Sample records for fully opening transient

  1. VOEventNet: An Open Source of Transient Alerts for Astronomers.

    NASA Astrophysics Data System (ADS)

    Drake, Andrew J.; Williams, R.; Graham, M. J.; Mahabal, A.; Djorgovski, S. G.; White, R. R.; Vestrand, W. T.; Bloom, J.

    2007-12-01

    Event based astronomy is acquiring an increasingly important role in astronomy as large time-domain surveys such as Palomar Transient Factory (PTF), Pan-STARRs, SkyMapper and Allan Telescope Array (ATA) surveys come online. These surveys are expected to discover thousands of transients each year ranging from near earth asteroids to distant SNe. Although the primary instruments for of these surveys are in place, in order to fully utilize these event discovery streams, automated alerting and follow-up is a necessity. For the past two years the VOEventNet network has been globally distributing information about transient astronomical events using the VOEvent format, a Virtual Observatory standard. Events messages are openly distributed so that follow-up can utilize the most appropriate resources available in order to characterize the nature of the transients. Since its inception VOEventNet has broadcast more than 3500 SDSSSS Supernova candidates, 3300 GRB alert and follow-up notices from GCN, 700 OGLE microlensing event candidates, and 4300 newly discovered asteroid and optical transient candidates from the Palomar Quest survey. Additional transient event streams are expected this season including optical transients from the Catalina Sky Survey. VOEventNet astronomical transient events streams are available to all astronomers via traditional HTML tables, RSS news-feeds, real-time publication (via Jabber and TCP), and Google Sky mashups. VOEventNet currently carries out optical transient event follow-up with the Palomar 60 and 200in (Caltech), Faulkes Telescopes North and South (LCOGTN), RAPTOR (LANL), and PARITEL (UCB; CfA).

  2. Method for experimental investigation of transient operation on Laval test stand for model size turbines

    NASA Astrophysics Data System (ADS)

    Fraser, R.; Coulaud, M.; Aeschlimann, V.; Lemay, J.; Deschenes, C.

    2016-11-01

    With the growing proportion of inconstant energy source as wind and solar, hydroelectricity becomes a first class source of peak energy in order to regularize the grid. The important increase of start - stop cycles may then cause a premature ageing of runners by both a higher number of cycles in stress fluctuations and by reaching a higher stress level in absolute. Aiming to sustain good quality development on fully homologous scale model turbines, the Hydraulic Machines Laboratory (LAMH) of Laval University has developed a methodology to operate model size turbines on transient regimes such as start-up, stop or load rejection on its test stand. This methodology allows maintaining a constant head while the wicket gates are opening or closing in a representative speed on the model scale of what is made on the prototype. This paper first presents the opening speed on model based on dimensionless numbers, the methodology itself and its application. Then both its limitation and the first results using a bulb turbine are detailed.

  3. The onset of visual experience gates auditory cortex critical periods

    PubMed Central

    Mowery, Todd M.; Kotak, Vibhakar C.; Sanes, Dan H.

    2016-01-01

    Sensory systems influence one another during development and deprivation can lead to cross-modal plasticity. As auditory function begins before vision, we investigate the effect of manipulating visual experience during auditory cortex critical periods (CPs) by assessing the influence of early, normal and delayed eyelid opening on hearing loss-induced changes to membrane and inhibitory synaptic properties. Early eyelid opening closes the auditory cortex CPs precociously and dark rearing prevents this effect. In contrast, delayed eyelid opening extends the auditory cortex CPs by several additional days. The CP for recovery from hearing loss is also closed prematurely by early eyelid opening and extended by delayed eyelid opening. Furthermore, when coupled with transient hearing loss that animals normally fully recover from, very early visual experience leads to inhibitory deficits that persist into adulthood. Finally, we demonstrate a functional projection from the visual to auditory cortex that could mediate these effects. PMID:26786281

  4. Principle of the electrically induced Transient Current Technique

    NASA Astrophysics Data System (ADS)

    Bronuzzi, J.; Moll, M.; Bouvet, D.; Mapelli, A.; Sallese, J. M.

    2018-05-01

    In the field of detector development for High Energy Physics, the so-called Transient Current Technique (TCT) is used to characterize the electric field profile and the charge trapping inside silicon radiation detectors where particles or photons create electron-hole pairs in the bulk of a semiconductor device, as PiN diodes. In the standard approach, the TCT signal originates from the free carriers generated close to the surface of a silicon detector, by short pulses of light or by alpha particles. This work proposes a new principle of charge injection by means of lateral PN junctions implemented in one of the detector electrodes, called the electrical TCT (el-TCT). This technique is fully compatible with CMOS technology and therefore opens new perspectives for assessment of radiation detectors performances.

  5. Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8)*♦

    PubMed Central

    Raddatz, Natalia; Castillo, Juan P.; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-01-01

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol−1. The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597

  6. Eddy current loss analysis of open-slot fault-tolerant permanent-magnet machines based on conformal mapping method

    NASA Astrophysics Data System (ADS)

    Ji, Jinghua; Luo, Jianhua; Lei, Qian; Bian, Fangfang

    2017-05-01

    This paper proposed an analytical method, based on conformal mapping (CM) method, for the accurate evaluation of magnetic field and eddy current (EC) loss in fault-tolerant permanent-magnet (FTPM) machines. The aim of modulation function, applied in CM method, is to change the open-slot structure into fully closed-slot structure, whose air-gap flux density is easy to calculate analytically. Therefore, with the help of Matlab Schwarz-Christoffel (SC) Toolbox, both the magnetic flux density and EC density of FTPM machine are obtained accurately. Finally, time-stepped transient finite-element method (FEM) is used to verify the theoretical analysis, showing that the proposed method is able to predict the magnetic flux density and EC loss precisely.

  7. Experimental analysis on the dynamic wake of an actuator disc undergoing transient loads

    NASA Astrophysics Data System (ADS)

    Yu, W.; Hong, V. W.; Ferreira, C.; van Kuik, G. A. M.

    2017-10-01

    The Blade Element Momentum model, which is based on the actuator disc theory, is still the model most used for the design of open rotors. Although derived from steady cases with a fully developed wake, this approach is also applied to unsteady cases, with additional engineering corrections. This work aims to study the impact of an unsteady loading on the wake of an actuator disc. The load and flow of an actuator disc are measured in the Open Jet Facility wind tunnel of Delft University of Technology, for steady and unsteady cases. The velocity and turbulence profiles are characterized in three regions: the inner wake region, the shear layer region and the region outside the wake. For unsteady load cases, the measured velocity field shows a hysteresis effect in relation to the loading, showing differences between the cases when loading is increased and loading is decreased. The flow field also shows a transient response to the step change in loading, with either an overshoot or undershoot of the velocity in relation to the steady-state velocity. In general, a smaller reduced ramp time results in a faster velocity transient, and in turn a larger amplitude of overshoot or undershoot. Time constants analysis shows that the flow reaches the new steady-state slower for load increase than for load decrease; the time constants outside the wake are generally larger than at other radial locations for a given downstream plane; the time constants of measured velocity in the wake show radial dependence.The data are relevant for the validation of numerical models for unsteady actuator discs and wind turbines, and are made available in an open source database (see Appendix).

  8. Explosive eruptions triggered by rockfalls at Kīlauea volcano, Hawaii

    USGS Publications Warehouse

    Orr, Tim R.; Thelen, Weston A.; Patrick, Matthew R.; Swanson, Donald A.; Wilson, David C.

    2012-01-01

    Ongoing eruptive activity at Kīlauea volcano’s (Hawai‘i) summit has been controlled in part by the evolution of its vent from a 35-m-diameter opening into a collapse crater 150 m across. Geologic observations, in particular from a network of webcams, have provided an unprecedented look at collapse crater development, lava lake dynamics, and shallow outgassing processes. These observations show unequivocally that the hundreds of transient outgassing bursts and weak explosive eruptions that have punctuated the vent’s otherwise nearly steady-state behavior, and that are associated with composite seismic events, were triggered by rockfalls from the vent walls onto the top of the lava column. While the process by which rockfalls drive the explosive bursts is not fully understood, we believe that it is initiated by the generation of a rebound splash, or Worthington jet, which then undergoes fragmentation. The external triggering of low-energy outgassing events by rockfalls represents a new class of small transient explosive eruptions.

  9. On the performance of a high head Francis turbine at design and off-design conditions

    NASA Astrophysics Data System (ADS)

    Aakti, B.; Amstutz, O.; Casartelli, E.; Romanelli, G.; Mangani, L.

    2015-01-01

    In the present paper, fully 360 degrees transient and steady-state simulations of a Francis turbine were performed at three operating conditions, namely at part load (PL), best efficiency point (BEP), and high load (HL), using different numerical approaches for the pressure-velocity coupling. The simulation domain includes the spiral casing with stay and guide vanes, the runner and the draft tube. The main target of the investigations is the numerical prediction of the overall performance of the high head Francis turbine model as well as local and integral quantities of the complete machine in different operating conditions. All results were compared with experimental data published by the workshop organization. All CFD simulations were performed at model scale with a new in-house, 3D, unstructured, object-oriented finite volume code within the framework of the open source OpenFOAM library. The novel fully coupled pressure-based solver is designed to solve the incompressible RANS- Equations and is capable of handling multiple references of frame (MRF). The obtained results show that the overall performance is well captured by the simulations. Regarding the local flow distributions within the inlet section of the draft-tube, the axial velocity is better estimated than the circumferential component.

  10. Toward an Integrative Computational Model of the Guinea Pig Cardiac Myocyte

    PubMed Central

    Gauthier, Laura Doyle; Greenstein, Joseph L.; Winslow, Raimond L.

    2012-01-01

    The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca2+) release occurs at the nanodomain level, where openings of single L-type Ca2+ channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca2+ transient is a smooth continuous function of influx of Ca2+ through LCCs. While this so-called graded release property has been known for some time, its functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca2+ release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally observed causal relationship between action potential (AP) shape and timing of Ca2+ and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca2+ transients, thus influencing tissue level electromechanical function. PMID:22783206

  11. Toward an integrative computational model of the Guinea pig cardiac myocyte.

    PubMed

    Gauthier, Laura Doyle; Greenstein, Joseph L; Winslow, Raimond L

    2012-01-01

    The local control theory of excitation-contraction (EC) coupling asserts that regulation of calcium (Ca(2+)) release occurs at the nanodomain level, where openings of single L-type Ca(2+) channels (LCCs) trigger openings of small clusters of ryanodine receptors (RyRs) co-localized within the dyad. A consequence of local control is that the whole-cell Ca(2+) transient is a smooth continuous function of influx of Ca(2+) through LCCs. While this so-called graded release property has been known for some time, its functional importance to the integrated behavior of the cardiac ventricular myocyte has not been fully appreciated. We previously formulated a biophysically based model, in which LCCs and RyRs interact via a coarse-grained representation of the dyadic space. The model captures key features of local control using a low-dimensional system of ordinary differential equations. Voltage-dependent gain and graded Ca(2+) release are emergent properties of this model by virtue of the fact that model formulation is closely based on the sub-cellular basis of local control. In this current work, we have incorporated this graded release model into a prior model of guinea pig ventricular myocyte electrophysiology, metabolism, and isometric force production. The resulting integrative model predicts the experimentally observed causal relationship between action potential (AP) shape and timing of Ca(2+) and force transients, a relationship that is not explained by models lacking the graded release property. Model results suggest that even relatively subtle changes in AP morphology that may result, for example, from remodeling of membrane transporter expression in disease or spatial variation in cell properties, may have major impact on the temporal waveform of Ca(2+) transients, thus influencing tissue level electromechanical function.

  12. Experimental Investigation of a High Head Model Francis Turbine During Steady-State Operation at Off-Design Conditions

    NASA Astrophysics Data System (ADS)

    Bergan, Carl; Goyal, Rahul; Cervantes, Michel J.; Dahlhaug, Ole G.

    2016-11-01

    Francis-99 is a set of workshops aiming to determine the state of the art of high head Francis turbine simulations (flow and structure) under steady and transient operating conditions as well as promote their development and knowledge dissemination openly. The first workshop (Trondheim, 2014) focused on steady state conditions. Some concerns were raised regarding uncertainty in the measurements, mainly that there was no clear vortex rope at the Part Load (PL) condition, and that the flow exhibited relatively large asymmetry. The present paper addresses these concerns in order to ensure the quality of the data presented in further workshops. To answer some of these questions, a new set of measurements were performed on the Francis- 99 model at Waterpower Laboratory at the Norwegian University of Science and Technology (NTNU). In addition to PL, two other operating conditions were considered, for further use in transient measurements, Best Efficiency (BEP) and High Load (HL). The experiments were carried out at a head of 12 m, with a runner rotational speed of 333 revolutions per minute (rpm). The guide vane opening angle were 6.72°, 9.84° and 12.43° for PL, BEP and HL, respectively. The part load condition has been changed from the first workshop, to ensure a fully developed Rotating Vortex Rope (RVR). The velocity and pressure measurements were carried out in the draft tube cone using 2D PIV and six pressure sensors, respectively. The new PL condition shows a fully developed rotating vortex rope (RVR) in both the frequency analysis and in the phase resolved data. In addition, the measurements confirm an asymmetric flow leaving the runner, as was a concern in the first Francis-99 workshop. This asymmetry was detected at both design and off-design conditions, with a stronger effect during off design.

  13. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    PubMed

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  14. Platelet activating factor induces transient blood-brain barrier opening to facilitate edaravone penetration into the brain.

    PubMed

    Fang, Weirong; Zhang, Rui; Sha, Lan; Lv, Peng; Shang, Erxin; Han, Dan; Wei, Jie; Geng, Xiaohan; Yang, Qichuan; Li, Yunman

    2014-03-01

    The blood-brain barrier (BBB) greatly limits the efficacy of many neuroprotective drugs' delivery to the brain, so improving drug penetration through the BBB has been an important focus of research. Here we report that platelet activating factor (PAF) transiently opened BBB and facilitated neuroprotectant edaravone penetration into the brain. Intravenous infusion with PAF induced a transient BBB opening in rats, reflected by increased Evans blue leakage and mild edema formation, which ceased within 6 h. Furthermore, rat regional cerebral blood flow (rCBF) declined acutely during PAF infusion, but recovered slowly. More importantly, this transient BBB opening significantly increased the penetration of edaravone into the brain, evidenced by increased edaravone concentrations in tissue interstitial fluid collected by microdialysis and analyzed by Ultra-performance liquid chromatograph combined with a hybrid quadrupole time-of-flight mass spectrometer (UPLC-MS/MS). Similarly, incubation of rat brain microvessel endothelial cells monolayer with 1 μM PAF for 1 h significantly increased monolayer permeability to (125)I-albumin, which recovered 1 h after PAF elimination. However, PAF incubation with rat brain microvessel endothelial cells for 1 h did not cause detectable cytotoxicity, and did not regulate intercellular adhesion molecule-1, matrix-metalloproteinase-9 and P-glycoprotein expression. In conclusion, PAF could induce transient and reversible BBB opening through abrupt rCBF decline, which significantly improved edaravone penetration into the brain. Platelet activating factor (PAF) transiently induces BBB dysfunction and increases BBB permeability, which may be due to vessel contraction and a temporary decline of regional cerebral blood flow (rCBF) triggered by PAF. More importantly, the PAF induced transient BBB opening facilitates neuroprotectant edaravone penetration into brain. The results of this study may provide a new approach to improve drug delivery into the brain. © 2013 International Society for Neurochemistry.

  15. Laser-induced transient grating setup with continuously tunable period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vega-Flick, A.; Applied Physics Department, CINVESTAV-Unidad Mérida, Carretera Antigua a Progreso Km 6, Cordemex, Mérida, Yucatán 97310 Mexico; Eliason, J. K.

    2015-12-15

    We present a modification of the laser-induced transient grating setup enabling continuous tuning of the transient grating period. The fine control of the period is accomplished by varying the angle of the diffraction grating used to split excitation and probe beams. The setup has been tested by measuring dispersion of bulk and surface acoustic waves in both transmission and reflection geometries. The presented modification is fully compatible with optical heterodyne detection and can be easily implemented in any transient grating setup.

  16. Transient adhesion in a non-fully detached contact.

    PubMed

    Liu, Zheyu; Lu, Hongyu; Zheng, Yelong; Tao, Dashuai; Meng, Yonggang; Tian, Yu

    2018-04-18

    Continuous approaching and detaching displacement usually occurs in an adhesion test. Here, we found a transient adhesion force at the end of a non-fully detached contact. This force occurred when the nominal detaching displacement was less than the traditional quasi-static theory predicted zero force point. The transient adhesion force was ascribed to interfacial adhesion hysteresis, which was caused by the cracking process of the contact and the deformation competition between the sphere and supporting spring. Results indicated that the testing of adhesion can be significantly affected by different combinations of stiffnesses of the contact objects and the supporting spring cantilever. This combination should be carefully designed in an adhesion test. All these results enabled increased understanding of the nature of adhesion and can guide the design of adhesive actuators.

  17. GREEN TEA CATECHINS ARE POTENT SENSITIZERS OF RYANODINE RECEPTOR TYPE 1 (RYR1)

    PubMed Central

    Feng, Wei; Cherednichenko, Gennady; Ward, Chris W.; Padilla, Isela T.; Cabrales, Elaine; Lopez, José R.; Eltit, José M.; Allen, Paul D.; Pessah, Isaac N.

    2010-01-01

    Catechins, polyphenols extracted from green tea leaves, have a broad range of biological activities although the specific molecular mechanisms responsible are not known. At the high experimental concentrations typically used polyphenols bind to membrane phospholipid and also are easily auto-oxidized to generate superoxide anion and semiquinones, and can adduct to protein thiols. We report that the type 1 ryanodine receptor (RyR1) is a molecular target that responds to nanomolar (−)-epigallocatechin-3-gallate (EGCG) and (−)-epicatechin-3-gallate (ECG). Single channel analyses demonstrate EGCG (5-10nM) increases channel open probability (Po) 2-fold, by lengthening open dwell time. The degree of channel activation is concentration dependent and is rapidly and fully reversible. Four related catechins, EGCG, ECG, EGC ((−)-epigallocatechin) and EC ((−)-epicatechin) showed a rank order of activity toward RyR1 (EGCG>ECG>>EGC>>>EC). EGCG and ECG enhance the sensitivity of RyR1 to activation by ≤100μM cytoplasmic Ca2+ without altering inhibitory potency by >100μM Ca2+. EGCG as high as 10μM in the extracellular medium potentiated Ca2+ transient amplitudes evoked by electrical stimuli applied to intact myotubes and adult FDB fibers, without eliciting spontaneous Ca2+ release or slowing Ca2+ transient recovery. The results identify RyR1 as a sensitive target for the major tea catechins EGCG and ECG, and this interaction is likely to contribute to their observed biological activities. PMID:20471964

  18. Liverpool Telescope and Liverpool Telescope 2

    NASA Astrophysics Data System (ADS)

    Copperwheat, C. M.; Steele, I. A.; Barnsley, R. M.; Bates, S. D.; Clay, N. R.; Jermak, H.; Marchant, J. M.; Mottram, C. J.; Piascik, A.; Smith, R. J.

    2016-12-01

    The Liverpool Telescope is a fully robotic optical/near-infrared telescope with a 2-metre clear aperture, located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope is owned and operated by Liverpool John Moores University, with financial support from the UK's Science and Technology Facilities Council. The telescope began routine science operations in 2004 and is a common-user facility with time available through a variety of committees via an open, peer reviewed process. Seven simultaneously mounted instruments support a broad science programme, with a focus on transient follow-up and other time domain topics well suited to the characteristics of robotic observing. Development has also begun on a successor facility, with the working title `Liverpool Telescope 2', to capitalise on the new era of time domain astronomy which will be brought about by the next generation of survey facilities such as LSST. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time. In this paper we provide an overview of the current status of both facilities.

  19. Transient radiative energy transfer in incompressible laminar flows

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Singh, D. J.

    1987-01-01

    Analysis and numerical procedures are presented to investigate the transient radiative interactions of nongray absorbing-emitting species in laminar fully-developed flows between two parallel plates. The particular species considered are OH, CO, CO2, and H2O and different mixtures of these. Transient and steady-state results are obtained for the temperaure distribution and bulk temperature for different plate spacings, wall temperatures, and pressures. Results, in general, indicate that the rate of radiative heating can be quite high during earlier times. This information is useful in designing thermal protection systems for transient operations.

  20. Analytical solutions to the problem of transient heat transfer in living tissue.

    NASA Technical Reports Server (NTRS)

    Shitzer, A.; Chato, J. C.

    1971-01-01

    An analytical model of transient heat transfer in living biological tissue is considered. The model includes storage, generation, conduction, and convective transport of heat in the tissue. Solutions for rectangular and cylindrical coordinates are presented and discussed. Transient times for reaching the ?locally fully developed' temperature profile were found to be of the order of 5 to 25 min. These transients are dominated by a geometrical parameters and, to a lesser extent, by a parameter representing the ratio of heat supplied by blood flow to heat conducted in the tissue.

  1. Effects of a parallel resistor on electrical characteristics of a piezoelectric transformer in open-circuit transient state.

    PubMed

    Chang, Kuo-Tsai

    2007-01-01

    This paper investigates electrical transient characteristics of a Rosen-type piezoelectric transformer (PT), including maximum voltages, time constants, energy losses and average powers, and their improvements immediately after turning OFF. A parallel resistor connected to both input terminals of the PT is needed to improve the transient characteristics. An equivalent circuit for the PT is first given. Then, an open-circuit voltage, involving a direct current (DC) component and an alternating current (AC) component, and its related energy losses are derived from the equivalent circuit with initial conditions. Moreover, an AC power control system, including a DC-to-AC resonant inverter, a control switch and electronic instruments, is constructed to determine the electrical characteristics of the OFF transient state. Furthermore, the effects of the parallel resistor on the transient characteristics at different parallel resistances are measured. The advantages of adding the parallel resistor also are discussed. From the measured results, the DC time constant is greatly decreased from 9 to 0.04 ms by a 10 k(omega) parallel resistance under open output.

  2. Adaptive sequential controller

    DOEpatents

    El-Sharkawi, Mohamed A.; Xing, Jian; Butler, Nicholas G.; Rodriguez, Alonso

    1994-01-01

    An adaptive sequential controller (50/50') for controlling a circuit breaker (52) or other switching device to substantially eliminate transients on a distribution line caused by closing and opening the circuit breaker. The device adaptively compensates for changes in the response time of the circuit breaker due to aging and environmental effects. A potential transformer (70) provides a reference signal corresponding to the zero crossing of the voltage waveform, and a phase shift comparator circuit (96) compares the reference signal to the time at which any transient was produced when the circuit breaker closed, producing a signal indicative of the adaptive adjustment that should be made. Similarly, in controlling the opening of the circuit breaker, a current transformer (88) provides a reference signal that is compared against the time at which any transient is detected when the circuit breaker last opened. An adaptive adjustment circuit (102) produces a compensation time that is appropriately modified to account for changes in the circuit breaker response, including the effect of ambient conditions and aging. When next opened or closed, the circuit breaker is activated at an appropriately compensated time, so that it closes when the voltage crosses zero and opens when the current crosses zero, minimizing any transients on the distribution line. Phase angle can be used to control the opening of the circuit breaker relative to the reference signal provided by the potential transformer.

  3. A fully on-chip fast-transient NMOS low dropout voltage regulator with quasi floating gate pass element

    NASA Astrophysics Data System (ADS)

    Wang, Han; Gou, Chao; Luo, Kai

    2017-04-01

    This paper presents a fully on-chip NMOS low-dropout regulator (LDO) for portable applications with quasi floating gate pass element and fast transient response. The quasi floating gate structure makes the gate of the NMOS transistor only periodically charged or refreshed by the charge pump, which allows the charge pump to be a small economical circuit with small silicon area. In addition, a variable reference circuit is introduced enlarging the dynamic range of error amplifier during load transient. The proposed LDO has been implemented in a 0.35 μm BCD process. From experimental results, the regulator can operate with a minimum dropout voltage of 250 mV at a maximum 1 A load and {I}{{Q}} of 395 μA. Under full-range load current step, the voltage undershoot and overshoot of the proposed LDO are reduced to 50 and 26 mV, respectively.

  4. Velocity and size of droplets in dense region of diesel fuel spray on transient needle opening condition

    NASA Astrophysics Data System (ADS)

    Ueki, Hironobu; Ishida, Masahiro; Sakaguchi, Daisaku

    2005-06-01

    In order to investigate the effect of transient needle opening on early stage of spray behavior, simultaneous measurements of velocity and size of droplet were conducted by a newly developed laser 2-focus velocimeter (L2F). The micro-scale probe of the L2F was consisted of two foci with a distance of 36 µm. The tested nozzle had a single hole with a diameter of 0.2 mm. The measurements of injection pressure, needle lift, and crank angle were synchronized with the spray measurement by the L2F at the position 10 mm downstream from the nozzle exit. It has been clearly shown that the velocity and size of droplet increase with needle valve opening and that the probability density distribution of droplet size can be fitted to the Nukiyama-Tanasawa distribution under the transient needle opening condition.

  5. Transient loads analysis for space flight applications

    NASA Technical Reports Server (NTRS)

    Thampi, S. K.; Vidyasagar, N. S.; Ganesan, N.

    1992-01-01

    A significant part of the flight readiness verification process involves transient analysis of the coupled Shuttle-payload system to determine the low frequency transient loads. This paper describes a methodology for transient loads analysis and its implementation for the Spacelab Life Sciences Mission. The analysis is carried out using two major software tools - NASTRAN and an external FORTRAN code called EZTRAN. This approach is adopted to overcome some of the limitations of NASTRAN's standard transient analysis capabilities. The method uses Data Recovery Matrices (DRM) to improve computational efficiency. The mode acceleration method is fully implemented in the DRM formulation to recover accurate displacements, stresses, and forces. The advantages of the method are demonstrated through a numerical example.

  6. Fast Radio Bursts and Radio Transients from Black Hole Batteries

    NASA Astrophysics Data System (ADS)

    Mingarelli, Chiara M. F.; Levin, Janna; Lazio, T. Joseph W.

    2015-12-01

    Most black holes (BHs) will absorb a neutron star (NS) companion fully intact without tidal disruption, suggesting the pair will remain dark to telescopes. Even without tidal disruption, electromagnetic (EM) luminosity is generated from the battery phase of the binary when the BH interacts with the NS magnetic field. Originally, the luminosity was expected to be in high-energy X-rays or gamma-rays, however, we conjecture that some of the battery power is emitted in the radio bandwidth. While the luminosity and timescale are suggestive of fast radio bursts (FRBs; millisecond-scale radio transients) NS-BH coalescence rates are too low to make these a primary FRB source. Instead, we propose that the transients form a FRB sub-population, distinguishable by a double peak with a precursor. The rapid ramp-up in luminosity manifests as a precursor to the burst which is 20%-80% as luminous given 0.5 ms timing resolution. The main burst arises from the peak luminosity before the merger. The post-merger burst follows from the NS magnetic field migration to the BH, causing a shock. NS-BH pairs are especially desirable for ground-based gravitational wave (GW) observatories since the pair might not otherwise be detected, with EM counterparts greatly augmenting the scientific leverage beyond the GW signal. The EM signal’s ability to break degeneracies in the parameters encoded in the GW and probe the NS magnetic field strength is quite valuable, yielding insights into open problems in NS magnetic field decay.

  7. The effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting

    DOE PAGES

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.; ...

    2016-01-13

    In neutron coincidence counting using the shift register autocorrelation technique, a predelay is inserted before the opening of the (R+A)-gate. Operationally the purpose of the predelay is to ensure that the (R+A)- and A-gates have matched effectiveness, otherwise a bias will result when the difference between the gates is used to calculate the accidentals corrected net reals coincidence rate. The necessity for the predelay was established experimentally in the early practical development and deployment of the coincidence counting method. The choice of predelay for a given detection system is usually made experimentally, but even today long standing traditional values (e.g.,more » 4.5 µs) are often used. This, at least in part, reflects the fact that a deep understanding of why a finite predelay setting is needed and how to control the underlying influences has not been fully worked out. We attempt, in this paper, to gain some insight into the problem. One aspect we consider is the slowing down, thermalization, and diffusion of neutrons in the detector moderator. The other is the influence of deadtime and electronic transients. These may be classified as non-ideal detector behaviors because they are not included in the conventional model used to interpret measurement data. From improved understanding of the effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting, the performance of both future and current coincidence counters may be improved.« less

  8. The effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting

    NASA Astrophysics Data System (ADS)

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.; Goddard, Braden; Stewart, Scott

    2016-04-01

    In neutron coincidence counting using the shift register autocorrelation technique, a predelay is inserted before the opening of the (R+A)-gate. Operationally the purpose of the predelay is to ensure that the (R+A)- and A-gates have matched effectiveness, otherwise a bias will result when the difference between the gates is used to calculate the accidentals corrected net reals coincidence rate. The necessity for the predelay was established experimentally in the early practical development and deployment of the coincidence counting method. The choice of predelay for a given detection system is usually made experimentally, but even today long standing traditional values (e.g., 4.5 μs) are often used. This, at least in part, reflects the fact that a deep understanding of why a finite predelay setting is needed and how to control the underlying influences has not been fully worked out. In this paper we attempt to gain some insight into the problem. One aspect we consider is the slowing down, thermalization, and diffusion of neutrons in the detector moderator. The other is the influence of deadtime and electronic transients. These may be classified as non-ideal detector behaviors because they are not included in the conventional model used to interpret measurement data. From improved understanding of the effect of deadtime and electronic transients on the predelay bias in neutron coincidence counting, the performance of both future and current coincidence counters may be improved.

  9. Conjugate Compressible Fluid Flow and Heat Transfer in Ducts

    NASA Technical Reports Server (NTRS)

    Cross, M. F.

    2011-01-01

    A computational approach to modeling transient, compressible fluid flow with heat transfer in long, narrow ducts is presented. The primary application of the model is for analyzing fluid flow and heat transfer in solid propellant rocket motor nozzle joints during motor start-up, but the approach is relevant to a wide range of analyses involving rapid pressurization and filling of ducts. Fluid flow is modeled through solution of the spatially one-dimensional, transient Euler equations. Source terms are included in the governing equations to account for the effects of wall friction and heat transfer. The equation solver is fully-implicit, thus providing greater flexibility than an explicit solver. This approach allows for resolution of pressure wave effects on the flow as well as for fast calculation of the steady-state solution when a quasi-steady approach is sufficient. Solution of the one-dimensional Euler equations with source terms significantly reduces computational run times compared to general purpose computational fluid dynamics packages solving the Navier-Stokes equations with resolved boundary layers. In addition, conjugate heat transfer is more readily implemented using the approach described in this paper than with most general purpose computational fluid dynamics packages. The compressible flow code has been integrated with a transient heat transfer solver to analyze heat transfer between the fluid and surrounding structure. Conjugate fluid flow and heat transfer solutions are presented. The author is unaware of any previous work available in the open literature which uses the same approach described in this paper.

  10. MOSFiT: Modular Open Source Fitter for Transients

    NASA Astrophysics Data System (ADS)

    Guillochon, James; Nicholl, Matt; Villar, V. Ashley; Mockler, Brenna; Narayan, Gautham; Mandel, Kaisey S.; Berger, Edo; Williams, Peter K. G.

    2018-05-01

    Much of the progress made in time-domain astronomy is accomplished by relating observational multiwavelength time-series data to models derived from our understanding of physical laws. This goal is typically accomplished by dividing the task in two: collecting data (observing), and constructing models to represent that data (theorizing). Owing to the natural tendency for specialization, a disconnect can develop between the best available theories and the best available data, potentially delaying advances in our understanding new classes of transients. We introduce MOSFiT: the Modular Open Source Fitter for Transients, a Python-based package that downloads transient data sets from open online catalogs (e.g., the Open Supernova Catalog), generates Monte Carlo ensembles of semi-analytical light-curve fits to those data sets and their associated Bayesian parameter posteriors, and optionally delivers the fitting results back to those same catalogs to make them available to the rest of the community. MOSFiT is designed to help bridge the gap between observations and theory in time-domain astronomy; in addition to making the application of existing models and creation of new models as simple as possible, MOSFiT yields statistically robust predictions for transient characteristics, with a standard output format that includes all the setup information necessary to reproduce a given result. As large-scale surveys such as that conducted with the Large Synoptic Survey Telescope (LSST), discover entirely new classes of transients, tools such as MOSFiT will be critical for enabling rapid comparison of models against data in statistically consistent, reproducible, and scientifically beneficial ways.

  11. Space shuttle orbital maneuvering engine platelet injector program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A platelet-face injector for the fully reusable orbit maneuvering system OMS on the space shuttle was evaluated as a means of obtaining additional design margin and low cost. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects of acoustic cavity configuration on combustion stability, including cavity depth, open area, inlet contour, and other parameters, were investigated using sea level bomb tests. Prototype injector and chamber behavior was evaluated for a variety of conditions; these tests examined the effects of film cooling, helium saturated propellants, chamber length, inlet conditions, and operating point, on performance, heat transfer and engine transient behavior. Helium bubble ingestion into both propellant circuits was investigated, as was chugging at low pressure operation, and hot and cold engine restart with and without a purge.

  12. Heinrich events modeled in transient glacial simulations

    NASA Astrophysics Data System (ADS)

    Ziemen, Florian; Kapsch, Marie; Mikolajewicz, Uwe

    2017-04-01

    Heinrich events are among the most prominent events of climate variability recorded in proxies across the northern hemisphere. They are the archetype of ice sheet — climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under debate, and their climatic consequences are far from being fully understood. We address open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability. The framework consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global AOVGCM ECHAM5/MPIOM/LPJ. The simulations were performed fully coupled and with transient orbital and greenhouse gas forcing. They span from several millennia before the last glacial maximum into the deglaciation. To make these long simulations feasible, the atmosphere is accelerated by a factor of 10 relative to the other model components using a periodical-synchronous coupling technique. To disentangle effects of the Heinrich events and the deglaciation, we focus on the events occurring before the deglaciation. The modeled Heinrich events show a peak ice discharge of about 0.05 Sv and raise the sea level by 2.3 m on average. The resulting surface water freshening reduces the Atlantic meridional overturning circulation and ocean heat release. The reduction in ocean heat release causes a sub-surface warming and decreases the air temperature and precipitation regionally and downstream into Eurasia. The surface elevation decrease of the ice sheet enhances moisture transport onto the ice sheet and thus increases precipitation over the Hudson Bay area, thereby accelerating the recovery after an event.

  13. Heinrich events simulated across the glacial

    NASA Astrophysics Data System (ADS)

    Ziemen, F. A.; Mikolajewicz, U.

    2015-12-01

    Heinrich events are among the most prominent climate change events recorded in proxies across the northern hemisphere. They are the archetype of ice sheet — climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under discussion, and their climatic consequences are far from being fully understood. We contribute to answering the open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability. The setup consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global AOVGCM ECHAM5/MPIOM/LPJ. The simulations were performed fully coupled and with transient orbital and greenhouse gas forcing. They span from several millennia before the last glacial maximum into the deglaciation. We analyze simulations where the ISM is coupled asynchronously to the AOVGCM and simulations where the ISM and the ocean model are coupled synchronously and the atmosphere model is coupled asynchronously to them. The modeled Heinrich events show a marked influence of the ice discharge on the Atlantic circulation and heat transport.

  14. Aspirating Seal Development: Analytical Modeling and Seal Test Rig

    NASA Technical Reports Server (NTRS)

    Bagepalli, Bharat

    1996-01-01

    This effort is to develop large diameter (22 - 36 inch) Aspirating Seals for application in aircraft engines. Stein Seal Co. will be fabricating the 36-inch seal(s) for testing. GE's task is to establish a thorough understanding of the operation of Aspirating Seals through analytical modeling and full-scale testing. The two primary objectives of this project are to develop the analytical models of the aspirating seal system, to upgrade using GE's funds, GE's 50-inch seal test rig for testing the Aspirating Seal (back-to-back with a corresponding brush seal), test the aspirating seal(s) for seal closure, tracking and maneuver transients (tilt) at operating pressures and temperatures, and validate the analytical model. The objective of the analytical model development is to evaluate the transient and steady-state dynamic performance characteristics of the seal designed by Stein. The transient dynamic model uses a multi-body system approach: the Stator, Seal face and the rotor are treated as individual bodies with relative degrees of freedom. Initially, the thirty-six springs are represented as a single one trying to keep open the aspirating face. Stops (Contact elements) are provided between the stator and the seal (to compensate the preload in the fully-open position) and between the rotor face and Seal face (to detect rub). The secondary seal is considered as part of the stator. The film's load, damping and stiffness characteristics as functions of pressure and clearance are evaluated using a separate (NASA) code GFACE. Initially, a laminar flow theory is used. Special two-dimensional interpolation routines are written to establish exact film load and damping values at each integration time step. Additionally, other user-routines are written to read-in actual pressure, rpm, stator-growth and rotor growth data and, later, to transfer these as appropriate loads/motions in the system-dynamic model. The transient dynamic model evaluates the various motions, clearances and forces as the seals are subjected to different aircraft maneuvers: Windmilling restart; start-ground idle; ground idle-takeoff; takeoff-burst chop, etc. Results of this model show that the seal closes appropriately and does not ram into the rotor for all of the conditions analyzed. The rig upgrade design for testing Aspirating Seals has been completed. Long lead-time items (forgings, etc.) have been ordered.

  15. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1982-01-01

    The computational methods used to predict and optimize the thermal structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a different yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  16. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1983-01-01

    The computational methods used to predict and optimize the thermal-structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a difficult yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally-useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  17. Evaluation of the eigenvalue method in the solution of transient heat conduction problems

    NASA Astrophysics Data System (ADS)

    Landry, D. W.

    1985-01-01

    The eigenvalue method is evaluated to determine the advantages and disadvantages of the method as compared to fully explicit, fully implicit, and Crank-Nicolson methods. Time comparisons and accuracy comparisons are made in an effort to rank the eigenvalue method in relation to the comparison schemes. The eigenvalue method is used to solve the parabolic heat equation in multidimensions with transient temperatures. Extensions into three dimensions are made to determine the method's feasibility in handling large geometry problems requiring great numbers of internal mesh points. The eigenvalue method proves to be slightly better in accuracy than the comparison routines because of an exact treatment, as opposed to a numerical approximation, of the time derivative in the heat equation. It has the potential of being a very powerful routine in solving long transient type problems. The method is not well suited to finely meshed grid arrays or large regions because of the time and memory requirements necessary for calculating large sets of eigenvalues and eigenvectors.

  18. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development. Currently there is no fully coupled computational tool to analyze this fluid/structure interaction process. The objective of this study was to develop a fully coupled aeroelastic modeling capability to describe the fluid/structure interaction process during the transient nozzle operations. The aeroelastic model composes of three components: the computational fluid dynamics component based on an unstructured-grid, pressure-based computational fluid dynamics formulation, the computational structural dynamics component developed in the framework of modal analysis, and the fluid-structural interface component. The developed aeroelastic model was applied to the transient nozzle startup process of the Space Shuttle Main Engine at sea level. The computed nozzle side loads and the axial nozzle wall pressure profiles from the aeroelastic nozzle are compared with those of the published rigid nozzle results, and the impact of the fluid/structure interaction on nozzle side loads is interrogated and presented.

  19. Length and time for development of laminar flow in tubes following a step increase of volume flux

    NASA Astrophysics Data System (ADS)

    Chaudhury, Rafeed A.; Herrmann, Marcus; Frakes, David H.; Adrian, Ronald J.

    2015-01-01

    Laminar flows starting up from rest in round tubes are relevant to numerous industrial and biomedical applications. The two most common types are flows driven by an abruptly imposed constant pressure gradient or by an abruptly imposed constant volume flux. Analytical solutions are available for transient, fully developed flows, wherein streamwise development over the entrance length is absent (Szymanski in J de Mathématiques Pures et Appliquées 11:67-107, 1932; Andersson and Tiseth in Chem Eng Commun 112(1):121-133, 1992, respectively). They represent the transient responses of flows in tubes that are very long compared with the entrance length, a condition that is seldom satisfied in biomedical tube networks. This study establishes the entrance (development) length and development time of starting laminar flow in a round tube of finite length driven by a piston pump that produces a step change from zero flow to a constant volume flux for Reynolds numbers between 500 and 3,000. The flows are examined experimentally, using stereographic particle image velocimetry and computationally using computational fluid dynamics, and are then compared with the known analytical solutions for fully developed flow conditions in infinitely long tubes. Results show that step function volume flux start-up flows reach steady state and fully developed flow five times more quickly than those driven by a step function pressure gradient, a 500 % change when compared with existing estimates. Based on these results, we present new, simple guidelines for achieving experimental flows that are fully developed in space and time in realistic (finite) tube geometries. To a first approximation, the time to achieve steady spatially developing flow is nearly equal to the time needed to achieve steady, fully developed flow. Conversely, the entrance length needed to achieve fully developed transient flow is approximately equal to the length needed to achieve fully developed steady flow. Beyond this level of description, the numerical results reveal interaction between the effects of space and time development and nonlinear Reynolds number effects.

  20. Fast Radio Bursts and Radio Transients from Black Hole Batteries

    NASA Astrophysics Data System (ADS)

    Mingarelli, Chiara; Levin, Janna; Lazio, Joseph

    2016-03-01

    Most black holes (BHs) will absorb a neutron star (NS) companion fully intact, without tidal disruption, suggesting the pair will remain dark to telescopes. Even without tidal disruption, electromagnetic (EM) luminosity is generated from the battery phase of the binary when the BH interacts with the NS magnetic field. Originally the luminosity was expected in high-energy X-rays or gamma-rays, however we conjecture that some of the battery power is emitted in the radio bandwidth. While the luminosity and timescale are suggestive of fast radio bursts (FRBs), NS-BH coalescence rates are too low to make these a primary FRB source. Instead, we propose the transients form a FRB sub-population, distinguishable by a double peak. The main burst is from the peak luminosity before merger, while the post-merger burst follows from the NS magnetic field migration to the BH, causing a shock. NS-BH pairs are desirable for ground-based gravitational wave (GW) observatories since the pair might not be detected any other way, with EM counterparts augmenting the scientific leverage beyond the GW signal. Valuably, EM signal can break degeneracies in the parameters encoded in the GW as well as probe the NS magnetic field strength, yielding insights into open problems in NS magnetic field decay.

  1. Oblique rift opening revealed by reoccurring magma injection in central Iceland.

    PubMed

    Ruch, Joël; Wang, Teng; Xu, Wenbin; Hensch, Martin; Jónsson, Sigurjón

    2016-08-05

    Extension deficit builds up over centuries at divergent plate boundaries and is recurrently removed during rifting events, accompanied by magma intrusions and transient metre-scale deformation. However, information on transient near-field deformation has rarely been captured, hindering progress in understanding rifting mechanisms and evolution. Here we show new evidence of oblique rift opening during a rifting event influenced by pre-existing fractures and two centuries of extension deficit accumulation. This event originated from the Bárðarbunga caldera and led to the largest basaltic eruption in Iceland in >200 years. The results show that the opening was initially accompanied by left-lateral shear that ceased with increasing opening. Our results imply that pre-existing fractures play a key role in controlling oblique rift opening at divergent plate boundaries.

  2. Toward transient finite element simulation of thermal deformation of machine tools in real-time

    NASA Astrophysics Data System (ADS)

    Naumann, Andreas; Ruprecht, Daniel; Wensch, Joerg

    2018-01-01

    Finite element models without simplifying assumptions can accurately describe the spatial and temporal distribution of heat in machine tools as well as the resulting deformation. In principle, this allows to correct for displacements of the Tool Centre Point and enables high precision manufacturing. However, the computational cost of FE models and restriction to generic algorithms in commercial tools like ANSYS prevents their operational use since simulations have to run faster than real-time. For the case where heat diffusion is slow compared to machine movement, we introduce a tailored implicit-explicit multi-rate time stepping method of higher order based on spectral deferred corrections. Using the open-source FEM library DUNE, we show that fully coupled simulations of the temperature field are possible in real-time for a machine consisting of a stock sliding up and down on rails attached to a stand.

  3. TIME-DEPENDENT TURBULENT HEATING OF OPEN FLUX TUBES IN THE CHROMOSPHERE, CORONA, AND SOLAR WIND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolsey, L. N.; Cranmer, S. R., E-mail: lwoolsey@cfa.harvard.edu

    We investigate several key questions of plasma heating in open-field regions of the corona that connect to the solar wind. We present results for a model of Alfvén-wave-driven turbulence for three typical open magnetic field structures: a polar coronal hole, an open flux tube neighboring an equatorial streamer, and an open flux tube near a strong-field active region. We compare time-steady, one-dimensional turbulent heating models against fully time-dependent three-dimensional reduced-magnetohydrodynamic modeling of BRAID. We find that the time-steady results agree well with time-averaged results from BRAID. The time dependence allows us to investigate the variability of the magnetic fluctuations andmore » of the heating in the corona. The high-frequency tail of the power spectrum of fluctuations forms a power law whose exponent varies with height, and we discuss the possible physical explanation for this behavior. The variability in the heating rate is bursty and nanoflare-like in nature, and we analyze the amount of energy lost via dissipative heating in transient events throughout the simulation. The average energy in these events is 10{sup 21.91} erg, within the “picoflare” range, and many events reach classical “nanoflare” energies. We also estimated the multithermal distribution of temperatures that would result from the heating-rate variability, and found good agreement with observed widths of coronal differential emission measure distributions. The results of the modeling presented in this paper provide compelling evidence that turbulent heating in the solar atmosphere by Alfvén waves accelerates the solar wind in open flux tubes.« less

  4. Assessment of RELAP5/MOD2 against a pressurizer spray valve inadverted fully opening transient and recovery by natural circulation in Jose Cabrera Nuclear Station

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arroyo, R.; Rebollo, L.

    1993-06-01

    This document presents the comparison between the simulation results and the plant measurements of a real event that took place in JOSE CABRERA nuclear power plant in August 30th, 1984. The event was originated by the total, continuous and inadverted opening of the pressurizer spray valve PCV-400A. JOSE CABRERA power plant is a single loop Westinghouse PWR belonging to UNION ELECTRICA FENOSA, S.A. (UNION FENOSA), an Spanish utility which participates in the International Code Assessment and Applications Program (ICAP) as a member of UNIDAD ELECTRICA, S.A. (UNESA). This is the second of its two contributions to the Program: the firstmore » one was an application case and this is an assessment one. The simulation has been performed using the RELAP5/MOD2 cycle 36.04 code, running on a CDC CYBER 180/830 computer under NOS 2.5 operating system. The main phenomena have been calculated correctly and some conclusions about the 3D characteristics of the condensation due to the spray and its simulation with a 1D tool have been got.« less

  5. Fuel injection system and method of operating the same for an engine

    DOEpatents

    Topinka, Jennifer Ann [Niskayuna, NY; DeLancey, James Peter [Corinth, NY; Primus, Roy James [Niskayuna, NY; Pintgen, Florian Peter [Niskayuna, NY

    2011-02-15

    A fuel injector is coupled to an engine. The fuel injector includes an injection opening configured to vary in cross-section between a open state and a fully closed state. The fuel injector is configured to provide a plurality of discrete commanded fuel injections into an engine cylinder by modulating the size of the injection opening without completely closing the opening to the fully closed state.

  6. Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation.

    PubMed

    Brown, Maile R; Kronengold, Jack; Gazula, Valeswara-Rao; Spilianakis, Charalampos G; Flavell, Richard A; von Hehn, Christian A A; Bhattacharjee, Arin; Kaczmarek, Leonard K

    2008-11-01

    The rates of activation and unitary properties of Na+-activated K+ (K(Na)) currents have been found to vary substantially in different types of neurones. One class of K(Na) channels is encoded by the Slack gene. We have now determined that alternative RNA splicing gives rise to at least five different transcripts for Slack, which produce Slack channels that differ in their predicted cytoplasmic amino-termini and in their kinetic properties. Two of these, termed Slack-A channels, contain an amino-terminus domain closely resembling that of another class of K(Na) channels encoded by the Slick gene. Neuronal expression of Slack-A channels and of the previously described Slack isoform, now called Slack-B, are driven by independent promoters. Slack-A mRNAs were enriched in the brainstem and olfactory bulb and detected at significant levels in four different brain regions. When expressed in CHO cells, Slack-A channels activate rapidly upon depolarization and, in single channel recordings in Xenopus oocytes, are characterized by multiple subconductance states with only brief transient openings to the fully open state. In contrast, Slack-B channels activate slowly over hundreds of milliseconds, with openings to the fully open state that are approximately 6-fold longer than those for Slack-A channels. In numerical simulations, neurones in which outward currents are dominated by a Slack-A-like conductance adapt very rapidly to repeated or maintained stimulation over a wide range of stimulus strengths. In contrast, Slack-B currents promote rhythmic firing during maintained stimulation, and allow adaptation rate to vary with stimulus strength. Using an antibody that recognizes all amino-termini isoforms of Slack, Slack immunoreactivity is present at locations that have no Slack-B-specific staining, including olfactory bulb glomeruli and the dendrites of hippocampal neurones, suggesting that Slack channels with alternate amino-termini such as Slack-A channels are present at these locations. Our data suggest that alternative promoters of the Slack gene differentially modulate the properties of neurones.

  7. Femtosecond electron diffraction and spectroscopic studies of a solid state organic chemical reaction

    NASA Astrophysics Data System (ADS)

    Jean-Ruel, Hubert

    Photochromic diarylethene molecules are excellent model systems for studying electrocyclic reactions, in addition to having important technological applications in optoelectronics. The photoinduced ring-closing reaction in a crystalline photochromic diarylethene derivative was fully resolved using the complementary techniques of transient absorption spectroscopy and femtosecond electron crystallography. These studies are detailed in this thesis, together with the associated technical developments which enabled them. Importantly, the time-resolved crystallographic investigation reported here represents a highly significant proof-of-principle experiment. It constitutes the first study directly probing the molecular structural changes associated with an organic chemical reaction with sub-picosecond temporal and atomic spatial resolution---to follow the primary motions directing chemistry. In terms of technological development, the most important advance reported is the implementation of a radio frequency rebunching system capable of producing femtosecond electron pulses of exceptional brightness. The temporal resolution of this newly developed electron source was fully characterized using laser ponderomotive scattering, confirming a 435 +/- 75 fs instrument response time with 0.20 pC bunches. The ultrafast spectroscopic and crystallographic measurements were both achieved by exploiting the photoreversibility of diarylethene. The transient absorption study was first performed, after developing a novel robust acquisition scheme for thermally irreversible reactions in the solid state. It revealed the formation of an open-ring excited state intermediate, following photoexcitation of the open-ring isomer with an ultraviolet laser pulse, with a time constant of approximately 200 fs. The actual ring closing was found to occur from this intermediate with a time constant of 5.3 +/- 0.3 ps. The femtosecond diffraction measurements were then performed using multiple crystal orientations and a large number of different samples. To analyse the results, an innovative method was developed in which the apparently complex ring-closing reaction is distilled down to a small number of basic rotations. Immediately following photoexcitation, sub-picosecond structural changes associated with the formation of the intermediate are observed. The rotation of the thiophene rings is identified as the key motion. Subsequently, on the few picosecond time scale, the time-resolved diffraction patterns are observed to converge towards those associated with the closed-ring photoproduct. The formation of the closed-ring molecule is thus unambiguously witnessed.

  8. Capillary Flows Along Open Channel Conduits: The Open-Star Section

    NASA Technical Reports Server (NTRS)

    Weislogel, Mark; Geile, John; Chen, Yongkang; Nguyen, Thanh Tung; Callahan, Michael

    2014-01-01

    Capillary rise in tubes, channels, and grooves has received significant attention in the literature for over 100 years. In yet another incremental extension of such work, a transient capillary rise problem is solved for spontaneous flow along an interconnected array of open channels forming what is referred to as an 'open-star' section. This geometry possesses several attractive characteristics including passive phase separations and high diffusive gas transport. Despite the complex geometry, novel and convenient approximations for capillary pressure and viscous resistance enable closed form predictions of the flow. As part of the solution, a combined scaling approach is applied that identifies unsteady-inertial-capillary, convective-inertial-capillary, and visco-capillary transient regimes in a single parameter. Drop tower experiments are performed employing 3-D printed conduits to corroborate all findings.

  9. An unconditionally stable staggered algorithm for transient finite element analysis of coupled thermoelastic problems

    NASA Technical Reports Server (NTRS)

    Farhat, C.; Park, K. C.; Dubois-Pelerin, Y.

    1991-01-01

    An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.

  10. Open-source framework for power system transmission and distribution dynamics co-simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Renke; Fan, Rui; Daily, Jeff

    The promise of the smart grid entails more interactions between the transmission and distribution networks, and there is an immediate need for tools to provide the comprehensive modelling and simulation required to integrate operations at both transmission and distribution levels. Existing electromagnetic transient simulators can perform simulations with integration of transmission and distribution systems, but the computational burden is high for large-scale system analysis. For transient stability analysis, currently there are only separate tools for simulating transient dynamics of the transmission and distribution systems. In this paper, we introduce an open source co-simulation framework “Framework for Network Co-Simulation” (FNCS), togethermore » with the decoupled simulation approach that links existing transmission and distribution dynamic simulators through FNCS. FNCS is a middleware interface and framework that manages the interaction and synchronization of the transmission and distribution simulators. Preliminary testing results show the validity and capability of the proposed open-source co-simulation framework and the decoupled co-simulation methodology.« less

  11. Investigation of thermal-fluid mechanical characteristics of the Capillary Pump Loop

    NASA Technical Reports Server (NTRS)

    Kiper, Ali M.

    1991-01-01

    The main purpose is the experimental and analytical study of behavior of the Capillary Pump Loop (CPL) heat pipe system during the transient mode of operating by applying a step heat pulse to one or more evaporators. Prediction of the CPL behavior when subjected to pulse heat loading requires further study before the transient response of CPL system can be fully understood. The following tasks are discussed: (1) exploratory testing of a CPL heat pipe for transient operational conditions which could generate the type of oscillatory inlet temperature behavior observed in an earlier testing of NASA/GSFC CPL-2 heat pipe system; (2) analytical investigation of the CPL inlet section temperature oscillations; (3) design, construction and testing of a bench-top CPL test system for study of the CPL transient operation; and (4) transient analysis of a CPL heat pipe by applying a step power input to the evaporators.

  12. Origin of switching current transients in TIPS-pentacene based organic thin-film transistor with polymer dielectric

    NASA Astrophysics Data System (ADS)

    Singh, Subhash; Mohapatra, Y. N.

    2017-06-01

    We have investigated switch-on drain-source current transients in fully solution-processed thin film transistors based on 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-pentacene) using cross-linked poly-4-vinylphenol as a dielectric. We show that the nature of the transient (increasing or decreasing) depends on both the temperature and the amplitude of the switching pulse at the gate. The isothermal transients are analyzed spectroscopically in a time domain to extract the degree of non-exponentiality and its possible origin in trap kinetics. We propose a phenomenological model in which the exchange of electrons between interfacial ions and traps controls the nature of the drain current transients dictated by the Fermi level position. The origin of interfacial ions is attributed to the essential fabrication step of UV-ozone treatment of the dielectric prior to semiconductor deposition.

  13. Distinct effects of CGRP on typical and atypical smooth muscle cells involved in generating spontaneous contractions in the mouse renal pelvis

    PubMed Central

    Hashitani, Hikaru; Lang, Richard J; Mitsui, Retsu; Mabuchi, Yoshio; Suzuki, Hikaru

    2009-01-01

    Background and purpose: We investigated the cellular mechanisms underlying spontaneous contractions in the mouse renal pelvis, regulated by calcitonin gene-related peptide (CGRP). Experimental approach: Spontaneous contractions, action potentials and Ca2+ transients in typical and atypical smooth muscle cells (TSMCs and ATSMCs) within the renal pelvis wall were recorded separately using tension and intracellular microelectrode recording techniques and Fluo-4 Ca2+ imaging. Immunohistochemical and electron microscopic studies were also carried out. Key results: Bundles of CGRP containing transient receptor potential cation channel, subfamily V, member 1-positive sensory nerves were situated near both TSMCs and ATSMCs. Nerve stimulation reduced the frequency but augmented the amplitude and duration of spontaneous phasic contractions, action potentials and Ca2+ transients in TSMCs. CGRP and agents increasing internal cyclic adenosine monophosphate (cAMP) mimicked the nerve-mediated modulation of TSMC activity and suppressed ATSMCs Ca2+ transients. Membrane hyperpolarization induced by CGRP or cAMP stimulators was blocked by glibenclamide, while their negative chronotropic effects were less affected. Glibenclamide enhanced TSMC Ca2+ transients but inhibited ATSMC Ca2+ transients, while both 5-hydroxydecanoate and diazoxide, a blocker and opener of mitochondrial ATP-sensitive K+ channels, respectively, reduced the Ca2+ transient frequency in both TSMCs and ATSMCs. Inhibition of mitochondrial function blocked ATSMCs Ca2+ transients and inhibited spontaneous excitation of TSMCs. Conclusions and implications: The negative chronotropic effects of CGRP result primarily from suppression of ATSMC Ca2+ transients rather than opening of plasmalemmal ATP-sensitive K+ channels in TSMCs. The positive inotropic effects of CGRP may derive from activation of TSMC L-type Ca2+ channels. Mitochondrial Ca2+ handling in ATSMCs also plays a critical role in generating Ca2+ transients. PMID:20050194

  14. Application of the Hughes-LIU algorithm to the 2-dimensional heat equation

    NASA Technical Reports Server (NTRS)

    Malkus, D. S.; Reichmann, P. I.; Haftka, R. T.

    1982-01-01

    An implicit explicit algorithm for the solution of transient problems in structural dynamics is described. The method involved dividing the finite elements into implicit and explicit groups while automatically satisfying the conditions. This algorithm is applied to the solution of the linear, transient, two dimensional heat equation subject to an initial condition derived from the soluton of a steady state problem over an L-shaped region made up of a good conductor and an insulating material. Using the IIT/PRIME computer with virtual memory, a FORTRAN computer program code was developed to make accuracy, stability, and cost comparisons among the fully explicit Euler, the Hughes-Liu, and the fully implicit Crank-Nicholson algorithms. The Hughes-Liu claim that the explicit group governs the stability of the entire region while maintaining the unconditional stability of the implicit group is illustrated.

  15. Numerical simulation of the generation, propagation, and diffraction of nonlinear waves in a rectangular basin: A three-dimensional numerical wave tank

    NASA Astrophysics Data System (ADS)

    Darwiche, Mahmoud Khalil M.

    The research presented herein is a contribution to the understanding of the numerical modeling of fully nonlinear, transient water waves. The first part of the work involves the development of a time-domain model for the numerical generation of fully nonlinear, transient waves by a piston type wavemaker in a three-dimensional, finite, rectangular tank. A time-domain boundary-integral model is developed for simulating the evolving fluid field. A robust nonsingular, adaptive integration technique for the assembly of the boundary-integral coefficient matrix is developed and tested. A parametric finite-difference technique for calculating the fluid- particle kinematics is also developed and tested. A novel compatibility and continuity condition is implemented to minimize the effect of the singularities that are inherent at the intersections of the various Dirichlet and/or Neumann subsurfaces. Results are presented which demonstrate the accuracy and convergence of the numerical model. The second portion of the work is a study of the interaction of the numerically-generated, fully nonlinear, transient waves with a bottom-mounted, surface-piercing, vertical, circular cylinder. The numerical model developed in the first part of this dissertation is extended to include the presence of the cylinder at the centerline of the basin. The diffraction of the numerically generated waves by the cylinder is simulated, and the particle kinematics of the diffracted flow field are calculated and reported. Again, numerical results showing the accuracy and convergence of the extended model are presented.

  16. Transient deformation following the 30 January 1997 dike intrusion at Kīlauea volcano, Hawai'i

    NASA Astrophysics Data System (ADS)

    Desmarais, Emily K.; Segall, Paul

    2007-02-01

    On 30 January 1997 an intrusion on Kīlauea volcano opened a new fissure within the East Rift Zone (ERZ) at Nāpau Crater, 3 km uprift from the ongoing eruptions at Pu’u ’Ō’ō. The fissure eruption lasted 22 h and opened a 5.1 km long, nearly vertical dike 1.9 m, extending from the surface to a depth of 2.4 km (Owen et al. 2000b). During the eruption, the lava pond at Pu’u ’Ō’ō drained, and eruptions ceased there. Pu’u ’Ō’ō eventually refilled in late February and eruptions resumed there on 28 March 1997. Continuous GPS data show a large transient following the 30 January 1997 dike intrusion. After lengthening 40 cm during the initial eruption, the baseline between two stations spanning the ERZ lengthened an additional 10 cm over the following 6 months. A coastal station KAEP also exhibited transient deformation, as it continued to move southward (5 cm) over the same 6-month period. The baseline between two stations spanning Kīlauea’s summit caldera contracted sharply during the eruption, but gradually recovered to slightly longer than its previous length 2 months after the intrusion. We use the extended network inversion filter (McGuire and Segall 2003) to invert continuous GPS data for volume change of a spherical pressure source under Kīlauea’s summit, opening distribution on a nearly vertical dike in the ERZ and potential slip on a decollement 9 km beneath the south flank. Following the 30 January intrusion, rift extension continued below the initial dike intrusion for the duration of the transient. Decollement slip, regardless of its assumed depth, is not required to fit the data. The modeled transient summit reinflation and rift opening patterns under Nāpau crater coincide with changes in observed behavior of Pu’u ’Ō’ō’s lava pond. Rift opening accelerated while Pu’u ’Ō’ō eruptions paused and began to decelerate after the lava pond reappeared nearly a month after the Nāpau eruption. The transient deformation is interpreted as resulting from shallow accommodation of the new dike volume.

  17. Transient-Switch-Signal Suppressor

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Circuit delays transmission of switch-opening or switch-closing signal until after preset suppression time. Used to prevent transmission of undesired momentary switch signal. Basic mode of operation simple. Beginning of switch signal initiates timing sequence. If switch signal persists after preset suppression time, circuit transmits switch signal to external circuitry. If switch signal no longer present after suppression time, switch signal deemed transient, and circuit does not pass signal on to external circuitry, as though no transient switch signal. Suppression time preset at value large enough to allow for damping of underlying pressure wave or other mechanical transient.

  18. Transient conduction-radiation analysis of an absolute active cavity radiometer using finite elements

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Kowsary, F.; Tira, N.; Gardiner, B. D.

    1987-01-01

    A NASA-developed finite element-based model of a generic active cavity radiometer (ACR) has been developed in order to study the dependence on operating temperature of the closed-loop and open-loop transient response of the instrument. Transient conduction within the sensing element is explored, and the transient temperature distribution resulting from the application of a time-varying radiative boundary condition is calculated. The results verify the prediction that operation of an ACR at cryogenic temperatures results in large gains in frequency response.

  19. Development of a new generation solid rocket motor ignition computer code

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Jenkins, Rhonald M.; Ciucci, Alessandro; Johnson, Shelby D.

    1994-01-01

    This report presents the results of experimental and numerical investigations of the flow field in the head-end star grain slots of the Space Shuttle Solid Rocket Motor. This work provided the basis for the development of an improved solid rocket motor ignition transient code which is also described in this report. The correlation between the experimental and numerical results is excellent and provides a firm basis for the development of a fully three-dimensional solid rocket motor ignition transient computer code.

  20. An IBM PC-based math model for space station solar array simulation

    NASA Technical Reports Server (NTRS)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  1. A Technique for Transient Thermal Testing of Thick Structures

    NASA Technical Reports Server (NTRS)

    Horn, Thomas J.; Richards, W. Lance; Gong, Leslie

    1997-01-01

    A new open-loop heat flux control technique has been developed to conduct transient thermal testing of thick, thermally-conductive aerospace structures. This technique uses calibration of the radiant heater system power level as a function of heat flux, predicted aerodynamic heat flux, and the properties of an instrumented test article. An iterative process was used to generate open-loop heater power profiles prior to each transient thermal test. Differences between the measured and predicted surface temperatures were used to refine the heater power level command profiles through the iteration process. This iteration process has reduced the effects of environmental and test system design factors, which are normally compensated for by closed-loop temperature control, to acceptable levels. The final revised heater power profiles resulted in measured temperature time histories which deviated less than 25 F from the predicted surface temperatures.

  2. Tool for the Integrated Dynamic Numerical Propulsion System Simulation (NPSS)/Turbine Engine Closed-Loop Transient Analysis (TTECTrA) User's Guide

    NASA Technical Reports Server (NTRS)

    Chin, Jeffrey C.; Csank, Jeffrey T.

    2016-01-01

    The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.

  3. Fiber type-specific afferent nerve activity induced by transient contractions of rat bladder smooth muscle in pathological states

    PubMed Central

    Kuga, Nahoko; Tanioka, Asao; Hagihara, Koichiro; Kawai, Tomoyuki

    2017-01-01

    Bladder smooth muscle shows spontaneous phasic contractions, which undergo a variety of abnormal changes depending on pathological conditions. How abnormal contractions affect the activity of bladder afferent nerves remains to be fully tested. In this study, we examined the relationship between transient increases in bladder pressure, representing transient contraction of bladder smooth muscle, and spiking patterns of bladder afferent fibers of the L6 dorsal root, in rat pathological models. All recordings were performed at a bladder pressure of approximately 10 cmH2O by maintaining the degree of bladder filling. In the cyclophosphamide-induced model, both Aδ and C fibers showed increased sensitivity to transient bladder pressure increases. In the prostaglandin E2-induced model, Aδ fibers, but not C fibers, specifically showed overexcitation that was time-locked with transient bladder pressure increases. These fiber type-specific changes in nerve spike patterns may underlie the symptoms of urinary bladder diseases. PMID:29267380

  4. A New Solution for Confined-Unconfined Flow Toward a Fully Penetrating Well in a Confined Aquifer.

    PubMed

    Xiao, Liang; Ye, Ming; Xu, Yongxin

    2018-02-08

    Transient confined-unconfined flow conversion caused by pumping in a confined aquifer (i.e., piezometric head drops below the top confined layer) is complicated, partly due to different hydraulic properties between confined and unconfined regions. For understanding mechanism of the transient confined-unconfined conversion, this paper develops a new analytical solution for the transient confined-unconfined flow toward a fully penetrating well in a confined aquifer. The analytical solution is used to investigate the impacts on drawdown simulation by differences of hydraulic properties, including transmissivity, storativity, and diffusivity defined as a ratio of transmissivity and storativity, between the confined and unconfined regions. It is found that neglecting the transmissivity difference may give an overestimation of drawdown. Instead, neglecting the diffusivity difference may lead to an underestimation of drawdown. The shape of drawdown-time curve is sensitive to the change of storativity ratio, S/S y , between the confined and unconfined regions. With a series of drawdown data from pumping tests, the analytical solution can also be used to inversely estimate following parameters related to the transient confined-unconfined conversion: radial distance of conversion interface, diffusivity, and specific yield of the unconfined region. It is concluded that using constant transmissivity and diffusivity in theory can result in biased estimates of radial distance of the conversion interface and specific yield of the unconfined region in practice. The analytical solution is useful to gain insight about various factors related to the transient confined-unconfined conversion and can be used for the design of mine drainage and groundwater management in the mining area. © 2018, National Ground Water Association.

  5. Mass Transport and Turbulence in Gravitationally Unstable Disk Galaxies. I. The Case of Pure Self-gravity

    NASA Astrophysics Data System (ADS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Forbes, John C.

    2015-12-01

    The role of gravitational instability-driven turbulence in determining the structure and evolution of disk galaxies, and the extent to which gravity rather than feedback can explain galaxy properties, remains an open question. To address it, we present high-resolution adaptive mesh refinement simulations of Milky Way-like isolated disk galaxies, including realistic heating and cooling rates and a physically motivated prescription for star formation, but no form of star formation feedback. After an initial transient, our galaxies reach a state of fully nonlinear gravitational instability. In this state, gravity drives turbulence and radial inflow. Despite the lack of feedback, the gas in our galaxy models shows substantial turbulent velocity dispersions, indicating that gravitational instability alone may be able to power the velocity dispersions observed in nearby disk galaxies on 100 pc scales. Moreover, the rate of mass transport produced by this turbulence approaches ˜ 1 {M}⊙ yr-1 for Milky Way-like conditions, sufficient to fully fuel star formation in the inner disks of galaxies. In a companion paper, we add feedback to our models, and use the comparison between the two cases to understand which galaxy properties depend sensitively on feedback and which can be understood as the product of gravity alone. All of the code, initial conditions, and simulation data for our model are publicly available.

  6. Linking a one-dimensional pesticide fate model to a three-dimensional groundwater model to simulate pollution risks of shallow and deep groundwater underlying fractured till.

    PubMed

    Stenemo, Fredrik; Jørgensen, Peter R; Jarvis, Nicholas

    2005-09-01

    The one-dimensional pesticide fate model MACRO was loose-linked to the three-dimensional discrete fracture/matrix diffusion model FRAC3DVS to describe transport of the pesticide mecoprop in a fractured moraine till and local sand aquifer (5-5.5 m depth) overlying a regional limestone aquifer (16 m depth) at Havdrup, Denmark. Alternative approaches to describe the upper boundary in the groundwater model were examined. Field-scale simulations were run to compare a uniform upper boundary condition with a spatially variable upper boundary derived from Monte-Carlo simulations with MACRO. Plot-scale simulations were run to investigate the influence of the temporal resolution of the upper boundary conditions for fluxes in the groundwater model and the effects of different assumptions concerning the macropore/fracture connectivity between the two models. The influence of within-field variability of leaching on simulated mecoprop concentrations in the local aquifer was relatively small. A fully transient simulation with FRAC3DVS gave 20 times larger leaching to the regional aquifer compared to the case with steady-state water flow, assuming full connectivity with respect to macropores/fractures across the boundary between the two models. For fully transient simulations 'disconnecting' the macropores/fractures at the interface between the two models reduced leaching by a factor 24. A fully connected, transient simulation with FRAC3DVS, with spatially uniform upper boundary fluxes derived from a MACRO simulation with 'effective' parameters is therefore recommended for assessing leaching risks to the regional aquifer, at this, and similar sites.

  7. Simulating Operation of a Large Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Frederick, Dean K.; DeCastro, Jonathan

    2008-01-01

    The Commercial Modular Aero- Propulsion System Simulation (C-MAPSS) is a computer program for simulating transient operation of a commercial turbofan engine that can generate as much as 90,000 lb (.0.4 MN) of thrust. It includes a power-management system that enables simulation of open- or closed-loop engine operation over a wide range of thrust levels throughout the full range of flight conditions. C-MAPSS provides the user with a set of tools for performing open- and closed-loop transient simulations and comparison of linear and non-linear models throughout its operating envelope, in an easy-to-use graphical environment.

  8. VERTPAK1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golis, M.J.

    1983-04-01

    VERTPAK1 is a package of analytical solutions used in verification of numerical codes that simulate fluid flow, rock deformation, and solute transport in fractured and unfractured porous media. VERTPAK1 contains the following: BAREN, an analytical solution developed by Barenblatt, Zhelton and Kochina (1960) for describing transient flow to a well penetrating a (double porosity) confined aquifer; GIBMAC, an analytical solution developed by McNamee and Gibson (1960) for describing consolidation of a semi-infinite soil medium subject to a strip (plane strain) or cylindrical (axisymmetric) loading; GRINRH, an analytical solution developed by Gringarten (1971) for describing transient flow to a partially penetratingmore » well in a confined aquifer containing a single horizontal fracture; GRINRV, an analytical solution developed by Gringarten, Ramey, and Raghavan (1974) for describing transient flow to a fully penetrating well in a confined aquifer containing a single vertical fracture; HART, an analytical solution given by Nowacki (1962) and implemented by HART (1981) for describing the elastic behavior of an infinite solid subject to a line heat source; LESTER, an analytical solution presented by Lester, Jansen, and Burkholder (1975) for describing one-dimensional transport of radionuclide chains through an adsorbing medium; STRELT, an analytical solution presented by Streltsova-Adams (1978) for describing transient flow to a fully penetrating well in a (double porosity) confined aquifer; and TANG, an analytical solution developed by Tang, Frind, and Sudicky (1981) for describing solute transport in a porous medium containing a single fracture.« less

  9. VERTPAK1. Code Verification Analytic Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golis, M.J.

    1983-04-01

    VERTPAK1 is a package of analytical solutions used in verification of numerical codes that simulate fluid flow, rock deformation, and solute transport in fractured and unfractured porous media. VERTPAK1 contains the following: BAREN, an analytical solution developed by Barenblatt, Zhelton and Kochina (1960) for describing transient flow to a well penetrating a (double porosity) confined aquifer; GIBMAC, an analytical solution developed by McNamee and Gibson (1960) for describing consolidation of a semi-infinite soil medium subject to a strip (plane strain) or cylindrical (axisymmetric) loading; GRINRH, an analytical solution developed by Gringarten (1971) for describing transient flow to a partially penetratingmore » well in a confined aquifer containing a single horizontal fracture; GRINRV, an analytical solution developed by Gringarten, Ramey, and Raghavan (1974) for describing transient flow to a fully penetrating well in a confined aquifer containing a single vertical fracture; HART, an analytical solution given by Nowacki (1962) and implemented by HART (1981) for describing the elastic behavior of an infinite solid subject to a line heat source; LESTER, an analytical solution presented by Lester, Jansen, and Burkholder (1975) for describing one-dimensional transport of radionuclide chains through an adsorbing medium; STRELT, an analytical solution presented by Streltsova-Adams (1978) for describing transient flow to a fully penetrating well in a (double porosity) confined aquifer; and TANG, an analytical solution developed by Tang, Frind, and Sudicky (1981) for describing solute transport in a porous medium containing a single fracture.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleman, S.E.

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.

  11. Reduced-Order Model for Leakage Through an Open Wellbore from the Reservoir due to Carbon Dioxide Injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Lehua; Oldenburg, Curtis M.

    Potential CO 2 leakage through existing open wellbores is one of the most significant hazards that need to be addressed in geologic carbon sequestration (GCS) projects. In the framework of the National Risk Assessment Partnership (NRAP) which requires fast computations for uncertainty analysis, rigorous simulation of the coupled wellbore-reservoir system is not practical. We have developed a 7,200-point look-up table reduced-order model (ROM) for estimating the potential leakage rate up open wellbores in response to CO 2 injection nearby. The ROM is based on coupled simulations using T2Well/ECO2H which was run repeatedly for representative conditions relevant to NRAP to createmore » a look-up table response-surface ROM. The ROM applies to a wellbore that fully penetrates a 20-m thick reservoir that is used for CO 2 storage. The radially symmetric reservoir is assumed to have initially uniform pressure, temperature, gas saturation, and brine salinity, and it is assumed these conditions are held constant at the far-field boundary (100 m away from the wellbore). In such a system, the leakage can quickly reach quasi-steady state. The ROM table can be used to estimate both the free-phase CO 2 and brine leakage rates through an open well as a function of wellbore and reservoir conditions. Results show that injection-induced pressure and reservoir gas saturation play important roles in controlling leakage. Caution must be used in the application of this ROM because well leakage is formally transient and the ROM lookup table was populated using quasi-steady simulation output after 1000 time steps which may correspond to different physical times for the various parameter combinations of the coupled wellbore-reservoir system.« less

  12. Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames.

    PubMed

    Ustav, M; Stenlund, A

    1991-02-01

    Bovine papillomavirus (BPV) DNA is maintained as an episome with a constant copy number in transformed cells and is stably inherited. To study BPV replication we have developed a transient replication assay based on a highly efficient electroporation procedure. Using this assay we have determined that in the context of the viral genome two of the viral open reading frames, E1 and E2, are required for replication. Furthermore we show that when produced from expression vectors in the absence of other viral gene products, the full length E2 transactivator polypeptide and a 72 kd polypeptide encoded by the E1 open reading frame in its entirety, are both necessary and sufficient for replication BPV in C127 cells.

  13. Transcriptome profiling of fully open flowers in a frost-tolerant almond genotype in response to freezing stress.

    PubMed

    Hosseinpour, Batool; Sepahvand, Sadegh; Kamali Aliabad, Kazem; Bakhtiarizadeh, MohammadReza; Imani, Ali; Assareh, Reza; Salami, Seyed Alireza

    2018-02-01

    Spring frost is a major limiting abiotic stress for the cultivation of almonds [Prunus dulcis (Mill.)] in Mediterranean areas or the Middle East. Spring frost, in particular, damages almond fully open flowers, resulting to significant reduction in yield. Little is known about the genetic factors expressed after frost stress in Prunus spp. as well as in almond fully open flowers. Here, we provide the molecular signature of pistils of fully open flowers from a frost-tolerant almond genotype. The level of frost tolerance in this genotype was determined for all three flowering stages and was confirmed by comparing it to two other cultivars using several physiological analyses. Afterwards, comprehensive expression profiling of genes expressed in fully open flowers was performed after being exposed to frost temperatures (during post-thaw period). Clean reads, 27,104,070 and 32,730,772, were obtained for non-frost-treated and frost-treated (FT) libraries, respectively. A total of 62.24 Mb was assembled, generating 50,896 unigenes and 66,906 transcripts. Therefore, 863 upregulated genes and 555 downregulated genes were identified in the FT library. Functional annotation showed that most of the upregulated genes were related to various biological processes involved in responding to abiotic stress. For the first time, a highly expressed cold-shock protein was identified in the reproductive organ of fruit trees. The expression of six genes was validated by RT-PCR. As the first comprehensive analysis of open flowers in a frost-tolerant almond genotype, this study represents a key step toward the molecular breeding of fruit tree species for frost tolerance.

  14. Numerical and experimental analysis of a ducted propeller designed by a fully automated optimization process under open water condition

    NASA Astrophysics Data System (ADS)

    Yu, Long; Druckenbrod, Markus; Greve, Martin; Wang, Ke-qi; Abdel-Maksoud, Moustafa

    2015-10-01

    A fully automated optimization process is provided for the design of ducted propellers under open water conditions, including 3D geometry modeling, meshing, optimization algorithm and CFD analysis techniques. The developed process allows the direct integration of a RANSE solver in the design stage. A practical ducted propeller design case study is carried out for validation. Numerical simulations and open water tests are fulfilled and proved that the optimum ducted propeller improves hydrodynamic performance as predicted.

  15. A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: A dynamic variational multiscale approach [A simple, stable, and accurate tetrahedral finite element for transient, nearly incompressible, linear and nonlinear elasticity: A dynamic variational multiscale approach

    DOE PAGES

    Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...

    2015-11-12

    Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less

  16. A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: A dynamic variational multiscale approach [A simple, stable, and accurate tetrahedral finite element for transient, nearly incompressible, linear and nonlinear elasticity: A dynamic variational multiscale approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi

    Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less

  17. Enhancing the ABAQUS Thermomechanics Code to Simulate Steady and Transient Fuel Rod Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Williamson; D. A. Knoll

    2009-09-01

    A powerful multidimensional fuels performance capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth , gap heat transfer, and gap/plenum gas behavior during irradiation. The various modeling capabilities are demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multi-pellet fuel rod, during both steady and transient operation. Computational results demonstrate the importancemore » of a multidimensional fully-coupled thermomechanics treatment. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermo-mechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less

  18. Alteration of the microsaccadic velocity-amplitude main sequence relationship after visual transients: implications for models of saccade control

    PubMed Central

    Chen, Chih-Yang; Tian, Xiaoguang; Idrees, Saad; Münch, Thomas A.

    2017-01-01

    Microsaccades occur during gaze fixation to correct for miniscule foveal motor errors. The mechanisms governing such fine oculomotor control are still not fully understood. In this study, we explored microsaccade control by analyzing the impacts of transient visual stimuli on these movements’ kinematics. We found that such kinematics can be altered in systematic ways depending on the timing and spatial geometry of visual transients relative to the movement goals. In two male rhesus macaques, we presented peripheral or foveal visual transients during an otherwise stable period of fixation. Such transients resulted in well-known reductions in microsaccade frequency, and our goal was to investigate whether microsaccade kinematics would additionally be altered. We found that both microsaccade timing and amplitude were modulated by the visual transients, and in predictable manners by these transients’ timing and geometry. Interestingly, modulations in the peak velocity of the same movements were not proportional to the observed amplitude modulations, suggesting a violation of the well-known “main sequence” relationship between microsaccade amplitude and peak velocity. We hypothesize that visual stimulation during movement preparation affects not only the saccadic “Go” system driving eye movements but also a “Pause” system inhibiting them. If the Pause system happens to be already turned off despite the new visual input, movement kinematics can be altered by the readout of additional visually evoked spikes in the Go system coding for the flash location. Our results demonstrate precise control over individual microscopic saccades and provide testable hypotheses for mechanisms of saccade control in general. NEW & NOTEWORTHY Microsaccadic eye movements play an important role in several aspects of visual perception and cognition. However, the mechanisms for microsaccade control are still not fully understood. We found that microsaccade kinematics can be altered in a systematic manner by visual transients, revealing a previously unappreciated and exquisite level of control by the oculomotor system of even the smallest saccades. Our results suggest precise temporal interaction between visual, motor, and inhibitory signals in microsaccade control. PMID:28202573

  19. Rapid Swept-Wavelength External Cavity Quantum Cascade Laser for Open Path Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brumfield, Brian E.; Phillips, Mark C.

    2015-07-01

    A rapidly tunable external cavity quantum cascade laser system is used for open path sensing. The system permits acquisition of transient absorption spectra over a 125 cm-1 tuning range in less than 0.01 s.

  20. Study on the transient properties of amorphous solar cells

    NASA Astrophysics Data System (ADS)

    Smrity, Manu; Dhariwal, S. R.

    2016-05-01

    The transient response for the solar cell when switched off from steady-state can provide useful information about the quality of the material used for fabrication of the device. In this paper we shall discuss the photovoltaic transients of amorphous silicon solar cells when switched off from open circuit configuration and illuminated by electrical pulse. The open-circuit voltage (Voc) decay can be performed by two methods, by optical excitation and by electrical pulse. When one of carriers has a concentration much higher than the other the photoconductivity is dominated by majority carriers; in that case the Voc decay which depends on the np product can be used as complementary method for obtaining information about the minority carriers. Also the series resistance drop in an electrical Voc decay method can be used to obtain a IJ't product as an additional information regarding the material of the device.

  1. Transient behavior of flare-associated solar wind. II - Gas dynamics in a nonradial open field region

    NASA Technical Reports Server (NTRS)

    Nagai, F.

    1984-01-01

    Transient behavior of flare-associated solar wind in the nonradial open field region is numerically investigated, taking into account the thermal and dynamical coupling between the chromosphere and the corona. A realistic steady solar wind is constructed which passes through the inner X-type critical point in the rapidly diverging region. The wind speed shows a local maximum at the middle, O-type, critical point. The wind's density and pressure distributions decrease abruptly in the rapidly diverging region of the flow tube. The transient behavior of the wind following flare energy deposition includes ascending and descending conduction fronts. Thermal instability occurs in the lower corona, and ascending material flows out through the throat after the flare energy input ceases. A local density distribution peak is generated at the shock front due to the pressure deficit just behind the shock front.

  2. Turning a remotely controllable observatory into a fully autonomous system

    NASA Astrophysics Data System (ADS)

    Swindell, Scott; Johnson, Chris; Gabor, Paul; Zareba, Grzegorz; Kubánek, Petr; Prouza, Michael

    2014-08-01

    We describe a complex process needed to turn an existing, old, operational observatory - The Steward Observatory's 61" Kuiper Telescope - into a fully autonomous system, which observers without an observer. For this purpose, we employed RTS2,1 an open sourced, Linux based observatory control system, together with other open sourced programs and tools (GNU compilers, Python language for scripting, JQuery UI for Web user interface). This presentation provides a guide with time estimates needed for a newcomers to the field to handle such challenging tasks, as fully autonomous observatory operations.

  3. Impact of graphene oxide on human placental trophoblast viability, functionality and barrier integrity

    NASA Astrophysics Data System (ADS)

    Kucki, Melanie; Aengenheister, Leonie; Diener, Liliane; Rippl, Alexandra V.; Vranic, Sandra; Newman, Leon; Vazquez, Ester; Kostarelos, Kostas; Wick, Peter; Buerki-Thurnherr, Tina

    2018-07-01

    Graphene oxide (GO) is considered a promising 2D material for biomedical applications. However, the biological health effects of GO are not yet fully understood, in particular for highly sensitive populations such as pregnant women and their unborn children. Especially the potential impact of GO on the human placenta, a transient and multifunctional organ that enables successful pregnancy, has not been investigated yet. Here we performed a mechanistic in vitro study on the placental uptake and biological effects of four non-labelled GO with varying physicochemical properties using the human trophoblast cell line BeWo. No overt cytotoxicity was observed for all GO materials after 48 h of exposure at concentrations up to 40 µg ml‑1. However, exposure to GO materials induced a slight decrease in mitochondrial activity and human choriogonadotropin secretion. In addition, GO induced a transient opening of the trophoblast barrier as evidenced by a temporary increase in the translocation of sodium fluorescein, a marker molecule for passive transport. Evidence for cellular uptake of GO was found by transmission electron microscopy analysis, revealing uptake of even large micro-sized GO by BeWo cells. Although GO did not elicit major acute adverse effects on BeWo trophoblast cells, the pronounced cellular internalization as well as the potential adverse effects on hormone release and barrier integrity warrants further studies on the long-term consequences of GO on placental functionality in order to understand potential embryo-fetotoxic risks.

  4. Validation of mathematical model for CZ process using small-scale laboratory crystal growth furnace

    NASA Astrophysics Data System (ADS)

    Bergfelds, Kristaps; Sabanskis, Andrejs; Virbulis, Janis

    2018-05-01

    The present material is focused on the modelling of small-scale laboratory NaCl-RbCl crystal growth furnace. First steps towards fully transient simulations are taken in the form of stationary simulations that deal with the optimization of material properties to match the model to experimental conditions. For this purpose, simulation software primarily used for the modelling of industrial-scale silicon crystal growth process was successfully applied. Finally, transient simulations of the crystal growth are presented, giving a sufficient agreement to experimental results.

  5. Transiently thermoresponsive polymers and their applications in biomedicine.

    PubMed

    Vanparijs, Nane; Nuhn, Lutz; De Geest, Bruno G

    2017-02-20

    The focus of this review is on the class of transiently thermoresponsive polymers. These polymers are thermoresponsive, but gradually lose this property upon chemical transformation - often a hydrolysis reaction - in the polymer side chain or backbone. An overview of the different approaches used for the design of these polymers along with their physicochemical properties is given. Their amphiphilic properties and degradability into fully soluble compounds make this class of responsive polymers attractive for drug delivery and tissue engineering applications. Examples of these are also provided in this review.

  6. Space-use, movement and dispersal of sub-adult cougars in a geographically isolated population.

    PubMed

    Morrison, Carl D; Boyce, Mark S; Nielsen, Scott E

    2015-01-01

    Cougar (Puma concolor) observations have increased in Midwest North America, with breeding populations re-establishing in several regions east of their contemporary range. The Cypress Hills Uplands, located in southwest Saskatchewan and southeast Alberta, was recently re-colonized by cougars and now supports the easternmost confirmed breeding population of cougars in Canada. A number of factors contribute to this cougar range expansion, but it is dispersal that provides the mechanism for re-colonization of historic range. We used GPS-collar data to examine space-use and movement behavior of sub-adult cougars, the age class associated with dispersal, in the Cypress Hills. Conditional logistic regression and a two-stage modeling approach were used to estimate resource selection functions (RSF) of sub-adult cougars during two distinct ranging behaviors: transient movements (i.e., dispersal and exploratory forays) and localizing movements (i.e., temporary home ranges). Linear regression was used to model movement rates, measured as the distance between consecutive 3-h GPS-relocations, of sub-adult cougars relative to different habitats, times of day and between transient and localizing behavior. All individual sub-adult cougars displayed bouts of transient and localizing behavior. All male cougars dispersed from their natal ranges and travelled considerably farther distances than female cougars. One male dispersed over 750 km eastward through the agricultural belt of northern Montana and southern Saskatchewan. Males occupied temporary home ranges in more open habitats on the fringes of the insular Cypress Hills, while females appeared to be recruited into the adult population, occupying treed habitat that provided more suitable cover. During both ranging behaviors, sub-adult cougars selected for rugged terrain and proximity to hydrological features (likely supporting riparian habitats) and avoided open cover types. Differences in habitat selection between ranging behaviors were observed in response to open water, roads and elevation. Although certain habitat characteristics were preferred, transient and localizing cougars used fast-paced nocturnal movements and shortened daytime movements when traversing open habitats to effectively limit their residency and exposure in less-suitable landscapes. Additionally, cougars moved greater distances at night during transient behavior compared to localizing behavior indicating cougars used cover of darkness to traverse novel terrain. In doing so, sub-adult cougars can successfully disperse several hundred kilometres across a matrix of open habitat in search of resources and mates.

  7. Transient replication of BPV-1 requires two viral polypeptides encoded by the E1 and E2 open reading frames.

    PubMed Central

    Ustav, M; Stenlund, A

    1991-01-01

    Bovine papillomavirus (BPV) DNA is maintained as an episome with a constant copy number in transformed cells and is stably inherited. To study BPV replication we have developed a transient replication assay based on a highly efficient electroporation procedure. Using this assay we have determined that in the context of the viral genome two of the viral open reading frames, E1 and E2, are required for replication. Furthermore we show that when produced from expression vectors in the absence of other viral gene products, the full length E2 transactivator polypeptide and a 72 kd polypeptide encoded by the E1 open reading frame in its entirety, are both necessary and sufficient for replication BPV in C127 cells. Images PMID:1846806

  8. A small, lightweight multipollutant sensor system for ground-mobile and aerial emission sampling from open area sources

    EPA Science Inventory

    Characterizing highly dynamic, transient, and vertically lofted emissions from open area sources poses unique measurement challenges. This study developed and applied a multipollutant sensor and integrated sampler system for use on mobile applications including tethered balloons ...

  9. CosmoQuest Transient Tracker: Opensource Photometry & Astrometry software

    NASA Astrophysics Data System (ADS)

    Myers, Joseph L.; Lehan, Cory; Gay, Pamela; Richardson, Matthew; CosmoQuest Team

    2018-01-01

    CosmoQuest is moving from online citizen science, to observational astronomy with the creation of Transient Trackers. This open source software is designed to identify asteroids and other transient/variable objects in image sets. Transient Tracker’s features in final form will include: astrometric and photometric solutions, identification of moving/transient objects, identification of variable objects, and lightcurve analysis. In this poster we present our initial, v0.1 release and seek community input.This software builds on the existing NIH funded ImageJ libraries. Creation of this suite of opensource image manipulation routines is lead by Wayne Rasband and is released primarily under the MIT license. In this release, we are building on these libraries to add source identification for point / point-like sources, and to do astrometry. Our materials released under the Apache 2.0 license on github (http://github.com/CosmoQuestTeam) and documentation can be found at http://cosmoquest.org/TransientTracker.

  10. Understanding of Particle Acceleration by Foreshock Transients (invited)

    NASA Astrophysics Data System (ADS)

    Liu, T. Z.; Angelopoulos, V.; Hietala, H.; Lu, S.; Wilson, L. B., III

    2017-12-01

    Although plasma shocks are known to be a major particle accelerator at Earth's environment (e.g., the bow shock) and elsewhere in the universe, how particles are accelerated to very large energies compared to the shock potential is still not fully understood. Significant new information on such acceleration in the vicinity of Earth's bow shock has recently emerged due to the availability of multi-point observations, in particular from Cluster and THEMIS. These have revealed numerous types of foreshock transients, formed by shock-reflected ions, which could play a crucial role in particle pre-acceleration, i.e. before the particles reach the shock to be subjected again to even further acceleration. Foreshock bubbles (FBs) and hot flow anomalies (HFAs), are a subset of such foreshock transients that are especially important due to their large spatial scale (1-10 Earth radii), and their ability to have global effects at Earth.s geospace. These transients can accelerate particles that can become a particle source for the parent shock. Here we introduce our latest progress in understanding particle acceleration by foreshock transients including their statistical characteristics and acceleration mechanisms.

  11. Understanding of Particle Acceleration by Foreshock Transients

    NASA Astrophysics Data System (ADS)

    Liu, T. Z.; Angelopoulos, V.; Hietala, H.; Lu, S.; Wilson, L. B., III

    2017-12-01

    Although plasma shocks are known to be a major particle accelerator at Earth's environment (e.g., the bow shock) and elsewhere in the universe, how particles are accelerated to very large energies compared to the shock potential is still not fully understood. Significant new information on such acceleration in the vicinity of Earth's bow shock has recently emerged due to the availability of multi-point observations, in particular from Cluster and THEMIS. These have revealed numerous types of foreshock transients, formed by shock-reflected ions, which could play a crucial role in particle pre-acceleration, i.e. before the particles reach the shock to be subjected again to even further acceleration. Foreshock bubbles (FBs) and hot flow anomalies (HFAs), are a subset of such foreshock transients that are especially important due to their large spatial scale (1-10 Earth radii), and their ability to have global effects at Earth's geospace. These transients can accelerate particles that can become a particle source for the parent shock. Here we introduce our latest progress in understanding particle acceleration by foreshock transients including their statistical characteristics and acceleration mechanisms.

  12. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of Soybean (Glycine max) at elevated [CO2] and temperatures under fully open air field conditions

    USDA-ARS?s Scientific Manuscript database

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on 1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the ma...

  13. Magnetar giant flares in multipolar magnetic fields. I. Fully and partially open eruptions of flux ropes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lei; Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn

    2014-04-01

    We propose a catastrophic eruption model for the enormous energy release of magnetars during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefullymore » establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole-dominated background fields. Nevertheless, it is hard to generate fully open magnetic eruptions for multipolar background fields. Given the observational importance of the multipolar magnetic fields in the vicinity of the magnetar surface, it would be worthwhile to explore the possibility of the alternative eruption approach in multipolar background fields. Fortunately, we find that flux ropes may give rise to partially open eruptions in the multipolar fields, which involve only partial opening of background fields. The energy release fractions are greater for cases with central-arcaded multipoles than those with central-caved multipoles that emerged in background fields. Eruptions would fail only when the centrally caved multipoles become extremely strong.« less

  14. Instrumentation of LOTIS: Livermore Optical Transient Imaging System; a fully automated wide field of view telescope system searching for simultaneous optical counterparts of gamma ray bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H.S.; Ables, E.; Barthelmy, S.D.

    LOTIS is a rapidly slewing wide-field-of-view telescope which was designed and constructed to search for simultaneous gamma-ray burst (GRB) optical counterparts. This experiment requires a rapidly slewing ({lt} 10 sec), wide-field-of-view ({gt} 15{degrees}), automatic and dedicated telescope. LOTIS utilizes commercial tele-photo lenses and custom 2048 x 2048 CCD cameras to view a 17.6 x 17.6{degrees} field of view. It can point to any part of the sky within 5 sec and is fully automated. It is connected via Internet socket to the GRB coordinate distribution network which analyzes telemetry from the satellite and delivers GRB coordinate information in real-time. LOTISmore » started routine operation in Oct. 1996. In the idle time between GRB triggers, LOTIS systematically surveys the entire available sky every night for new optical transients. This paper will describe the system design and performance.« less

  15. Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood-brain barrier opening.

    PubMed

    Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel; Konofagou, Elisa E

    2017-04-01

    Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood-brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood-brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo.

  16. Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage.

    PubMed

    Wessells, Colin D; McDowell, Matthew T; Peddada, Sandeep V; Pasta, Mauro; Huggins, Robert A; Cui, Yi

    2012-02-28

    The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and nickel hexacyanoferrate, two open framework materials with the Prussian Blue structure, were recently shown to offer ultralong cycle life and high-rate performance when operated as battery electrodes in safe, inexpensive aqueous sodium ion and potassium ion electrolytes. In this report, we demonstrate that the reaction potential of copper-nickel alloy hexacyanoferrate nanoparticles may be tuned by controlling the ratio of copper to nickel in these materials. X-ray diffraction, TEM energy dispersive X-ray spectroscopy, and galvanostatic electrochemical cycling of copper-nickel hexacyanoferrate reveal that copper and nickel form a fully miscible solution at particular sites in the framework without perturbing the structure. This allows copper-nickel hexacyanoferrate to reversibly intercalate sodium and potassium ions for over 2000 cycles with capacity retentions of 100% and 91%, respectively. The ability to precisely tune the reaction potential of copper-nickel hexacyanoferrate without sacrificing cycle life will allow the development of full cells that utilize the entire electrochemical stability window of aqueous sodium and potassium ion electrolytes.

  17. Physical exercise prevents motor disorders and striatal oxidative imbalance after cerebral ischemia-reperfusion.

    PubMed

    Sosa, P M; Schimidt, H L; Altermann, C; Vieira, A S; Cibin, F W S; Carpes, F P; Mello-Carpes, P B

    2015-09-01

    Stroke is the third most common cause of death worldwide, and most stroke survivors present some functional impairment. We assessed the striatal oxidative balance and motor alterations resulting from stroke in a rat model to investigate the neuroprotective role of physical exercise. Forty male Wistar rats were assigned to 4 groups: a) control, b) ischemia, c) physical exercise, and d) physical exercise and ischemia. Physical exercise was conducted using a treadmill for 8 weeks. Ischemia-reperfusion surgery involved transient bilateral occlusion of the common carotid arteries for 30 min. Neuromotor performance (open-field and rotarod performance tests) and pain sensitivity were evaluated beginning at 24 h after the surgery. Rats were euthanized and the corpora striata was removed for assay of reactive oxygen species, lipoperoxidation activity, and antioxidant markers. Ischemia-reperfusion caused changes in motor activity. The ischemia-induced alterations observed in the open-field test were fully reversed, and those observed in the rotarod test were partially reversed, by physical exercise. Pain sensitivity was similar among all groups. Levels of reactive oxygen species and lipoperoxidation increased after ischemia; physical exercise decreased reactive oxygen species levels. None of the treatments altered the levels of antioxidant markers. In summary, ischemia-reperfusion resulted in motor impairment and altered striatal oxidative balance in this animal model, but those changes were moderated by physical exercise.

  18. Lipid microbubbles as a vehicle for targeted drug delivery using focused ultrasound-induced blood–brain barrier opening

    PubMed Central

    Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel

    2016-01-01

    Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood–brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood–brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo. PMID:27278929

  19. Three-dimensional transient flow of spin-up in a filled cylinder with oblique gravity force

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    Three-dimensional transient flow profiles of spin-up in a fully liquid filled cylinder from rest with gravity acceleration at various direction are numerically simulated and studied. Particular interests are concentrated on the development of temporary reverse flow zones and Ekman layer right after the impulsive start of spin-up from rest, and decay before the flow reaching to the solid rotation. Relationship of these flow developments and differences in the Reynolds numbers of the flow and its size selection of grid points concerning the numerical instabilities of flow computations are also discussed. In addition to the gravitational acceleration along the axial direction of the cylindrical container, a series of complicated flow profiles accompanied by three-dimensional transient flows with oblique gravitational acceleration has been studies.

  20. Two chain gallium fluorodiphosphates: synthesis, structure solution, and their transient presence during the hydrothermal crystallisation of a microporous gallium fluorophosphate.

    PubMed

    Millange, Franck; Walton, Richard I; Guillou, Nathalie; Loiseau, Thierry; O'Hare, Dermot; Férey, Gérard

    2002-04-21

    Two novel gallium fluorodiphosphates have been isolated and their structures solved ab initio from powder X-ray diffraction data; the materials readily interconvert under hydrothermal conditions, and are metastable with respect to an open-framework zeolitic gallium fluorophosphate, during the synthesis of which they are present as transient intermediates.

  1. A MULTIPLE GRID ALGORITHM FOR ONE-DIMENSIONAL TRANSIENT OPEN CHANNEL FLOWS. (R825200)

    EPA Science Inventory

    Numerical modeling of open channel flows with shocks using explicit finite difference schemes is constrained by the choice of time step, which is limited by the CFL stability criteria. To overcome this limitation, in this work we introduce the application of a multiple grid al...

  2. Nonlinear interaction between underwater explosion bubble and structure based on fully coupled model

    NASA Astrophysics Data System (ADS)

    Zhang, A. M.; Wu, W. B.; Liu, Y. L.; Wang, Q. X.

    2017-08-01

    The interaction between an underwater explosion bubble and an elastic-plastic structure is a complex transient process, accompanying violent bubble collapsing, jet impact, penetration through the bubble, and large structural deformation. In the present study, the bubble dynamics are modeled using the boundary element method and the nonlinear transient structural response is modeled using the explicit finite element method. A new fully coupled 3D model is established through coupling the equations for the state variables of the fluid and structure and solving them as a set of coupled linear algebra equations. Based on the acceleration potential theory, the mutual dependence between the hydrodynamic load and the structural motion is decoupled. The pressure distribution in the flow field is calculated with the Bernoulli equation, where the partial derivative of the velocity potential in time is calculated using the boundary integral method to avoid numerical instabilities. To validate the present fully coupled model, the experiments of small-scale underwater explosion near a stiffened plate are carried out. High-speed imaging is used to capture the bubble behaviors and strain gauges are used to measure the strain response. The numerical results correspond well with the experimental data, in terms of bubble shapes and structural strain response. By both the loosely coupled model and the fully coupled model, the interaction between a bubble and a hollow spherical shell is studied. The bubble patterns vary with different parameters. When the fully coupled model and the loosely coupled model are advanced with the same time step, the error caused by the loosely coupled model becomes larger with the coupling effect becoming stronger. The fully coupled model is more stable than the loosely coupled model. Besides, the influences of the internal fluid on the dynamic response of the spherical shell are studied. At last, the case that the bubble interacts with an air-backed stiffened plate is simulated. The associated interesting physical phenomenon is obtained and expounded.

  3. Measurement of the transient shielding effectiveness of shielding cabinets

    NASA Astrophysics Data System (ADS)

    Herlemann, H.; Koch, M.

    2008-05-01

    Recently, new definitions of shielding effectiveness (SE) for high-frequency and transient electromagnetic fields were introduced by Klinkenbusch (2005). Analytical results were shown for closed as well as for non closed cylindrical shields. In the present work, the shielding performance of different shielding cabinets is investigated by means of numerical simulations and measurements inside a fully anechoic chamber and a GTEM-cell. For the GTEM-cell-measurements, a downscaled model of the shielding cabinet is used. For the simulations, the numerical tools CONCEPT II and COMSOL MULTIPHYSICS were available. The numerical results agree well with the measurements. They can be used to interpret the behaviour of the shielding effectiveness of enclosures as function of frequency. From the measurement of the electric and magnetic fields with and without the enclosure in place, the electric and magnetic shielding effectiveness as well as the transient shielding effectiveness of the enclosure are calculated. The transient SE of four different shielding cabinets is determined and discussed.

  4. Enhancing the ABAQUS thermomechanics code to simulate multipellet steady and transient LWR fuel rod behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. L. Williamson

    A powerful multidimensional fuels performance analysis capability, applicable to both steady and transient fuel behavior, is developed based on enhancements to the commercially available ABAQUS general-purpose thermomechanics code. Enhanced capabilities are described, including: UO2 temperature and burnup dependent thermal properties, solid and gaseous fission product swelling, fuel densification, fission gas release, cladding thermal and irradiation creep, cladding irradiation growth, gap heat transfer, and gap/plenum gas behavior during irradiation. This new capability is demonstrated using a 2D axisymmetric analysis of the upper section of a simplified multipellet fuel rod, during both steady and transient operation. Comparisons are made between discrete andmore » smeared-pellet simulations. Computational results demonstrate the importance of a multidimensional, multipellet, fully-coupled thermomechanical approach. Interestingly, many of the inherent deficiencies in existing fuel performance codes (e.g., 1D thermomechanics, loose thermomechanical coupling, separate steady and transient analysis, cumbersome pre- and post-processing) are, in fact, ABAQUS strengths.« less

  5. Computational Analysis of a Wells Turbine with Flexible Trailing Edges

    NASA Astrophysics Data System (ADS)

    Kincaid, Kellis; Macphee, David

    2017-11-01

    The Wells turbine is often used to produce a net positive power from an oscillating air column excited by ocean waves. It has been parametrically studied quite thoroughly in the past, both experimentally and numerically. The effects of various characteristics such as blade count and profile, solidity, and tip gap are well known. Several three-dimensional computational studies have been carried out using commercial code to investigate many phenomena detected in experiments: hysteresis, tip-gap drag, and post-stall behavior for example. In this work, the open-source code Foam-Extend is used to examine the effect of flexible blades on the performance of the Wells turbine. A new solver is created to integrate fluid-structure interaction into the code, allowing an accurate solution for both the solid and fluid domains. Reynolds-averaged governing equations are employed in a fully transient solution model. The elastic modulus of the flexible portion of the blade and the tip-gap width are varied, and the resulting flow fields are investigated to determine the cause of any performance differences. NSF Grant EEC 1659710.

  6. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Arakere, A.; Yen, C.-F.; Cheeseman, B. A.

    2013-05-01

    A fully coupled (two-way), transient, thermal-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt-joining process. Two-way thermal-mechanical coupling is achieved by making the mechanical material model of the workpiece and the weld temperature-dependent and by allowing the potential work of plastic deformation resulting from large thermal gradients to be dissipated in the form of heat. To account for the heat losses from the weld into the surroundings, heat transfer effects associated with natural convection and radiation to the environment and thermal-heat conduction to the adjacent workpiece material are considered. The procedure is next combined with the basic physical-metallurgy concepts and principles and applied to a prototypical (plain) low-carbon steel (AISI 1005) to predict the distribution of various crystalline phases within the as-welded material microstructure in different fusion zone and heat-affected zone locations, under given GMAW-process parameters. The results obtained are compared with available open-literature experimental data to provide validation/verification for the proposed GMAW modeling effort.

  7. Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, A.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.; Montgomery, J. S.

    2013-06-01

    A conventional gas metal arc welding (GMAW) butt-joining process has been modeled using a two-way fully coupled, transient, thermal-mechanical finite-element procedure. To achieve two-way thermal-mechanical coupling, the work of plastic deformation resulting from potentially high thermal stresses is allowed to be dissipated in the form of heat, and the mechanical material model of the workpiece and the weld is made temperature dependent. Heat losses from the deposited filler-metal are accounted for by considering conduction to the adjoining workpieces as well as natural convection and radiation to the surroundings. The newly constructed GMAW process model is then applied, in conjunction with the basic material physical-metallurgy, to a prototypical high-hardness armor martensitic steel (MIL A46100). The main outcome of this procedure is the prediction of the spatial distribution of various crystalline phases within the weld and the heat-affected zone regions, as a function of the GMAW process parameters. The newly developed GMAW process model is validated by comparing its predictions with available open-literature experimental and computational data.

  8. Reversal learning and resurgence of operant behavior in zebrafish (Danio rerio).

    PubMed

    Kuroda, Toshikazu; Mizutani, Yuto; Cançado, Carlos R X; Podlesnik, Christopher A

    2017-09-01

    Zebrafish are used extensively as vertebrate animal models in biomedical research for having such features as a fully sequenced genome and transparent embryo. Yet, operant-conditioning studies with this species are scarce. The present study investigated reversal learning and resurgence of operant behavior in zebrafish. A target response (approaching a sensor) was reinforced in Phase 1. In Phase 2, the target response was extinguished while reinforcing an alternative response (approaching a different sensor). In Phase 3, extinction was in effect for the target and alternative responses. Reversal learning was demonstrated when responding tracked contingency changes between Phases 1 and 2. Moreover, resurgence occurred in 10 of 13 fish in Phase 3: Target response rates increased transiently and exceeded rates of an unreinforced control response. The present study provides the first evidence with zebrafish supporting reversal learning between discrete operant responses and a laboratory model of relapse. These findings open the possibility to assessing genetic influences of operant behavior generally and in models of relapse (e.g., resurgence, renewal, reinstatement). Copyright © 2017 Elsevier B.V. All rights reserved.

  9. 3D Imaging of a Dislocation Loop at the Onset of Plasticity in an Indented Nanocrystal.

    PubMed

    Dupraz, M; Beutier, G; Cornelius, T W; Parry, G; Ren, Z; Labat, S; Richard, M-I; Chahine, G A; Kovalenko, O; De Boissieu, M; Rabkin, E; Verdier, M; Thomas, O

    2017-11-08

    Structural quality and stability of nanocrystals are fundamental problems that bear important consequences for the performances of small-scale devices. Indeed, at the nanoscale, their functional properties are largely influenced by elastic strain and depend critically on the presence of crystal defects. It is thus of prime importance to be able to monitor, by noninvasive means, the stability of the microstructure of nano-objects against external stimuli such as mechanical load. Here we demonstrate the potential of Bragg coherent diffraction imaging for such measurements, by imaging in 3D the evolution of the microstructure of a nanocrystal exposed to in situ mechanical loading. Not only could we observe the evolution of the internal strain field after successive loadings, but we also evidenced a transient microstructure hosting a stable dislocation loop. The latter is fully characterized from its characteristic displacement field. The mechanical behavior of this small crystal is clearly at odds with what happens in bulk materials where many dislocations interact. Moreover, this original in situ experiment opens interesting possibilities for the investigation of plastic deformation at the nanoscale.

  10. B-Site Metal Cation Exchange in Halide Perovskites

    DOE PAGES

    Eperon, Giles E.; Ginger, David S.

    2017-05-02

    Here, we demonstrate exchange of the B-site metal cation in hybrid organic-inorganic halide perovskite thin films. We exchange tin in formamidinium tin triiodide (NH 2) 2SnI 3' or FASnI 3) with lead at controllable levels, forming (CH- (NH 2) 2SnI xPB 1-xI 3 alloys with partial substitution and fully converting the film to CH(NH 2) 2PbI 3 with a large excess of Pb 2+. We observe no evidence for phase segregation or bilayered films, indicating that conversion is uniform throughout the film. This facile technique provides a new way to control composition independently from the crystallization processes, allowing formation ofmore » the black phase of CH(NH 2) 2PbI 3 at much lower temperatures than those previously reported while also opening the door to new morphology-composition combinations. The surprising observation that the B-site metal cations are mobile may also provide insight into the nature of transient processes in these materials, suggesting that they may be involved in ionic conduction, and will be a critical consideration for long-term stability.« less

  11. B-Site Metal Cation Exchange in Halide Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eperon, Giles E.; Ginger, David S.

    Here, we demonstrate exchange of the B-site metal cation in hybrid organic-inorganic halide perovskite thin films. We exchange tin in formamidinium tin triiodide (NH 2) 2SnI 3' or FASnI 3) with lead at controllable levels, forming (CH- (NH 2) 2SnI xPB 1-xI 3 alloys with partial substitution and fully converting the film to CH(NH 2) 2PbI 3 with a large excess of Pb 2+. We observe no evidence for phase segregation or bilayered films, indicating that conversion is uniform throughout the film. This facile technique provides a new way to control composition independently from the crystallization processes, allowing formation ofmore » the black phase of CH(NH 2) 2PbI 3 at much lower temperatures than those previously reported while also opening the door to new morphology-composition combinations. The surprising observation that the B-site metal cations are mobile may also provide insight into the nature of transient processes in these materials, suggesting that they may be involved in ionic conduction, and will be a critical consideration for long-term stability.« less

  12. Large fully retractable telescope enclosures still closable in strong wind

    NASA Astrophysics Data System (ADS)

    Bettonvil, Felix C. M.; Hammerschlag, Robert H.; Jägers, Aswin P. L.; Sliepen, Guus

    2008-07-01

    Two prototypes of fully retractable enclosures with diameters of 7 and 9 m have been built for the high-resolution solar telescopes DOT (Dutch Open Telescope) and GREGOR, both located at the Canary Islands. These enclosures protect the instruments for bad weather and are fully open when the telescopes are in operation. The telescopes and enclosures also operate in hard wind. The prototypes are based on tensioned membrane between movable but stiff bows, which fold together to a ring when opened. The height of the ring is small. The prototypes already survived several storms, with often snow and ice, without any damage, including hurricane Delta with wind speeds up to 68 m/s. The enclosures can still be closed and opened with wind speeds of 20 m/s without any problems or restrictions. The DOT successfully demonstrated the open, wind-flushing concept for astronomical telescopes. It is now widely recognized that also large future telescopes benefit from wind-flushing and retractable enclosures. These telescopes require enclosures with diameters of 30 m until roughly 100 m, the largest sizes for the ELTs (Extreme Large Telescopes), which will be built in the near future. We discuss developments and required technology for the realization of these large sizes.

  13. Finding and Localizing FRBs in Realtime with realfast

    NASA Astrophysics Data System (ADS)

    Law, Casey J.; Bower, Geoffrey C.; Burke-Spolaor, Sarah; Butler, Bryan J.; Paul, Demorest; Lazio, Joseph; Rupen, Michael P.

    2017-01-01

    Fast Radio Bursts (FRBs) are mysterious millisecond radio transients that seem to originate from outside of the Milky Way. Despite having discovered roughly 20 FRBs, single-dish radio telescopes have not localized an FRB well enough to associate them confidently with multiwavelength counterparts (e.g., a host galaxy). Thus, fundamental questions about their distance, energetics, and origin remain open. Radio interferometers expand on science capabilities of single-dish radio telescopes by their ability to instantaneously localize sources. However, using interferometers at millisecond timescales ("fast imaging") generates a Terabyte of data per hour, enough to choke typical data analysis pipelines and too large to move via the internet.To open access to this novel capability of interferometers, we are building realfast, a GPU cluster at the Very Large Array (VLA) that will be dedicated to real-time, fast transient searches. Real-time processing will be used to trigger data recording for those brief moments when millisecond transients occur. Realfast will be integrated with the VLA correlator to search a fast copy of all observations, a fundamentally new capability that will be open to all VLA users. By controlling the output data rate, realfast will observe thousands of hours per year, enough to find and localize dozens of FRBs. I will present early development progress and discoveries from realfast observations.

  14. Comparison/Validation Study of Lattice Boltzmann and Navier Stokes for Various Benchmark Applications: Report 1 in Discrete Nano-Scale Mechanics and Simulations Series

    DTIC Science & Technology

    2014-09-15

    solver, OpenFOAM version 2.1.‡ In particular, the incompressible laminar flow equations (Eq. 6-8) were solved in conjunction with the pressure im- plicit...central differencing and upwinding schemes, respectively. Since the OpenFOAM code is inherently transient, steady-state conditions were ob- tained...collaborative effort between Kitware and Los Alamos National Laboratory. ‡ OpenFOAM is a free, open-source computational fluid dynamics software developed

  15. A point implicit time integration technique for slow transient flow problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.

    2015-05-01

    We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation ofmore » explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust.« less

  16. Transient UV pump-IR probe investigation of heterocyclic ring-opening dynamics in the solution phase: the role played by nσ* states in the photoinduced reactions of thiophenone and furanone.

    PubMed

    Murdock, Daniel; Harris, Stephanie J; Luke, Joel; Grubb, Michael P; Orr-Ewing, Andrew J; Ashfold, Michael N R

    2014-10-21

    The heterocyclic ring-opening dynamics of thiophenone and furanone dissolved in CH3CN have been probed by ultrafast transient infrared spectroscopy. Following irradiation at 267 nm (thiophenone) or 225 nm (furanone), prompt (τ < 1 ps) ring-opening is confirmed by the appearance of a characteristic antisymmetric ketene stretching feature around 2150 cm(-1). The ring-opened product molecules are formed highly vibrationally excited, and cool subsequently on a ∼6.7 ps timescale. By monitoring the recovery of the parent (S0) bleach, it is found that ∼60% of the initially photoexcited thiophenone molecules reform the parent molecule, in stark contrast with the case in furanone where there is less than 10% parent bleach recovery. Complementary ab initio calculations of potential energy cuts along the S-C([double bond, length as m-dash]O) and O-C([double bond, length as m-dash]O) ring-opening coordinate reveals insights into the reaction mechanism, and the important role played by dissociative (n/π)σ* states in the UV-induced photochemistry of such heterocyclic systems.

  17. Building pit dewatering: application of transient analytic elements.

    PubMed

    Zaadnoordijk, Willem J

    2006-01-01

    Analytic elements are well suited for the design of building pit dewatering. Wells and drains can be modeled accurately by analytic elements, both nearby to determine the pumping level and at some distance to verify the targeted drawdown at the building site and to estimate the consequences in the vicinity. The ability to shift locations of wells or drains easily makes the design process very flexible. The temporary pumping has transient effects, for which transient analytic elements may be used. This is illustrated using the free, open-source, object-oriented analytic element simulator Tim(SL) for the design of a building pit dewatering near a canal. Steady calculations are complemented with transient calculations. Finally, the bandwidths of the results are estimated using linear variance analysis.

  18. Transient Behavior of Lumped-Constant Systems for Sensing Gas Pressures

    NASA Technical Reports Server (NTRS)

    Delio, Gene J; Schwent, Glennon V; Cesaro, Richard S

    1949-01-01

    The development of theoretical equations describing the behavior of a lumped-constant pressure-sensing system under transient operation Is presented with experimental data that show agreement with the equations. A pressure-sensing system 'consisting of a tube terminating in a reservoir is investigated for the transient relation between a presSure disturbance at the open end of the tube and the pressure response in the reservoir. Design parameters are presented that can be adjusted to achieve a desired performance fran such a system when the system is considered as a transfer member of a control loop.

  19. 33 CFR 117.5 - When the drawbridge must open.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false When the drawbridge must open... BRIDGES DRAWBRIDGE OPERATION REGULATIONS General Requirements § 117.5 When the drawbridge must open. Except as otherwise authorized or required by this part, drawbridges must open promptly and fully for the...

  20. 33 CFR 117.5 - When the drawbridge must open.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false When the drawbridge must open... BRIDGES DRAWBRIDGE OPERATION REGULATIONS General Requirements § 117.5 When the drawbridge must open. Except as otherwise authorized or required by this part, drawbridges must open promptly and fully for the...

  1. 33 CFR 117.5 - When the drawbridge must open.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false When the drawbridge must open... BRIDGES DRAWBRIDGE OPERATION REGULATIONS General Requirements § 117.5 When the drawbridge must open. Except as otherwise authorized or required by this part, drawbridges must open promptly and fully for the...

  2. 33 CFR 117.5 - When the drawbridge must open.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false When the drawbridge must open... BRIDGES DRAWBRIDGE OPERATION REGULATIONS General Requirements § 117.5 When the drawbridge must open. Except as otherwise authorized or required by this part, drawbridges must open promptly and fully for the...

  3. 33 CFR 117.5 - When the drawbridge must open.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false When the drawbridge must open... BRIDGES DRAWBRIDGE OPERATION REGULATIONS General Requirements § 117.5 When the drawbridge must open. Except as otherwise authorized or required by this part, drawbridges must open promptly and fully for the...

  4. Calculation of transient potential rise on the wind turbine struck by lightning.

    PubMed

    Xiaoqing, Zhang

    2014-01-01

    A circuit model is proposed in this paper for calculating the transient potential rise on the wind turbine struck by lightning. The model integrates the blade, sliding contact site, and tower and grounding system of the wind turbine into an equivalent circuit. The lightning current path from the attachment point to the ground can be fully described by the equivalent circuit. The transient potential responses are obtained in the different positions on the wind turbine by solving the circuit equations. In order to check the validity of the model, the laboratory measurement is made with a reduced-scale wind turbine. The measured potential waveform is compared with the calculated one and a better agreement is shown between them. The practical applicability of the model is also examined by a numerical example of a 2 MW Chinese-built wind turbine.

  5. Development of an integrated BEM approach for hot fluid structure interaction

    NASA Technical Reports Server (NTRS)

    Dargush, Gary F.; Banerjee, Prasanta K.; Dunn, Michael G.

    1988-01-01

    Significant progress was made toward the goal of developing a general purpose boundary element method for hot fluid-structure interaction. For the solid phase, a boundary-only formulation was developed and implemented for uncoupled transient thermoelasticity in two dimensions. The elimination of volume discretization not only drastically reduces required modeling effort, but also permits unconstrained variation of the through-the-thickness temperature distribution. Meanwhile, for the fluids, fundamental solutions were derived for transient incompressible and compressible flow in the absence of the convective terms. Boundary element formulations were developed and described. For the incompressible case, the necessary kernal functions, under transient and steady-state conditions, were derived and fully implemented into a general purpose, multi-region boundary element code. Several examples were examined to study the suitability and convergence characteristics of the various algorithms.

  6. Open source acceleration of wave optics simulations on energy efficient high-performance computing platforms

    NASA Astrophysics Data System (ADS)

    Beck, Jeffrey; Bos, Jeremy P.

    2017-05-01

    We compare several modifications to the open-source wave optics package, WavePy, intended to improve execution time. Specifically, we compare the relative performance of the Intel MKL, a CPU based OpenCV distribution, and GPU-based version. Performance is compared between distributions both on the same compute platform and between a fully-featured computing workstation and the NVIDIA Jetson TX1 platform. Comparisons are drawn in terms of both execution time and power consumption. We have found that substituting the Fast Fourier Transform operation from OpenCV provides a marked improvement on all platforms. In addition, we show that embedded platforms offer some possibility for extensive improvement in terms of efficiency compared to a fully featured workstation.

  7. SETI reloaded: Next generation radio telescopes, transients and cognitive computing

    NASA Astrophysics Data System (ADS)

    Garrett, Michael A.

    2015-08-01

    The Search for Extra-terrestrial Intelligence (SETI) using radio telescopes is an area of research that is now more than 50 years old. Thus far, both targeted and wide-area surveys have yet to detect artificial signals from intelligent civilisations. In this paper, I argue that the incidence of co-existing intelligent and communicating civilisations is probably small in the Milky Way. While this makes successful SETI searches a very difficult pursuit indeed, the huge impact of even a single detection requires us to continue the search. A substantial increase in the overall performance of radio telescopes (and in particular future wide-field instruments such as the Square Kilometre Array - SKA), provide renewed optimism in the field. Evidence for this is already to be seen in the success of SETI researchers in acquiring observations on some of the world's most sensitive radio telescope facilities via open, peer-reviewed processes. The increasing interest in the dynamic radio sky, and our ability to detect new and rapid transient phenomena such as Fast Radio Bursts (FRB) is also greatly encouraging. While the nature of FRBs is not yet fully understood, I argue they are unlikely to be the signature of distant extra-terrestrial civilisations. As astronomers face a data avalanche on all sides, advances made in related areas such as advanced Big Data analytics, and cognitive computing are crucial to enable serendipitous discoveries to be made. In any case, as the era of the SKA fast approaches, the prospects of a SETI detection have never been better.

  8. Fully unsteady subsonic and supersonic potential aerodynamics for complex aircraft configurations with applications to flutter

    NASA Technical Reports Server (NTRS)

    Tseng, K.; Morino, L.

    1975-01-01

    A general formulation is presented for the analysis of steady and unsteady, subsonic and supersonic aerodynamics for complex aircraft configurations. The theoretical formulation, the numerical procedure, the description of the program SOUSSA (steady, oscillatory and unsteady, subsonic and supersonic aerodynamics) and numerical results are included. In particular, generalized forces for fully unsteady (complex frequency) aerodynamics for a wing-body configuration, AGARD wing-tail interference in both subsonic and supersonic flows as well as flutter analysis results are included. The theoretical formulation is based upon an integral equation, which includes completely arbitrary motion. Steady and oscillatory aerodynamic flows are considered. Here small-amplitude, fully transient response in the time domain is considered. This yields the aerodynamic transfer function (Laplace transform of the fully unsteady operator) for frequency domain analysis. This is particularly convenient for the linear systems analysis of the whole aircraft.

  9. The Studies of a Vacuum Gap Breakdown after High-Current Arc Interruption with Increasing the Voltage

    NASA Astrophysics Data System (ADS)

    Schneider, A. V.; Popov, S. A.; Batrakov, A. V.; Dubrovskaya, E. L.; Lavrinovich, V. A.

    2017-12-01

    Vacuum-gap breakdown has been studied after high-current arc interruption with a subsequent increase in the transient recovery voltage across a gap. The effects of factors, such as the rate of the rise in the transient voltage, the potential of the shield that surrounds a discharge gap, and the arc burning time, have been determined. It has been revealed that opening the contacts earlier leads to the formation of an anode spot, which is the source of electrode material vapors into the discharge gap after current zero moment. Under the conditions of increasing voltage, this fact results in the breakdown. Too late opening leads to the breakdown of a short gap due to the high electric fields.

  10. Research on scheduling of robotic transient survey for Antarctic Survey Telescopes (AST3)

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Wei, Peng; Shang, Zhao-Hui; Ma, Bin; Hu, Yi

    2018-01-01

    Antarctic Survey Telescopes (AST3) are designed to be fully robotic telescopes at Dome A, Antarctica, which aim for highly efficient time-domain sky surveys as well as rapid response to special transient events (e.g., gamma-ray bursts, near-Earth asteroids, supernovae, etc.). Unlike traditional observations, a well-designed real-time survey scheduler is needed in order to implement an automatic survey in a very efficient, reliable and flexible way for the unattended telescopes. We present a study of the survey strategy for AST3 and implementation of its survey scheduler, which is also useful for other survey projects.

  11. Network Flow Simulation of Fluid Transients in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Alak; Hamill, Brian; Ramachandran, Narayanan; Majumdar, Alok

    2011-01-01

    Fluid transients, also known as water hammer, can have a significant impact on the design and operation of both spacecraft and launch vehicle propulsion systems. These transients often occur at system activation and shutdown. The pressure rise due to sudden opening and closing of valves of propulsion feed lines can cause serious damage during activation and shutdown of propulsion systems. During activation (valve opening) and shutdown (valve closing), pressure surges must be predicted accurately to ensure structural integrity of the propulsion system fluid network. In the current work, a network flow simulation software (Generalized Fluid System Simulation Program) based on Finite Volume Method has been used to predict the pressure surges in the feed line due to both valve closing and valve opening using two separate geometrical configurations. The valve opening pressure surge results are compared with experimental data available in the literature and the numerical results compared very well within reasonable accuracy (< 5%) for a wide range of inlet-to-initial pressure ratios. A Fast Fourier Transform is preformed on the pressure oscillations to predict the various modal frequencies of the pressure wave. The shutdown problem, i.e. valve closing problem, the simulation results are compared with the results of Method of Characteristics. Most rocket engines experience a longitudinal acceleration, known as "pogo" during the later stage of engine burn. In the shutdown example problem, an accumulator has been used in the feed system to demonstrate the "pogo" mitigation effects in the feed system of propellant. The simulation results using GFSSP compared very well with the results of Method of Characteristics.

  12. Liverpool Telescope 2: beginning the design phase

    NASA Astrophysics Data System (ADS)

    Copperwheat, Christopher M.; Steele, Iain A.; Barnsley, Robert M.; Bates, Stuart D.; Bode, Mike F.; Clay, Neil R.; Collins, Chris A.; Jermak, Helen E.; Knapen, Johan H.; Marchant, Jon M.; Mottram, Chris J.; Piascik, Andrzej S.; Smith, Robert J.

    2016-07-01

    The Liverpool Telescope is a fully robotic 2-metre telescope located at the Observatorio del Roque de los Muchachos on the Canary Island of La Palma. The telescope began routine science operations in 2004, and currently seven simultaneously mounted instruments support a broad science programme, with a focus on transient followup and other time domain topics well suited to the characteristics of robotic observing. Work has begun on a successor facility with the working title `Liverpool Telescope 2'. We are entering a new era of time domain astronomy with new discovery facilities across the electromagnetic spectrum, and the next generation of optical survey facilities such as LSST are set to revolutionise the field of transient science in particular. The fully robotic Liverpool Telescope 2 will have a 4-metre aperture and an improved response time, and will be designed to meet the challenges of this new era. Following a conceptual design phase, we are about to begin the detailed design which will lead towards the start of construction in 2018, for first light ˜2022. In this paper we provide an overview of the facility and an update on progress.

  13. Calculation of Transient Potential Rise on the Wind Turbine Struck by Lightning

    PubMed Central

    Xiaoqing, Zhang

    2014-01-01

    A circuit model is proposed in this paper for calculating the transient potential rise on the wind turbine struck by lightning. The model integrates the blade, sliding contact site, and tower and grounding system of the wind turbine into an equivalent circuit. The lightning current path from the attachment point to the ground can be fully described by the equivalent circuit. The transient potential responses are obtained in the different positions on the wind turbine by solving the circuit equations. In order to check the validity of the model, the laboratory measurement is made with a reduced-scale wind turbine. The measured potential waveform is compared with the calculated one and a better agreement is shown between them. The practical applicability of the model is also examined by a numerical example of a 2 MW Chinese-built wind turbine. PMID:25254231

  14. Critical heat flux phenomena depending on pre-pressurization in transient heat input

    NASA Astrophysics Data System (ADS)

    Park, Jongdoc; Fukuda, Katsuya; Liu, Qiusheng

    2017-07-01

    The critical heat flux (CHF) levels that occurred due to exponential heat inputs for varying periods to a 1.0-mm diameter horizontal cylinder immersed in various liquids were measured to develop an extended database on the effect of various pressures and subcoolings by photographic study. Two main mechanisms of CHF were found. One mechanism is due to the time lag of the hydrodynamic instability (HI) which starts at steady-state CHF upon fully developed nucleate boiling, and the other mechanism is due to the explosive process of heterogeneous spontaneous nucleation (HSN) which occurs at a certain HSN superheat in originally flooded cavities on the cylinder surface. The incipience of boiling processes was completely different depending on pre-pressurization. Also, the dependence of pre-pressure in transient CHFs changed due to the wettability of boiling liquids. The objective of this work is to clarify the transient CHF phenomena due to HI or HSN by photographic.

  15. Applying the min-projection strategy to improve the transient performance of the three-phase grid-connected inverter.

    PubMed

    Baygi, Mahdi Oloumi; Ghazi, Reza; Monfared, Mohammad

    2014-07-01

    Applying the min-projection strategy (MPS) to a three-phase grid-connected inverter to improve its transient performance is the main objective of this paper. For this purpose, the inverter is first modeled as a switched linear system. Then, the feasibility of the MPS technique is investigated and the stability criterion is derived. Hereafter, the fundamental equations of the MPS for the control of the inverter are obtained. The proposed scheme is simulated in PSCAD/EMTDC environment. The validity of the MPS approach is confirmed by comparing the obtained results with those of VOC method. The results demonstrate that the proposed method despite its simplicity provides an excellent transient performance, fully decoupled control of active and reactive powers, acceptable THD level and a reasonable switching frequency. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Tailoring femtosecond laser pulse filamentation using plasma photonic lattices

    NASA Astrophysics Data System (ADS)

    Suntsov, Sergiy; Abdollahpour, Daryoush; Papazoglou, Dimitrios G.; Panagiotopoulos, Paris; Couairon, Arnaud; Tzortzakis, Stelios

    2013-07-01

    We demonstrate experimentally that by using transient plasma photonic lattices, the attributes of intense femtosecond laser filaments, such as peak intensity and length, can be dynamically controlled. The extended plasma lattice structure is generated using two co-propagating non-diffracting intense Bessel beams in water. The use of such transient lattice structures to control the competition between linear and nonlinear effects involved in filamentation opens the way for extensive control of the filamentation process.

  17. The DEdicated MONitor of EXotransits and Transients (DEMONEXT): a Robotic Observatory for Follow-Up of Transiting Exoplanets, Transients, and Time-Series Photometry

    NASA Astrophysics Data System (ADS)

    Villanueva, Steven; Gaudi, B. Scott; Pogge, Richard; Stassun, Keivan G.; Eastman, Jason; Trueblood, Mark; Trueblood, Pat

    2018-01-01

    The DEdicated MONitor of EXotransits and Transients (DEMONEXT) is a 20 inch (0.5-m) robotic telescope that has been in operation since May 2016. Fully automated, DEMONEXT has observed over 150 transits of exoplanet candidates for the KELT survey, including confirmation observations of KELT-20b. DEMONEXT achieves 2-4 mmag precision with unbinned, 20-120 second exposures, on targets orbiting V<13 host stars. Millimagnitude precision can be achieved by binning the transits on 5-6 minute timescales. During observations of 8 hours with hundreds of consecutive exposures, DEMONEXT maintains sub-pixel (<0.5 pixels) target position stability on the CCD during good observing conditions, with degraded performance during poor observing conditions (<1 pixel). DEMONEXT achieves 1% photometry on targets with V<17 in 5 minute exposures, with detection limits of V~21. In addition to the 150 transits observed by DEMONEXT, 50 supernovae and transients haven been observed for the ASAS-SN supernovae group, as well as time-series observations of Galactic microlensing, active galactic nuclei, stellar variability, and stellar rotation.

  18. Light, Molecules, Action: Broadband UV-visible transient absorption studies of excited state dynamics in photoactive molecules

    NASA Astrophysics Data System (ADS)

    Sension, Roseanne

    2015-03-01

    Broadband UV-visible transient absorption spectroscopy provides a powerful tool for the investigation of the dynamics of electronically excited molecules in the condensed phase. It is now possible to obtain transient spectra on a routine basis spanning the range from <300 nm to >800 nm with femtosecond time resolution. We have used this method to study the excited state dynamics and internal conversion of a range of molecular systems with potential application as optically powered molecular devices. The cyclohexadiene ring-opening reaction is the basis of a class of important optical switches and of the biological synthesis of previtamin D3. The ring-opening reaction is ultrafast, occurring on a picosecond to subpicosecond times scale depending on the substituents around the ring. These have a significant influence on the dynamics and electronic structure of the electronically excited molecule. The results of a series of transient absorption studies as a function of chromophore substitution and environment will be presented. The cis-trans isomerization of polyene molecules, especially substituted stilbenes, provides another important class of functional molecular transformations. Again the excited state dynamics can be ultrafast with photochemistry controlled by details of the curve crossings and conical intersections. Finally the photochemistry of the even more complex set of cobalamin chromophores with a photoalabile C-Co bond has been proposed as a tool for spatio-temporal control of molecule delivery including drug delivery. Broadband transient absorption spectroscopy has been used to investigate the ultrafast electronic dynamics of a range of cobalamin compounds with comparison to detailed theoretical calculations. The results of these studies will be presented.

  19. High-Performance Polymer Solar Cell with Single Active Material of Fully Conjugated Block Copolymer Composed of Wide-Band gap Donor and Narrow-Band gap Acceptor Blocks.

    PubMed

    Lee, Ji Hyung; Park, Chang Geun; Kim, Aesun; Kim, Hyung Jong; Kim, Youngseo; Park, Sungnam; Cho, Min Ju; Choi, Dong Hoon

    2018-06-06

    We synthesized a novel fully conjugated block copolymer, P3, in which a wide-band gap donor block (P1) was connected to a narrow-band gap acceptor block (P2). As P3 contains P1 block with a wide bandgap and P2 block with a narrow bandgap, it exhibits a very wide complementary absorption. Transient photoluminescence measurement using P3 dilute solution demonstrated intramolecular charge transfer between the P1 block and the P2 block, which was not observed in a P1/P2 blend solution. A P3 thin film showed complete PL quenching because the photoinduced inter-/intramolecular charge transfer states were effectively formed. This phenomenon can play an important role in the photovoltaic properties of P3-based polymer solar cells. A single active material polymer solar cell (SAMPSC) fabricated from P3 alone exhibited a high power conversion efficiency (PCE) of 3.87% with a high open-circuit voltage of 0.93 V and a short-circuit current of 8.26 mA/cm 2 , demonstrating a much better performance than a binary P1-/P2-based polymer solar cell (PCE = 1.14%). This result facilitates the possible improvement of the photovoltaic performance of SAMPSCs by inducing favorable nanophase segregation between p- and n blocks. In addition, owing to the high morphological stability of the block copolymer, excellent shelf-life was observed in a P3-based SAMPSC compared with a P1/P2-based PSC.

  20. Transient current interruption mechanism in a magnetically delayed vacuum switch

    NASA Technical Reports Server (NTRS)

    Morris, Gibson, Jr.; Dougal, Roger A.

    1993-01-01

    The capacity of a magnetically delayed vacuum switch to conduct current depends on the density of plasma injected into the switch. Exceeding the current capacity results in the switch entering a lossy mode of operation characterized by a transient interruption of the main current (opening behavior) and a rapid increase of voltage across the vacuum gap. Streak and framing photographs of the discharge indicate that a decrease of luminosity near the middle of the gap preceeds the transition to the opening phase. The zone of low luminosity propagates toward the cathode. This evidence suggests that the mechanism causing the opening phase is erosion of the background plasma in a manner similar to that in a plasma-opening switch. The resulting ion depletion forces a space-charge-limited conduction mode. The switch inductance maintains a high discharge current even during the space-charge-limited conduction phase, thus producing high internal fields. The high accelerating voltage, in turn, produces electron and ion beams that heat the electrode surfaces. As a result of the heating, jets of electrode vapor issue from the electrodes, either cathode or anode, depending on the selection of electrode materials.

  1. Open-mouthed hybrid microcapsules with elevated enzyme loading and enhanced catalytic activity.

    PubMed

    Shi, Jiafu; Zhang, Shaohua; Wang, Xiaoli; Jiang, Zhongyi

    2014-10-25

    Open-mouthed hybrid microcapsules (HMCs) are synthesized through a hard-templating method. When utilized for enzyme immobilization and enzymatic catalysis, the open-mouthed HMCs show high enzyme loading capability, enhanced catalytic activity and desirable recycling stability, due to their fully exposed outer and inner surfaces.

  2. TREATMENT WITH THIDIAZURON IMPROVES OPENING AND VASE LIFE OF IRIS FLOWERS

    USDA-ARS?s Scientific Manuscript database

    The marketability of Dutch iris (Iris × hollandica) cut flowers is limited by their short display life and frequent failure to open fully. We tested the ability of thidiazuron (TDZ), a phenyl urea compound with cytokinin-like activity, to improve iris flower opening and longevity. A postharvest pu...

  3. Combustion Instabilities In Solid Propellant Rocket Motors

    DTIC Science & Technology

    2004-01-01

    instability in a self-excited system, sketched in Figure 1.5(a). In contrast, the initial transient in a linear system forced by an invariant external agent ...because the driving agent supplies only ¯nite power. (a) (b) Figure 1.5. Transient behavior of (a) Self Excited Linearly Unstable Motions; (b) Forced...the vibration of a Helmholtz resonator obtained, for example, by blowing over the open end of a bottle. The cause in a combustion chamber may be the

  4. Differential gene expression of three mastitis-causing Escherichia coli strains grown under planktonic, swimming, and swarming culture conditions

    USDA-ARS?s Scientific Manuscript database

    Escherichia coli is a leading cause of intramammary infections in dairy cattle and is typically transient in nature. However, in a minority of cases, E. coli can cause persistent infections. Although the mechanisms that allow for a persistent intramammary E. coli infection are not fully understood...

  5. Solar tower cavity receiver aperture optimization based on transient optical and thermo-hydraulic modeling

    NASA Astrophysics Data System (ADS)

    Schöttl, Peter; Bern, Gregor; van Rooyen, De Wet; Heimsath, Anna; Fluri, Thomas; Nitz, Peter

    2017-06-01

    A transient simulation methodology for cavity receivers for Solar Tower Central Receiver Systems with molten salt as heat transfer fluid is described. Absorbed solar radiation is modeled with ray tracing and a sky discretization approach to reduce computational effort. Solar radiation re-distribution in the cavity as well as thermal radiation exchange are modeled based on view factors, which are also calculated with ray tracing. An analytical approach is used to represent convective heat transfer in the cavity. Heat transfer fluid flow is simulated with a discrete tube model, where the boundary conditions at the outer tube surface mainly depend on inputs from the previously mentioned modeling aspects. A specific focus is put on the integration of optical and thermo-hydraulic models. Furthermore, aiming point and control strategies are described, which are used during the transient performance assessment. Eventually, the developed simulation methodology is used for the optimization of the aperture opening size of a PS10-like reference scenario with cavity receiver and heliostat field. The objective function is based on the cumulative gain of one representative day. Results include optimized aperture opening size, transient receiver characteristics and benefits of the implemented aiming point strategy compared to a single aiming point approach. Future work will include annual simulations, cost assessment and optimization of a larger range of receiver parameters.

  6. ROSE::FTTransform - A Source-to-Source Translation Framework for Exascale Fault-Tolerance Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lidman, J; Quinlan, D; Liao, C

    2012-03-26

    Exascale computing systems will require sufficient resilience to tolerate numerous types of hardware faults while still assuring correct program execution. Such extreme-scale machines are expected to be dominated by processors driven at lower voltages (near the minimum 0.5 volts for current transistors). At these voltage levels, the rate of transient errors increases dramatically due to the sensitivity to transient and geographically localized voltage drops on parts of the processor chip. To achieve power efficiency, these processors are likely to be streamlined and minimal, and thus they cannot be expected to handle transient errors entirely in hardware. Here we present anmore » open, compiler-based framework to automate the armoring of High Performance Computing (HPC) software to protect it from these types of transient processor errors. We develop an open infrastructure to support research work in this area, and we define tools that, in the future, may provide more complete automated and/or semi-automated solutions to support software resiliency on future exascale architectures. Results demonstrate that our approach is feasible, pragmatic in how it can be separated from the software development process, and reasonably efficient (0% to 30% overhead for the Jacobi iteration on common hardware; and 20%, 40%, 26%, and 2% overhead for a randomly selected subset of benchmarks from the Livermore Loops [1]).« less

  7. Automated Detection and Modeling of Slow Slip: Case Study of the Cascadia Subduction Zone

    NASA Astrophysics Data System (ADS)

    Crowell, B. W.; Bock, Y.; Liu, Z.

    2012-12-01

    The discovery of transient slow slip events over the past decade has changed our understanding of tectonic hazards and the earthquake cycle. Proper geodetic characterization of transient deformation is necessary for studies of regional interseismic, coseismic and postseismic tectonics, and miscalculations can affect our understanding of the regional stress field. We utilize two different methods to create a complete record of slow slip from continuous GPS stations in the Cascadia subduction zone between 1996 and 2012: spatiotemporal principal component analysis (PCA) and the relative strength index (RSI). The PCA is performed on 100 day windows of nearby stations to locate signals that exist across many stations in the network by looking at the ratio of the first two eigenvalues. The RSI is a financial momentum oscillator that looks for changes in individual time series with respect to previous epochs to locate rapid changes, indicative of transient deformation. Using both methods, we create a complete history of slow slip across the Cascadia subduction zone, fully characterizing the timing, progression, and magnitude of events. We inject the results from the automated transient detection into a time-dependent slip inversion and apply a Kalman filter based network inversion method to image the spatiotemporal variation of slip transients along the Cascadia margin.

  8. One-dimensional transient radiative transfer by lattice Boltzmann method.

    PubMed

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2013-10-21

    The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.

  9. 49 CFR 1104.3 - Copies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... fully evaluate evidence, all spreadsheets must be fully accessible and manipulable. Electronic databases... Microsoft Open Database Connectivity (ODBC) standard. ODBC is a Windows technology that allows a database software package to import data from a database created using a different software package. We currently...

  10. 49 CFR 1104.3 - Copies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... fully evaluate evidence, all spreadsheets must be fully accessible and manipulable. Electronic databases... Microsoft Open Database Connectivity (ODBC) standard. ODBC is a Windows technology that allows a database software package to import data from a database created using a different software package. We currently...

  11. 49 CFR 1104.3 - Copies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... fully evaluate evidence, all spreadsheets must be fully accessible and manipulable. Electronic databases... Microsoft Open Database Connectivity (ODBC) standard. ODBC is a Windows technology that allows a database software package to import data from a database created using a different software package. We currently...

  12. 49 CFR 1104.3 - Copies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... fully evaluate evidence, all spreadsheets must be fully accessible and manipulable. Electronic databases... Microsoft Open Database Connectivity (ODBC) standard. ODBC is a Windows technology that allows a database software package to import data from a database created using a different software package. We currently...

  13. Electron transfer in a virtual quantum state of LiBH4 induced by strong optical fields and mapped by femtosecond x-ray diffraction.

    PubMed

    Stingl, J; Zamponi, F; Freyer, B; Woerner, M; Elsaesser, T; Borgschulte, A

    2012-10-05

    Transient polarizations connected with a spatial redistribution of electronic charge in a mixed quantum state are induced by optical fields of high amplitude. We determine for the first time the related transient electron density maps, applying femtosecond x-ray powder diffraction as a structure probe. The prototype ionic material LiBH4 driven nonresonantly by an intense sub-40 fs optical pulse displays a large-amplitude fully reversible electron transfer from the BH4(-) anion to the Li+ cation during excitation. Our results establish this mechanism as the source of the strong optical polarization which agrees quantitatively with theoretical estimates.

  14. A new software on TUG-T60 autonomous telescope for astronomical transient events

    NASA Astrophysics Data System (ADS)

    Dindar, Murat; Helhel, Selçuk; Esenoğlu, Hasan; Parmaksızoğlu, Murat

    2015-03-01

    Robotic telescopes usually run under the control of a scheduler, which provides high-level control by selecting astronomical targets for observation. TÜBİTAK (Scientific and Technological Research Council of Turkey) National Observatory (TUG)-T60 Robotic Telescope is controlled by open-source OCAAS software, formally named Talon. This study introduces new software which was designed for Talon to catch GRB, GAIA and transient alerts. The new GRB software module (daemon process) alertd is running with all other modules of Talon such as telescoped; focus, dome; camerad and telrun. Maximum slew velocity and acceleration limits of the T60 telescope are enough fast for the GRB and transient observations.

  15. Chimenea and other tools: Automated imaging of multi-epoch radio-synthesis data with CASA

    NASA Astrophysics Data System (ADS)

    Staley, T. D.; Anderson, G. E.

    2015-11-01

    In preparing the way for the Square Kilometre Array and its pathfinders, there is a pressing need to begin probing the transient sky in a fully robotic fashion using the current generation of radio telescopes. Effective exploitation of such surveys requires a largely automated data-reduction process. This paper introduces an end-to-end automated reduction pipeline, AMIsurvey, used for calibrating and imaging data from the Arcminute Microkelvin Imager Large Array. AMIsurvey makes use of several component libraries which have been packaged separately for open-source release. The most scientifically significant of these is chimenea, which implements a telescope-agnostic algorithm for automated imaging of pre-calibrated multi-epoch radio-synthesis data, of the sort typically acquired for transient surveys or follow-up. The algorithm aims to improve upon standard imaging pipelines by utilizing iterative RMS-estimation and automated source-detection to avoid so called 'Clean-bias', and makes use of CASA subroutines for the underlying image-synthesis operations. At a lower level, AMIsurvey relies upon two libraries, drive-ami and drive-casa, built to allow use of mature radio-astronomy software packages from within Python scripts. While targeted at automated imaging, the drive-casa interface can also be used to automate interaction with any of the CASA subroutines from a generic Python process. Additionally, these packages may be of wider technical interest beyond radio-astronomy, since they demonstrate use of the Python library pexpect to emulate terminal interaction with an external process. This approach allows for rapid development of a Python interface to any legacy or externally-maintained pipeline which accepts command-line input, without requiring alterations to the original code.

  16. Interface- and discontinuity-aware numerical schemes for plasma 3-T radiation diffusion in two and three dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, William W., E-mail: dai@lanl.gov; Scannapieco, Anthony J.

    2015-11-01

    A set of numerical schemes is developed for two- and three-dimensional time-dependent 3-T radiation diffusion equations in systems involving multi-materials. To resolve sub-cell structure, interface reconstruction is implemented within any cell that has more than one material. Therefore, the system of 3-T radiation diffusion equations is solved on two- and three-dimensional polyhedral meshes. The focus of the development is on the fully coupling between radiation and material, the treatment of nonlinearity in the equations, i.e., in the diffusion terms and source terms, treatment of the discontinuity across cell interfaces in material properties, the formulations for both transient and steady states,more » the property for large time steps, and second order accuracy in both space and time. The discontinuity of material properties between different materials is correctly treated based on the governing physics principle for general polyhedral meshes and full nonlinearity. The treatment is exact for arbitrarily strong discontinuity. The scheme is fully nonlinear for the full nonlinearity in the 3-T diffusion equations. Three temperatures are fully coupled and are updated simultaneously. The scheme is general in two and three dimensions on general polyhedral meshes. The features of the scheme are demonstrated through numerical examples for transient problems and steady states. The effects of some simplifications of numerical schemes are also shown through numerical examples, such as linearization, simple average of diffusion coefficient, and approximate treatment for the coupling between radiation and material.« less

  17. UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, N. E.; Soderberg, A. M.; Betancourt, M., E-mail: nsanders@cfa.harvard.edu

    2015-02-10

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. Wemore » present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.« less

  18. Reliability Analysis of Brittle Material Structures - Including MEMS(?) - With the CARES/Life Program

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.

    2002-01-01

    Brittle materials are being used, or considered, for a wide variety of high tech applications that operate in harsh environments, including static and rotating turbine parts. thermal protection systems, dental prosthetics, fuel cells, oxygen transport membranes, radomes, and MEMS. Designing components to sustain repeated load without fracturing while using the minimum amount of material requires the use of a probabilistic design methodology. The CARES/Life code provides a general-purpose analysis tool that predicts the probability of failure of a ceramic component as a function of its time in service. For this presentation an interview of the CARES/Life program will be provided. Emphasis will be placed on describing the latest enhancements to the code for reliability analysis with time varying loads and temperatures (fully transient reliability analysis). Also, early efforts in investigating the validity of using Weibull statistics, the basis of the CARES/Life program, to characterize the strength of MEMS structures will be described as as well as the version of CARES/Life for MEMS (CARES/MEMS) being prepared which incorporates single crystal and edge flaw reliability analysis capability. It is hoped this talk will open a dialog for potential collaboration in the area of MEMS testing and life prediction.

  19. Transient Cognitive Dynamics, Metastability, and Decision Making

    DTIC Science & Technology

    2008-05-02

    imaging (fMRI) and EEG have opened new possibilities for understanding and modeling cognition [11–15]. Experimental recordings have revealed detailed...between different phase-synchronized states of alpha activity in spontaneous EEG . Alpha activity has been characterized as a series of globally...novel protocols of assisted neurofeedback [59– 62], which can open a wide variety of new medical and brain- machine applications. Methods Stable

  20. Transient Characteristics of a Fluidic Device for Circulatory Jet Flow.

    PubMed

    Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu; Dau, Van Thanh

    2018-03-13

    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis.

  1. Transient Characteristics of a Fluidic Device for Circulatory Jet Flow

    PubMed Central

    Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu

    2018-01-01

    In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis. PMID:29534014

  2. Transient behavior of a flare-associated solar wind. I - Gas dynamics in a radial open field region

    NASA Technical Reports Server (NTRS)

    Nagai, F.

    1984-01-01

    A numerical investigation is conducted into the way in which a solar wind model initially satisfying both steady state and energy balance conditions is disturbed and deformed, under the assumption of heating that correspoonds to the energy release of solar flares of an importance value of approximately 1 which occur in radial open field regions. Flare-associated solar wind transient behavior is modeled for 1-8 solar radii. The coronal temperature around the heat source region rises, and a large thermal conductive flux flows inward to the chromosphere and outward to interplanetary space along field lines. The speed of the front of expanding chromospheric material generated by the impingement of the conduction front on the upper chromosphere exceeds the local sound velocity in a few minutes and eventually exceeds 100 million cm/sec.

  3. Using a Neural Network to Determine the Hatch Status of the AERI at the ARM North Slope of Alaska Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwink, AB; Turner, DD

    2012-03-19

    The fore-optics of the Atmospheric Emitted Radiance Interferometer (AERI) are protected by an automated hatch to prevent precipitation from fouling the instrument's scene mirror (Knuteson et al. 2004). Limit switches connected with the hatch controller provide a signal of the hatch state: open, closed, undetermined (typically associated with the hatch being between fully open or fully closed during the instrument's sky view period), or an error condition. The instrument then records the state of the hatch with the radiance data so that samples taken when the hatch is not open can be removed from any subsequent analysis. However, the hatchmore » controller suffered a multi-year failure for the AERI located at the ARM North Slope of Alaska (NSA) Central Facility in Barrow, Alaska, from July 2006-February 2008. The failure resulted in misreporting the state of the hatch in the 'hatchOpen' field within the AERI data files. With this error there is no simple solution to translate what was reported back to the correct hatch status, thereby making it difficult for an analysis to determine when the AERI was actually viewing the sky. As only the data collected when the hatch is fully open are scientifically useful, an algorithm was developed to determine whether the hatch was open or closed based on spectral radiance data from the AERI. Determining if the hatch is open or closed in a scene with low clouds is non-trivial, as low opaque clouds may look very similar spectrally as the closed hatch. This algorithm used a backpropagation neural network; these types of neural networks have been used with increasing frequency in atmospheric science applications.« less

  4. Single K ATP channel opening in response to action potential firing in mouse dentate granule neurons.

    PubMed

    Tanner, Geoffrey R; Lutas, Andrew; Martínez-François, Juan Ramón; Yellen, Gary

    2011-06-08

    ATP-sensitive potassium channels (K(ATP) channels) are important sensors of cellular metabolic state that link metabolism and excitability in neuroendocrine cells, but their role in nonglucosensing central neurons is less well understood. To examine a possible role for K(ATP) channels in modulating excitability in hippocampal circuits, we recorded the activity of single K(ATP) channels in cell-attached patches of granule cells in the mouse dentate gyrus during bursts of action potentials generated by antidromic stimulation of the mossy fibers. Ensemble averages of the open probability (p(open)) of single K(ATP) channels over repeated trials of stimulated spike activity showed a transient increase in p(open) in response to action potential firing. Channel currents were identified as K(ATP) channels through blockade with glibenclamide and by comparison with recordings from Kir6.2 knock-out mice. The transient elevation in K(ATP) p(open) may arise from submembrane ATP depletion by the Na(+)-K(+) ATPase, as the pump blocker strophanthidin reduced the magnitude of the elevation. Both the steady-state and stimulus-elevated p(open) of the recorded channels were higher in the presence of the ketone body R-β-hydroxybutyrate, consistent with earlier findings that ketone bodies can affect K(ATP) activity. Using perforated-patch recording, we also found that K(ATP) channels contribute to the slow afterhyperpolarization following an evoked burst of action potentials. We propose that activity-dependent opening of K(ATP) channels may help granule cells act as a seizure gate in the hippocampus and that ketone-body-mediated augmentation of the activity-dependent opening could in part explain the effect of the ketogenic diet in reducing epileptic seizures.

  5. Unmanned Aerial Systems: Further Actions Needed to Fully Address Air Force and Army Pilot Workforce Challenges

    DTIC Science & Technology

    2016-03-16

    UNMANNED AERIAL SYSTEMS Further Actions Needed to Fully Address Air Force and Army Pilot Workforce Challenges...Armed Services, U.S. Senate March 16, 2016 UNMANNED AERIAL SYSTEMS Further Actions Needed to Fully Address Air Force and Army Pilot Workforce ...High-performing organizations use complete and current data to inform their strategic human capital planning and remain open to reevaluating workforce

  6. Numerical simulation of the actuation system for the ALDF's propulsion control valve. [Aircraft Landing Dynamics Facility

    NASA Technical Reports Server (NTRS)

    Korte, John J.

    1990-01-01

    A numerical simulation of the actuation system for the propulsion control valve (PCV) of the NASA Langley Aircraft Landing Dynamics Facility was developed during the preliminary design of the PCV and used throughout the entire project. The simulation is based on a predictive model of the PCV which is used to evaluate and design the actuation system. The PCV controls a 1.7 million-pound thrust water jet used in propelling a 108,000-pound test carriage. The PCV can open and close in 0.300 second and deliver over 9,000 gallons of water per sec at pressures up to 3150 psi. The numerical simulation results are used to predict transient performance and valve opening characteristics, specify the hydraulic control system, define transient loadings on components, and evaluate failure modes. The mathematical model used for numerically simulating the mechanical fluid power system is described, and numerical results are demonstrated for a typical opening and closing cycle of the PCV. A summary is then given on how the model is used in the design process.

  7. A transient fully coupled climate-ice-sheet simulation of the last glacial inception

    NASA Astrophysics Data System (ADS)

    Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.

    2017-12-01

    The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated ice caps initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These ice caps subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent ice masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting ice sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) ice-sheet component (Community Ice Sheet model, version 2; CISM2) that simulates ice sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in ice elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving ice sheets compare to data and previous model based reconstructions.

  8. Materials and processing approaches for foundry-compatible transient electronics.

    PubMed

    Chang, Jan-Kai; Fang, Hui; Bower, Christopher A; Song, Enming; Yu, Xinge; Rogers, John A

    2017-07-11

    Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for "green" electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are ( i ) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, ( ii ) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and ( iii ) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.

  9. Materials and processing approaches for foundry-compatible transient electronics

    NASA Astrophysics Data System (ADS)

    Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.

    2017-07-01

    Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.

  10. Analysis of Cisco Open Network Environment (ONE) OpenFlow Controller Implementation

    DTIC Science & Technology

    2014-08-01

    Software - Defined Networking ( SDN ), when fully realized, offer many improvements over the current rigid and...functionalities like handshake, connection setup, switch management, and security. 15. SUBJECT TERMS OpenFlow, software - defined networking , Cisco ONE, SDN ...innovating packet-forwarding technologies. Network device roles are strictly defined with little or no flexibility. In Software - Defined Networks ( SDNs ),

  11. Characterizing the recovery of a solid surface after tungsten nano-tendril formation

    NASA Astrophysics Data System (ADS)

    Wright, G. M.; van Eden, G. G.; Kesler, L. A.; De Temmerman, G.; Whyte, D. G.; Woller, K. B.

    2015-08-01

    Recovery of a flat tungsten surface from a nano-tendril surface is attempted through three techniques; a mechanical wipe, a 1673 K annealing, and laser-induced thermal transients. Results were determined through SEM imaging and elastic recoil detection to assess the helium content in the surface. The mechanical wipe leaves a ∼0.5 μm deep layer of nano-tendrils on the surface post-wipe regardless of the initial nano-tendril layer depth. Laser-induced thermal transients only significantly impact the surface morphology at heat loads of 35.2 MJ/m2 s1/2 or above, however a fully flat or recovered surface was not achieved for 100 transients at this heat load despite reducing the helium content by a factor of ∼7. A 1673 K annealing removes all detectable levels of helium but sub-surface voids/bubbles remain intact. The surface is recovered to a nearly flat state with only some remnants of nano-tendrils re-integrating into the surface remaining.

  12. Modeling of grain-oriented Si-steel and amorphous alloy iron core under ferroresonance using Jiles-Atherton hysteresis method

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Zou, Mi; Yang, Ming; Yang, Qing; Peng, Daixiao

    2018-05-01

    Amorphous alloy is increasingly widely used in the iron core of power transformer due to its excellent low loss performance. However, its potential harm to the power system is not fully studied during the electromagnetic transients of the transformer. This study develops a simulation model to analyze the effect of transformer iron core materials on ferroresonance. The model is based on the transformer π equivalent circuit. The flux linkage-current (ψ-i) Jiles-Atherton reactor is developed in an Electromagnetic Transients Program-Alternative Transients Program and is used to represent the magnetizing branches of the transformer model. Two ferroresonance cases are studied to compare the performance of grain-oriented Si-steel and amorphous alloy cores. The ferroresonance overvoltage and overcurrent are discussed under different system parameters. Results show that amorphous alloy transformer generates higher voltage and current than those of grain-oriented Si-steel transformer and significantly harms the power system safety.

  13. Trajectory-based heating analysis for the European Space Agency/Rosetta Earth Return Vehicle

    NASA Technical Reports Server (NTRS)

    Henline, William D.; Tauber, Michael E.

    1994-01-01

    A coupled, trajectory-based flowfield and material thermal-response analysis is presented for the European Space Agency proposed Rosetta comet nucleus sample return vehicle. The probe returns to earth along a hyperbolic trajectory with an entry velocity of 16.5 km/s and requires an ablative heat shield on the forebody. Combined radiative and convective ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasisteady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasisteady analysis was performed using the two-dimensional axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code CMA. Results are presented for heating, temperature, and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasisteady results indicates that, for the heating pulse encountered by this probe, the quasisteady approach is conservative from the standpoint of predicted surface recession.

  14. Hydrogen motion in Zircaloy-4 cladding during a LOCA transient

    NASA Astrophysics Data System (ADS)

    Elodie, T.; Jean, D.; Séverine, G.; M-Christine, B.; Michel, C.; Berger, P.; Martine, B.; Antoine, A.

    2016-04-01

    Hydrogen and oxygen are key elements influencing the embrittlement of zirconium-based nuclear fuel cladding during the quench phase following a Loss Of Coolant Accident (LOCA). The understanding of the mechanisms influencing the motion of these two chemical elements in the metal is required to fully describe the material embrittlement. High temperature steam oxidation tests were performed on pre-hydrided Zircaloy-4 samples with hydrogen contents ranging between 11 and 400 wppm prior to LOCA transient. Thanks to the use of both Electron Probe Micro-Analysis (EPMA) and Elastic Recoil Detection Analysis (μ-ERDA), the chemical elements partitioning has been systematically quantified inside the prior-β phase. Image analysis and metallographic examinations were combined to provide an average oxygen profile as well as hydrogen profile within the cladding thickness after LOCA transient. The measured hydrogen profile is far from homogeneous. Experimental distributions are compared to those predicted numerically using calculations derived from a finite difference thermo-diffusion code (DIFFOX) developed at IRSN.

  15. Indirect synthesis of multidegree-of-freedom transient systems

    NASA Technical Reports Server (NTRS)

    Chen, Y. H.; Pilkey, W. D.; Kalinowski, A. J.

    1976-01-01

    The indirect synthesis method is developed and shown to be capable of leading a near-optimal design of multidegree-of-freedom and multidesign-element transient nonlinear dynamical systems. The basis of the approach is to select the open design parameters such that the response of the portion of the system being designed approximates the limiting performances solution. The limiting performance problem can be formulated as one of linear programming by replacing all portions of the system subject to transient disturbances by control forces and supposing that the remaining portions are linear as are the overall kinematic constraints. One then selects the design parameters that respond most closely to the limiting performance solution, which can be achieved by unconstrained curve-fitting techniques.

  16. The electrostatics of parachutes

    NASA Astrophysics Data System (ADS)

    Yu, Li; Ming, Xiao

    2007-12-01

    In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loadings during a very short time, it is of great difficulty for theoretical analysis and experimental measurements. In this paper, aerodynamic equations and structural dynamics equations were developed for describing parachute opening process, and an iterative coupling solving strategy incorporating the above equations was proposed for a small-scale, flexible and flat-circular parachute. Then, analyses were carried out for canopy geometry, time-dependent pressure difference between the inside and outside of the canopy, transient vortex around the canopy and the flow field in the radial plane as a sequence in opening process. The mechanism of the canopy shape development was explained from perspective of transient flow fields during the inflation process. Experiments of the parachute opening process were conducted in a wind tunnel, in which instantaneous shape of the canopy was measured by high velocity camera and the opening loading was measured by dynamometer balance. The theoretical predictions were found in good agreement with the experimental results, validating the proposed approach. This numerical method can improve the situation of strong dependence of parachute research on wind tunnel tests, and is of significance to the understanding of the mechanics of parachute inflation process.

  17. Cooley building opens in Houston. Demonstrates value of fully integrated marketing communications.

    PubMed

    Rees, Tom

    2002-01-01

    The Texas Heart Institute at St. Luke's Episcopal HospiTal in Houston dedicated its new 10-story Denton A. Cooley Building in January. The structure opened with a fanfare, thanks to a well-integrated marketing communications program.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, T. P., E-mail: tongpu@nudt.edu.cn; Shao, F. Q.; Zou, D. B.

    By using two-dimensional particle-in-cell simulations, we propose a scheme for strong coupling of a petawatt laser with an opening gold cone filled with near-critical-density plasmas. When relevant parameters are properly chosen, most laser energy can be fully deposited inside the cone with only 10% leaving the tip opening. Due to the asymmetric ponderomotive acceleration by the strongly decayed laser pulse, high-energy-density electrons with net laser energy gain are accumulated inside the cone, which then stream out of the tip opening continuously, like a jet. The jet electrons are fully relativistic, with speeds around 0.98−0.998 c and densities at 10{sup 20}/cm{sup 3}more » level. The jet can keep for a long time over 200 fs, which may have diverse applications in practice.« less

  19. Numerical analysis of transient laminar forced convection of nanofluids in circular ducts

    NASA Astrophysics Data System (ADS)

    Sert, İsmail Ozan; Sezer-Uzol, Nilay; Kakaç, Sadık

    2013-10-01

    In this study, forced convection heat transfer characteristics of nanofluids are investigated by numerical analysis of incompressible transient laminar flow in a circular duct under step change in wall temperature and wall heat flux. The thermal responses of the system are obtained by solving energy equation under both transient and steady-state conditions for hydro-dynamically fully-developed flow. In the analyses, temperature dependent thermo-physical properties are also considered. In the numerical analysis, Al2O3/water nanofluid is assumed as a homogenous single-phase fluid. For the effective thermal conductivity of nanofluids, Hamilton-Crosser model is used together with a model for Brownian motion in the analysis which takes the effects of temperature and the particle diameter into account. Temperature distributions across the tube for a step jump of wall temperature and also wall heat flux are obtained for various times during the transient calculations at a given location for a constant value of Peclet number and a particle diameter. Variations of thermal conductivity in turn, heat transfer enhancement is obtained at various times as a function of nanoparticle volume fractions, at a given nanoparticle diameter and Peclet number. The results are given under transient and steady-state conditions; steady-state conditions are obtained at larger times and enhancements are found by comparison to the base fluid heat transfer coefficient under the same conditions.

  20. Curriculum Development: A Philosophical Model.

    ERIC Educational Resources Information Center

    Bruening, William H.

    Presenting models based on the philosophies of Carl Rogers, John Dewey, Erich Fromm, and Jean-Paul Sartre, this paper proposes a philosophical approach to education and concludes with pragmatic suggestions concerning teaching based on a fully-functioning-person model. The fully-functioning person is characterized as being open to experience,…

  1. The Catalina Sky Survey for Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Christensen, E.

    The Catalina Sky Survey (CSS) specializes in the detection of the closest transients in our transient universe: near-Earth objects (NEOs). CSS is the leading NEO survey program since 2005, with a discovery rate of 500-600 NEOs per year. This rate is set to substantially increase starting in 2014 with the deployment of wider FOV cameras at both survey telescopes, while a proposed 3-telescope system in Chile would provide a new and significant capability in the Southern Hemisphere beginning as early as 2015. Elements contributing to the success of CSS may be applied to other surveys, and include 1) Real-time processing, identification, and reporting of interesting transients; 2) Human-assisted validation to ensure a clean transient stream that is efficient to the limits of the system (˜ 1σ); 3) an integrated follow-up capability to ensure threshold or high-priority transients are properly confirmed and followed up. Additionally, the open-source nature of the CSS data enables considerable secondary science (i.e. CRTS), and CSS continues to pursue collaborations to maximize the utility of the data.

  2. Stimulus-dependent regulation of nuclear Ca2+ signaling in cardiomyocytes: a role of neuronal calcium sensor-1.

    PubMed

    Nakao, Shu; Wakabayashi, Shigeo; Nakamura, Tomoe Y

    2015-01-01

    In cardiomyocytes, intracellular calcium (Ca2+) transients are elicited by electrical and receptor stimulations, leading to muscle contraction and gene expression, respectively. Although such elevations of Ca2+levels ([Ca2+]) also occur in the nucleus, the precise mechanism of nuclear [Ca2+] regulation during different kinds of stimuli, and its relationship with cytoplasmic [Ca2+] regulation are not fully understood. To address these issues, we used a new region-specific fluorescent protein-based Ca2+ indicator, GECO, together with the conventional probe Fluo-4 AM. We confirmed that nuclear Ca2+ transients were elicited by both electrical and receptor stimulations in neonatal mouse ventricular myocytes. Kinetic analysis revealed that electrical stimulation-elicited nuclear Ca2+ transients are slower than cytoplasmic Ca2+ transients, and chelating cytoplasmic Ca2+ abolished nuclear Ca2+ transients, suggesting that nuclear Ca2+ are mainly derived from the cytoplasm during electrical stimulation. On the other hand, receptor stimulation such as with insulin-like growth factor-1 (IGF-1) preferentially increased nuclear [Ca2+] compared to cytoplasmic [Ca2+]. Experiments using inhibitors revealed that electrical and receptor stimulation-elicited Ca2+ transients were mainly mediated by ryanodine receptors and inositol 1,4,5-trisphosphate receptors (IP3Rs), respectively, suggesting different mechanisms for the two signals. Furthermore, IGF-1-elicited nuclear Ca2+ transient amplitude was significantly lower in myocytes lacking neuronal Ca2+ sensor-1 (NCS-1), a Ca2+ binding protein implicated in IP3R-mediated pathway in the heart. Moreover, IGF-1 strengthened the interaction between NCS-1 and IP3R. These results suggest a novel mechanism for receptor stimulation-induced nuclear [Ca2+] regulation mediated by IP3R and NCS-1 that may further fine-tune cardiac Ca2+ signal regulation.

  3. Radiation from a space charge dominated linear electron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Debabrata

    2008-01-15

    It is commonly known that radiation loss in linear beam transport is largely unimportant. For a space charge dominated linear beam, however, radiation power loss can be an appreciable fraction of the injected beam power [Biswas, Kumar, and Puri, Phys. Plasmas 14, 094702 (2007)]. Exploring this further, the electromagnetic nature of radiation due to the passage of a space charge dominated electron beam in a 'closed' drift tube is explicitly demonstrated by identifying the cavity modes where none existed prior to beam injection. It is further shown that even in an 'open' drift tube from which radiation may leak, themore » modes that escape contribute to the time variation of the electric and magnetic fields in the transient phase. As the window opening increases, the oscillatory transient phase disappears altogether. However, the 'bouncing ball' modes survive and can be observed between the injection and collection plates.« less

  4. Investigating interoperability of the LSST data management software stack with Astropy

    NASA Astrophysics Data System (ADS)

    Jenness, Tim; Bosch, James; Owen, Russell; Parejko, John; Sick, Jonathan; Swinbank, John; de Val-Borro, Miguel; Dubois-Felsmann, Gregory; Lim, K.-T.; Lupton, Robert H.; Schellart, Pim; Krughoff, K. S.; Tollerud, Erik J.

    2016-07-01

    The Large Synoptic Survey Telescope (LSST) will be an 8.4m optical survey telescope sited in Chile and capable of imaging the entire sky twice a week. The data rate of approximately 15TB per night and the requirements to both issue alerts on transient sources within 60 seconds of observing and create annual data releases means that automated data management systems and data processing pipelines are a key deliverable of the LSST construction project. The LSST data management software has been in development since 2004 and is based on a C++ core with a Python control layer. The software consists of nearly a quarter of a million lines of code covering the system from fundamental WCS and table libraries to pipeline environments and distributed process execution. The Astropy project began in 2011 as an attempt to bring together disparate open source Python projects and build a core standard infrastructure that can be used and built upon by the astronomy community. This project has been phenomenally successful in the years since it has begun and has grown to be the de facto standard for Python software in astronomy. Astropy brings with it considerable expectations from the community on how astronomy Python software should be developed and it is clear that by the time LSST is fully operational in the 2020s many of the prospective users of the LSST software stack will expect it to be fully interoperable with Astropy. In this paper we describe the overlap between the LSST science pipeline software and Astropy software and investigate areas where the LSST software provides new functionality. We also discuss the possibilities of re-engineering the LSST science pipeline software to build upon Astropy, including the option of contributing affliated packages.

  5. Cascading Effects of Canopy Opening and Debris Deposition from a Large-Scale Hurricane Experiment in a Tropical Rain Forest

    Treesearch

    Aaron B. Shiels; Grizelle Gonzalez; D. Jean Lodge; Michael R Willig; Jess K. Zimmerman

    2015-01-01

    Intense hurricanes disturb many tropical forests, but the key mechanisms driving post-hurricane forest changes are not fully understood. In Puerto Rico, we used a replicated factorial experiment to determine the mechanisms of forest change associated with canopy openness and organic matter (debris) addition. Cascading effects from canopy openness accounted for...

  6. "I've Never Heard of It Before": Awareness of Open Access at a Small Liberal Arts University

    ERIC Educational Resources Information Center

    Kocken, Gregory J.; Wical, Stephanie H.

    2013-01-01

    Small colleges and universities, often late adopters of institutional repositories and open access initiatives, face challenges that have not fully been explored in the professional literature. In an effort to gauge the level of awareness of open access and institutional repositories at the University of Wisconsin-Eau Claire (UWEC), the authors of…

  7. Selectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing

    PubMed Central

    2015-01-01

    The use of nanopore biosensors is set to be extremely important in developing precise single molecule detectors and providing highly sensitive advanced analysis of biological molecules. The precise tailoring of nanopore size is a significant step toward achieving this, as it would allow for a nanopore to be tuned to a corresponding analyte. The work presented here details a methodology for selectively opening nanopores in real-time. The tunable nanopores on a quartz nanopipette platform are fabricated using the electroetching of a graphene-based membrane constructed from individual graphene nanoflakes (ø ∼30 nm). The device design allows for in situ opening of the graphene membrane, from fully closed to fully opened (ø ∼25 nm), a feature that has yet to be reported in the literature. The translocation of DNA is studied as the pore size is varied, allowing for subfeatures of DNA to be detected with slower DNA translocations at smaller pore sizes, and the ability to observe trends as the pore is opened. This approach opens the door to creating a device that can be target to detect specific analytes. PMID:26204996

  8. Efficient uncertainty quantification in fully-integrated surface and subsurface hydrologic simulations

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Berg, S. J.; Davison, J. H.; Sudicky, E. A.; Forsyth, P. A.

    2018-01-01

    Although high performance computers and advanced numerical methods have made the application of fully-integrated surface and subsurface flow and transport models such as HydroGeoSphere common place, run times for large complex basin models can still be on the order of days to weeks, thus, limiting the usefulness of traditional workhorse algorithms for uncertainty quantification (UQ) such as Latin Hypercube simulation (LHS) or Monte Carlo simulation (MCS), which generally require thousands of simulations to achieve an acceptable level of accuracy. In this paper we investigate non-intrusive polynomial chaos for uncertainty quantification, which in contrast to random sampling methods (e.g., LHS and MCS), represents a model response of interest as a weighted sum of polynomials over the random inputs. Once a chaos expansion has been constructed, approximating the mean, covariance, probability density function, cumulative distribution function, and other common statistics as well as local and global sensitivity measures is straightforward and computationally inexpensive, thus making PCE an attractive UQ method for hydrologic models with long run times. Our polynomial chaos implementation was validated through comparison with analytical solutions as well as solutions obtained via LHS for simple numerical problems. It was then used to quantify parametric uncertainty in a series of numerical problems with increasing complexity, including a two-dimensional fully-saturated, steady flow and transient transport problem with six uncertain parameters and one quantity of interest; a one-dimensional variably-saturated column test involving transient flow and transport, four uncertain parameters, and two quantities of interest at 101 spatial locations and five different times each (1010 total); and a three-dimensional fully-integrated surface and subsurface flow and transport problem for a small test catchment involving seven uncertain parameters and three quantities of interest at 241 different times each. Numerical experiments show that polynomial chaos is an effective and robust method for quantifying uncertainty in fully-integrated hydrologic simulations, which provides a rich set of features and is computationally efficient. Our approach has the potential for significant speedup over existing sampling based methods when the number of uncertain model parameters is modest ( ≤ 20). To our knowledge, this is the first implementation of the algorithm in a comprehensive, fully-integrated, physically-based three-dimensional hydrosystem model.

  9. An assessment of transient hydraulics phenomena and its characterization

    NASA Technical Reports Server (NTRS)

    Mortimer, R. W.

    1974-01-01

    A systematic search of the open literature was performed with the purpose of identifying the causes, effects, and characterization (modelling and solution techniques) of transient hydraulics phenomena. The governing partial differential equations are presented which were found to be used most often in the literature. Detail survey sheets are shown which contain the type of hydraulics problem, the cause, the modelling, the solution technique utilized, and experimental verification used for each paper. References and source documents are listed and a discussion of the purpose and accomplishments of the study is presented.

  10. Analysis and testing of a space crane articulating joint testbed

    NASA Technical Reports Server (NTRS)

    Sutter, Thomas R.; Wu, K. Chauncey

    1992-01-01

    The topics are presented in viewgraph form and include: space crane concept with mobile base; mechanical versus structural articulating joint; articulating joint test bed and reference truss; static and dynamic characterization completed for space crane reference truss configuration; improved linear actuators reduce articulating joint test bed backlash; 1-DOF space crane slew maneuver; boom 2 tip transient response finite element dynamic model; boom 2 tip transient response shear-corrected component modes torque driver profile; peak root member force vs. slew time torque driver profile; and open loop control of space crane motion.

  11. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    PubMed

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2018-06-01

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  12. A study of institutional spending on open access publication fees in Germany.

    PubMed

    Jahn, Najko; Tullney, Marco

    2016-01-01

    Publication fees as a revenue source for open access publishing hold a prominent place on the agendas of researchers, policy makers, and academic publishers. This study contributes to the evolving empirical basis for funding these charges and examines how much German universities and research organisations spent on open access publication fees. Using self-reported cost data from the Open APC initiative, the analysis focused on the amount that was being spent on publication fees, and compared these expenditure with data from related Austrian (FWF) and UK (Wellcome Trust, Jisc) initiatives, in terms of both size and the proportion of articles being published in fully and hybrid open access journals. We also investigated how thoroughly self-reported articles were indexed in Crossref, a DOI minting agency for scholarly literature, and analysed how the institutional spending was distributed across publishers and journal titles. According to self-reported data from 30 German universities and research organisations between 2005 and 2015, expenditures on open access publication fees increased over the years in Germany and amounted to € 9,627,537 for 7,417 open access journal articles. The average payment was € 1,298, and the median was € 1,231. A total of 94% of the total article volume included in the study was supported in accordance with the price cap of € 2,000, a limit imposed by the Deutsche Forschungsgemeinschaft (DFG) as part of its funding activities for open access funding at German universities. Expenditures varied considerably at the institutional level. There were also differences in how much the institutions spent per journal and publisher. These differences reflect, at least in part, the varying pricing schemes in place including discounted publication fees. With an indexing coverage of 99%, Crossref thoroughly indexed the open access journals articles included in the study. A comparison with the related openly available cost data from Austria and the UK revealed that German universities and research organisations primarily funded articles in fully open access journals. By contrast, articles in hybrid journal accounted for the largest share of spending according to the Austrian and UK data. Fees paid for hybrid journals were on average more expensive than those paid for fully open access journals.

  13. A study of institutional spending on open access publication fees in Germany

    PubMed Central

    Tullney, Marco

    2016-01-01

    Publication fees as a revenue source for open access publishing hold a prominent place on the agendas of researchers, policy makers, and academic publishers. This study contributes to the evolving empirical basis for funding these charges and examines how much German universities and research organisations spent on open access publication fees. Using self-reported cost data from the Open APC initiative, the analysis focused on the amount that was being spent on publication fees, and compared these expenditure with data from related Austrian (FWF) and UK (Wellcome Trust, Jisc) initiatives, in terms of both size and the proportion of articles being published in fully and hybrid open access journals. We also investigated how thoroughly self-reported articles were indexed in Crossref, a DOI minting agency for scholarly literature, and analysed how the institutional spending was distributed across publishers and journal titles. According to self-reported data from 30 German universities and research organisations between 2005 and 2015, expenditures on open access publication fees increased over the years in Germany and amounted to € 9,627,537 for 7,417 open access journal articles. The average payment was € 1,298, and the median was € 1,231. A total of 94% of the total article volume included in the study was supported in accordance with the price cap of € 2,000, a limit imposed by the Deutsche Forschungsgemeinschaft (DFG) as part of its funding activities for open access funding at German universities. Expenditures varied considerably at the institutional level. There were also differences in how much the institutions spent per journal and publisher. These differences reflect, at least in part, the varying pricing schemes in place including discounted publication fees. With an indexing coverage of 99%, Crossref thoroughly indexed the open access journals articles included in the study. A comparison with the related openly available cost data from Austria and the UK revealed that German universities and research organisations primarily funded articles in fully open access journals. By contrast, articles in hybrid journal accounted for the largest share of spending according to the Austrian and UK data. Fees paid for hybrid journals were on average more expensive than those paid for fully open access journals. PMID:27602289

  14. Innovative Technology in Automotive Technology

    ERIC Educational Resources Information Center

    Gardner, John

    2007-01-01

    Automotive Technology combines hands-on training along with a fully integrated, interactive, computerized multistationed facility. Our program is a competency based, true open-entry/open-exit program that utilizes flexible self-paced course outlines. It is designed around an industry partnership that promotes community and economic development,…

  15. Shear-induced opening of the coronal magnetic field

    NASA Technical Reports Server (NTRS)

    Wolfson, Richard

    1995-01-01

    This work describes the evolution of a model solar corona in response to motions of the footpoints of its magnetic field. The mathematics involved is semianalytic, with the only numerical solution being that of an ordinary differential equation. This approach, while lacking the flexibility and physical details of full MHD simulations, allows for very rapid computation along with complete and rigorous exploration of the model's implications. We find that the model coronal field bulges upward, at first slowly and then more dramatically, in response to footpoint displacements. The energy in the field rises monotonically from that of the initial potential state, and the field configuration and energy appraoch asymptotically that of a fully open field. Concurrently, electric currents develop and concentrate into a current sheet as the limiting case of the open field is approached. Examination of the equations shows rigorously that in the asymptotic limit of the fully open field, the current layer becomes a true ideal MHD singularity.

  16. Temperature-dependent daily variability of precipitable water in special sensor microwave/imager observations

    NASA Technical Reports Server (NTRS)

    Gutowski, William J.; Lindemulder, Elizabeth A.; Jovaag, Kari

    1995-01-01

    We use retrievals of atmospheric precipitable water from satellite microwave observations and analyses of near-surface temperature to examine the relationship between these two fields on daily and longer time scales. The retrieval technique producing the data used here is most effective over the open ocean, so the analysis focuses on the southern hemisphere's extratropics, which have an extensive ocean surface. For both the total and the eddy precipitable water fields, there is a close correspondence between local variations in the precipitable water and near-surface temperature. The correspondence appears particularly strong for synoptic and planetary scale transient eddies. More specifically, the results support a typical modeling assumption that transient eddy moisture fields are proportional to transient eddy temperature fields under the assumption f constant relative humidity.

  17. Transient Diabetes Insipidus Following Cardiopulmonary Bypass.

    PubMed

    Ekim, Meral; Ekim, Hasan; Yilmaz, Yunus Keser; Bolat, Ali

    2015-04-01

    Diabetes insipidus (DI) results from inadequate output of Antidiuretic Hormone (ADH) from the pituitary gland (central DI) or the inability of the kidney tubules to respond to ADH (nephrogenic DI). ADH is an octapeptide produced in the supraoptic and paraventricular nuclei of the hypothalamus and stored in the posterior lobe of the pituitary gland. Cardiopulmonary Bypass (CPB) has been shown to cause a six-fold increased circulating ADH levels 12 hours after surgery. However, in some cases, ADH release may be transiently suppressed due to cardioplegia (cardiac standstill) or CPB leading to DI. We present the postoperative course of a 60-year-old man who developed transient DI after CPB. He was successfully treated by applying nasal desmopressin therapy. Relevant biochemical parameters should be monitored closely in patients who produce excessive urine after open heart surgery.

  18. Responses of Rat P2X2 Receptors to Ultrashort Pulses of ATP Provide Insights into ATP Binding and Channel Gating

    PubMed Central

    Moffatt, Luciano; Hume, Richard I.

    2007-01-01

    To gain insight into the way that P2X2 receptors localized at synapses might function, we explored the properties of outside-out patches containing many of these channels as ATP was very rapidly applied and removed. Using a new method to calibrate the speed of exchange of solution over intact patches, we were able to reliably produce applications of ATP lasting <200 μs. For all concentrations of ATP, there was a delay of at least 80 μs between the time when ATP arrived at the receptor and the first detectable flow of inward current. In response to 200-μs pulses of ATP, the time constant of the rising phase of the current was ∼600 μs. Thus, most channel openings occurred when no free ATP was present. The current deactivated with a time constant of ∼60 ms. The amplitude of the peak response to a brief pulse of a saturating concentration of ATP was ∼70% of that obtained during a long application of the same concentration of ATP. Thus, ATP leaves fully liganded channels without producing an opening at least 30% of the time. Extensive kinetic modeling revealed three different schemes that fit the data well, a sequential model and two allosteric models. To account for the delay in opening at saturating ATP, it was necessary to incorporate an intermediate closed state into all three schemes. These kinetic properties indicate that responses to ATP at synapses that use homomeric P2X2 receptors would be expected to greatly outlast the duration of the synaptic ATP transient produced by a single presynaptic spike. Like NMDA receptors, P2X2 receptors provide the potential for complex patterns of synaptic integration over a time scale of hundreds of milliseconds. PMID:17664346

  19. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE PAGES

    Winnick, Matthew J.; Maher, Kate

    2018-01-27

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence of equilibrium solute concentrations on pCO 2 may represent a direct weathering feedback largely independent of climate and modulated by belowground organic carbon respiration.« less

  20. Relationships between CO 2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winnick, Matthew J.; Maher, Kate

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO 2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO 2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. Here, we test this theoretical scaling relationship against reactive transport simulations of chemical weathering profilesmore » under open-and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO 2(y =kx n)where nis dependent on reaction stoichiometry and kis dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO 2 at low values and approach open-system scaling at high pCO 2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO 2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence of equilibrium solute concentrations on pCO 2 may represent a direct weathering feedback largely independent of climate and modulated by belowground organic carbon respiration.« less

  1. Relationships between CO2, thermodynamic limits on silicate weathering, and the strength of the silicate weathering feedback

    NASA Astrophysics Data System (ADS)

    Winnick, Matthew J.; Maher, Kate

    2018-03-01

    Recent studies have suggested that thermodynamic limitations on chemical weathering rates exert a first-order control on riverine solute fluxes and by extension, global chemical weathering rates. As such, these limitations may play a prominent role in the regulation of carbon dioxide levels (pCO2) over geologic timescales by constraining the maximum global weathering flux. In this study, we develop a theoretical scaling relationship between equilibrium solute concentrations and pCO2 based on equilibrium constants and reaction stoichiometry relating primary mineral dissolution and secondary mineral precipitation. We test this theoretical scaling relationship against reactive transport simulations of chemical weathering profiles under open- and closed-system conditions, representing partially and fully water-saturated regolith, respectively. Under open-system conditions, equilibrium bicarbonate concentrations vary as a power-law function of pCO2 (y = kxn) where n is dependent on reaction stoichiometry and k is dependent on both reaction stoichiometry and the equilibrium constant. Under closed-system conditions, bicarbonate concentrations vary linearly with pCO2 at low values and approach open-system scaling at high pCO2. To describe the potential role of thermodynamic limitations in the global silicate weathering feedback, we develop a new mathematical framework to assess weathering feedback strength in terms of both (1) steady-state atmospheric pCO2 concentrations, and (2) susceptibility to secular changes in degassing rates and transient carbon cycle perturbations, which we term 1st and 2nd order feedback strength, respectively. Finally, we discuss the implications of these results for the effects of vascular land plant evolution on feedback strength, the potential role of vegetation in controlling modern solute fluxes, and the application of these frameworks to a more complete functional description of the silicate weathering feedback. Most notably, the dependence of equilibrium solute concentrations on pCO2 may represent a direct weathering feedback largely independent of climate and modulated by belowground organic carbon respiration.

  2. A Metadata Management Framework for Collaborative Review of Science Data Products

    NASA Astrophysics Data System (ADS)

    Hart, A. F.; Cinquini, L.; Mattmann, C. A.; Thompson, D. R.; Wagstaff, K.; Zimdars, P. A.; Jones, D. L.; Lazio, J.; Preston, R. A.

    2012-12-01

    Data volumes generated by modern scientific instruments often preclude archiving the complete observational record. To compensate, science teams have developed a variety of "triage" techniques for identifying data of potential scientific interest and marking it for prioritized processing or permanent storage. This may involve multiple stages of filtering with both automated and manual components operating at different timescales. A promising approach exploits a fast, fully automated first stage followed by a more reliable offline manual review of candidate events. This hybrid approach permits a 24-hour rapid real-time response while also preserving the high accuracy of manual review. To support this type of second-level validation effort, we have developed a metadata-driven framework for the collaborative review of candidate data products. The framework consists of a metadata processing pipeline and a browser-based user interface that together provide a configurable mechanism for reviewing data products via the web, and capturing the full stack of associated metadata in a robust, searchable archive. Our system heavily leverages software from the Apache Object Oriented Data Technology (OODT) project, an open source data integration framework that facilitates the construction of scalable data systems and places a heavy emphasis on the utilization of metadata to coordinate processing activities. OODT provides a suite of core data management components for file management and metadata cataloging that form the foundation for this effort. The system has been deployed at JPL in support of the V-FASTR experiment [1], a software-based radio transient detection experiment that operates commensally at the Very Long Baseline Array (VLBA), and has a science team that is geographically distributed across several countries. Daily review of automatically flagged data is a shared responsibility for the team, and is essential to keep the project within its resource constraints. We describe the development of the platform using open source software, and discuss our experience deploying the system operationally. [1] R.B.Wayth,W.F.Brisken,A.T.Deller,W.A.Majid,D.R.Thompson, S. J. Tingay, and K. L. Wagstaff, "V-fastr: The vlba fast radio transients experiment," The Astrophysical Journal, vol. 735, no. 2, p. 97, 2011. Acknowledgement: This effort was supported by the Jet Propulsion Laboratory, managed by the California Institute of Technology under a contract with the National Aeronautics and Space Administration.

  3. Transient particle emission measurement with optical techniques

    NASA Astrophysics Data System (ADS)

    Bermúdez, Vicente; Luján, José M.; Serrano, José R.; Pla, Benjamín

    2008-06-01

    Particulate matter is responsible for some respiratory and cardiovascular diseases. In addition, it is one of the most important pollutants of high-speed direct injection (HSDI) passenger car engines. Current legislation requires particulate dilution tunnels for particulate matter measuring. However for development work, dilution tunnels are expensive and sometimes not useful since they are not able to quantify real-time particulate emissions during transient operation. In this study, the use of a continuous measurement opacimeter and a fast response HFID is proven to be a good alternative to obtain instantaneous particle mass emissions during transient operation (due to particulate matter consisting mainly of soot and SOF). Some methods and correlations available from literature, but developed for steady conditions, are evaluated during transient operation by comparing with mini-tunnel measurements during the entire MVEG-A transient cycle. A new correlation was also derived from this evaluation. Results for soot and SOF (obtained from the new correlation proposed) are compared with soot and SOF captured with particulate filters, which have been separated by means of an SOF extraction method. Finally, as an example of ECU design strategies using these sort of correlations, the EGR valve opening is optimized during transient operation. The optimization is performed while simultaneously taking into account instantaneous fuel consumption, particulate emissions (calculated with the proposed correlation) and other regulated engine pollutants.

  4. JPS heater and sensor lightning qualification

    NASA Technical Reports Server (NTRS)

    Cook, M.

    1989-01-01

    Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.

  5. Edaq530: A Transparent, Open-End and Open-Source Measurement Solution in Natural Science Education

    ERIC Educational Resources Information Center

    Kopasz, Katalin; Makra, Peter; Gingl, Zoltan

    2011-01-01

    We present Edaq530, a low-cost, compact and easy-to-use digital measurement solution consisting of a thumb-sized USB-to-sensor interface and measurement software. The solution is fully open-source, our aim being to provide a viable alternative to professional solutions. Our main focus in designing Edaq530 has been versatility and transparency. In…

  6. Analysis of Knickzones over a Coastal Mountain Range of the Korean Peninsula Implies Intensive Uplifts during the Opening of the East Sea

    NASA Astrophysics Data System (ADS)

    Byun, J.; Paik, K.

    2017-12-01

    The Korean Peninsula jutting out from the Eurasia Continent is bordered to the east by the East Sea (or Sea of Japan), a back-arc sea behind the Japan Islands Arc. Along the eastern margin of the peninsula, a coastal mountain range over 800 km long including peaks reaching up to ca 2,500 m develops with great escarpments facing the East Sea. Compared to the substantial studies related to drifting of the Japanese Islands from the peninsula and consequent the opening of the East Sea as back-arc basin (23 12 Ma), the development of the coastal mountain range assumed to be associated with the East Sea opening is poorly understood. In particular, no consensus has been made regarding the timing of the coastal mountain range: Continuous uplift from the Early Tertiary over the Pliocene versus intensive uplift during the Early Miocene near ca 22 Ma. Addressing this problem could help reveal the relation between the formation of the coastal mountain range and the East Sea opening. In this study, to figure out the timing of the formation of the coastal mountain range, we extracted quantitatively the knickzones in a drainage basin over the coastal mountain range and attempted to analyze the spatial distribution of potential transient knickzones which were induced by the development of the coastal mountain range and then would migrate upstream. According to our analysis, all the identified knickzones (n=19) are revealed as steady-state responses to 1) different lithologies, 2) coarse bed material inputs from tributaries, and 3) more resistant rock patch or local faults. Non-existence of the potential transient knickzones suggests that the transient knickzones due to the coastal mountain range building had already propagated up to each watershed boundary. Sequent analysis on the time spent for knickzone migration up to the boundary reveals that the time when the coastal mountain range had formed back to at least 6 8 Ma. Therefore, it becomes evident that the development of the coastal mountain range had not persisted over the Pliocene, and instead the coastal mountain range had developed mostly during the opening of the East Sea, implying that the formation of the coastal mountain range is mainly attributed to the drifting of the Japanese Islands from the Korean Peninsula and consequent opening of the East Sea.

  7. User's Manual for HPTAM: a Two-Dimensional Heat Pipe Transient Analysis Model, Including the Startup from a Frozen State

    NASA Technical Reports Server (NTRS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    1995-01-01

    This report describes the user's manual for 'HPTAM,' a two-dimensional Heat Pipe Transient Analysis Model. HPTAM is described in detail in the UNM-ISNPS-3-1995 report which accompanies the present manual. The model offers a menu that lists a number of working fluids and wall and wick materials from which the user can choose. HPTAM is capable of simulating the startup of heat pipes from either a fully-thawed or frozen condition of the working fluid in the wick structure. The manual includes instructions for installing and running HPTAM on either a UNIX, MS-DOS or VMS operating system. Samples for input and output files are also provided to help the user with the code.

  8. An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.

    PubMed

    Baker, Graham; de Borst, René

    2005-11-15

    The behaviour of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to a high-temperature environment, in applications such as fire exposure, smelting plants and nuclear installations. In modelling terms, a coupled thermomechanical analysis represents a generalization of the computational mechanics of fracture and damage. Here, we develop a fully coupled anisotropic thermomechanical damage model for concrete under high stress and transient temperature, with emphasis on the adherence of the model to the laws of thermodynamics. Specific analytical results are given, deduced from thermodynamics, of a novel interpretation on specific heat, evolution of entropy and the identification of the complete anisotropic, thermomechanical damage surface. The model is also shown to be stable in a computational sense, and to satisfy the laws of thermodynamics.

  9. Apertured averaged scintillation of fully and partially coherent Gaussian, annular Gaussian, flat toped and dark hollow beams

    NASA Astrophysics Data System (ADS)

    Eyyuboğlu, Halil T.

    2015-03-01

    Apertured averaged scintillation requires the evaluation of rather complicated irradiance covariance function. Here we develop a much simpler numerical method based on our earlier introduced semi-analytic approach. Using this method, we calculate aperture averaged scintillation of fully and partially coherent Gaussian, annular Gaussian flat topped and dark hollow beams. For comparison, the principles of equal source beam power and normalizing the aperture averaged scintillation with respect to received power are applied. Our results indicate that for fully coherent beams, upon adjusting the aperture sizes to capture 10 and 20% of the equal source power, Gaussian beam needs the largest aperture opening, yielding the lowest aperture average scintillation, whilst the opposite occurs for annular Gaussian and dark hollow beams. When assessed on the basis of received power normalized aperture averaged scintillation, fixed propagation distance and aperture size, annular Gaussian and dark hollow beams seem to have the lowest scintillation. Just like the case of point-like scintillation, partially coherent beams will offer less aperture averaged scintillation in comparison to fully coherent beams. But this performance improvement relies on larger aperture openings. Upon normalizing the aperture averaged scintillation with respect to received power, fully coherent beams become more advantageous than partially coherent ones.

  10. High Temperature Catalytically Assisted Combustion.

    DTIC Science & Technology

    1983-07-31

    AUTHOR(S) F.V. Bracco, B.S.H. Royce, C. Bruno, D.A. Santavicca, Y. Stein 16I. SUPPLEMENTARY NOTATION FIELD GROUP - SUB. GR. ’Catalytic Combustion... controlling radial gradients. These functions can be very accurate for fully developed steady flows but require significant adjustments for transient...however, to limit computation costs, the reported solutions were obtained using the quasi -steady gas assumption already employed by T’ien in his one

  11. Towards a high resolution, integrated hydrology model of North America.

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Condon, L. E.

    2015-12-01

    Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.

  12. Glacier crevasses: Observations, models, and mass balance implications

    NASA Astrophysics Data System (ADS)

    Colgan, William; Rajaram, Harihar; Abdalati, Waleed; McCutchan, Cheryl; Mottram, Ruth; Moussavi, Mahsa S.; Grigsby, Shane

    2016-03-01

    We review the findings of approximately 60 years of in situ and remote sensing studies of glacier crevasses, as well as the three broad classes of numerical models now employed to simulate crevasse fracture. The relatively new insight that mixed-mode fracture in local stress equilibrium, rather than downstream advection alone, can introduce nontrivial curvature to crevasse geometry may merit the reinterpretation of some key historical observation studies. In the past three decades, there have been tremendous advances in the spatial resolution of satellite imagery, as well as fully automated algorithms capable of tracking crevasse displacements between repeat images. Despite considerable advances in developing fully transient three-dimensional ice flow models over the past two decades, both the zero stress and linear elastic fracture mechanics crevasse models have remained fundamentally unchanged over this time. In the past decade, however, multidimensional and transient formulations of the continuum damage mechanics approach to simulating ice fracture have emerged. The combination of employing damage mechanics to represent slow upstream deterioration of ice strength and fracture mechanics to represent rapid failure at downstream termini holds promise for implementation in large-scale ice sheet models. Finally, given the broad interest in the sea level rise implications of recent and future cryospheric change, we provide a synthesis of 10 mechanisms by which crevasses can influence glacier mass balance.

  13. Materials and processing approaches for foundry-compatible transient electronics

    PubMed Central

    Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.

    2017-01-01

    Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries. PMID:28652373

  14. Phase-amplitude reduction of transient dynamics far from attractors for limit-cycling systems

    NASA Astrophysics Data System (ADS)

    Shirasaka, Sho; Kurebayashi, Wataru; Nakao, Hiroya

    2017-02-01

    Phase reduction framework for limit-cycling systems based on isochrons has been used as a powerful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which complements the isochrons by characterizing amplitudes of the system state, i.e., deviations from the limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle [Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In contrast to the preceding study, the isostables are treated in a fully consistent way with the Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply the framework to system states far from the limit cycle. We also propose a new, convenient bi-orthogonalization method to obtain the response functions of the amplitudes, which can be interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-cycling systems. We illustrate the utility of the proposed reduction framework by estimating the optimal injection timing of external input that efficiently suppresses deviations of the system state from the limit cycle in a model of a biochemical oscillator.

  15. Mitochondrial permeability transition pore inhibitors prevent ethanol-induced neuronal death in mice.

    PubMed

    Lamarche, Frederic; Carcenac, Carole; Gonthier, Brigitte; Cottet-Rousselle, Cecile; Chauvin, Christiane; Barret, Luc; Leverve, Xavier; Savasta, Marc; Fontaine, Eric

    2013-01-18

    Ethanol induces brain injury by a mechanism that remains partly unknown. Mitochondria play a key role in cell death processes, notably through the opening of the permeability transition pore (PTP). Here, we tested the effect of ethanol and PTP inhibitors on mitochondrial physiology and cell viability both in vitro and in vivo. Direct addition of ethanol up to 100 mM on isolated mouse brain mitochondria slightly decreased oxygen consumption but did not affect PTP regulation. In comparison, when isolated from ethanol-treated (two doses of 2 g/kg, 2 h apart) 7-day-old mouse pups, brain mitochondria displayed a transient decrease in oxygen consumption but no change in PTP regulation or H2O2 production. Conversely, exposure of primary cultured astrocytes and neurons to 20 mM ethanol for 3 days led to a transient PTP opening in astrocytes without affecting cell viability and to a permanent PTP opening in 10 to 20% neurons with the same percentage of cell death. Ethanol-treated mouse pups displayed a widespread caspase-3 activation in neurons but not in astrocytes and dramatic behavioral alterations. Interestingly, two different PTP inhibitors (namely, cyclosporin A and nortriptyline) prevented both ethanol-induced neuronal death in vivo and ethanol-induced behavioral modifications. We conclude that PTP opening is involved in ethanol-induced neurotoxicity in the mouse.

  16. Design and Simulation Test of an Open D-Dot Voltage Sensor

    PubMed Central

    Bai, Yunjie; Wang, Jingang; Wei, Gang; Yang, Yongming

    2015-01-01

    Nowadays, sensor development focuses on miniaturization and non-contact measurement. According to the D-dot principle, a D-dot voltage sensor with a new structure was designed based on the differential D-dot sensor with a symmetrical structure, called an asymmetric open D-dot voltage sensor. It is easier to install. The electric field distribution of the sensor was analyzed through Ansoft Maxwell and an open D-dot voltage sensor was designed. This open D-voltage sensor is characteristic of accessible insulating strength and small electric field distortion. The steady and transient performance test under 10 kV-voltage reported satisfying performances of the designed open D-dot voltage sensor. It conforms to requirements for a smart grid measuring sensor in intelligence, miniaturization and facilitation. PMID:26393590

  17. Outcomes of Chat and Discussion Board Use in Online Learning: A Research Synthesis

    ERIC Educational Resources Information Center

    Blackmon, Stephanie J.

    2012-01-01

    Online discussion boards are often used in traditional courses, hybrid courses, and fully online courses. Online chats and discussions can be particularly useful in fully online courses, as these communication connections are often students' only means of connecting with each other and sharing ideas in an open forum. While traditional face-to-face…

  18. Calcium Domains around Single and Clustered IP3 Receptors and Their Modulation by Buffers

    PubMed Central

    Rüdiger, S.; Nagaiah, Ch.; Warnecke, G.; Shuai, J.W.

    2010-01-01

    Abstract We study Ca2+ release through single and clustered IP3 receptor channels on the ER membrane under presence of buffer proteins. Our computational scheme couples reaction-diffusion equations and a Markovian channel model and allows our investigating the effects of buffer proteins on local calcium concentrations and channel gating. We find transient and stationary elevations of calcium concentrations around active channels and show how they determine release amplitude. Transient calcium domains occur after closing of isolated channels and constitute an important part of the channel's feedback. They cause repeated openings (bursts) and mediate increased release due to Ca2+ buffering by immobile proteins. Stationary domains occur during prolonged activity of clustered channels, where the spatial proximity of IP3Rs produces a distinct [Ca2+] scale (0.5–10 μM), which is smaller than channel pore concentrations (>100 μM) but larger than transient levels. While immobile buffer affects transient levels only, mobile buffers in general reduce both transient and stationary domains, giving rise to Ca2+ evacuation and biphasic modulation of release amplitude. Our findings explain recent experiments in oocytes and provide a general framework for the understanding of calcium signals. PMID:20655827

  19. Mining the Sky for Explosive Optical Transients with Both Eyes Open

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Davidoff, S.; Davis, H.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.

    2004-09-01

    While it has been known for centuries that the optical sky is variable, monitoring the sky for optical transients with durations as short as a minute is an area of astronomical research that remains largely unexplored. Prompt follow-up observations of Gamma Ray Bursts have shown that bright, explosive, optical transients exist. However, there are many reasons to suspect the existence of explosive optical transients that cannot be located through sky monitoring by high-energy satellites. The RAPTOR sky monitoring system is an autonomous system of telescope arrays at Los Alamos National Laboratory that identifies fast optical transients as short as a minute and makes follow-up observations in real time. The core of the RAPTOR system is composed of two arrays of telescopes, separated by 38 kilometers, that stereoscopically monitor a field of about 1300 square degrees for transients down to about 12.5th magnitude in 30 seconds. Both arrays are coupled to real-time data analysis pipelines that are designed to identify transients on timescales of seconds. Each telescope array also contains a more sensitive higher resolution ``fovea'' telescope, capable of both measuring the light curve at a faster cadence and providing color information. In a manner analogous to human vision, each array is mounted on a rapidly slewing mount so that the ``fovea'' of the array can be rapidly directed for real-time follow-up observations of any interesting transient identified by the wide-field system. We discuss the first results from RAPTOR and show that stereoscopic imaging and the absence of measurable parallax is a powerful tool for distinguishing real celestial transients in the ``forest'' of false positives.

  20. Mining the Sky for Explosive Optical Transients with Both Eyes Open

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vestrand, W.T.; Casperson, D.J.; Davis, H.

    2004-09-28

    While it has been known for centuries that the optical sky is variable, monitoring the sky for optical transients with durations as short as a minute is an area of astronomical research that remains largely unexplored. Prompt follow-up observations of Gamma Ray Bursts have shown that bright, explosive, optical transients exist. However, there are many reasons to suspect the existence of explosive optical transients that cannot be located through sky monitoring by high-energy satellites. The RAPTOR sky monitoring system is an autonomous system of telescope arrays at Los Alamos National Laboratory that identifies fast optical transients as short as amore » minute and makes follow-up observations in real time. The core of the RAPTOR system is composed of two arrays of telescopes, separated by 38 kilometers, that stereoscopically monitor a field of about 1300 square degrees for transients down to about 12.5th magnitude in 30 seconds. Both arrays are coupled to real-time data analysis pipelines that are designed to identify transients on timescales of seconds. Each telescope array also contains a more sensitive higher resolution 'fovea' telescope, capable of both measuring the light curve at a faster cadence and providing color information. In a manner analogous to human vision, each array is mounted on a rapidly slewing mount so that the 'fovea' of the array can be rapidly directed for real-time follow-up observations of any interesting transient identified by the wide-field system. We discuss the first results from RAPTOR and show that stereoscopic imaging and the absence of measurable parallax is a powerful tool for distinguishing real celestial transients in the 'forest' of false positives.« less

  1. Focused cognitive control in dishonesty: Evidence for predominantly transient conflict adaptation.

    PubMed

    Foerster, Anna; Pfister, Roland; Schmidts, Constantin; Dignath, David; Wirth, Robert; Kunde, Wilfried

    2018-04-01

    Giving a dishonest response to a question entails cognitive conflict due to an initial activation of the truthful response. Following conflict monitoring theory, dishonest responding could therefore elicit transient and sustained control adaptation processes to mitigate such conflict, and the current experiments take on the scope and specificity of such conflict adaptation in dishonesty. Transient adaptation reduces differences between honest and dishonest responding following a recent dishonest response. Sustained adaptation has a similar behavioral signature but is driven by the overall frequency of dishonest responding. Both types of adaptation to recent and frequent dishonest responses have been separately documented, leaving open whether control processes in dishonest responding can flexibly adapt to transient and sustained conflict signals of dishonest and other actions. This was the goal of the present experiments which studied (dis)honest responding to autobiographical yes/no questions. Experiment 1 showed robust transient adaptation to recent dishonest responses whereas sustained control adaptation failed to exert an influence on behavior. It further revealed that transient effects may create a spurious impression of sustained adaptation in typical experimental settings. Experiments 2 and 3 examined whether dishonest responding can profit from transient and sustained adaption processes triggered by other behavioral conflicts. This was clearly not the case: Dishonest responding adapted markedly to recent (dis)honest responses but not to any context of other conflicts. These findings indicate that control adaptation in dishonest responding is strong but surprisingly focused and they point to a potential trade-off between transient and sustained adaptation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. SPRAT: Spectrograph for the Rapid Acquisition of Transients

    NASA Astrophysics Data System (ADS)

    Piascik, A. S.; Steele, Iain A.; Bates, Stuart D.; Mottram, Christopher J.; Smith, R. J.; Barnsley, R. M.; Bolton, B.

    2014-07-01

    We describe the development of a low cost, low resolution (R ~ 350), high throughput, long slit spectrograph covering visible (4000-8000) wavelengths. The spectrograph has been developed for fully robotic operation with the Liverpool Telescope (La Palma). The primary aim is to provide rapid spectral classification of faint (V ˜ 20) transient objects detected by projects such as Gaia, iPTF (intermediate Palomar Transient Factory), LOFAR, and a variety of high energy satellites. The design employs a volume phase holographic (VPH) transmission grating as the dispersive element combined with a prism pair (grism) in a linear optical path. One of two peak spectral sensitivities are selectable by rotating the grism. The VPH and prism combination and entrance slit are deployable, and when removed from the beam allow the collimator/camera pair to re-image the target field onto the detector. This mode of operation provides automatic acquisition of the target onto the slit prior to spectrographic observation through World Coordinate System fitting. The selection and characterisation of optical components to maximise photon throughput is described together with performance predictions.

  3. Evaluation of Transient Pin-Stress Requirements for Spacecraft Launching in Lightning Environments. Pain Free Analysis to Alleviate Those Pin Stress Headaches

    NASA Technical Reports Server (NTRS)

    Edwards, Paul; Terseck, Alex; Trout, Dawn

    2016-01-01

    Spacecraft are generally protected from direct lightning attachment by encapsulation within the payload fairing of a launch vehicle and the ground structures that exist at the launch site. Regardless of where lightning strikes, potentially damaging indirect effects prevail from the coupling of electromagnetic fields into a loop created by outer shield of the payload umbilical. The energy coupled into individual spacecraft circuits is dependent on the umbilical current drive, the cable transfer impedance and the source/ load circuitry, and the reference potential used. Lightning induced transient susceptibility of the spacecraft avionics needs to be fully understood in order to define realistic re-test criteria in the event of a lightning occurrence during the launch campaign. Use of standards such as RTCA/DO-160 & SAE 5412 has some applicability but do not represent the indirect environment adequately. This paper evaluates the launch pad environments, the measurement data available, and computer simulations to provide pain-free analysis to alleviate the transient pin-stress headaches for spacecraft launching in Lightning environments.

  4. Agricultural Recharge Practices for Managing Nitrate in Regional Groundwater: Time-Resolution Assessment of Numerical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Bastani, M.; Harter, T.

    2017-12-01

    Intentional recharge practices in irrigated landscapes are promising options to control and remediate groundwater quality degradation with respect to nitrate. To better understand the effect of these practices, a fully 3D transient heterogeneous transport model simulation is developed using MODFLOW and MT3D. The model is developed for a long-term study of nitrate improvements in an alluvial groundwater basin in Eastern San Joaquin Valley, CA. Different scenarios of agricultural recharge strategies including crop type change and winter flood flows are investigated. Transient simulations with high spatio-temporal resolutions are performed. We then consider upscaling strategies that would allow us to simplify the modeling process such that it can be applied at a very large basin-scale (1000s of square kilometers) for scenario analysis. We specifically consider upscaling of time-variant boundary conditions (both internal and external) that have significant influence on calculation cost of the model. We compare monthly transient stresses to upscaled annual and further upscaled average steady-state stresses on nitrate transport in groundwater under recharge scenarios.

  5. Simulation of the Francis-99 Hydro Turbine During Steady and Transient Operation

    NASA Astrophysics Data System (ADS)

    Dewan, Yuvraj; Custer, Chad; Ivashchenko, Artem

    2017-01-01

    Numerical simulation of the Francis-99 hydroturbine with correlation to experimental measurements are presented. Steady operation of the hydroturbine is analyzed at three operating conditions: the best efficiency point (BEP), high load (HL), and part load (PL). It is shown that global quantities such as net head, discharge and efficiency are well predicted. Additionally, time-averaged velocity predictions compare well with PIV measurements obtained in the draft tube immediately downstream of the runner. Differences in vortex rope structure between operating points are discussed. Unsteady operation of the hydroturbine from BEP to HL and from BEP to PL are modeled. It is shown that simulation methods used to model the steady operation produce predictions that correlate well with experiment for transient operation. Time-domain unsteady simulation is used for both steady and unsteady operation. The full-fidelity geometry including all components is meshed using an unstructured polyhedral mesh with body-fitted prism layers. Guide vane rotation for transient operation is imposed using fully-conservative, computationally efficient mesh morphing. The commercial solver STAR-CCM+ is used for all portions of the analysis including meshing, solving and post-processing.

  6. Transient ischameic attack/stroke electronic decision support: a 14-month safety audit.

    PubMed

    Lavin, Timothy L; Ranta, Annemarei

    2014-02-01

    To assess the safety of a Transient Ischameic Attack (TIA)/Stroke Electronic Decision Support (EDS) tool in the primary care setting intended to aid general practitioners in the timely management of transient ischemic attacks (TIAs). A 14-month safety audit reviewing all patients managed with the help of the TIA/Stroke EDS tool. Major morbidity and mortality were assessed by screening patients for subsequent hospital admissions and investigating potential links to EDS use. Seventy-nine patients were managed with the aid of the TIA/Stroke EDS. EDS use resulted in 8 appropriate immediate hospital admissions because of patients being at high risk of stroke. Three patients had delayed admission, but care was fully guideline based and patients had no adverse outcome. Eleven admissions were unrelated to EDS use. Two deaths occurred; these did not result from inappropriate EDS advice. Results suggest that TIA/Stroke EDS use is not associated with major morbidity or mortality. Larger studies are needed to draw more definite conclusions regarding the utility of this TIA/Stroke EDS in preventing strokes. Copyright © 2014 National Stroke Association. All rights reserved.

  7. Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines

    PubMed Central

    Tuck, Jeffrey; Lee, Pedro

    2013-01-01

    Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the pipeline are both important to the accuracy of the inverse analysis procedure and can be used to differentiate the observed transient behaviour caused by changes in wall thickness from that caused by other known faults such as leaks. Further application of the method to real pipelines is discussed.

  8. AMPK is activated early in cerebellar granule cells undergoing apoptosis and influences VADC1 phosphorylation status and activity.

    PubMed

    Bobba, A; Casalino, E; Amadoro, G; Petragallo, V A; Atlante, A

    2017-09-01

    The neurodegeneration of cerebellar granule cells, after low potassium induced apoptosis, is known to be temporally divided into an early and a late phase. Voltage-dependent anion channel-1 (VDAC1) protein, changing from the closed inactive state to the active open state, is central to the switch between the early and late phase. It is also known that: (i) VDAC1 can undergo phosphorylation events and (ii) AMP-activated protein kinase (AMPK), the sensor of cellular stress, may have a role in neuronal homeostasis. In the view of this, the involvement of AMPK activation and its correlation with VDAC1 status and activity has been investigated in the course of cerebellar granule cells apoptosis. The results reported in this study show that an increased level of the phosphorylated, active, isoform of AMPK occurs in the early phase, peaks at 3 h and guarantees an increase in the phosphorylation status of VDCA1, resulting in a reduced activity of this latter. However this situation is transient in nature, since, in the late phase, AMPK activation decreases as well as the level of phosphorylated VDAC1. In a less phosphorylated status, VDAC1 fully recovers its gating activity and drives cells along the death route.

  9. The role of F-actin in the transport and secretion of chromaffin granules: an historic perspective.

    PubMed

    Gutiérrez, Luis M; Villanueva, José

    2018-01-01

    Actin is one of the most ubiquitous protein playing fundamental roles in a variety of cellular processes. Since early in the 1980s, it was evident that filamentous actin (F-actin) formed a peripheral cortical barrier that prevented vesicles to access secretory sites in chromaffin cells in culture. Later, around 2000, it was described that the F-actin structure accomplishes a dual role serving both vesicle transport and retentive purposes and undergoing dynamic transient changes during cell stimulation. The complex role of the F-actin cytoskeleton in neuroendocrine secretion was further evidenced when it has been proved to participate in the scaffold structure holding together the secretory machinery at active sites and participate in the generation of mechanical forces that drive the opening of the fusion pore, during the first decade of the present century. The complex vision of the multiple roles of F-actin in secretion we have acquired to date comes largely from studies performed on traditional 2D cultures of primary cells; however, recent evidences suggest that these may not accurately mimic the 3D in vivo environment, and thus, more work is now needed on adrenomedullary cells kept in a more "native" configuration to fully understand the role of F-actin in regulating chromaffin granule transport and secretion under physiological conditions.

  10. Electrical insulation design requirements and reliability goals

    NASA Astrophysics Data System (ADS)

    Ross, R. G., Jr.

    1983-11-01

    The solar cells in a photovoltaic module which must be electrically isolated from module exterior surfaces to satisfy a variety of safety and operating considerations are discussed. The performance and reliability of the insulation system are examined. Technical requirements involve the capability of withstanding the differential voltage from the solar cells to the module frame. The maximum system voltage includes consideration of maximum open circuit array voltages achieved under low-temperature, high-irradiance conditions, and transient overvoltages due to system feedback of lightning transients. The latter is bounded by the characteristics of incorporated voltage limiting devices such as MOVs.

  11. Three Decades of Explosive High Energy Transients

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2013-01-01

    Gamma-Ray Bursts are the most brilliant explosions in space. The first GRB was discovered on 1967, just 40 years ago. It took several years and multiple generations of space and ground instruments to unravel some of the mysteries of this phenomenon. However, many questions remain open today. I will discuss the history, evolution and current status of the GRB field and its contributions in our understanding of the transient high energy sky. Finally, I will describe how GRBs can be utilized in future missions as tools, to probe the cosmic chemical evolution of the Universe and the star formation rates.

  12. Surface pH changes suggest a role for H+/OH- channels in salinity response of Chara australis.

    PubMed

    Absolonova, Marketa; Beilby, Mary J; Sommer, Aniela; Hoepflinger, Marion C; Foissner, Ilse

    2018-05-01

    To understand salt stress, the full impact of salinity on plant cell physiology has to be resolved. Electrical measurements suggest that salinity inhibits the proton pump and opens putative H + /OH - channels all over the cell surface of salt sensitive Chara australis (Beilby and Al Khazaaly 2009; Al Khazaaly and Beilby 2012). The channels open transiently at first, causing a characteristic noise in membrane potential difference (PD), and after longer exposure remain open with a typical current-voltage (I/V) profile, both abolished by the addition of 1 mM ZnCl 2 , the main known blocker of animal H + channels. The cells were imaged with confocal microscopy, using fluorescein isothiocyanate (FITC) coupled to dextran 70 to illuminate the pH changes outside the cell wall in artificial fresh water (AFW) and in saline medium. In the early saline exposure, we observed alkaline patches (bright fluorescent spots) appearing transiently in random spatial distribution. After longer exposure, some of the spots became fixed in space. Saline also abolished or diminished the pH banding pattern observed in the untreated control cells. ZnCl 2 suppressed the alkaline spot formation in saline and the pH banding pattern in AFW. The osmotic component of the saline stress did not produce transient bright spots or affect banding. The displacement of H + from the cell wall charges, the H + /OH - channel conductance/density, and self-organization are discussed. No homologies to animal H + channels were found. Salinity activation of the H + /OH - channels might contribute to saline response in roots of land plants and leaves of aquatic angiosperms.

  13. DUSTY EXPLOSIONS FROM DUSTY PROGENITORS: THE PHYSICS OF SN 2008S AND THE 2008 NGC 300-OT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kochanek, C. S.

    2011-11-01

    SN 2008S and the 2008 NGC 300-OT were explosive transients of stars self-obscured by very dense, dusty stellar winds. An explosive transient with an unobserved shock breakout luminosity of order 10{sup 10} L{sub sun} is required to render the transients little obscured and visible in the optical at their peaks. Such a large breakout luminosity then implies that the progenitor stars were cool, red supergiants, most probably {approx}9 M{sub sun} extreme asymptotic giant branch stars. As the shocks generated by the explosions propagate outward through the dense wind, they produce a shock luminosity in soft X-rays that powers the long-livedmore » luminosity of the transients. Unlike typical cases of transients exploding into a surrounding circumstellar medium, the progenitor winds in these systems are optically thick to soft X-rays, easily absorb radio emission, and rapidly reform dust destroyed by the peak luminosity of the transients. As a result, X-rays are absorbed by the gas and the energy is ultimately radiated by the reformed dust. Three years post-peak, both systems are still significantly more luminous than their progenitor stars, but they are again fully shrouded by the reformed dust and only visible in the mid-IR. The high luminosity and heavy obscuration may make it difficult to determine the survival of the progenitor stars for {approx}10 years. However, our model indicates that SN 2008S, but not the NGC 300-OT, should now be a detectable X-ray source. SN 2008S has a higher estimated shock velocity and a lower density wind, so the X-rays begin to escape at a much earlier phase.« less

  14. Genomic and Transcriptomic Analysis of Escherichia coli Strains Associated with Persistent and Transient Bovine Mastitis and the Role of Colanic Acid.

    PubMed

    Lippolis, John D; Holman, Devin B; Brunelle, Brian W; Thacker, Tyler C; Bearson, Bradley L; Reinhardt, Timothy A; Sacco, Randy E; Casey, Thomas A

    2018-01-01

    Escherichia coli is a leading cause of bacterial mastitis in dairy cattle. It is most often transient in nature, causing an infection that lasts 2 to 3 days. However, E. coli has been shown to cause a persistent infection in a minority of cases. Mechanisms that allow for a persistent E. coli infection are not fully understood. The goal of this work was to determine differences between E. coli strains originally isolated from dairy cattle with transient and persistent mastitis. Using RNA sequencing, we show gene expression differences in nearly 200 genes when bacteria from the two clinical phenotypes are compared. We sequenced the genomes of the E. coli strains and report genes unique to the two phenotypes. Differences in the wca operon, which encodes colanic acid, were identified by DNA as well as RNA sequencing and differentiated the two phenotypes. Previous work demonstrated that E. coli strains that cause persistent infections were more motile than those that cause transient infections. Deletion of genes in the wca operon from a persistent-infection strain resulted in a reduction of motility as measured in swimming and swarming assays. Furthermore, colanic acid has been shown to protect bacteria from complement-mediated killing. We show that transient-infection E. coli strains were more sensitive to complement-mediated killing. The deletion of genes from the wca operon caused a persistent-infection E. coli strain to become sensitive to complement-mediated killing. This work identifies important differences between E. coli strains that cause persistent and transient mammary infections in dairy cattle. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.

  15. Distinctiveness, use, and value of midwestern oak savannas and woodlands as avian habitats

    USGS Publications Warehouse

    Grundel, R.; Pavlovic, N.B.

    2007-01-01

    Oak savannas and woodlands historically covered millions of hectares in the midwestern United States but are rare today. We evaluated the ecological distinctiveness and conservation value of savannas and woodlands by examining bird distributions across a fire-maintained woody-vegetation gradient in northwest Indiana encompassing five habitats—open habitats with low canopy cover, savannas, woodlands, scrublands, and forests—during migration, breeding, and overwintering. Savannas and woodlands were significantly different in overall bird species composition from open and forest habitats but were often intermediate between open and forest in guild densities. Few bird species were consistently and highly concentrated in savannas or woodlands, and the Red-headed Woodpecker (Melanerpes erythrocephalus) was the only species significantly more abundant in savannas and woodlands than in open, scrub, and forest habitats. Fire frequency over a 15-year interval was a significant predictor of bird community composition and was positively related to species diversity, spring transient migrant density, and density of the most threatened species. Each habitat type had characteristics potentially important for avian conservation. Scrub had the highest density of transient migrants, which suggests it plays an important role as migration stopover habitat. More species were significantly concentrated in open or forest habitats than in the other habitats. Lack of species concentration and intermediate community composition suggested that birds experienced savannas and woodlands more as ecotones than as habitats distinct from forests or grasslands. However, this intermediate character can benefit conservation, as evidenced by savannas and woodlands having the highest density of the most threatened species along this woody-vegetation gradient.

  16. Hidden Markov analysis of mechanosensitive ion channel gating.

    PubMed

    Khan, R Nazim; Martinac, Boris; Madsen, Barry W; Milne, Robin K; Yeo, Geoffrey F; Edeson, Robert O

    2005-02-01

    Patch clamp data from the large conductance mechanosensitive channel (MscL) in E. coli was studied with the aim of developing a strategy for statistical analysis based on hidden Markov models (HMMs) and determining the number of conductance levels of the channel, together with mean current, mean dwell time and equilibrium probability of occupancy for each level. The models incorporated state-dependent white noise and moving average adjustment for filtering, with maximum likelihood parameter estimates obtained using an EM (expectation-maximisation) based iteration. Adjustment for filtering was included as it could be expected that the electronic filter used in recording would have a major effect on obviously brief intermediate conductance level sojourns. Preliminary data analysis revealed that the brevity of intermediate level sojourns caused difficulties in assignment of data points to levels as a result of over-estimation of noise variances. When reasonable constraints were placed on these variances using the better determined noise variances for the closed and fully open levels, idealisation anomalies were eliminated. Nevertheless, simulations suggested that mean sojourn times for the intermediate levels were still considerably over-estimated, and that recording bandwidth was a major limitation; improved results were obtained with higher bandwidth data (10 kHz sampled at 25 kHz). The simplest model consistent with these data had four open conductance levels, intermediate levels being approximately 20%, 51% and 74% of fully open. The mean lifetime at the fully open level was about 1 ms; estimates for the three intermediate levels were 54-92 micros, probably still over-estimates.

  17. Simulation and measurement of complete dye sensitised solar cells: including the influence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient device behaviour.

    PubMed

    Barnes, Piers R F; Anderson, Assaf Y; Durrant, James R; O'Regan, Brian C

    2011-04-07

    A numerical model of the dye sensitised solar cell (DSSC) is used to assess the importance of different loss pathways under various operational conditions. Based on our current understanding, the simulation describes the processes of injection, regeneration, recombination and transport of electrons, oxidised dye molecules and electrolyte within complete devices to give both time dependent and independent descriptions of performance. The results indicate that the flux of electrons lost from the nanocrystalline TiO(2) film is typically at least twice as large under conditions equivalent to 1 sun relative to dark conditions at matched TiO(2) charge concentration. This is in agreement with experimental observations (Barnes et al. Phys. Chem. Chem. Phys. [DOI: 10.1039/c0cp01855d]). The simulated difference in recombination flux is shown to be due to variation in the concentration profile of electron accepting species in the TiO(2) pores between light and dark conditions and to recombination to oxidised dyes in the light. The model is able to easily incorporate non-ideal behaviour of a cell such as the variation of open circuit potential with light intensity and non-first order recombination of conduction band electrons. The time dependent simulations, described by the multiple trapping model of electron transport and recombination, show good agreement with both small and large transient photocurrent and photovoltage measurements at open circuit, including photovoltage rise measurements. The simulation of photovoltage rise also suggests the possibility of assessing the interfacial resistance between the TiO(2) and substrate. When cells with a short diffusion length relative to film thickness were modelled, the simulated small perturbation photocurrent transients at short circuit (but not open circuit) yielded significantly higher effective diffusion coefficients than expected from the mean concentration of electrons and the electrolyte in the cell. This implies that transient measurements can overestimate the electron diffusion length in cells which have a low collection efficiency. The model should provide a useful general framework for exploring new cell descriptions, architectures and other factors influencing device performance.

  18. Ultra-broadband polarization splitter based on graphene layer-filled dual-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Xiong, Hui; Zhang, Yun-Shan; Ma, Yong; Zheng, Jia-Jin

    2017-12-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61405096 and 61504058), the Introduction of Talent Research and Research Fund of Nanjing University of Posts and Telecommunications, China (Grant No. NY214158), the Open Fund of Laboratory of Solid State Microstructures, Nanjing University, China (Grant No. M28035), and the Open Fund of State Key Laboratory of Transient Optics and Photonics, Chinese Academy of Sciences (Grant No. SKLST201404).

  19. The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle.

    PubMed

    Csernoch, L; Zhou, J; Stern, M D; Brum, G; Ríos, E

    2004-05-15

    Cytosolic [Ca(2+)] transients elicited by voltage clamp depolarization were examined by confocal line scanning of rat skeletal muscle fibres. Ca(2+) sparks were observed in the fibres' membrane-permeabilized ends, but not in responses to voltage in the membrane-intact area. Elementary events of the depolarization-evoked response could be separated either at low voltages (near -50 mV) or at -20 mV in partially inactivated cells. These were of lower amplitude, narrower and of much longer duration than sparks, similar to 'lone embers' observed in the permeabilized segments. Their average amplitude was 0.19 and spatial half-width 1.3 microm. Other parameters depended on voltage. At -50 mV average duration was 111 ms and latency 185 ms. At -20 mV duration was 203 ms and latency 24 ms. Ca(2+) release current, calculated on an average of events, was nearly steady at 0.5-0.6 pA. Accordingly, simulations of the fluorescence event elicited by a subresolution source of 0.5 pA open for 100 ms had morphology similar to the experimental average. Because 0.5 pA is approximately the current measured for single RyR channels in physiological conditions, the elementary fluorescence events in rat muscle probably reflect opening of a single RyR channel. A reconstruction of cell-averaged release flux at -20 mV based on the observed distribution of latencies and calculated elementary release had qualitatively correct but slower kinetics than the release flux in prior whole-cell measurements. The qualitative agreement indicates that global Ca(2+) release flux results from summation of these discrete events. The quantitative discrepancies suggest that the partial inactivation strategy may lead to events of greater duration than those occurring physiologically in fully polarized cells.

  20. An Open-Source Automated Peptide Synthesizer Based on Arduino and Python.

    PubMed

    Gali, Hariprasad

    2017-10-01

    The development of the first open-source automated peptide synthesizer, PepSy, using Arduino UNO and readily available components is reported. PepSy was primarily designed to synthesize small peptides in a relatively small scale (<100 µmol). Scripts to operate PepSy in a fully automatic or manual mode were written in Python. Fully automatic script includes functions to carry out resin swelling, resin washing, single coupling, double coupling, Fmoc deprotection, ivDde deprotection, on-resin oxidation, end capping, and amino acid/reagent line cleaning. Several small peptides and peptide conjugates were successfully synthesized on PepSy with reasonably good yields and purity depending on the complexity of the peptide.

  1. SSME main combustion chamber and nozzle flowfield analysis

    NASA Technical Reports Server (NTRS)

    Farmer, R. C.; Wang, T. S.; Smith, S. D.; Prozan, R. J.

    1986-01-01

    An investigation is presented of the computational fluid dynamics (CFD) tools which would accurately analyze main combustion chamber and nozzle flow. The importance of combustion phenomena and local variations in mixture ratio are fully appreciated; however, the computational aspects of the gas dynamics involved were the sole issues addressed. The CFD analyses made are first compared with conventional nozzle analyses to determine the accuracy for steady flows, and then transient analyses are discussed.

  2. Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening.

    PubMed

    Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z; Wickrema, Amittha; Yang, Jing; Ji, Peng

    2016-03-07

    Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step toward chromatin condensation during erythropoiesis in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Nuclear condensation during mouse erythropoiesis requires caspase-3-mediated nuclear opening

    PubMed Central

    Zhao, Baobing; Mei, Yang; Schipma, Matthew J; Roth, Eric Wayne; Bleher, Reiner; Rappoport, Joshua Z.; Wickrema, Amittha; Yang, Jing; Ji, Peng

    2016-01-01

    SUMMARY Mammalian erythropoiesis involves chromatin condensation that is initiated in the early stage of terminal differentiation. The mechanisms of chromatin condensation during erythropoiesis are unclear. Here, we show that the mouse erythroblast forms large, transient, and recurrent nuclear openings that coincide with the condensation process. The opening lacks nuclear lamina, nuclear pore complexes, and nuclear membrane, but it is distinct from nuclear envelope changes that occur during apoptosis and mitosis. A fraction of the major histones are released from the nuclear opening and degraded in the cytoplasm. We demonstrate that caspase-3 is required for the nuclear opening formation throughout terminal erythropoiesis. Loss of caspase-3 or ectopic expression of a caspase-3 non-cleavable lamin B mutant blocks nuclear opening formation, histone release, chromatin condensation, and terminal erythroid differentiation. We conclude that caspase-3-mediated nuclear opening formation accompanied by histone release from the opening is a critical step towards chromatin condensation during erythropoiesis in mice. PMID:26954545

  4. Predicting Good Features for Image Geo-Localization Using Per-Bundle VLAD (Open Access)

    DTIC Science & Technology

    2016-02-18

    transient scene elements (pedestrians, cars, billboards) and ubiquitous objects (trees, fences, signage ) can introduce obfuscating cues into the geo...windows, charac- teristic wall patterns, and letters on signage are detected as positive elements, while features from trees, people, car wheels

  5. Comparative Analysis of Flower Volatiles from Nine Citrus at Three Blooming Stages

    PubMed Central

    Azam, Muhammad; Song, Min; Fan, Fangjuan; Zhang, Bo; Xu, Yaying; Xu, Changjie; Chen, Kunsong

    2013-01-01

    Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled. PMID:24232454

  6. Comparative analysis of flower volatiles from nine citrus at three blooming stages.

    PubMed

    Azam, Muhammad; Song, Min; Fan, Fangjuan; Zhang, Bo; Xu, Yaying; Xu, Changjie; Chen, Kunsong

    2013-11-13

    Volatiles from flowers at three blooming stages of nine citrus cultivars were analyzed by headspace-solid phase microextraction (HS-SPME)-GC-MS. Up to 110 volatiles were detected, with 42 tentatively identified from citrus flowers for the first time. Highest amounts of volatiles were present in fully opened flowers of most citrus, except for pomelos. All cultivars were characterized by a high percentage of either oxygenated monoterpenes or monoterpene hydrocarbons, and the presence of a high percentage of nitrogen containing compounds was also observed. Flower volatiles varied qualitatively and quantitatively among citrus types during blooming. Limonene was the most abundant flower volatile only in citrons; α-citral and β-citral ranked 2nd and 3rd only for Bergamot, and unopened flowers of Ponkan had a higher amount of linalool and β-pinene while much lower amount of γ-terpinene and p-cymene than Satsuma. Taking the average of all cultivars, linalool and limonene were the top two volatiles for all blooming stages; β-pinene ranked 3rd in unopened flowers, while indole ranked 3rd for half opened and fully opened flower volatiles. As flowers bloomed, methyl anthranilate increased while 2-hexenal and p-cymene decreased. In some cases, a volatile could be high in both unopened and fully opened flowers but low in half opened ones. Through multivariate analysis, the nine citrus cultivars were clustered into three groups, consistent with the three true citrus types. Furthermore, an influence of blooming stages on clustering was observed, especially with hybrids Satsuma and Huyou. Altogether, it was suggested that flower volatiles can be suitable markers for revealing the genetic relationships between citrus cultivars but the same blooming stage needs to be strictly controlled.

  7. Open Source and Design Thinking at NASA: A Vision for Future Software

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2017-01-01

    NASA Mission Control Software for the Visualization of data has historically been closed, accessible only to small groups of flight controllers, often bound to a specific mission discipline such as flight dynamics, health and status or mission planning. Open Mission Control Technologies (MCT) provides new capability for NASA mission controllers and, by being fully open source, opens up NASA software for the visualization of mission data to broader communities inside and outside of NASA. Open MCT is the product of a design thinking process within NASA, using participatory design and design sprints to build a product that serves users.

  8. Experimental evaluation of wall Mach number distributions of the octagonal test section proposed for NASA Lewis Research Center's altitude wind tunnel

    NASA Technical Reports Server (NTRS)

    Harrington, Douglas E.; Burley, Richard R.; Corban, Robert R.

    1986-01-01

    Wall Mach number distributions were determined over a range of test-section free-stream Mach numbers from 0.2 to 0.92. The test section was slotted and had a nominal porosity of 11 percent. Reentry flaps located at the test-section exit were varied from 0 (fully closed) to 9 (fully open) degrees. Flow was bled through the test-section slots by means of a plenum evacuation system (PES) and varied from 0 to 3 percent of tunnel flow. Variations in reentry flap angle or PES flow rate had little or no effect on the Mach number distributions in the first 70 percent of the test section. However, in the aft region of the test section, flap angle and PES flow rate had a major impact on the Mach number distributions. Optimum PES flow rates were nominally 2 to 2.5 percent wtih the flaps fully closed and less than 1 percent when the flaps were fully open. The standard deviation of the test-section wall Mach numbers at the optimum PES flow rates was 0.003 or less.

  9. mLearning and Creative Practices: A Public Challenge?

    ERIC Educational Resources Information Center

    Antonczak, Laurent; Keegan, Helen; Cochrane, Thomas

    2016-01-01

    The ethos of open sharing of experiences and user generated content enabled by Mobile social media can be problematic in some cases (politics, gender, minorities), and it is not fully understood within the creative and academic sector. Creative people, students, and lecturers can misconceive the value and issues around open and public access to…

  10. Attenuation of Ca2+ homeostasis, oxidative stress, and mitochondrial dysfunctions in diabetic rat heart: insulin therapy or aerobic exercise?

    PubMed

    da Silva, Márcia F; Natali, Antônio J; da Silva, Edson; Gomes, Gilton J; Teodoro, Bruno G; Cunha, Daise N Q; Drummond, Lucas R; Drummond, Filipe R; Moura, Anselmo G; Belfort, Felipe G; de Oliveira, Alessandro; Maldonado, Izabel R S C; Alberici, Luciane C

    2015-07-15

    We tested the effects of swimming training and insulin therapy, either alone or in combination, on the intracellular calcium ([Ca(2+)]i) homeostasis, oxidative stress, and mitochondrial functions in diabetic rat hearts. Male Wistar rats were separated into control, diabetic, or diabetic plus insulin groups. Type 1 diabetes mellitus was induced by streptozotocin (STZ). Insulin-treated groups received 1 to 4 UI of insulin daily for 8 wk. Each group was divided into sedentary or exercised rats. Trained groups were submitted to swimming (90 min/day, 5 days/wk, 8 wk). [Ca(2+)]i transient in left ventricular myocytes (LVM), oxidative stress in LV tissue, and mitochondrial functions in the heart were assessed. Diabetes reduced the amplitude and prolonged the times to peak and to half decay of the [Ca(2+)]i transient in LVM, increased NADPH oxidase-4 (Nox-4) expression, decreased superoxide dismutase (SOD), and increased carbonyl protein contents in LV tissue. In isolated mitochondria, diabetes increased Ca(2+) uptake, susceptibility to permeability transition pore (MPTP) opening, uncoupling protein-2 (UCP-2) expression, and oxygen consumption but reduced H2O2 release. Swimming training corrected the time course of the [Ca(2+)]i transient, UCP-2 expression, and mitochondrial Ca(2+) uptake. Insulin replacement further normalized [Ca(2+)]i transient amplitude, Nox-4 expression, and carbonyl content. Alongside these benefits, the combination of both therapies restored the LV tissue SOD and mitochondrial O2 consumption, H2O2 release, and MPTP opening. In conclusion, the combination of swimming training with insulin replacement was more effective in attenuating intracellular Ca(2+) disruptions, oxidative stress, and mitochondrial dysfunctions in STZ-induced diabetic rat hearts. Copyright © 2015 the American Physiological Society.

  11. Single-Event Effects in High-Frequency Linear Amplifiers: Experiment and Analysis

    NASA Astrophysics Data System (ADS)

    Zeinolabedinzadeh, Saeed; Ying, Hanbin; Fleetwood, Zachary E.; Roche, Nicolas J.-H.; Khachatrian, Ani; McMorrow, Dale; Buchner, Stephen P.; Warner, Jeffrey H.; Paki-Amouzou, Pauline; Cressler, John D.

    2017-01-01

    The single-event transient (SET) response of two different silicon-germanium (SiGe) X-band (8-12 GHz) low noise amplifier (LNA) topologies is fully investigated in this paper. The two LNAs were designed and implemented in 130nm SiGe HBT BiCMOS process technology. Two-photon absorption (TPA) laser pulses were utilized to induce transients within various devices in these LNAs. Impulse response theory is identified as a useful tool for predicting the settling behavior of the LNAs subjected to heavy ion strikes. Comprehensive device and circuit level modeling and simulations were performed to accurately simulate the behavior of the circuits under ion strikes. The simulations agree well with TPA measurements. The simulation, modeling and analysis presented in this paper can be applied for any other circuit topologies for SET modeling and prediction.

  12. Transient myeloproliferative disease of the newborn: case report with placental, cytogenetic, and flow cytometric findings.

    PubMed

    de Tar, M W; Dittman, W; Gilbert, J

    2000-03-01

    Transient myeloproliferative disease (TMD) of the newborn is a rare hematologic abnormality associated with trisomy 21. It is frequently difficult to distinguish the disorder from true congenital leukemia (TCL). Unlike leukemia, which has a clinically aggressive course, TMD generally resolves within weeks to months. We present a case of TMD of the newborn diagnosed on the basis of peripheral blood studies and describe the pertinent pathological findings within the placenta. Flow cytometric analysis of the blasts in the peripheral blood showed phenotypic heterogeneity with features consistent with megakaryocytic differentiation. Cytogenetic studies showed trisomy 21 within the blastic cells. The placenta showed villous dysmaturity with associated chorangiosis and prominent intravascular aggregates of primitive-appearing cells with focal, early vascular wall invasion. The neonate recovered fully and shows no evidence of disease at 2 years of age.

  13. Noumeavirus replication relies on a transient remote control of the host nucleus

    PubMed Central

    Fabre, Elisabeth; Jeudy, Sandra; Santini, Sébastien; Legendre, Matthieu; Trauchessec, Mathieu; Couté, Yohann; Claverie, Jean-Michel; Abergel, Chantal

    2017-01-01

    Acanthamoeba are infected by a remarkable diversity of large dsDNA viruses, the infectious cycles of which have been characterized using genomics, transcriptomics and electron microscopy. Given their gene content and the persistence of the host nucleus throughout their infectious cycle, the Marseilleviridae were initially assumed to fully replicate in the cytoplasm. Unexpectedly, we find that their virions do not incorporate the virus-encoded transcription machinery, making their replication nucleus-dependent. However, instead of delivering their DNA to the nucleus, the Marseilleviridae initiate their replication by transiently recruiting the nuclear transcription machinery to their cytoplasmic viral factory. The nucleus recovers its integrity after becoming leaky at an early stage. This work highlights the importance of virion proteomic analyses to complement genome sequencing in the elucidation of the replication scheme and evolution of large dsDNA viruses. PMID:28429720

  14. Improved pump turbine transient behaviour prediction using a Thoma number-dependent hillchart model

    NASA Astrophysics Data System (ADS)

    Manderla, M.; Kiniger, K.; Koutnik, J.

    2014-03-01

    Water hammer phenomena are important issues for high head hydro power plants. Especially, if several reversible pump-turbines are connected to the same waterways there may be strong interactions between the hydraulic machines. The prediction and coverage of all relevant load cases is challenging and difficult using classical simulation models. On the basis of a recent pump-storage project, dynamic measurements motivate an improved modeling approach making use of the Thoma number dependency of the actual turbine behaviour. The proposed approach is validated for several transient scenarios and turns out to increase correlation between measurement and simulation results significantly. By applying a fully automated simulation procedure broad operating ranges can be covered which provides a consistent insight into critical load case scenarios. This finally allows the optimization of the closing strategy and hence the overall power plant performance.

  15. Transient expression and activity of human DNA polymerase iota in loach embryos.

    PubMed

    Makarova, Irina V; Kazakov, Andrey A; Makarova, Alena V; Khaidarova, Nella V; Kozikova, Larisa V; Nenasheva, Valentina V; Gening, Leonid V; Tarantul, Vyacheslav Z; Andreeva, Ludmila E

    2012-02-01

    Human DNA polymerase iota (Pol ι) is a Y-family DNA polymerase with unusual biochemical properties and not fully understood functions. Pol ι preferentially incorporates dGTP opposite template thymine. This property can be used to monitor Pol ι activity in the presence of other DNA polymerases, e.g. in cell extracts of tissues and tumors. We have now confirmed the specificity and sensitivity of the method of Pol ι activity detection in cell extracts using an animal model of loach Misgurnus fossilis embryos transiently expressing human Pol ι. The overexpression of Pol ι was shown to be accompanied by an increase in abnormalities in development and the frequency of pycnotic nuclei in fish embryos. Further analysis of fish embryos with constitutive or regulated Pol ι expression may provide insights into Pol ι functions in vertebrate animals.

  16. An Anomalous Composition in Slow Solar Wind as a Signature of Magnetic Reconnection in its Source Region

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Landi, E.; Lepri, S. T.; Kocher, M.; Zurbuchen, T. H.; Fisk, L. A.; Raines, J. M.

    2017-01-01

    In this paper, we study a subset of slow solar winds characterized by an anomalous charge state composition and ion temperatures compared to average solar wind distributions, and thus referred to as an “Outlier” wind. We find that although this wind is slower and denser than normal slow wind, it is accelerated from the same source regions (active regions and quiet-Sun regions) as the latter and its occurrence rate depends on the solar cycle. The defining property of the Outlier wind is that its charge state composition is the same as that of normal slow wind, with the only exception being a very large decrease in the abundance of fully charged species (He2+, C6+, N7+, O8+, Mg12+), resulting in a significant depletion of the He and C element abundances. Based on these observations, we suggest three possible scenarios for the origin of this wind: (1) local magnetic waves preferentially accelerating non-fully stripped ions over fully stripped ions from a loop opened by reconnection; (2) depleted fully stripped ions already contained in the corona magnetic loops before they are opened up by reconnection; or (3) fully stripped ions depleted by Coulomb collision after magnetic reconnection in the solar corona. If any one of these three scenarios is confirmed, the Outlier wind represents a direct signature of slow wind release through magnetic reconnection.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, L.; Landi, E.; Lepri, S. T.

    In this paper, we study a subset of slow solar winds characterized by an anomalous charge state composition and ion temperatures compared to average solar wind distributions, and thus referred to as an “Outlier” wind. We find that although this wind is slower and denser than normal slow wind, it is accelerated from the same source regions (active regions and quiet-Sun regions) as the latter and its occurrence rate depends on the solar cycle. The defining property of the Outlier wind is that its charge state composition is the same as that of normal slow wind, with the only exceptionmore » being a very large decrease in the abundance of fully charged species (He{sup 2+}, C{sup 6+}, N{sup 7+}, O{sup 8+}, Mg{sup 12+}), resulting in a significant depletion of the He and C element abundances. Based on these observations, we suggest three possible scenarios for the origin of this wind: (1) local magnetic waves preferentially accelerating non-fully stripped ions over fully stripped ions from a loop opened by reconnection; (2) depleted fully stripped ions already contained in the corona magnetic loops before they are opened up by reconnection; or (3) fully stripped ions depleted by Coulomb collision after magnetic reconnection in the solar corona. If any one of these three scenarios is confirmed, the Outlier wind represents a direct signature of slow wind release through magnetic reconnection.« less

  18. Transient effects of sudden changes of heat load in a naturally ventilated room

    NASA Astrophysics Data System (ADS)

    Caulfield, C. P.; Bower, D. J.; Fitzgerald, S.; Woods, A. W.

    2006-11-01

    Using reduced numerical models and small-scale laboratory experiments, we investigate the transient effects of changing isolated heat loads discontinuously within a large, ventilated space. We consider the emptying filling box (with high and low openings) driven by a single isolated source of buoyancy. The original steady state consists of a buoyant layer, whose depth (for the simplest case of a point source plume) is determined by the geometric properties of the room alone. When the buoyancy flux of the source is increased, a new layer `fills' the room from the top with a more buoyant layer. The original layer disappears due to entrainment by the rising plume. The behaviour is qualitatively different when the source buoyancy flux is decreased. In this case, the rising plume fluid is now relatively dense, and so it inevitably collapses back to `intrude' below the original layer. In this case, the original layer disappears due to both draining through the upper opening, and penetrative entrainment by the dense plume. We compare the predictions of three numerical models using different penetrative entrainment parametrizations to a sequence of laboratory experiments. This entrainment reduces the density of the intruding layer, and so the rising plume eventually stalls, and no longer reaches the (draining) original layer. We demonstrate that it is necessary to consider the transient effects of penetrative entrainment when the reduction in source buoyancy flux is sufficiently small.

  19. Transient flow characteristics of a high speed rotary valve

    NASA Astrophysics Data System (ADS)

    Browning, Patrick H.

    Pressing economic and environmental concerns related to the performance of fossil fuel burning internal combustion engines have revitalized research in more efficient, cleaner burning combustion methods such as homogeneous charge compression ignition (HCCI). Although many variations of such engines now exist, several limiting factors have restrained the full potential of HCCI. A new method patented by West Virginia University (WVU) called Compression Ignition by Air Injection (CIBAI) may help broaden the range of effective HCCI operation. The CIBAI process is ideally facilitated by operating two synchronized piston-cylinders mounted head-to-head with one of the cylinders filled with a homogeneous mixture of air and fuel and the other cylinder filled with air. A specialized valve called the cylinder connecting valve (CCV) separates the two cylinders, opens just before reaching top dead center (TDC), and allows the injection air into the charge to achieve autoignition. The CCV remains open during the entire power stroke such that upon ignition the rapid pressure rise in the charge cylinder forces mass flow back through the CCV into the air-only cylinder. The limited mass transfer between the cylinders through the CCV limits the theoretical auto ignition timing capabilities and thermal efficiency of the CIBAI cycle. Research has been performed to: (1) Experimentally measure the transient behavior of a potential CCV design during valve opening between two chambers maintained at constant pressure and again at constant volume; (2) Develop a modified theoretical CCV mass flow model based upon the measured cold flow valve performance that is capable of predicting the operating conditions required for successful mixture autoignition; (3) Make recommendations for future CCV designs to maximize CIBAI combustion range. Results indicate that the modified-ball CCV design offers suitable transient flow qualities required for application to the CIBAI concept. Mass injection events were experimentally mapped as a function of valve speed, inter-cylinder pressure ratios and volume ratios and the results were compared to compressible flow theoretical models. Specifically, the transient behavior suggested a short-lived loss-mode initiation closely resembled by shock tube theory followed by a quasi-steady flow regime resembling choked flow behavior. An empirical model was then employed to determine the useful range of the CCV design as applied to a four-stroke CIBAI engine cycle modeled using a 1-D quasi-steady numerical method, with particular emphasis on the cyclic timing of the CCV opening. Finally, a brief discussion of a high-temperature version of the CCV design is presented.

  20. Oncotripsy: Targeting cancer cells selectively via resonant harmonic excitation

    NASA Astrophysics Data System (ADS)

    Heyden, S.; Ortiz, M.

    2016-07-01

    We investigate a method of selectively targeting cancer cells by means of ultrasound harmonic excitation at their resonance frequency, which we refer to as oncotripsy. The geometric model of the cells takes into account the cytoplasm, nucleus and nucleolus, as well as the plasma membrane and nuclear envelope. Material properties are varied within a pathophysiologically-relevant range. A first modal analysis reveals the existence of a spectral gap between the natural frequencies and, most importantly, resonant growth rates of healthy and cancerous cells. The results of the modal analysis are verified by simulating the fully-nonlinear transient response of healthy and cancerous cells at resonance. The fully nonlinear analysis confirms that cancerous cells can be selectively taken to lysis by the application of carefully tuned ultrasound harmonic excitation while simultaneously leaving healthy cells intact.

  1. Multiple target of hAmylin on rat primary hippocampal neurons.

    PubMed

    Zhang, Nan; Yang, Shengchang; Wang, Chang; Zhang, Jianghua; Huo, Lifang; Cheng, Yiru; Wang, Chuan; Jia, Zhanfeng; Ren, Leiming; Kang, Lin; Zhang, Wei

    2017-02-01

    Alzheimer's disease (AD) and type II diabetes mellitus (DM2) are the most common aging-related diseases and are characterized by β-amyloid and amylin accumulation, respectively. Multiple studies have indicated a strong correlation between these two diseases. Amylin oligomerization in the brain appears to be a novel risk factor for developing AD. Although amylin aggregation has been demonstrated to induce cytotoxicity in neurons through altering Ca 2+ homeostasis, the underlying mechanisms have not been fully explored. In this study, we investigated the effects of amylin on rat hippocampal neurons using calcium imaging and whole-cell patch clamp recordings. We demonstrated that the amylin receptor antagonist AC187 abolished the Ca 2+ response induced by low concentrations of human amylin (hAmylin). However, the Ca 2+ response induced by higher concentrations of hAmylin was independent of the amylin receptor. This effect was dependent on extracellular Ca 2+ . Additionally, blockade of L-type Ca 2+ channels partially reduced hAmylin-induced Ca 2+ response. In whole-cell recordings, hAmylin depolarized the membrane potential. Moreover, application of the transient receptor potential (TRP) channel antagonist ruthenium red (RR) attenuated the hAmylin-induced increase in Ca 2+ . Single-cell RT-PCR demonstrated that transient receptor potential vanilloid 4 (TRPV4) mRNA was expressed in most of the hAmylin-responsive neurons. In addition, selective knockdown of TRPV4 channels inhibited the hAmylin-evoked Ca 2+ response. These results indicated that different concentrations of hAmylin act through different pathways. The amylin receptor mediates the excitatory effects of low concentrations of hAmylin. In contrast, for high concentrations of hAmylin, hAmylin aggregates precipitated on the neuronal membrane, activated TRPV4 channels and subsequently triggered membrane voltage-gated calcium channel opening followed by membrane depolarization. Therefore, our data suggest that TRPV4 is a key molecular mediator for the cytotoxic effects of hAmylin on hippocampal neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Highly efficient visible-light driven photochromism: developments towards a solid-state molecular switch operating through a triplet-sensitised pathway.

    PubMed

    Brayshaw, Simon K; Schiffers, Stephanie; Stevenson, Anna J; Teat, Simon J; Warren, Mark R; Bennett, Robert D; Sazanovich, Igor V; Buckley, Alastair R; Weinstein, Julia A; Raithby, Paul R

    2011-04-11

    We introduce a new highly efficient photochromic organometallic dithienylethene (DTE) complex, the first instance of a DTE core symmetrically modified by two Pt(II) chromophores [Pt(PEt(3))(2)(C≡C)(DTE)(C≡C)Pt(PEt(3))(2)Ph] (1), which undergoes ring-closure when activated by visible light in solvents of different polarity, in thin films and even in the solid state. Complex 1 has been synthesised and fully photophysically characterised by (resonance) Raman and transient absorption spectroscopy complemented by calculations. The ring-closing photoconversion in a single crystal of 1 has been followed by X-ray crystallography. This process occurs with the extremely high yield of 80%--considerably outperforming the other DTE derivatives. Remarkably, the photocyclisation of 1 occurs even under visible light (>400 nm), which is not absorbed by the non-metallated DTE core HC≡C(DTE)C≡CH (2) itself. This unusual behaviour and the high photocyclisation yields in solution are attributed to the presence of a heavy atom in 1 that enables a triplet-sensitised photocyclisation pathway, elucidated by transient absorption spectroscopy and DFT calculations. The results of resonance Raman investigation confirm the involvement of the alkynyl unit in the frontier orbitals of both closed and open forms of 1 in the photocyclisation process. The changes in the Raman spectra upon cyclisation have permitted the identification of Raman marker bands, which include the acetylide stretching vibration. Importantly, these bands occur in the spectral region unobstructed by other vibrations and can be used for non-destructive monitoring of photocyclisation/photoreversion processes and for optical readout in this type of efficiently photochromic thermally stable systems. This study indicates a strategy for generating efficient solid-state photoswitches in which modification of the Pt(II) units has the potential to tune absorption properties and hence operational wavelength across the visible range. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sphingosine and FTY720 are potent inhibitors of the transient receptor potential melastatin 7 (TRPM7) channels.

    PubMed

    Qin, Xin; Yue, Zhichao; Sun, Baonan; Yang, Wenzhong; Xie, Jia; Ni, Eric; Feng, Yi; Mahmood, Rafat; Zhang, Yanhui; Yue, Lixia

    2013-03-01

    Transient receptor potential melastatin 7 (TRPM7) is a unique channel kinase which is crucial for various physiological functions. However, the mechanism by which TRPM7 is gated and modulated is not fully understood. To better understand how modulation of TRPM7 may impact biological processes, we investigated if TRPM7 can be regulated by the phospholipids sphingosine (SPH) and sphingosine-1-phosphate (S1P), two potent bioactive sphingolipids that mediate a variety of physiological functions. Moreover, we also tested the effects of the structural analogues of SPH, N,N-dimethyl-D-erythro-sphingosine (DMS), ceramides and FTY720 on TRPM7. HEK293 cells stably expressing TRPM7 were used for whole-cell, single-channel and macropatch current recordings. Cardiac fibroblasts were used for native TRPM7 current recording. SPH potently inhibited TRPM7 in a concentration-dependent manner, whereas S1P and other ceramides did not produce noticeable effects. DMS also markedly inhibited TRPM7. Moreover, FTY720, an immunosuppressant and the first oral drug for treatment of multiple sclerosis, inhibited TRPM7 with a similar potency to that of SPH. In contrast, FTY720-P has no effect on TRPM7. It appears that SPH and FTY720 inhibit TRPM7 by reducing channel open probability. Furthermore, endogenous TRPM7 in cardiac fibroblasts was markedly inhibited by SPH, DMS and FTY720. This is the first study demonstrating that SPH and FTY720 are potent inhibitors of TRPM7. Our results not only provide a new modulation mechanism of TRPM7, but also suggest that TRPM7 may serve as a direct target of SPH and FTY720, thereby mediating S1P-independent physiological/pathological functions of SPH and FTY720. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  4. High-speed holographic system for full-field transient vibrometry of the human tympanic membrane

    NASA Astrophysics Data System (ADS)

    Dobrev, I.; Harrington, E. J.; Cheng, T.; Furlong, C.; Rosowski, J. J.

    2014-07-01

    Understanding of the human hearing process requires the quantification of the transient response of the human ear and the human tympanic membrane (TM or eardrum) in particular. Current state-of-the-art medical methods to quantify the transient acousto-mechanical response of the TM provide only averaged acoustic or local information at a few points. This may be insufficient to fully describe the complex patterns unfolding across the full surface of the TM. Existing engineering systems for full-field nanometer measurements of transient events, typically based on holographic methods, constrain the maximum sampling speed and/or require complex experimental setups. We have developed and implemented of a new high-speed (i.e., > 40 Kfps) holographic system (HHS) with a hybrid spatio-temporal local correlation phase sampling method that allows quantification of the full-field nanometer transient (i.e., > 10 kHz) displacement of the human TM. The HHS temporal accuracy and resolution is validated versus a LDV on both artificial membranes and human TMs. The high temporal (i.e., < 24 μs) and spatial (i.e., >100k data points) resolution of our HHS enables simultaneous measurement of the time waveform of the full surface of the TM. These capabilities allow for quantification of spatially-dependent motion parameters such as energy propagation delays surface wave speeds, which can be used to infer local material properties across the surface of the TM. The HHS could provide a new tool for the investigation of the auditory system with applications in medical research, in-vivo clinical diagnosis as well as hearing aids design.

  5. Mechanism of potassium ion uptake by the Na+/K+-ATPase

    PubMed Central

    Castillo, Juan P.; Rui, Huan; Basilio, Daniel; Das, Avisek; Roux, Benoît; Latorre, Ramon; Bezanilla, Francisco; Holmgren, Miguel

    2015-01-01

    The Na+/K+-ATPase restores sodium (Na+) and potassium (K+) electrochemical gradients dissipated by action potentials and ion-coupled transport processes. As ions are transported, they become transiently trapped between intracellular and extracellular gates. Once the external gate opens, three Na+ ions are released, followed by the binding and occlusion of two K+ ions. While the mechanisms of Na+ release have been well characterized by the study of transient Na+ currents, smaller and faster transient currents mediated by external K+ have been more difficult to study. Here we show that external K+ ions travelling to their binding sites sense only a small fraction of the electric field as they rapidly and simultaneously become occluded. Consistent with these results, molecular dynamics simulations of a pump model show a wide water-filled access channel connecting the binding site to the external solution. These results suggest a mechanism of K+ gating different from that of Na+ occlusion. PMID:26205423

  6. Strain and thermally induced magnetic dynamics and spin current in magnetic insulators subject to transient optical grating

    NASA Astrophysics Data System (ADS)

    Wang, Xi-Guang; Chotorlishvili, Levan; Berakdar, Jamal

    2017-07-01

    We analyze the magnetic dynamics and particularlythe spin current in an open-circuit ferromagnetic insulator irradiated by two intense, phase-locked laser pulses. The interference of the laser beams generates a transient optical grating and a transient spatio-temporal temperature distribution. Both effects lead to elastic and heat waves at the surface and into the bulk of the sample. The strain induced spin current as well as the thermally induced magnonic spin current are evaluated numerically on the basis of micromagnetic simulations using solutions of the heat equation. We observe that the thermo-elastically induced magnonic spin current propagates on a distance larger than the characteristic size of thermal profile, an effect useful for applications in remote detection of spin caloritronics phenomena. Our findings point out that exploiting strain adds a new twist to heat-assisted magnetic switching and spin-current generation for spintronic applications.

  7. Sub-10 fs Time-Resolved Vibronic Optical Microscopy

    PubMed Central

    2016-01-01

    We introduce femtosecond wide-field transient absorption microscopy combining sub-10 fs pump and probe pulses covering the complete visible (500–650 nm) and near-infrared (650–950 nm) spectrum with diffraction-limited optical resolution. We demonstrate the capabilities of our system by reporting the spatially- and spectrally-resolved transient electronic response of MAPbI3–xClx perovskite films and reveal significant quenching of the transient bleach signal at grain boundaries. The unprecedented temporal resolution enables us to directly observe the formation of band-gap renormalization, completed in 25 fs after photoexcitation. In addition, we acquire hyperspectral Raman maps of TIPS pentacene films with sub-400 nm spatial and sub-15 cm–1 spectral resolution covering the 100–2000 cm–1 window. Our approach opens up the possibility of studying ultrafast dynamics on nanometer length and femtosecond time scales in a variety of two-dimensional and nanoscopic systems. PMID:27934055

  8. Digital holographic interferometry for characterizing deformable mirrors in aero-optics

    NASA Astrophysics Data System (ADS)

    Trolinger, James D.; Hess, Cecil F.; Razavi, Payam; Furlong, Cosme

    2016-08-01

    Measuring and understanding the transient behavior of a surface with high spatial and temporal resolution are required in many areas of science. This paper describes the development and application of a high-speed, high-dynamic range, digital holographic interferometer for high-speed surface contouring with fractional wavelength precision and high-spatial resolution. The specific application under investigation here is to characterize deformable mirrors (DM) employed in aero-optics. The developed instrument was shown capable of contouring a deformable mirror with extremely high-resolution at frequencies exceeding 40 kHz. We demonstrated two different procedures for characterizing the mechanical response of a surface to a wide variety of input forces, one that employs a high-speed digital camera and a second that employs a low-speed, low-cost digital camera. The latter is achieved by cycling the DM actuators with a step input, producing a transient that typically lasts up to a millisecond before reaching equilibrium. Recordings are made at increasing times after the DM initiation from zero to equilibrium to analyze the transient. Because the wave functions are stored and reconstructable, they can be compared with each other to produce contours including absolute, difference, and velocity. High-speed digital cameras recorded the wave functions during a single transient at rates exceeding 40 kHz. We concluded that either method is fully capable of characterizing a typical DM to the extent required by aero-optical engineers.

  9. Parametric analyses of DEMO Divertor using two dimensional transient thermal hydraulic modelling

    NASA Astrophysics Data System (ADS)

    Domalapally, Phani; Di Caro, Marco

    2018-05-01

    Among the options considered for cooling of the Plasma facing components of the DEMO reactor, water cooling is a conservative option because of its high heat removal capability. In this work a two-dimensional transient thermal hydraulic code is developed to support the design of the divertor for the projected DEMO reactor with water as a coolant. The mathematical model accounts for transient 2D heat conduction in the divertor section. Temperature-dependent properties are used for more accurate analysis. Correlations for single phase flow forced convection, partially developed subcooled nucleate boiling, fully developed subcooled nucleate boiling and film boiling are used to calculate the heat transfer coefficients on the channel side considering the swirl flow, wherein different correlations found in the literature are compared against each other. Correlation for the Critical Heat Flux is used to estimate its limit for a given flow conditions. This paper then investigates the results of the parametric analysis performed, whereby flow velocity, diameter of the coolant channel, thickness of the coolant pipe, thickness of the armor material, inlet temperature and operating pressure affect the behavior of the divertor under steady or transient heat fluxes. This code will help in understanding the basic parameterś effect on the behavior of the divertor, to achieve a better design from a thermal hydraulic point of view.

  10. A Simplified Approach for the Rapid Generation of Transient Heat-Shield Environments

    NASA Technical Reports Server (NTRS)

    Wurster, Kathryn E.; Zoby, E. Vincent; Mills, Janelle C.; Kamhawi, Hilmi

    2007-01-01

    A simplified approach has been developed whereby transient entry heating environments are reliably predicted based upon a limited set of benchmark radiative and convective solutions. Heating, pressure and shear-stress levels, non-dimensionalized by an appropriate parameter at each benchmark condition are applied throughout the entry profile. This approach was shown to be valid based on the observation that the fully catalytic, laminar distributions examined were relatively insensitive to altitude as well as velocity throughout the regime of significant heating. In order to establish a best prediction by which to judge the results that can be obtained using a very limited benchmark set, predictions based on a series of benchmark cases along a trajectory are used. Solutions which rely only on the limited benchmark set, ideally in the neighborhood of peak heating, are compared against the resultant transient heating rates and total heat loads from the best prediction. Predictions based on using two or fewer benchmark cases at or near the trajectory peak heating condition, yielded results to within 5-10 percent of the best predictions. Thus, the method provides transient heating environments over the heat-shield face with sufficient resolution and accuracy for thermal protection system design and also offers a significant capability to perform rapid trade studies such as the effect of different trajectories, atmospheres, or trim angle of attack, on convective and radiative heating rates and loads, pressure, and shear-stress levels.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmony, S.C.; Steiner, J.L.; Stumpf, H.J.

    The PIUS advanced reactor is a 640-MWe pressurized water reactor developed by Asea Brown Boveri (ABB). A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity is controlled by coolant boron concentration and the temperature of the moderator coolant. As part of the preapplication and eventual design certification process, advanced reactor applicants are required to submit neutronic and thermal-hydraulic safety analyses over a sufficient range of normal operation, transient conditions, and specified accident sequences. Los Alamos is supporting the US Nuclear Regulatory Commission`s preapplication review of the PIUS reactor. A fully one-dimensional modelmore » of the PIUS reactor has been developed for the Transient Reactor Analysis Code, TRACPF1/MOD2. Early in 1992, ABB submitted a Supplemental Information Package describing recent design modifications. An important feature of the PIUS Supplement design was the addition of an active scram system that will function for most transient and accident conditions. A one-dimensional Transient Reactor Analysis Code baseline calculation of the PIUS Supplement design were performed for a break in the main steam line at the outlet nozzle of the loop 3 steam generator. Sensitivity studies were performed to explore the robustness of the PIUS concept to severe off-normal conditions following a main steam line break. The sensitivity study results provide insights into the robustness of the design.« less

  12. Proceedings of the Conference on the Stability and Dynamic Response of Rotors with Squeeze Film Bearings, 8-10 May 79.

    DTIC Science & Technology

    1979-01-01

    oil films, the effects of squeeze film bearings on the dynamic response of rotor-bearing systems , design techniques and methods of analyzing complicated...rotor-bearing systems including squeeze film bearings. The consensus of the participants was that further research is needed to more fully understand...176 BEARING PARAMETER IDENTIFICATION, E. Woomer, W. D. Pilkey .... 189 TRANSIENT DYNAMICS OF SQUEEZE FILM BEARING SYSTEMS , A. J

  13. Transient analysis of unbalanced short circuits of the ERDA-NASA 100 kW wind turbine alternator

    NASA Technical Reports Server (NTRS)

    Hwang, H. H.; Gilbert, L. J.

    1976-01-01

    Unbalanced short-circuit faults on the alternator of the ERDA-NASA Mod-O100-kW experimental wind turbine are studied. For each case, complete solutions for armature, field, and damper-circuit currents; short-circuit torque; and open-phase voltage are derived directly by a mathematical analysis. Formulated results are tabulated. For the Mod-O wind turbine alternator, numerical calculations are given, and results are presented by graphs. Comparisons for significant points among the more important cases are summarized. For these cases the transients are found to be potentially severe. The effect of the alternator neutral-to-ground impedance is evaluated.

  14. The ac power line protection for an IEEE 587 Class B environment

    NASA Technical Reports Server (NTRS)

    Roehr, W. D.; Clark, O. M.

    1984-01-01

    The 587B series of protectors are unique, low clamping voltage transient suppressors to protect ac-powered equipment from the 6000V peak open-circuit voltage and 3000A short circuit current as defined in IEEE standard 587 for Category B transients. The devices, which incorporate multiple-stage solid-state protector components, were specifically designed to operate under multiple exposures to maximum threat levels in this severe environment. The output voltage peaks are limited to 350V under maximum threat conditions for a 120V ac power line, thus providing adequate protection to vulnerable electronic equipment. The principle of operation and test performance data is discussed.

  15. Explosion-assisted preparation of dispersed gold-bearing different-grade ore for selective mining

    NASA Astrophysics Data System (ADS)

    Trubachev, AI; Zykov, NV

    2017-02-01

    It is found that there are transient zones (between quality and off-quality ore areas) with the respective content of useful component in an ore body, and a variant of explosive treatment of such zones before the selective mining is put forward. Practicability of two processing technologies is evaluated: processing of high-grade and low-grade ore from the transient zones and heap leaching of metals from the low-grade and impoverished ore. Open mining technology is conventional truck-and-shovel scheme, with distributed ore flows to processing plant and (or) to heap leaching, which generally enhances the mine efficiency.

  16. Opening and Closing of Oxalis Leaves in Response to Light Stimuli

    ERIC Educational Resources Information Center

    Nakanishi, Fumi; Nakazawa, Masami; Katayama, Nobuyasu

    2005-01-01

    Fully opened leaves of potted plants of "Oxalis corymbosa" DC. closed completely by folding their leaflets downward after being kept in the dark for two hours. The folded leaflets, then moved upward gradually after exposure to light. We developed a simple method to measure the leaf movement. A paper protractor folded every 10[degrees] was devised…

  17. Recommendations for open data science.

    PubMed

    Gymrek, Melissa; Farjoun, Yossi

    2016-01-01

    Life science research increasingly relies on large-scale computational analyses. However, the code and data used for these analyses are often lacking in publications. To maximize scientific impact, reproducibility, and reuse, it is crucial that these resources are made publicly available and are fully transparent. We provide recommendations for improving the openness of data-driven studies in life sciences.

  18. "Caritas" in the Classroom: The Opening of the American Student's Heart.

    ERIC Educational Resources Information Center

    Lawry, John D.

    1990-01-01

    The quality of the student-teacher relationship is critical in opening the heart and mind. The highest form of learning occurs when the teacher loves and accepts the student so fully that the student feels safe enough to go within to see himself/herself and emerge with new answers about his/her life. (MSE)

  19. Learning and Open Educational Resources: A Psychological Perspective

    ERIC Educational Resources Information Center

    Terras, Melody M.; Ramsay, Judith; Boyle, Elizabeth

    2013-01-01

    The provision of Open Educational Resources (OER) means that learning horizons are no longer restricted by time and space. However, if the learning potential of OER is to be fully realised, educators and students must have the media literacy skills to select, use and produce information in a judicious and useful way. A consideration of the…

  20. PID Controller Settings Based on a Transient Response Experiment

    ERIC Educational Resources Information Center

    Silva, Carlos M.; Lito, Patricia F.; Neves, Patricia S.; Da Silva, Francisco A.

    2008-01-01

    An experimental work on controller tuning for chemical engineering undergraduate students is proposed using a small heat exchange unit. Based upon process reaction curves in open-loop configuration, system gain and time constant are determined for first order model with time delay with excellent accuracy. Afterwards students calculate PID…

  1. Cancer Metastasis: Perivascular Macrophages Under Watch.

    PubMed

    Kadioglu, Ece; De Palma, Michele

    2015-09-01

    TIE2-expressing macrophages cluster around blood vessels and sustain tumor angiogenesis. Harney and colleagues now use live imaging of mouse mammary tumors to show that these perivascular macrophages also promote the transient opening of tumor blood vessels to facilitate hematogenous cancer cell dissemination and metastasis. ©2015 American Association for Cancer Research.

  2. Energy and Raw Materials in the Selection of Technologies for Iron and Steel

    NASA Astrophysics Data System (ADS)

    Fortini, Otavio Macedo

    2016-09-01

    This paper discusses the selection of metal extraction technologies according to the regional availability of energy resources. The most important energy sources in iron and steel production are determined from a review of current technologies to inform possible future scenarios of capacity replacement or expansion according to geography. Alternative technologies are not discussed, considering that actual investment in capacity is most often dominated by high degrees of risk aversion. As such, only technologies proven at a reasonable scale are included in the selection matrix. Scenarios of capacity choice are defined in terms of actions from external agents, those which are not directly involved in the industry but have the capacity to regulate actions by metal producing players. Two extreme scenarios corresponding to closed and open economies are used to set bounds for future expectations. Among steelmaking processes under fully open trade conditions, it is found that EAF steelmaking with charge pre-heat should be the technology of choice in all regions of the world except for South America and Europe, where Integrated Steel Mills have a cost advantage. In fully closed exchange scenarios, Integrated Steel Mills would be the prevalent technology in South America, Sub-Saharan Africa, India, and the former USSR, EAF with scrap pre-heating prevailing in all other regions. On the other hand, HYL-ZR would be the iron making technology of choice in all regions under full exchange scenarios. Under fully closed exchange conditions, Mini-Blast Furnaces, COREX, and HYL-ZR would find regional applications. Increases in raw materials and energy costs of 38 pct in steelmaking and 63 pct in ironmaking are found in going from fully open to fully closed exchange regimes. It is also found that Southeast Asia is the most suitable region for deploying new steelmaking capacity, while Australia and Russia are the best selection for new iron making capacity.

  3. SNARE-mediated Fusion of Single Proteoliposomes with Tethered Supported Bilayers in a Microfluidic Flow Cell Monitored by Polarized TIRF Microscopy

    PubMed Central

    Nikolaus, Joerg; Karatekin, Erdem

    2016-01-01

    In the ubiquitous process of membrane fusion the opening of a fusion pore establishes the first connection between two formerly separate compartments. During neurotransmitter or hormone release via exocytosis, the fusion pore can transiently open and close repeatedly, regulating cargo release kinetics. Pore dynamics also determine the mode of vesicle recycling; irreversible resealing results in transient, "kiss-and-run" fusion, whereas dilation leads to full fusion. To better understand what factors govern pore dynamics, we developed an assay to monitor membrane fusion using polarized total internal reflection fluorescence (TIRF) microscopy with single molecule sensitivity and ~15 msec time resolution in a biochemically well-defined in vitro system. Fusion of fluorescently labeled small unilamellar vesicles containing v-SNARE proteins (v-SUVs) with a planar bilayer bearing t-SNAREs, supported on a soft polymer cushion (t-SBL, t-supported bilayer), is monitored. The assay uses microfluidic flow channels that ensure minimal sample consumption while supplying a constant density of SUVs. Exploiting the rapid signal enhancement upon transfer of lipid labels from the SUV to the SBL during fusion, kinetics of lipid dye transfer is monitored. The sensitivity of TIRF microscopy allows tracking single fluorescent lipid labels, from which lipid diffusivity and SUV size can be deduced for every fusion event. Lipid dye release times can be much longer than expected for unimpeded passage through permanently open pores. Using a model that assumes retardation of lipid release is due to pore flickering, a pore "openness", the fraction of time the pore remains open during fusion, can be estimated. A soluble marker can be encapsulated in the SUVs for simultaneous monitoring of lipid and soluble cargo release. Such measurements indicate some pores may reseal after losing a fraction of the soluble cargo. PMID:27585113

  4. An open-loop ground-water heat pump system: transient numerical modeling and site experimental results

    NASA Astrophysics Data System (ADS)

    Lo Russo, S.; Taddia, G.; Gnavi, L.

    2012-04-01

    KEY WORDS: Open-loop ground water heat pump; Feflow; Low-enthalpy; Thermal Affected Zone; Turin; Italy The increasing diffusion of low-enthalpy geothermal open-loop Groundwater Heat Pumps (GWHP) providing buildings air conditioning requires a careful assessment of the overall effects on groundwater system, especially in the urban areas where several plants can be close together and interfere. One of the fundamental aspects in the realization of an open loop low-enthalpy geothermal system is therefore the capacity to forecast the effects of thermal alteration produced in the ground, induced by the geothermal system itself. The impact on the groundwater temperature in the surrounding area of the re-injection well (Thermal Affected Zone - TAZ) is directly linked to the aquifer properties. The transient dynamic of groundwater discharge and temperature variations should be also considered to assess the subsurface environmental effects of the plant. The experimental groundwater heat pump system used in this study is installed at the "Politecnico di Torino" (NW Italy, Piedmont Region). This plant provides summer cooling needs for the university buildings. This system is composed by a pumping well, a downgradient injection well and a control piezometer. The system is constantly monitored by multiparameter probes measuring the dynamic of groundwater temperature. A finite element subsurface flow and transport simulator (FEFLOW) was used to investigate the thermal aquifer alteration. Simulations were continuously performed during May-October 2010 (cooling period). The numerical simulation of the heat transport in the aquifer was solved with transient conditions. The simulation was performed by considering only the heat transfer within the saturated aquifer, without any heat dispersion above or below the saturated zone due to the lack of detailed information regarding the unsaturated zone. Model results were compared with experimental temperature data derived from groundwater monitoring in the surrounding area of the injection well. Such analysis showed that the measured values differ slightly from the simulated values. That small difference is probably due to the simplification assumptions in the modelling. This hypothesis is still under investigation.

  5. Temperature rise and Heat build up inside a parked Car

    NASA Astrophysics Data System (ADS)

    Coady, Rose; Maheswaranathan, Ponn

    2001-11-01

    We have studied the heat build up inside a parked car under the hot summer Sun. Inside and outside temperatures were monitored every ten seconds from 9 AM to about 4 PM for a 2000 Toyota Camry parked in a Winthrop University parking lot without any shades or trees. Two PASCO temperature sensors, one inside the car and the other outside the car, are used along with PASCO-750 interface to collect the data. Data were collected under the following conditions while keeping track of the outside weather: fully closed windows, slightly open windows, half way open windows, fully open windows, and with window shades inside and outside. Inside temperatures reached as high as 150 degrees Fahrenheit on a sunny day with outside high temperature of about 100 degrees Fahrenheit. These results will be presented along with results from car cover and window tint manufacturers and suggestions to keep your car cool next time you park it under the Sun.

  6. SimVascular: An Open Source Pipeline for Cardiovascular Simulation.

    PubMed

    Updegrove, Adam; Wilson, Nathan M; Merkow, Jameson; Lan, Hongzhi; Marsden, Alison L; Shadden, Shawn C

    2017-03-01

    Patient-specific cardiovascular simulation has become a paradigm in cardiovascular research and is emerging as a powerful tool in basic, translational and clinical research. In this paper we discuss the recent development of a fully open-source SimVascular software package, which provides a complete pipeline from medical image data segmentation to patient-specific blood flow simulation and analysis. This package serves as a research tool for cardiovascular modeling and simulation, and has contributed to numerous advances in personalized medicine, surgical planning and medical device design. The SimVascular software has recently been refactored and expanded to enhance functionality, usability, efficiency and accuracy of image-based patient-specific modeling tools. Moreover, SimVascular previously required several licensed components that hindered new user adoption and code management and our recent developments have replaced these commercial components to create a fully open source pipeline. These developments foster advances in cardiovascular modeling research, increased collaboration, standardization of methods, and a growing developer community.

  7. TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia

    PubMed Central

    Ye, M; Yang, W; Ainscough, J F; Hu, X-P; Li, X; Sedo, A; Zhang, X-H; Zhang, X; Chen, Z; Li, X-M; Beech, D J; Sivaprasadarao, A; Luo, J-H; Jiang, L-H

    2014-01-01

    Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn2+ level ([Zn2+]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia–reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn2+]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn2+]c but abolished the cytosolic Zn2+ accumulation during reperfusion as well as ROS-elicited increases in the [Zn2+]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn2+]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury. PMID:25429618

  8. Transient Absorption of Attosecond Pulses by He Atoms in Presence of Near-Infrared Laser Fields: A TDDFT Analysis of Sub-Cycle Temporal Structures

    NASA Astrophysics Data System (ADS)

    Heslar, John; Telnov, Dmitry; Chu, Shih-I.

    2013-05-01

    We study transient absorption of extreme ultraviolet (XUV) attosecond pulses in presence of near-infrared (NIR) laser fields by analyzing the population and photon emission of excited atomic energy levels. We consider He atoms and apply a self-interaction-free fully ab initio time-dependent density functional theory (TDDFT). Our method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential and incorporates explicitly the self-interaction correction. We focus on the sub-cycle (with respect to NIR field) temporal behavior of the population of the excited energy levels and related dynamics of photon emission. We observe and identify sub-cycle shifts in the photon emission spectrum as a function of the time delay between the XUV and NIR pulses. In the region where the two pulses overlap, the photon emission peaks have an oscillatory structure with a period of 1.3 fs, which is half of the NIR laser optical cycle. Such a structure was also observed in recent experiments on transient absorption. This work was partially supported by DOE and by MOE-NSC-NTU-Taiwan.

  9. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-10-01

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions in a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.

  10. Modeling and validation of single-chamber microbial fuel cell cathode biofilm growth and response to oxidant gas composition

    DOE PAGES

    Ou, Shiqi; Zhao, Yi; Aaron, Douglas S.; ...

    2016-08-15

    This work describes experiments and computational simulations to analyze single-chamber, air-cathode microbial fuel cell (MFC) performance and cathodic limitations in terms of current generation, power output, mass transport, biomass competition, and biofilm growth. Steady-state and transient cathode models were developed and experimentally validated. Two cathode gas mixtures were used to explore oxygen transport in the cathode: the MFCs exposed to a helium-oxygen mixture (heliox) produced higher current and power output than the group of MFCs exposed to air or a nitrogen-oxygen mixture (nitrox), indicating a dependence on gas-phase transport in the cathode. Multi-substance transport, biological reactions, and electrochemical reactions inmore » a multi-layer and multi-biomass cathode biofilm were also simulated in a transient model. The transient model described biofilm growth over 15 days while providing insight into mass transport and cathodic dissolved species concentration profiles during biofilm growth. Lastly, simulation results predict that the dissolved oxygen content and diffusion in the cathode are key parameters affecting the power output of the air-cathode MFC system, with greater oxygen content in the cathode resulting in increased power output and fully-matured biomass.« less

  11. The free energies of partially open coronal magnetic fields

    NASA Technical Reports Server (NTRS)

    Low, B. C.; Smith, D. F.

    1993-01-01

    A simple model of the low corona is examined in terms of a static polytropic atmosphere in equilibrium with a global magnetic field. The question posed is whether magnetostatic states with partially open magnetic fields may contain magnetic energies in excess of those in fully open magnetic fields. Based on the analysis presented here, it is concluded that the cross-field electric currents in the pre-eruption corona are a viable source of the bulk of the energies in a mass ejection and its associated flare.

  12. MetAMOS: a modular and open source metagenomic assembly and analysis pipeline

    PubMed Central

    2013-01-01

    We describe MetAMOS, an open source and modular metagenomic assembly and analysis pipeline. MetAMOS represents an important step towards fully automated metagenomic analysis, starting with next-generation sequencing reads and producing genomic scaffolds, open-reading frames and taxonomic or functional annotations. MetAMOS can aid in reducing assembly errors, commonly encountered when assembling metagenomic samples, and improves taxonomic assignment accuracy while also reducing computational cost. MetAMOS can be downloaded from: https://github.com/treangen/MetAMOS. PMID:23320958

  13. The Energetic Transient Array ETA - A network of 'space buoys' in solar orbit for observations of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Ricker, George R.

    1990-01-01

    The Energetic Transient Array (ETA) is a concept for a dedicated interplanetary network of about 40 microsatellites ('space buoys') deployed in an about 1 AU radius solar orbit for the observation of cosmic gamma ray bursts (GRBs). Such a network is essential for the determination of highly accurate (about 0.1 arcsec) error boxes for GRBs. For each of about 100 bursts which would be detectable per year of observation by such a network, high resolution spectra could be obtained through the use of passively-cooled Ge gamma-ray detectors. Stabilization of each microsatellite would be achieved by a novel technique based on the radiation pressure exerted on 'featherable' solar paddles. It should be possible to have a fully functional array of satellites in place before the end of the decade for a total cost of about $20M, exclusive of launcher fees.

  14. Crystal nucleation initiated by transient ion-surface interactions at aerosol interfaces

    PubMed Central

    Davis, Ryan D.; Tolbert, Margaret A.

    2017-01-01

    Particle collisions are a common occurrence in the atmosphere, but no empirical observations exist to fully predict the potential effects of these collisions on air quality and climate projections. The current consensus of heterogeneous crystal nucleation pathways relevant to the atmosphere dictates that collisions with amorphous particles have no effect on the crystallization relative humidity (RH) of aqueous inorganic aerosols because there is no stabilizing ion-surface interaction to facilitate the formation of crystal nuclei. In contrast to this view of heterogeneous nucleation, we report laboratory observations demonstrating that collisions with hydrophobic amorphous organic aerosols induced crystallization of aqueous inorganic microdroplets at high RH, the effect of which was correlated with destabilizing water-mediated ion-specific surface interactions. These same organic aerosols did not induce crystallization once internally mixed in the droplet, pointing toward a previously unconsidered transient ion-specific crystal nucleation pathway that can promote aerosol crystallization via particle collisions. PMID:28776032

  15. Crystal nucleation initiated by transient ion-surface interactions at aerosol interfaces.

    PubMed

    Davis, Ryan D; Tolbert, Margaret A

    2017-07-01

    Particle collisions are a common occurrence in the atmosphere, but no empirical observations exist to fully predict the potential effects of these collisions on air quality and climate projections. The current consensus of heterogeneous crystal nucleation pathways relevant to the atmosphere dictates that collisions with amorphous particles have no effect on the crystallization relative humidity (RH) of aqueous inorganic aerosols because there is no stabilizing ion-surface interaction to facilitate the formation of crystal nuclei. In contrast to this view of heterogeneous nucleation, we report laboratory observations demonstrating that collisions with hydrophobic amorphous organic aerosols induced crystallization of aqueous inorganic microdroplets at high RH, the effect of which was correlated with destabilizing water-mediated ion-specific surface interactions. These same organic aerosols did not induce crystallization once internally mixed in the droplet, pointing toward a previously unconsidered transient ion-specific crystal nucleation pathway that can promote aerosol crystallization via particle collisions.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, J.L.; Lime, J.F.; Elson, J.S.

    One dimensional TRAC transient calculations of the process inherent ultimate safety (PIUS) advanced reactor design were performed for a pump-trip SCRAM. The TRAC calculations showed that the reactor power response and shutdown were in qualitative agreement with the one-dimensional analyses presented in the PIUS Preliminary Safety Information Document (PSID) submitted by Asea Brown Boveri (ABB) to the US Nuclear Regulatory Commission for preapplication safety review. The PSID analyses were performed with the ABB-developed RIGEL code. The TRAC-calculated phenomena and trends were also similar to those calculated with another one-dimensional PIUS model, the Brookhaven National Laboratory developed PIPA code. A TRACmore » pump-trip SCRAM transient has also been calculated with a TRAC model containing a multi-dimensional representation of the PIUS intemal flow structures and core region. The results obtained using the TRAC fully one-dimensional PIUS model are compared to the RIGEL, PIPA, and TRAC multi-dimensional results.« less

  17. Crystallography Open Databases and Preservation: a World-wide Initiative

    NASA Astrophysics Data System (ADS)

    Chateigner, Daniel

    In 2003, an international team of crystallographers proposed the Crystallography Open Database (COD), a fully-free collection of crystal structure data, in the aim of ensuring their preservation. With nearly 250000 entries, this database represents a large open set of data for crystallographers, academics and industrials, located at five different places world-wide, and included in Thomson-Reuters’ ISI. As a large step towards data preservation, raw data can now be uploaded along with «digested» structure files, and COD can be questioned by most of the crystallography-linked industrial software. The COD initiative work deserves several other open developments.

  18. Maximum crown area equation for open-grown bur oak

    Treesearch

    M.C. Demchik; S.M. Virden; Z.L. Buchanan; A.M. Johnson

    2017-01-01

    Bur oak (Quercus macrocarpa Michx.) is a classic savanna species with a range that covers much of the eastern United States. Because savannas are an endangered habitat in North America, significant restoration efforts are in progress across much of the range of bur oak. For open sites being planted with bur oaks as well as fully stocked sites that...

  19. KENNEDY SPACE CENTER, FLA. - A worker in the Orbiter Processing Facility checks the open hatch of the airlock in Discovery’s payload bay. The airlock is normally located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

    NASA Image and Video Library

    2004-01-22

    KENNEDY SPACE CENTER, FLA. - A worker in the Orbiter Processing Facility checks the open hatch of the airlock in Discovery’s payload bay. The airlock is normally located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

  20. Enhanced paracellular transport of insulin can be achieved via transient induction of myosin light chain phosphorylation.

    PubMed

    Taverner, Alistair; Dondi, Ruggero; Almansour, Khaled; Laurent, Floriane; Owens, Siân-Eleri; Eggleston, Ian M; Fotaki, Nikoletta; Mrsny, Randall J

    2015-07-28

    The intestinal epithelium functions to effectively restrict the causal uptake of luminal contents but has been demonstrated to transiently increase paracellular permeability properties to provide an additional entry route for dietary macromolecules. We have examined a method to emulate this endogenous mechanism as a means of enhancing the oral uptake of insulin. Two sets of stable Permeant Inhibitor of Phosphatase (PIP) peptides were rationally designed to stimulate phosphorylation of intracellular epithelial myosin light chain (MLC) and screened using Caco-2 monolayers in vitro. Apical application of PIP peptide 640, designed to disrupt protein-protein interactions between protein phosphatase 1 (PP1) and its regulator CPI-17, resulted in a reversible and non-toxic transient reduction in Caco-2 monolayer trans-epithelial electric resistance (TEER) and opening of the paracellular route to 4kDa fluorescent dextran but not 70kDa dextran in vitro. Apical application of PIP peptide 250, designed to impede MYPT1-mediated regulation of PP1, also decreased TEER in a reversible and non-toxic manner but transiently opened the paracellular route to both 4 and 70kDa fluorescent dextrans. Direct injection of PIP peptides 640 or 250 with human insulin into the lumen of rat jejunum caused a decrease in blood glucose levels that was PIP peptide and insulin dose-dependent and correlated with increased pMLC levels. Systemic levels of insulin suggested approximately 3-4% of the dose injected into the intestinal lumen was absorbed, relative to a subcutaneous injection. Measurement of insulin levels in the portal vein showed a time window of absorption that was consistent with systemic concentration-time profiles and approximately 50% first-pass clearance by the liver. Monitoring the uptake of a fluorescent form of insulin suggested its uptake occurred via the paracellular route. Together, these studies add validation to the presence of an endogenous mechanism used by the intestinal epithelium to dynamically regulate its paracellular permeability properties and better define the potential to enhance the oral delivery of biopharmaceuticals via a transient regulation of an endogenous mechanism controlling the intestinal paracellular barrier. Copyright © 2015. Published by Elsevier B.V.

  1. Experimental Study of Fluid Structure Interaction Effects on Metal Plates Under Fully Developed Laminar Flow

    DTIC Science & Technology

    2011-12-01

    UU NSN 7540–01–280–5500 Standard Form 298 (Rev. 8–98) Prescribed by ANSI Std. Z39.18 ii THIS PAGE INTENTIONALLY LEFT BLANK iii Approved for...modeled using the finite element analysis simulation code, ANSYS 13.0. The main objective of these simulations was to determine the location at which...transient response of the test plate under FSI conditions, computational studies were carried out in ANSYS 13.0 Multi-field (MFX) simulation

  2. Sweden After the Cold War: Implications for US Regional Strategies

    DTIC Science & Technology

    1993-09-01

    transient threats to common interests rather than formal alliance structures." [Ref. 3:p. 9] Such was the case in the recent Gulf War. But as Colonel...European Union, Sweden will participate fully in the common security and foreign policy which was laid down in the Maastricht Treaty... A "policy of...34defense policy": The EC is developing in the direction for a European Union, with a common security and foreign policy, and possibly a common

  3. Electrical characterisation of SiGe heterojunction bipolar transistors and Si pseudo-HBTS

    NASA Astrophysics Data System (ADS)

    De Barros, O.; Le Tron, B.; Woods, R. C.; Giroult-Matlakowski, G.; Vincent, G.; Brémond, G.

    1996-08-01

    This paper reports an electrical characterisation of the emitter-base junction of Si pseudo-HBTs and SiGe HBTs fabricated in a CMOS compatible single polysilicon self-aligned process. From the reverse characteristics it appears that the definition of the emitter-base junction by plasma etching induces peripheral defects that increase the base current of the transistors. Deep level transient spectroscopy measurements show a deep level in the case of SiGe base, whose spatial origin is not fully determinate up to now.

  4. Power-MOSFET Voltage Regulator

    NASA Technical Reports Server (NTRS)

    Miller, W. N.; Gray, O. E.

    1982-01-01

    Ninety-six parallel MOSFET devices with two-stage feedback circuit form a high-current dc voltage regulator that also acts as fully-on solid-state switch when fuel-cell out-put falls below regulated voltage. Ripple voltage is less than 20 mV, transient recovery time is less than 50 ms. Parallel MOSFET's act as high-current dc regulator and switch. Regulator can be used wherever large direct currents must be controlled. Can be applied to inverters, industrial furnaces photovoltaic solar generators, dc motors, and electric autos.

  5. Sirolimus

    MedlinePlus

    ... the solution bottle. On first use, insert the plastic tube with stopper tightly into the bottle until ... fully pushed in, into the opening in the plastic tube. Draw up the amount of solution your ...

  6. A small, lightweight multipollutant sensor system for ground-mobile and aerial emission sampling from open area sources

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaochi; Aurell, Johanna; Mitchell, William; Tabor, Dennis; Gullett, Brian

    2017-04-01

    Characterizing highly dynamic, transient, and vertically lofted emissions from open area sources poses unique measurement challenges. This study developed and applied a multipollutant sensor and time-integrated sampler system for use on mobile applications such as vehicles, tethered balloons (aerostats) and unmanned aerial vehicles (UAVs) to determine emission factors. The system is particularly applicable to open area sources, such as forest fires, due to its light weight (3.5 kg), compact size (6.75 L), and internal power supply. The sensor system, termed ;Kolibri;, consists of sensors measuring CO2 and CO, and samplers for particulate matter (PM) and volatile organic compounds (VOCs). The Kolibri is controlled by a microcontroller which can record and transfer data in real time through a radio module. Selection of the sensors was based on laboratory testing for accuracy, response delay and recovery, cross-sensitivity, and precision. The Kolibri was compared against rack-mounted continuous emissions monitoring system (CEMs) and another mobile sampling instrument (the ;Flyer;) that has been used in over ten open area pollutant sampling events. Our results showed that the time series of CO, CO2, and PM2.5 concentrations measured by the Kolibri agreed well with those from the CEMs and the Flyer, with a laboratory-tested percentage error of 4.9%, 3%, and 5.8%, respectively. The VOC emission factors obtained using the Kolibri were consistent with existing literature values that relate concentration to modified combustion efficiency. The potential effect of rotor downwash on particle sampling was investigated in an indoor laboratory and the preliminary results suggested that its influence is minimal. Field application of the Kolibri sampling open detonation plumes indicated that the CO and CO2 sensors responded dynamically and their concentrations co-varied with emission transients. The Kolibri system can be applied to various challenging open area scenarios such as fires, lagoons, flares, and landfills.

  7. Down to the roughness scale assessment of piston-ring/liner contacts

    NASA Astrophysics Data System (ADS)

    Checo, H. M.; Jaramillo, A.; Ausas, R. F.; Jai, M.; Buscaglia, G. C.

    2017-02-01

    The effects of surface roughness in hydrodynamic bearings been accounted for through several approaches, the most widely used being averaging or stochastic techniques. With these the surface is not treated “as it is”, but by means of an assumed probability distribution for the roughness. The so called direct, deterministic or measured-surface simulation) solve the lubrication problem with realistic surfaces down to the roughness scale. This leads to expensive computational problems. Most researchers have tackled this problem considering non-moving surfaces and neglecting the ring dynamics to reduce the computational burden. What is proposed here is to solve the fully-deterministic simulation both in space and in time, so that the actual movement of the surfaces and the rings dynamics are taken into account. This simulation is much more complex than previous ones, as it is intrinsically transient. The feasibility of these fully-deterministic simulations is illustrated two cases: fully deterministic simulation of liner surfaces with diverse finishings (honed and coated bores) with constant piston velocity and load on the ring and also in real engine conditions.

  8. Water Hammer Simulations of Monomethylhydrazine Propellant

    NASA Technical Reports Server (NTRS)

    Burkhardt, Zachary; Ramachandran, N.; Majumdar, A.

    2017-01-01

    Fluid Transient analysis is important for the design of spacecraft propulsion system to ensure structural stability of the system in the event of sudden closing or opening of the valve. Generalized Fluid System Simulation Program (GFSSP), a general purpose flow network code developed at NASA/MSFC is capable of simulating pressure surge due to sudden opening or closing of valve when thermodynamic properties of real fluid are available for the entire range of simulation. Specifically GFSSP needs an accurate representation of pressure density relationship in order to predict pressure surge during a fluid transient. Unfortunately, the available thermodynamic property programs such as REFPROP, GASP or GASPAK do not provide the thermodynamic properties of Monomethylhydrazine(MMH). This work illustrates the process used for building a customized table of properties of state variables from available properties and speed of sound that is required by GFSSP for simulation. Good agreement was found between the simulations and measured data. This method can be adopted for modeling flow networks and systems with other fluids whose properties are not known in detail in order to obtain general technical insight.

  9. Emergency cooling analysis for the loss of coolant malfunction

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1972-01-01

    This report examines the dynamic response of a conceptual space power fast-spectrum lithium cooled reactor to the loss of coolant malfunction and several emergency cooling concepts. The results show that, following the loss of primary coolant, the peak temperatures of the center most 73 fuel elements can range from 2556 K to the region of the fuel melting point of 3122 K within 3600 seconds after the start of the accident. Two types of emergency aftercooling concepts were examined: (1) full core open loop cooling and (2) partial core closed loop cooling. The full core open loop concept is a one pass method of supplying lithium to the 247 fuel pins. This method can maintain fuel temperature below the 1611 K transient damage limit but requires a sizable 22,680-kilogram auxiliary lithium supply. The second concept utilizes a redundant internal closed loop to supply lithium to only the central area of each hexagonal fuel array. By using this method and supplying lithium to only the triflute region, fuel temperatures can be held well below the transient damage limit.

  10. Coincident steam generator tube rupture and stuck-open safety relief valve carryover tests: MB-2 steam generator transient response test program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garbett, K; Mendler, O J; Gardner, G C

    In PWR steam generator tube rupture (SGTR) faults, a direct pathway for the release of radioactive fission products can exist if there is a coincident stuck-open safety relief valve (SORV) or if the safety relief valve is cycled. In addition to the release of fission products from the bulk steam generator water by moisture carryover, there exists the possibility that some primary coolant may be released without having first mixed with the bulk water - a process called primary coolant bypassing. The MB-2 Phase II test program was designed specifically to identify the processes for droplet carryover during SGTR faultsmore » and to provide data of sufficient accuracy for use in developing physical models and computer codes to describe activity release. The test program consisted of sixteen separate tests designed to cover a range of steady-state and transient fault conditions. These included a full SGTR/SORV transient simulation, two SGTR overfill tests, ten steady-state SGTR tests at water levels ranging from very low levels in the bundle up to those when the dryer was flooded, and three moisture carryover tests without SGTR. In these tests the influence of break location and the effect of bypassing the dryer were also studied. In a final test the behavior with respect to aerosol particles in a dry steam generator, appropriate to a severe accident fault, was investigated.« less

  11. Transient natural ventilation of a room with a distributed heat source

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Shaun D.; Woods, Andrew W.

    We report on an experimental and theoretical study of the transient flows which develop as a naturally ventilated room adjusts from one temperature to another. We focus on a room heated from below by a uniform heat source, with both high- and low-level ventilation openings. Depending on the initial temperature of the room relative to (i) the final equilibrium temperature and (ii) the exterior temperature, three different modes of ventilation may develop. First, if the room temperature lies between the exterior and the equilibrium temperature, the interior remains well-mixed and gradually heats up to the equilibrium temperature. Secondly, if the room is initially warmer than the equilibrium temperature, then a thermal stratification develops in which the upper layer of originally hot air is displaced upwards by a lower layer of relatively cool inflowing air. At the interface, some mixing occurs owing to the effects of penetrative convection. Thirdly, if the room is initially cooler than the exterior, then on opening the vents, the original air is displaced downwards and a layer of ambient air deepens from above. As this lower layer drains, it is eventually heated to the ambient temperature, and is then able to mix into the overlying layer of external air, and the room becomes well-mixed. For each case, we present new laboratory experiments and compare these with some new quantitative models of the transient flows. We conclude by considering the implications of our work for natural ventilation of large auditoria.

  12. Transient Events in Archival Very Large Array Observations of the Galactic Center

    NASA Astrophysics Data System (ADS)

    Chiti, Anirudh; Chatterjee, Shami; Wharton, Robert; Cordes, James; Lazio, T. Joseph W.; Kaplan, David L.; Bower, Geoffrey C.; Croft, Steve

    2016-12-01

    The Galactic center has some of the highest stellar densities in the Galaxy and a range of interstellar scattering properties, which may aid in the detection of new radio-selected transient events. Here, we describe a search for radio transients in the Galactic center, using over 200 hr of archival data from the Very Large Array at 5 and 8.4 GHz. Every observation of Sgr A* from 1985 to 2005 has been searched using an automated processing and detection pipeline sensitive to transients with timescales between 30 s and 5 minutes with a typical detection threshold of ˜100 mJy. Eight possible candidates pass tests to filter false-positives from radio-frequency interference, calibration errors, and imaging artifacts. Two events are identified as promising candidates based on the smoothness of their light curves. Despite the high quality of their light curves, these detections remain suspect due to evidence of incomplete subtraction of the complex structure in the Galactic center, and apparent contingency of one detection on reduction routines. Events of this intensity (˜100 mJy) and duration (˜100 s) are not obviously associated with known astrophysical sources, and no counterparts are found in data at other wavelengths. We consider potential sources, including Galactic center pulsars, dwarf stars, sources like GCRT J1745-3009, and bursts from X-ray binaries. None can fully explain the observed transients, suggesting either a new astrophysical source or a subtle imaging artifact. More sensitive multiwavelength studies are necessary to characterize these events, which, if real, occur with a rate of {14}-12+32 {{hr}}-1 {\\deg }-2 in the Galactic center.

  13. RAPTOR: Closed-Loop monitoring of the night sky and the earliest optical detection of GRB 021211

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.

    2004-10-01

    We discuss the RAPTOR (Rapid Telescopes for Optical Response) sky monitoring system at Los Alamos National Laboratory. RAPTOR is a fully autonomous robotic system that is designed to identify and make follow-up observations of optical transients with durations as short as one minute. The RAPTOR design is based on Biomimicry of Human Vision. The sky monitor is composed of two identical arrays of telescopes, separated by 38 kilometers, which stereoscopically monitor a field of about 1300 square-degrees for transients. Both monitoring arrays are carried on rapidly slewing mounts and are composed of an ensemble of wide-field telescopes clustered around a more powerful narrow-field telescope called the ``fovea'' telescope. All telescopes are coupled to real-time analysis pipelines that identify candidate transients and relay the information to a central decision unit that filters the candidates to find real celestial transients and command a response. When a celestial transient is found, the system can point the fovea telescopes to any position on the sky within five seconds and begin follow-up observations. RAPTOR also responds to Gamma Ray Burst (GRB) alerts generated by GRB monitoring spacecraft. Here we present RAPTOR observations of GRB 021211 that constitute the earliest detection of optical emission from that event and are the second fastest achieved for any GRB. The detection of bright optical emission from GRB021211, a burst with modest gamma-ray fluence, indicates that prompt optical emission, detectable with small robotic telescopes, is more common than previously thought. Further, the very fast decline of the optical afterglow from GRB 021211 suggests that some so-called ``optically dark'' GRBs were not detected only because of the slow response of the follow-up telescopes.

  14. Long-time observation of meteor induced layers with ionosonde

    NASA Astrophysics Data System (ADS)

    Yusupov, Kamil; Akchurin, Adel

    2016-07-01

    It is considered that the main theory explaining appearance of sporadic E is the theory of wind shear, which means (includes) the presence and movement of nodes converging tidal wind through the height region of the most frequent occurrence Es (120-140km) [Mathew et. all, 1998]. However, the appearance of intense layers, following its name, are sporadic, and such variability cannot to explain by the influence of tidal waves only. Another indication inconsistency theory of wind shear is the appearance of so-called transient Es layers [Maruiama, 2003]. The distinctive feature of this trace is the high critical frequency (> 5 MHz), a constant height, weak amplitude, all trace semitransparent and short lifetime [Maruiama et. all, 2003 and 2008 and references there]. Because of duration, such layer is opposite to the traditional persistent Es layer, which we do not consider in this paper. Various researchers have used different terms for such spontaneous Es, it is meteor echo, meteor induced Es, spontaneously formed sporadic Es patches resulting of the Fresnel scattering from a region of enhanced plasma density along the meteor trail, transitory Es and transient Es. Since the term transient Es is unstable, to avoid confusion, we will stick to this term. Since meteor echo is not fully satisfy this term by some parameter, we will describe the properties of transient Es based on the ionogram properties and not from physics of its origin. We used data from our ionosonde with one-minute ionogram repetition rate for 2010-2014 years. For processing performed a method are using to select beatings and the ionosphere reflectivity of the layers by means A-, H-and AΣ-map [Akchurin, 2011; Yusupov, 2014]. This maps allow to collect transient Es appearance over a long-time. Such statistics comparison with meteor showers activity showed good agreement. It shows the presence of the transient Es formation mechanism, which coupling with meteors.

  15. Highly efficient mesophyll protoplast isolation and PEG-mediated transient gene expression for rapid and large-scale gene characterization in cassava (Manihot esculenta Crantz).

    PubMed

    Wu, Jun-Zheng; Liu, Qin; Geng, Xiao-Shan; Li, Kai-Mian; Luo, Li-Juan; Liu, Jin-Ping

    2017-03-14

    Cassava (Manihot esculenta Crantz) is a major crop extensively cultivated in the tropics as both an important source of calories and a promising source for biofuel production. Although stable gene expression have been used for transgenic breeding and gene function study, a quick, easy and large-scale transformation platform has been in urgent need for gene functional characterization, especially after the cassava full genome was sequenced. Fully expanded leaves from in vitro plantlets of Manihot esculenta were used to optimize the concentrations of cellulase R-10 and macerozyme R-10 for obtaining protoplasts with the highest yield and viability. Then, the optimum conditions (PEG4000 concentration and transfection time) were determined for cassava protoplast transient gene expression. In addition, the reliability of the established protocol was confirmed for subcellular protein localization. In this work we optimized the main influencing factors and developed an efficient mesophyll protoplast isolation and PEG-mediated transient gene expression in cassava. The suitable enzyme digestion system was established with the combination of 1.6% cellulase R-10 and 0.8% macerozyme R-10 for 16 h of digestion in the dark at 25 °C, resulting in the high yield (4.4 × 10 7 protoplasts/g FW) and vitality (92.6%) of mesophyll protoplasts. The maximum transfection efficiency (70.8%) was obtained with the incubation of the protoplasts/vector DNA mixture with 25% PEG4000 for 10 min. We validated the applicability of the system for studying the subcellular localization of MeSTP7 (an H + /monosaccharide cotransporter) with our transient expression protocol and a heterologous Arabidopsis transient gene expression system. We optimized the main influencing factors and developed an efficient mesophyll protoplast isolation and transient gene expression in cassava, which will facilitate large-scale characterization of genes and pathways in cassava.

  16. Medical applications of model-based dynamic thermography

    NASA Astrophysics Data System (ADS)

    Nowakowski, Antoni; Kaczmarek, Mariusz; Ruminski, Jacek; Hryciuk, Marcin; Renkielska, Alicja; Grudzinski, Jacek; Siebert, Janusz; Jagielak, Dariusz; Rogowski, Jan; Roszak, Krzysztof; Stojek, Wojciech

    2001-03-01

    The proposal to use active thermography in medical diagnostics is promising in some applications concerning investigation of directly accessible parts of the human body. The combination of dynamic thermograms with thermal models of investigated structures gives attractive possibility to make internal structure reconstruction basing on different thermal properties of biological tissues. Measurements of temperature distribution synchronized with external light excitation allow registration of dynamic changes of local temperature dependent on heat exchange conditions. Preliminary results of active thermography applications in medicine are discussed. For skin and under- skin tissues an equivalent thermal model may be determined. For the assumed model its effective parameters may be reconstructed basing on the results of transient thermal processes. For known thermal diffusivity and conductivity of specific tissues the local thickness of a two or three layer structure may be calculated. Results of some medical cases as well as reference data of in vivo study on animals are presented. The method was also applied to evaluate the state of the human heart during the open chest cardio-surgical interventions. Reference studies of evoked heart infarct in pigs are referred, too. We see the proposed new in medical applications technique as a promising diagnostic tool. It is a fully non-invasive, clean, handy, fast and affordable method giving not only qualitative view of investigated surfaces but also an objective quantitative measurement result, accurate enough for many applications including fast screening of affected tissues.

  17. Bowen emission from Aquila X-1: evidence for multiple components and constraint on the accretion disc vertical structure

    NASA Astrophysics Data System (ADS)

    Jiménez-Ibarra, F.; Muñoz-Darias, T.; Wang, L.; Casares, J.; Mata Sánchez, D.; Steeghs, D.; Armas Padilla, M.; Charles, P. A.

    2018-03-01

    We present a detailed spectroscopic study of the optical counterpart of the neutron star X-ray transient Aquila X-1 during its 2011, 2013 and 2016 outbursts. We use 65 intermediate resolution GTC-10.4 m spectra with the aim of detecting irradiation-induced Bowen blend emission from the donor star. While Gaussian fitting does not yield conclusive results, our full phase coverage allows us to exploit Doppler mapping techniques to independently constrain the donor star radial velocity. By using the component N III 4640.64/4641.84 Å, we measure Kem = 102 ± 6 km s-1. This highly significant detection (≳13σ) is fully compatible with the true companion star radial velocity obtained from near-infrared spectroscopy during quiescence. Combining these two velocities we determine, for the first time, the accretion disc opening angle and its associated error from direct spectroscopic measurements and detailed modelling, obtaining α = 15.5 ^{+ 2.5}_{-5} deg. This value is consistent with theoretical work if significant X-ray irradiation is taken into account and is important in the light of recent observations of GX339-4, where discrepant results were obtained between the donor's intrinsic radial velocity and the Bowen-inferred value. We also discuss the limitations of the Bowen technique when complete phase coverage is not available.

  18. Automatic recloser circuit breaker integrated with GSM technology for power system notification

    NASA Astrophysics Data System (ADS)

    Lada, M. Y.; Khiar, M. S. A.; Ghani, S. A.; Nawawi, M. R. M.; Rahim, N. H.; Sinar, L. O. M.

    2015-05-01

    Lightning is one type of transient faults that usually cause the circuit breaker in the distribution board trip due to overload current detection. The instant tripping condition in the circuit breakers clears the fault in the system. Unfortunately most circuit breakers system is manually operated. The power line will be effectively re-energized after the clearing fault process is finished. Auto-reclose circuit is used on the transmission line to carry out the duty of supplying quality electrical power to customers. In this project, an automatic reclose circuit breaker for low voltage usage is designed. The product description is the Auto Reclose Circuit Breaker (ARCB) will trip if the current sensor detects high current which exceeds the rated current for the miniature circuit breaker (MCB) used. Then the fault condition will be cleared automatically and return the power line to normal condition. The Global System for Mobile Communication (GSM) system will send SMS to the person in charge if the tripping occurs. If the over current occurs in three times, the system will fully trip (open circuit) and at the same time will send an SMS to the person in charge. In this project a 1 A is set as the rated current and any current exceeding a 1 A will cause the system to trip or interrupted. This system also provides an additional notification for user such as the emergency light and warning system.

  19. Tyrosine Phosphatases ε and α Perform Specific and Overlapping Functions in Regulation of Voltage-gated Potassium Channels in Schwann Cells

    PubMed Central

    Tiran, Zohar; Peretz, Asher; Sines, Tal; Shinder, Vera; Sap, Jan; Attali, Bernard

    2006-01-01

    Tyrosine phosphatases (PTPs) ε and α are closely related and share several molecular functions, such as regulation of Src family kinases and voltage-gated potassium (Kv) channels. Functional interrelationships between PTPε and PTPα and the mechanisms by which they regulate K+ channels and Src were analyzed in vivo in mice lacking either or both PTPs. Lack of either PTP increases Kv channel activity and phosphorylation in Schwann cells, indicating these PTPs inhibit Kv current amplitude in vivo. Open probability and unitary conductance of Kv channels are unchanged, suggesting an effect on channel number or organization. PTPα inhibits Kv channels more strongly than PTPε; this correlates with constitutive association of PTPα with Kv2.1, driven by membranal localization of PTPα. PTPα, but not PTPε, activates Src in sciatic nerve extracts, suggesting Src deregulation is not responsible exclusively for the observed phenotypes and highlighting an unexpected difference between both PTPs. Developmentally, sciatic nerve myelination is reduced transiently in mice lacking either PTP and more so in mice lacking both PTPs, suggesting both PTPs support myelination but are not fully redundant. We conclude that PTPε and PTPα differ significantly in their regulation of Kv channels and Src in the system examined and that similarity between PTPs does not necessarily result in full functional redundancy in vivo. PMID:16870705

  20. Simulating Heinrich events in a coupled atmosphere-ocean-ice sheet model

    NASA Astrophysics Data System (ADS)

    Mikolajewicz, Uwe; Ziemen, Florian

    2016-04-01

    Heinrich events are among the most prominent events of long-term climate variability recorded in proxies across the northern hemisphere. They are the archetype of ice sheet - climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under discussion, and their climatic consequences are far from being fully understood. We contribute to answering the open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability without the need to prescribe external perturbations, as was the standard approach in almost all model studies so far. The setup consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global coarse resolution AOVGCM ECHAM5/MPIOM/LPJ. The simulations used for this analysis were an ensemble covering substantial parts of the late Glacial forced with transient insolation and prescribed atmospheric greenhouse gas concentrations. The modeled Heinrich events show a marked influence of the ice discharge on the Atlantic circulation and heat transport, but none of the Heinrich events during the Glacial did show a complete collapse of the North Atlantic meridional overturning circulation. The simulated main consequences of the Heinrich events are a freshening and cooling over the North Atlantic and a drying over northern Europe.

  1. 30 years of Gamma Ray Bursts and the Transient High Energy Sky

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2009-01-01

    The first GRB was discovered on 1967, just over 40 years ago. It took several years and multiple generations of space and ground instruments to unravel some of the mysteries of this phenomenon. However, many questions remain open today. I will discuss the history, evolution and current status of the GRB field and its contributions in our understanding of the transient high energy sky. Further, I will discuss my involvement with the discovery of magnetars, neutron stars with extreme magnetic fields, serendipitously detected by GRB observers on 1979. Finally, I will describe how GRBs can be utilized in future missions as tools, to probe the cosmic chemical evolution of the Universe.

  2. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL

    NASA Technical Reports Server (NTRS)

    Sukharev, S. I.; Sigurdson, W. J.; Kung, C.; Sachs, F.

    1999-01-01

    MscL is multimeric protein that forms a large conductance mechanosensitive channel in the inner membrane of Escherichia coli. Since MscL is gated by tension transmitted through the lipid bilayer, we have been able to measure its gating parameters as a function of absolute tension. Using purified MscL reconstituted in liposomes, we recorded single channel currents and varied the pressure gradient (P) to vary the tension (T). The tension was calculated from P and the radius of curvature was obtained using video microscopy of the patch. The probability of being open (Po) has a steep sigmoidal dependence on T, with a midpoint (T1/2) of 11.8 dyn/cm. The maximal slope sensitivity of Po/Pc was 0.63 dyn/cm per e-fold. Assuming a Boltzmann distribution, the energy difference between the closed and fully open states in the unstressed membrane was DeltaE = 18.6 kBT. If the mechanosensitivity arises from tension acting on a change of in-plane area (DeltaA), the free energy, TDeltaA, would correspond to DeltaA = 6.5 nm2. MscL is not a binary channel, but has four conducting states and a closed state. Most transition rates are independent of tension, but the rate-limiting step to opening is the transition between the closed state and the lowest conductance substate. This transition thus involves the greatest DeltaA. When summed over all transitions, the in-plane area change from closed to fully open was 6 nm2, agreeing with the value obtained in the two-state analysis. Assuming a cylindrical channel, the dimensions of the (fully open) pore were comparable to DeltaA. Thus, the tension dependence of channel gating is primarily one of increasing the external channel area to accommodate the pore of the smallest conducting state. The higher conducting states appear to involve conformational changes internal to the channel that don't involve changes in area.

  3. FLaapLUC: A pipeline for the generation of prompt alerts on transient Fermi-LAT γ-ray sources

    NASA Astrophysics Data System (ADS)

    Lenain, J.-P.

    2018-01-01

    The large majority of high energy sources detected with Fermi-LAT are blazars, which are known to be very variable sources. High cadence long-term monitoring simultaneously at different wavelengths being prohibitive, the study of their transient activities can help shedding light on our understanding of these objects. The early detection of such potentially fast transient events is the key for triggering follow-up observations at other wavelengths. A Python tool, FLaapLUC, built on top of the Science Tools provided by the Fermi Science Support Center and the Fermi-LAT collaboration, has been developed using a simple aperture photometry approach. This tool can effectively detect relative flux variations in a set of predefined sources and alert potential users. Such alerts can then be used to trigger target of opportunity observations with other facilities. It is shown that FLaapLUC is an efficient tool to reveal transient events in Fermi-LAT data, providing quick results which can be used to promptly organise follow-up observations. Results from this simple aperture photometry method are also compared to full likelihood analyses. The FLaapLUC package is made available on GitHub and is open to contributions by the community.

  4. Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Seoksu; Gao, Yuan; Park, Suhan

    Despite the fact that all modern diesel engines use multi-hole injectors, single-hole injectors are frequently used to understand the fundamental properties of high-pressure diesel injections due to their axisymmetric design of the injector nozzles. A multi-hole injector accommodates many holes around the nozzle axis to deliver adequate amount of fuel with small orifices. The off-axis arrangement of the multi-hole injectors significantly alters the inter- and near-nozzle flow patterns compared to those of the single-hole injectors. This study compares the transient needle motion and near-nozzle flow characteristics of the single- and multi-hole (3-hole and 6-hole) diesel injectors to understand how themore » difference in hole arrangement and number affects the initial flow development of the diesel injectors. A propagation-based X-ray phase-contrast imaging technique was applied to compare the transient needle motion and near-nozzle flow characteristics of the single- and multi-hole injectors. The comparisons were made by dividing the entire injection process by three sub-stages: opening-transient, quasi-steady and closing-transient. (C) 2015 Elsevier Ltd. All rights reserved.« less

  5. Combining Gravitational Wave Events with their Electromagnetic Counterparts: A Realistic Joint False-Alarm Rate

    NASA Astrophysics Data System (ADS)

    Ackley, Kendall; Eikenberry, Stephen; Klimenko, Sergey; LIGO Team

    2017-01-01

    We present a false-alarm rate for a joint detection of gravitational wave (GW) events and associated electromagnetic (EM) counterparts for Advanced LIGO and Virgo (LV) observations during the first years of operation. Using simulated GW events and their recostructed probability skymaps, we tile over the error regions using sets of archival wide-field telescope survey images and recover the number of astrophysical transients to be expected during LV-EM followup. With the known GW event injection coordinates we inject artificial electromagnetic (EM) sources at that site based on theoretical and observational models on a one-to-one basis. We calculate the EM false-alarm probability using an unsupervised machine learning algorithm based on shapelet analysis which has shown to be a strong discriminator between astrophysical transients and image artifacts while reducing the set of transients to be manually vetted by five orders of magnitude. We also show the performance of our method in context with other machine-learned transient classification and reduction algorithms, showing comparability without the need for a large set of training data opening the possibility for next-generation telescopes to take advantage of this pipeline for LV-EM followup missions.

  6. Transient Anosmia Induces Depressive-like and Anxiolytic-like Behavior and Reduces Amygdalar Corticotropin-Releasing Hormone in a ZnSO4-Induced Mouse Model.

    PubMed

    Ahn, Sangzin; Choi, Mooseok; Kim, Hyunju; Yang, Eun-Jeong; Mahmood, Usman; Kang, Seong-Il; Shin, Hyun-Woo; Kim, Dae Woo; Kim, Hye-Sun

    2018-04-23

    Olfactory loss is known to affect both mood and quality of life. Transient anosmia was induced in mice to study the resulting changes in mood, behavior, and on a molecular level. Transient anosmia was induced by a single intranasal instillation of ZnSO4 in BALB/c mice. Hematoxylin and eosin (HE) staining, and potato chip finding test were performed to confirm olfactory loss. Tail suspension, forced swim, and splash tests were performed to evaluate depression-related behavior; while the open field, and elevated plus maze tests were used to evaluate anxiety-related behavior. The mRNA levels of amygdalar corticotropin-releasing hormone (CRH) and hypothalamic glucocorticoid receptor (GR) were quantified using real-time PCR to confirm relevant molecular change. Olfactory loss was confirmed 1-2.5 weeks after induction, and this loss was subsequently reversed over time. The results of the behavioral tests indicated increased depression-like and reduced anxiety-like behavior at week 1. Accordingly, PCR data identified decreased amygdalar CRH expression at week 1. These results suggest that transient anosmia induces both depressive and anxiolytic behavior as a result of decreased amygdalar CRH in a mouse model of anosmia.

  7. Finite difference time domain calculation of transients in antennas with nonlinear loads

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent

    1991-01-01

    Determining transient electromagnetic fields in antennas with nonlinear loads is a challenging problem. Typical methods used involve calculating frequency domain parameters at a large number of different frequencies, then applying Fourier transform methods plus nonlinear equation solution techniques. If the antenna is simple enough so that the open circuit time domain voltage can be determined independently of the effects of the nonlinear load on the antennas current, time stepping methods can be applied in a straightforward way. Here, transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain (FDTD) methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case, the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets, including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.

  8. Reduced-order modellin for high-pressure transient flow of hydrogen-natural gas mixture

    NASA Astrophysics Data System (ADS)

    Agaie, Baba G.; Khan, Ilyas; Alshomrani, Ali Saleh; Alqahtani, Aisha M.

    2017-05-01

    In this paper the transient flow of hydrogen compressed-natural gas (HCNG) mixture which is also referred to as hydrogen-natural gas mixture in a pipeline is numerically computed using the reduced-order modelling technique. The study on transient conditions is important because the pipeline flows are normally in the unsteady state due to the sudden opening and closure of control valves, but most of the existing studies only analyse the flow in the steady-state conditions. The mathematical model consists in a set of non-linear conservation forms of partial differential equations. The objective of this paper is to improve the accuracy in the prediction of the HCNG transient flow parameters using the Reduced-Order Modelling (ROM). The ROM technique has been successfully used in single-gas and aerodynamic flow problems, the gas mixture has not been done using the ROM. The study is based on the velocity change created by the operation of the valves upstream and downstream the pipeline. Results on the flow characteristics, namely the pressure, density, celerity and mass flux are based on variations of the mixing ratio and valve reaction and actuation time; the ROM computational time cost advantage are also presented.

  9. Parasitoid wasp sting: a cocktail of GABA, taurine, and beta-alanine opens chloride channels for central synaptic block and transient paralysis of a cockroach host.

    PubMed

    Moore, Eugene L; Haspel, Gal; Libersat, Frederic; Adams, Michael E

    2006-07-01

    The wasp Ampulex compressa injects venom directly into the prothoracic ganglion of its cockroach host to induce a transient paralysis of the front legs. To identify the biochemical basis for this paralysis, we separated venom components according to molecular size and tested fractions for inhibition of synaptic transmission at the cockroach cercal-giant synapse. Only fractions in the low molecular weight range (<2 kDa) caused synaptic block. Dabsylation of venom components and analysis by HPLC and MALDI-TOF-MS revealed high levels of GABA (25 mM), and its receptor agonists beta-alanine (18 mM), and taurine (9 mM) in the active fractions. Each component produces transient block of synaptic transmission at the cercal-giant synapse and block of efferent motor output from the prothoracic ganglion, which mimics effects produced by injection of whole venom. Whole venom evokes picrotoxin-sensitive chloride currents in cockroach central neurons, consistent with a GABAergic action. Together these data demonstrate that Ampulex utilizes GABAergic chloride channel activation as a strategy for central synaptic block to induce transient and focal leg paralysis in its host. Copyright 2006 Wiley Periodicals, Inc.

  10. 1D-3D coupling for hydraulic system transient simulations

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Nilsson, Håkan; Yang, Jiandong; Petit, Olivier

    2017-01-01

    This work describes a coupling between the 1D method of characteristics (MOC) and the 3D finite volume method of computational fluid dynamics (CFD). The coupling method is applied to compressible flow in hydraulic systems. The MOC code is implemented as a set of boundary conditions in the OpenFOAM open source CFD software. The coupling is realized by two linear equations originating from the characteristics equation and the Riemann constant equation, respectively. The coupling method is validated using three simple water hammer cases and several coupling configurations. The accuracy and robustness are investigated with respect to the mesh size ratio across the interface, and 3D flow features close to the interface. The method is finally applied to the transient flow caused by the closing and opening of a knife valve (gate) in a pipe, where the flow is driven by the difference in free surface elevation between two tanks. A small region surrounding the moving gate is resolved by CFD, using a dynamic mesh library, while the rest of the system is modeled by MOC. Minor losses are included in the 1D region, corresponding to the contraction of the flow from the upstream tank into the pipe, a separate stationary flow regulation valve, and a pipe bend. The results are validated with experimental data. A 1D solution is provided for comparison, using the static gate characteristics obtained from steady-state CFD simulations.

  11. Involvement of respiratory processes in the transient knockout of net CO2 uptake in Mimosa pudica upon heat stimulation.

    PubMed

    Lautner, Silke; Stummer, Michaela; Matyssek, Rainer; Fromm, Jörg; Grams, Thorsten E E

    2014-01-01

    Leaf photosynthesis of the sensitive plant Mimosa pudica displays a transient knockout in response to electrical signals induced by heat stimulation. This study aims at clarifying the underlying mechanisms, in particular, the involvement of respiration. To this end, leaf gas exchange and light reactions of photosynthesis were assessed under atmospheric conditions largely eliminating photorespiration by either elevated atmospheric CO2 or lowered O2 concentration (i.e. 2000 μmol mol(-1) or 1%, respectively). In addition, leaf gas exchange was studied in the absence of light. Under darkness, heat stimulation caused a transient increase of respiratory CO2 release simultaneously with stomatal opening, hence reflecting direct involvement of respiratory stimulation in the drop of the net CO2 uptake rate. However, persistence of the transient decline in net CO2 uptake rate under illumination and elevated CO2 or 1% O2 makes it unlikely that photorespiration is the metabolic origin of the respiratory CO2 release. In conclusion, the transient knockout of net CO2 uptake is at least partially attributed to an increased CO2 release through mitochondrial respiration as stimulated by electrical signals. Putative CO2 limitation of Rubisco due to decreased activity of carbonic anhydrase was ruled out as the photosynthesis effect was not prevented by elevated CO2 . © 2013 John Wiley & Sons Ltd.

  12. A case-crossover study of sleep, fatigue, and other transient exposures at workplace and the risk of non-fatal occupational injuries among the employees of an Italian academic hospital.

    PubMed

    Valent, Francesca; Mariuz, Marika; Liva, Giulia; Bellomo, Fabrizio; De Corti, Daniela; Degan, Stefania; Ferrazzano, Alberto; Brusaferro, Silvio

    2016-11-18

    Transient exposure with acute effect has been shown to affect the risk of occupational injuries in various industrial settings and at the healthcare workplace. The objective of this study has been to identify transient exposures related to occupational injury risk in an Italian teaching hospital. A case-crossover study was conducted among the employees of the University Hospital of Udine who reported an occupational injury, commuting accident, or incident involving biological risk in a 15-month period in the years 2013 and 2014. The matched-pair interval approach was used to assess the role of acute sleep deprivation whereas the usual frequency approach was used for other 13 transient exposures. Sleep hours were not associated with the risk of injuries whereas a significant risk increase was associated with fatigue, rush, distraction, emergency situations, teaching to or being taught by someone, non-compliant patients, bloody operative/work field, excess noise, complex procedures, and anger. We identified transient exposures that increased the risk of occupational injuries in an Italian teaching hospital, providing indications for interventions to increase workers' safety at the healthcare workplace. Int J Occup Med Environ Health 2016;29(6):1001-1009. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  13. Space Food Package - Gemini-Titan (GT)-4 Flight - MSC

    NASA Image and Video Library

    1965-05-01

    Food packages of beef and gravy fully reconstituted and ready to eat. An astronaut would squeeze food through opening at right side of package. Water gun is used to reconstitute dehydrated food. Scissors are used to open packages. This is the type of space food which will be used on the Gemini-Titan 4 spaceflight. MSC, Houston, TX *S65-24895 thru S65-24899

  14. Putting Teeth into Open Architectures: Infrastructure for Reducing the Need for Retesting

    DTIC Science & Technology

    2007-04-30

    the test and evaluation team. This paper outlines new approaches to quality assurance and testing that are better suited for providing...reconfiguration. Testing of reusable subsystems is also subject to the above considerations and, similarly, requires new methods for effectively achieving...architectural model. Thus, fully realizing the open architecture vision requires a new paradigm for test and evaluation. We propose such a

  15. Increasing Public Access to University Qualifications: Evolution of The University of the West Indies Open Campus

    ERIC Educational Resources Information Center

    Thomas, Michael L.; Soares, Judith

    2009-01-01

    This paper traces the evolution of The University of the West Indies' Open Campus (UWIOC), which is expected to expand service and increase access to the underserved communities of the Eastern Caribbean. At present, UWI, which caters to the needs of the 16 far flung countries of the Commonwealth Caribbean, has not been able to fully serve these…

  16. Access to Education with Online Learning and Open Educational Resources: Can They Close the Gap?

    ERIC Educational Resources Information Center

    Geith, Christine; Vignare, Karen

    2008-01-01

    One of the key concepts in the right to education is access: access to the means to fully develop as human beings as well as access to the means to gain skills, knowledge and credentials. This is an important perspective through which to examine the solutions to access enabled by Open Educational Resources (OER) and online learning. The authors…

  17. Trends and Patterns in Massive Open Online Courses: Review and Content Analysis of Research on MOOCs (2008-2015)

    ERIC Educational Resources Information Center

    Bozkurt, Aras; Akgün-Özbek, Ela; Zawacki-Richter, Olaf

    2017-01-01

    To fully understand the phenomenon of massive open online courses (MOOCs), it is important to identify and map trends and patterns in research on MOOCs. This study does so by reviewing 362 empirical articles published in peer-reviewed journals from 2008 to 2015. For the purpose of this study, content analysis and discourse analysis were employed…

  18. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    PubMed

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  19. A high-throughput screening system for barley/powdery mildew interactions based on automated analysis of light micrographs.

    PubMed

    Ihlow, Alexander; Schweizer, Patrick; Seiffert, Udo

    2008-01-23

    To find candidate genes that potentially influence the susceptibility or resistance of crop plants to powdery mildew fungi, an assay system based on transient-induced gene silencing (TIGS) as well as transient over-expression in single epidermal cells of barley has been developed. However, this system relies on quantitative microscopic analysis of the barley/powdery mildew interaction and will only become a high-throughput tool of phenomics upon automation of the most time-consuming steps. We have developed a high-throughput screening system based on a motorized microscope which evaluates the specimens fully automatically. A large-scale double-blind verification of the system showed an excellent agreement of manual and automated analysis and proved the system to work dependably. Furthermore, in a series of bombardment experiments an RNAi construct targeting the Mlo gene was included, which is expected to phenocopy resistance mediated by recessive loss-of-function alleles such as mlo5. In most cases, the automated analysis system recorded a shift towards resistance upon RNAi of Mlo, thus providing proof of concept for its usefulness in detecting gene-target effects. Besides saving labor and enabling a screening of thousands of candidate genes, this system offers continuous operation of expensive laboratory equipment and provides a less subjective analysis as well as a complete and enduring documentation of the experimental raw data in terms of digital images. In general, it proves the concept of enabling available microscope hardware to handle challenging screening tasks fully automatically.

  20. Towards a high resolution, integrated hydrology model of North America: Diagnosis of feedbacks between groundwater and land energy fluxes at continental scales.

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed; Condon, Laura

    2016-04-01

    Recent studies demonstrate feedbacks between groundwater dynamics, overland flow, land surface and vegetation processes, and atmospheric boundary layer development that significantly affect local and regional climate across a range of climatic conditions. Furthermore, the type and distribution of vegetation cover alters land-atmosphere water and energy fluxes, as well as runoff generation and overland flow processes. These interactions can result in significant feedbacks on local and regional climate. In mountainous regions, recent research has shown that spatial and temporal variability in annual evapotranspiration, and thus water budgets, is strongly dependent on lateral groundwater flow; however, the full effects of these feedbacks across varied terrain (e.g. from plains to mountains) are not well understood. Here, we present a high-resolution, integrated hydrology model that covers much of continental North America and encompasses the Mississippi and Colorado watersheds. The model is run in a fully-transient manner at hourly temporal resolution incorporating fully-coupled land energy states and fluxes with integrated surface and subsurface hydrology. Connections are seen between hydrologic variables (such as water table depth) and land energy fluxes (such as latent heat) and spatial and temporal scaling is shown to span many orders of magnitude. Model results suggest that partitioning of plant transpiration to bare soil evaporation is a function of water table depth and later groundwater flow. Using these transient simulations as a proof of concept, we present a vision for future integrated simulation capabilities.

  1. The fast transient sky with Gaia

    NASA Astrophysics Data System (ADS)

    Wevers, Thomas; Jonker, Peter G.; Hodgkin, Simon T.; Kostrzewa-Rutkowska, Zuzanna; Harrison, Diana L.; Rixon, Guy; Nelemans, Gijs; Roelens, Maroussia; Eyer, Laurent; van Leeuwen, Floor; Yoldas, Abdullah

    2018-01-01

    The ESA Gaia satellite scans the whole sky with a temporal sampling ranging from seconds and hours to months. Each time a source passes within the Gaia field of view, it moves over 10 charge coupled devices (CCDs) in 45 s and a light curve with 4.5 s sampling (the crossing time per CCD) is registered. Given that the 4.5 s sampling represents a virtually unexplored parameter space in optical time domain astronomy, this data set potentially provides a unique opportunity to open up the fast transient sky. We present a method to start mining the wealth of information in the per CCD Gaia data. We perform extensive data filtering to eliminate known onboard and data processing artefacts, and present a statistical method to identify sources that show transient brightness variations on ≲2 h time-scales. We illustrate that by using the Gaia photometric CCD measurements, we can detect transient brightness variations down to an amplitude of 0.3 mag on time-scales ranging from 15 s to several hours. We search an area of ∼23.5 deg2 on the sky and find four strong candidate fast transients. Two candidates are tentatively classified as flares on M-dwarf stars, while one is probably a flare on a giant star and one potentially a flare on a solar-type star. These classifications are based on archival data and the time-scales involved. We argue that the method presented here can be added to the existing Gaia Science Alerts infrastructure for the near real-time public dissemination of fast transient events.

  2. Toward Mass Customization in the Age of Information: The Case for Open Engineering Systems

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.; Lautenschlager, Uwe; Mistree, Farrokh

    1997-01-01

    In the Industrial Era, manufacturers used "dedicated" engineering systems to mass produce their products. In today's increasingly competitive markets, the trend is toward mass customization, something that becomes increasingly feasible when modern information technologies are used to create open engineering systems. Our focus is on how designers can provide enhanced product flexibility and variety (if not fully customized products) through the development of open engineering systems. After presenting several industrial examples, we anchor our new systems philosophy with two real engineering applications. We believe that manufacturers who adopt open systems will achieve competitive advantage in the Information Age.

  3. Fuel-Mediated Transient Clustering of Colloidal Building Blocks.

    PubMed

    van Ravensteijn, Bas G P; Hendriksen, Wouter E; Eelkema, Rienk; van Esch, Jan H; Kegel, Willem K

    2017-07-26

    Fuel-driven assembly operates under the continuous influx of energy and results in superstructures that exist out of equilibrium. Such dissipative processes provide a route toward structures and transient behavior unreachable by conventional equilibrium self-assembly. Although perfected in biological systems like microtubules, this class of assembly is only sparsely used in synthetic or colloidal analogues. Here, we present a novel colloidal system that shows transient clustering driven by a chemical fuel. Addition of fuel causes an increase in hydrophobicity of the building blocks by actively removing surface charges, thereby driving their aggregation. Depletion of fuel causes reappearance of the charged moieties and leads to disassembly of the formed clusters. This reassures that the system returns to its initial, equilibrium state. By taking advantage of the cyclic nature of our system, we show that clustering can be induced several times by simple injection of new fuel. The fuel-mediated assembly of colloidal building blocks presented here opens new avenues to the complex landscape of nonequilibrium colloidal structures, guided by biological design principles.

  4. VizieR Online Data Catalog: Proper motions of PM2000 open clusters (Krone-Martins+, 2010)

    NASA Astrophysics Data System (ADS)

    Krone-Martins, A.; Soubiran, C.; Ducourant, C.; Teixeira, R.; Le Campion, J. F.

    2010-04-01

    We present lists of proper-motions and kinematic membership probabilities in the region of 49 open clusters or possible open clusters. The stellar proper motions were taken from the Bordeaux PM2000 catalogue. The segregation between cluster and field stars and the assignment of membership probabilities was accomplished by applying a fully automated method based on parametrisations for the probability distribution functions and genetic algorithm optimisation heuristics associated with a derivative-based hill climbing algorithm for the likelihood optimization. (3 data files).

  5. Measurements of Pressure Distributions and Force Coefficients in a Squeeze Film Damper. Part 1: Fully Open Ended Configuration

    NASA Technical Reports Server (NTRS)

    Jung, S. Y.; Sanandres, Luis A.; Vance, J. M.

    1991-01-01

    Measurements of pressure distributions and force coefficients were carried out in two types of squeeze film dampers, executing a circular centered orbit, an open-ended configuration, and a partially sealed one, in order to investigate the effect of fluid inertia and cavitation on pressure distributions and force coefficients. Dynamic pressure measurements were carried out for two orbit radii, epsilon 0.5 and 0.8. It was found that the partially sealed configuration was less influenced by fluid inertia than the open ended configuration.

  6. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    NASA Technical Reports Server (NTRS)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  7. Harmful Algal Blooms (HABs)

    MedlinePlus

    ... yet understand fully how many HABs might affect human health, health agencies in the United States and abroad ... 232-6348 Email CDC-INFO U.S. Department of Health & Human Services HHS/Open USA.gov TOP

  8. Genetic reprogramming of host cells by bacterial pathogens.

    PubMed

    Tran Van Nhieu, Guy; Arbibe, Laurence

    2009-10-29

    During the course of infection, pathogens often induce changes in gene expression in host cells and these changes can be long lasting and global or transient and of limited amplitude. Defining how, when, and why bacterial pathogens reprogram host cells represents an exciting challenge that opens up the opportunity to grasp the essence of pathogenesis and its molecular details.

  9. 75 FR 38845 - Exelon Generation Company, LLC; Three Mile Island Nuclear Station, Unit No. 1; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... ignition sources, hot work activities (activities such as welding or grinding), in situ and transient... is \\1/4\\- inch outside diameter tubing used for testing reactor building pressure switches. This... testing on the MU-V-20 backup air supply demonstrated that MU-V- 20 would only stay open for approximately...

  10. 78 FR 47785 - Biweekly Notice; Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... correlation for the General Electric Nuclear Energy advanced fuel designs (i.e., GE14 and GNF2 fuels) used at... Electric Nuclear Energy in its report, ``10 CFR 21 Reportable Condition Notification: Potential to Exceed... failure-maximum demand open (PRFO) transient as reported by General Electric Nuclear Energy in its Part 21...

  11. Toward the Geoscience Paper of the Future: Best practices for documenting and sharing research from data to software to provenance

    NASA Astrophysics Data System (ADS)

    Gil, Yolanda; David, Cédric H.; Demir, Ibrahim; Essawy, Bakinam T.; Fulweiler, Robinson W.; Goodall, Jonathan L.; Karlstrom, Leif; Lee, Huikyo; Mills, Heath J.; Oh, Ji-Hyun; Pierce, Suzanne A.; Pope, Allen; Tzeng, Mimi W.; Villamizar, Sandra R.; Yu, Xuan

    2016-10-01

    Geoscientists now live in a world rich with digital data and methods, and their computational research cannot be fully captured in traditional publications. The Geoscience Paper of the Future (GPF) presents an approach to fully document, share, and cite all their research products including data, software, and computational provenance. This article proposes best practices for GPF authors to make data, software, and methods openly accessible, citable, and well documented. The publication of digital objects empowers scientists to manage their research products as valuable scientific assets in an open and transparent way that enables broader access by other scientists, students, decision makers, and the public. Improving documentation and dissemination of research will accelerate the pace of scientific discovery by improving the ability of others to build upon published work.

  12. PB-AM: An open-source, fully analytical linear poisson-boltzmann solver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felberg, Lisa E.; Brookes, David H.; Yap, Eng-Hui

    2016-11-02

    We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized Poisson Boltzmann equation. The PB-AM software package includes the generation of outputs files appropriate for visualization using VMD, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmannmore » Solver (APBS) software package to make it more accessible to a larger group of scientists, educators and students that are more familiar with the APBS framework.« less

  13. The Galileo high gain antenna deployment anomaly

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.

    1994-01-01

    On April 11, 1991, the Galileo spacecraft executed a sequence that would open the spacecraft's High Gain Antenna. The Antenna's launch restraint had been released just after deployment sequence, the antenna, which opens like an umbrella, never reached the fully deployed position. The analyses and tests that followed allowed a conclusive determination of the likely failure mechanisms and pointed to some strategies to use for recovery of the high gain antenna.

  14. Reanalysis of 24 Nearby Open Clusters using Gaia data

    NASA Astrophysics Data System (ADS)

    Yen, Steffi X.; Reffert, Sabine; Röser, Siegfried; Schilbach, Elena; Kharchenko, Nina V.; Piskunov, Anatoly E.

    2018-04-01

    We have developed a fully automated cluster characterization pipeline, which simultaneously determines cluster membership and fits the fundamental cluster parameters: distance, reddening, and age. We present results for 24 established clusters and compare them to literature values. Given the large amount of stellar data for clusters available from Gaia DR2 in 2018, this pipeline will be beneficial to analyzing the parameters of open clusters in our Galaxy.

  15. Indoor birch pollen concentrations differ with ventilation scheme, room location, and meteorological factors.

    PubMed

    Menzel, A; Matiu, M; Michaelis, R; Jochner, S

    2017-05-01

    Indoor pollen concentrations are an underestimated human health issue. In this study, we measured hourly indoor birch pollen concentrations on 8 days in April 2015 with portable pollen traps in five rooms of a university building at Freising, Germany. These data were compared to the respective outdoor values right in front of the rooms and to background pollen data. The rooms were characterized by different aspects and window ventilation schemes. Meteorological data were equally measured directly in front of the windows. Outdoor concentration could be partly explained with phenological data of 56 birches in the surrounding showing concurrent high numbers of trees attaining flowering stages. Indoor pollen concentrations were lower than outdoor concentrations: mean indoor/outdoor (I/O) ratio was highest in a room with fully opened window and additional mechanical ventilation (.75), followed by rooms with fully opened windows (.35, .12) and lowest in neighboring rooms with tilted window (.19) or windows only opened for short ventilation (.07). Hourly I/O ratios depended on meteorology and increased with outside temperature and wind speed oriented perpendicular to the window opening. Indoor concentrations additionally depended on the previously measured concentrations, indicating accumulation of pollen inside the rooms even after the full flowering period. © 2016 The Authors. Indoor Air Published by John Wiley & Sons Ltd.

  16. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, a cameraman films part of Discovery’s payload bay for a special feature on the KSC Web. In the background is the open hatch of the airlock, located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

    NASA Image and Video Library

    2004-01-22

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, a cameraman films part of Discovery’s payload bay for a special feature on the KSC Web. In the background is the open hatch of the airlock, located inside the middeck of the spacecraft’s pressurized crew cabin. The airlock is sized to accommodate two fully suited flight crew members simultaneously. Support functions include airlock depressurization and repressurization, extravehicular activity equipment recharge, liquid-cooled garment water cooling, EVA equipment checkout, donning and communications. The outer hatch isolates the airlock from the unpressurized payload bay when closed and permits the EVA crew members to exit from the airlock to the payload bay when open.

  17. Feedback control of acoustic disturbance transient growth in triggering thermoacoustic instability

    NASA Astrophysics Data System (ADS)

    Zhao, Dan; Reyhanoglu, Mahmut

    2014-08-01

    Transient growth of acoustic disturbances could trigger thermoacoustic instability in a combustion system with non-orthogonal eigenmodes, even with stable eigenvalues. In this work, feedback control of transient growth of flow perturbations in a Rijke-type combustion system is considered. For this, a generalized thermoacoustic model with distributed monopole-like actuators is developed. The model is formulated in state-space to gain insights on the interaction between various eigenmodes and the dynamic response of the system to the actuators. Three critical parameters are identified: (1) the mode number, (2) the number of actuators, and (3) the locations of the actuators. It is shown that in general the number of the actuators K is related to the mode number N as K=N2. For simplicity in illustrating the main results of the paper, two different thermoacoustic systems are considered: system (a) with one mode and system (b) that involves two modes. The actuator location effect is studied in system (a) and it is found that the actuator location plays an important role in determining the control effort. In addition, sensitivity analysis of pressure- and velocity-related control parameters is conducted. In system (b), when the actuators are turned off (i.e., open-loop configuration), it is observed that acoustic energy transfers from the high frequency mode to the lower frequency mode. After some time, the energy is transferred back. Moreover, the high frequency oscillation grows into nonlinear limit cycle with the low frequency oscillation amplified. As a linear-quadratic regulator (LQR) is implemented to tune the actuators, both systems become asymptotically stable. However, the LQR controller fails in eliminating the transient growth, which may potentially trigger thermoacoustic instability. In order to achieve strict dissipativity (i.e., unity maximum transient growth), a transient growth controller is systematically designed and tested in both systems. Comparison is then made between the performance of the LQR controller and that of the transient growth controller. It is found in both systems that the transient growth controller achieves both exponential decay of the flow disturbance energy and unity maximum transient growth.

  18. Cluster analysis of multiple planetary flow regimes

    NASA Technical Reports Server (NTRS)

    Mo, Kingtse; Ghil, Michael

    1987-01-01

    A modified cluster analysis method was developed to identify spatial patterns of planetary flow regimes, and to study transitions between them. This method was applied first to a simple deterministic model and second to Northern Hemisphere (NH) 500 mb data. The dynamical model is governed by the fully-nonlinear, equivalent-barotropic vorticity equation on the sphere. Clusters of point in the model's phase space are associated with either a few persistent or with many transient events. Two stationary clusters have patterns similar to unstable stationary model solutions, zonal, or blocked. Transient clusters of wave trains serve as way stations between the stationary ones. For the NH data, cluster analysis was performed in the subspace of the first seven empirical orthogonal functions (EOFs). Stationary clusters are found in the low-frequency band of more than 10 days, and transient clusters in the bandpass frequency window between 2.5 and 6 days. In the low-frequency band three pairs of clusters determine, respectively, EOFs 1, 2, and 3. They exhibit well-known regional features, such as blocking, the Pacific/North American (PNA) pattern and wave trains. Both model and low-pass data show strong bimodality. Clusters in the bandpass window show wave-train patterns in the two jet exit regions. They are related, as in the model, to transitions between stationary clusters.

  19. HPTAM, a two-dimensional Heat Pipe Transient Analysis Model, including the startup from a frozen state

    NASA Technical Reports Server (NTRS)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    1995-01-01

    A two-dimensional Heat Pipe Transient Analysis Model, 'HPTAM,' was developed to simulate the transient operation of fully-thawed heat pipes and the startup of heat pipes from a frozen state. The model incorporates: (a) sublimation and resolidification of working fluid; (b) melting and freezing of the working fluid in the porous wick; (c) evaporation of thawed working fluid and condensation as a thin liquid film on a frozen substrate; (d) free-molecule, transition, and continuum vapor flow regimes, using the Dusty Gas Model; (e) liquid flow and heat transfer in the porous wick; and (f) thermal and hydrodynamic couplings of phases at their respective interfaces. HPTAM predicts the radius of curvature of the liquid meniscus at the liquid-vapor interface and the radial location of the working fluid level (liquid or solid) in the wick. It also includes the transverse momentum jump condition (capillary relationship of Pascal) at the liquid-vapor interface and geometrically relates the radius of curvature of the liquid meniscus to the volume fraction of vapor in the wick. The present model predicts the capillary limit and partial liquid recess (dryout) in the evaporator wick, and incorporates a liquid pooling submodel, which simulates accumulation of the excess liquid in the vapor core at the condenser end.

  20. Saliency Detection via Absorbing Markov Chain With Learnt Transition Probability.

    PubMed

    Lihe Zhang; Jianwu Ai; Bowen Jiang; Huchuan Lu; Xiukui Li

    2018-02-01

    In this paper, we propose a bottom-up saliency model based on absorbing Markov chain (AMC). First, a sparsely connected graph is constructed to capture the local context information of each node. All image boundary nodes and other nodes are, respectively, treated as the absorbing nodes and transient nodes in the absorbing Markov chain. Then, the expected number of times from each transient node to all other transient nodes can be used to represent the saliency value of this node. The absorbed time depends on the weights on the path and their spatial coordinates, which are completely encoded in the transition probability matrix. Considering the importance of this matrix, we adopt different hierarchies of deep features extracted from fully convolutional networks and learn a transition probability matrix, which is called learnt transition probability matrix. Although the performance is significantly promoted, salient objects are not uniformly highlighted very well. To solve this problem, an angular embedding technique is investigated to refine the saliency results. Based on pairwise local orderings, which are produced by the saliency maps of AMC and boundary maps, we rearrange the global orderings (saliency value) of all nodes. Extensive experiments demonstrate that the proposed algorithm outperforms the state-of-the-art methods on six publicly available benchmark data sets.

  1. Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus

    NASA Astrophysics Data System (ADS)

    Yoo, Donghoon; Lee, Joohyun; Lee, Byeongchan; Kwon, Suyong; Koo, Junemo

    2018-02-01

    The Transient Hot-Wire Method (THWM) was developed to measure the absolute thermal conductivity of gases, liquids, melts, and solids with low uncertainty. The majority of nanofluid researchers used THWM to measure the thermal conductivity of test fluids. Several reasons have been suggested for the discrepancies in these types of measurements, including nanofluid generation, nanofluid stability, and measurement challenges. The details of the transient hot-wire method such as the test cell size, the temperature coefficient of resistance (TCR) and the sampling number are further investigated to improve the accuracy and consistency of the measurements of different researchers. It was observed that smaller test apparatuses were better because they can delay the onset of natural convection. TCR values of a coated platinum wire were measured and statistically analyzed to reduce the uncertainty in thermal conductivity measurements. For validation, ethylene glycol (EG) and water thermal conductivity were measured and analyzed in the temperature range between 280 and 310 K. Furthermore, a detailed statistical analysis was conducted for such measurements, and the results confirmed the minimum number of samples required to achieve the desired resolution and precision of the measurements. It is further proposed that researchers fully report the information related to their measurements to validate the measurements and to avoid future inconsistent nanofluid data.

  2. Effects of thermo-mechanical behavior and hinge geometry on folding response of shape memory polymer sheets

    NASA Astrophysics Data System (ADS)

    Mailen, Russell W.; Dickey, Michael D.; Genzer, Jan; Zikry, Mohammed

    2017-11-01

    Shape memory polymer (SMP) sheets patterned with black ink hinges change shape in response to external stimuli, such as absorbed thermal energy from an infrared (IR) light. The geometry of these hinges, including size, orientation, and location, and the applied thermal loads significantly influence the final folded shape of the sheet, but these variables have not been fully investigated. We perform a systematic study on SMP sheets to fundamentally understand the effects of single and double hinge geometries, hinge orientation and spacing, initial temperature, heat flux intensity, and pattern width on the folding behavior. We have developed thermo-viscoelastic finite element models to characterize and quantify the stresses, strains, and temperatures as they relate to SMP shape changes. Our predictions indicate that hinge orientation can be used to reduce the total bending angle, which is the angle traversed by the folding face of the sheet. Two parallel hinges increase the total bending angle, and heat conduction between the hinges affects the transient folding response. IR intensity and initial temperatures can also influence the transient folding behavior. These results can provide guidelines to optimize the transient folding response and the three-dimensional folded structure obtained from self-folding polymer origami sheets that can be applied for myriad applications.

  3. Induction of Parkinson disease-related proteins in motor neurons after transient spinal cord ischemia in rabbits.

    PubMed

    Sakurai, Masahiro; Kawamura, Takae; Nishimura, Hidekazu; Suzuki, Hiroyoshi; Tezuka, Fumiaki; Abe, Koji

    2009-04-01

    The mechanism of spinal cord injury has been thought to be related to the vulnerability of spinal motor neuron cells against ischemia. However, the mechanisms of such vulnerability are not fully understood. We investigated a possible mechanism of neuronal death by immunohistochemical analysis for DJ-1, PINK1, and alpha-Synuclein. We used a 15-min rabbit spinal cord ischemia model, with use of a balloon catheter. Western blot analysis for DJ-1, PINK1, and alpha-Synuclein; temporal profiles of DJ-1, PINK1, and alpha-Synuclein immunoreactivity; and double-label fluorescence immunocytochemical studies were performed. Western blot analysis revealed scarce immunoreactivity for DJ-1, PINK1, and alpha-Synuclein in the sham-operated spinal cords. However, they became apparent at 8 h after transient ischemia, which returned to the baseline level at 1 day. Double-label fluorescence immunocytochemical study revealed that both DJ-1 and PINK1, and DJ-1 and alpha-Synuclein were positive at 8 h of reperfusion in the same motor neurons, which eventually die. The induction of DJ-1 and PINK1 proteins in the motor neurons at the early stage of reperfusion may indicate oxidative stress, and the induction of alpha-Synuclein may be implicated in the programmed cell death change after transient spinal cord ischemia.

  4. Transient pressure analysis of fractured well in bi-zonal gas reservoirs

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Long; Zhang, Lie-Hui; Liu, Yong-hui; Hu, Shu-Yong; Liu, Qi-Guo

    2015-05-01

    For hydraulic fractured well, how to evaluate the properties of fracture and formation are always tough jobs and it is very complex to use the conventional method to do that, especially for partially penetrating fractured well. Although the source function is a very powerful tool to analyze the transient pressure for complex structure well, the corresponding reports on gas reservoir are rare. In this paper, the continuous point source functions in anisotropic reservoirs are derived on the basis of source function theory, Laplace transform method and Duhamel principle. Application of construction method, the continuous point source functions in bi-zonal gas reservoir with closed upper and lower boundaries are obtained. Sequentially, the physical models and transient pressure solutions are developed for fully and partially penetrating fractured vertical wells in this reservoir. Type curves of dimensionless pseudo-pressure and its derivative as function of dimensionless time are plotted as well by numerical inversion algorithm, and the flow periods and sensitive factors are also analyzed. The source functions and solutions of fractured well have both theoretical and practical application in well test interpretation for such gas reservoirs, especial for the well with stimulated reservoir volume around the well in unconventional gas reservoir by massive hydraulic fracturing which always can be described with the composite model.

  5. Experimental measurements of heat transfer coefficient in a partially/fully opened tilted cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakroun, W.; Elsayed, M.M.; Al-Fahed, S.F.

    1997-11-01

    An experimental investigation was carried out to determine the heat transfer coefficient from a rectangular tilted cavity to the ambient due to the buoyancy driven flow in the cavity. The cavity is partially or fully open from one side. All the walls of the cavity are adiabatic except the wall facing the cavity opening which is heated at a constant heat flux. Air was used as the cavity fluid and the experiments were carried out at a flux Grashof number of 5.5 {times} 10{sup 8}. The tilt angle of the cavity, measured from the vertical direction, was changed between {minus}90more » deg to +90 deg in 15 deg increments. Also, geometries of aspect ratio (height-to-width of cavity) of 1.0, 0.5, and 0.25 and of opening ratio (opening height to cavity height) of 1.0, 0.5, and 0.25 were considered in the study. The results are presented in terms of the average Nusselt number for different values of the above experimental parameters. Conclusions are derived for the effect of changing the tilt angle, the aspect ratio, or the opening ratio of the cavity on the average heat transfer coefficient between the cavity and the ambient air. Buoyancy-driven flow in rectangular cavities has been widely investigated by many researchers. This geometry is of special interest in many solar applications such as in solar passive heating, solar concentrators, and solar central receivers. The importance of the geometry extends to other engineering applications such as electronic equipment, fire research, and energy conservation in buildings.« less

  6. Origin of high open-circuit voltage in a planar heterojunction solar cell containing a non-fullerene acceptor

    NASA Astrophysics Data System (ADS)

    Cheng, Nongyi; Peng, Yuelin; Andrew, Trisha L.

    2017-09-01

    Vapor-deposited, planar heterojunction organic solar cells containing a periflanthene donor and either a fullerene or non-fullerene acceptor are investigated. A high VOC of 1.16 V is observed in devices containing the non-fullerene, pyrrolo[3,4-c]pyrrole-1,4-dione, 3,6-bis(4-chlorophenyl)-2,5-dihydro acceptor, whereas analogous devices containing C60 only result in a VOC of 0.8 V. The measured band energy levels of the two different acceptors do not readily explain the observed difference. Small-perturbation transient photovoltage and transient photocurrent measurements reveal that interfacial charge recombination is comparatively slower for the non-fullerene acceptor, resulting in relatively higher Voc values.

  7. Characterization of a Pressure-Fed LOX/LCH4 Reaction Control System Under Simulated Altitude and Thermal Vacuum Conditions

    NASA Technical Reports Server (NTRS)

    Atwell, Matthew J.; Melcher, John C.; Hurlbert, Eric A.; Morehead, Robert L.

    2017-01-01

    A liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under simulated altitude and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA) and was initially developed under Project Morpheus. Composed of two 28 lbf-thrust and two 7 lbf-thrust engines, the RCS is fed in parallel with the ICPTA main engine from four propellant tanks. 40 tests consisting of 1,010 individual thruster pulses were performed across 6 different test days. Major test objectives were focused on system dynamics, and included characterization of fluid transients, manifold priming, manifold thermal conditioning, thermodynamic vent system (TVS) performance, and main engine/RCS interaction. Peak surge pressures from valve opening and closing events were examined. It was determined that these events were impacted significantly by vapor cavity formation and collapse. In most cases the valve opening transient was more severe than the valve closing. Under thermal vacuum conditions it was shown that TVS operation is unnecessary to maintain liquid conditions at the thruster inlets. However, under higher heat leak environments the RCS can still be operated in a self-conditioning mode without overboard TVS venting, contingent upon the engines managing a range of potentially severe thermal transients. Lastly, during testing under cold thermal conditions the engines experienced significant ignition problems. Only after warming the thruster bodies with a gaseous nitrogen purge to an intermediate temperature was successful ignition demonstrated.

  8. Solid-propellant motors for high-incremental-velocity low-acceleration maneuvers in space

    NASA Technical Reports Server (NTRS)

    Shafer, J. I.

    1972-01-01

    The applicability of solid-propellant rockets into a regime of high-performance long-burning tasks beyond the capability of existing motors is discussed. Successful static test firings have demonstrated the feasibility of: (1) utilizing fully case-bonded end-burning propellant charges without mechanical stress relief; (2) using an all-carbon radiative nozzle markedly lighter than the flight-weight ablative nozzle it replaces, and (3) producing low spacecraft acceleration rates during the thrust transient through a controlled-flow igniter that promotes operation below the previous combustion limit.

  9. An electrochemical and photophysical study of a covalently linked inorganic-organic dyad.

    PubMed

    Kahnt, Axel; Heiniger, Leo-Philipp; Liu, Shi-Xia; Tu, Xiaoyan; Zheng, Zhiping; Hauser, Andreas; Decurtins, Silvio; Guldi, Dirk M

    2010-02-22

    A molecular donor-acceptor dyad comprising a hexarhenium cluster core, [Re(6)(mu(3)-Se)(8)](2+), and a fullerene moiety which are covalently linked through a pyridine ligand was synthesized and fully characterized. The electrochemical and photophysical properties are reported. The detailed study includes cyclic voltammetry, steady-state absorption and fluorescence spectroscopy, radiation chemistry and transient absorption spectroscopy. A light-induced electron transfer between the inorganic cluster moiety and the fullerene can be excluded. However, a light-induced energy transfer from the rhenium cluster to the fullerene is proposed.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz, Pablo R.; Rempel, Erico L.; Barroso, Joaquim J.

    We study the chaotic dynamics of the Pierce diode, a simple spatially extended system for collisionless bounded plasmas, focusing on the concept of edge of chaos, the boundary that separates transient from asymptotic dynamics. We fully characterize an interior crisis at the end of a periodic window, thereby showing direct evidence of the collision between a chaotic attractor, a chaotic saddle, and the edge of chaos, formed by a period-3 unstable periodic orbit and its stable manifold. The edge of chaos persists after the interior crisis, when the global attractor of the system increases its size in the phase space.

  11. Transoral endoscopic thyroidectomy vestibular approach (TOETVA) for Graves' disease: a comparison of surgical results with open thyroidectomy.

    PubMed

    Jitpratoom, Pornpeera; Ketwong, Khwannara; Sasanakietkul, Thanyawat; Anuwong, Angkoon

    2016-12-01

    Transoral endoscopic thyroidectomy vestibular approach (TOETVA) provides excellent cosmetic results from its potential for scar-free operation. The procedure has been applied successfully for Graves' disease by the authors of this work and compared with the standard open cervical approach to evaluate its safety and outcomes. From January 2014 to November 2016, a total of 97 patients with Graves' disease were reviewed retrospectively. Open thyroidectomy (OT) and TOETVA were performed in 49 patients and 46 patients, respectively. For TOETVA, a three-port technique through the oral vestibule was utilized. The thyroidectomy was done endoscopically using conventional laparoscopic instruments and an ultrasonic device. Patient demographics and surgical variables, including operative time, blood loss, and complications, were investigated and compared. TOETVA was performed successfully in all 45 patients, although conversion to open surgery was deemed necessary in one patient. All patient characteristics for both groups were similar. Operative time was shorter for the OT group compared to the TOETVA group, which totaled 101.97±24.618 and 134.11±31.48 minutes, respectively (P<0.5). Blood loss was comparable for both groups. The visual analog scale (VAS) pain score for the TOETVA group was significantly lower than for the OT group on day 1 (2.08±1.53 vs . 4.57±1.35), day 2 (0.84±1.12 vs . 2.57±1.08) and day 3 (0.33±0.71 vs . 1.08±1.01) (P<0.05). Transient recurrent laryngeal nerve (RLN) palsy was found in four and two cases of TOETVA and OT group, respectively. Transient hypocalcemia was found in ten and seven cases of TOETVA and OT group, respectively. No other complications were observed. TOETVA is a feasible and safe treatment for Graves' disease in comparison to the standard open cervical approach. It is considered a viable alternative for patients who have been indicated for surgery with excellent cosmetic results.

  12. Direct observation of ring-opening dynamics in strong-field ionized selenophene using femtosecond inner-shell absorption spectroscopy

    DOE PAGES

    Lackner, Florian; Chatterley, Adam S.; Pemmaraju, C. D.; ...

    2016-12-21

    Femtosecond extreme ultraviolet transient absorption spectroscopy is used to explore strong-field ionization induced dynamics in selenophene (C 4H 4Se). The dynamics are monitored in real-time from the viewpoint of the Se atom by recording the temporal evolution of element-specific spectral features near the Se 3d inner-shell absorption edge (~58 eV). The interpretation of the experimental results is supported by first-principles time-dependent density functional theory calculations. The experiments simultaneously capture the instantaneous population of stable molecular ions, the emergence and decay of excited cation states, and the appearance of atomic fragments. The experiments reveal, in particular, insight into the strong-field inducedmore » ring-opening dynamics in the selenophene cation, which are traced by the emergence of non-cyclic molecules as well as the liberation of Se + ions within an overall time scale of approximately 170 fs. In this study, we propose that both products may be associated with dynamics on the same electronic surfaces but with different degrees of vibrational excitation. The time-dependent inner-shell absorption features provide direct evidence for a complex relaxation mechanism that may be approximated by a two-step model, whereby the initially prepared, excited cyclic cation decays within τ 1 = 80 ± 30 fs into a transient molecular species, which then gives rise to the emergence of bare Se + and ring-open cations within an additional τ 2 = 80 ± 30 fs. The combined experimental and theoretical results suggest a close relationship between σ* excited cation states and the observed ring-opening reactions. In conclusion, the findings demonstrate that the combination of femtosecond time-resolved core-level spectroscopy with ab initio estimates of spectroscopic signatures provide new insights into complex, ultrafast photochemical reactions such as ring-opening dynamics in organic molecules in real-time and with simultaneous sensitivity for electronic and structural rearrangements.« less

  13. Grand Views of Evolution.

    PubMed

    de Vladar, Harold P; Santos, Mauro; Szathmáry, Eörs

    2017-05-01

    Despite major advances in evolutionary theories, some aspects of evolution remain neglected: whether evolution: would come to a halt without abiotic change; is unbounded and open-ended; or is progressive and something beyond fitness is maximized. Here, we discuss some models of ecology and evolution and argue that ecological change, resulting in Red Queen dynamics, facilitates (but does not ensure) innovation. We distinguish three forms of open-endedness. In weak open-endedness, novel phenotypes can occur indefinitely. Strong open-endedness requires the continual appearance of evolutionary novelties and/or innovations. Ultimate open-endedness entails an indefinite increase in complexity, which requires unlimited heredity. Open-ended innovation needs exaptations that generate novel niches. This can result in new traits and new rules as the dynamics unfolds, suggesting that evolution is not fully algorithmic. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Opening-assisted coherent transport in the semiclassical regime

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Celardo, G. Luca; Borgonovi, Fausto; Kaplan, Lev

    2017-02-01

    We study quantum enhancement of transport in open systems in the presence of disorder and dephasing. Quantum coherence effects may significantly enhance transport in open systems even in the semiclassical regime (where the decoherence rate is greater than the intersite hopping amplitude), as long as the disorder is sufficiently strong. When the strengths of disorder and dephasing are fixed, there is an optimal opening strength at which the coherent transport enhancement is optimized. Analytic results are obtained in two simple paradigmatic tight-binding models of large systems: the linear chain and the fully connected network. The physical behavior is also reflected in the Fenna-Matthews-Olson (FMO) photosynthetic complex, which may be viewed as intermediate between these paradigmatic models.

  15. Time-variable stress transfer across a megathrust from seismic to Wilson cycle scale

    NASA Astrophysics Data System (ADS)

    Rosenau, Matthias; Angiboust, Samuel; Moreno, Marcos; Schurr, Bernd; Oncken, Onno

    2013-04-01

    During the lifetime of a convergent plate margin stress transfer across the plate interface (a megathrust) can be expected to vary at multiple timescales. At short time scales (years to decades), a subduction megathrust interface appears coupled (accumulating shear stress) at shallow depth (seismogenic zone <350°C) in a laterally heterogeneous fashion. Highly coupled areas are prerequisite to areas of large slip (asperities) during future earthquakes but the correlation is rarely unequivocal suggesting that the coupling pattern is transient during the interseismic period. As temperature, structure and material properties are unlike to change at short time scales as well as at short distance along strike, fluid pressure change is invoked as the prime agent of lateral and time-variable stress transfer at short time (seismic cycle) scale and beyond. On longer time scales (up to Wilson cycles), additional agents of time-variable stress change are discussed. Shear tests using velocity weakening rock analogue material suggest that in a conditionally stable regime the effective normal load controls both the geodetic and the seismic coupling (fraction of convergence velocity accommodated by interseismic backslip/seismic slip). Accordingly seismic coupling decreases from 80% to 20% as the pore fluid pressure increases from hydrostatic to near-lithostatic. Moreover, the experiments demonstrate that at sub-seismic cycle scale the geodetic coupling (locking) is not only proportional to effective normal load but also to relative shear stress. For areas of near complete stress drop locking might systematically decrease over the interseismic period from >80-95 % shortly after an earthquake to backslip at significant fractions of plate convergence rate (<5-45 % locking) later in the seismic cycle. If we allow pore fluid pressures to change at sub-seismic cycle scale a single location along a megathrust may thus appear fully locked after an earthquake while fully unlocked before an earthquake. The mechanisms and timescales of fluid pressure changes along a megathrust are yet to be explored but a valid hypothesis seems to be that non-volcanic tremor and slow slip below the seismogenic zone represent short term episodes of metamorphic fluid infiltration into the shallow megathrust. A megathrust fault valve mechanism clocked by the greatest earthquakes then accounts for cyclic fluid pressure build up and drainage at sub-seismic cycle scale. As pore pressure dynamics are controlled primarily by permeability which in turn is controlled by structure and material properties, then more long term coupling transients associated with structural evolution of the plate margin can be implied. Fluid controlled transients might interfere with transients and secular trends resulting from changes in material strength and plate tectonic forces over the Wilson cycle resulting in a multispectral stress-transfer pattern associated with convergent margin evolution. Because of the viscous damping effect of the underlying asthenosphere, however, only longterm transients (periods >1-10 ka) are transmitted into the engaged plates. We therefore speculate that the multispectral nature of stress transfer across a megathrust filtered through the asthenosphere explains transient fault activity in some intraplate settings.

  16. Fabrication, characterization, and modeling of a biodegradable battery for transient electronics

    NASA Astrophysics Data System (ADS)

    Edupuganti, Vineet; Solanki, Raj

    2016-12-01

    Traditionally, emphasis has been placed on durable, long-lasting electronics. However, electronics that are meant to intentionally degrade over time can actually have significant practical applications. Biodegradable, or transient, electronics would open up opportunities in the field of medical implants, where the need for surgical removal of devices could be eliminated. Environmental sensors and, eventually, consumer electronics would also greatly benefit from this technology. An essential component of transient electronics is the battery, which serves as a biodegradable power source. This work involves the fabrication, characterization, and modeling of a magnesium-based biodegradable battery. Galvanostatic discharge tests show that an anode material of magnesium alloy AZ31 extends battery lifetime by over six times, as compared to pure magnesium. With AZ31, the maximum power and capacity of the fabricated device are 67 μW and 5.2 mAh, respectively, though the anode area is just 0.8 cm2. The development of an equivalent circuit model provided insight into the battery's behavior by extracting fitting parameters from experimental data. The model can accurately simulate device behavior, taking into account its intentional degradation. The size of the device and the power it produces are in accordance with typical levels for low-power transient systems.

  17. Understanding transient uncoupling induced synchronization through modified dynamic coupling

    NASA Astrophysics Data System (ADS)

    Ghosh, Anupam; Godara, Prakhar; Chakraborty, Sagar

    2018-05-01

    An important aspect of the recently introduced transient uncoupling scheme is that it induces synchronization for large values of coupling strength at which the coupled chaotic systems resist synchronization when continuously coupled. However, why this is so is an open problem? To answer this question, we recall the conventional wisdom that the eigenvalues of the Jacobian of the transverse dynamics measure whether a trajectory at a phase point is locally contracting or diverging with respect to another nearby trajectory. Subsequently, we go on to highlight a lesser appreciated fact that even when, under the corresponding linearised flow, the nearby trajectory asymptotically diverges away, its distance from the reference trajectory may still be contracting for some intermediate period. We term this phenomenon transient decay in line with the phenomenon of the transient growth. Using these facts, we show that an optimal coupling region, i.e., a region of the phase space where coupling is on, should ideally be such that at any of the constituent phase point either the maximum of the real parts of the eigenvalues is negative or the magnitude of the positive maximum is lesser than that of the negative minimum. We also invent and employ a modified dynamics coupling scheme—a significant improvement over the well-known dynamic coupling scheme—as a decisive tool to justify our results.

  18. SNAP 10A ESTIMATED ELECTRICAL CHARACTERISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, J.C.

    1961-06-01

    The electrical power characteristics of a SNAP 10A converter are estimated for given fractions of power degradation. Graphs are included showing the power characteristics for instantaneous transients from stabilized operation at the maximum efficiency point, and after system temperature stabilization at the operating point. Open-circuit emf's of the converter are estimated for instantaneous and temperature-stabilized cases. (D.L.C.)

  19. Surface damage and structure evolution of recrystallized tungsten exposed to ELM-like transient loads

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Du, J.; Wirtz, M.; Luo, G.-N.; Lu, G.-H.; Liu, W.

    2016-03-01

    Surface damage and structure evolution of the full tungsten ITER divertor under transient heat loads is a key concern for component lifetime and plasma operations. Recrystallization caused by transients and steady-state heat loads can lead to degradation of the material properties and is therefore one of the most serious issues for tungsten armor. In order to investigate the thermal response of the recrystallized tungsten under edge localized mode-like transient thermal loads, fully recrystallized tungsten samples with different average grain sizes are exposed to cyclic thermal shocks in the electron beam facility JUDITH 1. The results indicate that not only does the microstructure change due to recrystallization, but that the surface residual stress induced by mechanical polishing strongly influences the surface cracking behavior. The stress-free surface prepared by electro-polishing is shown to be more resistant to cracking than the mechanically polished one. The resulting surface roughness depends largely on the loading conditions instead of the recrystallized-grain size. As the base temperature increases from room temperature to 400 °C, surface roughening mainly due to the shear bands in each grain becomes more pronounced, and sub-grains (up to 3 μm) are simultaneously formed in the sub-surface. The directions of the shear bands exhibit strong grain-orientation dependence, and they are generally aligned with the traces of {1 1 2} twin habit planes. The results suggest that twinning deformation and dynamic recrystallization represent the predominant mechanism for surface roughening and related microstructure evolution.

  20. Water Hammer Simulations of MMH Propellant - New Capability Demonstration of the Generalized Fluid Flow Simulation Program

    NASA Technical Reports Server (NTRS)

    Burkhardt, Z.; Ramachandran, N.; Majumdar, A.

    2017-01-01

    Fluid Transient analysis is important for the design of spacecraft propulsion system to ensure structural stability of the system in the event of sudden closing or opening of the valve. Generalized Fluid System Simulation Program (GFSSP), a general purpose flow network code developed at NASA/MSFC is capable of simulating pressure surge due to sudden opening or closing of valve when thermodynamic properties of real fluid are available for the entire range of simulation. Specifically GFSSP needs an accurate representation of pressure-density relationship in order to predict pressure surge during a fluid transient. Unfortunately, the available thermodynamic property programs such as REFPROP, GASP or GASPAK does not provide the thermodynamic properties of Monomethylhydrazine (MMH). This paper will illustrate the process used for building a customized table of properties of state variables from available properties and speed of sound that is required by GFSSP for simulation. Good agreement was found between the simulations and measured data. This method can be adopted for modeling flow networks and systems with other fluids whose properties are not known in detail in order to obtain general technical insight. Rigorous code validation of this approach will be done and reported at a future date.

  1. Laser nano-surgery for neuronal manipulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sarker, Hori Pada; Chudal, Lalit; Mahapatra, Vasu; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    Optical manipulation has enabled study of bio-chemical and bio-mechanical properties of the cells. Laser nanosurgery by ultrafast laser beam with appropriate laser parameters provides spatially-targeted manipulation of neurons in a minimal invasiveness manner with high efficiency. We utilized femto-second laser nano-surgery for both axotomy and sub-axotomy of rat cortical neurons. Degeneration and regeneration after axotomy was studied with and without external growth-factor(s) and biochemical(s). Further, axonal injury was studied as a function of pulse energy, exposure and site of injury. The ability to study the response of neurons to localized injury opens up opportunities for screening potential molecules for repair and regeneration after nerve injury. Sub-axotomy enabled transient opening of axonal membrane for optical delivery of impermeable molecules to the axoplasm. Fast resealing of the axonal membrane after sub-axotomy without significant long-term damage to axon (monitored by its growth) was observed. We will present these experimental results along with theoretical simulation of injury due to laser nano-surgery and delivery via the transient pore. Targeted delivery of proteins such as antibodies, genes encoding reporter proteins, ion-channels and voltage indicators will allow visualization, activation and detection of the neuronal structure and function.

  2. Drug delivery across the blood-brain barrier using focused ultrasound

    PubMed Central

    Burgess, Alison; Hynynen, Kullervo H.

    2015-01-01

    Introduction The presence of the blood-brain barrier (BBB) is a significant impediment to the delivery of therapeutic agents to the brain for treatment of brain diseases. Focused ultrasound (FUS) has been developed as a non-invasive method for transiently increasing the permeability of the BBB to promote drug delivery to targeted regions of the brain. Areas Covered The present review briefly compares the methods used to promote drug delivery to the brain and describes the benefits and limitations of FUS technology. We summarize the experimental data which shows that FUS, combined with intravascular microbubbles, increases therapeutic agent delivery into the brain leading to significant reductions in pathology in preclinical models of disease. The potential for translation of this technology to the clinic is also discussed. Expert Opinion The introduction of MRI guidance and intravascular administration of microbubbles to FUS treatments permits the consistent, transient, and targeted opening of the BBB. The development of feedback systems and real-time monitoring techniques improve the safety of BBB opening. Successful clinical translation of FUS has the potential to revolutionize the treatment of brain disease resulting in effective, less-invasive treatments without the need for expensive drug development. PMID:24650132

  3. Drug delivery across the blood-brain barrier using focused ultrasound.

    PubMed

    Burgess, Alison; Hynynen, Kullervo

    2014-05-01

    The presence of the blood-brain barrier (BBB) is a significant impediment to the delivery of therapeutic agents to the brain for treatment of brain diseases. Focused ultrasound (FUS) has been developed as a noninvasive method for transiently increasing the permeability of the BBB to promote drug delivery to targeted regions of the brain. The present review briefly compares the methods used to promote drug delivery to the brain and describes the benefits and limitations of FUS technology. We summarize the experimental data which shows that FUS, combined with intravascular microbubbles, increases therapeutic agent delivery into the brain leading to significant reductions in pathology in preclinical models of disease. The potential for translation of this technology to the clinic is also discussed. The introduction of magnetic resonance imaging guidance and intravascular administration of microbubbles to FUS treatments permits the consistent, transient and targeted opening of the BBB. The development of feedback systems and real-time monitoring techniques improve the safety of BBB opening. Successful clinical translation of FUS has the potential to revolutionize the treatment of brain disease resulting in effective, less-invasive treatments without the need for expensive drug development.

  4. Alternating absorption features during attosecond-pulse propagation in a laser-controlled gaseous medium

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Adrian N.; Bell, M. Justine; Beck, Annelise R.; Mashiko, Hiroki; Neumark, Daniel M.; Leone, Stephen R.

    2013-11-01

    Recording the transmitted spectrum of a weak attosecond pulse through a medium, while a strong femtosecond pulse copropagates at variable delay, probes the strong-field dynamics of atoms, molecules, and solids. Usually, the interpretation of these measurements is based on the assumption of a thin medium. Here, the propagation through a macroscopic medium of helium atoms in the region of fully allowed resonances is investigated both theoretically and experimentally. The propagation has dramatic effects on the transient spectrum even at relatively low pressures (50 mbar) and short propagation lengths (1 mm). The absorption does not evolve monotonically with the product of propagation distance and pressure, but regions with characteristics of Lorentz line shapes and characteristics of Fano line shapes alternate. Criteria are deduced to estimate whether macroscopic effects can be neglected or not in a transient absorption experiment. Furthermore, the theory in the limit of single-atom response yields a general equation for Lorentz- and Fano-type line shapes at variable pulse delay.

  5. Anomalous Transient Amplification of Waves in Non-normal Photonic Media

    NASA Astrophysics Data System (ADS)

    Makris, K. G.; Ge, L.; Türeci, H. E.

    2014-10-01

    Dissipation is a ubiquitous phenomenon in dynamical systems encountered in nature because no finite system is fully isolated from its environment. In optical systems, a key challenge facing any technological application has traditionally been the mitigation of optical losses. Recent work has shown that a new class of optical materials that consist of a precisely balanced distribution of loss and gain can be exploited to engineer novel functionalities for propagating and filtering electromagnetic radiation. Here we show a generic property of optical systems that feature an unbalanced distribution of loss and gain, described by non-normal operators, namely, that an overall lossy optical system can transiently amplify certain input signals by several orders of magnitude. We present a mathematical framework to analyze the dynamics of wave propagation in media with an arbitrary distribution of loss and gain, and we construct the initial conditions to engineer such non-normal power amplifiers. Our results point to a new design space for engineered optical systems employed in photonics and quantum optics.

  6. dTULP, the Drosophila melanogaster Homolog of Tubby, Regulates Transient Receptor Potential Channel Localization in Cilia

    PubMed Central

    Shim, Jaewon; Han, Woongsu; Lee, Jinu; Bae, Yong Chul; Chung, Yun Doo; Kim, Chul Hoon; Moon, Seok Jun

    2013-01-01

    Mechanically gated ion channels convert sound into an electrical signal for the sense of hearing. In Drosophila melanogaster, several transient receptor potential (TRP) channels have been implicated to be involved in this process. TRPN (NompC) and TRPV (Inactive) channels are localized in the distal and proximal ciliary zones of auditory receptor neurons, respectively. This segregated ciliary localization suggests distinct roles in auditory transduction. However, the regulation of this localization is not fully understood. Here we show that the Drosophila Tubby homolog, King tubby (hereafter called dTULP) regulates ciliary localization of TRPs. dTULP-deficient flies show uncoordinated movement and complete loss of sound-evoked action potentials. Inactive and NompC are mislocalized in the cilia of auditory receptor neurons in the dTulp mutants, indicating that dTULP is required for proper cilia membrane protein localization. This is the first demonstration that dTULP regulates TRP channel localization in cilia, and suggests that dTULP is a protein that regulates ciliary neurosensory functions. PMID:24068974

  7. Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan

    2005-01-01

    Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.

  8. Object-oriented approach for gas turbine engine simulation

    NASA Technical Reports Server (NTRS)

    Curlett, Brian P.; Felder, James L.

    1995-01-01

    An object-oriented gas turbine engine simulation program was developed. This program is a prototype for a more complete, commercial grade engine performance program now being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report discusses architectural issues of this complex software system and the lessons learned from developing the prototype code. The prototype code is a fully functional, general purpose engine simulation program, however, only the component models necessary to model a transient compressor test rig have been written. The production system will be capable of steady state and transient modeling of almost any turbine engine configuration. Chief among the architectural considerations for this code was the framework in which the various software modules will interact. These modules include the equation solver, simulation code, data model, event handler, and user interface. Also documented in this report is the component based design of the simulation module and the inter-component communication paradigm. Object class hierarchies for some of the code modules are given.

  9. On hairpin vortex generation from near-wall streamwise vortices

    NASA Astrophysics Data System (ADS)

    Wang, Yinshan; Huang, Weixi; Xu, Chunxiao

    2015-04-01

    The generation of a hairpin vortex from near-wall streamwise vortices is studied via the direct numerical simulation (DNS) of the streak transient growth in the minimal channel flow at . The streak profile is obtained by conditionally averaging the DNS data of the fully developed turbulent channel flow at the same Reynolds number. The near-wall streamwise vortices are produced by the transient growth of the streak which is initially subjected to the sinuous perturbation of the spanwise velocity. It is shown that the arch head of the hairpin vortex first grows from the downstream end of the stronger streamwise vortex and then connects with the weaker, opposite-signed streamwise vortex in their overlap region, forming a complete individual hairpin structure. The vorticity transport along the vortex lines indicates that the strength increase and the spatial expansion of the arch head are due to the stretching and the turning of the vorticity vector, respectively. The hairpin packets could be further produced from the generated individual hairpin vortex following the parent-offspring process.

  10. Reconstitution of the myocardium in regenerating newt hearts is preceded by transient deposition of extracellular matrix components.

    PubMed

    Piatkowski, Tanja; Mühlfeld, Christian; Borchardt, Thilo; Braun, Thomas

    2013-07-01

    Adult newts efficiently regenerate the heart after injury in a process that involves proliferation of cardiac muscle and nonmuscle cells and repatterning of the myocardium. To analyze the processes that underlie heart regeneration in newts, we characterized the structural changes in the myocardium that allow regeneration after mechanical injury. We found that cardiomyocytes in the damaged ventricle mainly die by necrosis and are removed during the first week after injury, paving the way for the extension of thin myocardial trabeculae, which initially contain only very few cardiomyocytes. During the following 200 days, these thin trabeculae fill up with new cardiomyocytes until the myocardium is fully reconstituted. Interestingly, reconstruction of the newly formed trabeculated network is accompanied by transient deposition of extracellular matrix (ECM) components such as collagen III. We conclude that the ECM is a critical guidance cue for outgrowing and branching trabeculae to reconstruct the trabeculated network, which represents a hallmark of uninjured cardiac tissue in newts.

  11. Incidence and 12-month outcome of non-transient childhood conversion disorder in the U.K. and Ireland.

    PubMed

    Ani, Cornelius; Reading, Richard; Lynn, Richard; Forlee, Simone; Garralda, Elena

    2013-06-01

    Little is known about conversion disorder in childhood. To document clinical incidence, features, management and 12-month outcome of non-transient conversion disorder in under 16-year-olds in the U.K. and Ireland. Surveillance through the British Paediatric Surveillance Unit and Child and Adolescent Psychiatry Surveillance System. In total, 204 cases (age range 7-15 years) were reported, giving a 12-month incidence of 1.30/100 000 (95% CI 1.11-1.52). The most common symptoms were motor weakness and abnormal movements. Presentation with multiple symptoms was the norm. Antecedent stressors were reported for 80.8%, most commonly bullying in school. Most children required in-patient admission with frequent medical investigations. Follow-up at 12 months was available for 147 children, when all conversion disorder symptoms were reported as improved. Most families (91%) accepted a non-medical explanation of the symptoms either fully or partially. Childhood conversion disorder represents an infrequent but significant clinical burden in the UK and Ireland.

  12. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics

    PubMed Central

    Lei, Ting; Guan, Ming; Liu, Jia; Lin, Hung-Cheng; Pfattner, Raphael; McGuire, Allister F.; Huang, Tsung-Ching; Shao, Leilai; Cheng, Kwang-Ting; Tok, Jeffrey B.-H.; Bao, Zhenan

    2017-01-01

    Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal–oxide–semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m2) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics. PMID:28461459

  13. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics.

    PubMed

    Lei, Ting; Guan, Ming; Liu, Jia; Lin, Hung-Cheng; Pfattner, Raphael; Shaw, Leo; McGuire, Allister F; Huang, Tsung-Ching; Shao, Leilai; Cheng, Kwang-Ting; Tok, Jeffrey B-H; Bao, Zhenan

    2017-05-16

    Increasing performance demands and shorter use lifetimes of consumer electronics have resulted in the rapid growth of electronic waste. Currently, consumer electronics are typically made with nondecomposable, nonbiocompatible, and sometimes even toxic materials, leading to serious ecological challenges worldwide. Here, we report an example of totally disintegrable and biocompatible semiconducting polymers for thin-film transistors. The polymer consists of reversible imine bonds and building blocks that can be easily decomposed under mild acidic conditions. In addition, an ultrathin (800-nm) biodegradable cellulose substrate with high chemical and thermal stability is developed. Coupled with iron electrodes, we have successfully fabricated fully disintegrable and biocompatible polymer transistors. Furthermore, disintegrable and biocompatible pseudo-complementary metal-oxide-semiconductor (CMOS) flexible circuits are demonstrated. These flexible circuits are ultrathin (<1 μm) and ultralightweight (∼2 g/m 2 ) with low operating voltage (4 V), yielding potential applications of these disintegrable semiconducting polymers in low-cost, biocompatible, and ultralightweight transient electronics.

  14. Single-cell topological RNA-Seq analysis reveals insights into cellular differentiation and development

    PubMed Central

    Rizvi, Abbas H.; Camara, Pablo G.; Kandror, Elena K.; Roberts, Thomas J.; Schieren, Ira; Maniatis, Tom; Rabadan, Raul

    2017-01-01

    Transcriptional programs control cellular lineage commitment and differentiation during development. Understanding cell fate has been advanced by studying single-cell RNA-seq, but is limited by the assumptions of current analytic methods regarding the structure of data. We present single-cell topological data analysis (scTDA), an algorithm for topology-based computational analyses to study temporal, unbiased transcriptional regulation. Compared to other methods, scTDA is a non-linear, model-independent, unsupervised statistical framework that can characterize transient cellular states. We applied scTDA to the analysis of murine embryonic stem cell (mESC) differentiation in vitro in response to inducers of motor neuron differentiation. scTDA resolved asynchrony and continuity in cellular identity over time, and identified four transient states (pluripotent, precursor, progenitor, and fully differentiated cells) based on changes in stage-dependent combinations of transcription factors, RNA-binding proteins and long non-coding RNAs. scTDA can be applied to study asynchronous cellular responses to either developmental cues or environmental perturbations. PMID:28459448

  15. On-Die Sensors for Transient Events

    NASA Astrophysics Data System (ADS)

    Suchak, Mihir Vimal

    Failures caused by transient electromagnetic events like Electrostatic Discharge (ESD) are a major concern for embedded systems. The component often failing is an integrated circuit (IC). Determining which IC is affected in a multi-device system is a challenging task. Debugging errors often requires sophisticated lab setups which require intentionally disturbing and probing various parts of the system which might not be easily accessible. Opening the system and adding probes may change its response to the transient event, which further compounds the problem. On-die transient event sensors were developed that require relatively little area on die, making them inexpensive, they consume negligible static current, and do not interfere with normal operation of the IC. These circuits can be used to determine the pin involved and the level of the event in the event of a transient event affecting the IC, thus allowing the user to debug system-level transient events without modifying the system. The circuit and detection scheme design has been completed and verified in simulations with Cadence Virtuoso environment. Simulations accounted for the impact of the ESD protection circuits, parasitics from the I/O pin, package and I/O ring, and included a model of an ESD gun to test the circuit's response to an ESD pulse as specified in IEC 61000-4-2. Multiple detection schemes are proposed. The final detection scheme consists of an event detector and a level sensor. The event detector latches on the presence of an event at a pad, to determine on which pin an event occurred. The level sensor generates current proportional to the level of the event. This current is converted to a voltage and digitized at the A/D converter to be read by the microprocessor. Detection scheme shows good performance in simulations when checked against process variations and different kind of events.

  16. The role of auditory transient and deviance processing in distraction of task performance: a combined behavioral and event-related brain potential study

    PubMed Central

    Berti, Stefan

    2013-01-01

    Distraction of goal-oriented performance by a sudden change in the auditory environment is an everyday life experience. Different types of changes can be distracting, including a sudden onset of a transient sound and a slight deviation of otherwise regular auditory background stimulation. With regard to deviance detection, it is assumed that slight changes in a continuous sequence of auditory stimuli are detected by a predictive coding mechanisms and it has been demonstrated that this mechanism is capable of distracting ongoing task performance. In contrast, it is open whether transient detection—which does not rely on predictive coding mechanisms—can trigger behavioral distraction, too. In the present study, the effect of rare auditory changes on visual task performance is tested in an auditory-visual cross-modal distraction paradigm. The rare changes are either embedded within a continuous standard stimulation (triggering deviance detection) or are presented within an otherwise silent situation (triggering transient detection). In the event-related brain potentials, deviants elicited the mismatch negativity (MMN) while transients elicited an enhanced N1 component, mirroring pre-attentive change detection in both conditions but on the basis of different neuro-cognitive processes. These sensory components are followed by attention related ERP components including the P3a and the reorienting negativity (RON). This demonstrates that both types of changes trigger switches of attention. Finally, distraction of task performance is observable, too, but the impact of deviants is higher compared to transients. These findings suggest different routes of distraction allowing for the automatic processing of a wide range of potentially relevant changes in the environment as a pre-requisite for adaptive behavior. PMID:23874278

  17. Fully localised nonlinear energy growth optimals in pipe flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pringle, Chris C. T.; Willis, Ashley P.; Kerswell, Rich R.

    A new, fully localised, energy growth optimal is found over large times and in long pipe domains at a given mass flow rate. This optimal emerges at a threshold disturbance energy below which a nonlinear version of the known (streamwise-independent) linear optimal [P. J. Schmid and D. S. Henningson, “Optimal energy density growth in Hagen-Poiseuille flow,” J. Fluid Mech. 277, 192–225 (1994)] is selected and appears to remain the optimal up until the critical energy at which transition is triggered. The form of this optimal is similar to that found in short pipes [Pringle et al., “Minimal seeds for shearmore » flow turbulence: Using nonlinear transient growth to touch the edge of chaos,” J. Fluid Mech. 702, 415–443 (2012)], but now with full localisation in the streamwise direction. This fully localised optimal perturbation represents the best approximation yet of the minimal seed (the smallest perturbation which is arbitrarily close to states capable of triggering a turbulent episode) for “real” (laboratory) pipe flows. Dependence of the optimal with respect to several parameters has been computed and establishes that the structure is robust.« less

  18. Impact of polymer structure and composition on fully resorbable endovascular scaffold performance

    PubMed Central

    Ferdous, Jahid; Kolachalama, Vijaya B.; Shazly, Tarek

    2014-01-01

    Fully erodible endovascular scaffolds are being increasingly considered for the treatment of obstructive arterial disease owing to their potential to mitigate long-term risks associated with permanent alternatives. While complete scaffold erosion facilitates vessel healing, generation and release of material degradation by-products from candidate materials such as poly-l-lactide (PLLA) may elicit local inflammatory responses that limit implant efficacy. We developed a computational framework to quantify how the compositional and structural parameters of PLLA-based fully erodible endovascular scaffolds affect degradation kinetics, erosion kinetics and the transient accumulation of material by-products within the arterial wall. Parametric studies reveal that, while some material properties have similar effects on these critical processes, others induce qualitatively opposing responses. For example, scaffold degradation is only mildly responsive to changes in either PLLA polydispersity or the initial degree of crystallinity, while the erosion kinetics is comparatively sensitive to crystallinity. Moreover, lactide doping can effectively tune both scaffold degradation and erosion, but a concomitant increase in local byproduct accumulation raises concerns about implant safety. Optimized erodible endovascular scaffolds must precisely balance therapeutic function and biological response over the implant lifetime, where compositional and structural parameters will have differential effects on implant performance. PMID:23261926

  19. The Longhorn Array Database (LAD): An Open-Source, MIAME compliant implementation of the Stanford Microarray Database (SMD)

    PubMed Central

    Killion, Patrick J; Sherlock, Gavin; Iyer, Vishwanath R

    2003-01-01

    Background The power of microarray analysis can be realized only if data is systematically archived and linked to biological annotations as well as analysis algorithms. Description The Longhorn Array Database (LAD) is a MIAME compliant microarray database that operates on PostgreSQL and Linux. It is a fully open source version of the Stanford Microarray Database (SMD), one of the largest microarray databases. LAD is available at Conclusions Our development of LAD provides a simple, free, open, reliable and proven solution for storage and analysis of two-color microarray data. PMID:12930545

  20. The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle

    PubMed Central

    Csernoch, L; Zhou, J; Stern, M D; Brum, G; Ríos, E

    2004-01-01

    Cytosolic [Ca2+] transients elicited by voltage clamp depolarization were examined by confocal line scanning of rat skeletal muscle fibres. Ca2+ sparks were observed in the fibres' membrane-permeabilized ends, but not in responses to voltage in the membrane-intact area. Elementary events of the depolarization-evoked response could be separated either at low voltages (near −50 mV) or at −20mV in partially inactivated cells. These were of lower amplitude, narrower and of much longer duration than sparks, similar to ‘lone embers’ observed in the permeabilized segments. Their average amplitude was 0.19 and spatial half-width 1.3 μm. Other parameters depended on voltage. At −50 mV average duration was 111 ms and latency 185 ms. At −20 mV duration was 203 ms and latency 24 ms. Ca2+ release current, calculated on an average of events, was nearly steady at 0.5–0.6 pA. Accordingly, simulations of the fluorescence event elicited by a subresolution source of 0.5 pA open for 100 ms had morphology similar to the experimental average. Because 0.5 pA is approximately the current measured for single RyR channels in physiological conditions, the elementary fluorescence events in rat muscle probably reflect opening of a single RyR channel. A reconstruction of cell-averaged release flux at −20 mV based on the observed distribution of latencies and calculated elementary release had qualitatively correct but slower kinetics than the release flux in prior whole-cell measurements. The qualitative agreement indicates that global Ca2+ release flux results from summation of these discrete events. The quantitative discrepancies suggest that the partial inactivation strategy may lead to events of greater duration than those occurring physiologically in fully polarized cells. PMID:14990680

  1. Open peer review at four STEM journals: an observational overview.

    PubMed

    Ford, Emily

    2015-01-01

    Open peer review, peer review where authors' and reviewers' identities are disclosed to one another, is a growing trend in scholarly publishing. Through observation of four journals in STEM disciplines, PLOS One, Atmospheric Chemistry & Physics, PeerJ, and F1000Research, an observational overview is conducted. The overview relies on defined characteristics of open peer review. Results show that despite differing open peer review implementations, each journal retains editorial involvement in scholarly publishing. Further, the analysis shows that only one of these implementations is fully transparent in its peer review and decision making process. Finally, the overview contends that journals should clearly outline peer review and editorial processes in order to allow for open peer review to be better understood and adopted by authors, reviewers, editors, and readers of science communications.

  2. Optimizing python-based ROOT I/O with PyPy's tracing just-in-time compiler

    NASA Astrophysics Data System (ADS)

    Tlp Lavrijsen, Wim

    2012-12-01

    The Python programming language allows objects and classes to respond dynamically to the execution environment. Most of this, however, is made possible through language hooks which by definition can not be optimized and thus tend to be slow. The PyPy implementation of Python includes a tracing just in time compiler (JIT), which allows similar dynamic responses but at the interpreter-, rather than the application-level. Therefore, it is possible to fully remove the hooks, leaving only the dynamic response, in the optimization stage for hot loops, if the types of interest are opened up to the JIT. A general opening up of types to the JIT, based on reflection information, has already been developed (cppyy). The work described in this paper takes it one step further by customizing access to ROOT I/O to the JIT, allowing for fully automatic optimizations.

  3. PB-AM: An open-source, fully analytical linear poisson-boltzmann solver.

    PubMed

    Felberg, Lisa E; Brookes, David H; Yap, Eng-Hui; Jurrus, Elizabeth; Baker, Nathan A; Head-Gordon, Teresa

    2017-06-05

    We present the open source distributed software package Poisson-Boltzmann Analytical Method (PB-AM), a fully analytical solution to the linearized PB equation, for molecules represented as non-overlapping spherical cavities. The PB-AM software package includes the generation of outputs files appropriate for visualization using visual molecular dynamics, a Brownian dynamics scheme that uses periodic boundary conditions to simulate dynamics, the ability to specify docking criteria, and offers two different kinetics schemes to evaluate biomolecular association rate constants. Given that PB-AM defines mutual polarization completely and accurately, it can be refactored as a many-body expansion to explore 2- and 3-body polarization. Additionally, the software has been integrated into the Adaptive Poisson-Boltzmann Solver (APBS) software package to make it more accessible to a larger group of scientists, educators, and students that are more familiar with the APBS framework. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. A comparative approach to closed-loop computation.

    PubMed

    Roth, E; Sponberg, S; Cowan, N J

    2014-04-01

    Neural computation is inescapably closed-loop: the nervous system processes sensory signals to shape motor output, and motor output consequently shapes sensory input. Technological advances have enabled neuroscientists to close, open, and alter feedback loops in a wide range of experimental preparations. The experimental capability of manipulating the topology-that is, how information can flow between subsystems-provides new opportunities to understand the mechanisms and computations underlying behavior. These experiments encompass a spectrum of approaches from fully open-loop, restrained preparations to the fully closed-loop character of free behavior. Control theory and system identification provide a clear computational framework for relating these experimental approaches. We describe recent progress and new directions for translating experiments at one level in this spectrum to predictions at another level. Operating across this spectrum can reveal new understanding of how low-level neural mechanisms relate to high-level function during closed-loop behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Fully Coupled Nonlinear Fluid Flow and Poroelasticity in Arbitrarily Fractured Porous Media: A Hybrid-Dimensional Computational Model

    NASA Astrophysics Data System (ADS)

    Jin, L.; Zoback, M. D.

    2017-10-01

    We formulate the problem of fully coupled transient fluid flow and quasi-static poroelasticity in arbitrarily fractured, deformable porous media saturated with a single-phase compressible fluid. The fractures we consider are hydraulically highly conductive, allowing discontinuous fluid flux across them; mechanically, they act as finite-thickness shear deformation zones prior to failure (i.e., nonslipping and nonpropagating), leading to "apparent discontinuity" in strain and stress across them. Local nonlinearity arising from pressure-dependent permeability of fractures is also included. Taking advantage of typically high aspect ratio of a fracture, we do not resolve transversal variations and instead assume uniform flow velocity and simple shear strain within each fracture, rendering the coupled problem numerically more tractable. Fractures are discretized as lower dimensional zero-thickness elements tangentially conforming to unstructured matrix elements. A hybrid-dimensional, equal-low-order, two-field mixed finite element method is developed, which is free from stability issues for a drained coupled system. The fully implicit backward Euler scheme is employed for advancing the fully coupled solution in time, and the Newton-Raphson scheme is implemented for linearization. We show that the fully discretized system retains a canonical form of a fracture-free poromechanical problem; the effect of fractures is translated to the modification of some existing terms as well as the addition of several terms to the capacity, conductivity, and stiffness matrices therefore allowing the development of independent subroutines for treating fractures within a standard computational framework. Our computational model provides more realistic inputs for some fracture-dominated poromechanical problems like fluid-induced seismicity.

  6. Comparing the biocidal properties of non-thermal plasma sources by reference protocol

    NASA Astrophysics Data System (ADS)

    Khun, Josef; Jirešová, Jana; Kujalová, Lucie; Hozák, Pavel; Scholtz, Vladimír

    2017-10-01

    The previously proposed reference protocol enabling easy comparison of biocidal properties of different non-thermal plasma sources has been followed and discussed. For inactivation tests the reference protocol has used spores of Gram positive bacterium Bacillus subtilis (ATCC 6633) deposited on a polycarbonate membrane as reference sample. In this work, biocidal properties of a negative glow corona, positive streamer corona, positive transient spark and cometary discharges are being compared in both open air and closed apparatus. Despite the total number of bacteria surviving 1 h exposure has decreased by up to 7 orders in closed apparatus, in open one, only weak inhibition bactericidal effect has been observed.

  7. LISA: Opening New Horizons

    NASA Technical Reports Server (NTRS)

    Centrella, Joan M.

    2011-01-01

    The Laser Interferometer Space Antenna (LISA) is a space-borne observatory that will open the low frequency (approx.0.1-100 mHz) gravitational wave window on the universe. LISA will observe a rich variety of gravitational wave sources, including mergers of massive black holes, captures of stellar black holes by massive black holes in the centers of galaxies, and compact Galactic binaries. These sources are generally long-lived, providing unprecedented opportunities for multi-messenger astronomy in the transient sky. This talk will present an overview of these scientific arenas, highlighting how LISA will enable stunning discoveries in origins, understanding the cosmic order, and the frontiers of knowledge.

  8. Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatib, Mohamed; Ellis, Abraham; Milan Biswal

    keywords : Microgrid Protection, Impedance Relay, Signal Processing-based Fault Detec- tion, Networked Microgrids, Communication-Assisted Protection In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The surveymore » concluded that there is a gap in the available microgrid protection methods. The only credible protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less

  9. Protection of Renewable-dominated Microgrids: Challenges and Potential Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elkhatib, Mohamed; Ellis, Abraham; Biswal, Milan

    In this report we address the challenge of designing efficient protection system for inverter- dominated microgrids. These microgrids are characterised with limited fault current capacity as a result of current-limiting protection functions of inverters. Typically, inverters limit their fault contribution in sub-cycle time frame to as low as 1.1 per unit. As a result, overcurrent protection could fail completely to detect faults in inverter-dominated microgrids. As part of this project a detailed literature survey of existing and proposed microgrid protection schemes were conducted. The survey concluded that there is a gap in the available microgrid protection methods. The only crediblemore » protection solution available in literature for low- fault inverter-dominated microgrids is the differential protection scheme which represents a robust transmission-grade protection solution but at a very high cost. Two non-overcurrent protection schemes were investigated as part of this project; impedance-based protection and transient-based protection. Impedance-based protection depends on monitoring impedance trajectories at feeder relays to detect faults. Two communication-based impedance-based protection schemes were developed. the first scheme utilizes directional elements and pilot signals to locate the fault. The second scheme depends on a Central Protection Unit that communicates with all feeder relays to locate the fault based on directional flags received from feeder relays. The later approach could potentially be adapted to protect networked microgrids and dynamic topology microgrids. Transient-based protection relies on analyzing high frequency transients to detect and locate faults. This approach is very promising but its implementation in the filed faces several challenges. For example, high frequency transients due to faults can be confused with transients due to other events such as capacitor switching. Additionally, while detecting faults by analyzing transients could be doable, locating faults based on analyzing transients is still an open question.« less

  10. Sphingosine and FTY720 are potent inhibitors of the transient receptor potential melastatin 7 (TRPM7) channels

    PubMed Central

    Qin, Xin; Yue, Zhichao; Sun, Baonan; Yang, Wenzhong; Xie, Jia; Ni, Eric; Feng, Yi; Mahmood, Rafat; Zhang, Yanhui; Yue, Lixia

    2013-01-01

    Background and Purpose Transient receptor potential melastatin 7 (TRPM7) is a unique channel kinase which is crucial for various physiological functions. However, the mechanism by which TRPM7 is gated and modulated is not fully understood. To better understand how modulation of TRPM7 may impact biological processes, we investigated if TRPM7 can be regulated by the phospholipids sphingosine (SPH) and sphingosine-1-phosphate (S1P), two potent bioactive sphingolipids that mediate a variety of physiological functions. Moreover, we also tested the effects of the structural analogues of SPH, N,N-dimethyl-D-erythro-sphingosine (DMS), ceramides and FTY720 on TRPM7. Experimental Approach HEK293 cells stably expressing TRPM7 were used for whole-cell, single-channel and macropatch current recordings. Cardiac fibroblasts were used for native TRPM7 current recording. Key Results SPH potently inhibited TRPM7 in a concentration-dependent manner, whereas S1P and other ceramides did not produce noticeable effects. DMS also markedly inhibited TRPM7. Moreover, FTY720, an immunosuppressant and the first oral drug for treatment of multiple sclerosis, inhibited TRPM7 with a similar potency to that of SPH. In contrast, FTY720-P has no effect on TRPM7. It appears that SPH and FTY720 inhibit TRPM7 by reducing channel open probability. Furthermore, endogenous TRPM7 in cardiac fibroblasts was markedly inhibited by SPH, DMS and FTY720. Conclusions and Implications This is the first study demonstrating that SPH and FTY720 are potent inhibitors of TRPM7. Our results not only provide a new modulation mechanism of TRPM7, but also suggest that TRPM7 may serve as a direct target of SPH and FTY720, thereby mediating S1P-independent physiological/pathological functions of SPH and FTY720. Linked Article This article is commented on by Rohacs, pp. 1291–1293 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12070 PMID:23145923

  11. Automated Propulsion Data Screening demonstration system

    NASA Technical Reports Server (NTRS)

    Hoyt, W. Andes; Choate, Timothy D.; Whitehead, Bruce A.

    1995-01-01

    A fully-instrumented firing of a propulsion system typically generates a very large quantity of data. In the case of the Space Shuttle Main Engine (SSME), data analysis from ground tests and flights is currently a labor-intensive process. Human experts spend a great deal of time examining the large volume of sensor data generated by each engine firing. These experts look for any anomalies in the data which might indicate engine conditions warranting further investigation. The contract effort was to develop a 'first-cut' screening system for application to SSME engine firings that would identify the relatively small volume of data which is unusual or anomalous in some way. With such a system, limited and expensive human resources could focus on this small volume of unusual data for thorough analysis. The overall project objective was to develop a fully operational Automated Propulsion Data Screening (APDS) system with the capability of detecting significant trends and anomalies in transient and steady-state data. However, the effort limited screening of transient data to ground test data for throttle-down cases typical of the 3-g acceleration, and for engine throttling required to reach the maximum dynamic pressure limits imposed on the Space Shuttle. This APDS is based on neural networks designed to detect anomalies in propulsion system data that are not part of the data used for neural network training. The delivered system allows engineers to build their own screening sets for application to completed or planned firings of the SSME. ERC developers also built some generic screening sets that NASA engineers could apply immediately to their data analysis efforts.

  12. Stiffness characteristics of airfoils under pulse loading

    NASA Astrophysics Data System (ADS)

    Turner, Kevin Eugene

    The turbomachinery industry continually struggles with the adverse effects of contact rubs between airfoils and casings. The key parameter controlling the severity of a given rub event is the contact load produced when the airfoil tips incur into the casing. These highly non-linear and transient forces are difficult to calculate and their effects on the static and rotating components are not well understood. To help provide this insight, experimental and analytical capabilities have been established and exercised through an alliance between GE Aviation and The Ohio State University Gas Turbine Laboratory. One of the early findings of the program is the influence of blade flexibility on the physics of rub events. The core focus of the work presented in this dissertation is to quantify the influence of airfoil flexibility through a novel modeling approach that is based on the relationship between applied force duration and maximum tip deflection. This relationship is initially established using a series of forward, non-linear and transient analyses in which simulated impulse rub loads are applied. This procedure, although effective, is highly inefficient and costly to conduct by requiring numerous explicit simulations. To alleviate this issue, a simplified model, named the pulse magnification model, is developed that only requires a modal analysis and a static analyses to fully describe how the airfoil stiffness changes with respect to load duration. Results from the pulse magnification model are compared to results from the full transient simulation method and to experimental results, providing sound verification for the use of the modeling approach. Furthermore, a unique and highly efficient method to model airfoil geometries was developed and is outlined in this dissertation. This method produces quality Finite Element airfoil definitions directly from a fully parameterized mathematical model. The effectiveness of this approach is demonstrated by comparing modal properties of the simulated geometries to modal properties of various current airfoil designs. Finally, this modeling approach was used in conjunction with the pulse magnification model to study the effects of various airfoil geometric features on the stiffness of the blade under impulsive loading.

  13. A fully coupled transient thermomechanical ice-flow/permafrost model of the Rhine Glacier, Switzerland: effects of permafrost on basal conditions

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Zwinger, T.; Haeberli, W.; Fischer, U. H.

    2016-12-01

    The safe disposal of radioactive wastes in deep geological repositories requires their containment and isolation for up to one million years. Over that time period, the performance of the repositories in mid- and high-latitude regions can be impacted by future ice-age conditions which may cause deep glacial erosion, permafrost development, and changes in groundwater fluxes. In Switzerland, repositories are planned in the northern Swiss lowlands near the marginal zone of the former Rhine Glacier that repeatedly formed two extensive piedmont lobes (the Rhine and Linth lobes) over the Swiss Plateau. There, overdeepenings formed by glacial erosion indicate that the glacier was warm-based. Yet the Last Glacial Maximum (LGM) occurred under cold conditions: central Europe experienced extremely cold and dry conditions caused by the penetration of winter sea ice to low latitudes in the Atlantic Ocean and the corresponding closure of the primary humidity source north of the Alps. At the LGM, flat and extended lobes of large piedmont glaciers spreading out over much of the Swiss Plateau were polythermal, characterized by low driving stresses (typically around 30 kPa) and surrounded by continuous periglacial permafrost up to 150 m thick. Subsurface temperatures and groundwater flow conditions were strongly influenced by the presence of extended surface and subsurface ice. Using numerical models we explore the effects of permafrost on basal conditions of the piedmont lobes during the build-up of the Rhine Glacier. We apply a two-dimensional transient fully coupled thermomechanical full stress ice-flow and permafrost model along a flowline characterizing the Rhine lobe. The energy equation is solved in both ice and rock and permafrost is modeled using an effective heat capacity formulation to account for phase transitions. Transient effects during ice advances and permafrost build-up up to the LGM are resolved by modeling the full glacial cycle using reconstructed temperature and mass balance gradients from either Greenland or Antarctic ice cores. We explore how climate parameterization (temperature offset, mass balance gradients in the accumulation and ablation zones, climate signals) affect the development of temperate basal conditions necessary for significant erosion to occur.

  14. Computer program for analysis of high speed, single row, angular contact, spherical roller bearing, SASHBEAN. Volume 1: User's guide

    NASA Technical Reports Server (NTRS)

    Aggarwal, Arun K.

    1993-01-01

    The computer program SASHBEAN (Sikorsky Aircraft Spherical Roller High Speed Bearing Analysis) analyzes and predicts the operating characteristics of a Single Row, Angular Contact, Spherical Roller Bearing (SRACSRB). The program runs on an IBM or IBM compatible personal computer, and for a given set of input data analyzes the bearing design for it's ring deflections (axial and radial), roller deflections, contact areas and stresses, induced axial thrust, rolling element and cage rotation speeds, lubrication parameters, fatigue lives, and amount of heat generated in the bearing. The dynamic loading of rollers due to centrifugal forces and gyroscopic moments, which becomes quite significant at high speeds, is fully considered in this analysis. For a known application and it's parameters, the program is also capable of performing steady-state and time-transient thermal analyses of the bearing system. The steady-state analysis capability allows the user to estimate the expected steady-state temperature map in and around the bearing under normal operating conditions. On the other hand, the transient analysis feature provides the user a means to simulate the 'lost lubricant' condition and predict a time-temperature history of various critical points in the system. The bearing's 'time-to-failure' estimate may also be made from this (transient) analysis by considering the bearing as failed when a certain temperature limit is reached in the bearing components. The program is fully interactive and allows the user to get started and access most of its features with a minimal of training. For the most part, the program is menu driven, and adequate help messages were provided to guide a new user through various menu options and data input screens. All input data, both for mechanical and thermal analyses, are read through graphical input screens, thereby eliminating any need of a separate text editor/word processor to edit/create data files. Provision is also available to select and view the contents of output files on the monitor screen if no paper printouts are required. A separate volume (Volume-2) of this documentation describes, in detail, the underlying mathematical formulations, assumptions, and solution algorithms of this program.

  15. 76 FR 7189 - Trunkline Gas Company, LLC; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... Ship Shoal T-27 Platform and appurtenant facilities located in Ship Shoal 274, Offshore Louisiana... as more fully set forth in the application, which is open to the public for inspection. The filing...

  16. 78 FR 53133 - Meeting of the National Commission on the Structure of the Air Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... availability of space, the meeting is open to the public. The building is fully handicap accessible. Several public parking facilities are nearby. Photography and videography is permitted, but must be previously...

  17. 78 FR 56219 - Meeting of the National Commission on the Structure of the Air Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... availability of space, the meeting is open to the public. The building is fully handicap accessible. Several public parking facilities are nearby. Photography and videography is permitted, but must be previously...

  18. Open surgery versus endovascular approach in treatment of extracranial carotid artery aneurysms.

    PubMed

    Ni, Leng; Weng, Huiling; Pu, Zuo; Zheng, Yuehong; Liu, Bao; Ye, Wei; Zeng, Rong; Liu, Changwei

    2018-05-01

    The objective of this study was to investigate and to compare the early and long-term results of open surgery with endovascular intervention in the treatment of extracranial carotid artery aneurysms (ECCAs). A retrospective review of patients diagnosed with ECCAs who underwent open surgical or endovascular treatment from 1997 to 2017 was performed. Clinical characteristics, aneurysm profile, and treatment outcomes were recorded. Early results (<30 days) were evaluated in terms of mortality, perioperative stroke or transient ischemic attack, and cranial nerve injury. Late results were analyzed in terms of both overall and stroke-free survival and freedom from reinterventions. A total of 48 patients with ECCAs including 34 (70.8%) true aneurysms and 14 (29.2%) pseudoaneurysms were treated. The median age was 51 years, and 19 patients (39.6%) were men; 41 patients (85.4%) had symptoms, whereas 7 (14.6%) were asymptomatic. Among 48 patients, 32 patients (66.7%) underwent open surgery; endovascular repair was performed on 16 patients (33.3%). The 30-day stroke or transient ischemic attack rate was not significantly different between the open group (6.3% [2/32]) and the endovascular group (0% [0/16]; P = .307). Cranial nerve injuries occurred in eight patients in the open group (25%) and in no patient in the endovascular group (0%; P = .029). Median length of stay was significantly longer in the open group than in the endovascular group (20 vs 14 days, respectively; P = .013). Median follow-up was 46 months (range, 0-20 years), and no aneurysm-related death occurred during this period. Overall survival rates at 5 years were 88.7% (standard error [SE], 0.08) in the open group and 91.7% (SE, 0.08) in the endovascular group (P = .319; log-rank, .992). For the same time interval, stroke-free survival rates were 85.2% (SE, 0.10) in the open group and 92.2% (SE, 0.07) in the endovascular group (P = .653; log-rank, .201). One patient (1/28 [3.6%]) in the open group and two patients (2/16 [12.5%]) in the endovascular group underwent endovascular reinterventions because of restenosis during the follow-up period. Reintervention-free survival rates were 90.9% in the open group (SE, 0.09) and 69.2% in the endovascular group (SE, 0.21; P = .082; log-rank, 3.016). In this single-institutional experience, both operative and endovascular interventions for ECCAs provided acceptable early and 5-year results. The endovascular approach had significantly less cranial nerve injury and shorter length of hospital stay. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  19. Characterization of the Martian magnetic topology response to extreme solar transient events with MGS data

    NASA Astrophysics Data System (ADS)

    Xu, S.; Curry, S.; Mitchell, D. L.; Luhmann, J. G.; Lillis, R. J.; Dong, C.

    2017-12-01

    Characterizing how the solar cycle affects the physics of the Mars-solar wind interaction can improve our understanding of Mars' atmospheric evolution and the plasma environment at Mars. In particular, solar transient events such as Interplanetary Coronal Mass Ejections (ICMEs) and Stream Interaction Regions (SIRs) significantly change the solar-wind interaction, including the magnetic topology and ion acceleration. However, both the Mars Express and Mars Atmosphere Volatile EvolutioN (MAVEN) missions have encountered relatively few extreme solar transient events due to the recent low solar activity (2004-2017). In contrast, Mars Global Surveyor (MGS) was operating during a relatively active solar maximum (1999-2003). Based on new results from MAVEN, this study reanalyzes MGS data to better understand how the Martian plasma environment responds to extreme solar events. In particular, we aim to investigate how the magnetic topology during these extreme events differs from the topology during quiet times. We conduct orbit comparisons of the magnetic topology inferred from MGS electron pitch angle distributions during quiet periods and extreme events to determine how the open and closed field patterns respond to extreme events.

  20. The Raptor Real-Time Processing Architecture

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Starr, D.; Wozniak, P.; Brozdin, K.

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback, etc.) is implemented with a ``component'' approach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally, the Raptor architecture is entirely based on free software (sometimes referred to as ``open source'' software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  1. Raptor -- Mining the Sky in Real Time

    NASA Astrophysics Data System (ADS)

    Galassi, M.; Borozdin, K.; Casperson, D.; McGowan, K.; Starr, D.; White, R.; Wozniak, P.; Wren, J.

    2004-06-01

    The primary goal of Raptor is ambitious: to identify interesting optical transients from very wide field of view telescopes in real time, and then to quickly point the higher resolution Raptor ``fovea'' cameras and spectrometer to the location of the optical transient. The most interesting of Raptor's many applications is the real-time search for orphan optical counterparts of Gamma Ray Bursts. The sequence of steps (data acquisition, basic calibration, source extraction, astrometry, relative photometry, the smarts of transient identification and elimination of false positives, telescope pointing feedback...) is implemented with a ``component'' aproach. All basic elements of the pipeline functionality have been written from scratch or adapted (as in the case of SExtractor for source extraction) to form a consistent modern API operating on memory resident images and source lists. The result is a pipeline which meets our real-time requirements and which can easily operate as a monolithic or distributed processing system. Finally: the Raptor architecture is entirely based on free software (sometimes referred to as "open source" software). In this paper we also discuss the interplay between various free software technologies in this type of astronomical problem.

  2. Monte Carlo closure for moment-based transport schemes in general relativistic radiation hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Foucart, Francois

    2018-04-01

    General relativistic radiation hydrodynamic simulations are necessary to accurately model a number of astrophysical systems involving black holes and neutron stars. Photon transport plays a crucial role in radiatively dominated accretion discs, while neutrino transport is critical to core-collapse supernovae and to the modelling of electromagnetic transients and nucleosynthesis in neutron star mergers. However, evolving the full Boltzmann equations of radiative transport is extremely expensive. Here, we describe the implementation in the general relativistic SPEC code of a cheaper radiation hydrodynamic method that theoretically converges to a solution of Boltzmann's equation in the limit of infinite numerical resources. The algorithm is based on a grey two-moment scheme, in which we evolve the energy density and momentum density of the radiation. Two-moment schemes require a closure that fills in missing information about the energy spectrum and higher order moments of the radiation. Instead of the approximate analytical closure currently used in core-collapse and merger simulations, we complement the two-moment scheme with a low-accuracy Monte Carlo evolution. The Monte Carlo results can provide any or all of the missing information in the evolution of the moments, as desired by the user. As a first test of our methods, we study a set of idealized problems demonstrating that our algorithm performs significantly better than existing analytical closures. We also discuss the current limitations of our method, in particular open questions regarding the stability of the fully coupled scheme.

  3. Experimental evaluation of an adaptive Joule–Thomson cooling system including silicon-microfabricated heat exchanger and microvalve components

    PubMed Central

    Zhu, Weibin; Park, Jong M.; White, Michael J.; Nellis, Gregory F.; Gianchandani, Yogesh B.

    2011-01-01

    This article reports the evaluation of a Joule–Thomson (JT) cooling system that combines two custom micromachined components—a Si/glass-stack recuperative heat exchanger and a piezoelectrically actuated expansion microvalve. With the microvalve controlling the flow rate, this system can modulate cooling to accommodate varying refrigeration loads. The perforated plate Si/glass heat exchanger is fabricated with a stack of alternating silicon plates and Pyrex glass spacers. The microvalve utilizes a lead zirconate titanate actuator to push a Si micromachined valve seat against a glass plate, thus modulating the flow passing through the gap between the valve seat and the glass plate. The fabricated heat exchanger has a footprint of 1×1 cm2 and a length of 35 mm. The size of the micromachined piezoelectrically actuated valve is about 1×1×1 cm3. In JT cooling tests, the temperature of the system was successfully controlled by adjusting the input voltage of the microvalve. When the valve was fully opened (at an input voltage of −30 V), the system cooled down to a temperature as low as 254.5 K at 430 kPa pressure difference between inlet and outlet at steady state and 234 K at 710 kPa in a transient state. The system provided cooling powers of 75 mW at 255 K and 150 mW at 258 K. Parasitic heat loads at 255 K are estimated at approximately 700 mW. PMID:21552354

  4. Different Ligands of the TRPV3 Cation Channel Cause Distinct Conformational Changes as Revealed by Intrinsic Tryptophan Fluorescence Quenching*

    PubMed Central

    Billen, Bert; Brams, Marijke; Debaveye, Sarah; Remeeva, Alina; Alpizar, Yeranddy A.; Waelkens, Etienne; Kreir, Mohamed; Brüggemann, Andrea; Talavera, Karel; Nilius, Bernd; Voets, Thomas; Ulens, Chris

    2015-01-01

    TRPV3 is a thermosensitive ion channel primarily expressed in epithelial tissues of the skin, nose, and tongue. The channel has been implicated in environmental thermosensation, hyperalgesia in inflamed tissues, skin sensitization, and hair growth. Although transient receptor potential (TRP) channel research has vastly increased our understanding of the physiological mechanisms of nociception and thermosensation, the molecular mechanics of these ion channels are still largely elusive. In order to better comprehend the functional properties and the mechanism of action in TRP channels, high-resolution three-dimensional structures are indispensable, because they will yield the necessary insights into architectural intimacies at the atomic level. However, structural studies of membrane proteins are currently hampered by difficulties in protein purification and in establishing suitable crystallization conditions. In this report, we present a novel protocol for the purification of membrane proteins, which takes advantage of a C-terminal GFP fusion. Using this protocol, we purified human TRPV3. We show that the purified protein is a fully functional ion channel with properties akin to the native channel using planar patch clamp on reconstituted channels and intrinsic tryptophan fluorescence spectroscopy. Using intrinsic tryptophan fluorescence spectroscopy, we reveal clear distinctions in the molecular interaction of different ligands with the channel. Altogether, this study provides powerful tools to broaden our understanding of ligand interaction with TRPV channels, and the availability of purified human TRPV3 opens up perspectives for further structural and functional studies. PMID:25829496

  5. Irradiation setup at the U-120M cyclotron facility

    NASA Astrophysics Data System (ADS)

    Křížek, F.; Ferencei, J.; Matlocha, T.; Pospíšil, J.; Príbeli, P.; Raskina, V.; Isakov, A.; Štursa, J.; Vaňát, T.; Vysoká, K.

    2018-06-01

    This paper describes parameters of the proton beams provided by the U-120M cyclotron and the related irradiation setup at the open access irradiation facility at the Nuclear Physics Institute of the Czech Academy of Sciences. The facility is suitable for testing radiation hardness of various electronic components. The use of the setup is illustrated by a measurement of an error rate for errors caused by Single Event Transients in an SRAM-based Xilinx XC3S200 FPGA. This measurement provides an estimate of a possible occurrence of Single Event Transients. Data suggest that the variation of error rate of the Single Event Effects for different clock phase shifts is not significant enough to use clock phase alignment with the beam as a fault mitigation technique.

  6. Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotkowski, A.; Kirka, M. M.; Babu, S. S.

    A fundamental understanding of spatial and temporal thermal distributions is crucial for predicting solidification and solid-state microstructural development in parts made by additive manufacturing. While sophisticated numerical techniques that are based on finite element or finite volume methods are useful for gaining insight into these phenomena at the length scale of the melt pool (100 - 500 µm), they are ill-suited for predicting engineering trends over full part cross-sections (> 10 x 10 cm) or many layers over long process times (> many days) due to the necessity of fully resolving the heat source characteristics. On the other hand, itmore » is extremely difficult to resolve the highly dynamic nature of the process using purely in-situ characterization techniques. This article proposes a pragmatic alternative based on a semi-analytical approach to predicting the transient heat conduction during powder bed metal additive manufacturing process. The model calculations were theoretically verified for selective laser melting of AlSi10Mg and electron beam melting of IN718 powders for simple cross-sectional geometries and the transient results are compared to steady state predictions from the Rosenthal equation. It is shown that the transient effects of the scan strategy create significant variations in the melt pool geometry and solid-liquid interface velocity, especially as the thermal diffusivity of the material decreases and the pre-heat of the process increases. With positive verification of the strategy, the model was then experimentally validated to simulate two point-melt scan strategies during electron beam melting of IN718, one intended to produce a columnar and one an equiaxed grain structure. Lastly, through comparison of the solidification conditions (i.e. transient and spatial variations of thermal gradient and liquid-solid interface velocity) predicted by the model to phenomenological CET theory, the model accurately predicted the experimental grain structures.« less

  7. The prognostic impact of worsening renal function in Japanese patients undergoing percutaneous coronary intervention with acute coronary syndrome.

    PubMed

    Murata, Nobuhiro; Kaneko, Hidehiro; Yajima, Junji; Oikawa, Yuji; Oshima, Toru; Tanaka, Shingo; Kano, Hiroto; Matsuno, Shunsuke; Suzuki, Shinya; Kato, Yuko; Otsuka, Takayuki; Uejima, Tokuhisa; Nagashima, Kazuyuki; Kirigaya, Hajime; Sagara, Koichi; Sawada, Hitoshi; Aizawa, Tadanori; Yamashita, Takeshi

    2015-10-01

    The prognostic impact of worsening renal function (WRF) in acute coronary syndrome (ACS) patients is not fully understood in Japanese clinical practice, and clinical implication of persistent versus transient WRF in ACS patients is also unclear. With a single hospital-based cohort in the Shinken database 2004-2012 (n=19,994), we followed 604 ACS patients who underwent percutaneous coronary intervention (PCI). WRF was defined as an increase in creatinine during hospitalization of ≥0.3mg/dl above admission value. Persistent WRF was defined as an increase in creatinine during hospitalization of ≥0.3mg/dl above admission value and maintained until discharge, whereas transient WRF was defined as that WRF resolved at hospital discharge. WRF occurred in 78 patients (13%), persistent WRF 35 patients (6%) and transient WRF 43 patients (7%). WRF patients were older and had a higher prevalence of chronic kidney disease, history of myocardial infarction (MI), and ST elevation MI. WRF was associated with elevated inflammatory markers and reduced left ventricular (LV) ejection fraction in acute, chronic phase. Incidence of all-cause death and major adverse cardiac events (MACE: all-cause death, MI, and target lesion revascularization) was significantly higher in patients with WRF. Moreover, in the WRF group, incidences of all-cause death and MACE were higher in patients with persistent WRF than those with transient WRF. A multivariate analysis showed that as well as older age, female gender, and intubation, WRF was an independent determinant of the all-cause death in ACS patients who underwent PCI. In conclusion, WRF might have a prognostic impact among Japanese ACS patients who underwent PCI in association with enhanced inflammatory response and LV remodeling. Persistent WRF might portend increased events, while transient WRF might have association with favorable outcomes compared with persistent WRF. Copyright © 2014 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  8. Transient global amnesia: implicit/explicit memory dissociation and PET assessment of brain perfusion and oxygen metabolism in the acute stage.

    PubMed

    Eustache, F; Desgranges, B; Petit-Taboué, M C; de la Sayette, V; Piot, V; Sablé, C; Marchal, G; Baron, J C

    1997-09-01

    To assess explicit memory and two components of implicit memory--that is, perceptual-verbal skill learning and lexical-semantic priming effects--as well as resting cerebral blood flow (CBF) and oxygen metabolism (CMRO2) during the acute phase of transient global amnesia. In a 59 year old woman, whose amnestic episode fulfilled all current criteria for transient global amnesia, a neuropsychological protocol was administered, including word learning, story recall, categorical fluency, mirror reading, and word stem completion tasks. PET was performed using the (15)O steady state inhalation method, while the patient still exhibited severe anterograde amnesia and was interleaved with the cognitive tests. There was a clear cut dissociation between impaired long term episodic memory and preserved implicit memory for its two components. Categorical fluency was significantly altered, suggesting word retrieval strategy--rather than semantic memory--impairment. The PET study disclosed a reduced CMRO2 with relatively or fully preserved CBF in the left prefrontotemporal cortex and lentiform nucleus, and the reverse pattern over the left occipital cortex. The PET alterations with patchy CBF-CMRO2 uncoupling would be compatible with a migraine-like phenomenon and indicate that the isolated assessment of perfusion in transient global amnesia may be misleading. The pattern of metabolic depression, with sparing of the hippocampal area, is one among the distinct patterns of brain dysfunction that underlie the (apparently) uniform clinical presentation of transient global amnesia. The finding of a left prefrontal hypometabolism in the face of impaired episodic memory and altered verbal fluency would fit present day concepts from PET activation studies about the role of this area in episodic and semantic memory encoding/retrieval. Likewise, the changes affecting the lenticular nucleus but sparing the caudate would be consistent with the normal performance in perceptual-verbal skill learning. Finally, unaltered lexical-semantic priming effects, despite left temporal cortex hypometabolism, suggest that these processes are subserved by a more distributed neocortical network.

  9. Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing

    DOE PAGES

    Plotkowski, A.; Kirka, M. M.; Babu, S. S.

    2017-10-16

    A fundamental understanding of spatial and temporal thermal distributions is crucial for predicting solidification and solid-state microstructural development in parts made by additive manufacturing. While sophisticated numerical techniques that are based on finite element or finite volume methods are useful for gaining insight into these phenomena at the length scale of the melt pool (100 - 500 µm), they are ill-suited for predicting engineering trends over full part cross-sections (> 10 x 10 cm) or many layers over long process times (> many days) due to the necessity of fully resolving the heat source characteristics. On the other hand, itmore » is extremely difficult to resolve the highly dynamic nature of the process using purely in-situ characterization techniques. This article proposes a pragmatic alternative based on a semi-analytical approach to predicting the transient heat conduction during powder bed metal additive manufacturing process. The model calculations were theoretically verified for selective laser melting of AlSi10Mg and electron beam melting of IN718 powders for simple cross-sectional geometries and the transient results are compared to steady state predictions from the Rosenthal equation. It is shown that the transient effects of the scan strategy create significant variations in the melt pool geometry and solid-liquid interface velocity, especially as the thermal diffusivity of the material decreases and the pre-heat of the process increases. With positive verification of the strategy, the model was then experimentally validated to simulate two point-melt scan strategies during electron beam melting of IN718, one intended to produce a columnar and one an equiaxed grain structure. Lastly, through comparison of the solidification conditions (i.e. transient and spatial variations of thermal gradient and liquid-solid interface velocity) predicted by the model to phenomenological CET theory, the model accurately predicted the experimental grain structures.« less

  10. Strain Effects on Properties of Phosphorene and Phosphorene Nanoribbons: a DFT and Tight Binding Study

    NASA Astrophysics Data System (ADS)

    Zhang, Ruo-Yu; Zheng, Ji-Ming; Jiang, Zhen-Yi

    2018-01-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 51572219 and 11447030, the Natural Science Foundation of Shaanxi Province of China under Grant Nos 2014JM2-1008 and 2015JM1018, and the State Key Laboratory of Transient Optics and Photonics Technology 2015 Annual Open Fund under Grant No SKLST200915.

  11. Magnetohydrodynamic Simulation of a Streamer Beside a Realistic Coronal Hole

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Wu, S. T.; Wang, A. H.; Poletto, G.

    1994-01-01

    Existing models of coronal streamers establish their credibility and act as the initial state for transients. The models have produced satisfactory streamer simulations, but unsatisfactory coronal hole simulations. This is a consequence of the character of the models and the boundary conditions. The models all have higher densities in the magnetically open regions than occur in coronal holes (Noci, et al., 1993).

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, Robert E.; Aster, Richard C.; Wiens, Douglas

    Seismographic coverage of Antarctica prior to 2007 consisted overwhelmingly of a handful of long running and sporadically deployed transient stations, many of which were principally collocated with scientific research stations. Thus, despite very cold temperatures, sunless winters, challenging logistics, and extreme storms, recent developments in polar instrumentation driven by new scientific objectives have opened up the entirety of Antarctica to year–round and continuous seismological observation (e.g., Nyblade et al., 2012).

  13. International Symposium on Electromagnetic Compatibility, Wakefield, MA, August 20-22, 1985, Record

    NASA Astrophysics Data System (ADS)

    Various papers on electromagnetic compatibility are presented. The general topics addressed include: EMI transient/impulsive disturbances, electromagnetic shielding, antennas and propagation, measurement technology, anechoic chamber/open site measurements, communications systems, electrostatic discahrge, cables/transmission lines. Also considered are: elecromagnetic environments, antennas, electromagnetic pulse, nonlinear effect, computer/data transmission systems, EMI standards and requirements, enclosures/TEM cells, systems EMC, and test site measurements.

  14. openQ*D simulation code for QCD+QED

    NASA Astrophysics Data System (ADS)

    Campos, Isabel; Fritzsch, Patrick; Hansen, Martin; Krstić Marinković, Marina; Patella, Agostino; Ramos, Alberto; Tantalo, Nazario

    2018-03-01

    The openQ*D code for the simulation of QCD+QED with C* boundary conditions is presented. This code is based on openQCD-1.6, from which it inherits the core features that ensure its efficiency: the locally-deflated SAP-preconditioned GCR solver, the twisted-mass frequency splitting of the fermion action, the multilevel integrator, the 4th order OMF integrator, the SSE/AVX intrinsics, etc. The photon field is treated as fully dynamical and C* boundary conditions can be chosen in the spatial directions. We discuss the main features of openQ*D, and we show basic test results and performance analysis. An alpha version of this code is publicly available and can be downloaded from http://rcstar.web.cern.ch/.

  15. Operative outcomes of robot-assisted transaxillary thyroid surgery for benign thyroid disease: early experience in 50 patients.

    PubMed

    Axente, Dan Damian; Silaghi, Horatiu; Silaghi, Cristina Alina; Major, Zsigmond Zoltán; Micu, Carmen Maria; Constantea, Nicolae Augustin

    2013-08-01

    The main benefits of robot-assisted transaxillary thyroid surgery are to overcome the technical limitations of other endoscopic procedures for this surgical pathology and to avoid any cervical skin incision. This article describes the first experience of a Romanian team with the endoscopic robot-assisted thyroid surgery. We used the da Vinci SI intuitive surgical system to carry out 50 thyroid operations: 33 unilateral total lobectomies with isthmectomy (TL), 8 unilateral total lobectomies, with contralateral subtotal lobectomy, and 9 total thyroidectomies. Preoperatively, the patients were diagnosed with nodular goiter in 42 cases, nodular autoimmune thyroiditis in 3 cases, Basedow disease in 2 cases, toxic thyroid adenoma in 2 cases, and diffuse goiter in 1 case. We analyzed the clinical characteristics, size and location of the nodules, surgery duration, postoperative complications, pain medication, histopathological findings and postoperative cosmetic results. All surgical procedures were carried out without major incidents. One case required conversion to open approach. The mean length of surgery was 159 ± 38.2 min and the average console time was 68 ± 39.9 min; postoperatively, we recorded one case of transient brachial plexus neurapraxia, one transient vocal cord paresis, one transient hypocalcemia, and four postoperative wound complications. The final histopathological examination revealed two cases of well-differentiated carcinoma. This paper reports the largest series to date in Southeast Europe about robot-assisted transaxillary thyroidectomy. On a group of selected Caucasian patients, postoperative results were similar to open cervicotomy in terms of postoperative complications. The major cosmetic advantage is the absence of scar in the anterior cervical region.

  16. Concomitant treatment of psoriasis of the hands and feet with pulsed dye laser and topical calcipotriol, salicylic acid, or both: a prospective open study in 41 patients.

    PubMed

    de Leeuw, Jaap; Tank, Bhupendra; Bjerring, Peter J; Koetsveld, Suzanne; Neumann, Martino

    2006-02-01

    Psoriasis of the hands and feet is a chronic disease which is often resistant to the usual topical therapies. It has considerable morbidity and seriously affects the quality of life of patients. We sought to prospectively evaluate the efficacy and safety of pulsed dye laser (PDL) treatment of psoriasis of the hands and feet. In all, 41 patients with therapy-resistant psoriasis of the hands and feet were treated once every 4 to 6 weeks with PDL at 585-nm wavelength, 450-microsecond pulse duration, 7-mm spot diameter, and 5- to 6.5-J/cm2 fluence. Calcipotriol ointment and salicylic acid 5% to 10% ointment were used as keratolytic agents. Treatment efficacy was evaluated by blinded comparison of photographs of the lesions taken before and after PDL treatment in each patient. A good to very good improvement in the lesions was observed in 76% of the patients after treatment. An average duration of remission was 11 months. Side effects were transient purpura, moderate discomfort during the treatment, transient hyperpigmentation or hypopigmentation, and incidental transient crustae. This was an open prospective study with a limited number of patients who were concomitantly treated with calcipotriol and salicylic acid ointment. Patients with photointolerance, on medication with phototoxic or photoallergic drugs, and with widespread psoriasis were excluded. Concomitant treatment with PDL and topical calcipotriol, salicylic acid, or both was a satisfactory modality for treating psoriasis of the hands and feet. There was a subjective improvement in the symptoms and quality of life in all patients.

  17. Thrombogenic potential of transcatheter aortic valve implantation with trivial paravalvular leakage

    PubMed Central

    Siegel, Rolland

    2014-01-01

    Background Significant paravalvular leakage after transcatheter aortic valve implantation (TAVI) correlates with increased morbidity and mortality, but adverse consequences of trivial paravalvular leakage have stimulated few investigations. Using a unique method distinctly different from other diagnostic approaches, we previously reported elevated backflow velocities of short duration (transients) in mechanical valve closure. In this study, similar transients were found in a transcatheter valve paravalvular leakage avatar. Methods Paravalvular leakage rate (zero to 58 mL/second) and aortic valve incompetence (volumetric back flow/forward flow; zero to 32%) were made adjustable using a mock transcatheter aortic valve device and tested in quasi-steady and pulsatile flow test systems. Projected dynamic valve area (PDVA) from the back illuminated mock transcatheter aortic valve device was measured and regional backflow velocities were derived by dividing volumetric flow rate by the PDVA over the open and closing valve phase and the total closed valve area derived from backflow leakage. Results Aortic incompetence from 1-32% generated negative backflow transients from 8 to 267 meters/second, a range not dissimilar to that measured in mechanical valves with zero paravalvular leakage. Optimal paravalvular leakage was identified; not too small generating high backflow transients, not too large considering volume overload and cardiac energy loss caused by defective valve behavior and fluid motion. Conclusions Thrombogenic potential of transcatheter aortic valves with trivial aortic incompetence and high magnitude regional backflow velocity transients was comparable to mechanical valves. This may have relevance to stroke rate, asymptomatic microembolic episodes and indications for anticoagulation therapy after transcatheter valve insertion. PMID:25333018

  18. Final Cassini RADAR Observation of Titan's Magic Island Region and Ligeia Mare

    NASA Astrophysics Data System (ADS)

    Hofgartner, J. D.; Hayes, A.; Lunine, J. I.; Stiles, B. W.; Malaska, M. J.; Wall, S. D.

    2017-12-01

    Cassini arrived in the Saturn system shortly after the Oct. 2002 northern winter solstice and the mission will end shortly after the May 2017 northern summer solstice. A main objective of the Cassini Solstice mission is to study seasonal and temporal changes and at Titan this includes changes of the hydrocarbon lakes/seas. Titan's Magic Islands are transient bright features in the north polar sea, Ligeia Mare that were observed to be temporal changes in Cassini RADAR images. The Magic Islands were discovered in a July 2013 image as anomalously bright features that were not present in four previous observations from Feb. 2007 - May 2013. The region of the Magic Islands was again anomalously bright in an Aug. 2014 image and the total areal extent of the anomalously bright region had increased by more than a factor of three. The transient features were not, however, observed in a Jan. 2015 image. Thus in seven observations spanning much of the Cassini mission the bright features were observed to appear, increase in extent, and then disappear. They are referred to as Titan's Magic Islands because of their appearing/disappearing behavior and resemblance in appearance to islands. These transient bright features are not actually islands. The transients were concluded to be most consistent with waves, floating solids, suspended solids, and bubbles. Tides, sea level changes, and seafloor changes are unlikely to be the primary cause of these temporal changes. Whether these temporal changes are also seasonal changes was unclear. The final Cassini RADAR imaging observation of Titan in Apr. 2017 included the region of the Magic Islands. The transient bright features were not present during this observation. The geometry of the observation was such that, had the transients been present, their brightness may have ruled out some of the remaining hypotheses. Their absence however, is less constraining but consistent with their transient nature. Waves, floating solids, suspended solids, and bubbles remain the most likely hypotheses. Other regions of Ligeia Mare were also imaged in the Apr. 2017 observation and no transient features were observed elsewhere in the sea. The specific process responsible for these transient features and the role of seasonal changes in their appearance and disappearance remains an open research question.

  19. Computational investigations and grid refinement study of 3D transient flow in a cylindrical tank using OpenFOAM

    NASA Astrophysics Data System (ADS)

    Mohd Sakri, F.; Mat Ali, M. S.; Sheikh Salim, S. A. Z.

    2016-10-01

    The study of physic fluid for a liquid draining inside a tank is easily accessible using numerical simulation. However, numerical simulation is expensive when the liquid draining involves the multi-phase problem. Since an accurate numerical simulation can be obtained if a proper method for error estimation is accomplished, this paper provides systematic assessment of error estimation due to grid convergence error using OpenFOAM. OpenFOAM is an open source CFD-toolbox and it is well-known among the researchers and institutions because of its free applications and ready to use. In this study, three types of grid resolution are used: coarse, medium and fine grids. Grid Convergence Index (GCI) is applied to estimate the error due to the grid sensitivity. A monotonic convergence condition is obtained in this study that shows the grid convergence error has been progressively reduced. The fine grid has the GCI value below 1%. The extrapolated value from Richardson Extrapolation is in the range of the GCI obtained.

  20. Poloxamer-188 and citicoline provide neuronal membrane integrity and protect membrane stability in cortical spreading depression.

    PubMed

    Yıldırım, Timur; Eylen, Alpaslan; Lule, Sevda; Erdener, Sefik Evren; Vural, Atay; Karatas, Hulya; Ozveren, Mehmet Faik; Dalkara, Turgay; Gursoy-Ozdemir, Yasemin

    2015-01-01

    Under pathological conditions such as brain trauma, subarachnoid hemorrhage and stroke, cortical spreading depression (CSD) or peri-infarct depolarizations contribute to brain damage in animal models of neurological disorders as well as in human neurological diseases. CSD causes transient megachannel opening on the neuronal membrane, which may compromise neuronal survival under pathological conditions. Poloxamer-188 (P-188) and citicoline are neuroprotectants with membrane sealing properties. The aim of this study is to investigate the effect of P-188 and citicoline on the neuronal megachannel opening induced by CSD in the mouse brain. We have monitored megachannel opening with propidium iodide, a membrane impermeable fluorescent dye and, demonstrate that P-188 and citicoline strikingly decreased CSD-induced neuronal PI influx in cortex and hippocampal dentate gyrus. Therefore, these agents may be providing neuroprotection by blocking megachannel opening, which may be related to their membrane sealing action and warrant further investigation for treatment of traumatic brain injury and ischemic stroke.

  1. 78 FR 61342 - Meeting of the National Commission on the Structure of the Air Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... availability of space, the meeting is open to the public. The building is fully handicap accessible. There is parking at the Westover Metropolitan Airport. More information about the hearing space can be found at...

  2. Multidimensional Perfectionism and Rogerian Personality Constructs

    ERIC Educational Resources Information Center

    Ashby, Jeffrey S.; Rahotep, Simone S.; Martin, James L.

    2005-01-01

    The Feelings, Reactions, and Beliefs Survey (FRBS) was administered to 141 undergraduate students to evaluate differences in Rogerian personality constructs among adaptive, maladaptive, and nonperfectionists. The groups differed significantly on 5 FRBS subscales: Fully Functioning Person, Struggling With Feelings of Inferiority, Openness to…

  3. 78 FR 12060 - Sunshine Act Meeting; Open Commission Meeting Wednesday, February 20, 2013

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-21

    ... accelerate the growth and expansion of new Wi-Fi technology offering consumers faster speeds and less network congestion at Wi-Fi hot spots. The meeting site is fully accessible to people using wheelchairs or other...

  4. Physical exercise improves functional recovery through mitigation of autophagy, attenuation of apoptosis and enhancement of neurogenesis after MCAO in rats.

    PubMed

    Zhang, Liying; Hu, Xiquan; Luo, Jing; Li, Lili; Chen, Xingyong; Huang, Ruxun; Pei, Zhong

    2013-04-08

    Physical exercise improves functional recovery after stroke through a complex mechanism that is not fully understood. Transient focal cerebral ischemia induces autophagy, apoptosis and neurogenesis in the peri-infarct region. This study is aimed to examine the effects of physical exercise on autophagy, apoptosis and neurogenesis in the peri-infarct region in a rat model of transient middle cerebral artery occlusion (MCAO). We found that autophagosomes, as labeled by microtubule-associated protein 1A light chain 3-II (LC3-II), were evident in the peri-infarct region at 3 days after 90-minute MCAO. Moreover, 44.6% of LC3-positive cells were also stained with TUNEL. The number of LC3 positive cells was significantly lower in physical exercise group than in control group at 14 and 21 days after MCAO. Suppression of autophagosomes by physical exercise was positively associated with improvement of neurological function. In addition, physical exercise significantly decreased the number of TUNEL-positive cells and increased the numbers of Ki67-positive, a proliferative marker, and insulin-like growth factor-1 (IGF-1) positive cells at 7, 14, and 21 days after MCAO. The present results demonstrate that physical exercise enhances neurological function possibly by reduction of autophagosome accumulation, attenuation of apoptosis and enhancement of neurogenesis in the peri-infarct region after transient MCAO in rats.

  5. Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells.

    PubMed

    Regmi, Raju; Winkler, Pamina M; Flauraud, Valentin; Borgman, Kyra J E; Manzo, Carlo; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F

    2017-10-11

    Optical nanoantennas can efficiently confine light into nanoscopic hotspots, enabling single-molecule detection sensitivity at biological relevant conditions. This innovative approach to breach the diffraction limit offers a versatile platform to investigate the dynamics of individual biomolecules in living cell membranes and their partitioning into cholesterol-dependent lipid nanodomains. Here, we present optical nanoantenna arrays with accessible surface hotspots to study the characteristic diffusion dynamics of phosphoethanolamine (PE) and sphingomyelin (SM) in the plasma membrane of living cells at the nanoscale. Fluorescence burst analysis and fluorescence correlation spectroscopy performed on nanoantennas of different gap sizes show that, unlike PE, SM is transiently trapped in cholesterol-enriched nanodomains of 10 nm diameter with short characteristic times around 100 μs. The removal of cholesterol led to the free diffusion of SM, consistent with the dispersion of nanodomains. Our results are consistent with the existence of highly transient and fluctuating nanoscale assemblies enriched by cholesterol and sphingolipids in living cell membranes, also known as lipid rafts. Quantitative data on sphingolipids partitioning into lipid rafts is crucial to understand the spatiotemporal heterogeneous organization of transient molecular complexes on the membrane of living cells at the nanoscale. The proposed technique is fully biocompatible and thus provides various opportunities for biophysics and live cell research to reveal details that remain hidden in confocal diffraction-limited measurements.

  6. Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells

    NASA Astrophysics Data System (ADS)

    Regmi, Raju; Winkler, Pamina M.; Flauraud, Valentin; Borgman, Kyra J. E.; Manzo, Carlo; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F.

    2017-10-01

    Optical nanoantennas can efficiently confine light into nanoscopic hotspots, enabling single-molecule detection sensitivity at biological relevant conditions. This innovative approach to breach the diffraction limit offers a versatile platform to investigate the dynamics of individual biomolecules in living cell membranes and their partitioning into cholesterol-dependent lipid nanodomains. Here, we present optical nanoantenna arrays with accessible surface hotspots to study the characteristic diffusion dynamics of phosphoethanolamine (PE) and sphingomyelin (SM) in the plasma membrane of living cells at the nanoscale. Fluorescence burst analysis and fluorescence correlation spectroscopy performed on nanoantennas of different gap sizes show that, unlike PE, SM is transiently trapped in cholesterol-enriched nanodomains of 10 nm diameter with short characteristic times around 100 {\\mu}s. The removal of cholesterol led to the free diffusion of SM, consistent with the dispersion of nanodomains. Our results are consistent with the existence of highly transient and fluctuating nanoscale assemblies enriched by cholesterol and sphingolipids in living cell membranes, also known as lipid rafts. Quantitative data on sphingolipids partitioning into lipid rafts is crucial to understand the spatiotemporal heterogeneous organization of transient molecular complexes on the membrane of living cells at the nanoscale. The proposed technique is fully biocompatible and thus provides various opportunities for biophysics and live cell research to reveal details that remain hidden in confocal diffraction-limited measurements.

  7. Towards a sharp-interface volume-of-fluid methodology for modeling evaporation

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2017-11-01

    In modeling evaporation, the diffuse-interface (one-domain) formulation yields inaccurate results. Recent efforts approaching the problem via a sharp-interface (two-domain) formulation have shown significant improvements. The reasons behind their better performance are discussed in the present work. All available sharp-interface methods, however, exclusively employ the level-set. In the present work, we develop a sharp-interface evaporation model in a volume-of-fluid (VOF) framework in order to leverage its mass-conserving property as well as its ability to handle large topographical changes. We start with a critical review of the assumptions underlying the mathematical equations governing evaporation. For example, it is shown that the assumption of incompressibility can only be applied in special circumstances. The famous D2 law used for benchmarking is valid exclusively to steady-state test problems. Transient is present over significant lifetime of a micron-size droplet. Therefore, a 1D spherical fully transient model is developed to provide a benchmark transient solution. Finally, a 3D Cartesian Navier-Stokes evaporation solver is developed. Some preliminary validation test-cases are presented for static and moving drop evaporation. This material is based upon work supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy and the Department of Defense, Tank and Automotive Research, Development, and Engineering Center, under Award Number DEEE0007292.

  8. KSC-03pd0771

    NASA Image and Video Library

    2003-03-20

    KENNEDY SPACE CENTER, Fla. - The solar arrays on the Mars Exploration Rover-2 (MER-2) are fully opened during a test in the Payload Hazardous Servicing Facility. Set to launch in Spring 2003, the MER Mission will consist of two identical rovers designed to cover roughly 110 yards each Martian day. Each rover will carry five scientific instruments that will allow it to search for evidence of liquid water that may have been present in the planet's past. The rovers will be identical to each other, but will land at different regions of Mars. The first rover has a launch window opening May 30, and the second rover a window opening June 25, 2003.

  9. Open-source tools for data mining.

    PubMed

    Zupan, Blaz; Demsar, Janez

    2008-03-01

    With a growing volume of biomedical databases and repositories, the need to develop a set of tools to address their analysis and support knowledge discovery is becoming acute. The data mining community has developed a substantial set of techniques for computational treatment of these data. In this article, we discuss the evolution of open-source toolboxes that data mining researchers and enthusiasts have developed over the span of a few decades and review several currently available open-source data mining suites. The approaches we review are diverse in data mining methods and user interfaces and also demonstrate that the field and its tools are ready to be fully exploited in biomedical research.

  10. Pharmacokinetic analysis and drug delivery efficiency of the focused ultrasound-induced blood-brain barrier opening in non-human primates

    PubMed Central

    Samiotaki, Gesthimani; Karakatsani, Maria Eleni; Buch, Amanda; Papadopoulos, Stephanos; Wu, Shih Ying; Jambawalikar, Sachin; Konofagou, Elisa E.

    2016-01-01

    Purpose Focused Ultrasound (FUS) in conjunction with systemically administered microbubbles has been shown to open the Blood-Brain Barrier (BBB) locally, non-invasively and reversibly in rodents and non-human primates (NHP), suggesting the immense potential of this technique. The objective of this study entailed the investigation of the physiologic changes in the brain following the FUS-induced BBB opening and their relationship with the underlying anatomy. Materials and Methods Pharmacokinetic analysis was implemented in NHP’s that received FUS at various acoustic pressures. Relaxivity mapping enabled the robust quantitative detection of the BBB opening as well as gray and white matter segmentation. Drug delivery efficiency was measured for pre-clinical validation of the technique. Results Based on our results, the opening volume and the amount of the gadolinium delivered were found mostly contained in the grey matter, while FUS-induced permeability and drug concentration varied depending upon the underlying brain inhomogeneity, and increased with the acoustic pressure. Conclusions Overall, apart from the in vivo protocols for BBB analysis developed here, this study also suggests the important role that FUS can have in efficient drug delivery via localized and transient BBB opening. PMID:27916657

  11. Cochlear implantation for severe sensorineural hearing loss caused by lightning.

    PubMed

    Myung, Nam-Suk; Lee, Il-Woo; Goh, Eui-Kyung; Kong, Soo-Keun

    2012-01-01

    Lightning strike can produce an array of clinical symptoms and injuries. It may damage multiple organs and cause auditory injuries ranging from transient hearing loss and vertigo to complete disruption of the auditory system. Tympanic-membrane rupture is relatively common in patients with lightning injury. The exact pathogenetic mechanisms of auditory lesions in lightning survivors have not been fully elucidated. We report the case of a 45-year-old woman with bilateral profound sensorineural hearing loss caused by a lightning strike, who was successfully rehabilitated after a cochlear implantation. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Development of an iron nitrate resistant injector valve for the Space Shuttle orbiter primary thruster

    NASA Technical Reports Server (NTRS)

    Wichmann, Horst; Marquardt, Kaiser; Goforth, Alyssa

    1993-01-01

    Design of a direct-acting valve (DAV) for a primary thruster which is fully interchangeable with a thruster equipped with pilot-operated valves is described. The DAV is based on a bellows to isolate propellants form the actuator for maximum resistance to iron nitrate and other contamination and to select optimum materials for the actuator. It provides improved seal performance under all operating conditions and insensitivity to pressure transients. As compared with the existing pilot-operated valve, the DAV design is much simpler, consists of fewer parts, and will be lower in cost.

  13. A case of motor neuropathy after cryolipolysis of the arm.

    PubMed

    Lee, Sang Jun; Kim, Young Jin; Park, Jae Beom; Suh, Dong Hye; Kwon, Do Young; Ryu, Hwa Jung

    2016-11-01

    Cryolipolysis treatment is a non-invasive option for localized fat reduction without damaging the surrounding tissue. Clinical studies about cryolipolysis show various side effects, including temporary erythema, bruising, and transient numbness. But, no reports are available on motor nerve malfunction after cryolipolysis. A 24-year-old female received cryolipolysis treatment on abdomen, both arms. After 10 days, patient complained of weakness and inability to lift heavy objects. Symptoms continued for 6 months, and fully recovered without treatment. Thus, we report a case of motor neuropathy after cryolipolysis, which is a rare complication of cryolipolysis.

  14. A new hypothesis of cause of syncope: trigeminocardiac reflex during extraction of teeth.

    PubMed

    Arakeri, Gururaj; Arali, Veena

    2010-02-01

    Transient Loss Of Consciousness (TLOC) or vasovagal syncope is well known phenomenon in dental/maxillofacial surgery. Despite considerable study of vasovagal syncope, its pathophysiology remains to be fully elucidated. After having encountered a case of trigeminocardiac reflex after extraction of maxillary first molar we observed and studied 400 extractions under local anesthesia to know the relation between trigeminocardiac reflex and syncope. We make hypothesis that trigeminocardiac reflex which is usually seen under general anesthesia when all sympathetic reflexes are blunted can also occur under local anesthesia during extractions of maxillary molars (dento-cardiac reflex) and mediate syncope.

  15. Reducing the surface roughness beyond the pulsed-laser-deposition limit.

    PubMed

    Vasco, E; Polop, C; Sacedón, J L

    2009-10-01

    Here, we outline the theoretical fundamentals of a promising growth kinetics of films from the vapor phase, in which pulsed fluxes are combined with temperature transients to enable short-range surface relaxations (e.g., species rearrangements) and to inhibit long-range relaxations (atomic exchange between species). A group of physical techniques (fully pulsed thermal and/or laser depositions) based on this kinetics is developed that can be used to prepare films with roughnesses even lower than those obtained with pulsed-laser deposition, which is the physical vapor-phase deposition technique that has produced the flattest films reported so far.

  16. A diagnostic challenge: a case of acrodermatitis enteropathica without hypozincemia and with maternal milk of low zinc level.

    PubMed

    Tatlican, Semih; Yamangokturk, Burcu; Eren, Cemile; Gulbahar, Ozlem; Eskioglu, Fatma

    2010-01-01

    Acrodermatitis enteropathica is a rare and distinct form of zinc deficiency with a requirement of life-long zinc supplementation and inherited in a recessive manner. Transient nutritional zinc deficiency is also a well known condition mimicking acrodermatitis enteropathica like skin changes in preterm and term infants who are generally breastfed with a low level of zinc containing milk. Here, a 4-month-old male, term and fully breastfed acrodermatitis enteropathica case without hypozincemia and with maternal milk of low zinc level is presented. © 2010 Wiley Periodicals, Inc.

  17. Neuropeptide Y rapidly enhances [Ca2+]i transients and Ca2+ sparks in adult rat ventricular myocytes through Y1 receptor and PLC activation.

    PubMed

    Heredia, María del Puy; Delgado, Carmen; Pereira, Laetitia; Perrier, Romain; Richard, Sylvain; Vassort, Guy; Bénitah, Jean-Pierre; Gómez, Ana María

    2005-01-01

    Neuropeptide Y (NPY) is the most abundant peptide in the mammalian heart, but its cardiac actions are not fully understood. Here we investigate the effect of NPY in intracellular Ca2+ release, using isolated rat cardiac myocytes and confocal microscopy. Cardiac myocytes were field-stimulated at 1 Hz. The evoked [Ca2+]i transient was of higher amplitude and of faster decay in the presence of 100 nM NPY. Cell contraction was also increased by NPY. We analyzed the occurrence of Ca2+ sparks and their characteristics after NPY application. NPY significantly increased Ca2+ sparks frequency in quiescent cells. The Ca2+ spark amplitude was enhanced by NPY but the other characteristics of Ca2+ sparks were not significantly altered. Because cardiac myocytes express both Y1 and Y2 NPY receptors, we repeated the experiments in the presence of the receptor blockers, BIBP3226 and BIIE0246. We found that Y1 NPY receptor blockade completely inhibited NPY effects on [Ca2+]i transient. PTX-sensitive G-proteins and/or phospholypase C (PLC) have been invoked to mediate NPY effects in other cell types. We tested these two hypotheses. In PTX-treated myocytes NPY was still effective, which suggests that the observed NPY actions are not mediated by PTX-sensitive G-proteins. In contrast, the increase in [Ca2+]i transient by NPY was completely inhibited by the PLC inhibitor U73122. In conclusion, we find that NPY has a positive inotropic effect in isolated rat cardiac myocytes, which involves increase in Ca2+ release after activation of Y1 NPY receptor and subsequent stimulation of PLC.

  18. Critical role of TRPP2 and TRPC1 channels in stretch-induced injury of blood-brain barrier endothelial cells.

    PubMed

    Berrout, Jonathan; Jin, Min; O'Neil, Roger G

    2012-02-03

    The microvessels of the brain are very sensitive to mechanical stresses such as observed in traumatic brain injury (TBI). Such stresses can quickly lead to dysfunction of the microvessel endothelial cells, including disruption of blood-brain barrier (BBB). It is now evident that elevation of cytosolic calcium levels ([Ca2+]i) can compromise the BBB integrity, however the mechanism by which mechanical injury can produce a [Ca2+]i increase in brain endothelial cells is unclear. To assess the effects of mechanical/stretch injury on [Ca2+]i signaling, mouse brain microvessel endothelial cells (bEnd3) were grown to confluency on elasticized membranes and [Ca2+]i monitored using fura 2 fluorescence imaging. Application of an injury, using a pressure/stretch pulse of 50 ms, induced a rapid transient increase in [Ca2+]i. In the absence of extracellular Ca2+, the injury-induced [Ca2+]i transient was greatly reduced, but not fully eliminated, while unloading of Ca2+ stores by thapsigargin treatment in the absence of extracellular Ca2+ abolished the injury transient. Application of LOE-908 and amiloride, TRPC and TRPP2 channel blockers, respectively, both reduced the transient [Ca2+]i increase. Further, siRNA knockdown assays directed at TRPC1 and TRPP2 expression also resulted in a reduction of the injury-induced [Ca2+]i response. In addition, stretch injury induced increases of NO production and actin stress fiber formation, both of which were markedly reduced upon treatment with LOE908 and/or amiloride. We conclude that mechanical injury of brain endothelial cells induces a rapid influx of calcium, mediated by TRPC1 and TRPP2 channels, which leads to NO synthesis and actin cytoskeletal rearrangement. Copyright © 2011. Published by Elsevier B.V.

  19. Short Chemical Ischemia Triggers Phosphorylation of eIF2α and Death of SH-SY5Y Cells but not Proteasome Stress and Heat Shock Protein Response in both SH-SY5Y and T98G Cells.

    PubMed

    Klacanova, Katarina; Pilchova, Ivana; Klikova, Katarina; Racay, Peter

    2016-04-01

    Both translation arrest and proteasome stress associated with accumulation of ubiquitin-conjugated protein aggregates were considered as a cause of delayed neuronal death after transient global brain ischemia; however, exact mechanisms as well as possible relationships are not fully understood. The aim of this study was to compare the effect of chemical ischemia and proteasome stress on cellular stress responses and viability of neuroblastoma SH-SY5Y and glioblastoma T98G cells. Chemical ischemia was induced by transient treatment of the cells with sodium azide in combination with 2-deoxyglucose. Proteasome stress was induced by treatment of the cells with bortezomib. Treatment of SH-SY5Y cells with sodium azide/2-deoxyglucose for 15 min was associated with cell death observed 24 h after treatment, while glioblastoma T98G cells were resistant to the same treatment. Treatment of both SH-SY5Y and T98G cells with bortezomib was associated with cell death, accumulation of ubiquitin-conjugated proteins, and increased expression of Hsp70. These typical cellular responses to proteasome stress, observed also after transient global brain ischemia, were not observed after chemical ischemia. Finally, chemical ischemia, but not proteasome stress, was in SH-SY5Y cells associated with increased phosphorylation of eIF2α, another typical cellular response triggered after transient global brain ischemia. Our results showed that short chemical ischemia of SH-SY5Y cells is not sufficient to induce both proteasome stress associated with accumulation of ubiquitin-conjugated proteins and stress response at the level of heat shock proteins despite induction of cell death and eIF2α phosphorylation.

  20. Beneficial effect of agmatine on brain apoptosis, astrogliosis, and edema after rat transient cerebral ischemia

    PubMed Central

    2010-01-01

    Background Although agmatine therapy in a mouse model of transient focal cerebral ischemia is highly protective against neurological injury, the mechanisms underlying the protective effects of agmatine are not fully elucidated. This study aimed to investigate the effects of agmatine on brain apoptosis, astrogliosis and edema in the rats with transient cerebral ischemia. Methods Following surgical induction of middle cerebral artery occlusion (MCAO) for 90 min, agmatine (100 mg/kg, i.p.) was injected 5 min after beginning of reperfusion and again once daily for the next 3 post-operative days. Four days after reperfusion, both motor and proprioception functions were assessed and then all rats were sacrificed for determination of brain infarct volume (2, 3, 5-triphenyltetrazolium chloride staining), apoptosis (TUNEL staining), edema (both cerebral water content and amounts of aquaporin-4 positive cells), gliosis (glial fibrillary acidic protein [GFAP]-positive cells), and neurotoxicity (inducible nitric oxide synthase [iNOS] expression). Results The results showed that agmatine treatment was found to accelerate recovery of motor (from 55 degrees to 62 degrees) and proprioception (from 54% maximal possible effect to 10% maximal possible effect) deficits and to prevent brain infarction (from 370 mm3 to 50 mm3), gliosis (from 80 GFAP-positive cells to 30 GFAP-positive cells), edema (cerebral water contents decreased from 82.5% to 79.4%; AQP4 positive cells decreased from 140 to 84 per section), apoptosis (neuronal apoptotic cells decreased from 100 to 20 per section), and neurotoxicity (iNOS expression cells decreased from 64 to 7 per section) during MCAO ischemic injury in rats. Conclusions The data suggest that agmatine may improve outcomes of transient cerebral ischemia in rats by reducing brain apoptosis, astrogliosis and edema. PMID:20815926

  1. Sleep Problem Trajectories and Well-Being in Children with Attention-Deficit Hyperactivity Disorder: A Prospective Cohort Study.

    PubMed

    Lycett, Kate; Sciberras, Emma; Hiscock, Harriet; Mensah, Fiona K

    2016-06-01

    Sleep problems affect up to 70% of children with attention-deficit/hyperactivity disorder (ADHD) and are associated with poorer child and family well-being in cross-sectional studies. However, whether these associations hold longitudinally is unclear. The authors aimed to examine the longitudinal relationship between sleep problem trajectories and well-being in children with ADHD. Children with ADHD (n = 186), aged 5 to 13 years, were recruited from 21 pediatric practices across the state of Victoria, Australia. Sleep problem severity data were collected at 3 time points (baseline, 6, and 12 mo) and were used to classify sleep problem trajectories. Child and family well-being (e.g., child emotional and behavioral problems, quality of life [QoL]) were measured at baseline and 12 months by teacher and/or caregiver-report. The well-being of children with "transient" and "persistent" sleep problems was compared with those "never" experiencing sleep problems using a series of hierarchical linear regression models. After accounting for socio-demographic factors, children with transient and persistent sleep trajectories experienced more caregiver-reported behavioral and emotional problems (effect size [ES] both 0.7) and poorer child QoL (ES: -0.7 and -1.2, respectively). These associations remained after also accounting for ADHD medication and symptom severity and comorbidities, but after accounting for baseline measures many associations weakened to the point of nonsignificance. In the fully adjusted model-transient sleep problems were associated with behavioral and emotional problems (ES: 0.2). These associations were not evident by teacher-report. Children with ADHD experiencing transient or persistent sleep problems have poorer caregiver-reported well-being. Managing sleep problems in children with ADHD may improve child well-being.

  2. Developing a Knowledge Base for Detection of Powertrain Failures by Reversibly Seeding Engine Faults

    DTIC Science & Technology

    2010-08-01

    output, in terms of torque, speed and heat losses, can be accurately performed. Our investigation has focused on creating faulty operating conditions...open loop case”, used to measure the engine output for a given driver demand, for instance, 100% pedal); in the other case (“ closed loop ”) engine...could be changed in nine steps ranging from completely open to fully closed . Another butterfly valve was placed at the end of the exhaust pipe before

  3. Low-Dimensional Model of a Cylinder Wake

    NASA Astrophysics Data System (ADS)

    Luchtenburg, Mark; Cohen, Kelly; Siegel, Stefan; McLaughlin, Tom

    2003-11-01

    In a two-dimensional cylinder wake, self-excited oscillations in the form of periodic shedding of vortices are observed above a critical Reynolds number of about 47. These flow-induced non-linear oscillations lead to some undesirable effects associated with unsteady pressures such as fluid-structure interactions. An effective way of suppressing the self-excited flow oscillations is by the incorporation of closed-loop flow control. In this effort, a low dimensional, proper orthogonal decomposition (POD) model is based on data obtained from direct numerical simulations of the Navier Stokes equations for the two dimensional circular cylinder wake at a Reynolds number of 100. Three different conditions are examined, namely, the unforced wake experiencing steady-state vortex shedding, the transient behavior of the unforced wake at the startup of the simulation, and transient response to open-loop harmonic forcing by translation. We discuss POD mode selection and the number of modes that need to be included in the low-dimensional model. It is found that the transient dynamics need to be represented by a coupled system that includes an aperiodic mean-flow mode, an aperiodic shift mode and the periodic von Karman modes. Finally, a least squares mapping method is introduced to develop the non-linear state equations. The predictive capability of the state equations demonstrates the ability of the above approach to model the transient dynamics of the wake.

  4. Millimeter waves thermally alter the firing rate of the Lymnaea pacemaker neuron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alekseev, S.I.; Kochetkova, N.V.; Ziskin, M.C.

    1997-05-01

    The effects of millimeter waves (mm-waves, 75 GHz) and temperature elevation on the firing rate of the BP-4 pacemaker neuron of the pond snail Lymnaea stagnalis were studied by using microelectrode techniques. The open end of a rectangular waveguide covered with a thin Teflon film served as a radiator. Specific absorption rates (SARs), measured in physiological solution at the radiator outlet, ranged from 600 to 4,200 W/kg, causing temperature rises from 0.3 to 2.2 C, respectively. Irradiation at an SAR of 4,200 W/kg caused a biphasic change in the firing rate, i.e., a transient decrease in the firing rate followedmore » by a gradual increase to a new level that was 68 {+-} 21% above control. The biphasic changes in the firing rate were reproduced by heating under the condition that the magnitude (2 C) and the rate of temperature rise were equal to those produced by the irradiation. The addition of 0.05 mM of ouabain caused the disappearance of transient responses of the neuron to the irradiation. It was shown that the rate of temperature rise played an important role in the development of a transient neuronal response. The threshold stimulus for a transient response of the BP-4 neutron found in warming experiments was a temperature rise of 0.0025 C/s.« less

  5. Body-force-driven multiplicity and stability of combined free and forced convection in rotating curved ducts: Coriolis force

    NASA Astrophysics Data System (ADS)

    Yang, T.; Wang, L.

    A numerical study is made on the fully developed bifurcation structure and stability of forced convection in a rotating curved duct of square cross-section. Solution structure is determined as variation of a parameter that indicates the effect of rotation (Coriolis-force-driven multiplicity). Three solutions for the flows in a stationary curved duct obtained in the work of Yang and Wang [1] are used as initial solutions of continuation calculations to unfold the solution branches. Twenty-one solution branches are found comparing with five obtained by Selmi and Nandakumar [2]. Dynamic responses of the multiple solutions to finite random disturbances are examined by the direct transient computation. Results show that characteristics of physically realizable fully developed flows changes significantly with variation of effect of rotation. Fourteen sub-ranges are identified according to characteristics of physically realizable solutions. As rotation effect changes, possible physically realizable fully-developed flows can be stable steady 2-cell state, stable multi-cell state, temporal periodic oscillation between symmetric/asymmetric 2-cell/4-cell flows, temporal oscillation with intermittency, temporal chaotic oscillation and temporal oscillation with pseudo intermittency. Among these possible physically realizable fully developed flows, stable multi-cell state and stable steady 2-cell state exist as dual stable. And oscillation with pseudo intermittency is a new phenomenon. In addition to the temporal oscillation with intermittency, sudden shift from stationary stable solution to temporal chaotic oscillation is identified to be another way of onset of chaos.

  6. Assessment of preparation time with fully-liquid versus non-fully liquid paediatric hexavalent vaccines. A time and motion study.

    PubMed

    De Coster, Ilse; Fournie, Xavier; Faure, Céline; Ziani, Eddy; Nicolas, Laurence; Soubeyrand, Benoit; Van Damme, Pierre

    2015-07-31

    Simplified vaccine preparation steps would save time and reduce potential immunisation errors. The aim of the study was to assess vaccine preparation time with fully-liquid hexavalent vaccine (DTaP-IPV-HB-PRP-T, Sanofi Pasteur MSD) versus non-fully liquid hexavalent vaccine that needs reconstitution (DTPa-HBV-IPV/Hib, GlaxoSmithKline Biologicals). Ninety-six Health Care Professionals (HCPs) participated in a randomised, cross-over, open-label, time and motion study in Belgium (2014). HCPs prepared each vaccine in a cross-over manner with a wash-out period of 3-5min. An independent nurse assessed preparation time and immunisation errors by systematic review of the videos. HCPs satisfaction and preference were evaluated by a self-administered questionnaire. Average preparation time was 36s for the fully-liquid vaccine and 70.5s for the non-fully liquid vaccine. The time saved using the fully-liquid vaccine was 34.5s (p≤0.001). On 192 preparations, 57 immunisation errors occurred: 47 in the non-fully liquid vaccine group (including one missing reconstitution of Hib component), 10 in the fully-liquid vaccine group. 71.9% of HCPs were very or somewhat satisfied with the ease of handling of both vaccines; 66.7% and 67.7% were very or somewhat satisfied with speed of preparation in the fully-liquid vaccine and the non-fully liquid vaccine groups, respectively. Almost all HCPs (97.6%) stated they would prefer the use of the fully-liquid vaccine in their daily practice. Preparation of a fully-liquid hexavalent vaccine can be completed in half the time necessary to prepare a non-fully liquid vaccine. The simplicity of the fully-liquid hexavalent vaccine preparation helps optimise reduction of immunisation errors. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Computation of Coupled Thermal-Fluid Problems in Distributed Memory Environment

    NASA Technical Reports Server (NTRS)

    Wei, H.; Shang, H. M.; Chen, Y. S.

    2001-01-01

    The thermal-fluid coupling problems are very important to aerospace and engineering applications. Instead of analyzing heat transfer and fluid flow separately, this study merged two well-accepted engineering solution methods, SINDA for thermal analysis and FDNS for fluid flow simulation, into a unified multi-disciplinary thermal fluid prediction method. A fully conservative patched grid interface algorithm for arbitrary two-dimensional and three-dimensional geometry has been developed. The state-of-the-art parallel computing concept was used to couple SINDA and FDNS for the communication of boundary conditions through PVM (Parallel Virtual Machine) libraries. Therefore, the thermal analysis performed by SINDA and the fluid flow calculated by FDNS are fully coupled to obtain steady state or transient solutions. The natural convection between two thick-walled eccentric tubes was calculated and the predicted results match the experiment data perfectly. A 3-D rocket engine model and a real 3-D SSME geometry were used to test the current model, and the reasonable temperature field was obtained.

  8. Improving Olefin Purification Using Metal Organic Frameworks with Open Metal Sites.

    PubMed

    Luna-Triguero, A; Vicent-Luna, J M; Poursaeidesfahani, A; Vlugt, T J H; Sánchez-de-Armas, R; Gómez-Álvarez, P; Calero, S

    2018-05-16

    The separation and purification of light hydrocarbons is challenging in the industry. Recently, a ZJNU-30 metal-organic framework (MOF) has been found to have the potential for adsorption-based separation of olefins and diolefins with four carbon atoms [H. M. Liu et al. Chem.-Eur. J. 2016, 22, 14988-14997]. Our study corroborates this finding but reveals Fe-MOF-74 as a more efficient candidate for the separation because of the open metal sites. We performed adsorption-based separation, transient breakthrough curves, and density functional theory calculations. This combination of techniques provides an extensive understanding of the studied system. Using this MOF, we propose a separation scheme to obtain a high-purity product.

  9. Analysis, testing, and evaluation of faulted and unfaulted Wye, Delta, and open Delta connected electromechanical actuators

    NASA Technical Reports Server (NTRS)

    Nehl, T. W.; Demerdash, N. A.

    1983-01-01

    Mathematical models capable of simulating the transient, steady state, and faulted performance characteristics of various brushless dc machine-PSA (power switching assembly) configurations were developed. These systems are intended for possible future use as primemovers in EMAs (electromechanical actuators) for flight control applications. These machine-PSA configurations include wye, delta, and open-delta connected systems. The research performed under this contract was initially broken down into the following six tasks: development of mathematical models for various machine-PSA configurations; experimental validation of the model for failure modes; experimental validation of the mathematical model for shorted turn-failure modes; tradeoff study; and documentation of results and methodology.

  10. Optimal symmetric flight with an intermediate vehicle model

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.; Kelley, H. J.; Cliff, E. M.

    1983-01-01

    Optimal flight in the vertical plane with a vehicle model intermediate in complexity between the point-mass and energy models is studied. Flight-path angle takes on the role of a control variable. Range-open problems feature subarcs of vertical flight and singular subarcs. The class of altitude-speed-range-time optimization problems with fuel expenditure unspecified is investigated and some interesting phenomena uncovered. The maximum-lift-to-drag glide appears as part of the family, final-time-open, with appropriate initial and terminal transient exceeding level-flight drag, some members exhibiting oscillations. Oscillatory paths generally fail the Jacobi test for durations exceeding a period and furnish a minimum only for short-duration problems.

  11. Characterization of Different Microbubbles in Assisting Focused Ultrasound-Induced Blood-Brain Barrier Opening

    NASA Astrophysics Data System (ADS)

    Wu, Sheng-Kai; Chu, Po-Chun; Chai, Wen-Yen; Kang, Shih-Tsung; Tsai, Chih-Hung; Fan, Ching-Hsiang; Yeh, Chih-Kuang; Liu, Hao-Li

    2017-04-01

    Microbubbles (MBs) serve as a critical catalyst to amplify local cavitation in CNS capillary lumen to facilitate focused ultrasound (FUS) to transiently open the blood-brain barrier (BBB). However, limited understanding is available regarding the effect of different microbubbles to induce BBB opening. The aim of this study is to characterize different MBs on their effect in FUS-induced BBB opening. Three MBs, SonoVue, Definity, and USphere, were tested, with 0.4-MHz FUS exposure at 0.62-1.38 of mechanical index (MI) on rats. Evans blue, dynamic contrast-enhanced (DCE) MRI and small-animal ultrasound imaging were used as surrogates to allow molecule-penetrated quantification, BBB-opened observation, and MBs circulation/persistence. Cavitation activity was measured via the passive cavitation detection (PCD) setup to correlate with the exposure level and the histological effect. Under given and identical MB concentrations, the three MBs induced similar and equivalent BBB-opening effects and persistence. In addition, a treatment paradigm by adapting exposure time is proposed to compensate MB decay to retain the persistence of BBB-opening efficiency in multiple FUS exposures. The results potentially improve understanding of the equivalence among MBs in focused ultrasound CNS drug delivery, and provide an effective strategy for securing persistence in this treatment modality.

  12. Long-term monitoring of the HPC Charenton Canal Bridge.

    DOT National Transportation Integrated Search

    2011-08-01

    The report contains long-term monitoring data collection and analysis of the first fully high : performance concrete (HPC) bridge in Louisiana, the Charenton Canal Bridge. The design of this : bridge started in 1997, and it was built and opened to tr...

  13. 40 CFR 63.1292 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... water. Flexible polyurethane foams are open-celled, permit the passage of air through the foam, and... Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1292 Definitions. All... for the purposes of this subpart. Cured foam means flexible polyurethane foam with fully developed...

  14. 40 CFR 63.1292 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... water. Flexible polyurethane foams are open-celled, permit the passage of air through the foam, and... Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1292 Definitions. All terms used in... purposes of this subpart. Cured foam means flexible polyurethane foam with fully developed physical...

  15. 40 CFR 63.1292 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... water. Flexible polyurethane foams are open-celled, permit the passage of air through the foam, and... Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1292 Definitions. All... for the purposes of this subpart. Cured foam means flexible polyurethane foam with fully developed...

  16. 40 CFR 63.1292 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... water. Flexible polyurethane foams are open-celled, permit the passage of air through the foam, and... Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1292 Definitions. All terms used in... purposes of this subpart. Cured foam means flexible polyurethane foam with fully developed physical...

  17. The Role of Collaborations in Sustaining an Evidence-Based Intervention to Reduce Child Neglect

    PubMed Central

    Green, Amy E.; Trott, Elise; Willging, Cathleen E.; Finn, Natalie K.; Ehrhart, Mark G.; Aarons, Gregory A.

    2016-01-01

    Child neglect is the most prevalent form of child maltreatment and represents 79.5% of open child-welfare cases. A recent study found the evidence-based intervention (EBI) SafeCare® (SC) to significantly reduce child neglect recidivism rates. To fully capitalize on the effectiveness of such EBIs, service systems must engage in successful implementation and sustainment; however, little is known regarding what factors influence EBI sustainment. Collaborations among stakeholders are suggested as a means for facilitating EBI implementation and sustainment. This study combines descriptive quantitative survey data with qualitative interview and focus group findings to examine the role of collaboration within the context of public-private partnerships in 11 child welfare systems implementing SC. Participants included administrators of government child welfare systems and community-based organizations, as well as supervisors, coaches, and home visitors of the SC program. Sites were classified as fully-, partially-, and non-sustaining based on implementation fidelity. One-way analysis of variance was used to examine differences in stakeholder reported Effective Collaboration scores across fully-sustaining, partially-sustaining, and non-sustaining sites. Qualitative transcripts were analyzed via open and focused coding to identify the commonality, diversity, and complexity of collaborations involved in implementing and sustaining SC. Fully-sustaining sites reported significantly greater levels of effective collaboration than non-sustaining sites. Key themes described by SC stakeholders included shared vision, building on existing relationships, academic support, problem solving and resource sharing, and maintaining collaborations over time. Both quantitative and qualitative results converge in highlighting the importance of effective collaboration in EBI sustainment in child welfare service systems. PMID:26712422

  18. A Low-mass Exoplanet Candidate Detected by K2 Transiting the Praesepe M Dwarf JS 183

    NASA Astrophysics Data System (ADS)

    Pepper, Joshua; Gillen, Ed; Parviainen, Hannu; Hillenbrand, Lynne A.; Cody, Ann Marie; Aigrain, Suzanne; Stauffer, John; Vrba, Frederick J.; David, Trevor; Lillo-Box, Jorge; Stassun, Keivan G.; Conroy, Kyle E.; Pope, Benjamin J. S.; Barrado, David

    2017-04-01

    We report the discovery of a repeating photometric signal from a low-mass member of the Praesepe open cluster that we interpret as a Neptune-sized transiting planet. The star is JS 183 (HSHJ 163, EPIC 211916756), with T eff = 3325 ± 100 K, M * = 0.44 ± 0.04 M ⊙, R * = 0.44 ± 0.03 R ⊙, and {log}{g}* = 4.82+/- 0.06. The planet has an orbital period of 10.134588 days and a radius of R P = 0.32 ± 0.02 R J. Since the star is faint at V = 16.5 and J = 13.3, we are unable to obtain a measured radial velocity orbit, but we can constrain the companion mass to below about 1.7 M J, and thus well below the planetary boundary. JS 183b (since designated as K2-95b) is the second transiting planet found with K2 that resides in a several-hundred-megayear open cluster; both planets orbit mid-M dwarf stars and are approximately Neptune sized. With a well-determined stellar density from the planetary transit, and with an independently known metallicity from its cluster membership, JS 183 provides a particularly valuable test of stellar models at the fully convective boundary. We find that JS 183 is the lowest-density transit host known at the fully convective boundary, and that its very low density is consistent with current models of stars just above the fully convective boundary but in tension with the models just below the fully convective boundary.

  19. Protective Socket For Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Wilkinson, Chris; Henegar, Greg

    1988-01-01

    Socket for intergrated circuits (IC's) protects from excessive voltages and currents or from application of voltages and currents in wrong sequence during insertion or removal. Contains built-in switch that opens as IC removed, disconnecting leads from signals and power. Also protects other components on circuit board from transients produced by insertion and removal of IC. Makes unnecessary to turn off power to entire circuit board so other circuits on board continue to function.

  20. The seismic noise environment of Antarctica

    DOE PAGES

    Anthony, Robert E.; Aster, Richard C.; Wiens, Douglas; ...

    2014-11-26

    Seismographic coverage of Antarctica prior to 2007 consisted overwhelmingly of a handful of long running and sporadically deployed transient stations, many of which were principally collocated with scientific research stations. Thus, despite very cold temperatures, sunless winters, challenging logistics, and extreme storms, recent developments in polar instrumentation driven by new scientific objectives have opened up the entirety of Antarctica to year–round and continuous seismological observation (e.g., Nyblade et al., 2012).

  1. Investigation of erosion behavior in different pipe-fitting using Eulerian-Lagrangian approach

    NASA Astrophysics Data System (ADS)

    Kulkarni, Harshwardhan; Khadamkar, Hrushikesh; Mathpati, Channamallikarjun

    2017-11-01

    Erosion is a wear mechanism of piping system in which wall thinning occurs because of turbulent flow along with along with impact of solid particle on the pipe wall, because of this pipe ruptures causes costly repair of plant and personal injuries. In this study two way coupled Eulerian-Lagrangian approach is used to solve the liquid solid (water-ferrous suspension) flow in the different pipe fitting namely elbow, t-junction, reducer, orifice and 50% open gate valve. Simulations carried out using incomressible transient solver in OpenFOAM for different Reynolds's number (10k, 25k, 50k) and using WenYu drag model to find out possible higher erosion region in pipe fitting. Used transient solver is a hybrid in nature which is combination of Lagrangian library and pimpleFoam. Result obtained from simulation shows that exit region of elbow specially downstream of straight, extradose of the bend section more affected by erosion. Centrifugal force on solid particle at bend affect the erosion behavior. In case of t-junction erosion occurs below the locus of the projection of branch pipe on the wall. For the case of reducer, orifice and a gate valve reduction area as well as downstream is getting more affected by erosion because of increase in velocities.

  2. Transient Simulation of Speed-No Load Conditions With An Open-Source Based C++ Code

    NASA Astrophysics Data System (ADS)

    Casartelli, E.; Mangani, L.; Romanelli, G.; Staubli, T.

    2014-03-01

    Modern reversible pump-turbines can start in turbine operation very quickly, i.e. within few minutes. Unfortunately no clear design rules for runners with a stable start-up are available, so that certain machines can present unstable characteristics which lead to oscillations in the hydraulic system during synchronization. The so-called S-shape, i.e. the unstable characteristic in turbine brake operation, is defined by the change of sign of the slope of the head curve. In order to assess and understand this kind of instabilities with CFD, fast and reliable methods are needed. Using a 360 degrees model including the complete machine from spiral casing to draft tube the capabilities of a newly developed in-house tool are presented. An ad-hoc simulation is performed from no-load conditions into the S-shape in transient mode and using moving-mesh capabilities, thus being able to capture the opening process of the wicket gates, for example like during start-up. Beside the presentation of the computational methodology, various phenomena encounterd are analyzed and discussed, comparing them with measured and previously computed data, in order to show the capabilities of the developed procedure. Insight in detected phenomena is also given for global data like frequencies of vortical structures and local flow patterns.

  3. Dual-polarization phase shift processing with the Python ARM Radar Toolkit

    NASA Astrophysics Data System (ADS)

    Collis, S. M.; Lang, T. J.; Mühlbauer, K.; Helmus, J.; North, K.

    2016-12-01

    Weather radars that measure backscatter returns at two orthogonal polarizations can give unique insight into storm macro and microphysics. Phase shift between the two polarizations caused by anisotropy in the liquid water path can be used as a constraint in rainfall rate and drop size distribution retrievals, and has the added benefit of being robust to attenuation and radar calibration. The measurement is complicated, however, by the impact of phase shift on backscatter in the presence of large drops and when the pulse volume is not filled uniformly by scatterers (known as partial beam filling). This has led to a signal processing challenge of separating the underlying desired signal from the transient signal, a challenge that has attracted many diverse solutions. To this end, the Python-ARM Radar Toolkit (Py-ART) [1] becomes increasingly important. By providing an open architecture for implementation of retrieval techniques, Py-ART has attracted three very different approaches to the phase processing problem: a fully variational technique, a finite impulse response filter technique [2], and a technique based on a linear programming [3]. These either exist within the toolkit or in another open source package that uses the Py-ART architecture. This presentation will provide an overview of differential phase and specific differential phase observed at C- and S-band frequencies, the signal processing behind the three aforementioned techniques, and some examples of their application. The goal of this presentation is to highlight the importance of open source architectures such as Py-ART for geophysical retrievals. [1] Helmus, J.J. & Collis, S.M., (2016). The Python ARM Radar Toolkit (Py-ART), a Library for Working with Weather Radar Data in the Python Programming Language. JORS. 4(1), p.e25. DOI: http://doi.org/10.5334/jors.119[2] Timothy J. Lang, David A. Ahijevych, Stephen W. Nesbitt, Richard E. Carbone, Steven A. Rutledge, and Robert Cifelli, 2007: Radar-Observed Characteristics of Precipitating Systems during NAME 2004. J. Climate, 20, 1713-1733. doi: http://dx.doi.org/10.1175/JCLI4082.1[3] Scott E. Giangrande, Robert McGraw, and Lei Lei, 2013: An Application of Linear Programming to Polarimetric Radar Differential Phase Processing. JTECH. 30, 1716-1729, doi: 10.1175/JTECH-D-12-00147.1.

  4. Fully gapped superconductivity in single crystals of noncentrosymmetric Re6Zr with broken time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Pang, G. M.; Nie, Z. Y.; Wang, A.; Singh, D.; Xie, W.; Jiang, W. B.; Chen, Y.; Singh, R. P.; Smidman, M.; Yuan, H. Q.

    2018-06-01

    The noncentrosymmetric superconductor Re6Zr has attracted much interest due to the observation of broken time-reversal symmetry in the superconducting state. Here we report an investigation of the superconducting gap structure of Re6Zr single crystals by measuring the magnetic penetration depth shift Δ λ (T ) and electronic specific heat Ce(T ) . Δ λ (T ) exhibits an exponential temperature dependence behavior for T ≪Tc , which indicates a fully open superconducting gap. Our analysis shows that a single gap s -wave model is sufficient to describe both the superfluid density ρs(T ) and Ce(T ) results, with a fitted gap magnitude larger than the weak coupling BCS value, providing evidence for fully gapped superconductivity in Re6Zr with moderate coupling.

  5. On the development of lift and drag in a rotating and translating cylinder

    NASA Astrophysics Data System (ADS)

    Martin-Alcantara, Antonio; Sanmiguel-Rojas, Enrique; Fernandez-Feria, Ramon

    2014-11-01

    The two-dimensional flow around a rotating cylinder is investigated numerically using a vorticity forces formulation with the aim of analyzing the flow structures, and their evolutions, that contribute to the lift and drag forces on the cylinder. The Reynolds number, based on the cylinder diameter and steady free-stream speed, considered is Re = 200 , while the non-dimensional rotation rate (ratio of the surface speed and free-stream speed) selected were α = 1 and 3. For α = 1 the wake behind the cylinder for the fully developed flow is oscillatory due to vortex shedding, and so are the lift and drag forces. For α = 3 the fully developed flow is steady with constant (high) lift and (low) drag. Each of these cases is considered in two different transient problems, one with angular acceleration of the cylinder and constant speed, and the other one with translating acceleration of the cylinder and constant rotation. Special attention is paid to explaining the mechanisms of vortex shedding suppression for high rotation (when α = 3) and its relation to the mechanisms by which the lift is enhanced and the drag is almost suppressed when the fully developed flow is reached. Supported by the Ministerio de Economia y Competitividad of Spain Grant No. DPI2013-40479-P.

  6. Flows and Stratification of an Enclosure Containing Both Localised and Vertically Distributed Sources of Buoyancy

    NASA Astrophysics Data System (ADS)

    Partridge, Jamie; Linden, Paul

    2013-11-01

    We examine the flows and stratification established in a naturally ventilated enclosure containing both a localised and vertically distributed source of buoyancy. The enclosure is ventilated through upper and lower openings which connect the space to an external ambient. Small scale laboratory experiments were carried out with water as the working medium and buoyancy being driven directly by temperature differences. A point source plume gave localised heating while the distributed source was driven by a controllable heater mat located in the side wall of the enclosure. The transient temperatures, as well as steady state temperature profiles, were recorded and are reported here. The temperature profiles inside the enclosure were found to be dependent on the effective opening area A*, a combination of the upper and lower openings, and the ratio of buoyancy fluxes from the distributed and localised source Ψ =Bw/Bp . Industrial CASE award with ARUP.

  7. Cryo-electron microscopy structure of the TRPV2 ion channel.

    PubMed

    Zubcevic, Lejla; Herzik, Mark A; Chung, Ben C; Liu, Zhirui; Lander, Gabriel C; Lee, Seok-Yong

    2016-02-01

    Transient receptor potential vanilloid (TRPV) cation channels are polymodal sensors involved in a variety of physiological processes. TRPV2, a member of the TRPV family, is regulated by temperature, by ligands, such as probenecid and cannabinoids, and by lipids. TRPV2 has been implicated in many biological functions, including somatosensation, osmosensation and innate immunity. Here we present the atomic model of rabbit TRPV2 in its putative desensitized state, as determined by cryo-EM at a nominal resolution of ∼4 Å. In the TRPV2 structure, the transmembrane segment 6 (S6), which is involved in gate opening, adopts a conformation different from the one observed in TRPV1. Structural comparisons of TRPV1 and TRPV2 indicate that a rotation of the ankyrin-repeat domain is coupled to pore opening via the TRP domain, and this pore opening can be modulated by rearrangements in the secondary structure of S6.

  8. Cryo-electron microscopy structure of the TRPV2 ion channel

    PubMed Central

    Chung, Ben C; Liu, Zhirui; Lander, Gabriel C; Lee, Seok-Yong

    2016-01-01

    Transient receptor potential vanilloid (TRPV) cation channels are polymodal sensors involved in a variety of physiological processes. TRPV2, a member of the TRPV family, is regulated by temperature, by ligands, such as probenecid and cannabinoids, and by lipids. TRPV2 has been implicated in many biological functions, including somatosensation, osmosensation and innate immunity. Here we present the atomic model of rabbit TRPV2 in its putative desensitized state, as determined by cryo-EM at a nominal resolution of ~4 Å. In the TRPV2 structure, the transmembrane segment 6 (S6), which is involved in gate opening, adopts a conformation different from the one observed in TRPV1. Structural comparisons of TRPV1 and TRPV2 indicate that a rotation of the ankyrin-repeat domain is coupled to pore opening via the TRP domain, and this pore opening can be modulated by rearrangements in the secondary structure of S6. PMID:26779611

  9. Variable reluctance proximity sensors for cryogenic valve position indication

    NASA Technical Reports Server (NTRS)

    Cloyd, R. A.

    1982-01-01

    A test was conducted to determine the performance of a variable reluctance proximity sensor system when installed in a space shuttle external tank vent/relief valve. The sensors were used as position indicators. The valve and sensors were cycled through a series of thermal transients; while the valve was being opened and closed pneumatically, the sensor's performance was being monitored. During these thermal transients, the vent valve was cooled ten times by liquid nitrogen and two times by liquid hydrogen. It was concluded that the sensors were acceptable replacements for the existing mechanical switches. However, the sensors need a mechanical override for the target similar to what is presently used with the mechanical switches. This override could insure contact between sensor and target and eliminate any problems of actuation gap growth caused by thermal gradients.

  10. Dynamic risk control by human nucleus accumbens

    PubMed Central

    Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio

    2015-01-01

    Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667

  11. The PANDA tests for SBWR certification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varadi, G.; Dreier, J.; Bandurski, Th.

    1996-03-01

    The ALPHA project is centered around the experimental and analytical investigation of the long-term decay heat removal from the containments of the next generation of {open_quotes}passive{close_quotes} ALWRs. The project includes integral system tests in the large-scale (1:25 in volume) PANDA facility as well as several other series of tests and supporting analytical work. The first series of experiments to be conducted in PANDA have become a required experimental element in the certification process for the General Electric Simplified Boiling Water Reactor (SBWR). The PANDA general experimental philosophy, facility design, scaling, and instrumentation are described. Steady-state PCCS condenser performance tests andmore » extensive facility characterization tests were already conducted. The transient system behavior tests are underway; preliminary results from the first transient test M3 are reviewed.« less

  12. Clinics in diagnostic imaging (163). Transient lateral patellar dislocation with trochlear dysplasia

    PubMed Central

    Zhang, Junwei; Lee, Chin Hwee

    2015-01-01

    A 14-year-old girl presented with left knee pain and swelling after an injury. Magnetic resonance (MR) imaging showed a transient lateral patellar dislocation with patellar osteochondral fracture, medial patellofemoral ligament tear and underlying femoral trochlear dysplasia. Open reduction and internal fixation of the osteochondral fracture, plication of the medial patellar retinaculum and lateral release were performed. As lateral patellar dislocation is often clinically unsuspected, an understanding of its characteristic imaging features is important in making the diagnosis. Knowledge of the various predisposing factors for patellar instability may also influence the choice of surgical management. We also discuss signs of acute injury and chronic instability observed on MR imaging, and the imaging features of anatomical variants that predispose an individual to lateral patellar dislocation. Treatment options and postsurgical imaging appearances are also briefly described. PMID:26512145

  13. The Cadmium Zinc Telluride Imager on AstroSat

    NASA Astrophysics Data System (ADS)

    Bhalerao, V.; Bhattacharya, D.; Vibhute, A.; Pawar, P.; Rao, A. R.; Hingar, M. K.; Khanna, Rakesh; Kutty, A. P. K.; Malkar, J. P.; Patil, M. H.; Arora, Y. K.; Sinha, S.; Priya, P.; Samuel, Essy; Sreekumar, S.; Vinod, P.; Mithun, N. P. S.; Vadawale, S. V.; Vagshette, N.; Navalgund, K. H.; Sarma, K. S.; Pandiyan, R.; Seetha, S.; Subbarao, K.

    2017-06-01

    The Cadmium Zinc Telluride Imager (CZTI) is a high energy, wide-field imaging instrument on AstroSat. CZTI's namesake Cadmium Zinc Telluride detectors cover an energy range from 20 keV to >200 keV, with 11% energy resolution at 60 keV. The coded aperture mask attains an angular resolution of 17^' over a 4.6° × 4.6° (FWHM) field-of-view. CZTI functions as an open detector above 100 keV, continuously sensitive to GRBs and other transients in about 30% of the sky. The pixellated detectors are sensitive to polarization above ˜ 100 keV, with exciting possibilities for polarization studies of transients and bright persistent sources. In this paper, we provide details of the complete CZTI instrument, detectors, coded aperture mask, mechanical and electronic configuration, as well as data and products.

  14. Continuous variable quantum optical simulation for time evolution of quantum harmonic oscillators

    PubMed Central

    Deng, Xiaowei; Hao, Shuhong; Guo, Hong; Xie, Changde; Su, Xiaolong

    2016-01-01

    Quantum simulation enables one to mimic the evolution of other quantum systems using a controllable quantum system. Quantum harmonic oscillator (QHO) is one of the most important model systems in quantum physics. To observe the transient dynamics of a QHO with high oscillation frequency directly is difficult. We experimentally simulate the transient behaviors of QHO in an open system during time evolution with an optical mode and a logical operation system of continuous variable quantum computation. The time evolution of an atomic ensemble in the collective spontaneous emission is analytically simulated by mapping the atomic ensemble onto a QHO. The measured fidelity, which is used for quantifying the quality of the simulation, is higher than its classical limit. The presented simulation scheme provides a new tool for studying the dynamic behaviors of QHO. PMID:26961962

  15. Trade Study for 9 kW Water Membrane Evaporator

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Ungar, Gene; Stephan, Ryan

    2010-01-01

    Sublimators have been proposed and used in spacecraft for heat rejection. Sublimators are desirable heat rejection devices for short duration use because they can transfer large amounts of heat using little mass and are self-regulating devices. Sublimators reject heat into space by freezing water inside a porous substrate, allowing it to sublimate into vapor, and finally venting it into space. The state of the art thermal control system in orbiting spacecraft is a two loop, two fluid system. The external coolant loop typically uses a toxic single phase fluid that acquires heat from the spacecraft and rejects most of it via a radiator. The sublimator functions as a transient topper for orbiting spacecraft during day pass periods when radiator efficiency decreases. The sublimator interfaces with the internal loop through a built in heat exchanger. The internal loop fluid is non-toxic and is typically a propylene glycol and water solution with inhibitors to prevent corrosion with aluminum fins of the heat exchangers. Feedwater is supplied from a separate line to the sublimator to maintain temperature control of the cabin and vehicle hardware. Water membrane evaporators have been developed for spacecraft and spacesuits. They function similar to a sublimator but require a backpressure valve which could be actuated for this application with a simple fully open or fully closed modes. This technology would be applied to orbital thermal control (lunar or planetary). This paper details a trade study showing that evaporators would greatly reduce the consumable that is used, effectively wasted, by sublimators during start up and shut down during the topping phases of each orbit. State of the art for 9 kW sublimators reject about 870 W per kilogram of mass and 1150 W per liter of volume. If water with corrosion inhibitors is used the evaporators would be about 80% of the mass and volume of the equivalent system. The size and mass increases to about 110% if the internal fluid is 50% propylene glycol/50% water. The true benefit comes from the backpressure valve, that prevents the cyclical shutdown/startup loss of the sublimator and amounts to as much as 0.85 kg per orbit.

  16. Helical unwinding and side-chain unlocking unravel the outward open conformation of the melibiose transporter

    NASA Astrophysics Data System (ADS)

    Wang, Li-Ying; Ravi, Vidhya M.; Leblanc, Gérard; Padrós, Esteve; Cladera, Josep; Perálvarez-Marín, Alex

    2016-09-01

    Molecular dynamics simulations have been used to study the alternate access mechanism of the melibiose transporter from Escherichia coli. Starting from the outward-facing partially occluded form, 2 out of 12 simulations produced an outward full open form and one partially open, whereas the rest yielded fully or partially occluded forms. The shape of the outward-open form resembles other outward-open conformations of secondary transporters. During the transporter opening, conformational changes in some loops are followed by changes in the periplasm region of transmembrane helix 7. Helical curvature relaxation and unlocking of hydrophobic and ionic locks promote the outward opening of the transporter making accessible the substrate binding site. In particular, FRET studies on mutants of conserved aromatic residues of extracellular loop 4 showed lack of substrate binding, emphasizing the importance of this loop for making crucial interactions that control the opening of the periplasmic side. This study indicates that the alternate access mechanism for the melibiose transporter fits better into a flexible gating mechanism rather than the archetypical helical rigid-body rocker-switch mechanism.

  17. Blue straggler stars: lessons from open clusters.

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.

    Open clusters enable a deep dive into blue straggler characteristics. Recent work shows that the binary properties (frequency, orbital elements and companion masses and evolutionary states) of the blue stragglers are the most important diagnostic for determining their origins. To date the multi-epoch radial-velocity observations necessary for characterizing these blue straggler binaries have only been carried out in open clusters. In this paper, I highlight recent results in the open clusters NGC 188, NGC 2682 (M67) and NGC 6819. The characteristics of many of the blue stragglers in these open clusters point directly to origins through mass transfer from an evolved donor star. Additionally, a handful of blue stragglers show clear signatures of past dynamical encounters. These comprehensive, diverse and detailed observations also reveal important challenges for blue straggler formation models (and particularly the mass-transfer channel), which we must overcome to fully understand the origins of blue straggler stars and other mass-transfer products.

  18. pyOpenMS: a Python-based interface to the OpenMS mass-spectrometry algorithm library.

    PubMed

    Röst, Hannes L; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars

    2014-01-01

    pyOpenMS is an open-source, Python-based interface to the C++ OpenMS library, providing facile access to a feature-rich, open-source algorithm library for MS-based proteomics analysis. It contains Python bindings that allow raw access to the data structures and algorithms implemented in OpenMS, specifically those for file access (mzXML, mzML, TraML, mzIdentML among others), basic signal processing (smoothing, filtering, de-isotoping, and peak-picking) and complex data analysis (including label-free, SILAC, iTRAQ, and SWATH analysis tools). pyOpenMS thus allows fast prototyping and efficient workflow development in a fully interactive manner (using the interactive Python interpreter) and is also ideally suited for researchers not proficient in C++. In addition, our code to wrap a complex C++ library is completely open-source, allowing other projects to create similar bindings with ease. The pyOpenMS framework is freely available at https://pypi.python.org/pypi/pyopenms while the autowrap tool to create Cython code automatically is available at https://pypi.python.org/pypi/autowrap (both released under the 3-clause BSD licence). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Revisiting the Fully Automated Double-Ring Infiltrometer Using Open-Source Electronics

    EPA Science Inventory

    The double-ring infiltrometer (DRI) is commonly used for measuring soil hydraulic conductivity. However, constant-head DRI tests typically involve the use of Mariotte tubes, which can be problematic to set-up, and time-consuming to maintain and monitor during infiltration tests....

  20. Assessment and Accreditation for Languages: The Emerging Consensus?

    ERIC Educational Resources Information Center

    Hubner, Anke, Ed.; Ibarz, Toni, Ed.; Laviosa, Sara, Ed.

    Chapter titles include the following: "Language Teaching, Accreditation and the Social Purpose of Adult Education" (Liam Kane); "Student Attitudes to Learning, Assessment and Accreditation" (Fran Beaton); "Assessment on a Fully Accredited Open Language Programme: Achieving Beneficial Backwash in a Standardised Scheme" (Dounia Bissar); "Introducing…

Top