency and characteristics of large wind farms and the associated land-atmosphere interactions for realistic atmospheric flow regimes. Such studies help to unravel the physics involved in extensive aggregations of wind turbines, allowing us to design better wind farm arrangements. By considering various turbine loading factors, surface roughness values and different atmospheric stratifications, it is possible to analyze the influence of these on the induced surface roughness, and the sensible heat roughness length. These last two can be used to

  9. A fully implicit dynamo model for long-term evolution of the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Zhan, X.; Chen, R.; Cai, X. C.; Zhang, K.

    2014-12-01

    In this work, we present a Newton-Krylov-Schwarz (NKS) based parallel implicit solver for the governing equations of Earth's dynamo. NKS is a general purpose parallel solver for nonlinear systems and has been widely applied to solve different kinds of nonlinear problems. All previously published dynamo models treat nonlinear terms of dynamo governing equations in an explicit or semi-explicit manner, consequently, the numerical schemes are constrained by the Courant-Friedrichs-Lewy (CFL) condition. To ensure numerical stability, time step sizes should be rather small, especially for high-resolution dynamo simulations, which makes it impractical to use high-resolution dynamo models to study long term evolution of the geomagnetic field, such as reversals and superchrons. To avoid the time step size constraint imposed by CFL numbers associated with fine spacial mesh sizes, we try a fully implicit method and focus on efficiently solving the large nonlinear system at each time step on large scale parallel computers. Our algorithm begins with a discretization of the governing equations on an unstructured tetrahedron mesh with a stable finite element method in space and a fully implicit backward difference scheme in time. At each time step, an inexact Newton method is employed to solve the discretized large sparse nonlinear system while in the Newton steps, a domain decomposition preconditioned Krylov method is used to solve the Jacobian system which is constructed analytically in order to obtain the desired performance. Our numerical model is tested against known standard dynamo solutions at a moderate Ekman number. Additionally, numerical experiments show that our model has super-linear scalability with over eight thousand processors for dynamo problems with tens of millions of unknowns.

  10. Calculation of fully three-dimensional separated flow with an unsteady viscous-inviscid interaction method

    NASA Technical Reports Server (NTRS)

    Leballeur, J. C.; Girodroux-Lavigne, P.

    1992-01-01

    Three previous papers have shown that the viscous inviscid numerical methods were capable of calculating separated turbulent flows. The 'Semi-inverse method' and the models of the first author allow the computation of massive separations, stalled flows, and shock wave-boundary layer interactions, in two-dimensional or quasi-three-dimensional conditions, from low speeds to supersonic speeds. The 'Semi-implicit' method for time-consistent coupling allows for the computation of time-accurate transonic separated flow and buffer computations in two-dimensions. The present paper shows that the viscous-inviscid interaction approach is also able to compute the fully three-dimensional flow separation phenomena. The method is based on a thin-layer approximation of the theory of 'Defect-Formulation' that provides the viscous-inviscid splitting of the Navier-Stokes equations. A parametric analytical modelling of the 3D-turbulent velocity profiles is involved. Numerically, the 3D-velocity profiles are discretized in the normal z-direction and driven by parametric integral 3D-equations in direct or inverse modes in the x-direction. The viscous-inviscid coupling is fully 3D and solved the time-consistency problem with an extension of the 'Semi-implicit' method previously suggested in two-dimensions. A 3D inviscid subroutine with TSP approximation is used. Results are obtained for transonic steady flows over wings with shock-induced transonic separation. The method provides results for highly three-dimensional flow separations, such as induced by a three-dimensional through at the wall of a flat plate. The 3D viscous-inviscid coupling and the 3D model of the velocity field provide three-dimensional instantaneous skin-friction lines whose patterns exhibit the same complex topology as Navier-Stokes solvers, with foci, nodes, and saddle-points.

  11. Portable, fully autonomous, ion chromatography system for on-site analyses.

    PubMed

    Elkin, Kyle R

    2014-07-25

    The basic operating principles of a portable, fully autonomous, ion chromatography system are described. The system affords the user the ability to collect and analyze samples continuously for 27 days, or about 1930 injections before needing any user intervention. Within the 13 kg system, is a fully computer controlled autosampling, chromatography and data acquisition system. An eluent reflux device (ERD), which integrates eluent suppression and generation in a single multi-chambered device, is used to minimize eluent consumption. During operation, about 1 μL of water per minute is lost to waste while operating standard-bore chromatography at 0.5 mL min(-1) due to eluent refluxing. Over the course of 27 days, about 100mL of rinse water is consumed, effectively eliminating waste production. Data showing the reproducibility (below 1% relative standard deviation over 14 days) of the device is also presented. Chromatographic analyses of common anions (Cl(-), NO3(-), SO4(2-), PO4(3-)), is accomplished in under 15 min using a low backpressure guard column with ∼ 25 mM KOH isocratic elution. For detection, a small capacitively-coupled contactless conductivity detector (C4D) is employed, able to report analytes in the sub to low micromolar range. Preconcentration of the injected samples gives a 50-fold decrease in detection limits, primarily utilized for in-situ detection of phosphate (LOQ 10 μg L(-1)). Field analyses are shown for multiple on-site analyses of stream water indifferent weather conditions.

  12. A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models

    SciTech Connect

    Xu, Jin; Yu, Yaming; Van Dyk, David A.; Kashyap, Vinay L.; Siemiginowska, Aneta; Drake, Jeremy; Ratzlaff, Pete; Connors, Alanna; Meng, Xiao-Li E-mail: yamingy@ics.uci.edu E-mail: vkashyap@cfa.harvard.edu E-mail: jdrake@cfa.harvard.edu E-mail: meng@stat.harvard.edu

    2014-10-20

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.

  13. A Fully Bayesian Approach to Improved Calibration and Prediction of Groundwater Models With Structure Error

    NASA Astrophysics Data System (ADS)

    Xu, T.; Valocchi, A. J.

    2014-12-01

    Effective water resource management typically relies on numerical models to analyse groundwater flow and solute transport processes. These models are usually subject to model structure error due to simplification and/or misrepresentation of the real system. As a result, the model outputs may systematically deviate from measurements, thus violating a key assumption for traditional regression-based calibration and uncertainty analysis. On the other hand, model structure error induced bias can be described statistically in an inductive, data-driven way based on historical model-to-measurement misfit. We adopt a fully Bayesian approach that integrates a Gaussian process error model to account for model structure error to the calibration, prediction and uncertainty analysis of groundwater models. The posterior distributions of parameters of the groundwater model and the Gaussian process error model are jointly inferred using DREAM, an efficient Markov chain Monte Carlo sampler. We test the usefulness of the fully Bayesian approach towards a synthetic case study of surface-ground water interaction under changing pumping conditions. We first illustrate through this example that traditional least squares regression without accounting for model structure error yields biased parameter estimates due to parameter compensation as well as biased predictions. In contrast, the Bayesian approach gives less biased parameter estimates. Moreover, the integration of a Gaussian process error model significantly reduces predictive bias and leads to prediction intervals that are more consistent with observations. The results highlight the importance of explicit treatment of model structure error especially in circumstances where subsequent decision-making and risk analysis require accurate prediction and uncertainty quantification. In addition, the data-driven error modelling approach is capable of extracting more information from observation data than using a groundwater model alone.

  14. Fully-Lagrangian and Lattice-Boltzmann Methods for Solving Systems of Conservation Equations

    NASA Astrophysics Data System (ADS)

    Ancona, M. G.

    1994-11-01

    A class of "fully-Lagrangian" methods for solving systems of conservation equations is defined. The key step in formulating these methods is the definition of a new set of field variables for which Lagrangian discretization is trivial. Recently popular lattice-Boltzmann simulation schemes for solving such systems are shown to be a useful sub-class of these fully-Lagrangian methods in which (a) the conservation laws are satisfied at each grid point, (b) the Lagrangian variables are expanded perturbatively, and (c) discretization error is used to represent physics. Such schemes are typically derived using methods of kinetic theory. Our numerical analysis approach shows that the conventional physical derivation, while certainly valid and fruitful, is not essential, that it often confuses physics and numerics and that it can be unnecessarily constraining. For example, we show that lattice-Boltzmann-like methods can be non-perturbative and can be made higher-order, implicit and/or with non-uniform grids. Furthermore, our approach provides new perspective on the relationship between lattice-Boltzmann methods and finite-difference techniques. Among other things, we show that the lattice-Boltzmann schemes are only conditionally consistent and in some cases are identical to the well-known Dufort-Frankel method. Through this connection, the lattice-Boltzmann method provides a rational basis for understanding Dufort-Frankel and gives a pathway for its generalization. At the same time, that Dufort Frankel is no longer much used suggests that the lattice-Boltzmann approach might also share this fate.

  15. Fully Suspended, Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig With Forced Excitation

    NASA Technical Reports Server (NTRS)

    Morrison, Carlos R.; Provenza, Andrew; Kurkov, Anatole; Montague, Gerald; Duffy, Kirsten; Mehmed, Oral; Johnson, Dexter; Jansen, Ralph

    2004-01-01

    The Five-Axis, Three-Magnetic-Bearing Dynamic Spin Rig, a significant advancement in the Dynamic Spin Rig (DSR), is used to perform vibration tests of turbomachinery blades and components under rotating and nonrotating conditions in a vacuum. The rig has as its critical components three magnetic bearings: two heteropolar radial active magnetic bearings and a magnetic thrust bearing. The bearing configuration allows full vertical rotor magnetic suspension along with a feed-forward control feature, which will enable the excitation of various natural blade modes in bladed disk test articles. The theoretical, mechanical, electrical, and electronic aspects of the rig are discussed. Also presented are the forced-excitation results of a fully levitated, rotating and nonrotating, unbladed rotor and a fully levitated, rotating and nonrotating, bladed rotor in which a pair of blades was arranged 180 degrees apart from each other. These tests include the bounce mode excitation of the rotor in which the rotor was excited at the blade natural frequency of 144 Hz. The rotor natural mode frequency of 355 Hz was discerned from the plot of acceleration versus frequency. For nonrotating blades, a blade-tip excitation amplitude of approximately 100 g/A was achieved at the first-bending critical (approximately 144 Hz) and at the first-torsional and second-bending blade modes. A blade-tip displacement of 70 mils was achieved at the first-bending critical by exciting the blades at a forced-excitation phase angle of 908 relative to the vertical plane containing the blades while simultaneously rotating the shaft at 3000 rpm.

  16. A Fully Bayesian Method for Jointly Fitting Instrumental Calibration and X-Ray Spectral Models

    NASA Astrophysics Data System (ADS)

    Xu, Jin; van Dyk, David A.; Kashyap, Vinay L.; Siemiginowska, Aneta; Connors, Alanna; Drake, Jeremy; Meng, Xiao-Li; Ratzlaff, Pete; Yu, Yaming

    2014-10-01

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is "pragmatic" in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.

  17. A coupled general circulation model for the Late Jurassic including fully interactive carbon cycling

    NASA Astrophysics Data System (ADS)

    Williams, J.; Valdes, P. J.; Leith, T. L.; Sagoo, N.

    2011-12-01

    The climatology of a coupled atmosphere - ocean (including sea ice) general circulation model for the Late Jurassic epoch (Kimmeridgian stage) is presented. The simulation framework used is the FAMOUS climate model [Jones et al, Climate Dynamics 25, 189-204 (2005)], which is a reduced resolution configuration of the UK Met Office model HadCM3 [Pope et al, Climate Dynamics 16, 123-46 (2000)]. In order to enable computation of carbon fluxes through the Earth System, fully interactive terrestrial and oceanic carbon cycle modules are added to FAMOUS. These include temporally evolving vegetation on land and populations of zooplankton, phytoplankton and nitrogenous nutrients in the ocean. The Kimmeridgian was a time of significantly enhanced carbon dioxide concentrations in the atmosphere (roughly four times preindustrial) and as such is a useful test bed for "paleocalibration" of a future climate perturbed by anthropogenic emissions of greenhouse gases [Barron et al, Paleoceanography 10 (5) 953-962 (1995) for example]. From a geological perspective, the Kimmeridgian was also a time of significant laying down of hydrocarbon reserves (particularly in the North Sea) and thus the inclusion of a fully interactive carbon cycle in FAMOUS enables the study of the dysoxic (low oxygen) and circulatory conditions relevant to their formation and preservation. The parameter space of both the terrestrial and oceanic carbon cycles was explored using the Latin Hypercube method [Mckay, Proceedings of the 24th conference on winter simulation, ACM Press, Arlington, Virginia, 57-564 (1992)], which enables efficient yet rigorous sampling of multiple covarying parameters. These parameters were validated using present day observations of meteorological, vegetative and biological parameters since the data available for the Jurassic itself is relatively scarce. To remove subjective bias in the validation process, the "Arcsine Mielke" skill score was used [Watterson, Int. J. Climatology, 16, 379

  18. A Fully Implantable, Programmable and Multimodal Neuroprocessor for Wireless, Cortically Controlled Brain-Machine Interface Applications

    PubMed Central

    Zhang, Fei; Aghagolzadeh, Mehdi; Oweiss, Karim

    2012-01-01

    Reliability, scalability and clinical viability are of utmost importance in the design of wireless Brain Machine Interface systems (BMIs). This paper reports on the design and implementation of a neuroprocessor for conditioning raw extracellular neural signals recorded through microelectrode arrays chronically implanted in the brain of awake behaving rats. The neuroprocessor design exploits a sparse representation of the neural signals to combat the limited wireless telemetry bandwidth. We demonstrate a multimodal processing capability (monitoring, compression, and spike sorting) inherent in the neuroprocessor to support a wide range of scenarios in real experimental conditions. A wireless transmission link with rate-dependent compression strategy is shown to preserve information fidelity in the neural data. At 32 channels, the neuroprocessor has been fully implemented on a 5mm×5mm nano-FPGA, and the prototyping resulted in 5.19 mW power consumption, bringing its performance within the power-size constraints for clinical use. The optimal design for compression and sorting performance was evaluated for multiple sampling frequencies, wavelet basis choice and power consumption. PMID:23050029

  19. Toxicity assessment of ionic liquids with Vibrio fischeri: an alternative fully automated methodology.

    PubMed

    Costa, Susana P F; Pinto, Paula C A G; Lapa, Rui A S; Saraiva, M Lúcia M F S

    2015-03-01

    A fully automated Vibrio fischeri methodology based on sequential injection analysis (SIA) has been developed. The methodology was based on the aspiration of 75 μL of bacteria and 50 μL of inhibitor followed by measurement of the luminescence of bacteria. The assays were conducted for contact times of 5, 15, and 30 min, by means of three mixing chambers that ensured adequate mixing conditions. The optimized methodology provided a precise control of the reaction conditions which is an asset for the analysis of a large number of samples. The developed methodology was applied to the evaluation of the impact of a set of ionic liquids (ILs) on V. fischeri and the results were compared with those provided by a conventional assay kit (Biotox(®)). The collected data evidenced the influence of different cation head groups and anion moieties on the toxicity of ILs. Generally, aromatic cations and fluorine-containing anions displayed higher impact on V. fischeri, evidenced by lower EC50. The proposed methodology was validated through statistical analysis which demonstrated a strong positive correlation (P>0.98) between assays. It is expected that the automated methodology can be tested for more classes of compounds and used as alternative to microplate based V. fischeri assay kits.

  20. Non-uniform Solar Temperature Field on Large Aperture, Fully-Steerable Telescope Structure

    NASA Astrophysics Data System (ADS)

    Liu, Yan

    2016-09-01

    In this study, a 110-m fully steerable radio telescope was used as an analysis platform and the integral parametric finite element model of the antenna structure was built in the ANSYS thermal analysis module. The boundary conditions of periodic air temperature, solar radiation, long-wave radiation shadows of the surrounding environment, etc. were computed at 30 min intervals under a cloudless sky on a summer day, i.e., worstcase climate conditions. The transient structural temperatures were then analyzed under a period of several days of sunshine with a rational initial structural temperature distribution until the whole set of structural temperatures converged to the results obtained the day before. The non-uniform temperature field distribution of the entire structure and the main reflector surface RMS were acquired according to changes in pitch and azimuth angle over the observation period. Variations in the solar cooker effect over time and spatial distributions in the secondary reflector were observed to elucidate the mechanism of the effect. The results presented here not only provide valuable realtime data for the design, construction, sensor arrangement and thermal deformation control of actuators but also provide a troubleshooting reference for existing actuators.

  1. Simple Fully Automated Group Classification on Brain fMRI

    SciTech Connect

    Honorio, J.; Goldstein, R.; Honorio, J.; Samaras, D.; Tomasi, D.; Goldstein, R.Z.

    2010-04-14

    We propose a simple, well grounded classification technique which is suited for group classification on brain fMRI data sets that have high dimensionality, small number of subjects, high noise level, high subject variability, imperfect registration and capture subtle cognitive effects. We propose threshold-split region as a new feature selection method and majority voteas the classification technique. Our method does not require a predefined set of regions of interest. We use average acros ssessions, only one feature perexperimental condition, feature independence assumption, and simple classifiers. The seeming counter-intuitive approach of using a simple design is supported by signal processing and statistical theory. Experimental results in two block design data sets that capture brain function under distinct monetary rewards for cocaine addicted and control subjects, show that our method exhibits increased generalization accuracy compared to commonly used feature selection and classification techniques.

  2. Medial Auditory Thalamic Stimulation as a Conditioned Stimulus for Eyeblink Conditioning in Rats

    ERIC Educational Resources Information Center

    Campolattaro, Matthew M.; Halverson, Hunter E.; Freeman, John H.

    2007-01-01

    The neural pathways that convey conditioned stimulus (CS) information to the cerebellum during eyeblink conditioning have not been fully delineated. It is well established that pontine mossy fiber inputs to the cerebellum convey CS-related stimulation for different sensory modalities (e.g., auditory, visual, tactile). Less is known about the…

  3. Winning Conditions?

    PubMed

    Green, Esther; Moody, Lesley

    2015-01-01

    The authors of the paper, "The Patient Experience in Ontario 2020: What is Possible?", framed both the current state as well as the future of what patient experience might look like in five years. To ensure intention is catalyzed into meaningful change to improve experience and outcomes, we suggest four winning conditions. The first is to change the language; patients are people too, irrespective of their disease or illness; person-centred is inclusive language and ought to be the focus. The second condition is focused on leaders who play a critical role to establish, build and embed person-centred within the organization. The third and fourth winning conditions are building the evidence base and using effective and meaningful engagement, moving beyond advice, to partnership, respectively. Person-centred care is not the flavour of the month, it is here to stay. Ontarians are important actors in the system not only as users of the system but owners as well. To those who might argue that it is costly to do this work, what are the costs to not engage? Are we satisfied not only as administrators, and clinicians, but as patients at some point, to maintain the status quo? PMID:26888319

  4. Continental river routing for fully coupled climate system models

    NASA Astrophysics Data System (ADS)

    Graham, Stephen Thomas

    Rivers have only recently been recognized as important components of, and have begun to appear in climate models. The inclusion of rivers and river transport algorithms completes the global water cycle, and allows additional applications for these models, (i.e. nutrient transport for biogeochemical modeling). In this study, several steps are taken toward the inclusion of rivers in climate models. The first steps were to develop global data layers of rivers and associated hydrological parameters. The river networks add a new dimension to the land surface component of these models: horizontal transport, typically neglected in global models. These data are necessary for horizontal transport of water and its associated heat, salinity, and nutrients, and is applicable to any global modeling effort. Surface hydrological conditions, (i.e. soil moisture and lakes), have been demonstrated as important factors in determining climatic conditions in global climate models. The inland surface waters affect climatic variables because of their difference from vegetated and bare soil surfaces. To demonstrate this, a second step in this research uses these data in a variety of sensitivity experiments to determine their impact on climate. These experiments investigated the effect of the additional surface water associated with rivers and a new lake coverage on climate. The inclusion of increased surface water alters circulation patterns across the globe, with larger effects in the winter for each hemisphere. The increased surface water coverage increased globally averaged air temperature, latent heat, specific humidity, cloud cover, and precipitation. These changes bring simulated global temperatures closer to observations. A third step in this research was to use the continental drainage basins data to deliver the runoff to the proper coastlines in a climate simulation, which involved interactions between all components of the Earth's climate system as they feedback and produce

  5. Theoretical results for fully flooded, elliptical hydrodynamic contacts

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1982-01-01

    The influence of the ellipticity parameter and the dimensionless speed, load, and materials parameters on minimum film thickness was investigated. The ellipticity parameter was varied from 1 (a ball-on-plate configuration) to 8 (a configuration approaching a line contact). The dimensionless speed parameter was varied over a range of nearly two orders of magnitude. Conditions corresponding to the use of solid materials of bronze, steel, and silicon nitride and lubricants of praffinic and naphthemic mineral oils were considered in obtaining the exponent in the dimensionless materials parameter. Thirty-four different cases were used in obtaining the minimum film thickness formula H min = 3.63U to the 0.68 power G to the 0.49 power W to the -0.073 power 1-e to the 0.68K power). A simplified expression for the ellipticity parameter was found where k = 1.03 (r(y)/r(x)) to the 0.64 power. Contour plots were also shown which indicate in detail the pressure spike and two side lobes in which the minimum film thickness occurs. These theoretical solutions of film thickness have all the essential features of the previously reported experimental observations based upon optical interferometry.

  6. Feasibility study of laminar flow bodies in fully turbulent flow

    SciTech Connect

    Sarkar, T.; Sayer, P.G.; Fraser, S.M.

    1994-12-31

    One of the most important design requirements of long range autonomous underwater vehicles (AUVs) is to minimize propulsive power. An important and relatively easy way of achieving this is by careful selection of hull shape. Two main schools of thought in this respect are: if laminar flow can be maintained for a long length of the body, the effective drag can be reduced; it is not possible to maintain laminar flow for a significant length of the body and hull design should be based on turbulent flow conditions. In this paper, a feasibility study of laminar flow designs is undertaken under the assumption that flow will be turbulent over the entire length. For comparison two laminar flow designs X-35 and F-57 are selected and results are compared with those of two typical torpedo shaped bodies, namely AFTERBODY1 and AFTERBODY2 of DTNSRDC. It has been shown that laminar flow bodies have 10--15% higher drag when flow is turbulent over the entire length. Hence there is some hydrodynamic risk involved in adopting such laminar bodies without further consideration.

  7. A Biomechanical Comparison of 1-G and Fully-Loaded Simulated Zero-Gravity Locomotion

    NASA Technical Reports Server (NTRS)

    McCrory, Jean L.

    1997-01-01

    Exercise will almost certainly play an integral part in minimizing the bone mineral loss and muscular atrophy that occur during spaceflight. It has been hypothesized that an effective exercise regimen can be developed to elicit loads on the lower extremities and require muscle actions which resemble those encountered on Earth. The Penn State Zero-Gravity Simulator (PSZS) is a device which suspends subjects horizontally from multiple latex cords, with each cord negating the weight of a limb segment. A treadmill mounted on the wall under the PSZS enables subjects to run in simulated 0G. Subjects wear a harness to which a number of springs, which provide a gravity replacement load, are connected. The opposite end of each spring is connected to the side of the treadmill. During exercise, astronauts currently wear a similar harness in which the spring tethering load pulls at both the waist and shoulders. Ground reaction forces, muscular activations, and joint angles of the left leg during overground, treadmill, and fully-loaded zero-gravity simulated (ZLS) locomotion were assessed in order to gain insight into the effectiveness of the exercise regimen used by NASA to prevent the muscular atrophy and bone demineralization which occur in weightlessness. There were three hypotheses to this research. It was hypothesized that there will be no differences in peak ground reaction forces and peak loading rates between overground gait and gait in the full body weight loaded conditions in the ZLS. A second hypothesis was that that there will be no differences in hip, knee, and ankle joint positions between walking or running overground, on a standard treadmill, and in full bodyweight loaded conditions in the ZLS. The third hypothesis was that the muscular activations, as a percentage of maximal voluntary contraction, will be similar between walking or running overground, on a standard treadmill, and in full body-weight loaded conditions in the ZLS.

  8. Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The response of leaf photosynthesis and metabolite profiles to ozone (O3) exposure ranging from 37 to 116 nL L-1 was investigated in two soybean cultivars Dwight and IA3010 in the field under fully open-air conditions. Leaf photosynthesis, total non-structural carbohydrates (TNC) and total free amin...

  9. Improving reticle defect disposition via fully automated lithography simulation

    NASA Astrophysics Data System (ADS)

    Mann, Raunak; Goodman, Eliot; Lao, Keith; Ha, Steven; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan

    2016-03-01

    Most advanced wafer fabs have embraced complex pattern decoration, which creates numerous challenges during in-fab reticle qualification. These optical proximity correction (OPC) techniques create assist features that tend to be very close in size and shape to the main patterns as seen in Figure 1. A small defect on an assist feature will most likely have little or no impact on the fidelity of the wafer image, whereas the same defect on a main feature could significantly decrease device functionality. In order to properly disposition these defects, reticle inspection technicians need an efficient method that automatically separates main from assist features and predicts the resulting defect impact on the wafer image. Analysis System (ADAS) defect simulation system[1]. Up until now, using ADAS simulation was limited to engineers due to the complexity of the settings that need to be manually entered in order to create an accurate result. A single error in entering one of these values can cause erroneous results, therefore full automation is necessary. In this study, we propose a new method where all needed simulation parameters are automatically loaded into ADAS. This is accomplished in two parts. First we have created a scanner parameter database that is automatically identified from mask product and level names. Second, we automatically determine the appropriate simulation printability threshold by using a new reference image (provided by the inspection tool) that contains a known measured value of the reticle critical dimension (CD). This new method automatically loads the correct scanner conditions, sets the appropriate simulation threshold, and automatically measures the percentage of CD change caused by the defect. This streamlines qualification and reduces the number of reticles being put on hold, waiting for engineer review. We also present data showing the consistency and reliability of the new method, along with the impact on the efficiency of in

  10. Fully Integrated Biopotential Acquisition Analog Front-End IC.

    PubMed

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Ko, Hyoungho

    2015-01-01

    A biopotential acquisition analog front-end (AFE) integrated circuit (IC) is presented. The biopotential AFE includes a capacitively coupled chopper instrumentation amplifier (CCIA) to achieve low input referred noise (IRN) and to block unwanted DC potential signals. A DC servo loop (DSL) is designed to minimize the offset voltage in the chopper amplifier and low frequency respiration artifacts. An AC coupled ripple rejection loop (RRL) is employed to reduce ripple due to chopper stabilization. A capacitive impedance boosting loop (CIBL) is designed to enhance the input impedance and common mode rejection ratio (CMRR) without additional power consumption, even under an external electrode mismatch. The AFE IC consists of two-stage CCIA that include three compensation loops (DSL, RRL, and CIBL) at each CCIA stage. The biopotential AFE is fabricated using a 0.18 μm one polysilicon and six metal layers (1P6M) complementary metal oxide semiconductor (CMOS) process. The core chip size of the AFE without input/output (I/O) pads is 10.5 mm². A fourth-order band-pass filter (BPF) with a pass-band in the band-width from 1 Hz to 100 Hz was integrated to attenuate unwanted signal and noise. The overall gain and band-width are reconfigurable by using programmable capacitors. The IRN is measured to be 0.94 μVRMS in the pass band. The maximum amplifying gain of the pass-band was measured as 71.9 dB. The CIBL enhances the CMRR from 57.9 dB to 67 dB at 60 Hz under electrode mismatch conditions. PMID:26437404

  11. Fully Integrated Biopotential Acquisition Analog Front-End IC

    PubMed Central

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Ko, Hyoungho

    2015-01-01

    A biopotential acquisition analog front-end (AFE) integrated circuit (IC) is presented. The biopotential AFE includes a capacitively coupled chopper instrumentation amplifier (CCIA) to achieve low input referred noise (IRN) and to block unwanted DC potential signals. A DC servo loop (DSL) is designed to minimize the offset voltage in the chopper amplifier and low frequency respiration artifacts. An AC coupled ripple rejection loop (RRL) is employed to reduce ripple due to chopper stabilization. A capacitive impedance boosting loop (CIBL) is designed to enhance the input impedance and common mode rejection ratio (CMRR) without additional power consumption, even under an external electrode mismatch. The AFE IC consists of two-stage CCIA that include three compensation loops (DSL, RRL, and CIBL) at each CCIA stage. The biopotential AFE is fabricated using a 0.18 µm one polysilicon and six metal layers (1P6M) complementary metal oxide semiconductor (CMOS) process. The core chip size of the AFE without input/output (I/O) pads is 10.5 mm2. A fourth-order band-pass filter (BPF) with a pass-band in the band-width from 1 Hz to 100 Hz was integrated to attenuate unwanted signal and noise. The overall gain and band-width are reconfigurable by using programmable capacitors. The IRN is measured to be 0.94 µVRMS in the pass band. The maximum amplifying gain of the pass-band was measured as 71.9 dB. The CIBL enhances the CMRR from 57.9 dB to 67 dB at 60 Hz under electrode mismatch conditions. PMID:26437404

  12. Molecular Insights into Fully Human and Humanized Monoclonal Antibodies: What are the Differences and Should Dermatologists Care?

    PubMed

    Mallbris, Lotus; Davies, Julian; Glasebrook, Andrew; Tang, Ying; Glaesner, Wolfgang; Nickoloff, Brian J

    2016-07-01

    In recent years, a large number of therapeutic monoclonal antibodies have come to market to treat a variety of conditions including patients with immune-mediated chronic inflammation. Distinguishing the relative clinical efficacy and safety profiles of one monoclonal antibody relative to another can be difficult and complex due to different clinical designs and paucity of head-to-head comparator studies. One distinguishing feature in interpreting clinical trial data by dermatologists may begin by determining whether a monoclonal antibody is fully human or humanized, which can be discerned by the generic name of the drug. Herein, this commentary highlights the distinctions and similarities of fully human and humanized monoclonal antibodies in their nomenclature, engineering, and clinical profiles. While there are a number of differences between these types of monoclonal antibodies, current evidence indicates that this designation does not impart any measurable impact on overall clinical efficacy and safety profiles of a given drug. Based on molecular insights provided in this commentary, it is clear that each monoclonal antibody, irrespective of being fully human or humanized, should be individually assessed for its clinical impact regarding safety and efficacy. Going beyond the type of generic name ascribed to a monoclonal antibody will be an ever-increasing theme for dermatologists as more therapeutic monoclonal antibodies emerge to potentially treat a wider scope of diseases with cutaneous manifestations. PMID:27672407

  13. Development of a fully automated network system for long-term health-care monitoring at home.

    PubMed

    Motoi, K; Kubota, S; Ikarashi, A; Nogawa, M; Tanaka, S; Nemoto, T; Yamakoshi, K

    2007-01-01

    Daily monitoring of health condition at home is very important not only as an effective scheme for early diagnosis and treatment of cardiovascular and other diseases, but also for prevention and control of such diseases. From this point of view, we have developed a prototype room for fully automated monitoring of various vital signs. From the results of preliminary experiments using this room, it was confirmed that (1) ECG and respiration during bathing, (2) excretion weight and blood pressure, and (3) respiration and cardiac beat during sleep could be monitored with reasonable accuracy by the sensor system installed in bathtub, toilet and bed, respectively.

  14. A Fully Automated Classification for Mapping the Annual Cropland Extent

    NASA Astrophysics Data System (ADS)

    Waldner, F.; Defourny, P.

    2015-12-01

    Mapping the global cropland extent is of paramount importance for food security. Indeed, accurate and reliable information on cropland and the location of major crop types is required to make future policy, investment, and logistical decisions, as well as production monitoring. Timely cropland information directly feed early warning systems such as GIEWS and, FEWS NET. In Africa, and particularly in the arid and semi-arid region, food security is center of debate (at least 10% of the population remains undernourished) and accurate cropland estimation is a challenge. Space borne Earth Observation provides opportunities for global cropland monitoring in a spatially explicit, economic, efficient, and objective fashion. In the both agriculture monitoring and climate modelling, cropland maps serve as mask to isolate agricultural land for (i) time-series analysis for crop condition monitoring and (ii) to investigate how the cropland is respond to climatic evolution. A large diversity of mapping strategies ranging from the local to the global scale and associated with various degrees of accuracy can be found in the literature. At the global scale, despite efforts, cropland is generally one of classes with the poorest accuracy which make difficult the use for agricultural. This research aims at improving the cropland delineation from the local scale to the regional and global scales as well as allowing near real time updates. To that aim, five temporal features were designed to target the key- characteristics of crop spectral-temporal behavior. To ensure a high degree of automation, training data is extracted from available baseline land cover maps. The method delivers cropland maps with a high accuracy over contrasted agro-systems in Ukraine, Argentina, China and Belgium. The accuracy reached are comparable to those obtained with classifiers trained with in-situ data. Besides, it was found that the cropland class is associated with a low uncertainty. The temporal features

  15. Comparison of extractable DNA from bone following six-month exposure to outdoor conditions, garden loam, mold contamination or room storage.

    PubMed

    Startari, Loïc; Benoit, Jean-Noël; Quatrehomme, Gérald; Carle, Georges; Pognonec, Philippe

    2013-01-01

    Femur bone sections from a single donor were exposed for six months to (i) outdoor conditions (exposure to sun, rain, etc.); (ii) water-vapour saturated environment favourable to mould proliferation and (iii) humic-garden soil. Following these treatments, DNA was extracted and yields were compared with that of a control bone fragment kept under optimal laboratory storage conditions. Our results demonstrate that both mould and soil are very detrimental to bone DNA conservation since more than 97% of the bone DNA was lost in these samples as compared with the control condition. Outdoor exposure gives an intermediate result with 30% of the DNA still present in the bone. Thus, environments favourable to microorganisms proliferation appear detrimental to bone DNA conservation and are a bad prognostic should bone remains be used for genetic identification purpose. Comparatively, open-air exposure is much more favourable to bone DNA analysis. PMID:22941520

  16. Operant Conditioning

    PubMed Central

    Staddon, J. E. R.; Cerutti, D. T.

    2005-01-01

    Operant behavior is behavior “controlled” by its consequences. In practice, operant conditioning is the study of reversible behavior maintained by reinforcement schedules. We review empirical studies and theoretical approaches to two large classes of operant behavior: interval timing and choice. We discuss cognitive versus behavioral approaches to timing, the “gap” experiment and its implications, proportional timing and Weber's law, temporal dynamics and linear waiting, and the problem of simple chain-interval schedules. We review the long history of research on operant choice: the matching law, its extensions and problems, concurrent chain schedules, and self-control. We point out how linear waiting may be involved in timing, choice, and reinforcement schedules generally. There are prospects for a unified approach to all these areas. PMID:12415075

  17. Reviews Book: At Home: A Short History of Private Life Book: The Story of Mathematics Book: Time Travel: A Writer's Guide to the Real Science of Plausible Time Travel Equipment: Rotational Inertial Wands DVD: Planets Book: The Fallacy of Fine-Tuning Equipment: Scale with Dial Equipment: Infrared Thermometers Book: 300 Science and History Projects Book: The Nature of Light and Colour in the Open Air Equipment: Red Tide Spectrometer Web Watch

    NASA Astrophysics Data System (ADS)

    2011-09-01

    WE RECOMMEND The Story of Mathematics Book shows the link between maths and physics Time Travel: A Writer's Guide to the Real Science of Plausible Time Travel Book explains how to write good time-travelling science fiction Rotational Inertial Wands Wands can help explore the theory of inertia Infrared Thermometers Kit measures temperature differences Red Tide Spectrometer Spectrometer gives colour spectra WORTH A LOOK At Home: A Short History of Private Life Bryson explores the history of home life The Fallacy of Fine-Tuning Book wades into the science/religion debate Scale with Dial Cheap scales can be turned into Newton measuring scales 300 Science History Projects Fun science projects for kids to enjoy The Nature of Light and Colour in the Open Air Text looks at fascinating optical effects HANDLE WITH CARE Planets DVD takes a trip through the solar system WEB WATCH Websites offer representations of nuclear chain reactions

  18. Fully-Implicit Reconstructed Discontinuous Galerkin Method for Stiff Multiphysics Problems

    NASA Astrophysics Data System (ADS)

    Nourgaliev, Robert

    2015-11-01

    A new reconstructed Discontinuous Galerkin (rDG) method, based on orthogonal basis/test functions, is developed for fluid flows on unstructured meshes. Orthogonality of basis functions is essential for enabling robust and efficient fully-implicit Newton-Krylov based time integration. The method is designed for generic partial differential equations, including transient, hyperbolic, parabolic or elliptic operators, which are attributed to many multiphysics problems. We demonstrate the method's capabilities for solving compressible fluid-solid systems (in the low Mach number limit), with phase change (melting/solidification), as motivated by applications in Additive Manufacturing. We focus on the method's accuracy (in both space and time), as well as robustness and solvability of the system of linear equations involved in the linearization steps of Newton-based methods. The performance of the developed method is investigated for highly-stiff problems with melting/solidification, emphasizing the advantages from tight coupling of mass, momentum and energy conservation equations, as well as orthogonality of basis functions, which leads to better conditioning of the underlying (approximate) Jacobian matrices, and rapid convergence of the Krylov-based linear solver. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, and funded by the LDRD at LLNL under project tracking code 13-SI-002.

  19. A novel approach to computational homogenization and its application to fully coupled two-scale thermomechanics

    NASA Astrophysics Data System (ADS)

    Fleischhauer, Robert; Božić, Marko; Kaliske, Michael

    2016-11-01

    The paper introduces a novel approach to computational homogenization by bridging the scales from microscale to macroscale. Whenever the microstructure is in an equilibrium state, the macrostructure needs to be in equilibrium, too. The novel approach is based on the concept of representative volume elements, stating that an assemblage of representative elements should be able to resemble the macrostructure. The resulting key assumption is the continuity of the appropriate kinematic fields across both scales. This assumption motivates the following idea. In contrast to existing approaches, where mostly constitutive quantities are homogenized, the balance equations, that drive the considered field quantities, are homogenized. The approach is applied to the fully coupled partial differential equations of thermomechanics solved by the finite element (FE) method. A novel consistent finite homogenization element is given with respect to discretized residual formulations and linearization terms. The presented FE has no restrictions regarding the thermomechanical constitutive laws that are characterizing the microstructure. A first verification of the presented approach is carried out against semi-analytical and reference solutions within the range of one-dimensional small strain thermoelasticity. Further verification is obtained by a comparison to the classical FE^2 method and its different types of boundary conditions within a finite deformation setting of purely mechanical problems. Furthermore, the efficiency of the novel approach is investigated and compared. Finally, structural examples are shown in order to demonstrate the applicability of the presented homogenization framework in case of finite thermo-inelasticity at different length scales.

  20. Study of electron transport in a Hall thruster by axial–radial fully kinetic particle simulation

    SciTech Connect

    Cho, Shinatora Kubota, Kenichi; Funaki, Ikkoh; Watanabe, Hiroki; Iihara, Shigeyasu; Fuchigami, Kenji; Uematsu, Kazuo

    2015-10-15

    Electron transport across a magnetic field in a magnetic-layer-type Hall thruster was numerically investigated for the future predictive modeling of Hall thrusters. The discharge of a 1-kW-class magnetic-layer-type Hall thruster designed for high-specific-impulse operation was modeled using an r-z two-dimensional fully kinetic particle code with and without artificial electron-diffusion models. The thruster performance results showed that both electron transport models captured the experimental result within discrepancies less than 20% in thrust and discharge current for all the simulated operation conditions. The electron cross-field transport mechanism of the so-called anomalous diffusion was self-consistently observed in the simulation without artificial diffusion models; the effective electron mobility was two orders of magnitude higher than the value obtained using the classical diffusion theory. To account for the self-consistently observed anomalous transport, the oscillation of plasma properties was speculated. It was suggested that the enhanced random-walk diffusion due to the velocity oscillation of low-frequency electron flow could explain the observed anomalous diffusion within an order of magnitude. The dominant oscillation mode of the electron flow velocity was found to be 20 kHz, which was coupled to electrostatic oscillation excited by global ionization instability.

  1. A novel approach to computational homogenization and its application to fully coupled two-scale thermomechanics

    NASA Astrophysics Data System (ADS)

    Fleischhauer, Robert; Božić, Marko; Kaliske, Michael

    2016-07-01

    The paper introduces a novel approach to computational homogenization by bridging the scales from microscale to macroscale. Whenever the microstructure is in an equilibrium state, the macrostructure needs to be in equilibrium, too. The novel approach is based on the concept of representative volume elements, stating that an assemblage of representative elements should be able to resemble the macrostructure. The resulting key assumption is the continuity of the appropriate kinematic fields across both scales. This assumption motivates the following idea. In contrast to existing approaches, where mostly constitutive quantities are homogenized, the balance equations, that drive the considered field quantities, are homogenized. The approach is applied to the fully coupled partial differential equations of thermomechanics solved by the finite element (FE) method. A novel consistent finite homogenization element is given with respect to discretized residual formulations and linearization terms. The presented FE has no restrictions regarding the thermomechanical constitutive laws that are characterizing the microstructure. A first verification of the presented approach is carried out against semi-analytical and reference solutions within the range of one-dimensional small strain thermoelasticity. Further verification is obtained by a comparison to the classical FE^2 method and its different types of boundary conditions within a finite deformation setting of purely mechanical problems. Furthermore, the efficiency of the novel approach is investigated and compared. Finally, structural examples are shown in order to demonstrate the applicability of the presented homogenization framework in case of finite thermo-inelasticity at different length scales.

  2. Constituting fully integrated visual analysis system for Cu(II) on TiO₂/cellulose paper.

    PubMed

    Li, Shun-Xing; Lin, Xiaofeng; Zheng, Feng-Ying; Liang, Wenjie; Zhong, Yanxue; Cai, Jiabai

    2014-07-15

    As a cheap and abundant porous material, cellulose filter paper was used to immobilize nano-TiO2 and denoted as TiO2/cellulose paper (TCP). With high adsorption capacity for Cu(II) (more than 1.65 mg), TCP was used as an adsorbent, photocatalyst, and colorimetric sensor at the same time. Under the optimum adsorption conditions, i.e., pH 6.5 and 25 °C, the adsorption ratio of Cu(II) was higher than 96.1%. Humic substances from the matrix could be enriched onto TCP but the interference of their colors on colorimetric detection could be eliminated by the photodegradation. In the presence of hydroxylamine, neocuproine, as a selective indicator, was added onto TCP, and a visual color change from white to orange was generated. The concentration of Cu(II) was quantified by the color intensity images using image processing software. This fully integrated visual analysis system was successfully applied for the detection of Cu(II) in 10.0 L of drinking water and seawater with a preconcentration factor of 10(4). The log-linear calibration curve for Cu(II) was in the range of 0.5-50.0 μg L(-1) with a determination coefficient (R(2)) of 0.985 and its detection limit was 0.073 μg L(-1).

  3. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis

    DOE PAGES

    Gao, Wei; Emaminejad, Sam; Nyein, Hnin Yin Yin; Challa, Samyuktha; Chen, Kevin; Peck, Austin; Fahad, Hossain M.; Ota, Hiroki; Shiraki, Hiroshi; Kiriya, Daisuke; et al

    2016-01-27

    We report that wearable sensor technologies are essential to the realization of personalized medicine through continuously monitoring an individual’s state of health. Sampling human sweat, which is rich in physiological information13, could enable non-invasive monitoring. Previously reported sweat-based and other noninvasive biosensors either can only monitor a single analyte at a time or lack on-site signal processing circuitry and sensor calibration mechanisms for accurate analysis of the physiological state14–18. Given the complexity of sweat secretion, simultaneous and multiplexed screening of target biomarkers is critical and requires full system integration to ensure the accuracy of measurements. Here we present a mechanicallymore » flexible and fully integrated (that is, no external analysis is needed) sensor array for multiplexed in situ perspiration analysis, which simultaneously and selectively measures sweat metabolites (such as glucose and lactate) and electrolytes (such as sodium and potassium ions), as well as the skin temperature (to calibrate the response of the sensors). Lastly, our work bridges the technological gap between signal transduction, conditioning (amplification and filtering), processing and wireless transmission in wearable biosensors by merging plasticbased sensors that interface with the skin with silicon integrated circuits consolidated on a flexible circuit board for complex signal processing.« less

  4. Design and implementation of a high sensitivity fully integrated passive UHF RFID tag

    NASA Astrophysics Data System (ADS)

    Shoucheng, Li; Xin'an, Wang; Ke, Lin; Jinpeng, Shen; Jinhai, Zhang

    2014-10-01

    A fully integrated passive UHF RFID tag complying with the ISO18000-6B protocol is presented, which includes an analog front-end, a baseband processor, and an EEPROM memory. To extend the communication range, a high efficiency differential-drive CMOS rectifier is adopted. A novel high performance voltage limiter is used to provide a stable limiting voltage, with a 172 mV voltage variation against temperature variation and process dispersion. The dynamic band-enhancement technique is used in the regulator circuit to improve the regulating capacity. A rail-to-rail hysteresis comparator is adopted to demodulate the signal correctly in any condition. The whole transponder chip is implemented in a 0.18 μm CMOS process, with a die size of 900 × 800 μm2. Our measurement results show that the total power consumption of the tag chip is only 6.8 μW, with a sensitivity of -13.5 dBm

  5. A fully continuous individual-based model of tumor cell evolution.

    PubMed

    Gómez-Mourelo, Pablo; Sánchez, Eva; Casasús, Luis; Webb, Glenn F

    2008-11-01

    The aim of this work is to develop and study a fully continuous individual-based model (IBM) for cancer tumor invasion into a spatial environment of surrounding tissue. The IBM improves previous spatially discrete models, because it is continuous in all variables (including spatial variables), and thus not constrained to lattice frameworks. The IBM includes four types of individual elements: tumor cells, extracellular macromolecules (MM), a matrix degradative enzyme (MDE), and oxygen. The algorithm underlying the IBM is based on the dynamic interaction of these four elements in the spatial environment, with special consideration of mutation phenotypes. A set of stochastic differential equations is formulated to describe the evolution of the IBM in an equivalent way. The IBM is scaled up to a system of partial differential equations (PDE) representing the limiting behavior of the IBM as the number of cells and molecules approaches infinity. Both models (IBM and PDE) are numerically simulated with two kinds of initial conditions: homogeneous MM distribution and heterogeneous MM distribution. With both kinds of initial MM distributions spatial fingering patterns appear in the tumor growth. The output of both simulations is quite similar.

  6. A Prototype Two-Decade Fully-Coupled Fine-Resolution CCSM Simulation

    SciTech Connect

    McClean, Julie L.; Bader, David C; Bryan, Frank O.; Maltrud, Matthew E.; Dennis, John; Mirin, Arthur A.; Jones, Philip W; Vertenstein, Mariana; Ivanova, Detelina P.; Kim, Yoo Yin; Boyle, James S.; Jacob, Robert L.; Norton, Nancy; Craig, Anthony; Worley, Patrick H

    2011-01-01

    A fully coupled global simulation using the Community Climate System Model (CCSM) was configured using grid resolutions of 0.1{sup o} for the ocean and sea-ice, and 0.25{sup o} for the atmosphere and land, and was run under present-day greenhouse gas conditions for 20 years. It represents one of the first efforts to simulate the planetary system at such high horizontal resolution. The climatology of the circulation of the atmosphere and the upper ocean were compared with observational data and reanalysis products to identify persistent mean climate biases. Intensified and contracted polar vortices, and too cold sea surface temperatures (SSTs) in the subpolar and mid-latitude Northern Hemisphere were the dominant biases produced by the model. Intense category 4 cyclones formed spontaneously in the tropical North Pacific. A case study of the ocean response to one such event shows the realistic formation of a cold SST wake, mixed layer deepening, and warming below the mixed layer. Too many tropical cyclones formed in the North Pacific however, due to too high SSTs in the tropical eastern Pacific. In the North Atlantic anomalously low SSTs lead to a dearth of hurricanes. Agulhas eddy pathways are more realistic than in equivalent stand-alone ocean simulations forced with atmospheric reanalysis.

  7. Heat transfer from a fully-developed pulsating flow in a curved pipe

    NASA Astrophysics Data System (ADS)

    Chung, Jae Hwa; Hyun, Jae Min

    1994-01-01

    Numerical studies are made of the flow and heat transfer characteristics of a fully-developed pulsating flow in a strongly curved pipe. Emphasis is placed on delineating the effects of the Reynolds number, and pulsation amplitude and frequency. By using a toroidal coordinate system, the complete, time-dependent incompressible Navier-Stokes equations are formulated. The peripherally-uniform temperature condition is imposed on the pipe wall. Particular attention is given to heat transfer properties over substantially extended parameter ranges of the Reynolds number Re and the Womersley number Wo. Use is made of a well-established numerical solution procedure, with minor amendments. The computed results on the flow field are in close agreement with the existing data in the overlapping parameter ranges. The spatial distributions of axial and secondary flows are depicted. The time variations of flow structure are displayed. The numerical results on the spatial and temporal variations of the thermal field are presented. The circumferential profiles of local Nusselt number are plotted at selected instants. When Wo is small, the time- and space-averaged Nusselt numbers, bar-Nu(sub w), is lower for a pulsating flow than for a corresponding non-pulsating flow. At moderate and high Wo, however, the difference in bar-Nu(sub w) between a pulsating and a non-pulsating flow is insignificant.

  8. Fluid-particle characteristics in fully-developed cluster-induced turbulence

    NASA Astrophysics Data System (ADS)

    Capecelatro, Jesse; Desjardins, Olivier; Fox, Rodney

    2014-11-01

    In this study, we present a theoretical framework for collisional fluid-particle turbulence. To identify the key mechanisms responsible for energy exchange between the two phases, an Eulerian-Lagrangian strategy is used to simulate fully-developed cluster-inudced turbulence (CIT) under a range of Reynolds numbers, where fluctuations in particle concentration generate and sustain the carrier-phase turbulence. Using a novel filtering approach, a length-scale separation between the correlated particle velocity and uncorrelated granular temperature (GT) is achieved. This separation allows us to extract the instantaneous Eulerian volume fraction, velocity and GT fields from the Lagrangian data. Direct comparisons can thus be made with the relevant terms that appear in the multiphase turbulence model. It is shown that the granular pressure is highly anisotropic, and thus additional transport equations (as opposed to a single equation for GT) are necessary in formulating a predictive multiphase turbulence model. In addition to reporting the relevant contributions to the Reynolds stresses of each phase, two-point statistics, integral length/timescales, averages conditioned on the local volume fraction, and PDFs of the key multiphase statistics are presented and discussed. The research reported in this paper is partially supported by the HPC equipment purchased through U.S. National Science Foundation MRI Grant Number CNS 1229081 and CRI Grant Number 1205413.

  9. Fully-Implicit Orthogonal Reconstructed Discontinuous Galerkin for Fluid Dynamics with Phase Change

    DOE PAGES

    Nourgaliev, R.; Luo, H.; Weston, B.; Anderson, A.; Schofield, S.; Dunn, T.; Delplanque, J. -P.

    2015-11-11

    A new reconstructed Discontinuous Galerkin (rDG) method, based on orthogonal basis/test functions, is developed for fluid flows on unstructured meshes. Orthogonality of basis functions is essential for enabling robust and efficient fully-implicit Newton-Krylov based time integration. The method is designed for generic partial differential equations, including transient, hyperbolic, parabolic or elliptic operators, which are attributed to many multiphysics problems. We demonstrate the method’s capabilities for solving compressible fluid-solid systems (in the low Mach number limit), with phase change (melting/solidification), as motivated by applications in Additive Manufacturing (AM). We focus on the method’s accuracy (in both space and time), as wellmore » as robustness and solvability of the system of linear equations involved in the linearization steps of Newton-based methods. The performance of the developed method is investigated for highly-stiff problems with melting/solidification, emphasizing the advantages from tight coupling of mass, momentum and energy conservation equations, as well as orthogonality of basis functions, which leads to better conditioning of the underlying (approximate) Jacobian matrices, and rapid convergence of the Krylov-based linear solver.« less

  10. Flow Structures in a Healthy and Plaqued Artificial Artery using Fully Index Matched Vascular Flow Facility

    NASA Astrophysics Data System (ADS)

    Mehdi, Faraz; Jain, Akash; Sheng, Jian

    2014-11-01

    Particle Image Velocimetry measurements are made in a closed loop fully index matched flow facility to study the flow structures and flow wall interactions in healthy and diseased model arteries. The test section is 0.63 m long and the facility is capable of emulating both steady and pulsatile flows under physiologically relevant conditions. The model arteries are in-house developed compliant polymer (PDMS) tubes with 1 cm diameter and 1 mm wall thickness. The Reynolds numbers of flows vary up to 20,000. The plaque is simulated by introducing a radially asymmetric bump that can be varied in shape, size and compliancy. The overall compliancy of the model can be also controlled by varying ratio between the elastomer and the curing agent. The tubes are doped with particles allowing the simultaneous measurements of wall deformation and flows over it. The working fluid in the facility is NaI and is refractive index matched to the PDMS model. This allows flow measurement very close to the wall and measurement of wall shear stress. The aim of this study is to characterize the changes in flow as the compliancy and geometry of blood vessels change due to age or disease. These differences can be used to develop a diagnostic tool to detect early onset of vascular diseases.

  11. Comparison between hybrid and fully kinetic models of asymmetric magnetic reconnection: Coplanar and guide field configurations

    SciTech Connect

    Aunai, Nicolas; Hesse, Michael; Kuznetsova, Maria; Black, Carrie; Evans, Rebekah; Zenitani, Seiji; Smets, Roch

    2013-02-15

    Magnetic reconnection occurring in collisionless environments is a multi-scale process involving both ion and electron kinetic processes. Because of their small mass, the electron scales are difficult to resolve in numerical and satellite data, it is therefore critical to know whether the overall evolution of the reconnection process is influenced by the kinetic nature of the electrons, or is unchanged when assuming a simpler, fluid, electron model. This paper investigates this issue in the general context of an asymmetric current sheet, where both the magnetic field amplitude and the density vary through the discontinuity. A comparison is made between fully kinetic and hybrid kinetic simulations of magnetic reconnection in coplanar and guide field systems. The models share the initial condition but differ in their electron modeling. It is found that the overall evolution of the system, including the reconnection rate, is very similar between both models. The best agreement is found in the guide field system, which confines particle better than the coplanar one, where the locality of the moments is violated by the electron bounce motion. It is also shown that, contrary to the common understanding, reconnection is much faster in the guide field system than in the coplanar one. Both models show this tendency, indicating that the phenomenon is driven by ion kinetic effects and not electron ones.

  12. X-ray analysis of fully depleted CCDs with small pixel size

    NASA Astrophysics Data System (ADS)

    Kotov, I. V.; Haupt, J.; Kubanek, P.; O`Connor, P.; Takacs, P.

    2015-07-01

    X-ray frames offer a lot of information about CCD. 55 Fe sources are traditionally being used for CCD gain and charge transfer efficiency (CTE) measurements. In addition X-rays can be used for the system linearity test. We demonstrate how spectral lines of 55Fe and 241Am rad. sources are used for system linearity measurements. The pixel size of modern scientific CCDs is getting smaller. The charge diffusion causes the charge spread among neighboring pixels especially in thick fully depleted sensors. This enables measurement of the charge diffusion using 55Fe X-rays. On the other hand, the usual CTE characterization method based on single pixel X-ray events becomes statistically deficient. A new way of measuring CTE using shape and amplitude analysis of X-ray clusters is presented and discussed. This method requires high statistical samples. Advances in test automation and express analysis technique allow for acquiring such statistical samples in a short period of time. The lateral diffusion measured using e2v CCD250 is presented and implications for X-ray cluster size and expected cluster shape are discussed. The CTE analysis using total X-ray cluster amplitude is presented. This analysis can reveal CTE problems for certain conditions. The statistical analysis of average X-ray cluster shape is presented. The details of our measurement procedure are presented.

  13. Characterization of ASKP1240, a Fully Human Antibody Targeting Human CD40 With Potent Immunosuppressive Effects

    PubMed Central

    Okimura, K; Maeta, K; Kobayashi, N; Goto, M; Kano, N; Ishihara, T; Ishikawa, T; Tsumura, H; Ueno, A; Miyao, Y; Sakuma, S; Kinugasa, F; Takahashi, N; Miura, T

    2014-01-01

    Blocking the CD40–CD154 interaction is reported to be effective for transplantation management and autoimmune disease models in rodents and nonhuman primates. However, clinical trials with anti-CD154 mAbs were halted because of high incidence of thromboembolic complications. Thus, we generated and characterized a fully human anti-CD40 mAb ASKP1240, as an alternative to anti-CD154 mAb. In vitro ASKP1240 concentration-dependently inhibited human peripheral blood mononuclear cell proliferation induced by soluble CD154. In addition, ASKP1240 did not destabilize platelet thrombi under physiological high shear conditions while mouse anti-human CD154 mAb (mu5C8) did. And ASKP1240 itself did not activate platelet and endothelial cells. In vivo administration of ASKP1240 (1 or 10 mg/kg, intravenously) to cynomolgus monkeys, weekly for 3 weeks, significantly attenuated both delayed-type hypersensitivity and specific antibody formation evoked by tetanus toxoid. The immunosuppressive effect was well correlated with the CD40 receptor saturation. Thus, these results suggest that ASKP1240 is immunosuppressive but not prothromboembolic, and as such appears to be a promising therapeutic candidate for the management of solid organ transplant rejection and autoimmune diseases therapy. PMID:24731050

  14. Design and operation of a fully implantable SMA actuated implant for correcting short bowel syndrome

    NASA Astrophysics Data System (ADS)

    Utter, Brent; Luntz, Jonathan; Brei, Diann; Teitelbaum, Daniel; Okawada, Manabu; Miyasaka, Eiichi

    2009-03-01

    Short Bowel Syndrome (SBS) is medical condition characterized by insufficient small intestine length, leading to improper nutrient absorption and significant mortality rates. The complications of current treatment methods have encouraged the development of a novel treatment method based on mechanotransduction, the process through which mechanical tensile loading induces longitudinal growth of intestine. Animal based studies with simple extension devices have demonstrated the potential of the treatment to grow healthy bowel, but an implantable device suitable for clinical use remains undeveloped. This paper presents the development of an instrumented fully implantable bowel extender based upon a shape memory alloy driven linear ratchet that can be controlled and monitored remotely. The overall bowel extender system is described with respect to specifications for pig experimental tests. The functionality of the mechanical and electrical subsystems of the device are detailed and experimentally validated on the bench top, in segments of living bowel tissue removed from a pig, and in cadaveric pigs. Mechanical loading characteristics and safe load limits on bowel tissue are identified. Results from these experiments establish the readiness of the device to be tested in living pigs, enabling studies to move one step closer to clinical studies.

  15. Fully-Implicit Orthogonal Reconstructed Discontinuous Galerkin for Fluid Dynamics with Phase Change

    SciTech Connect

    Nourgaliev, R.; Luo, H.; Weston, B.; Anderson, A.; Schofield, S.; Dunn, T.; Delplanque, J. -P.

    2015-11-11

    A new reconstructed Discontinuous Galerkin (rDG) method, based on orthogonal basis/test functions, is developed for fluid flows on unstructured meshes. Orthogonality of basis functions is essential for enabling robust and efficient fully-implicit Newton-Krylov based time integration. The method is designed for generic partial differential equations, including transient, hyperbolic, parabolic or elliptic operators, which are attributed to many multiphysics problems. We demonstrate the method’s capabilities for solving compressible fluid-solid systems (in the low Mach number limit), with phase change (melting/solidification), as motivated by applications in Additive Manufacturing (AM). We focus on the method’s accuracy (in both space and time), as well as robustness and solvability of the system of linear equations involved in the linearization steps of Newton-based methods. The performance of the developed method is investigated for highly-stiff problems with melting/solidification, emphasizing the advantages from tight coupling of mass, momentum and energy conservation equations, as well as orthogonality of basis functions, which leads to better conditioning of the underlying (approximate) Jacobian matrices, and rapid convergence of the Krylov-based linear solver.

  16. Investigation of security related fully polarimetric signatures of radiometer measurements at W band

    NASA Astrophysics Data System (ADS)

    Dill, Stephan; Peichl, Markus; Rudolf, Daniel

    2011-11-01

    The actual and continuous threat by international terrorism and the increasing number of terroristic attacks raise the danger to the public and create a new and more complex dimension of threat. This evolution must and can only be combat by the application of new counter-measures like advanced imaging technologies for wide-area surveillance and the detection of concealed dangerous objects. Passive microwave remote sensing allows a daytime independent non-destructive observation and examination of the objects of interest under nearly all weather conditions without artificial exposure of persons and observation areas, hence fully avoiding health risks. Furthermore the acquisition of polarimetric object characteristics can increase the detection capability by gathering complementary object information. The recent development and construction of a fullypolarimetric receiver at W band allows the acquisition of a new dimension of information compared to former imaging capabilities. The new receiver can be part of various imaging systems used at DLR over the years. This paper will show some imaging results recorded recently from different sceneries.

  17. Novel route to fatigue-resistant fully sintered ultrahigh molecular weight polyethylene for knee prosthesis.

    PubMed

    Rastogi, S; Kurelec, L; Lippits, D; Cuijpers, J; Wimmer, M; Lemstra, P J

    2005-01-01

    The role of entanglements in obtaining a homogeneous product of ultrahigh molecular weight polyethylene (UHMW-PE) has been explored. Studies performed in this report show that a disentangled state before melting is a prerequisite to obtain homogeneous products of an intractable polymer like UHMW-PE. The disentangled state is obtained directly from the reactor by controlling the polymerization conditions or in the solid state when there is enhanced chain mobility along the c axis of a unit cell. The disentangled state is maintained in the melt over a period of time, invoking implications in polymer rheology. This approach is applicable to polymers in general. The homogeneous fully sintered UHMW-PE, obtained for the first time, shows a considerable decrease in oxygen permeability and an increase in toughness and fatigue resistance. Such homogeneous products of UHMW-PE are beneficial in highly demanding applications, especially in knee prosthesis, where the polymer is used as an inlay between the human bone and a metal or ceramic part, which slides against the polyethylene component during normal gait. PMID:15762663

  18. Carina® and Esteem®: A Systematic Review of Fully Implantable Hearing Devices

    PubMed Central

    Pulcherio, Janaina Oliveira Bentivi; Bittencourt, Aline Gomes; Burke, Patrick Rademaker; Monsanto, Rafael da Costa; de Brito, Rubens; Tsuji, Robinson Koji; Bento, Ricardo Ferreira

    2014-01-01

    Objective To review the outcomes of the fully implantable middle ear devices Carina and Esteem regarding the treatment of hearing loss. Data Sources PubMed, Embase, Scielo, and Cochrane Library databases were searched. Study Selection Abstracts of 77 citations were screened, and 43 articles were selected for full review. From those, 22 studies and two literature reviews in English directly demonstrating the results of Carina and Esteem were included. Data Extraction There were a total of 244 patients ranging from 18 to 88 years. One hundred and 10 patients were implanted with Carina and with 134 Esteem. There were registered 92 males and 67 females. Five studies provided no information about patients’ age or gender. From the data available, the follow-up ranged from 2 to 29.4 months. Data Synthesis The comparison of the results about word recognition is difficult as there was no standardization of measurement. The results were obtained from various sound intensities and different frequencies. The outcomes comparing to conventional HAs were conflicting. Nevertheless, all results comparing to unaided condition showed improvement and showed a subjective improvement of quality of life. Conclusion There are still some problems to be solved, mainly related to device functioning and price. Due to the relatively few publications available and small sample sizes, we must be careful in extrapolating these results to a broader population. Additionally, none of all these studies represented level high levels of evidence (i.e. randomized controlled trials). PMID:25329463

  19. The Instructor Experience of Fully Online Tertiary Mathematics: A Challenge and an Opportunity

    ERIC Educational Resources Information Center

    Trenholm, Sven; Alcock, Lara; Robinson, Carol

    2016-01-01

    As part of a dramatic recent shift in tertiary education, many undergraduate students now learn mathematics via fully online courses. At present, the mathematics education research community knows very little about this shift. The authors consider implications of an investigation into the instructor experience of fully online undergraduate…

  20. 20 CFR 404.110 - How we determine fully insured status.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... this section. We consider certain World War II veterans to have died fully insured (see § 404.111). We... benefits in case of certain persons interned in the United States during World War II). (e) When your fully... became age 21, and before the year you reach retirement age, that is, before— (i) The year you become...

  1. 20 CFR 404.110 - How we determine fully insured status.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... this section. We consider certain World War II veterans to have died fully insured (see § 404.111). We... benefits in case of certain persons interned in the United States during World War II). (e) When your fully... became age 21, and before the year you reach retirement age, that is, before— (i) The year you become...

  2. 20 CFR 404.110 - How we determine fully insured status.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... this section. We consider certain World War II veterans to have died fully insured (see § 404.111). We... benefits in case of certain persons interned in the United States during World War II). (e) When your fully... became age 21, and before the year you reach retirement age, that is, before— (i) The year you become...

  3. 20 CFR 404.110 - How we determine fully insured status.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... this section. We consider certain World War II veterans to have died fully insured (see § 404.111). We... benefits in case of certain persons interned in the United States during World War II). (e) When your fully... became age 21, and before the year you reach retirement age, that is, before— (i) The year you become...

  4. 20 CFR 404.110 - How we determine fully insured status.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... this section. We consider certain World War II veterans to have died fully insured (see § 404.111). We... benefits in case of certain persons interned in the United States during World War II). (e) When your fully... became age 21, and before the year you reach retirement age, that is, before— (i) The year you become...

  5. 10 CFR 603.540 - Acceptability of fully depreciated real property or equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Acceptability of fully depreciated real property or equipment. 603.540 Section 603.540 Energy DEPARTMENT OF ENERGY (CONTINUED) ASSISTANCE REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Pre-Award Business Evaluation Cost Sharing § 603.540 Acceptability of fully...

  6. 17 CFR 270.17a-3 - Exemption of transactions with fully owned subsidiaries.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Exemption of transactions with fully owned subsidiaries. 270.17a-3 Section 270.17a-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.17a-3 Exemption of transactions with fully...

  7. A preliminary study for fully automated quantification of psoriasis severity using image mapping

    NASA Astrophysics Data System (ADS)

    Mukai, Kazuhiro; Iyatomi, Hitoshi

    2014-03-01

    Psoriasis is a common chronic skin disease and it detracts patients' QoL seriously. Since there is no known permanent cure so far, controlling appropriate disease condition is necessary and therefore quantification of its severity is important. In clinical, psoriasis area and severity index (PASI) is commonly used for abovementioned purpose, however it is often subjective and troublesome. A fully automatic computer-assisted area and severity index (CASI) was proposed to make an objective quantification of skin disease. It investigates the size and density of erythema based on digital image analysis, however it does not consider various inadequate effects caused by different geometrical conditions under clinical follow-up (i.e. variability in direction and distance between camera and patient). In this study, we proposed an image alignment method for clinical images and investigated to quantify the severity of psoriasis under clinical follow-up combined with the idea of CASI. The proposed method finds geometrical same points in patient's body (ROI) between images with Scale Invariant Feature Transform (SIFT) and performs the Affine transform to map the pixel value to the other. In this study, clinical images from 7 patients with psoriasis lesions on their trunk under clinical follow-up were used. In each series, our image alignment algorithm align images to the geometry of their first image. Our proposed method aligned images appropriately on visual assessment and confirmed that psoriasis areas were properly extracted using the approach of CASI. Although we cannot evaluate PASI and CASI directly due to their different definition of ROI, we confirmed that there is a large correlation between those scores with our image quantification method.

  8. Using Clustered Climate Regimes to Analyze and Compare Predictions from Fully Coupled General Circulation Models

    SciTech Connect

    Hoffman, Forrest M; Hargrove, William Walter; Erickson III, David J; Oglesby, Robert J

    2005-01-01

    Changes in Earth's climate in response to atmospheric greenhouse gas buildup impact the health of terrestrial ecosystems and the hydrologic cycle. The environmental conditions influential to plant and animal life are often mapped as ecoregions, which are land areas having similar combinations of environmental characteristics. This idea is extended to establish regions of similarity with respect to climatic characteristics that evolve through time using a quantitative statistical clustering technique called Multivariate Spatio-Temporal Clustering (MSTC). MSTC was applied to the monthly time series output from a fully coupled general circulation model (GCM) called the Parallel Climate Model (PCM). Results from an ensemble of five 99-yr Business-As-Usual (BAU) transient simulations from 2000 to 2098 were analyzed. MSTC establishes an exhaustive set of recurring climate regimes that form a 'skeleton' through the 'observations' (model output) throughout the occupied portion of the climate phase space formed by the characteristics being considered. MSTC facilitates direct comparison of ensemble members and ensemble and temporal averages since the derived climate regimes provide a basis for comparison. Moreover, by mapping all land cells to discrete climate states, the dynamic behavior of any part of the system can be studied by its time-varying sequence of climate state occupancy. MSTC is a powerful tool for model developers and environmental decision makers who wish to understand long, complex time series predictions of models. Strong predicted interannual trends were revealed in this analysis, including an increase in global desertification; a decrease in the cold, dry high-latitude conditions typical of North American and Asian winters; and significant warming in Antarctica and western Greenland.

  9. Rapid Hurricane Intensity Change: Results using High-Resolution Fully Coupled Atmosphere-Wave-Ocean Model

    NASA Astrophysics Data System (ADS)

    Chen, S. S.

    2008-12-01

    The extreme active Atlantic hurricane seasons in recent years have highlighted the urgent need for a better understanding of the factors that contribute to rapid hurricane intensity and for development of the corresponding advanced hurricane prediction models to improve intensity forecasts. The lack of skill in present forecasts of hurricane structure and intensity may be attributed in part to deficiencies in the current prediction models: insufficient grid resolution, inadequate surface and boundary layer formulations, and the lack of full coupling to a dynamic ocean. The extreme high winds, intense rainfall, large ocean waves, and copious sea spray in hurricanes push the surface-exchange parameters for temperature, water vapor, and momentum into untested regimes. The recent modeling effort at the University of Miami is to develop and test a fully coupled atmosphere-wave-ocean modeling system (UMCM) that is capable of resolving the eye and eyewall in a hurricane at ~1 km grid resolution. The new challenges for these very high resolution models are the corresponding physical representations at 1-km scale, including microphysics, sub-grid turbulence parameterization, atmospheric boundary layer, physical processes at the air-sea interface with surface waves among others. The lack of accurate initial conditions for high-resolution hurricane modeling presents another major challenge. Improvements in initial conditions rest on the use of airborne and remotely sensed observations (e.g., QuikSCAT and other satellite data) in high-resolution assimilation systems and on the application of advanced assimilation schemes to hurricanes. This study aimed to provide an overview of these new challenges using high-resolution coupled model simulations of hurricanes in 2003-2008. Several cases were observed extensively by two recent field programs, namely, the Coupled Boundary Layer Air-Sea Transfer (CBLAST)-Hurricane in 2003-2004 and the Hurricane Rainbands and Intensity Change

  10. Practical fully three-dimensional reconstruction algorithms for diffuse optical tomography.

    PubMed

    Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish

    2012-06-01

    We have developed an efficient fully three-dimensional (3D) reconstruction algorithm for diffuse optical tomography (DOT). The 3D DOT, a severely ill-posed problem, is tackled through a pseudodynamic (PD) approach wherein an ordinary differential equation representing the evolution of the solution on pseudotime is integrated that bypasses an explicit inversion of the associated, ill-conditioned system matrix. One of the most computationally expensive parts of the iterative DOT algorithm, the reevaluation of the Jacobian in each of the iterations, is avoided by using the adjoint-Broyden update formula to provide low rank updates to the Jacobian. In addition, wherever feasible, we have also made the algorithm efficient by integrating along the quadratic path provided by the perturbation equation containing the Hessian. These algorithms are then proven by reconstruction, using simulated and experimental data and verifying the PD results with those from the popular Gauss-Newton scheme. The major findings of this work are as follows: (i) the PD reconstructions are comparatively artifact free, providing superior absorption coefficient maps in terms of quantitative accuracy and contrast recovery; (ii) the scaling of computation time with the dimension of the measurement set is much less steep with the Jacobian update formula in place than without it; and (iii) an increase in the data dimension, even though it renders the reconstruction problem less ill conditioned and thus provides relatively artifact-free reconstructions, does not necessarily provide better contrast property recovery. For the latter, one should also take care to uniformly distribute the measurement points, avoiding regions close to the source so that the relative strength of the derivatives for measurements away from the source does not become insignificant.

  11. The impact on climate of groundwater induced soil moisture memory : a study with a fully coupled WRF-LEAFHYDRO system

    NASA Astrophysics Data System (ADS)

    Miguez-Macho, Gonzalo; Gómez, Breogán; Martínez-de la Torre, Alberto

    2014-05-01

    Groundwater dynamics and its interactions with the land-atmosphere system are increasingly being taking into consideration in climate and ecosystem modeling studies. A shallow water table slows down drainage and affects soil moisture and potentially evapotranspiration (ET) and climate, particularly in water-limited environments. Our area of interest, the Iberian Peninsula, with a typical Mediterranean climate of dry growing season, is one of such regions where ET is largely constrained by water availability. We investigate how the induced memory on soil moisture by groundwater affects spring precipitation and summer temperatures there using a fully coupled WRF-LEAFHYDRO system. The LEAFHYDRO Land Surface Model includes groundwater dynamics with a realistic water table validated with hundreds of observations over Spain and Portugal. We perform two sets of long-term offline simulations, with and without groundwater forced by ERA-Interim and detailed precipitation analyses for the Iberian Peninsula. The corresponding fully coupled simulations with the Weather Research and Forecasting model (WRF), using exactly the same grid, take initial conditions from the off-line simulations at the end of the winter and are run for spring and summer, when we expect the impact of ET on climate to be largest. After a dry winter, in the run with groundwater soils are considerably wetter in regions with shallow water table and WRF results indicate that during spring the impact on precipitation can be sizeable when synoptic conditions are favorable for convection. Increased ET in the summer due also to more moisture availability in the run with groundwater leads in general to cooler temperatures. These preliminary results highlight the important role of groundwater on climate and the advantages of a fully coupled hydrology-atmospheric modeling system.

  12. Room Temperature Microstructure and Property Evaluation of a Heat Treated Fully Bainitic 20CrMoVTiB410 Steel

    NASA Astrophysics Data System (ADS)

    Srivatsa, Kulkarni; Srinivas, Perla; Balachandran, G.; Balasubramanian, V.

    2016-10-01

    The room temperature mechanical behavior of the fully bainitic steel grade 20CrMoVTiB410 was studied in the as-quenched and tempered conditions. The hardenability response of the steel during heat treatment was assessed. In the as-quenched condition itself, the steel exhibited a good combination of strength, ductility and toughness. Tempering the quenched steel till to 550°C, showed uniform mechanical properties. Tempering at 650°C showed secondary hardening behaviour, where the highest strength and least impact toughness was observed. Tempering at 700°C showed a sharp decrease in strength but with significant enhancement of toughness. The properties obtained were correlated with the microstructure and phase analysis was established using optical, scanning electron microscope, transmission electron microscope and x-ray diffraction techniques.

  13. Room Temperature Microstructure and Property Evaluation of a Heat Treated Fully Bainitic 20CrMoVTiB410 Steel

    NASA Astrophysics Data System (ADS)

    Srivatsa, Kulkarni; Srinivas, Perla; Balachandran, G.; Balasubramanian, V.

    2016-08-01

    The room temperature mechanical behavior of the fully bainitic steel grade 20CrMoVTiB410 was studied in the as-quenched and tempered conditions. The hardenability response of the steel during heat treatment was assessed. In the as-quenched condition itself, the steel exhibited a good combination of strength, ductility and toughness. Tempering the quenched steel till to 550°C, showed uniform mechanical properties. Tempering at 650°C showed secondary hardening behaviour, where the highest strength and least impact toughness was observed. Tempering at 700°C showed a sharp decrease in strength but with significant enhancement of toughness. The properties obtained were correlated with the microstructure and phase analysis was established using optical, scanning electron microscope, transmission electron microscope and x-ray diffraction techniques.

  14. Modeling Hydrological Processes with a Fully-Coupled Atmospheric-Hydrological Modeling System for the Poyang Lake Basin, China

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Fersch, B.; Yu, Z.; Yuan, F.; Kunstmann, H.

    2015-12-01

    For a rational quantification of past, current and future water availability, the feedback mechanisms among atmosphere, land surface and subsurface play a crucial role. Investigations of these feedback mechanisms require coupled atmospheric-hydrological modeling systems. Investigations of climate and land use changes on the regional water balance require model systems, which describe the feedback mechanisms between groundwater-, soil moisture dynamics and precipitation and which allow long-term simulations for climate-relevant scales. We have developed such a fully-coupled, meso-scale modeling system extending the atmospheric model WRF-ARW with the hydrological model HMS, which includes lateral water fluxes at the land surface and subsurface. In addition, two-way interaction between the saturated and the unsaturated zone is implemented by replacing the free drainage bottom boundary of the Noah Land Surface Model (LSM) with two approaches, a Fixed-head boundary condition assuming an equilibrium soil moisture distribution or a Darcy-flux at the boundary assuming a quasi-steady-state moisture profile below the LSM. The computational demand of this coupled model system allows long-term simulations. The first application of the fully-coupled modeling system is for the Poyang Lake basin (160,000 km²) in South China for the years 1979-1986. The performance of fully-coupled simulations requires first rational setups of WRF and HMS. For WRF, a double-nesting approach is applied covering East Asia at 30 km resolution and the Poyang Lake basin at 10 km using ERA Interim data as global forcing. HMS simulations are performed on the 10 km grid. Simulation results are validated against CRU, GPCC, APHRODITE, CPC, GLEAM and streamflow observations. The performance of stand-alone WRF, HMS and the fully coupled simulations are shown. Furthermore, the impact of groundwater coupling on soil moisture, evapotranspiration, temperature and precipitation is investigated. The potential of

  15. Fully committed.

    PubMed

    Chowdhury, R

    1997-01-01

    In India, HIV/AIDS is spreading rapidly because of high-risk heterosexual behavior and IV drug use. The Indian government has responded to the epidemic by creating a National AIDS Control Program in 1987 and a National AIDS Control Organization in 1992, which implemented a 5-year strategic play at the cost of Rs. 2.8 billion. The national program sought to 1) prevent and control sexually transmitted disease, 2) ensure the safety of the blood supply, 3) strengthen program management capabilities, 4) stimulate social mobilization, 5) launch an intensive national health communications campaign focussed on the needs of the rural population, 6) train physicians in the clinical management of HIV/AIDS, and 7) create 107 sentinel HIV surveillance sites. The achievements of this program during the past 5 years have revealed areas that require an expanded response. India is promoting condom use through social marketing, improving family counseling and clinical management of hospitalized AIDS patients, intensifying research to discover treatment modalities within the tradition of indigenous medicine, and taking measures to prevent social discrimination of HIV-infected people. The National AIDS Control Program for 1997-2002 will prioritize empowerment of women and protection of infected children through a multisectoral approach. The Indian government is currently negotiating with the World Bank for a second loan to cover the continuation of this program and pledges to join other nations in the battle against HIV/AIDS.

  16. Drainflow: a fully distributed integrated surface/subsurface flow model for drainage studies

    NASA Astrophysics Data System (ADS)

    Shokri, Ali; Bardsley, William Earl

    2015-04-01

    The scale of drainage studies may vary from high-resolution small scale investigations through to comprehensive catchment or regional-scale studies. This wide range of scales poses a significant challenge for the development of a suitable drainage model. To meet this demand, a fully distributed surface/subsurface interactive flow model named henceforth Drainflow has been developed. Drainflow includes both the Saint Venant equations for surface flow components and the Richards equation for saturated and unsaturated zones. To develop the model, surface and subsurface flow modules are formulated separately, then each component is connected to the other parts. All modules simultaneously interact to calculate water level and discharge in tile drains, channel networks, and overland flow. In the subsurface domain, the model also yields soil moisture and water table elevation. A smoothed Heaviside function is introduced to give a continuous transition of the model between Dirichlet and Neumann boundary conditions for tile drains and surface/subsurface flow interface boundaries. Compared to traditional drainage studies, Drainflow has the advantage of estimating the land surface recharge (LSR) directly from the partial differential Richards equation rather than via an analytical or empirical drainage method like the Green and Ampt equation. To test the model's accuracy, comparisons are made between Drainflow and a range of surface/subsurface flow models for five published integrated surface and subsurface problems. The comparison indicates Drainflow has a reasonably good agreement with the other integrated models. Furthermore, it is shown that the smoothed Heaviside functions technique is a very effective method to overcome the non-linearity problem created from switching between dry and wet boundary conditions. In addition, Drainflow was run for some drainage study examples and was found to be fairly flexible in terms of changing all or part of the model dimensions as

  17. Fully differential optoelectronic integrated receiver implemented by 0.35 μm standard CMOS process

    NASA Astrophysics Data System (ADS)

    Yu, Chang-Liang; Mao, Lu-Hong; Xiao, Xin-Dong; Xie, Sheng; Zhang, Shi-Lin

    2008-11-01

    A high-bandwidth, high-sensitivity fully differential optoelectronic integrated receiver is implemented in a chartered 3.3 V standard 0.35 μm analog CMOS process. To convert the incident light into a pair of fully differential photo-currents, a novel fully differential photodetector is proposed, which is composed of two completely identical photodiodes. The measurement results show that the receiver achieves a 1.11 GHz 3 dB bandwidth and a -13 dBm sensitivity for a 10-12 bit error at 1.5 Gb/s data rate under illumination by 850 nm incident lights.

  18. Tuberculosis Mortality and Living Conditions in Bern, Switzerland, 1856-1950

    PubMed Central

    Zürcher, Kathrin; Ballif, Marie; Zwahlen, Marcel; Rieder, Hans L.; Egger, Matthias; Fenner, Lukas

    2016-01-01

    Background Tuberculosis (TB) is a poverty-related disease that is associated with poor living conditions. We studied TB mortality and living conditions in Bern between 1856 and 1950. Methods We analysed cause-specific mortality based on mortality registers certified by autopsies, and public health reports 1856 to 1950 from the city council of Bern. Results TB mortality was higher in the Black Quarter (550 per 100,000) and in the city centre (327 per 100,000), compared to the outskirts (209 per 100,000 in 1911–1915). TB mortality correlated positively with the number of persons per room (r = 0.69, p = 0.026), the percentage of rooms without sunlight (r = 0.72, p = 0.020), and negatively with the number of windows per apartment (r = -0.79, p = 0.007). TB mortality decreased 10-fold from 330 per 100,000 in 1856 to 33 per 100,000 in 1950, as housing conditions improved, indoor crowding decreased, and open-air schools, sanatoria, systematic tuberculin skin testing of school children and chest radiography screening were introduced. Conclusions Improved living conditions and public health measures may have contributed to the massive decline of the TB epidemic in the city of Bern even before effective antibiotic treatment became finally available in the 1950s. PMID:26881850

  19. Fully Kinetic Simulations of Asymmetric Magnetic Reconnection at the Magnetopause with Different Configurations

    NASA Astrophysics Data System (ADS)

    Cazzola, Emanuele; Lapenta, Giovanni

    2015-04-01

    This work aim at presenting fully kinetic simulations of magnetic reconnection with the current sheet acrossed by asymmetric profiles in density and magnetic. Unlike traditional single layer o double mirrored layers, we here wanted to study the different behavior between a typical current sheet with continous profiles and a layer with a steep gradient profile. The former clearly represents those conditions standing at the nose of the magnetopause, where shocked solar wind encounters the magnetospheric plasma, which is currently widely studied given the imminent launch of the NASA MMS satellite's cluster completely devoted to the reconnection occurring in this area. The second layer, however, resembles the typical Riemann's problem conventionally used for studying formation and propagation of waves in aforementioned magnetospheric region. Additionally, steep gradient may also recall those conditions during the inflowing northward IMF, when a pure tangential discontinuity is present. We here mainly focus on this second configuration, where interesting features are observed from simulation. In fact, a very steep profile gradient seems to give origin to explosive multiple reconnection events all over the layer, which in turn lead to a rapid island merging and relevant energy release. Manifold analysis turns out to be addressed. First step concerns to better study the glaring and quick island merging, where presence of anti-reconnections may lead to the generation of vertical outflow jets and further particles heating. This latter point is intimately linked to the energetics of the process. Either ions and electrons normally increase energy thanks to the stored magnetic energy released by the reconnection event. However, it soon appears that separatrixes seem to play a more fundamental and spatially extensive role in increasing either ions or electrons thermal and bulk energy with respect to the reconnection region, which is the ultimate scale where magnetic

  20. DICE: Disk Initial Conditions Environment

    NASA Astrophysics Data System (ADS)

    Perret, Valentin

    2016-07-01

    DICE models initial conditions of idealized galaxies to study their secular evolution or their more complex interactions such as mergers or compact groups using N-Body/hydro codes. The code can set up a large number of components modeling distinct parts of the galaxy, and creates 3D distributions of particles using a N-try MCMC algorithm which does not require a prior knowledge of the distribution function. The gravitational potential is then computed on a multi-level Cartesian mesh by solving the Poisson equation in the Fourier space. Finally, the dynamical equilibrium of each component is computed by integrating the Jeans equations for each particles. Several galaxies can be generated in a row and be placed on Keplerian orbits to model interactions. DICE writes the initial conditions in the Gadget1 or Gadget2 (ascl:0003.001) format and is fully compatible with Ramses (ascl:1011.007).