Sample records for fully quantum mechanical

  1. Quantum Control of Graphene Plasmon Excitation and Propagation at Heaviside Potential Steps.

    PubMed

    Wang, Dongli; Fan, Xiaodong; Li, Xiaoguang; Dai, Siyuan; Wei, Laiming; Qin, Wei; Wu, Fei; Zhang, Huayang; Qi, Zeming; Zeng, Changgan; Zhang, Zhenyu; Hou, Jianguo

    2018-02-14

    Quantum mechanical effects of single particles can affect the collective plasmon behaviors substantially. In this work, the quantum control of plasmon excitation and propagation in graphene is demonstrated by adopting the variable quantum transmission of carriers at Heaviside potential steps as a tuning knob. First, the plasmon reflection is revealed to be tunable within a broad range by varying the ratio γ between the carrier energy and potential height, which originates from the quantum mechanical effect of carrier propagation at potential steps. Moreover, the plasmon excitation by free-space photos can be regulated from fully suppressed to fully launched in graphene potential wells also through adjusting γ, which defines the degrees of the carrier confinement in the potential wells. These discovered quantum plasmon effects offer a unified quantum-mechanical solution toward ultimate control of both plasmon launching and propagating, which are indispensable processes in building plasmon circuitry.

  2. Photodissociation of quantum state-selected diatomic molecules yields new insight into ultracold chemistry

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey; McGuyer, Bart H.; Lee, Chih-Hsi; Apfelbeck, Florian; Zelevinsky, Tanya

    2016-05-01

    When a molecule is subjected to a sufficiently energetic photon it can break apart into fragments through a process called ``photodissociation''. For over 70 years this simple chemical reaction has served as a vital experimental tool for acquiring information about molecular structure, since the character of the photodissociative transition can be inferred by measuring the 3D photofragment angular distribution (PAD). While theoretical understanding of this process has gradually evolved from classical considerations to a fully quantum approach, experiments to date have not yet revealed the full quantum nature of this process. In my talk I will describe recent experiments involving the photodissociation of ultracold, optical lattice-trapped, and fully quantum state-resolved 88Sr2 molecules. Optical absorption images of the PADs produced in these experiments reveal features which are inherently quantum mechanical in nature, such as matter-wave interference between output channels, and are sensitive to the quantum statistics of the molecular wavefunctions. The results of these experiments cannot be predicted using quasiclassical methods. Instead, we describe our results with a fully quantum mechanical model yielding new intuition about ultracold chemistry.

  3. An Introduction to Dispersive Interactions

    ERIC Educational Resources Information Center

    Taddei, M. M.; Mendes, T. N. C.; Farina, C.

    2010-01-01

    Dispersive forces are a kind of van der Waals intermolecular force which could only be fully understood with the establishment of quantum mechanics and, in particular, of quantum electrodynamics. In this pedagogical paper, we introduce the subject in a more elementary approach, aiming at students with basic knowledge of quantum mechanics. We…

  4. Quantum mechanics as classical statistical mechanics with an ontic extension and an epistemic restriction.

    PubMed

    Budiyono, Agung; Rohrlich, Daniel

    2017-11-03

    Where does quantum mechanics part ways with classical mechanics? How does quantum randomness differ fundamentally from classical randomness? We cannot fully explain how the theories differ until we can derive them within a single axiomatic framework, allowing an unambiguous account of how one theory is the limit of the other. Here we derive non-relativistic quantum mechanics and classical statistical mechanics within a common framework. The common axioms include conservation of average energy and conservation of probability current. But two axioms distinguish quantum mechanics from classical statistical mechanics: an "ontic extension" defines a nonseparable (global) random variable that generates physical correlations, and an "epistemic restriction" constrains allowed phase space distributions. The ontic extension and epistemic restriction, with strength on the order of Planck's constant, imply quantum entanglement and uncertainty relations. This framework suggests that the wave function is epistemic, yet it does not provide an ontic dynamics for individual systems.

  5. Tests of alternative quantum theories with neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sponar, S.; Durstberger-Rennhofer, K.; Badurek, G.

    2014-12-04

    According to Bell’s theorem, every theory based on local realism is at variance with certain predictions of quantum mechanics. A theory that maintains realism but abandons reliance on locality, which has been proposed by Leggett, is incompatible with experimentally observable quantum correlations. In our experiment correlation measurements of spin-energy entangled single-neutrons violate a Leggett-type inequality by more than 7.6 standard deviations. The experimental data falsify the contextual realistic model and are fully in favor of quantum mechanics.

  6. A semi-classical approach to the calculation of highly excited rotational energies for asymmetric-top molecules

    PubMed Central

    Schmiedt, Hanno; Schlemmer, Stephan; Yurchenko, Sergey N.; Yachmenev, Andrey

    2017-01-01

    We report a new semi-classical method to compute highly excited rotational energy levels of an asymmetric-top molecule. The method forgoes the idea of a full quantum mechanical treatment of the ro-vibrational motion of the molecule. Instead, it employs a semi-classical Green's function approach to describe the rotational motion, while retaining a quantum mechanical description of the vibrations. Similar approaches have existed for some time, but the method proposed here has two novel features. First, inspired by the path integral method, periodic orbits in the phase space and tunneling paths are naturally obtained by means of molecular symmetry analysis. Second, the rigorous variational method is employed for the first time to describe the molecular vibrations. In addition, we present a new robust approach to generating rotational energy surfaces for vibrationally excited states; this is done in a fully quantum-mechanical, variational manner. The semi-classical approach of the present work is applied to calculating the energies of very highly excited rotational states and it reduces dramatically the computing time as well as the storage and memory requirements when compared to the fullly quantum-mechanical variational approach. Test calculations for excited states of SO2 yield semi-classical energies in very good agreement with the available experimental data and the results of fully quantum-mechanical calculations. PMID:28000807

  7. Foundations of statistical mechanics from symmetries of entanglement

    DOE PAGES

    Deffner, Sebastian; Zurek, Wojciech H.

    2016-06-09

    Envariance—entanglement assisted invariance—is a recently discovered symmetry of composite quantum systems. Here, we show that thermodynamic equilibrium states are fully characterized by their envariance. In particular, the microcanonical equilibrium of a systemmore » $${ \\mathcal S }$$ with Hamiltonian $${H}_{{ \\mathcal S }}$$ is a fully energetically degenerate quantum state envariant under every unitary transformation. A representation of the canonical equilibrium then follows from simply counting degenerate energy states. Finally, our conceptually novel approach is free of mathematically ambiguous notions such as ensemble, randomness, etc., and, while it does not even rely on probability, it helps to understand its role in the quantum world.« less

  8. Active 2D materials for on-chip nanophotonics and quantum optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiue, Ren-Jye; Efetov, Dmitri K.; Grosso, Gabriele

    Abstract Two-dimensional materials have emerged as promising candidates to augment existing optical networks for metrology, sensing, and telecommunication, both in the classical and quantum mechanical regimes. Here, we review the development of several on-chip photonic components ranging from electro-optic modulators, photodetectors, bolometers, and light sources that are essential building blocks for a fully integrated nanophotonic and quantum photonic circuit.

  9. Active 2D materials for on-chip nanophotonics and quantum optics

    NASA Astrophysics Data System (ADS)

    Shiue, Ren-Jye; Efetov, Dmitri K.; Grosso, Gabriele; Peng, Cheng; Fong, Kin Chung; Englund, Dirk

    2017-03-01

    Two-dimensional materials have emerged as promising candidates to augment existing optical networks for metrology, sensing, and telecommunication, both in the classical and quantum mechanical regimes. Here, we review the development of several on-chip photonic components ranging from electro-optic modulators, photodetectors, bolometers, and light sources that are essential building blocks for a fully integrated nanophotonic and quantum photonic circuit.

  10. Quantum Mechanical Enhancement of the Random Dopant Induced Threshold Voltage Fluctuations and Lowering in Sub 0.1 Micron MOSFETs

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Slavcheva, G.; Brown, A. R.; Davies, J. H.; Saini, Subhash

    1999-01-01

    A detailed study of the influence of quantum effects in the inversion layer on the random dopant induced threshold voltage fluctuations and lowering in sub 0.1 micron MOSFETs has been performed. This has been achieved using a full 3D implementation of the density gradient (DG) formalism incorporated in our previously published 3D 'atomistic' simulation approach. This results in a consistent, fully 3D, quantum mechanical picture which implies not only the vertical inversion layer quantisation but also the lateral confinement effects manifested by current filamentation in the 'valleys' of the random potential fluctuations. We have shown that the net result of including quantum mechanical effects, while considering statistical fluctuations, is an increase in both threshold voltage fluctuations and lowering.

  11. A simple quantum mechanical treatment of scattering in nanoscale transistors

    NASA Astrophysics Data System (ADS)

    Venugopal, R.; Paulsson, M.; Goasguen, S.; Datta, S.; Lundstrom, M. S.

    2003-05-01

    We present a computationally efficient, two-dimensional quantum mechanical simulation scheme for modeling dissipative electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors. The simulation scheme, which solves the nonequilibrium Green's function equations self consistently with Poisson's equation, treats the effect of scattering using a simple approximation inspired by the "Büttiker probes," often used in mesoscopic physics. It is based on an expansion of the active device Hamiltonian in decoupled mode space. Simulation results are used to highlight quantum effects, discuss the physics of scattering and to relate the quantum mechanical quantities used in our model to experimentally measured low field mobilities. Additionally, quantum boundary conditions are rigorously derived and the effects of strong off-equilibrium transport are examined. This paper shows that our approximate treatment of scattering, is an efficient and useful simulation method for modeling electron transport in nanoscale, silicon-on-insulator transistors.

  12. Ortho-para H₂ conversion by proton exchange at low temperature: an accurate quantum mechanical study.

    PubMed

    Honvault, P; Jorfi, M; González-Lezana, T; Faure, A; Pagani, L

    2011-07-08

    We report extensive, accurate fully quantum, time-independent calculations of cross sections at low collision energies, and rate coefficients at low temperatures for the H⁺ + H₂(v = 0, j) → H⁺ + H₂(v = 0, j') reaction. Different transitions are considered, especially the ortho-para conversion (j = 1 → j' = 0) which is of key importance in astrophysics. This conversion process appears to be very efficient and dominant at low temperature, with a rate coefficient of 4.15 × 10⁻¹⁰ cm³ molecule⁻¹ s⁻¹ at 10 K. The quantum mechanical results are also compared with statistical quantum predictions and the reaction is found to be statistical in the low temperature regime (T < 100 K).

  13. Matrix thermalization

    NASA Astrophysics Data System (ADS)

    Craps, Ben; Evnin, Oleg; Nguyen, Kévin

    2017-02-01

    Matrix quantum mechanics offers an attractive environment for discussing gravitational holography, in which both sides of the holographic duality are well-defined. Similarly to higher-dimensional implementations of holography, collapsing shell solutions in the gravitational bulk correspond in this setting to thermalization processes in the dual quantum mechanical theory. We construct an explicit, fully nonlinear supergravity solution describing a generic collapsing dilaton shell, specify the holographic renormalization prescriptions necessary for computing the relevant boundary observables, and apply them to evaluating thermalizing two-point correlation functions in the dual matrix theory.

  14. On-chip quantum tomography of mechanical nanoscale oscillators with guided Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Sanz-Mora, A.; Wüster, S.; Rost, J.-M.

    2017-07-01

    Nanomechanical oscillators as well as Rydberg-atomic waveguides hosted on microfabricated chip surfaces hold promise to become pillars of future quantum technologies. In a hybrid platform with both, we show that beams of Rydberg atoms in waveguides can quantum coherently interrogate and manipulate nanomechanical elements, allowing full quantum state tomography. Central to the tomography are quantum nondemolition measurements using the Rydberg atoms as probes. Quantum coherent displacement of the oscillator is also made possible by driving the atoms with external fields while they interact with the oscillator. We numerically demonstrate the feasibility of this fully integrated on-chip control and read-out suite for quantum nanomechanics, taking into account noise and error sources.

  15. Quantum limits to gravity estimation with optomechanics

    NASA Astrophysics Data System (ADS)

    Armata, F.; Latmiral, L.; Plato, A. D. K.; Kim, M. S.

    2017-10-01

    We present a table-top quantum estimation protocol to measure the gravitational acceleration g by using an optomechanical cavity. In particular, we exploit the nonlinear quantum light-matter interaction between an optical field and a massive mirror acting as mechanical oscillator. The gravitational field influences the system dynamics affecting the phase of the cavity field during the interaction. Reading out such a phase carried by the radiation leaking from the cavity, we provide an estimate of the gravitational acceleration through interference measurements. Contrary to previous studies, having adopted a fully quantum description, we are able to propose a quantum analysis proving the ultimate bound to the estimability of the gravitational acceleration and verifying optimality of homodyne detection. Noticeably, thanks to the light-matter decoupling at the measurement time, no initial cooling of the mechanical oscillator is demanded in principle.

  16. Quantum Foundations of Quantum Information

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert

    2009-03-01

    The main foundational issue for quantum information is: What is quantum information about? What does it refer to? Classical information typically refers to physical properties, and since classical is a subset of quantum information (assuming the world is quantum mechanical), quantum information should--and, it will be argued, does--refer to quantum physical properties represented by projectors on appropriate subspaces of a quantum Hilbert space. All sorts of microscopic and macroscopic properties, not just measurement outcomes, can be represented in this way, and are thus a proper subject of quantum information. The Stern-Gerlach experiment illustrates this. When properties are compatible, which is to say their projectors commute, Shannon's classical information theory based on statistical correlations extends without difficulty or change to the quantum case. When projectors do not commute, giving rise to characteristic quantum effects, a foundation for the subject can still be constructed by replacing the ``measurement and wave-function collapse'' found in textbooks--an efficient calculational tool, but one giving rise to numerous conceptual difficulties--with a fully consistent and paradox free stochastic formulation of standard quantum mechanics. This formulation is particularly helpful in that it contains no nonlocal superluminal influences; the reason the latter carry no information is that they do not exist.

  17. Optical investigation of carrier tunneling in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Emiliani, V.; Ceccherini, S.; Bogani, F.; Colocci, M.; Frova, A.; Shi, Song Stone

    1997-08-01

    The tunneling dynamics of excitons and free carriers in AlxGa1-xAs/GaAs asymmetric double quantum well and near-surface quantum well structures has been investigated by means of time-resolved optical techniques. The competing processes of carrier tunneling out of the quantum well and exciton formation and recombination inside the quantum well have been thoroughly studied in the range of the excitation densities relevant to device applications. A consistent picture capable of fully describing the carrier and exciton-tunneling mechanisms in both types of structures has been obtained and apparently contrasting results in the recent literature are clarified.

  18. Quantum mechanism of nonlocal Gilbert damping in magnetic trilayers

    NASA Astrophysics Data System (ADS)

    Barati, Ehsan; Cinal, Marek

    2015-06-01

    A fully quantum-mechanical calculation of the Gilbert damping constant α in magnetic trilayers is done by employing the torque-correlation formula within a realistic tight-binding model. A remarkable enhancement of α in Co/NM1/NM2 trilayers is obtained due to adding the caps NM2=Pd, Pt, and it decays with the thickness of the spacers NM1=Cu, Ag, Au in agreement with experiment. Nonlocal origin of the Gilbert damping is visualized with its atomic layer contributions. It is shown that magnetization in Co is damped remotely by strong spin-orbit coupling in NM2 via quantum states with large amplitude in both Co and NM2.

  19. An Efficient Quantum Somewhat Homomorphic Symmetric Searchable Encryption

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoqiang; Wang, Ting; Sun, Zhiwei; Wang, Ping; Yu, Jianping; Xie, Weixin

    2017-04-01

    In 2009, Gentry first introduced an ideal lattices fully homomorphic encryption (FHE) scheme. Later, based on the approximate greatest common divisor problem, learning with errors problem or learning with errors over rings problem, FHE has developed rapidly, along with the low efficiency and computational security. Combined with quantum mechanics, Liang proposed a symmetric quantum somewhat homomorphic encryption (QSHE) scheme based on quantum one-time pad, which is unconditional security. And it was converted to a quantum fully homomorphic encryption scheme, whose evaluation algorithm is based on the secret key. Compared with Liang's QSHE scheme, we propose a more efficient QSHE scheme for classical input states with perfect security, which is used to encrypt the classical message, and the secret key is not required in the evaluation algorithm. Furthermore, an efficient symmetric searchable encryption (SSE) scheme is constructed based on our QSHE scheme. SSE is important in the cloud storage, which allows users to offload search queries to the untrusted cloud. Then the cloud is responsible for returning encrypted files that match search queries (also encrypted), which protects users' privacy.

  20. Quantum formulation for nanoscale optical and material chirality: symmetry issues, space and time parity, and observables

    NASA Astrophysics Data System (ADS)

    Andrews, D. L.

    2018-03-01

    To properly represent the interplay and coupling of optical and material chirality at the photon-molecule or photon-nanoparticle level invites a recognition of quantum facets in the fundamental aspects and mechanisms of light-matter interaction. It is therefore appropriate to cast theory in a general quantum form, one that is applicable to both linear and nonlinear optics as well as various forms of chiroptical interaction including chiral optomechanics. Such a framework, fully accounting for both radiation and matter in quantum terms, facilitates the scrutiny and identification of key issues concerning spatial and temporal parity, scale, dissipation and measurement. Furthermore it fully provides for describing the interactions of structured or twisted light beams with a vortex character, and it leads to the complete identification of symmetry conditions for materials to provide for chiral discrimination. Quantum considerations also lend a distinctive perspective to the very different senses in which other aspects of chirality are recognized in metamaterials. Duly attending to the symmetry principles governing allowed or disallowed forms of chiral discrimination supports an objective appraisal of the experimental possibilities and developing applications.

  1. Quantum orbital angular momentum of elliptically symmetric light

    NASA Astrophysics Data System (ADS)

    Plick, William N.; Krenn, Mario; Fickler, Robert; Ramelow, Sven; Zeilinger, Anton

    2013-03-01

    We present a quantum-mechanical analysis of the orbital angular momentum of a class of recently discovered elliptically symmetric stable light fields—the so-called Ince-Gauss modes. We study, in a fully quantum formalism, how the orbital angular momentum of these beams varies with their ellipticity, and we discover several compelling features, including nonmonotonic behavior, stable beams with real continuous (noninteger) orbital angular momenta, and orthogonal modes with the same orbital angular momenta. We explore, and explain in detail, the reasons for this behavior. These features may have applications in quantum key distribution, atom trapping, and quantum informatics in general—as the ellipticity opens up an alternative way of navigating the spatial photonic Hilbert space.

  2. Continuous-Variable Triple-Photon States Quantum Entanglement

    NASA Astrophysics Data System (ADS)

    González, E. A. Rojas; Borne, A.; Boulanger, B.; Levenson, J. A.; Bencheikh, K.

    2018-01-01

    We investigate the quantum entanglement of the three modes associated with the three-photon states obtained by triple-photon generation in a phase-matched third-order nonlinear optical interaction. Although the second-order processes have been extensively dealt with, there is no direct analogy between the second and third-order mechanisms. We show, for example, the absence of quantum entanglement between the quadratures of the three modes in the case of spontaneous parametric triple-photon generation. However, we show robust, seeding-dependent, genuine triple-photon entanglement in the fully seeded case.

  3. Continuous-Variable Triple-Photon States Quantum Entanglement.

    PubMed

    González, E A Rojas; Borne, A; Boulanger, B; Levenson, J A; Bencheikh, K

    2018-01-26

    We investigate the quantum entanglement of the three modes associated with the three-photon states obtained by triple-photon generation in a phase-matched third-order nonlinear optical interaction. Although the second-order processes have been extensively dealt with, there is no direct analogy between the second and third-order mechanisms. We show, for example, the absence of quantum entanglement between the quadratures of the three modes in the case of spontaneous parametric triple-photon generation. However, we show robust, seeding-dependent, genuine triple-photon entanglement in the fully seeded case.

  4. A fully electric field driven scalable magnetoelectric switching element

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Victora, R. H.

    2018-04-01

    A technique for micromagnetic simulation of the magnetoelectric (ME) effect in Cr2O3 based structures has been developed. It has been observed that the microscopic ME susceptibility differs significantly from the experimentally measured values. The deviation between the two susceptibilities becomes more prominent near the Curie temperature, affecting the operation of the device at room temperature. A fully electric field controlled ME switching element has been proposed for use at technologically interesting densities: it employs quantum mechanical exchange at the boundaries instead of the applied magnetic field needed in traditional switching schemes. After establishing temperature dependent physics-based parameters, switching performances have been studied for different temperatures, applied electric fields, and Cr2O3 cross-sections. It has been found that our proposed use of quantum mechanical exchange favors reduced electric field operation and enhanced scalability while retaining reliable thermal stability.

  5. The Tie That Binds:. A Fundamental Unit of `Change' in Space and Time

    NASA Astrophysics Data System (ADS)

    Beichler, James E.

    2013-09-01

    Why, despite all efforts to the contrary, have attempts at unification based on the supposedly more fundamental quantum theory failed miserably? The truth is that the essential idea or concept of the quantum itself has never been fully understood. What is the quantum, or rather, what is its ultimate nature? Science may be able to work adequately with the quantum; in a sense science is quite articulate in the language of the quantum, i.e., its mathematical interpretation of the quantum mechanics, but science has no idea of the true physical nature of the quantum. Scientists and philosophers have wasted energy and efforts on irrelevant issues such as the debate over determinism and indeterminism instead of carefully analyzing the physical source of the quantum. Only with a true understanding of the physical nature of the quantum will the unification of the quantum and relativity ever become a reality.

  6. Free energies of binding from large-scale first-principles quantum mechanical calculations: application to ligand hydration energies.

    PubMed

    Fox, Stephen J; Pittock, Chris; Tautermann, Christofer S; Fox, Thomas; Christ, Clara; Malcolm, N O J; Essex, Jonathan W; Skylaris, Chris-Kriton

    2013-08-15

    Schemes of increasing sophistication for obtaining free energies of binding have been developed over the years, where configurational sampling is used to include the all-important entropic contributions to the free energies. However, the quality of the results will also depend on the accuracy with which the intermolecular interactions are computed at each molecular configuration. In this context, the energy change associated with the rearrangement of electrons (electronic polarization and charge transfer) upon binding is a very important effect. Classical molecular mechanics force fields do not take this effect into account explicitly, and polarizable force fields and semiempirical quantum or hybrid quantum-classical (QM/MM) calculations are increasingly employed (at higher computational cost) to compute intermolecular interactions in free-energy schemes. In this work, we investigate the use of large-scale quantum mechanical calculations from first-principles as a way of fully taking into account electronic effects in free-energy calculations. We employ a one-step free-energy perturbation (FEP) scheme from a molecular mechanical (MM) potential to a quantum mechanical (QM) potential as a correction to thermodynamic integration calculations within the MM potential. We use this approach to calculate relative free energies of hydration of small aromatic molecules. Our quantum calculations are performed on multiple configurations from classical molecular dynamics simulations. The quantum energy of each configuration is obtained from density functional theory calculations with a near-complete psinc basis set on over 600 atoms using the ONETEP program.

  7. Experimental quantum computing without entanglement.

    PubMed

    Lanyon, B P; Barbieri, M; Almeida, M P; White, A G

    2008-11-14

    Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.

  8. Direct counterfactual communication via quantum Zeno effect.

    PubMed

    Cao, Yuan; Li, Yu-Huai; Cao, Zhu; Yin, Juan; Chen, Yu-Ao; Yin, Hua-Lei; Chen, Teng-Yun; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei

    2017-05-09

    Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics-wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect.

  9. Consistent resolution of some relativistic quantum paradoxes

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2002-12-01

    A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm's formulation of the Einstein-Podolsky-Rosen paradox, and Hardy's paradox. It is argued that wave function collapse is not needed for introducing probabilities into relativistic quantum mechanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic time dependence can be used to construct a physical picture of the measurement process that is less misleading than collapse models. In particular, one can employ a coarse-grained but fully quantum-mechanical description in which particles move along trajectories, with behavior under Lorentz transformations the same as in classical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory, and are resolved (or tamed) by using a proper quantum analysis. In particular, there is no need to invoke, nor any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this source, between relativity theory and quantum mechanics.

  10. Quantum mechanical treatment of large spin baths

    NASA Astrophysics Data System (ADS)

    Röhrig, Robin; Schering, Philipp; Gravert, Lars B.; Fauseweh, Benedikt; Uhrig, Götz S.

    2018-04-01

    The electronic spin in quantum dots can be described by central spin models (CSMs) with a very large number Neff≈104 to 106 of bath spins posing a tremendous challenge to theoretical simulations. Here, a fully quantum mechanical theory is developed for the limit Neff→∞ by means of iterated equations of motion (iEoM). We find that the CSM can be mapped to a four-dimensional impurity coupled to a noninteracting bosonic bath in this limit. Remarkably, even for infinite bath the CSM does not become completely classical. The data obtained by the proposed iEoM approach are tested successfully against data from other, established approaches. Thus the iEoM mapping extends the set of theoretical tools that can be used to understand the spin dynamics in large CSMs.

  11. Fully Solution-Processed Tandem White Quantum-Dot Light-Emitting Diode with an External Quantum Efficiency Exceeding 25.

    PubMed

    Jiang, Congbiao; Zou, Jianhua; Liu, Yu; Song, Chen; He, Zhiwei; Zhong, Zhenji; Wang, Jian; Yip, Hin-Lap; Peng, Junbiao; Cao, Yong

    2018-06-15

    Solution-processed electroluminescent tandem white quantum-dot light-emitting diodes (TWQLEDs) have the advantages of being low-cost and high-efficiency and having a wide color gamut combined with color filters, making this a promising backlight technology for high-resolution displays. However, TWQLEDs are rarely reported due to the challenge of designing device structures and the deterioration of film morphology with component layers that can be deposited from solutions. Here, we report an interconnecting layer with the optical, electrical, and mechanical properties required for fully solution-processed TWQLED. The optimized TWQLEDs exhibit a state-of-the-art current efficiency as high as 60.4 cd/A and an extremely high external quantum efficiency of 27.3% at a luminance of 100 000 cd/m 2 . A high color gamut of 124% NTSC 1931 standard can be achieved when combined with commercial color filters. These results represent the highest performance for solution-processed WQLEDs, unlocking the great application potential of TWQLEDs as backlights for new-generation displays.

  12. All-Dimensional H2–CO Potential: Validation with Fully Quantum Second Virial Coefficients

    PubMed Central

    Garberoglio, Giovanni; Jankowski, Piotr; Szalewicz, Krzysztof; Harvey, Allan H.

    2017-01-01

    We use a new high-accuracy all-dimensional potential to compute the cross second virial coefficient B12(T) between molecular hydrogen and carbon monoxide. The path-integral method is used to fully account for quantum effects. Values are calculated from 10 K to 2000 K and the uncertainty of the potential is propagated into uncertainties of B12. Our calculated B12(T) are in excellent agreement with most of the limited experimental data available, but cover a much wider range of temperatures and have lower uncertainties. Similar to recently reported findings from scattering calculations, we find that the reduced-dimensionality potential obtained by averaging over the rovibrational motion of the monomers gives results that are a good approximation to those obtained when flexibility is fully taken into account. Also, the four-dimensional approximation with monomers taken at their vibrationally averaged bond lengths works well. This finding is important, since full-dimensional potentials are difficult to develop even for triatomic monomers and are not currently possible to obtain for larger molecules. Likewise, most types of accurate quantum mechanical calculations, e.g., spectral or scattering, are severely limited in the number of dimensions that can be handled. PMID:28178790

  13. All-dimensional H2-CO potential: Validation with fully quantum second virial coefficients.

    PubMed

    Garberoglio, Giovanni; Jankowski, Piotr; Szalewicz, Krzysztof; Harvey, Allan H

    2017-02-07

    We use a new high-accuracy all-dimensional potential to compute the cross second virial coefficient B 12 (T) between molecular hydrogen and carbon monoxide. The path-integral method is used to fully account for quantum effects. Values are calculated from 10 K to 2000 K and the uncertainty of the potential is propagated into uncertainties of B 12 . Our calculated B 12 (T) are in excellent agreement with most of the limited experimental data available, but cover a much wider range of temperatures and have lower uncertainties. Similar to recently reported findings from scattering calculations, we find that the reduced-dimensionality potential obtained by averaging over the rovibrational motion of the monomers gives results that are a good approximation to those obtained when flexibility is fully taken into account. Also, the four-dimensional approximation with monomers taken at their vibrationally averaged bond lengths works well. This finding is important, since full-dimensional potentials are difficult to develop even for triatomic monomers and are not currently possible to obtain for larger molecules. Likewise, most types of accurate quantum mechanical calculations, e.g., spectral or scattering, are severely limited in the number of dimensions that can be handled.

  14. Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.

    PubMed

    Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao

    2013-09-10

    Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data.

  15. A Local Quantum Phase Transition in YFe 2Al 10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gannon, W J.; Zaliznyak, Igor A.; Wu, L. S.

    Here, a phase transition occurs when correlated regions of a new phase grow to span the system and the fluctuations within the correlated regions become long-lived. Here we present neutron scattering measurements showing that this conventional picture must be replaced by a new paradigm in YFe 2Al 10, a compound that forms naturally very close to a T = 0 quantum phase transition. Fully quantum mechanical fluctuations of localized moments are found to diverge at low energies and temperatures, however the fluctuating moments are entirely without spatial correlations. Zero temperature order in YFe 2Al 10 is achieved by a newmore » and entirely local type of quantum phase transition that may originate with the creation of the moments themselves.« less

  16. Keeping time: could quantum beating in microtubules be the basis for the neural synchrony related to consciousness?

    PubMed

    Craddock, Travis J A; Priel, Avner; Tuszynski, Jack A

    2014-06-01

    This paper discusses the possibility of quantum coherent oscillations playing a role in neuronal signaling. Consciousness correlates strongly with coherent neural oscillations, however the mechanisms by which neurons synchronize are not fully elucidated. Recent experimental evidence of quantum beats in light-harvesting complexes of plants (LHCII) and bacteria provided a stimulus for seeking similar effects in important structures found in animal cells, especially in neurons. We argue that microtubules (MTs), which play critical roles in all eukaryotic cells, possess structural and functional characteristics that are consistent with quantum coherent excitations in the aromatic groups of their tryptophan residues. Furthermore we outline the consequences of these findings on neuronal processes including the emergence of consciousness.

  17. A Local Quantum Phase Transition in YFe 2Al 10

    DOE PAGES

    Gannon, W J.; Zaliznyak, Igor A.; Wu, L. S.; ...

    2018-06-29

    Here, a phase transition occurs when correlated regions of a new phase grow to span the system and the fluctuations within the correlated regions become long-lived. Here we present neutron scattering measurements showing that this conventional picture must be replaced by a new paradigm in YFe 2Al 10, a compound that forms naturally very close to a T = 0 quantum phase transition. Fully quantum mechanical fluctuations of localized moments are found to diverge at low energies and temperatures, however the fluctuating moments are entirely without spatial correlations. Zero temperature order in YFe 2Al 10 is achieved by a newmore » and entirely local type of quantum phase transition that may originate with the creation of the moments themselves.« less

  18. Free-space quantum key distribution by rotation-invariant twisted photons.

    PubMed

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2014-08-08

    "Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.

  19. Free-Space Quantum Key Distribution by Rotation-Invariant Twisted Photons

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; D'Ambrosio, Vincenzo; Sponselli, Anna; Slussarenko, Sergei; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2014-08-01

    "Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.

  20. Quantum random number generation

    DOE PAGES

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; ...

    2016-06-28

    Quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at a highmore » speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  1. Fully device-independent quantum key distribution.

    PubMed

    Vazirani, Umesh; Vidick, Thomas

    2014-10-03

    Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.

  2. A quantum annealing architecture with all-to-all connectivity from local interactions.

    PubMed

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-10-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is-in the spirit of topological quantum memories-redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems.

  3. Fully Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Vazirani, Umesh; Vidick, Thomas

    2014-10-01

    Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.

  4. A quantum annealing architecture with all-to-all connectivity from local interactions

    PubMed Central

    Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter

    2015-01-01

    Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is—in the spirit of topological quantum memories—redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems. PMID:26601316

  5. First-principles quantum dynamical theory for the dissociative chemisorption of H2O on rigid Cu(111)

    PubMed Central

    Zhang, Zhaojun; Liu, Tianhui; Fu, Bina; Yang, Xueming; Zhang, Dong H.

    2016-01-01

    Despite significant progress made in the past decades, it remains extremely challenging to investigate the dissociative chemisorption dynamics of molecular species on surfaces at a full-dimensional quantum mechanical level, in particular for polyatomic-surface reactions. Here we report, to the best of our knowledge, the first full-dimensional quantum dynamics study for the dissociative chemisorption of H2O on rigid Cu(111) with all the nine molecular degrees of freedom fully coupled, based on an accurate full-dimensional potential energy surface. The full-dimensional quantum mechanical reactivity provides the dynamics features with the highest accuracy, revealing that the excitations in vibrational modes of H2O are more efficacious than increasing the translational energy in promoting the reaction. The enhancement of the excitation in asymmetric stretch is the largest, but that of symmetric stretch becomes comparable at very low energies. The full-dimensional characterization also allows the investigation of the validity of previous reduced-dimensional and approximate dynamical models. PMID:27283908

  6. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solutions based upon mixed quantum-classical approximation. I. Proton transfer reaction in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Atsushi; Kojima, Hidekazu; Okazaki, Susumu, E-mail: okazaki@apchem.nagoya-u.ac.jp

    2014-08-28

    In order to investigate proton transfer reaction in solution, mixed quantum-classical molecular dynamics calculations have been carried out based on our previously proposed quantum equation of motion for the reacting system [A. Yamada and S. Okazaki, J. Chem. Phys. 128, 044507 (2008)]. Surface hopping method was applied to describe forces acting on the solvent classical degrees of freedom. In a series of our studies, quantum and solvent effects on the reaction dynamics in solutions have been analysed in detail. Here, we report our mixed quantum-classical molecular dynamics calculations for intramolecular proton transfer of malonaldehyde in water. Thermally activated proton transfermore » process, i.e., vibrational excitation in the reactant state followed by transition to the product state and vibrational relaxation in the product state, as well as tunneling reaction can be described by solving the equation of motion. Zero point energy is, of course, included, too. The quantum simulation in water has been compared with the fully classical one and the wave packet calculation in vacuum. The calculated quantum reaction rate in water was 0.70 ps{sup −1}, which is about 2.5 times faster than that in vacuum, 0.27 ps{sup −1}. This indicates that the solvent water accelerates the reaction. Further, the quantum calculation resulted in the reaction rate about 2 times faster than the fully classical calculation, which indicates that quantum effect enhances the reaction rate, too. Contribution from three reaction mechanisms, i.e., tunneling, thermal activation, and barrier vanishing reactions, is 33:46:21 in the mixed quantum-classical calculations. This clearly shows that the tunneling effect is important in the reaction.« less

  7. The Quality of the Embedding Potential Is Decisive for Minimal Quantum Region Size in Embedding Calculations: The Case of the Green Fluorescent Protein.

    PubMed

    Nåbo, Lina J; Olsen, Jógvan Magnus Haugaard; Martínez, Todd J; Kongsted, Jacob

    2017-12-12

    The calculation of spectral properties for photoactive proteins is challenging because of the large cost of electronic structure calculations on large systems. Mixed quantum mechanical (QM) and molecular mechanical (MM) methods are typically employed to make such calculations computationally tractable. This study addresses the connection between the minimal QM region size and the method used to model the MM region in the calculation of absorption properties-here exemplified for calculations on the green fluorescent protein. We find that polarizable embedding is necessary for a qualitatively correct description of the MM region, and that this enables the use of much smaller QM regions compared to fixed charge electrostatic embedding. Furthermore, absorption intensities converge very slowly with system size and inclusion of effective external field effects in the MM region through polarizabilities is therefore very important. Thus, this embedding scheme enables accurate prediction of intensities for systems that are too large to be treated fully quantum mechanically.

  8. Quantum Machine Learning

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak

    2018-01-01

    Quantum computing promises an unprecedented ability to solve intractable problems by harnessing quantum mechanical effects such as tunneling, superposition, and entanglement. The Quantum Artificial Intelligence Laboratory (QuAIL) at NASA Ames Research Center is the space agency's primary facility for conducting research and development in quantum information sciences. QuAIL conducts fundamental research in quantum physics but also explores how best to exploit and apply this disruptive technology to enable NASA missions in aeronautics, Earth and space sciences, and space exploration. At the same time, machine learning has become a major focus in computer science and captured the imagination of the public as a panacea to myriad big data problems. In this talk, we will discuss how classical machine learning can take advantage of quantum computing to significantly improve its effectiveness. Although we illustrate this concept on a quantum annealer, other quantum platforms could be used as well. If explored fully and implemented efficiently, quantum machine learning could greatly accelerate a wide range of tasks leading to new technologies and discoveries that will significantly change the way we solve real-world problems.

  9. Decoherence mechanisms in Mn3 single-molecule magnet

    NASA Astrophysics Data System (ADS)

    Abeywardana, C.; Mowson, A. M.; Christou, G.; Takahashi, S.

    In spite of wide interest in the quantum nature of SMMs, decoherence effects that ultimately limit such behavior have yet to be fully understood. Recent investigations have shown that there are three main decoherence mechanisms present in SMMs: spins can couple locally (i) to phonons (phonon decoherence); (ii) to many nuclear spins (nuclear decoherence); and (iii) to each other via dipolar interactions (dipolar decoherence). We have recently uncovered quantum coherence in a Mn3 SMM by quenching decoherence due to dipole interaction between SMMs using a high frequency electron paramagnetic resonance and low temperature. In this presentation, we will discuss temperature dependence of spin relaxation times and the decoherence mechanisms in the Mn3 SMM. This work is supported by the National Science Foundation (DMR-1508661) and the Searle scholars program.

  10. Extending Wheeler’s delayed-choice experiment to space

    PubMed Central

    Vedovato, Francesco; Agnesi, Costantino; Schiavon, Matteo; Dequal, Daniele; Calderaro, Luca; Tomasin, Marco; Marangon, Davide G.; Stanco, Andrea; Luceri, Vincenza; Bianco, Giuseppe; Vallone, Giuseppe; Villoresi, Paolo

    2017-01-01

    Gedankenexperiments have consistently played a major role in the development of quantum theory. A paradigmatic example is Wheeler’s delayed-choice experiment, a wave-particle duality test that cannot be fully understood using only classical concepts. We implement Wheeler’s idea along a satellite-ground interferometer that extends for thousands of kilometers in space. We exploit temporal and polarization degrees of freedom of photons reflected by a fast-moving satellite equipped with retroreflecting mirrors. We observe the complementary wave- or particle-like behaviors at the ground station by choosing the measurement apparatus while the photons are propagating from the satellite to the ground. Our results confirm quantum mechanical predictions, demonstrating the need of the dual wave-particle interpretation at this unprecedented scale. Our work paves the way for novel applications of quantum mechanics in space links involving multiple photon degrees of freedom. PMID:29075668

  11. Full-field implementation of a perfect eavesdropper on a quantum cryptography system.

    PubMed

    Gerhardt, Ilja; Liu, Qin; Lamas-Linares, Antía; Skaar, Johannes; Kurtsiefer, Christian; Makarov, Vadim

    2011-06-14

    Quantum key distribution (QKD) allows two remote parties to grow a shared secret key. Its security is founded on the principles of quantum mechanics, but in reality it significantly relies on the physical implementation. Technological imperfections of QKD systems have been previously explored, but no attack on an established QKD connection has been realized so far. Here we show the first full-field implementation of a complete attack on a running QKD connection. An installed eavesdropper obtains the entire 'secret' key, while none of the parameters monitored by the legitimate parties indicate a security breach. This confirms that non-idealities in physical implementations of QKD can be fully practically exploitable, and must be given increased scrutiny if quantum cryptography is to become highly secure.

  12. Hacking commercial quantum cryptography systems by tailored bright illumination

    NASA Astrophysics Data System (ADS)

    Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim

    2010-10-01

    The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics. So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons. Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built from off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photodiodes to detect single photons. We believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.

  13. Observation of a Degenerate Fermi Gas Trapped by a Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    DeSalvo, B. J.; Patel, Krutik; Johansen, Jacob; Chin, Cheng

    2017-12-01

    We report on the formation of a stable quantum degenerate mixture of fermionic 6Li and bosonic 133Cs in an optical trap by sympathetic cooling near an interspecies Feshbach resonance. New regimes of quantum degenerate Bose-Fermi mixtures are identified. With moderate attractive interspecies interactions, we show that a degenerate Fermi gas of Li can be fully confined in a Cs Bose-Einstein condensate without external potentials. For stronger attraction where mean-field collapse is expected, no such instability is observed. Potential mechanisms to explain this phenomenon are discussed.

  14. A comparative study of different methods for calculating electronic transition rates

    NASA Astrophysics Data System (ADS)

    Kananenka, Alexei A.; Sun, Xiang; Schubert, Alexander; Dunietz, Barry D.; Geva, Eitan

    2018-03-01

    We present a comprehensive comparison of the following mixed quantum-classical methods for calculating electronic transition rates: (1) nonequilibrium Fermi's golden rule, (2) mixed quantum-classical Liouville method, (3) mean-field (Ehrenfest) mixed quantum-classical method, and (4) fewest switches surface-hopping method (in diabatic and adiabatic representations). The comparison is performed on the Garg-Onuchic-Ambegaokar benchmark charge-transfer model, over a broad range of temperatures and electronic coupling strengths, with different nonequilibrium initial states, in the normal and inverted regimes. Under weak to moderate electronic coupling, the nonequilibrium Fermi's golden rule rates are found to be in good agreement with the rates obtained via the mixed quantum-classical Liouville method that coincides with the fully quantum-mechanically exact results for the model system under study. Our results suggest that the nonequilibrium Fermi's golden rule can serve as an inexpensive yet accurate alternative to Ehrenfest and the fewest switches surface-hopping methods.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu

    Quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at a highmore » speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  16. The emergent Copenhagen interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Hollowood, Timothy J.

    2014-05-01

    We introduce a new and conceptually simple interpretation of quantum mechanics based on reduced density matrices of sub-systems from which the standard Copenhagen interpretation emerges as an effective description of macroscopically large systems. This interpretation describes a world in which definite measurement results are obtained with probabilities that reproduce the Born rule. Wave function collapse is seen to be a useful but fundamentally unnecessary piece of prudent book keeping which is only valid for macro-systems. The new interpretation lies in a class of modal interpretations in that it applies to quantum systems that interact with a much larger environment. However, we show that it does not suffer from the problems that have plagued similar modal interpretations like macroscopic superpositions and rapid flipping between macroscopically distinct states. We describe how the interpretation fits neatly together with fully quantum formulations of statistical mechanics and that a measurement process can be viewed as a process of ergodicity breaking analogous to a phase transition. The key feature of the new interpretation is that joint probabilities for the ergodic subsets of states of disjoint macro-systems only arise as emergent quantities. Finally we give an account of the EPR-Bohm thought experiment and show that the interpretation implies the violation of the Bell inequality characteristic of quantum mechanics but in a way that is rather novel. The final conclusion is that the Copenhagen interpretation gives a completely satisfactory phenomenology of macro-systems interacting with micro-systems.

  17. TINKTEP: A fully self-consistent, mutually polarizable QM/MM approach based on the AMOEBA force field

    NASA Astrophysics Data System (ADS)

    Dziedzic, Jacek; Mao, Yuezhi; Shao, Yihan; Ponder, Jay; Head-Gordon, Teresa; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-09-01

    We present a novel quantum mechanical/molecular mechanics (QM/MM) approach in which a quantum subsystem is coupled to a classical subsystem described by the AMOEBA polarizable force field. Our approach permits mutual polarization between the QM and MM subsystems, effected through multipolar electrostatics. Self-consistency is achieved for both the QM and MM subsystems through a total energy minimization scheme. We provide an expression for the Hamiltonian of the coupled QM/MM system, which we minimize using gradient methods. The QM subsystem is described by the onetep linear-scaling DFT approach, which makes use of strictly localized orbitals expressed in a set of periodic sinc basis functions equivalent to plane waves. The MM subsystem is described by the multipolar, polarizable force field AMOEBA, as implemented in tinker. Distributed multipole analysis is used to obtain, on the fly, a classical representation of the QM subsystem in terms of atom-centered multipoles. This auxiliary representation is used for all polarization interactions between QM and MM, allowing us to treat them on the same footing as in AMOEBA. We validate our method in tests of solute-solvent interaction energies, for neutral and charged molecules, demonstrating the simultaneous optimization of the quantum and classical degrees of freedom. Encouragingly, we find that the inclusion of explicit polarization in the MM part of QM/MM improves the agreement with fully QM calculations.

  18. Tomography of quantum detectors

    NASA Astrophysics Data System (ADS)

    Lundeen, J. S.; Feito, A.; Coldenstrodt-Ronge, H.; Pregnell, K. L.; Silberhorn, Ch.; Ralph, T. C.; Eisert, J.; Plenio, M. B.; Walmsley, I. A.

    2009-01-01

    Measurement connects the world of quantum phenomena to the world of classical events. It has both a passive role-in observing quantum systems-and an active one, in preparing quantum states and controlling them. In view of the central status of measurement in quantum mechanics, it is surprising that there is no general recipe for designing a detector that measures a given observable. Compounding this, the characterization of existing detectors is typically based on partial calibrations or elaborate models. Thus, experimental specification (that is, tomography) of a detector is of fundamental and practical importance. Here, we present the realization of quantum detector tomography. We identify the positive-operator-valued measure describing the detector, with no ancillary assumptions. This result completes the triad, state, process and detector tomography, required to fully specify an experiment. We characterize an avalanche photodiode and a photon-number-resolving detector capable of detecting up to eight photons. This creates a new set of tools for accurately detecting and preparing non-classical light.

  19. Electrically driven quantum light emission in electromechanically tuneable photonic crystal cavities

    NASA Astrophysics Data System (ADS)

    Petruzzella, M.; Pagliano, F. M.; Zobenica, Ž.; Birindelli, S.; Cotrufo, M.; van Otten, F. W. M.; van der Heijden, R. W.; Fiore, A.

    2017-12-01

    A single quantum dot deterministically coupled to a photonic crystal environment constitutes an indispensable elementary unit to both generate and manipulate single-photons in next-generation quantum photonic circuits. To date, the scaling of the number of these quantum nodes on a fully integrated chip has been prevented by the use of optical pumping strategies that require a bulky off-chip laser along with the lack of methods to control the energies of nano-cavities and emitters. Here, we concurrently overcome these limitations by demonstrating electrical injection of single excitonic lines within a nano-electro-mechanically tuneable photonic crystal cavity. When an electrically driven dot line is brought into resonance with a photonic crystal mode, its emission rate is enhanced. Anti-bunching experiments reveal the quantum nature of these on-demand sources emitting in the telecom range. These results represent an important step forward in the realization of integrated quantum optics experiments featuring multiple electrically triggered Purcell-enhanced single-photon sources embedded in a reconfigurable semiconductor architecture.

  20. Quantum and quasi-classical collisional dynamics of O{sub 2}–Ar at high temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulusoy, Inga S.; Center for Computational and Molecular Science and Technology, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400; Andrienko, Daniil A.

    A hypersonic vehicle traveling at a high speed disrupts the distribution of internal states in the ambient flow and introduces a nonequilibrium distribution in the post-shock conditions. We investigate the vibrational relaxation in diatom-atom collisions in the range of temperatures between 1000 and 10 000 K by comparing results of extensive fully quantum-mechanical and quasi-classical simulations with available experimental data. The present paper simulates the interaction of molecular oxygen with argon as the first step in developing the aerothermodynamics models based on first principles. We devise a routine to standardize such calculations also for other scattering systems. Our results demonstrate verymore » good agreement of vibrational relaxation time, derived from quantum-mechanical calculations with the experimental measurements conducted in shock tube facilities. At the same time, the quasi-classical simulations fail to accurately predict rates of vibrationally inelastic transitions at temperatures lower than 3000 K. This observation and the computational cost of adopted methods suggest that the next generation of high fidelity thermochemical models should be a combination of quantum and quasi-classical approaches.« less

  1. Quantum and quasi-classical collisional dynamics of O2-Ar at high temperatures

    NASA Astrophysics Data System (ADS)

    Ulusoy, Inga S.; Andrienko, Daniil A.; Boyd, Iain D.; Hernandez, Rigoberto

    2016-06-01

    A hypersonic vehicle traveling at a high speed disrupts the distribution of internal states in the ambient flow and introduces a nonequilibrium distribution in the post-shock conditions. We investigate the vibrational relaxation in diatom-atom collisions in the range of temperatures between 1000 and 10 000 K by comparing results of extensive fully quantum-mechanical and quasi-classical simulations with available experimental data. The present paper simulates the interaction of molecular oxygen with argon as the first step in developing the aerothermodynamics models based on first principles. We devise a routine to standardize such calculations also for other scattering systems. Our results demonstrate very good agreement of vibrational relaxation time, derived from quantum-mechanical calculations with the experimental measurements conducted in shock tube facilities. At the same time, the quasi-classical simulations fail to accurately predict rates of vibrationally inelastic transitions at temperatures lower than 3000 K. This observation and the computational cost of adopted methods suggest that the next generation of high fidelity thermochemical models should be a combination of quantum and quasi-classical approaches.

  2. Theory of force detection using optically levitated nanoparticles

    NASA Astrophysics Data System (ADS)

    Rodenburg, Brandon; Neukirch, Levi; Pettit, Robert; Vamivakas, Nick; Bhattacharya, Mishkat

    2016-05-01

    Levitated nanoparticles offer the potential of being incredibly well isolated from the environment. This isolation makes such systems excellent candidates for tests of quantum mechanics at the macroscale and as versatile platforms for ultrasensitive metrology. Systems involving an optical cavity mode to provide the trapping field, as well as cooling mechanism of the particle's center of mass motion are well understood theoretically and provide a canonical system for the field of quantum optomechanics. However, techniques based on measurement based parametric cooling and feedback stabilization have made it possible to trap and manipulate a nanoparticle without the need for an optical cavity, even at extremely high vacuum where gas damping cannot stabilize the motion of the particle. For these cavityless systems, a fully quantum theory has recently been developed. In this talk we will present recent work that we have carried out to apply this theory to the use of such devices as force sensors, including a discussion of the ultimate limits placed on the sensitivity by the sources of fundamental quantum noise. Office of Naval Research.

  3. Autonomous Quantum Error Correction with Application to Quantum Metrology

    NASA Astrophysics Data System (ADS)

    Reiter, Florentin; Sorensen, Anders S.; Zoller, Peter; Muschik, Christine A.

    2017-04-01

    We present a quantum error correction scheme that stabilizes a qubit by coupling it to an engineered environment which protects it against spin- or phase flips. Our scheme uses always-on couplings that run continuously in time and operates in a fully autonomous fashion without the need to perform measurements or feedback operations on the system. The correction of errors takes place entirely at the microscopic level through a build-in feedback mechanism. Our dissipative error correction scheme can be implemented in a system of trapped ions and can be used for improving high precision sensing. We show that the enhanced coherence time that results from the coupling to the engineered environment translates into a significantly enhanced precision for measuring weak fields. In a broader context, this work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.

  4. Quantum Theory of Three-Dimensional Superresolution Using Rotating-PSF Imagery

    NASA Astrophysics Data System (ADS)

    Prasad, S.; Yu, Z.

    The inverse of the quantum Fisher information (QFI) matrix (and extensions thereof) provides the ultimate lower bound on the variance of any unbiased estimation of a parameter from statistical data, whether of intrinsically quantum mechanical or classical character. We calculate the QFI for Poisson-shot-noise-limited imagery using the rotating PSF that can localize and resolve point sources fully in all three dimensions. We also propose an experimental approach based on the use of computer generated hologram and projective measurements to realize the QFI-limited variance for the problem of super-resolving a closely spaced pair of point sources at a highly reduced photon cost. The paper presents a preliminary analysis of quantum-limited three-dimensional (3D) pair optical super-resolution (OSR) problem with potential applications to astronomical imaging and 3D space-debris localization.

  5. Quantum trajectory analysis of multimode subsystem-bath dynamics.

    PubMed

    Wyatt, Robert E; Na, Kyungsun

    2002-01-01

    The dynamics of a swarm of quantum trajectories is investigated for systems involving the interaction of an active mode (the subsystem) with an M-mode harmonic reservoir (the bath). Equations of motion for the position, velocity, and action function for elements of the probability fluid are integrated in the Lagrangian (moving with the fluid) picture of quantum hydrodynamics. These fluid elements are coupled through the Bohm quantum potential and as a result evolve as a correlated ensemble. Wave function synthesis along the trajectories permits an exact description of the quantum dynamics for the evolving probability fluid. The approach is fully quantum mechanical and does not involve classical or semiclassical approximations. Computational results are presented for three systems involving the interaction on an active mode with M=1, 10, and 15 bath modes. These results include configuration space trajectory evolution, flux analysis of the evolving ensemble, wave function synthesis along trajectories, and energy partitioning along specific trajectories. These results demonstrate the feasibility of using a small number of quantum trajectories to obtain accurate quantum results on some types of open quantum systems that are not amenable to standard quantum approaches involving basis set expansions or Eulerian space-fixed grids.

  6. Solution of the Wang Chang-Uhlenbeck equation for molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Anikin, Yu. A.

    2017-06-01

    Molecular hydrogen is modeled by numerically solving the Wang Chang-Uhlenbeck equation. The differential scattering cross sections of molecules are calculated using the quantum mechanical scattering theory of rigid rotors. The collision integral is computed by applying a fully conservative projection method. Numerical results for relaxation, heat conduction, and a one-dimensional shock wave are presented.

  7. Theory of atomistic simulation of spin-transfer torque in nanomagnets

    NASA Astrophysics Data System (ADS)

    Tay, Tiamhock; Sham, L. J.

    2013-05-01

    In spin-transfer torque (STT) for technological applications, the miniaturization of the magnet may reach the stage of requiring a fully quantum-mechanical treatment. We present an STT theory which uses the quantum macrospin ground and excited (magnon) states of the nanomagnet. This allows for energy and angular momentum exchanges between the current electron and the nano-magnet. We develop a method of magnetization dynamics simulation which captures the heating effect on the magnet by the spin-polarized current and the temperature dependence in STT. We also discuss the magnetostatics effect on magnon scattering for ferromagnetic relaxation in a thin film. Our work demonstrates a realistic step towards simulation of quantum spin-transfer torque physics in nanoscale magnets.

  8. Quantum mechanical calculations of vibrational population inversion in chemical reactions - Numerically exact L-squared-amplitude-density study of the H2Br reactive system

    NASA Technical Reports Server (NTRS)

    Zhang, Y. C.; Zhang, J. Z. H.; Kouri, D. J.; Haug, K.; Schwenke, D. W.

    1988-01-01

    Numerically exact, fully three-dimensional quantum mechanicl reactive scattering calculations are reported for the H2Br system. Both the exchange (H + H-prime Br to H-prime + HBr) and abstraction (H + HBR to H2 + Br) reaction channels are included in the calculations. The present results are the first completely converged three-dimensional quantum calculations for a system involving a highly exoergic reaction channel (the abstraction process). It is found that the production of vibrationally hot H2 in the abstraction reaction, and hence the extent of population inversion in the products, is a sensitive function of initial HBr rotational state and collision energy.

  9. Testing local-realism and macro-realism under generalized dichotomic measurements

    NASA Astrophysics Data System (ADS)

    Das, Debarshi; Mal, Shiladitya; Home, Dipankar

    2018-04-01

    Generalized quantum measurements with two outcomes are fully characterized by two real parameters, dubbed as sharpness parameter and biasedness parameter and they can be linked with different aspects of the experimental setup. It is known that sharpness parameter characterizes precision of the measurements and decreasing sharpness parameter of the measurements reduces the possibility of probing quantum features like quantum mechanical (QM) violation of local-realism (LR) or macro-realism (MR). Here we investigate the effect of biasedness together with that of sharpness of measurements and find a trade-off between those two parameters in the context of probing QM violations of LR and MR. Interestingly, we also find that the above mentioned trade-off is more robust in the latter case.

  10. Quantum theoretical study of electron solvation dynamics in ice layers on a Cu(111) surface.

    PubMed

    Andrianov, I; Klamroth, T; Saalfrank, P; Bovensiepen, U; Gahl, C; Wolf, M

    2005-06-15

    Recent experiments using time- and angle-resolved two-photon photoemission (2PPE) spectroscopy at metal/polar adsorbate interfaces succeeded in time-dependent analysis of the process of electron solvation. A fully quantum mechanical, two-dimensional simulation of this process, which explicitly includes laser excitation, is presented here, confirming the origin of characteristic features, such as the experimental observation of an apparently negative dispersion. The inference of the spatial extent of the localized electron states from the angular dependence of the 2PPE spectra has been found to be non-trivial and system-dependent.

  11. Coherent Dynamics of a Hybrid Quantum Spin-Mechanical Oscillator System

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth William, III

    A fully functional quantum computer must contain at least two important components: a quantum memory for storing and manipulating quantum information and a quantum data bus to securely transfer information between quantum memories. Typically, a quantum memory is composed of a matter system, such as an atom or an electron spin, due to their prolonged quantum coherence. Alternatively, a quantum data bus is typically composed of some propagating degree of freedom, such as a photon, which can retain quantum information over long distances. Therefore, a quantum computer will likely be a hybrid quantum device, consisting of two or more disparate quantum systems. However, there must be a reliable and controllable quantum interface between the memory and bus in order to faithfully interconvert quantum information. The current engineering challenge for quantum computers is scaling the device to large numbers of controllable quantum systems, which will ultimately depend on the choice of the quantum elements and interfaces utilized in the device. In this thesis, we present and characterize a hybrid quantum device comprised of single nitrogen-vacancy (NV) centers embedded in a high quality factor diamond mechanical oscillator. The electron spin of the NV center is a leading candidate for the realization of a quantum memory due to its exceptional quantum coherence times. On the other hand, mechanical oscillators are highly sensitive to a wide variety of external forces, and have the potential to serve as a long-range quantum bus between quantum systems of disparate energy scales. These two elements are interfaced through crystal strain generated by vibrations of the mechanical oscillator. Importantly, a strain interface allows for a scalable architecture, and furthermore, opens the door to integration into a larger quantum network through coupling to an optical interface. There are a few important engineering challenges associated with this device. First, there have been no previous demonstrations of a strain-mediated spin-mechanical interface and hence the system is largely uncharacterized. Second, fabricating high quality diamond mechanical oscillators is difficult due to the robust and chemically inert nature of diamond. Finally, engineering highly coherent NV centers with a coherent optical interface in nanostructured diamond remains an outstanding challenge. In this thesis, we theoretically and experimentally address each of these challenges, and show that with future improvements, this device is suitable for future quantum-enabled applications. First, we theoretically and experimentally demonstrate a dynamic, strain-mediated coupling between the spin and orbital degrees of freedom of the NV center and the driven mechanical motion of a single-crystal diamond cantilever. We employ Ramsey interferometry to demonstrate coherent, mechanical driving of the NV spin evolution. Using this interferometry technique, we present the first demonstration of nanoscale strain imaging, and quantitatively characterize the previously unknown spin-strain coupling constants. Next, we use the driven motion of the cantilever to perform deterministic control of the frequency and polarization dependence of the optical transitions of the NV center. Importantly, this experiment constitutes the first demonstration of on-chip control of both the frequency and polarization state of a single photon produced by a quantum emitter. In the final experiment, we use mechanical driving to engineer a series of spin ``clock" states and demonstrate a significant increase in the spin coherence time of the NV center. We conclude this thesis with a theoretical discussion of prospective applications for this device, including generation of non-classical mechanical states and spin-spin entanglement, as well as an evaluation of the current limitations of our devices, including a possible avenues for improvement to reach the regime of strong spin-phonon coupling.

  12. Multiconfiguration Molecular Mechanics Based on Combined Quantum Mechanical and Molecular Mechanical Calculations.

    PubMed

    Lin, Hai; Zhao, Yan; Tishchenko, Oksana; Truhlar, Donald G

    2006-09-01

    The multiconfiguration molecular mechanics (MCMM) method is a general algorithm for generating potential energy surfaces for chemical reactions by fitting high-level electronic structure data with the help of molecular mechanical (MM) potentials. It was previously developed as an extension of standard MM to reactive systems by inclusion of multidimensional resonance interactions between MM configurations corresponding to specific valence bonding patterns, with the resonance matrix element obtained from quantum mechanical (QM) electronic structure calculations. In particular, the resonance matrix element is obtained by multidimensional interpolation employing a finite number of geometries at which electronic-structure calculations of the energy, gradient, and Hessian are carried out. In this paper, we present a strategy for combining MCMM with hybrid quantum mechanical molecular mechanical (QM/MM) methods. In the new scheme, electronic-structure information for obtaining the resonance integral is obtained by means of hybrid QM/MM calculations instead of fully QM calculations. As such, the new strategy can be applied to the studies of very large reactive systems. The new MCMM scheme is tested for two hydrogen-transfer reactions. Very encouraging convergence is obtained for rate constants including tunneling, suggesting that the new MCMM method, called QM/MM-MCMM, is a very general, stable, and efficient procedure for generating potential energy surfaces for large reactive systems. The results are found to converge well with respect to the number of Hessians. The results are also compared to calculations in which the resonance integral data are obtained by pure QM, and this illustrates the sensitivity of reaction rate calculations to the treatment of the QM-MM border. For the smaller of the two systems, comparison is also made to direct dynamics calculations in which the potential energies are computed quantum mechanically on the fly.

  13. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solution based upon a mixed quantum-classical approximation. II. Proton transfer reaction in non-polar solvent

    NASA Astrophysics Data System (ADS)

    Kojima, H.; Yamada, A.; Okazaki, S.

    2015-05-01

    The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum-classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates is reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute-solvent interactions.

  14. Time Operator in Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Khorasani, Sina

    2017-07-01

    It is first shown that the Dirac’s equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 × 4 relativistic time operator for spin-1/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly small but non-zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli’s objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.

  15. Universal Linear Optics: An implementation of Boson Sampling on a Fully Reconfigurable Circuit

    NASA Astrophysics Data System (ADS)

    Harrold, Christopher; Carolan, Jacques; Sparrow, Chris; Russell, Nicholas J.; Silverstone, Joshua W.; Marshall, Graham D.; Thompson, Mark G.; Matthews, Jonathan C. F.; O'Brien, Jeremy L.; Laing, Anthony; Martín-López, Enrique; Shadbolt, Peter J.; Matsuda, Nobuyuki; Oguma, Manabu; Itoh, Mikitaka; Hashimoto, Toshikazu

    Linear optics has paved the way for fundamental tests in quantum mechanics and has gone on to enable a broad range of quantum information processing applications for quantum technologies. We demonstrate an integrated photonics processor that is universal for linear optics. The device is a silica-on-silicon planar waveguide circuit (PLC) comprising a cascade of 15 Mach Zehnder interferometers, with 30 directional couplers and 30 tunable thermo-optic phase shifters which are electrically interfaced for the arbitrary setting of a phase. We input ensembles of up to six photons, and monitor the output with a 12-single-photon detector system. The calibrated device is capable of implementing any linear optical protocol. This enables the implementation of new quantum information processing tasks in seconds, which would have previously taken months to realise. We demonstrate 100 instances of the boson sampling problem with verification tests, and six-dimensional complex Hadamards. Also Imperial College London.

  16. Direct counterfactual communication via quantum Zeno effect

    NASA Astrophysics Data System (ADS)

    Cao, Yuan; Li, Yu-Huai; Cao, Zhu; Yin, Juan; Chen, Yu-Ao; Yin, Hua-Lei; Chen, Teng-Yun; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei

    2017-05-01

    Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics—wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect.

  17. Ensembles and Experiments in Classical and Quantum Physics

    NASA Astrophysics Data System (ADS)

    Neumaier, Arnold

    A philosophically consistent axiomatic approach to classical and quantum mechanics is given. The approach realizes a strong formal implementation of Bohr's correspondence principle. In all instances, classical and quantum concepts are fully parallel: the same general theory has a classical realization and a quantum realization. Extending the ''probability via expectation'' approach of Whittle to noncommuting quantities, this paper defines quantities, ensembles, and experiments as mathematical concepts and shows how to model complementarity, uncertainty, probability, nonlocality and dynamics in these terms. The approach carries no connotation of unlimited repeatability; hence it can be applied to unique systems such as the universe. Consistent experiments provide an elegant solution to the reality problem, confirming the insistence of the orthodox Copenhagen interpretation on that there is nothing but ensembles, while avoiding its elusive reality picture. The weak law of large numbers explains the emergence of classical properties for macroscopic systems.

  18. Direct counterfactual communication via quantum Zeno effect

    PubMed Central

    Cao, Yuan; Li, Yu-Huai; Cao, Zhu; Yin, Juan; Chen, Yu-Ao; Yin, Hua-Lei; Chen, Teng-Yun; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei

    2017-01-01

    Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics—wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect. PMID:28442568

  19. Nonlinear unitary quantum collapse model with self-generated noise

    NASA Astrophysics Data System (ADS)

    Geszti, Tamás

    2018-04-01

    Collapse models including some external noise of unknown origin are routinely used to describe phenomena on the quantum-classical border; in particular, quantum measurement. Although containing nonlinear dynamics and thereby exposed to the possibility of superluminal signaling in individual events, such models are widely accepted on the basis of fully reproducing the non-signaling statistical predictions of quantum mechanics. Here we present a deterministic nonlinear model without any external noise, in which randomness—instead of being universally present—emerges in the measurement process, from deterministic irregular dynamics of the detectors. The treatment is based on a minimally nonlinear von Neumann equation for a Stern–Gerlach or Bell-type measuring setup, containing coordinate and momentum operators in a self-adjoint skew-symmetric, split scalar product structure over the configuration space. The microscopic states of the detectors act as a nonlocal set of hidden parameters, controlling individual outcomes. The model is shown to display pumping of weights between setup-defined basis states, with a single winner randomly selected and the rest collapsing to zero. Environmental decoherence has no role in the scenario. Through stochastic modelling, based on Pearle’s ‘gambler’s ruin’ scheme, outcome probabilities are shown to obey Born’s rule under a no-drift or ‘fair-game’ condition. This fully reproduces quantum statistical predictions, implying that the proposed non-linear deterministic model satisfies the non-signaling requirement. Our treatment is still vulnerable to hidden signaling in individual events, which remains to be handled by future research.

  20. Quantum trajectories in elastic atom-surface scattering: threshold and selective adsorption resonances.

    PubMed

    Sanz, A S; Miret-Artés, S

    2005-01-01

    The elastic resonant scattering of He atoms off the Cu(117) surface is fully described with the formalism of quantum trajectories provided by Bohmian mechanics. Within this theory of quantum motion, the concept of trapping is widely studied and discussed. Classically, atoms undergo impulsive collisions with the surface, and then the trapped motion takes place covering at least two consecutive unit cells. However, from a Bohmian viewpoint, atom trajectories can smoothly adjust to the equipotential energy surface profile in a sort of sliding motion; thus the trapping process could eventually occur within one single unit cell. In particular, both threshold and selective adsorption resonances are explained by means of this quantum trapping considering different space and time scales. Furthermore, a mapping between each region of the (initial) incoming plane wave and the different parts of the diffraction and resonance patterns can be easily established, an important issue only provided by a quantum trajectory formalism. (c) 2005 American Institute of Physics.

  1. Isotope Induced Proton Ordering in Partially Deuterated Aspirin

    NASA Astrophysics Data System (ADS)

    Schiebel, P.; Papoular, R. J.; Paulus, W.; Zimmermann, H.; Detken, A.; Haeberlen, U.; Prandl, W.

    1999-08-01

    We report the nuclear density distribution of partially deuterated aspirin, C8H5O4-CH2D, at 300 and 15 K, as determined by neutron diffraction coupled with maximum entropy method image reconstruction. While fully protonated and fully deuterated methyl groups in aspirin are delocalized at low temperatures due to quantum mechanical tunneling, we provide here direct evidence that in aspirin- CH2D at 15 K the methyl hydrogens are localized, while randomly distributed over three sites at 300 K. This is the first observation by diffraction methods of low-temperature isotopic ordering in condensed matter.

  2. Quantum Optics with Near-Lifetime-Limited Quantum-Dot Transitions in a Nanophotonic Waveguide.

    PubMed

    Thyrrestrup, Henri; Kiršanskė, Gabija; Le Jeannic, Hanna; Pregnolato, Tommaso; Zhai, Liang; Raahauge, Laust; Midolo, Leonardo; Rotenberg, Nir; Javadi, Alisa; Schott, Rüdiger; Wieck, Andreas D; Ludwig, Arne; Löbl, Matthias C; Söllner, Immo; Warburton, Richard J; Lodahl, Peter

    2018-03-14

    Establishing a highly efficient photon-emitter interface where the intrinsic linewidth broadening is limited solely by spontaneous emission is a key step in quantum optics. It opens a pathway to coherent light-matter interaction for, e.g., the generation of highly indistinguishable photons, few-photon optical nonlinearities, and photon-emitter quantum gates. However, residual broadening mechanisms are ubiquitous and need to be combated. For solid-state emitters charge and nuclear spin noise are of importance, and the influence of photonic nanostructures on the broadening has not been clarified. We present near-lifetime-limited linewidths for quantum dots embedded in nanophotonic waveguides through a resonant transmission experiment. It is found that the scattering of single photons from the quantum dot can be obtained with an extinction of 66 ± 4%, which is limited by the coupling of the quantum dot to the nanostructure rather than the linewidth broadening. This is obtained by embedding the quantum dot in an electrically contacted nanophotonic membrane. A clear pathway to obtaining even larger single-photon extinction is laid out; i.e., the approach enables a fully deterministic and coherent photon-emitter interface in the solid state that is operated at optical frequencies.

  3. Multiple quantum coherence spectroscopy.

    PubMed

    Mathew, Nathan A; Yurs, Lena A; Block, Stephen B; Pakoulev, Andrei V; Kornau, Kathryn M; Wright, John C

    2009-08-20

    Multiple quantum coherences provide a powerful approach for studies of complex systems because increasing the number of quantum states in a quantum mechanical superposition state increases the selectivity of a spectroscopic measurement. We show that frequency domain multiple quantum coherence multidimensional spectroscopy can create these superposition states using different frequency excitation pulses. The superposition state is created using two excitation frequencies to excite the symmetric and asymmetric stretch modes in a rhodium dicarbonyl chelate and the dynamic Stark effect to climb the vibrational ladders involving different overtone and combination band states. A monochromator resolves the free induction decay of different coherences comprising the superposition state. The three spectral dimensions provide the selectivity required to observe 19 different spectral features associated with fully coherent nonlinear processes involving up to 11 interactions with the excitation fields. The different features act as spectroscopic probes of the diagonal and off-diagonal parts of the molecular potential energy hypersurface. This approach can be considered as a coherent pump-probe spectroscopy where the pump is a series of excitation pulses that prepares a multiple quantum coherence and the probe is another series of pulses that creates the output coherence.

  4. Physical theories, eternal inflation, and the quantum universe

    NASA Astrophysics Data System (ADS)

    Nomura, Yasunori

    2011-11-01

    Infinities in eternal inflation have long been plaguing cosmology, making any predictions highly sensitive to how they are regulated. The problem exists already at the level of semi-classical general relativity, and has a priori nothing to do with quantum gravity. On the other hand, we know that certain problems in semi-classical gravity, for example physics of black holes and their evaporation, have led to understanding of surprising, quantum natures of spacetime and gravity, such as the holographic principle and horizon complementarity. In this paper, we present a framework in which well-defined predictions are obtained in an eternally inflating multiverse, based on the principles of quantum mechanics. We propose that the entire multiverse is described purely from the viewpoint of a single "observer," who describes the world as a quantum state defined on his/her past light cones bounded by the (stretched) apparent horizons. We find that quantum mechanics plays an essential role in regulating infinities. The framework is "gauge invariant," i.e. predictions do not depend on how spacetime is parametrized, as it should be in a theory of quantum gravity. Our framework provides a fully unified treatment of quantum measurement processes and the multiverse. We conclude that the eternally inflating multiverse and many worlds in quantum mechanics are the same. Other important implications include: global spacetime can be viewed as a derived concept; the multiverse is a transient phenomenon during the world relaxing into a supersymmetric Minkowski state. We also present a model of "initial conditions" for the multiverse. By extrapolating our framework to the extreme, we arrive at a picture that the entire multiverse is a fluctuation in the stationary, fractal "mega-multiverse," in which an infinite sequence of multiverse productions occurs. The framework discussed here does not suffer from problems/paradoxes plaguing other measures proposed earlier, such as the youngness paradox and the Boltzmann brain problem.

  5. Superradiant Decay of Cyclotron Resonance of Two-Dimensional Electron Gases

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Arikawa, Takashi; Kato, Eiji; Reno, John L.; Pan, Wei; Watson, John D.; Manfra, Michael J.; Zudov, Michael A.; Tokman, Mikhail; Erukhimova, Maria; Belyanin, Alexey; Kono, Junichiro

    2014-07-01

    We report on the observation of collective radiative decay, or superradiance, of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay rate of coherent CR oscillations increases linearly with the electron density in a wide range, which is a hallmark of superradiant damping. Our fully quantum mechanical theory provides a universal formula for the decay rate, which reproduces our experimental data without any adjustable parameter. These results firmly establish the many-body nature of CR decoherence in this system, despite the fact that the CR frequency is immune to electron-electron interactions due to Kohn's theorem.

  6. Fully differential cross sections for Li2+-impact ionization of Li(2s) and Li(2p)

    NASA Astrophysics Data System (ADS)

    Ghorbani, Omid; Ghanbari-Adivi, Ebrahim; Fabian Ciappina, Marcelo

    2018-05-01

    A semiclassical impact parameter version of the continuum distorted wave-Eikonal initial state theory is developed to study the differential ionization of Li atoms in collisions with Li2+ ions. Both post and prior forms of the transition amplitude are considered. The fully differential cross sections are calculated for the lithium targets in their ground and their first excited states and for the projectile ions at 16 MeV impact energy. The role of the inter-nuclear interaction as well as the significance of the post-prior discrepancy in the ejected electron spectra are investigated. The obtained results for ejection of the electron into the azimuthal plane are compared with the recent measurements and with their corresponding values obtained using a fully quantum mechanical version of the theory. In most of the cases, the consistency of the present approach with the experimental and the quantum theoretical data is reasonable. However, for 2p-state ionization, in the cases where no experimental data exist, there is a considerable difference between the two theoretical approaches. This difference is questionable and further experiments are needed to judge which theory makes a more accurate description of the collision dynamics.

  7. Nonperturbative Dynamical Casimir Effect in Optomechanical Systems: Vacuum Casimir-Rabi Splittings

    NASA Astrophysics Data System (ADS)

    Macrı, Vincenzo; Ridolfo, Alessandro; Di Stefano, Omar; Kockum, Anton Frisk; Nori, Franco; Savasta, Salvatore

    2018-01-01

    We study the dynamical Casimir effect using a fully quantum-mechanical description of both the cavity field and the oscillating mirror. We do not linearize the dynamics, nor do we adopt any parametric or perturbative approximation. By numerically diagonalizing the full optomechanical Hamiltonian, we show that the resonant generation of photons from the vacuum is determined by a ladder of mirror-field vacuum Rabi splittings. We find that vacuum emission can originate from the free evolution of an initial pure mechanical excited state, in analogy with the spontaneous emission from excited atoms. By considering a coherent drive of the mirror, using a master-equation approach to take losses into account, we are able to study the dynamical Casimir effect for optomechanical coupling strengths ranging from weak to ultrastrong. We find that a resonant production of photons out of the vacuum can be observed even for mechanical frequencies lower than the cavity-mode frequency. Since high mechanical frequencies, which are hard to achieve experimentally, were thought to be imperative for realizing the dynamical Casimir effect, this result removes one of the major obstacles for the observation of this long-sought effect. We also find that the dynamical Casimir effect can create entanglement between the oscillating mirror and the radiation produced by its motion in the vacuum field, and that vacuum Casimir-Rabi oscillations can occur. Finally, we also show that all these findings apply not only to optomechanical systems, but also to parametric amplifiers operating in the fully quantum regime.

  8. Fully Stretchable and Humidity-Resistant Quantum Dot Gas Sensors.

    PubMed

    Song, Zhilong; Huang, Zhao; Liu, Jingyao; Hu, Zhixiang; Zhang, Jianbing; Zhang, Guangzu; Yi, Fei; Jiang, Shenglin; Lian, Jiabiao; Yan, Jia; Zang, Jianfeng; Liu, Huan

    2018-05-25

    Stretchable gas sensors that accommodate the shape and motion characteristics of human body are indispensable to a wearable or attachable smart sensing system. However, these gas sensors usually have poor response and recovery kinetics when operated at room temperature, and especially suffer from humidity interference and mechanical robustness issues. Here, we demonstrate the first fully stretchable gas sensors which are operated at room temperature with enhanced stability against humidity. We created a crumpled quantum dot (QD) sensing layer on elastomeric substrate with flexible graphene as electrodes. Through the control over the prestrain of the flexible substrate, we achieved a 5.8 times improvement in NO 2 response at room temperature with desirable stretchability even under 1000 stretch/relax cycles mechanism deformation. The uniformly wavy structural configuration of the crumpled QD gas-sensing layer enabled an improvement in the antihumidity interference. The sensor response shows a minor vibration of 15.9% at room temperature from relative humidity of 0 to 86.7% compared to that of the flat-film sensors with vibration of 84.2%. The successful assembly of QD solids into a crumpled gas-sensing layer enabled a body-attachable, mechanically robust, and humidity-resistant gas sensor, opening up a new pathway to room-temperature operable gas sensors which may be implemented in future smart sensing systems such as stretchable electronic nose and multipurpose electronic skin.

  9. Nuclear quantum effect with pure anharmonicity and the anomalous thermal expansion of silicon.

    PubMed

    Kim, D S; Hellman, O; Herriman, J; Smith, H L; Lin, J Y Y; Shulumba, N; Niedziela, J L; Li, C W; Abernathy, D L; Fultz, B

    2018-02-27

    Despite the widespread use of silicon in modern technology, its peculiar thermal expansion is not well understood. Adapting harmonic phonons to the specific volume at temperature, the quasiharmonic approximation, has become accepted for simulating the thermal expansion, but has given ambiguous interpretations for microscopic mechanisms. To test atomistic mechanisms, we performed inelastic neutron scattering experiments from 100 K to 1,500 K on a single crystal of silicon to measure the changes in phonon frequencies. Our state-of-the-art ab initio calculations, which fully account for phonon anharmonicity and nuclear quantum effects, reproduced the measured shifts of individual phonons with temperature, whereas quasiharmonic shifts were mostly of the wrong sign. Surprisingly, the accepted quasiharmonic model was found to predict the thermal expansion owing to a large cancellation of contributions from individual phonons.

  10. Off-diagonal expansion quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Albash, Tameem; Wagenbreth, Gene; Hen, Itay

    2017-12-01

    We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.

  11. Efficient Quantum Pseudorandomness.

    PubMed

    Brandão, Fernando G S L; Harrow, Aram W; Horodecki, Michał

    2016-04-29

    Randomness is both a useful way to model natural systems and a useful tool for engineered systems, e.g., in computation, communication, and control. Fully random transformations require exponential time for either classical or quantum systems, but in many cases pseudorandom operations can emulate certain properties of truly random ones. Indeed, in the classical realm there is by now a well-developed theory regarding such pseudorandom operations. However, the construction of such objects turns out to be much harder in the quantum case. Here, we show that random quantum unitary time evolutions ("circuits") are a powerful source of quantum pseudorandomness. This gives for the first time a polynomial-time construction of quantum unitary designs, which can replace fully random operations in most applications, and shows that generic quantum dynamics cannot be distinguished from truly random processes. We discuss applications of our result to quantum information science, cryptography, and understanding the self-equilibration of closed quantum dynamics.

  12. Off-diagonal expansion quantum Monte Carlo.

    PubMed

    Albash, Tameem; Wagenbreth, Gene; Hen, Itay

    2017-12-01

    We propose a Monte Carlo algorithm designed to simulate quantum as well as classical systems at equilibrium, bridging the algorithmic gap between quantum and classical thermal simulation algorithms. The method is based on a decomposition of the quantum partition function that can be viewed as a series expansion about its classical part. We argue that the algorithm not only provides a theoretical advancement in the field of quantum Monte Carlo simulations, but is optimally suited to tackle quantum many-body systems that exhibit a range of behaviors from "fully quantum" to "fully classical," in contrast to many existing methods. We demonstrate the advantages, sometimes by orders of magnitude, of the technique by comparing it against existing state-of-the-art schemes such as path integral quantum Monte Carlo and stochastic series expansion. We also illustrate how our method allows for the unification of quantum and classical thermal parallel tempering techniques into a single algorithm and discuss its practical significance.

  13. Generation of quantum entangled states in nonlinear plasmonic structures and metamaterials (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Poddubny, Alexander N.; Sukhorukov, Andrey A.

    2015-09-01

    The practical development of quantum plasmonic circuits incorporating non-classical interference [1] and sources of entangled states calls for a versatile quantum theoretical framework which can fully describe the generation and detection of entangled photons and plasmons. However, majority of the presently used theoretical approaches are typically limited to the toy models assuming loss-less and nondispersive elements or including just a few resonant modes. Here, we present a rigorous Green function approach describing entangled photon-plasmon state generation through spontaneous wave mixing in realistic metal-dielectric nanostructures. Our approach is based on the local Huttner-Barnett quantization scheme [2], which enables problem formulation in terms of a Hermitian Hamiltonian where the losses and dispersion are fully encoded in the electromagnetic Green functions. Hence, the problem can be addressed by the standard quantum mechanical perturbation theory, overcoming mathematical difficulties associated with other quantization schemes. We derive explicit expressions with clear physical meaning for the spatially dependent two-photon detection probability, single-photon detection probability and single-photon density matrix. In the limiting case of low-loss nondispersive waveguides our approach reproduces the previous results [3,4]. Importantly, our technique is far more general and can quantitatively describe generation and detection of spatially-entangled photons in arbitrary metal-dielectric structures taking into account actual losses and dispersion. This is essential to perform the design and optimization of plasmonic structures for generation and control of quantum entangled states. [1] J.S. Fakonas, H. Lee, Y.A. Kelaita and H.A. Atwater, Nature Photonics 8, 317(2014) [2] W. Vogel and D.-G. Welsch, Quantum Optics, Wiley (2006). [3] D.A. Antonosyan, A.S. Solntsev and A.A. Sukhorukov, Phys. Rev. A 90 043845 (2014) [4] L.-G. Helt, J.E. Sipe and M.J. Steel, arXiv: 1407.4219

  14. Experimental demonstration of a fully inseparable quantum state with nonlocalizable entanglement

    PubMed Central

    Mičuda, M.; Koutný, D.; Miková, M.; Straka, I.; Ježek, M.; Mišta, L.

    2017-01-01

    Localizability of entanglement in fully inseparable states is a key ingredient of assisted quantum information protocols as well as measurement-based models of quantum computing. We investigate the existence of fully inseparable states with nonlocalizable entanglement, that is, with entanglement which cannot be localized between any pair of subsystems by any measurement on the remaining part of the system. It is shown, that the nonlocalizable entanglement occurs already in suitable mixtures of a three-qubit GHZ state and white noise. Further, we generalize this set of states to a two-parametric family of fully inseparable three-qubit states with nonlocalizable entanglement. Finally, we demonstrate experimentally the existence of nonlocalizable entanglement by preparing and characterizing one state from the family using correlated single photons and linear optical circuit. PMID:28344336

  15. Experimental demonstration of a fully inseparable quantum state with nonlocalizable entanglement.

    PubMed

    Mičuda, M; Koutný, D; Miková, M; Straka, I; Ježek, M; Mišta, L

    2017-03-27

    Localizability of entanglement in fully inseparable states is a key ingredient of assisted quantum information protocols as well as measurement-based models of quantum computing. We investigate the existence of fully inseparable states with nonlocalizable entanglement, that is, with entanglement which cannot be localized between any pair of subsystems by any measurement on the remaining part of the system. It is shown, that the nonlocalizable entanglement occurs already in suitable mixtures of a three-qubit GHZ state and white noise. Further, we generalize this set of states to a two-parametric family of fully inseparable three-qubit states with nonlocalizable entanglement. Finally, we demonstrate experimentally the existence of nonlocalizable entanglement by preparing and characterizing one state from the family using correlated single photons and linear optical circuit.

  16. Testing Quantum Mechanics and Bell's Inequality with Astronomical Observations

    NASA Astrophysics Data System (ADS)

    Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jason; Team 1: University of Vienna, InstituteQuantum Optics and Quantum Information; Team 2: UC San Diego Cosmology Group; Team 3: NASA/JPL/Caltech

    2016-06-01

    We report on an in progress "Cosmic Bell" experiment that will leverage cosmology to test quantum mechanics and Bell's inequality using astronomical observations. Different iterations of our experiment will send polarization-entangled photons through the open air to detectors ~1-100 kilometers apart, whose settings would be rapidly chosen using real-time telescopic observations of Milky Way stars, and eventually distant, causally disconnected, cosmological sources - such as pairs of quasars or patches of the cosmic microwave background - all while the entangled pair is still in flight. This would, for the first time, attempt to fully close the so-called "setting independence" or "free will" loophole in experimental tests of Bell's inequality, whereby an alternative theory could mimic the quantum predictions if the experimental settings choices shared even a small correlation with unknown, local, causal influences a mere few milliseconds prior to the experiment. A full Cosmic Bell test would push any such influence all the way back to the hot big bang, since the end of any period of inflation, 13.8 billion years ago, an improvement of 20 orders of magnitude compared to the best previous experiments. Redshift z > 3.65 quasars observed at optical wavelengths are the optimal candidate source pairs using present technology. Our experiment is partially funded by the NSF INSPIRE program, in collaboration with MIT, UC San Diego, Harvey Mudd College, NASA/JPL/Caltech, and the University of Vienna. Such an experiment has implications for our understanding of nature at the deepest level. By testing quantum mechanics in a regime never before explored, we would at the very least extend our confidence in quantum theory, while at the same time severely constraining large classes of alternative theories. If the experiment were to uncover discrepancies from the quantum predictions, there could be crucial implications for early-universe cosmology, the security of quantum encryption, and even new theoretical physics, including quantum gravity.

  17. First experimental test of a trace formula for billiard systems showing mixed dynamics.

    PubMed

    Dembowski, C; Gräf, H D; Heine, A; Hesse, T; Rehfeld, H; Richter, A

    2001-04-09

    In general, trace formulas relate the density of states for a given quantum mechanical system to the properties of the periodic orbits of its classical counterpart. Here we report for the first time on a semiclassical description of microwave spectra taken from superconducting billiards of the Limaçon family showing mixed dynamics in terms of a generalized trace formula derived by Ullmo et al. [Phys. Rev. E 54, 136 (1996)]. This expression not only describes mixed-typed behavior but also the limiting cases of fully regular and fully chaotic systems and thus presents a continuous interpolation between the Berry-Tabor and Gutzwiller formulas.

  18. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian; Campbell, Steve

    2017-11-01

    One of the most widely known building blocks of modern physics is Heisenberg’s indeterminacy principle. Among the different statements of this fundamental property of the full quantum mechanical nature of physical reality, the uncertainty relation for energy and time has a special place. Its interpretation and its consequences have inspired continued research efforts for almost a century. In its modern formulation, the uncertainty relation is understood as setting a fundamental bound on how fast any quantum system can evolve. In this topical review we describe important milestones, such as the Mandelstam-Tamm and the Margolus-Levitin bounds on the quantum speed limit, and summarise recent applications in a variety of current research fields—including quantum information theory, quantum computing, and quantum thermodynamics amongst several others. To bring order and to provide an access point into the many different notions and concepts, we have grouped the various approaches into the minimal time approach and the geometric approach, where the former relies on quantum control theory, and the latter arises from measuring the distinguishability of quantum states. Due to the volume of the literature, this topical review can only present a snapshot of the current state-of-the-art and can never be fully comprehensive. Therefore, we highlight but a few works hoping that our selection can serve as a representative starting point for the interested reader.

  19. High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey

    2017-04-01

    Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, epitomized by the ever-increasing accuracy and precision of optical atomic lattice clocks. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. My thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. We describe a thorough set of measurements characterizing the rovibrational structure of weakly bound 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. Finally, we discuss measurements of photofragment angular distributions produced by photodissociation of molecules in single quantum states, leading to an exploration of quantum-state-resolved ultracold chemistry. The images of exploding photofragments produced in these studies exhibit dramatic interference effects and strongly violate semiclassical predictions, instead requiring a fully quantum mechanical description.

  20. From Weyl to Born-Jordan quantization: The Schrödinger representation revisited

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice A.

    2016-03-01

    The ordering problem has been one of the long standing and much discussed questions in quantum mechanics from its very beginning. Nowadays, there is more or less a consensus among physicists that the right prescription is Weyl's rule, which is closely related to the Moyal-Wigner phase space formalism. We propose in this report an alternative approach by replacing Weyl quantization with the less well-known Born-Jordan quantization. This choice is actually natural if we want the Heisenberg and Schrödinger pictures of quantum mechanics to be mathematically equivalent. It turns out that, in addition, Born-Jordan quantization can be recovered from Feynman's path integral approach provided that one used short-time propagators arising from correct formulas for the short-time action, as observed by Makri and Miller. These observations lead to a slightly different quantum mechanics, exhibiting some unexpected features, and this without affecting the main existing theory; for instance quantizations of physical Hamiltonian functions are the same as in the Weyl correspondence. The differences are in fact of a more subtle nature; for instance, the quantum observables will not correspond in a one-to-one fashion to classical ones, and the dequantization of a Born-Jordan quantum operator is less straightforward than that of the corresponding Weyl operator. The use of Born-Jordan quantization moreover solves the "angular momentum dilemma", which already puzzled L. Pauling. Born-Jordan quantization has been known for some time (but not fully exploited) by mathematicians working in time-frequency analysis and signal analysis, but ignored by physicists. One of the aims of this report is to collect and synthesize these sporadic discussions, while analyzing the conceptual differences with Weyl quantization, which is also reviewed in detail. Another striking feature is that the Born-Jordan formalism leads to a redefinition of phase space quantum mechanics, where the usual Wigner distribution has to be replaced with a new quasi-distribution reducing interference effects.

  1. Quantum anomalous Bloch-Siegert shift in Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Kumar, Upendra; Kumar, Vipin; Enamullah, Setlur, Girish S.

    2018-05-01

    A periodic exchange of energy between the light field and two level system is known as Rabi oscillations. The Bloch-Siegert shift (BSS) is a shift in Rabi oscillation resonance condition, when the driving field is sufficiently strong. There are new type of oscillations exhibit in Weyl semimetal at far from resonance, known as anomalous Rabi oscillation. In this work, we study the phenomenon of the Bloch-Siegert shift in Weyl semimetal at far from resonance called anomalous Bloch-Siegert shift (ABSS) by purely quantum mechanical treatment and describe it's anisotropic nature. A fully numerical solution of the Floquet-Bloch equations unequivocally establishes the presence of not only anomalous Rabi oscillations in these systems but also their massless character.

  2. Electron transfer in a virtual quantum state of LiBH4 induced by strong optical fields and mapped by femtosecond x-ray diffraction.

    PubMed

    Stingl, J; Zamponi, F; Freyer, B; Woerner, M; Elsaesser, T; Borgschulte, A

    2012-10-05

    Transient polarizations connected with a spatial redistribution of electronic charge in a mixed quantum state are induced by optical fields of high amplitude. We determine for the first time the related transient electron density maps, applying femtosecond x-ray powder diffraction as a structure probe. The prototype ionic material LiBH4 driven nonresonantly by an intense sub-40 fs optical pulse displays a large-amplitude fully reversible electron transfer from the BH4(-) anion to the Li+ cation during excitation. Our results establish this mechanism as the source of the strong optical polarization which agrees quantitatively with theoretical estimates.

  3. Quantum Chemistry in Great Britain: Developing a Mathematical Framework for Quantum Chemistry

    NASA Astrophysics Data System (ADS)

    Simões, Ana; Gavroglu, Kostas

    By 1935 quantum chemistry was already delineated as a distinct sub-discipline due to the contributions of Fritz London, Walter Heitler, Friedrich Hund, Erich Hückel, Robert Mulliken, Linus Pauling, John van Vleck and John Slater. These people are credited with showing that the application of quantum mechanics to the solution of chemical problems was, indeed, possible, especially so after the introduction of a number of new concepts and the adoption of certain approximation methods. And though a number of chemists had started talking of the formation of theoretical or, even, mathematical chemistry, a fully developed mathematical framework of quantum chemistry was still wanting. The work of three persons in particular-of John E. Lennard-Jones, Douglas R. Hartree, and Charles Alfred Coulson-has been absolutely crucial in the development of such a framework. In this paper we shall discuss the work of these three researchers who started their careers in the Cambridge tradition of mathematical physics and who at some point of their careers all became professors of applied mathematics. We shall argue that their work consisted of decisive contributions to the development of such a mathematical framework for quantum chemistry.

  4. Fluorescence properties of 3-amino phenylboronic acid and its interaction with glucose and ZnS:Cu quantum dots.

    PubMed

    Kur-Kowalska, Karolina; Przybyt, Małgorzata; Ziółczyk, Paulina; Sowiński, Przemysław; Miller, Ewa

    2014-08-14

    Preliminary results of a study of the interaction between 3-amino phenylboronic acid and glucose or ZnS:Cu quantum dots are presented in this paper. ZnS:Cu quantum dots with mercaptopropionic acid as a capping agent were obtained and characterized. Quenching of 3-amino phenylboronic acid fluorescence was studied by steady-state and timeresolved measurements. For fluorescence quenching with glucose the results of steady-state measurements fulfill Stern-Volmer equation. The quenching constants are increasing with growing pH. The decay of fluorescence is monoexponential with lifetime about 8.4 ns, which does not depend on pH and glucose concentration indicating static quenching. The quenching constant can be interpreted as apparent equilibrium constant of estrification of boronic group with diol. Quantum dots are also quenching 3-amino phenylboronic acid fluorescence. Fluorescence lifetime, in this case, is slightly decreasing with increasing concentration of quantum dots. The quenching constants are increasing slightly with pH's growth. Quenching mechanism of 3-amino phenylboronic acid fluorescence by quantum dots needs further experiments to be fully explained. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Fully adaptive propagation of the quantum-classical Liouville equation

    NASA Astrophysics Data System (ADS)

    Horenko, Illia; Weiser, Martin; Schmidt, Burkhard; Schütte, Christof

    2004-05-01

    In mixed quantum-classical molecular dynamics few but important degrees of freedom of a dynamical system are modeled quantum-mechanically while the remaining ones are treated within the classical approximation. Rothe methods established in the theory of partial differential equations are used to control both temporal and spatial discretization errors on grounds of a global tolerance criterion. The TRAIL (trapezoidal rule for adaptive integration of Liouville dynamics) scheme [I. Horenko and M. Weiser, J. Comput. Chem. 24, 1921 (2003)] has been extended to account for nonadiabatic effects in molecular dynamics described by the quantum-classical Liouville equation. In the context of particle methods, the quality of the spatial approximation of the phase-space distributions is maximized while the numerical condition of the least-squares problem for the parameters of particles is minimized. The resulting dynamical scheme is based on a simultaneous propagation of moving particles (Gaussian and Dirac deltalike trajectories) in phase space employing a fully adaptive strategy to upgrade Dirac to Gaussian particles and, vice versa, downgrading Gaussians to Dirac-type trajectories. This allows for the combination of Monte-Carlo-based strategies for the sampling of densities and coherences in multidimensional problems with deterministic treatment of nonadiabatic effects. Numerical examples demonstrate the application of the method to spin-boson systems in different dimensionality. Nonadiabatic effects occurring at conical intersections are treated in the diabatic representation. By decreasing the global tolerance, the numerical solution obtained from the TRAIL scheme are shown to converge towards exact results.

  6. Fully adaptive propagation of the quantum-classical Liouville equation.

    PubMed

    Horenko, Illia; Weiser, Martin; Schmidt, Burkhard; Schütte, Christof

    2004-05-15

    In mixed quantum-classical molecular dynamics few but important degrees of freedom of a dynamical system are modeled quantum-mechanically while the remaining ones are treated within the classical approximation. Rothe methods established in the theory of partial differential equations are used to control both temporal and spatial discretization errors on grounds of a global tolerance criterion. The TRAIL (trapezoidal rule for adaptive integration of Liouville dynamics) scheme [I. Horenko and M. Weiser, J. Comput. Chem. 24, 1921 (2003)] has been extended to account for nonadiabatic effects in molecular dynamics described by the quantum-classical Liouville equation. In the context of particle methods, the quality of the spatial approximation of the phase-space distributions is maximized while the numerical condition of the least-squares problem for the parameters of particles is minimized. The resulting dynamical scheme is based on a simultaneous propagation of moving particles (Gaussian and Dirac deltalike trajectories) in phase space employing a fully adaptive strategy to upgrade Dirac to Gaussian particles and, vice versa, downgrading Gaussians to Dirac-type trajectories. This allows for the combination of Monte-Carlo-based strategies for the sampling of densities and coherences in multidimensional problems with deterministic treatment of nonadiabatic effects. Numerical examples demonstrate the application of the method to spin-boson systems in different dimensionality. Nonadiabatic effects occurring at conical intersections are treated in the diabatic representation. By decreasing the global tolerance, the numerical solution obtained from the TRAIL scheme are shown to converge towards exact results.

  7. Quantum simulation of a quantum stochastic walk

    NASA Astrophysics Data System (ADS)

    Govia, Luke C. G.; Taketani, Bruno G.; Schuhmacher, Peter K.; Wilhelm, Frank K.

    2017-03-01

    The study of quantum walks has been shown to have a wide range of applications in areas such as artificial intelligence, the study of biological processes, and quantum transport. The quantum stochastic walk (QSW), which allows for incoherent movement of the walker, and therefore, directionality, is a generalization on the fully coherent quantum walk. While a QSW can always be described in Lindblad formalism, this does not mean that it can be microscopically derived in the standard weak-coupling limit under the Born-Markov approximation. This restricts the class of QSWs that can be experimentally realized in a simple manner. To circumvent this restriction, we introduce a technique to simulate open system evolution on a fully coherent quantum computer, using a quantum trajectories style approach. We apply this technique to a broad class of QSWs, and show that they can be simulated with minimal experimental resources. Our work opens the path towards the experimental realization of QSWs on large graphs with existing quantum technologies.

  8. Metabolism of 4-Aminopiperidine Drugs by Cytochrome P450s: Molecular and Quantum Mechanical Insights into Drug Design

    PubMed Central

    2011-01-01

    4-Aminopiperidines are a variety of therapeutic agents that are extensively metabolized by cytochrome P450s with CYP3A4 as a major isoform catalyzing their N-dealkylation reaction. However, its catalytic mechanism has not been fully elucidated in a molecular interaction level. Here, we applied theoretical approaches including the molecular mechanics-based docking to study the binding patterns and quantum mechanics-based reactivity calculations. They were supported by the experimental human liver microsomal clearance and P450 isoform phenotyping data. Our results herein suggested that the molecular interactions between substrates and CYP3A4 active site residues are essential for the N-dealkylation of 4-aminopiperidines. We also found that the serine 119 residue of CYP3A4 may serve as a key hydrogen-bonding partner to interact with the 4-amino groups of the studied drugs. The reactivity of the side chain α-carbon hydrogens drives the direction of catalysis as well. As a result, structure-based drug design approaches look promising to guide drug discovery programs into the optimized drug metabolism space. PMID:21841964

  9. A Process Algebra Approach to Quantum Electrodynamics

    NASA Astrophysics Data System (ADS)

    Sulis, William

    2017-12-01

    The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.

  10. Does ℏ play a role in multidimensional spectroscopy? Reduced hierarchy equations of motion approach to molecular vibrations.

    PubMed

    Sakurai, Atsunori; Tanimura, Yoshitaka

    2011-04-28

    To investigate the role of quantum effects in vibrational spectroscopies, we have carried out numerically exact calculations of linear and nonlinear response functions for an anharmonic potential system nonlinearly coupled to a harmonic oscillator bath. Although one cannot carry out the quantum calculations of the response functions with full molecular dynamics (MD) simulations for a realistic system which consists of many molecules, it is possible to grasp the essence of the quantum effects on the vibrational spectra by employing a model Hamiltonian that describes an intra- or intermolecular vibrational motion in a condensed phase. The present model fully includes vibrational relaxation, while the stochastic model often used to simulate infrared spectra does not. We have employed the reduced quantum hierarchy equations of motion approach in the Wigner space representation to deal with nonperturbative, non-Markovian, and nonsecular system-bath interactions. Taking the classical limit of the hierarchy equations of motion, we have obtained the classical equations of motion that describe the classical dynamics under the same physical conditions as in the quantum case. By comparing the classical and quantum mechanically calculated linear and multidimensional spectra, we found that the profiles of spectra for a fast modulation case were similar, but different for a slow modulation case. In both the classical and quantum cases, we identified the resonant oscillation peak in the spectra, but the quantum peak shifted to the red compared with the classical one if the potential is anharmonic. The prominent quantum effect is the 1-2 transition peak, which appears only in the quantum mechanically calculated spectra as a result of anharmonicity in the potential or nonlinearity of the system-bath coupling. While the contribution of the 1-2 transition is negligible in the fast modulation case, it becomes important in the slow modulation case as long as the amplitude of the frequency fluctuation is small. Thus, we observed a distinct difference between the classical and quantum mechanically calculated multidimensional spectra in the slow modulation case where spectral diffusion plays a role. This fact indicates that one may not reproduce the experimentally obtained multidimensional spectrum for high-frequency vibrational modes based on classical molecular dynamics simulations if the modulation that arises from surrounding molecules is weak and slow. A practical way to overcome the difference between the classical and quantum simulations was discussed.

  11. Symmetric quantum fully homomorphic encryption with perfect security

    NASA Astrophysics Data System (ADS)

    Liang, Min

    2013-12-01

    Suppose some data have been encrypted, can you compute with the data without decrypting them? This problem has been studied as homomorphic encryption and blind computing. We consider this problem in the context of quantum information processing, and present the definitions of quantum homomorphic encryption (QHE) and quantum fully homomorphic encryption (QFHE). Then, based on quantum one-time pad (QOTP), we construct a symmetric QFHE scheme, where the evaluate algorithm depends on the secret key. This scheme permits any unitary transformation on any -qubit state that has been encrypted. Compared with classical homomorphic encryption, the QFHE scheme has perfect security. Finally, we also construct a QOTP-based symmetric QHE scheme, where the evaluate algorithm is independent of the secret key.

  12. Network geometry with flavor: From complexity to quantum geometry

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ -dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ .

  13. Network geometry with flavor: From complexity to quantum geometry.

    PubMed

    Bianconi, Ginestra; Rahmede, Christoph

    2016-03-01

    Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ-dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ.

  14. Nonclassicality Criteria in Multiport Interferometry

    NASA Astrophysics Data System (ADS)

    Rigovacca, L.; Di Franco, C.; Metcalf, B. J.; Walmsley, I. A.; Kim, M. S.

    2016-11-01

    Interference lies at the heart of the behavior of classical and quantum light. It is thus crucial to understand the boundaries between which interference patterns can be explained by a classical electromagnetic description of light and which, on the other hand, can only be understood with a proper quantum mechanical approach. While the case of two-mode interference has received a lot of attention, the multimode case has not yet been fully explored. Here we study a general scenario of intensity interferometry: we derive a bound on the average correlations between pairs of output intensities for the classical wavelike model of light, and we show how it can be violated in a quantum framework. As a consequence, this violation acts as a nonclassicality witness, able to detect the presence of sources with sub-Poissonian photon-number statistics. We also develop a criterion that can certify the impossibility of dividing a given interferometer into two independent subblocks.

  15. Mixed quantum-classical simulations of the vibrational relaxation of photolyzed carbon monoxide in a hemoprotein

    NASA Astrophysics Data System (ADS)

    Schubert, Alexander; Falvo, Cyril; Meier, Christoph

    2016-08-01

    We present mixed quantum-classical simulations on relaxation and dephasing of vibrationally excited carbon monoxide within a protein environment. The methodology is based on a vibrational surface hopping approach treating the vibrational states of CO quantum mechanically, while all remaining degrees of freedom are described by means of classical molecular dynamics. The CO vibrational states form the "surfaces" for the classical trajectories of protein and solvent atoms. In return, environmentally induced non-adiabatic couplings between these states cause transitions describing the vibrational relaxation from first principles. The molecular dynamics simulation yields a detailed atomistic picture of the energy relaxation pathways, taking the molecular structure and dynamics of the protein and its solvent fully into account. Using the ultrafast photolysis of CO in the hemoprotein FixL as an example, we study the relaxation of vibrationally excited CO and evaluate the role of each of the FixL residues forming the heme pocket.

  16. Silicon Integrated Cavity Optomechanical Transducer

    NASA Astrophysics Data System (ADS)

    Zou, Jie; Miao, Houxun; Michels, Thomas; Liu, Yuxiang; Srinivasan, Kartik; Aksyuk, Vladimir

    2013-03-01

    Cavity optomechanics enables measurements of mechanical motion at the fundamental limits of precision imposed by quantum mechanics. However, the need to align and couple devices to off-chip optical components hinders development, miniaturization and broader application of ultrahigh sensitivity chip-scale optomechanical transducers. Here we demonstrate a fully integrated and optical fiber pigtailed optomechanical transducer with a high Q silicon micro-disk cavity near-field coupled to a nanoscale cantilever. We detect the motion of the cantilever by measuring the resonant frequency shift of the whispering gallery mode of the micro-disk. The sensitivity near the standard quantum limit can be reached with sub-uW optical power. Our on-chip approach combines compactness and stability with great design flexibility: the geometry of the micro-disk and cantilever can be tailored to optimize the mechanical/optical Q factors and tune the mechanical frequency over two orders of magnitudes. Electrical transduction in addition to optical transduction was also demonstrated and both can be used to effectively cool the cantilever. Moreover, cantilevers with sharp tips overhanging the chip edge were fabricated to potentially allow the mechanical cantilever to be coupled to a wide range of off-chip systems, such as spins, DNA, nanostructures and atoms on clean surfaces.

  17. Deterministic entanglement of superconducting qubits by parity measurement and feedback.

    PubMed

    Ristè, D; Dukalski, M; Watson, C A; de Lange, G; Tiggelman, M J; Blanter, Ya M; Lehnert, K W; Schouten, R N; DiCarlo, L

    2013-10-17

    The stochastic evolution of quantum systems during measurement is arguably the most enigmatic feature of quantum mechanics. Measuring a quantum system typically steers it towards a classical state, destroying the coherence of an initial quantum superposition and the entanglement with other quantum systems. Remarkably, the measurement of a shared property between non-interacting quantum systems can generate entanglement, starting from an uncorrelated state. Of special interest in quantum computing is the parity measurement, which projects the state of multiple qubits (quantum bits) to a state with an even or odd number of excited qubits. A parity meter must discern the two qubit-excitation parities with high fidelity while preserving coherence between same-parity states. Despite numerous proposals for atomic, semiconducting and superconducting qubits, realizing a parity meter that creates entanglement for both even and odd measurement results has remained an outstanding challenge. Here we perform a time-resolved, continuous parity measurement of two superconducting qubits using the cavity in a three-dimensional circuit quantum electrodynamics architecture and phase-sensitive parametric amplification. Using postselection, we produce entanglement by parity measurement reaching 88 per cent fidelity to the closest Bell state. Incorporating the parity meter in a feedback-control loop, we transform the entanglement generation from probabilistic to fully deterministic, achieving 66 per cent fidelity to a target Bell state on demand. These realizations of a parity meter and a feedback-enabled deterministic measurement protocol provide key ingredients for active quantum error correction in the solid state.

  18. Topological quantum distillation.

    PubMed

    Bombin, H; Martin-Delgado, M A

    2006-11-03

    We construct a class of topological quantum codes to perform quantum entanglement distillation. These codes implement the whole Clifford group of unitary operations in a fully topological manner and without selective addressing of qubits. This allows us to extend their application also to quantum teleportation, dense coding, and computation with magic states.

  19. Molecular controlled of quantum nano systems

    NASA Astrophysics Data System (ADS)

    Paltiel, Yossi

    2014-03-01

    A century ago quantum mechanics created a conceptual revolution whose fruits are now seen in almost any aspect of our day-to-day life. Lasers, transistors and other solid state and optical devices represent the core technology of current computers, memory devices and communication systems. However, all these examples do not exploit fully the quantum revolution as they do not take advantage of the coherent wave-like properties of the quantum wave function. Controlled coherent system and devices at ambient temperatures are challenging to realize. We are developing a novel nano tool box with control coupling between the quantum states and the environment. This tool box that combines nano particles with organic molecules enables the integration of quantum properties with classical existing devices at ambient temperatures. The nano particles generate the quantum states while the organic molecules control the coupling and therefore the energy, charge, spin, or quasi particle transfer between the layers. Coherent effects at ambient temperatures can be measured in the strong coupling regime. In the talk I will present our nano tool box and show studies of charge transfer, spin transfer and energy transfer in the hybrid layers as well as collective transfer phenomena. These enable the realization of room temperature operating quantum electro optical devices. For example I will present in details, our recent development of a new type of chiral molecules based magnetless universal memory exploiting selective spin transfer.

  20. Quantum dynamics of the intramolecular vibrational energy redistribution in OCS: From localization to quasi-thermalization

    NASA Astrophysics Data System (ADS)

    Pérez, J. B.; Arce, J. C.

    2018-06-01

    We report a fully quantum-dynamical study of the intramolecular vibrational energy redistribution (IVR) in the electronic ground state of carbonyl sulfide, which is a prototype of an isolated many-body quantum system with strong internal couplings and non-Rice-Ramsperger-Kassel-Marcus (RRKM) behavior. We pay particular attention to the role of many-body localization and the approach to thermalization, which currently are topics of considerable interest, as they pertain to the very foundations of statistical mechanics and thermodynamics. We employ local-mode (valence) coordinates and consider initial excitations localized in one local mode, with energies ranging from low to near the dissociation threshold, where the classical dynamics have been shown to be chaotic. We propagate the nuclear wavepacket on the potential energy surface by means of the numerically exact multiconfiguration time-dependent Hartree method and employ mean local energies, time-dependent and time-averaged populations in quantum number space, energy distributions, entanglement entropies, local population distributions, microcanonical averages, and dissociation probabilities, as diagnostic tools. This allows us to identify a continuous localization → delocalization transition in the energy flow, associated with the onset of quantum chaos, as the excitation energy increases up to near the dissociation threshold. Moreover, we find that at this energy and ˜1 ps the molecule nearly thermalizes. Furthermore, we observe that IVR is so slow that the molecule begins to dissociate well before such quasi-thermalization is complete, in accordance with earlier classical-mechanical predictions of non-RRKM behavior.

  1. Quantum dynamics of the intramolecular vibrational energy redistribution in OCS: From localization to quasi-thermalization.

    PubMed

    Pérez, J B; Arce, J C

    2018-06-07

    We report a fully quantum-dynamical study of the intramolecular vibrational energy redistribution (IVR) in the electronic ground state of carbonyl sulfide, which is a prototype of an isolated many-body quantum system with strong internal couplings and non-Rice-Ramsperger-Kassel-Marcus (RRKM) behavior. We pay particular attention to the role of many-body localization and the approach to thermalization, which currently are topics of considerable interest, as they pertain to the very foundations of statistical mechanics and thermodynamics. We employ local-mode (valence) coordinates and consider initial excitations localized in one local mode, with energies ranging from low to near the dissociation threshold, where the classical dynamics have been shown to be chaotic. We propagate the nuclear wavepacket on the potential energy surface by means of the numerically exact multiconfiguration time-dependent Hartree method and employ mean local energies, time-dependent and time-averaged populations in quantum number space, energy distributions, entanglement entropies, local population distributions, microcanonical averages, and dissociation probabilities, as diagnostic tools. This allows us to identify a continuous localization → delocalization transition in the energy flow, associated with the onset of quantum chaos, as the excitation energy increases up to near the dissociation threshold. Moreover, we find that at this energy and ∼1 ps the molecule nearly thermalizes. Furthermore, we observe that IVR is so slow that the molecule begins to dissociate well before such quasi-thermalization is complete, in accordance with earlier classical-mechanical predictions of non-RRKM behavior.

  2. Dissipative Quantum Mechanics and Kondo-Like Impurities on Noncommutative Two-Tori

    NASA Astrophysics Data System (ADS)

    Iacomino, Patrizia; Marotta, Vincenzo; Naddeo, Adele

    In a recent paper, by exploiting the notion of Morita equivalence for field theories on noncommutative tori and choosing rational values of the noncommutativity parameter θ (in appropriate units), a general one-to-one correspondence between the m-reduced conformal field theory (CFT) describing a quantum Hall fluid (QHF) at paired states fillings1,2 ν = (m)/(pm+2) and an Abelian noncommutative field theory (NCFT) has been established.3 That allowed us to add new evidence to the relationship between noncommutativity and quantum Hall fluids.4 On the other hand, the m-reduced CFT is equivalent to a system of two massless scalar bosons with a magnetic boundary interaction as introduced in Ref. 5, at the so-called "magic" points. We are then able to describe, within such a framework, the dissipative quantum mechanics of a particle confined to a plane and subject to an external magnetic field normal to it. Here we develop such a point of view by focusing on the case m=2 which corresponds to a quantum Hall bilayer. The key role of a localized impurity which couples the two layers is emphasized and the effect of noncommutativity in terms of generalized magnetic translations (GMT) is fully exploited. As a result, general GMT operators are introduced, in the form of a tensor product, which act on the QHF and defect space respectively, and a comprehensive study of their rich structure is performed.

  3. Fully differential cross sections for the single ionization of helium by fast ions: Classical model calculations

    NASA Astrophysics Data System (ADS)

    Sarkadi, L.

    2018-04-01

    Fully differential cross sections (FDCSs) have been calculated for the single ionization of helium by 1- and 3-MeV proton and 100-MeV/u C6 + ion impact using the classical trajectory Monte Carlo (CTMC) method in the nonrelativistic, three-body approximation. The calculations were made employing a Wigner-type model in which the quantum-mechanical position distribution of the electron is approximated by a weighted integral of the microcanonical distribution over a range of the binding energy of the electron. In the scattering plane, the model satisfactorily reproduces the observed shape of the binary peak. In the region of the peak the calculated FDCSs agree well with the results of continuum-distorted-wave calculations for all the investigated collisions. For 1-MeV proton impact the experimentally observed shift of the binary peak with respect to the first Born approximation is compared with the shifts obtained by different higher-order quantum-mechanical theories and the present CTMC method. The best result was achieved by CTMC, but still a large part of the shift remained unexplained. Furthermore, it was found that the classical theory failed to reproduce the shape of the recoil peak observed in the experiments, it predicts a much narrower peak. This indicates that the formation of the recoil peak is dominated by quantum-mechanical effects. For 100-MeV/u C6 + ion impact the present CTMC calculations confirmed the existence of the "double-peak" structure of the angular distribution of the electron in the plane perpendicular to the momentum transfer, in accordance with the observation, the prediction of an incoherent semiclassical model, and previous CTMC results. This finding together with wave-packet calculations suggests that the "C6 + puzzle" may be solved by considering the loss of the projectile coherence. Experiments to be conducted using ion beams of anisotropic coherence are proposed for a more differential investigation of the ionization dynamics.

  4. Strong-field adiabatic passage in the continuum: Electromagnetically induced transparency and stimulated Raman adiabatic passage

    NASA Astrophysics Data System (ADS)

    Eilam, A.; Shapiro, M.

    2012-01-01

    We present a fully quantum-mechanical theory of the mutual light-matter effects when two laser pulses interact with three discrete states coupled to a (quasi)continuum. Our formulation uses a single set of equations to describe the time dependence of the discrete and continuum populations, as well as pulse propagation in electromagnetically induced transparency (EIT) and stimulated Raman adiabatic passage (STIRAP) situations, for both weak and strong laser pulses. The theory gives a mechanistic picture of the “slowing down of light” and the state of spontaneously emitted photons during this process. Surprising features regarding the time dependence of material and radiative transients as well as limitations on quantum light storage and retrieval are unraveled.

  5. A classical phase r-centroid approach to molecular wave packet dynamics illustrating the danger of using an incomplete set of initial states for thermal averaging

    NASA Astrophysics Data System (ADS)

    Hansson, Tony

    1999-08-01

    An inexpensive semiclassical method to simulate time-resolved pump-probe spectroscopy on molecular wave packets is applied to NaK molecules at high temperature. The method builds on the introduction of classical phase factors related to the r-centroids for vibronic transitions and assumes instantaneous laser-molecule interaction. All observed quantum mechanical features are reproduced - for short times where experimental data are available even quantitatively. Furthermore, it is shown that fully quantum dynamical molecular wave packet calculations on molecules at elevated temperatures, which do not include all rovibrational states, must be regarded with caution, as they easily might yield even qualitatively incorrect results.

  6. Fractional excitations in the square-lattice quantum antiferromagnet

    DOE PAGES

    Dalla Piazza, Bastien; Mourigal, M.; Christensen, N. B.; ...

    2014-12-15

    Quantum magnets have occupied the fertile ground between many-body theory and low-temperature experiments on real materials since the early days of quantum mechanics. However, our understanding of even deceptively simple systems of interacting spins-1/2 is far from complete. The quantum square-lattice Heisenberg antiferromagnet (QSLHAF), for example, exhibits a striking anomaly of hitherto unknown origin in its magnetic excitation spectrum. This quantum effect manifests itself for excitations propagating with the specific wave vector (π, 0). Here, we use polarized neutron spectroscopy to fully characterize the magnetic fluctuations in the metal-organic compound CFTD, a known realization of the QSLHAF model. Our experimentsmore » reveal an isotropic excitation continuum at the anomaly, which we analyse theoretically using Gutzwiller-projected trial wavefunctions. The excitation continuum is accounted for by the existence of spatially-extended pairs of fractional S=1/2 quasiparticles, 2D analogues of 1D spinons. Away from the anomalous wave vector, these fractional excitations are bound and form conventional magnons. Lastly, our results establish the existence of fractional quasiparticles in the high-energy spectrum of a quasi-two-dimensional antiferromagnet, even in the absence of frustration.« less

  7. Controlling the net charge on a nanoparticle optically levitated in vacuum

    NASA Astrophysics Data System (ADS)

    Frimmer, Martin; Luszcz, Karol; Ferreiro, Sandra; Jain, Vijay; Hebestreit, Erik; Novotny, Lukas

    2017-06-01

    Optically levitated nanoparticles in vacuum are a promising model system to test physics beyond our current understanding of quantum mechanics. Such experimental tests require extreme control over the dephasing of the levitated particle's motion. If the nanoparticle carries a finite net charge, it experiences a random Coulomb force due to fluctuating electric fields. This dephasing mechanism can be fully excluded by discharging the levitated particle. Here, we present a simple and reliable technique to control the charge on an optically levitated nanoparticle in vacuum. Our method is based on the generation of charges in an electric discharge and does not require additional optics or mechanics close to the optical trap.

  8. Hybrid Quantum Mechanics/Molecular Mechanics/Coarse Grained Modeling: A Triple-Resolution Approach for Biomolecular Systems.

    PubMed

    Sokkar, Pandian; Boulanger, Eliot; Thiel, Walter; Sanchez-Garcia, Elsa

    2015-04-14

    We present a hybrid quantum mechanics/molecular mechanics/coarse-grained (QM/MM/CG) multiresolution approach for solvated biomolecular systems. The chemically important active-site region is treated at the QM level. The biomolecular environment is described by an atomistic MM force field, and the solvent is modeled with the CG Martini force field using standard or polarizable (pol-CG) water. Interactions within the QM, MM, and CG regions, and between the QM and MM regions, are treated in the usual manner, whereas the CG-MM and CG-QM interactions are evaluated using the virtual sites approach. The accuracy and efficiency of our implementation is tested for two enzymes, chorismate mutase (CM) and p-hydroxybenzoate hydroxylase (PHBH). In CM, the QM/MM/CG potential energy scans along the reaction coordinate yield reaction energies that are too large, both for the standard and polarizable Martini CG water models, which can be attributed to adverse effects of using large CG water beads. The inclusion of an atomistic MM water layer (10 Å for uncharged CG water and 5 Å for polarizable CG water) around the QM region improves the energy profiles compared to the reference QM/MM calculations. In analogous QM/MM/CG calculations on PHBH, the use of the pol-CG description for the outer water does not affect the stabilization of the highly charged FADHOOH-pOHB transition state compared to the fully atomistic QM/MM calculations. Detailed performance analysis in a glycine-water model system indicates that computation times for QM energy and gradient evaluations at the density functional level are typically reduced by 40-70% for QM/MM/CG relative to fully atomistic QM/MM calculations.

  9. The upside of noise: engineered dissipation as a resource in superconducting circuits

    NASA Astrophysics Data System (ADS)

    Kapit, Eliot

    2017-09-01

    Historically, noise in superconducting circuits has been considered an obstacle to be removed. A large fraction of the research effort in designing superconducting circuits has focused on noise reduction, with great success, as coherence times have increased by four orders of magnitude in the past two decades. However, noise and dissipation can never be fully eliminated, and further, a rapidly growing body of theoretical and experimental work has shown that carefully tuned noise, in the form of engineered dissipation, can be a profoundly useful tool in designing and operating quantum circuits. In this article, I review important applications of engineered dissipation, including state generation, state stabilization, and autonomous quantum error correction, where engineered dissipation can mitigate the effect of intrinsic noise, reducing logical error rates in quantum information processing. Further, I provide a pedagogical review of the basic noise processes in superconducting qubits (photon loss and phase noise), and argue that any dissipative mechanism which can correct photon loss errors is very likely to automatically suppress dephasing. I also discuss applications for quantum simulation, and possible future research directions.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deffner, Sebastian; Zurek, Wojciech H.

    Envariance—entanglement assisted invariance—is a recently discovered symmetry of composite quantum systems. Here, we show that thermodynamic equilibrium states are fully characterized by their envariance. In particular, the microcanonical equilibrium of a systemmore » $${ \\mathcal S }$$ with Hamiltonian $${H}_{{ \\mathcal S }}$$ is a fully energetically degenerate quantum state envariant under every unitary transformation. A representation of the canonical equilibrium then follows from simply counting degenerate energy states. Finally, our conceptually novel approach is free of mathematically ambiguous notions such as ensemble, randomness, etc., and, while it does not even rely on probability, it helps to understand its role in the quantum world.« less

  11. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs

    NASA Astrophysics Data System (ADS)

    Caspani, Lucia; Reimer, Christian; Kues, Michael; Roztocki, Piotr; Clerici, Matteo; Wetzel, Benjamin; Jestin, Yoann; Ferrera, Marcello; Peccianti, Marco; Pasquazi, Alessia; Razzari, Luca; Little, Brent E.; Chu, Sai T.; Moss, David J.; Morandotti, Roberto

    2016-06-01

    Recent developments in quantum photonics have initiated the process of bringing photonic-quantumbased systems out-of-the-lab and into real-world applications. As an example, devices to enable the exchange of a cryptographic key secured by the laws of quantum mechanics are already commercially available. In order to further boost this process, the next step is to transfer the results achieved by means of bulky and expensive setups into miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper, we briefly review the most recent advancements in the generation of quantum states of light on-chip. In particular, we focus on optical microcavities, as they can offer a solution to the problem of low efficiency that is characteristic of the materials typically used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with telecom standards (for exploiting existing fibre networks) and quantum memories (necessary to extend the communication distance), as well as giving a longitudinal multimode character for larger information transfer and processing. This last property (i.e., the increased dimensionality of the photon quantum state) is achieved through the ability to generate multiple photon pairs on a frequency comb, corresponding to the microcavity resonances. Further achievements include the possibility of fully exploiting the polarization degree of freedom, even for integrated devices. These results pave the way for the generation of integrated quantum frequency combs that, in turn, may find important applications toward the realization of a compact quantum-computing platform.

  12. Direct observation of forward-scattering oscillations in the H+HD→H2+D reaction

    NASA Astrophysics Data System (ADS)

    Yuan, Daofu; Yu, Shengrui; Chen, Wentao; Sang, Jiwei; Luo, Chang; Wang, Tao; Xu, Xin; Casavecchia, Piergiorgio; Wang, Xingan; Sun, Zhigang; Zhang, Dong H.; Yang, Xueming

    2018-06-01

    Accurate measurements of product state-resolved angular distributions are central to fundamental studies of chemical reaction dynamics. Yet, fine quantum-mechanical structures in product angular distributions of a reactive scattering process, such as the fast oscillations in the forward-scattering direction, have never been observed experimentally and the nature of these oscillations has not been fully explored. Here we report the crossed-molecular-beam experimental observation of these fast forward-scattering oscillations in the product angular distribution of the benchmark chemical reaction, H + HD → H2 + D. Clear oscillatory structures are observed for the H2(v' = 0, j' = 1, 3) product states at a collision energy of 1.35 eV, in excellent agreement with the quantum-mechanical dynamics calculations. Our analysis reveals that the oscillatory forward-scattering components are mainly contributed by the total angular momentum J around 28. The partial waves and impact parameters responsible for the forward scatterings are also determined from these observed oscillations, providing crucial dynamics information on the transient reaction process.

  13. An Introduction to Geometric Algebra with some Preliminary Thoughts on the Geometric Meaning of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Horn, Martin Erik

    2014-10-01

    It is still a great riddle to me why Wolfgang Pauli and P.A.M. Dirac had not fully grasped the meaning of their own mathematical constructions. They invented magnificent, fantastic and very important mathematical features of modern physics, but they only delivered half of the interpretations of their own inventions. Of course, Pauli matrices and Dirac matrices represent operators, which Pauli and Dirac discussed in length. But this is only part of the true meaning behind them, as the non-commutative ideas of Grassmann, Clifford, Hamilton and Cartan allow a second, very far reaching interpretation of Pauli and Dirac matrices. An introduction to this alternative interpretation will be discussed. Some applications of this view on Pauli and Dirac matrices are given, e.g. a geometric algebra picture of the plane wave solution of the Maxwell equation, a geometric algebra picture of special relativity, a toy model of SU(3) symmetry, and some only very preliminary thoughts about a possible geometric meaning of quantum mechanics.

  14. Multi-Dimensional Quantum Effect Simulation Using a Density-Gradient Model and Script-Level Programming Techniques

    NASA Technical Reports Server (NTRS)

    Rafferty, Connor S.; Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario G.; Bude, J.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A density-gradient (DG) model is used to calculate quantum-mechanical corrections to classical carrier transport in MOS (Metal Oxide Semiconductor) inversion/accumulation layers. The model is compared to measured data and to a fully self-consistent coupled Schrodinger and Poisson equation (SCSP) solver. Good agreement is demonstrated for MOS capacitors with gate oxide as thin as 21 A. It is then applied to study carrier distribution in ultra short MOSFETs (Metal Oxide Semiconductor Field Effect Transistor) with surface roughness. This work represents the first implementation of the DG formulation on multidimensional unstructured meshes. It was enabled by a powerful scripting approach which provides an easy-to-use and flexible framework for solving the fourth-order PDEs (Partial Differential Equation) of the DG model.

  15. Quantum Monte Carlo studies of solvated systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Kathleen; Letchworth Weaver, Kendra; Arias, T. A.; Hennig, Richard G.

    2011-03-01

    Solvation qualitatively alters the energetics of diverse processes from protein folding to reactions on catalytic surfaces. An explicit description of the solvent in quantum-mechanical calculations requires both a large number of electrons and exploration of a large number of configurations in the phase space of the solvent. These problems can be circumvented by including the effects of solvent through a rigorous classical density-functional description of the liquid environment, thereby yielding free energies and thermodynamic averages directly, while eliminating the need for explicit consideration of the solvent electrons. We have implemented and tested this approach within the CASINO Quantum Monte Carlo code. Our method is suitable for calculations in any basis within CASINO, including b-spline and plane wave trial wavefunctions, and is equally applicable to molecules, surfaces, and crystals. For our preliminary test calculations, we use a simplified description of the solvent in terms of an isodensity continuum dielectric solvation approach, though the method is fully compatible with more reliable descriptions of the solvent we shall employ in the future.

  16. Manipulating quantum coherence of charge states in interacting double-dot Aharonov–Bohm interferometers

    NASA Astrophysics Data System (ADS)

    Jin, Jinshuang; Wang, Shikuan; Zhou, Jiahuan; Zhang, Wei-Min; Yan, YiJing

    2018-04-01

    We investigate the dynamics of charge-state coherence in a degenerate double-dot Aharonov–Bohm interferometer with finite inter-dot Coulomb interactions. The quantum coherence of the charge states is found to be sensitive to the transport setup configurations, involving both the single-electron impurity channels and the Coulomb-assisted ones. We numerically demonstrate the emergence of a complete coherence between the two charge states, with the relative phase being continuously controllable through the magnetic flux. Interestingly, a fully coherent charge qubit arises at the double-dots electron pair tunneling resonance condition, where the chemical potential of one electrode is tuned at the center between a single-electron impurity channel and the related Coulomb-assisted channel. This pure quantum state of charge qubit could be experimentally realized at the current–voltage characteristic turnover position, where differential conductance sign changes. We further elaborate the underlying mechanism for both the real-time and the stationary charge-states coherence in the double-dot systems of study.

  17. Mixed quantum-classical simulations of the vibrational relaxation of photolyzed carbon monoxide in a hemoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubert, Alexander, E-mail: schubert@irsamc.ups-tlse.fr; Meier, Christoph; Falvo, Cyril

    2016-08-07

    We present mixed quantum-classical simulations on relaxation and dephasing of vibrationally excited carbon monoxide within a protein environment. The methodology is based on a vibrational surface hopping approach treating the vibrational states of CO quantum mechanically, while all remaining degrees of freedom are described by means of classical molecular dynamics. The CO vibrational states form the “surfaces” for the classical trajectories of protein and solvent atoms. In return, environmentally induced non-adiabatic couplings between these states cause transitions describing the vibrational relaxation from first principles. The molecular dynamics simulation yields a detailed atomistic picture of the energy relaxation pathways, taking themore » molecular structure and dynamics of the protein and its solvent fully into account. Using the ultrafast photolysis of CO in the hemoprotein FixL as an example, we study the relaxation of vibrationally excited CO and evaluate the role of each of the FixL residues forming the heme pocket.« less

  18. Simultaneous measurement of two noncommuting quantum variables: Solution of a dynamical model

    NASA Astrophysics Data System (ADS)

    Perarnau-Llobet, Martí; Nieuwenhuizen, Theodorus Maria

    2017-05-01

    The possibility of performing simultaneous measurements in quantum mechanics is investigated in the context of the Curie-Weiss model for a projective measurement. Concretely, we consider a spin-1/2 system simultaneously interacting with two magnets, which act as measuring apparatuses of two different spin components. We work out the dynamics of this process and determine the final state of the measuring apparatuses, from which we can find the probabilities of the four possible outcomes of the measurements. The measurement is found to be nonideal, as (i) the joint statistics do not coincide with the one obtained by separately measuring each spin component, and (ii) the density matrix of the spin does not collapse in either of the measured observables. However, we give an operational interpretation of the process as a generalized quantum measurement, and show that it is fully informative: The expected value of the measured spin components can be found with arbitrary precision for sufficiently many runs of the experiment.

  19. Machine learning & artificial intelligence in the quantum domain: a review of recent progress

    NASA Astrophysics Data System (ADS)

    Dunjko, Vedran; Briegel, Hans J.

    2018-07-01

    Quantum information technologies, on the one hand, and intelligent learning systems, on the other, are both emergent technologies that are likely to have a transformative impact on our society in the future. The respective underlying fields of basic research—quantum information versus machine learning (ML) and artificial intelligence (AI)—have their own specific questions and challenges, which have hitherto been investigated largely independently. However, in a growing body of recent work, researchers have been probing the question of the extent to which these fields can indeed learn and benefit from each other. Quantum ML explores the interaction between quantum computing and ML, investigating how results and techniques from one field can be used to solve the problems of the other. Recently we have witnessed significant breakthroughs in both directions of influence. For instance, quantum computing is finding a vital application in providing speed-ups for ML problems, critical in our ‘big data’ world. Conversely, ML already permeates many cutting-edge technologies and may become instrumental in advanced quantum technologies. Aside from quantum speed-up in data analysis, or classical ML optimization used in quantum experiments, quantum enhancements have also been (theoretically) demonstrated for interactive learning tasks, highlighting the potential of quantum-enhanced learning agents. Finally, works exploring the use of AI for the very design of quantum experiments and for performing parts of genuine research autonomously, have reported their first successes. Beyond the topics of mutual enhancement—exploring what ML/AI can do for quantum physics and vice versa—researchers have also broached the fundamental issue of quantum generalizations of learning and AI concepts. This deals with questions of the very meaning of learning and intelligence in a world that is fully described by quantum mechanics. In this review, we describe the main ideas, recent developments and progress in a broad spectrum of research investigating ML and AI in the quantum domain.

  20. Machine learning & artificial intelligence in the quantum domain: a review of recent progress.

    PubMed

    Dunjko, Vedran; Briegel, Hans J

    2018-07-01

    Quantum information technologies, on the one hand, and intelligent learning systems, on the other, are both emergent technologies that are likely to have a transformative impact on our society in the future. The respective underlying fields of basic research-quantum information versus machine learning (ML) and artificial intelligence (AI)-have their own specific questions and challenges, which have hitherto been investigated largely independently. However, in a growing body of recent work, researchers have been probing the question of the extent to which these fields can indeed learn and benefit from each other. Quantum ML explores the interaction between quantum computing and ML, investigating how results and techniques from one field can be used to solve the problems of the other. Recently we have witnessed significant breakthroughs in both directions of influence. For instance, quantum computing is finding a vital application in providing speed-ups for ML problems, critical in our 'big data' world. Conversely, ML already permeates many cutting-edge technologies and may become instrumental in advanced quantum technologies. Aside from quantum speed-up in data analysis, or classical ML optimization used in quantum experiments, quantum enhancements have also been (theoretically) demonstrated for interactive learning tasks, highlighting the potential of quantum-enhanced learning agents. Finally, works exploring the use of AI for the very design of quantum experiments and for performing parts of genuine research autonomously, have reported their first successes. Beyond the topics of mutual enhancement-exploring what ML/AI can do for quantum physics and vice versa-researchers have also broached the fundamental issue of quantum generalizations of learning and AI concepts. This deals with questions of the very meaning of learning and intelligence in a world that is fully described by quantum mechanics. In this review, we describe the main ideas, recent developments and progress in a broad spectrum of research investigating ML and AI in the quantum domain.

  1. Generalized Causal Quantum Theories

    NASA Astrophysics Data System (ADS)

    Parmeggiani, Claudio

    2007-12-01

    We shall show that is always possible to construct causal Quantum Theories fully equivalent (as predictive tools) to acausal, standard Quantum Theory, relativistic or not relativistic; we re-obtain, as a particular case, the usual Quantum Bohmian Theory. Then we consider the measurement process, in causal theories, and we conclude that the state of affairs is not really improved, with respect to standard theories.

  2. How do light harvesting proteins support long lived quantum coherences

    DTIC Science & Technology

    2017-01-31

    the structural basis for these two forms, our aim is to generate hybrid proteins via synthetic biology approaches. We have shown that we can fully...SUBJECT TERMS quantum biology , light harvesting, photosynthesis, AOARD 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF ABSTRACT SAR 18.  NUMBER OF...these two forms, our aim is to generate hybrid proteins via synthetic biology approaches. We have shown that we can fully unfold and separate the

  3. EDITORIAL: Focus on Mechanical Systems at the Quantum Limit FOCUS ON MECHANICAL SYSTEMS AT THE QUANTUM LIMIT

    NASA Astrophysics Data System (ADS)

    Aspelmeyer, Markus; Schwab, Keith

    2008-09-01

    The last five years have witnessed an amazing development in the field of nano- and micromechanics. What was widely considered fantasy ten years ago is about to become an experimental reality: the quantum regime of mechanical systems is within reach of current experiments. Two factors (among many) have contributed significantly to this situation. As part of the widespread effort into nanoscience and nanofabrication, it is now possible to produce high-quality nanomechanical and micromechanical resonators, spanning length scales of millimetres to nanometres, and frequencies from kilohertz to gigahertz. Researchers coupled these mechanical elements to high-sensitivity actuation and readout systems such as single-electron transistors, quantum dots, atomic point contacts, SQUID loops, high-finesse optical or microwave-cavities etc. Some of these ultra-sensitive readout schemes are in principle capable of detection at the quantum limit and a large part of the experimental effort is at present devoted to achieving this. On the other hand, the fact that the groups working in the field come from various different physics backgrounds—the authors of this editorial are a representative sample—has been a constant source of inspiration for helpful theoretical and experimental tools that have been adapted from other fields to the mechanical realm. To name just one example: ideas from quantum optics have led to the recent demonstration (both in theory and experiment) that coupling a mechanical resonator to a high-finesse optical cavity can be fully analogous to the well-known sideband-resolved laser cooling of ions and hence is capable in principle of cooling a mechanical mode into its quantum ground state. There is no doubt that such interdisciplinarity has been a crucial element for the development of the field. It is interesting to note that a very similar sociological phenomenon occurred earlier in the quantum information community, an area which is deeply enriched by the diverse backgrounds and approaches of the researchers. As diverse as the approaches are the manifold of goals and perspectives for operating mechanical systems close to or within the quantum regime. Already now, nanomechanical sensors achieve single-molecule mass detection and magnetic resonance force detection from single-electron spins although they are operated far from quantum. Quantum-limited mechanical devices promise a new technology with hitherto unachieved performance for high-resolution sensing. This is also of high relevance for macroscopic mechanical resonators used in gravitational wave detectors. Furthermore, the increasing capability to couple mechanical modes to individual quantum systems raises the interesting question of whether mechanics can serve as a quantum bus in hybrid implementations of quantum information processing. Finally, the possibility of generating quantum superposition states that involve displacements of a massive macroscopic object (such as the center of mass of a mechanical beam) provides a completely new parameter regime for testing quantum theory over the amazing range from nanomechanical objects of several picograms up to gram-scale mirrors used in gravitational wave interferometers. We are looking forward to these fascinating developments! This Focus Issue is intended to highlight the present status of the field and to provide both introduction and motivation for students and researchers who want to get familiar with this exciting area or even want to join it. It also complements the conference activities of our community during the last year, where a series of dedicated invited sessions at several international conferences (APS March Meeting 2008, CLEO/QELS 2008, OSA Frontiers in Optics 2008, PQE 2008/2009 etc) culminated in the first Gordon Conference on 'Mechanical Systems at the Quantum Limit'. Given the fast development of the field it was not surprising to see that during the collection of the following contributions new progress was reported almost on a monthly basis and new groups entered the field. We intend to keep submission to this Focus Issue open for some time and invite everyone to share their latest results with us. And finally, a note to our fellow colleagues: keep up the good work! We would like to call the next Focus Issue 'Mechanical Systems IN the Quantum Regime'. Focus on Mechanical Systems at the Quantum Limit Contents Parametric coupling between macroscopic quantum resonators L Tian, M S Allman and R W Simmonds Quantum noise in a nanomechanical Duffing resonator E Babourina-Brooks, A Doherty and G J Milburn Creating and verifying a quantum superposition in a micro-optomechanical system Dustin Kleckner, Igor Pikovski, Evan Jeffrey, Luuk Ament, Eric Eliel, Jeroen van den Brink and Dirk Bouwmeester Ground-state cooling of a nanomechanical resonator via a Cooper-pair box qubit Konstanze Jaehne, Klemens Hammerer and Margareta Wallquist Dissipation in circuit quantum electrodynamics: lasing and cooling of a low-frequency oscillator Julian Hauss, Arkady Fedorov, Stephan André, Valentina Brosco, Carsten Hutter, Robin Kothari, Sunil Yeshwanth, Alexander Shnirman and Gerd Schön Route to ponderomotive entanglement of light via optically trapped mirrors Christopher Wipf, Thomas Corbitt, Yanbei Chen and Nergis Mavalvala Nanomechanical-resonator-assisted induced transparency in a Cooper-pair box system Xiao-Zhong Yuan, Hsi-Sheng Goan, Chien-Hung Lin, Ka-Di Zhu and Yi-Wen Jiang High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators A Schliesser, G Anetsberger, R Rivière, O Arcizet and T J Kippenberg Optomechanical to mechanical entanglement transformation Giovanni Vacanti, Mauro Paternostro, G Massimo Palma and Vlatko Vedral The optomechanical instability in the quantum regime Max Ludwig, Björn Kubala and Florian Marquardt Quantum limits of photothermal and radiation pressure cooling of a movable mirror M Pinard and A Dantan Mechanical feedback in the high-frequency limit R El Boubsi, O Usmani and Ya M Blanter Back-action evasion and squeezing of a mechanical resonator using a cavity detector A A Clerk, F Marquardt and K Jacobs Simultaneous cooling and entanglement of mechanical modes of a micromirror in an optical cavity Claudiu Genes, David Vitali and Paolo Tombesi Dispersive optomechanics: a membrane inside a cavity A M Jayich, J C Sankey, B M Zwickl, C Yang, J D Thompson, S M Girvin, A A Clerk, F Marquardt and J G E Harris Cavity-assisted backaction cooling of mechanical resonators I Wilson-Rae, N Nooshi, J Dobrindt, T J Kippenberg and W Zwerger Cavity cooling of a nanomechanical resonator by light scattering I Favero and K Karrai Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation M P Blencowe and A D Armour Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: I. Echo scheme A D Armour and M P Blencowe Nanoelectromechanics of suspended carbon nanotubes A K Hüttel, M Poot, B Witkamp and H S J van der Zant Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator J D Teufel, C A Regal and K W Lehnert

  4. Demonstration of a quantum controlled-NOT gate in the telecommunications band.

    PubMed

    Chen, Jun; Altepeter, Joseph B; Medic, Milja; Lee, Kim Fook; Gokden, Burc; Hadfield, Robert H; Nam, Sae Woo; Kumar, Prem

    2008-04-04

    We present the first quantum controlled-not (cnot) gate realized using a fiber-based indistinguishable photon-pair source in the 1.55 microm telecommunications band. Using this free-space cnot gate, all four Bell states are produced and fully characterized by performing quantum-state tomography, demonstrating the gate's unambiguous entangling capability and high fidelity. Telecom-band operation makes this cnot gate particularly suitable for quantum-information-processing tasks that are at the interface of quantum communication and linear optical quantum computing.

  5. Deterministic delivery of remote entanglement on a quantum network.

    PubMed

    Humphreys, Peter C; Kalb, Norbert; Morits, Jaco P J; Schouten, Raymond N; Vermeulen, Raymond F L; Twitchen, Daniel J; Markham, Matthew; Hanson, Ronald

    2018-06-01

    Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes 1-7 . Moving beyond current two-node networks 8-13 requires the rate of entanglement generation between nodes to exceed the decoherence (loss) rate of the entanglement. If this criterion is met, intrinsically probabilistic entangling protocols can be used to provide deterministic remote entanglement at pre-specified times. Here we demonstrate this using diamond spin qubit nodes separated by two metres. We realize a fully heralded single-photon entanglement protocol that achieves entangling rates of up to 39 hertz, three orders of magnitude higher than previously demonstrated two-photon protocols on this platform 14 . At the same time, we suppress the decoherence rate of remote-entangled states to five hertz through dynamical decoupling. By combining these results with efficient charge-state control and mitigation of spectral diffusion, we deterministically deliver a fresh remote state with an average entanglement fidelity of more than 0.5 at every clock cycle of about 100 milliseconds without any pre- or post-selection. These results demonstrate a key building block for extended quantum networks and open the door to entanglement distribution across multiple remote nodes.

  6. Compatible quantum theory

    NASA Astrophysics Data System (ADS)

    Friedberg, R.; Hohenberg, P. C.

    2014-09-01

    Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call ‘compatible quantum theory (CQT)’, consists of a ‘microscopic’ part (MIQM), which applies to a closed quantum system of any size, and a ‘macroscopic’ part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths (‘c-truths’), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The completion of the theory requires a macroscopic mechanism for selecting a physical framework, which is part of the macroscopic theory (MAQM). The selection of a physical framework involves the breaking of the microscopic ‘framework symmetry’, which can proceed either phenomenologically as in the standard quantum measurement theory, or more fundamentally by considering the quantum system under study to be a subsystem of a macroscopic quantum system. The decoherent histories formulation of Gell-Mann and Hartle, as well as that of Omnès, are theories of this fundamental type, where the physical framework is selected by a coarse-graining procedure in which the physical phenomenon of decoherence plays an essential role. Various well-known interpretations of QM are described from the perspective of CQT. Detailed definitions and proofs are presented in the appendices.

  7. Demonstration of entanglement assisted invariance on IBM's quantum experience.

    PubMed

    Deffner, Sebastian

    2017-11-01

    Quantum entanglement is among the most fundamental, yet from classical intuition also most surprising properties of the fully quantum nature of physical reality. We report several experiments performed on IBM's Quantum Experience demonstrating envariance - entanglement assisted invariance. Envariance is a recently discovered symmetry of composite quantum systems, which is at the foundational origin of physics and a quantum phenomenon of pure states. These very easily reproducible and freely accessible experiments on Quantum Experience provide simple tools to study the properties of envariance, and we illustrate this for several cases with "quantum universes" consisting of up to five qubits.

  8. Improving the Power Conversion Efficiency of Carbon Quantum Dot-Sensitized Solar Cells by Growing the Dots on a TiO₂ Photoanode In Situ.

    PubMed

    Zhang, Quanxin; Zhang, Geping; Sun, Xiaofeng; Yin, Keyang; Li, Hongguang

    2017-05-31

    Dye-sensitized solar cells (DSSCs) are highly promising since they can potentially solve global energy issues. The development of new photosensitizers is the key to fully realizing perspectives proposed to DSSCs. Being cheap and nontoxic, carbon quantum dots (CQDs) have emerged as attractive candidates for this purpose. However, current methodologies to build up CQD-sensitized solar cells (CQDSCs) result in an imperfect apparatus with extremely low power conversion efficiencies (PCEs). Herein, we present a simple strategy of growing carbon quantum dots (CQDs) onto TiO₂ surfaces in situ. The CQDs/TiO₂ hybridized photoanode was then used to construct solar cell with an improved PCE of 0.87%, which is higher than all of the reported CQDSCs adopting the simple post-adsorption method. This result indicates that an in situ growing strategy has great advantages in terms of optimizing the performance of CQDSCs. In addition, we have also found that the mechanisms dominating the performance of CQDSCs are different from those behind the solar cells using inorganic semiconductor quantum dots (ISQDs) as the photosensitizers, which re-confirms the conclusion that the characteristics of CQDs differ from those of ISQDs.

  9. Small Molecules and Sum Frequency Generation Probes of Nanoparticulate TiO2

    NASA Astrophysics Data System (ADS)

    Shultz, Mary Jane

    2006-03-01

    Anatase TiO2 is known to photo catalytically mineralize a wide variety of pollutants and pathogens, both airborne and in aqueous solution. One of the major benefits of basing water treatment systems on TiO2 is that it is environmentally benign and so non toxic that it is used as a colorant in creamy salad dressing. The primary impediment to wide spread implementation of a TiO2 based system for water decontamination is that the quantum efficiency in contact with condense phase water is less than 5%. Since the quantum efficiency for destruction of airborne materials is greater than 80%, the potential for increased efficiency is very real. To convert the potential to practice, the oxidation mechanism needs to be more fully understood. We will report on the results of using a nonlinear optical spectroscopy, sum frequency generation (SFG) as an in situ probe of interactions at the TiO2 surface. Results suggest that the dominant oxidation mechanism converts from a direct to an indirect mechanism as the water content (vapor pressure) increases. This presentation will discuss the probe technique as well as the results.

  10. Adiabatic quantum computing with spin qubits hosted by molecules.

    PubMed

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  11. Quantum Monte Carlo Methods for First Principles Simulation of Liquid Water

    ERIC Educational Resources Information Center

    Gergely, John Robert

    2009-01-01

    Obtaining an accurate microscopic description of water structure and dynamics is of great interest to molecular biology researchers and in the physics and quantum chemistry simulation communities. This dissertation describes efforts to apply quantum Monte Carlo methods to this problem with the goal of making progress toward a fully "ab initio"…

  12. Field-Driven Quantum Criticality in the Spinel Magnet ZnCr2 Se4

    NASA Astrophysics Data System (ADS)

    Gu, C. C.; Zhao, Z. Y.; Chen, X. L.; Lee, M.; Choi, E. S.; Han, Y. Y.; Ling, L. S.; Pi, L.; Zhang, Y. H.; Chen, G.; Yang, Z. R.; Zhou, H. D.; Sun, X. F.

    2018-04-01

    We report detailed dc and ac magnetic susceptibilities, specific heat, and thermal conductivity measurements on the frustrated magnet ZnCr2 Se4 . At low temperatures, with an increasing magnetic field, this spinel material goes through a series of spin state transitions from the helix spin state to the spiral spin state and then to the fully polarized state. Our results indicate a direct quantum phase transition from the spiral spin state to the fully polarized state. As the system approaches the quantum criticality, we find strong quantum fluctuations of the spins with behaviors such as an unconventional T2 -dependent specific heat and temperature-independent mean free path for the thermal transport. We complete the full phase diagram of ZnCr2 Se4 under the external magnetic field and propose the possibility of frustrated quantum criticality with extended densities of critical modes to account for the unusual low-energy excitations in the vicinity of the criticality. Our results reveal that ZnCr2 Se4 is a rare example of a 3D magnet exhibiting a field-driven quantum criticality with unconventional properties.

  13. Geometry dependent suppression of collective quantum jumps in Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Lees, Eitan; Clemens, James

    2015-05-01

    We consider N driven, damped Rydberg atoms in different spatial arrangements. Treating the atoms as two-level systems we model the coupling to the environment via the Lehmberg-Agarwal master equation which interpolates between fully independent and fully collective spontaneous emission depending on the specific locations of the atoms. We also include a collective dipole-dipole energy shift in the excited Rydberg state which leads to collective quantum jumps in the atomic excitation when the system is driven off resonance. We show that the quantum jumps are suppressed as the system makes a transition from independent to collective emission as the spacing of a linear array of atoms is decreased below the emission wavelength.

  14. Time as an Observable in Nonrelativistic Quantum Mechanics

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    2003-01-01

    The argument follows from the viewpoint that quantum mechanics is taken not in the usual form involving vectors and linear operators in Hilbert spaces, but as a boundary value problem for a special class of partial differential equations-in the present work, the nonrelativistic Schrodinger equation for motion of a structureless particle in four- dimensional space-time in the presence of a potential energy distribution that can be time-as well as space-dependent. The domain of interest is taken to be one of two semi-infinite boxes, one bounded by two t=constant planes and the other by two t=constant planes. Each gives rise to a characteristic boundary value problem: one in which the initial, input values on one t=constant wall are given, with zero asymptotic wavefunction values in all spatial directions, the output being the values on the second t=constant wall; the second with certain input values given on both z=constant walls, with zero asymptotic values in all directions involving time and the other spatial coordinates, the output being the complementary values on the z=constant walls. The first problem corresponds to ordinary quantum mechanics; the second, to a fully time-dependent version of a problem normally considered only for the steady state (time-independent Schrodinger equation). The second problem is formulated in detail. A conserved indefinite metric is associated with space-like propagation, where the sign of the norm of a unidirectional state corresponds to its spatial direction of travel.

  15. Covalent intermolecular interaction of the nitric oxide dimer (NO)2

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Zheng, Gui-Li; Lv, Gang; Geng, Yi-Zhao; Ji, Qing

    2015-09-01

    Covalent bonds arise from the overlap of the electronic clouds in the internucleus region, which is a pure quantum effect and cannot be obtained in any classical way. If the intermolecular interaction is of covalent character, the result from direct applications of classical simulation methods to the molecular system would be questionable. Here, we analyze the special intermolecular interaction between two NO molecules based on quantum chemical calculation. This weak intermolecular interaction, which is of covalent character, is responsible for the formation of the NO dimer, (NO)2, in its most stable conformation, a cis conformation. The natural bond orbital (NBO) analysis gives an intuitive illustration of the formation of the dimer bonding and antibonding orbitals concomitant with the breaking of the π bonds with bond order 0.5 of the monomers. The dimer bonding is counteracted by partially filling the antibonding dimer orbital and the repulsion between those fully or nearly fully occupied nonbonding dimer orbitals that make the dimer binding rather weak. The direct molecular mechanics (MM) calculation with the UFF force fields predicts a trans conformation as the most stable state, which contradicts the result of quantum mechanics (QM). The lesson from the investigation of this special system is that for the case where intermolecular interaction is of covalent character, a specific modification of the force fields of the molecular simulation method is necessary. Project supported by the National Natural Science Foundation of China (Grant Nos. 90403007 and 10975044), the Key Subject Construction Project of Hebei Provincial Universities, China, the Research Project of Hebei Education Department, China (Grant Nos. Z2012067 and Z2011133), the National Natural Science Foundation of China (Grant No. 11147103), and the Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Grant No. Y5KF211CJ1).

  16. Non-Abelian Bosonization and Fractional Quantum Hall Transitions

    NASA Astrophysics Data System (ADS)

    Hui, Aaron; Mulligan, Michael; Kim, Eun-Ah

    A fully satisfying theoretical description for the quantum phase transition between fractional quantum Hall plateaus remains an outstanding problem. Experiments indicate scaling exponents that are not readily obtained in conventional theories. Using insights from duality, we describe a class of quantum critical effective theories that produce qualitatively realistic scaling exponents for the transition. We discuss the implications of our results for the physically-relevant interactions controlling this broad class of quantum critical behavior. Supported by National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1650441.

  17. Demonstration of measurement-only blind quantum computing

    NASA Astrophysics Data System (ADS)

    Greganti, Chiara; Roehsner, Marie-Christine; Barz, Stefanie; Morimae, Tomoyuki; Walther, Philip

    2016-01-01

    Blind quantum computing allows for secure cloud networks of quasi-classical clients and a fully fledged quantum server. Recently, a new protocol has been proposed, which requires a client to perform only measurements. We demonstrate a proof-of-principle implementation of this measurement-only blind quantum computing, exploiting a photonic setup to generate four-qubit cluster states for computation and verification. Feasible technological requirements for the client and the device-independent blindness make this scheme very applicable for future secure quantum networks.

  18. Generalized quantum interference of correlated photon pairs.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-05-07

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source.

  19. Direct observation of forward-scattering oscillations in the H+HD→H2+D reaction.

    PubMed

    Yuan, Daofu; Yu, Shengrui; Chen, Wentao; Sang, Jiwei; Luo, Chang; Wang, Tao; Xu, Xin; Casavecchia, Piergiorgio; Wang, Xingan; Sun, Zhigang; Zhang, Dong H; Yang, Xueming

    2018-06-01

    Accurate measurements of product state-resolved angular distributions are central to fundamental studies of chemical reaction dynamics. Yet, fine quantum-mechanical structures in product angular distributions of a reactive scattering process, such as the fast oscillations in the forward-scattering direction, have never been observed experimentally and the nature of these oscillations has not been fully explored. Here we report the crossed-molecular-beam experimental observation of these fast forward-scattering oscillations in the product angular distribution of the benchmark chemical reaction, H + HD → H 2  + D. Clear oscillatory structures are observed for the H 2 (v' = 0, j' = 1, 3) product states at a collision energy of 1.35 eV, in excellent agreement with the quantum-mechanical dynamics calculations. Our analysis reveals that the oscillatory forward-scattering components are mainly contributed by the total angular momentum J around 28. The partial waves and impact parameters responsible for the forward scatterings are also determined from these observed oscillations, providing crucial dynamics information on the transient reaction process.

  20. Undergraduate quantum mechanics: lost opportunities for engaging motivated students?

    NASA Astrophysics Data System (ADS)

    Johansson, Anders

    2018-03-01

    Quantum mechanics is widely recognised as an important and difficult subject, and many studies have been published focusing on students’ conceptual difficulties. However, the sociocultural aspects of studying such an emblematic subject have not been researched to any large extent. This study explores students’ experiences of undergraduate quantum mechanics using qualitative analysis of semi-structured interview data. The results inform discussions about the teaching of quantum mechanics by adding a sociocultural dimension. Students pictured quantum mechanics as an intriguing subject that inspired them to study physics. The study environment they encountered when taking their first quantum mechanics course was however not always as inspiring as expected. Quantum mechanics instruction has commonly focused on the mathematical framework of quantum mechanics, and this kind of teaching was also what the interviewees had experienced. Two ways of handling the encounter with a traditional quantum mechanics course were identified in the interviews; either students accept the practice of studying quantum mechanics in a mathematical, exercise-centred way or they distance themselves from these practices and the subject. The students who responded by distancing themselves experienced a crisis and disappointment, where their experiences did not match the way they imagined themselves engaging with quantum mechanics. The implications of these findings are discussed in relation to efforts to reform the teaching of undergraduate quantum mechanics.

  1. Fiber-Coupled Cavity-QED Source of Identical Single Photons

    NASA Astrophysics Data System (ADS)

    Snijders, H.; Frey, J. A.; Norman, J.; Post, V. P.; Gossard, A. C.; Bowers, J. E.; van Exter, M. P.; Löffler, W.; Bouwmeester, D.

    2018-03-01

    We present a fully fiber-coupled source of high-fidelity single photons. An (In,Ga)As semiconductor quantum dot is embedded in an optical Fabry-Perot microcavity with a robust design and rigidly attached single-mode fibers, which enables through-fiber cross-polarized resonant laser excitation and photon extraction. Even without spectral filtering, we observe that the incident coherent light pulses are transformed into a stream of single photons with high purity (97%) and indistinguishability (90%), which is measured at an in-fiber brightness of 5% with an excellent cavity-mode-to-fiber coupling efficiency of 85%. Our results pave the way for fully fiber-integrated photonic quantum networks. Furthermore, our method is equally applicable to fiber-coupled solid-state cavity-QED-based photonic quantum gates.

  2. Quantum plasmons with optical-range frequencies in doped few-layer graphene

    NASA Astrophysics Data System (ADS)

    Shirodkar, Sharmila N.; Mattheakis, Marios; Cazeaux, Paul; Narang, Prineha; Soljačić, Marin; Kaxiras, Efthimios

    2018-05-01

    Although plasmon modes exist in doped graphene, the limited range of doping achieved by gating restricts the plasmon frequencies to a range that does not include the visible and infrared. Here we show, through the use of first-principles calculations, that the high levels of doping achieved by lithium intercalation in bilayer and trilayer graphene shift the plasmon frequencies into the visible range. To obtain physically meaningful results, we introduce a correction of the effect of plasmon interaction across the vacuum separating periodic images of the doped graphene layers, consisting of transparent boundary conditions in the direction perpendicular to the layers; this represents a significant improvement over the exact Coulomb cutoff technique employed in earlier works. The resulting plasmon modes are due to local field effects and the nonlocal response of the material to external electromagnetic fields, requiring a fully quantum mechanical treatment. We describe the features of these quantum plasmons, including the dispersion relation, losses, and field localization. Our findings point to a strategy for fine-tuning the plasmon frequencies in graphene and other two-dimensional materials.

  3. Relativistic (2,3)-threshold quantum secret sharing

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mehdi; Wu, Ya-Dong; Sanders, Barry C.

    2017-09-01

    In quantum secret sharing protocols, the usual presumption is that the distribution of quantum shares and players' collaboration are both performed inertially. Here we develop a quantum secret sharing protocol that relaxes these assumptions wherein we consider the effects due to the accelerating motion of the shares. Specifically, we solve the (2,3)-threshold continuous-variable quantum secret sharing in noninertial frames. To this aim, we formulate the effect of relativistic motion on the quantum field inside a cavity as a bosonic quantum Gaussian channel. We investigate how the fidelity of quantum secret sharing is affected by nonuniform motion of the quantum shares. Furthermore, we fully characterize the canonical form of the Gaussian channel, which can be utilized in quantum-information-processing protocols to include relativistic effects.

  4. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter.

    PubMed

    Zaske, Sebastian; Lenhard, Andreas; Keßler, Christian A; Kettler, Jan; Hepp, Christian; Arend, Carsten; Albrecht, Roland; Schulz, Wolfgang-Michael; Jetter, Michael; Michler, Peter; Becher, Christoph

    2012-10-05

    We demonstrate efficient (>30%) quantum frequency conversion of visible single photons (711 nm) emitted by a quantum dot to a telecom wavelength (1313 nm). Analysis of the first- and second-order coherence before and after wavelength conversion clearly proves that pivotal properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with quantum frequency conversion as a promising technique that may pave the way for a number of new applications in quantum technology.

  5. Light-induced nonadiabatic dynamics in molecular assemblies and nanostructures

    NASA Astrophysics Data System (ADS)

    Mitric, Roland

    The combination of mixed quantum-classical dynamics with efficient electronic structure methods was developed in order to simulate the light-induced processes in complex molecules, multichromophoric aggregates and metallic nanostructures. We will demonstrate how the combination of nonadiabatic dynamics with experimental pump-probe techniques such as time-resolved photoelectron imaging (TRPEI) allows to fully resolve the mechanism of excited state relaxation through conical intersections in several prototype organic- and biomolecules. Specifically, the role of the solvent in the excited state relaxation in microsolvated and fully solvated systems will be addressed. Currently there is growing evidence that nonadiabatic relaxation processes also play a fundamental role in determining the efficiency of excitonic transfer or charge injection in multichromophoric assemblies. Since such systems are currently out of the reach of the state-of-the-art quantum chemistry a development of even more efficient quantum chemical approaches is necessary in order to describe the excited state dynamics in such assemblies. For this purpose we have recently developed long-range corrected time-dependent density functional tight binding (LC-TDDFTB) nonadiabatic dynamics and combined it with the QM/MM approach in order to simulate exciton relaxation in complex systems. The applications of the method to the investigation of the optical properties and dynamics in multichromophoric assemblies including stacked pi-conjugated organic chromophores, model molecular crystals as well as self-organized dye aggregates will be presented. Finally, we will address exciton transport dynamics coupled with the light propagation in hybrid exciton-plasmon nanostructures, which represent promising materials fort the development of novel light-harvesting systems.

  6. A programmable five qubit quantum computer using trapped atomic ions

    NASA Astrophysics Data System (ADS)

    Debnath, Shantanu

    2017-04-01

    In order to harness the power of quantum information processing, several candidate systems have been investigated, and tailored to demonstrate only specific computations. In my thesis work, we construct a general-purpose multi-qubit device using a linear chain of trapped ion qubits, which in principle can be programmed to run any quantum algorithm. To achieve such flexibility, we develop a pulse shaping technique to realize a set of fully connected two-qubit rotations that entangle arbitrary pairs of qubits using multiple motional modes of the chain. Following a computation architecture, such highly expressive two-qubit gates along with arbitrary single-qubit rotations can be used to compile modular universal logic gates that are effected by targeted optical fields and hence can be reconfigured according to any algorithm circuit programmed in the software. As a demonstration, we run the Deutsch-Jozsa and Bernstein-Vazirani algorithm, and a fully coherent quantum Fourier transform, that we use to solve the `period finding' and `quantum phase estimation' problem. Combining these results with recent demonstrations of quantum fault-tolerance, Grover's search algorithm, and simulation of boson hopping establishes the versatility of such a computation module that can potentially be connected to other modules for future large-scale computations.

  7. Causal localizations in relativistic quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castrigiano, Domenico P. L., E-mail: castrig@ma.tum.de; Leiseifer, Andreas D., E-mail: andreas.leiseifer@tum.de

    2015-07-15

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a meremore » consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.« less

  8. Causal localizations in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Castrigiano, Domenico P. L.; Leiseifer, Andreas D.

    2015-07-01

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

  9. Biexciton Auger Recombination Differs in Hybrid and Inorganic Halide Perovskite Quantum Dots.

    PubMed

    Eperon, Giles E; Jedlicka, Erin; Ginger, David S

    2018-01-04

    We use time-resolved photoluminescence measurements to determine the biexciton Auger recombination rate in both hybrid organic-inorganic and fully inorganic halide perovskite nanocrystals as a function of nanocrystal volume. We find that the volume scaling of the biexciton Auger rate in the hybrid perovskites, containing a polar organic A-site cation, is significantly shallower than in the fully inorganic Cs-based nanocrystals. As the nanocrystals become smaller, the Auger rate in the hybrid nanocrystals increases even less than expected, compared to the fully inorganic nanocrystals, which already show a shallower volume dependence than other material systems such as chalcogenide quantum dots. This finding suggests there may be differences in the strength of Coulombic interactions between the fully inorganic and hybrid perovskites, which may prove to be crucial in selecting materials to obtain the highest performing devices in the future, and hints that there could be something "special" about the hybrid materials.

  10. Quantum digital-to-analog conversion algorithm using decoherence

    NASA Astrophysics Data System (ADS)

    SaiToh, Akira

    2015-08-01

    We consider the problem of mapping digital data encoded on a quantum register to analog amplitudes in parallel. It is shown to be unlikely that a fully unitary polynomial-time quantum algorithm exists for this problem; NP becomes a subset of BQP if it exists. In the practical point of view, we propose a nonunitary linear-time algorithm using quantum decoherence. It tacitly uses an exponentially large physical resource, which is typically a huge number of identical molecules. Quantumness of correlation appearing in the process of the algorithm is also discussed.

  11. Experimental preparation and verification of quantum money

    NASA Astrophysics Data System (ADS)

    Guan, Jian-Yu; Arrazola, Juan Miguel; Amiri, Ryan; Zhang, Weijun; Li, Hao; You, Lixing; Wang, Zhen; Zhang, Qiang; Pan, Jian-Wei

    2018-03-01

    A quantum money scheme enables a trusted bank to provide untrusted users with verifiable quantum banknotes that cannot be forged. In this work, we report a proof-of-principle experimental demonstration of the preparation and verification of unforgeable quantum banknotes. We employ a security analysis that takes experimental imperfections fully into account. We measure a total of 3.6 ×106 states in one verification round, limiting the forging probability to 10-7 based on the security analysis. Our results demonstrate the feasibility of preparing and verifying quantum banknotes using currently available experimental techniques.

  12. Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states.

    PubMed

    Iftikhar, Z; Jezouin, S; Anthore, A; Gennser, U; Parmentier, F D; Cavanna, A; Pierre, F

    2015-10-08

    Many-body correlations and macroscopic quantum behaviours are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo effect, which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive 'charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin of 1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we find the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.

  13. Speakable and Unspeakable in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bell, J. S.; Aspect, Introduction by Alain

    2004-06-01

    List of papers on quantum philosophy by J. S. Bell; Preface; Acknowledgements; Introduction by Alain Aspect; 1. On the problem of hidden variables in quantum mechanics; 2. On the Einstein-Rosen-Podolsky paradox; 3. The moral aspects of quantum mechanics; 4. Introduction to the hidden-variable question; 5. Subject and object; 6. On wave packet reduction in the Coleman-Hepp model; 7. The theory of local beables; 8. Locality in quantum mechanics: reply to critics; 9. How to teach special relativity; 10. Einstein-Podolsky-Rosen experiments; 11. The measurement theory of Everett and de Broglie's pilot wave; 12. Free variables and local causality; 13. Atomic-cascade photons and quantum-mechanical nonlocality; 14. de Broglie-Bohm delayed choice double-slit experiments and density matrix; 15. Quantum mechanics for cosmologists; 16. Bertlmann's socks and the nature of reality; 17. On the impossible pilot wave; 18. Speakable and unspeakable in quantum mechanics; 19. Beables for quantum field theory; 20. Six possible worlds of quantum mechanics; 21. EPR correlations and EPR distributions; 22. Are there quantum jumps?; 23. Against 'measurement'; 24. La Nouvelle cuisine.

  14. Quantum Mechanical Earth: Where Orbitals Become Orbits

    ERIC Educational Resources Information Center

    Keeports, David

    2012-01-01

    Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…

  15. The Development of Rigorously Correct, Dynamical Pseudopotentials for Use in Mixed Quantum/Classical Molecular Dynamics Simulations in the Condensed Phase

    NASA Astrophysics Data System (ADS)

    Kahros, Argyris

    Incorporating quantum mechanics into an atomistic simulation necessarily involves solving the Schrodinger equation. Unfortunately, the computational expense associated with solving this equation scales miserably with the number of included quantum degrees of freedom (DOF). The situation is so dire, in fact, that a molecular dynamics (MD) simulation cannot include more than a small number of quantum DOFs before it becomes computationally intractable. Thus, if one were to simulate a relatively large system, such as one containing several hundred atoms or molecules, it would be unreasonable to attempt to include the effects of all of the electrons associated with all of the components of the system. The mixed quantum/classical (MQC) approach provides a way to circumvent this issue. It involves treating the vast majority of the system classically, which incurs minimal computational expense, and reserves the consideration of quantum mechanical effects for only the few degrees of freedom more directly involved in the chemical phenomenon being studied. For example, if one were to study the bonding of a single diatomic molecule in the gas phase, one could employ a MQC approach by treating the nuclei of the molecule's two atoms classically---including the deeply bound, low-energy electrons that change relatively little---and solving the Schrodinger equation only for the high energy electron(s) directly involved in the bonding of the classical cores. In such a way, one could study the bonding of this molecule in a rigorous fashion while treating only the directly related degrees of freedom quantum mechanically. Pseudopotentials are then responsible for dictating the interactions between the quantum and classical degrees of freedom. As these potentials are the sole link between the quantum and classical DOFs, their proper development is of the utmost importance. This Thesis is concerned primarily with my work on the development of novel, rigorous and dynamical pseudopotentials for use in mixed quantum/ classical simulations in the condensed phase. The pseudopotentials discussed within are constructed in an ab initio fashion, without the introduction of any empiricism, and are able to exactly reproduce the results of higher level, fully quantum mechanical Hartree-Fock calculations. A recurring theme in the following pages is overcoming the so-called frozen core approximation (FCA). This essentially comes down to creating pseudopotentials that are able to respond in some way to the local molecular environment in a rigorous fashion. The various methods and discussions that are part of this document are presented in the context of two particular systems. The first is the sodium dimer cation molecule, which serves as a proof of concept for the development of coordinate-dependent pseudopotentials and is the subject of Chapters 2 and 3. Next, the hydrated electron---the excess electron in liquid water---is tackled in an effort to address the recent controversy concerning its true structure and is the subject of Chapters 4 and 5. In essence, the work in this Dissertation is concerned with finding new ways to overcome the problem of a lack of infinite computer processing power.

  16. Interpretation of Quantum Mechanics. A view of our universe

    NASA Astrophysics Data System (ADS)

    Lindgren, Ingvar

    2009-10-01

    The interpretation of quantum mechanics has been disputed ever since the advent of the theory in the 1920's. Famous are the discussions over long time between Einstein and Bohr. Einstein refused to accept the so-called Copenhagen interpretation, where the wave function collapses at a measurement and where the outcome of the measurement is essentially accidental (``God does not play dice''). Alternative interpretations have appeared, but the Copenhagen school has dominated the thoughts throughout the decades. One interesting interpretation was formulated in 1957 by Hugh Everett at Princeton, a student of John Wheeler, which abandons the wave-function collapse. In this model the universe is governed entirely by the Schrödinger equation, which does not allow for any collapse. In Everett's model after a measurement the wave function is separated into different branches that do not interact. This model was left unnoticed for long time until Bryce DeWitt took it up in 1970 and termed it ``Many-Worlds Interpretation'', a term that in some sense is misleading. Everett's model is incomplete, and it was later supplemented by the theory of decoherence, which explains how the different branches decouple as a result of the interaction with the environment. This extended model has in recent years gained increased respect, and some believe that it is the only model made available so far that is fully consistent with quantum mechanics. This interpretation can also shed some light on the development of the universe and, in particular, on the so-called Anthropic principle, which puts human beings at the center of the development.

  17. Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.

    PubMed

    Pfaff, W; Hensen, B J; Bernien, H; van Dam, S B; Blok, M S; Taminiau, T H; Tiggelman, M J; Schouten, R N; Markham, M; Twitchen, D J; Hanson, R

    2014-08-01

    Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing. Copyright © 2014, American Association for the Advancement of Science.

  18. Studies on the Himbert Intramolecular Arene/ Allene Diels – Alder Cycloaddition. Mechanistic Studies and Expansion of Scope to All-Carbon Tethers

    PubMed Central

    Schmidt, Yvonne; Lam, Jonathan K.; Pham, Hung V.; Houk, K. N.; Vanderwal, Christopher D.

    2013-01-01

    The unusual intramolecular arene/allene cycloaddition described thirty years ago by Himbert permits rapid access to strained polycyclic compounds that offer great potential for the synthesis of complex scaffolds. To more fully understand the mechanism of this cycloaddition reaction, and to guide efforts to extend its scope to new substrates, quantum mechanical computational methods were employed in concert with laboratory experiments. These studies indicated that the cycloadditions likely proceed via concerted processes; a stepwise biradical mechanism was shown to be higher in energy in the cases studied. The original Himbert cycloaddition chemistry is also extended from heterocyclic to carbocyclic systems, with computational guidance used to predict thermodynamically favorable cases. Complex polycyclic scaffolds result from the combination of the cycloaddition and subsequent ring-rearrangement metathesis reactions. PMID:23634642

  19. Tunneling time in space fractional quantum mechanics

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad; Mandal, Bhabani Prasad

    2018-02-01

    We calculate the time taken by a wave packet to travel through a classically forbidden region of space in space fractional quantum mechanics. We obtain the close form expression of tunneling time from a rectangular barrier by stationary phase method. We show that tunneling time depends upon the width b of the barrier for b → ∞ and therefore Hartman effect doesn't exist in space fractional quantum mechanics. Interestingly we found that the tunneling time monotonically reduces with increasing b. The tunneling time is smaller in space fractional quantum mechanics as compared to the case of standard quantum mechanics. We recover the Hartman effect of standard quantum mechanics as a special case of space fractional quantum mechanics.

  20. Experimental realization of counterfactual quantum cryptography Experimental realization of counterfactual quantum cryptography

    NASA Astrophysics Data System (ADS)

    Brida, G.; Cavanna, A.; Degiovanni, I. P.; Genovese, M.; Traina, P.

    2012-03-01

    In counterfactual quantum key distribution (CQKD) information is transferred, in a secure way, between Alice and Bob even when no particle carrying the information is in fact transmitted between them. In this letter we fully implement the scheme for CQKD proposed in [1], demonstrating for the first time that information can be transmitted between two parties without the transmission of a carrier.

  1. Pulsed quantum optomechanics

    PubMed Central

    Vanner, M. R.; Pikovski, I.; Cole, G. D.; Kim, M. S.; Brukner, Č.; Hammerer, K.; Milburn, G. J.; Aspelmeyer, M.

    2011-01-01

    Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and especially quantum state reconstruction of mechanical oscillators remains a significant challenge. Here we propose a scheme to realize quantum state tomography, squeezing, and state purification of a mechanical resonator using short optical pulses. The scheme presented allows observation of mechanical quantum features despite preparation from a thermal state and is shown to be experimentally feasible using optical microcavities. Our framework thus provides a promising means to explore the quantum nature of massive mechanical oscillators and can be applied to other systems such as trapped ions. PMID:21900608

  2. Quantum Dot Platform for Single-Cell Molecular Profiling

    NASA Astrophysics Data System (ADS)

    Zrazhevskiy, Pavel S.

    In-depth understanding of the nature of cell physiology and ability to diagnose and control the progression of pathological processes heavily rely on untangling the complexity of intracellular molecular mechanisms and pathways. Therefore, comprehensive molecular profiling of individual cells within the context of their natural tissue or cell culture microenvironment is essential. In principle, this goal can be achieved by tagging each molecular target with a unique reporter probe and detecting its localization with high sensitivity at sub-cellular resolution, primarily via microscopy-based imaging. Yet, neither widely used conventional methods nor more advanced nanoparticle-based techniques have been able to address this task up to date. High multiplexing potential of fluorescent probes is heavily restrained by the inability to uniquely match probes with corresponding molecular targets. This issue is especially relevant for quantum dot probes---while simultaneous spectral imaging of up to 10 different probes is possible, only few can be used concurrently for staining with existing methods. To fully utilize multiplexing potential of quantum dots, it is necessary to design a new staining platform featuring unique assignment of each target to a corresponding quantum dot probe. This dissertation presents two complementary versatile approaches towards achieving comprehensive single-cell molecular profiling and describes engineering of quantum dot probes specifically tailored for each staining method. Analysis of expanded molecular profiles is achieved through augmenting parallel multiplexing capacity with performing several staining cycles on the same specimen in sequential manner. In contrast to other methods utilizing quantum dots or other nanoparticles, which often involve sophisticated probe synthesis, the platform technology presented here takes advantage of simple covalent bioconjugation and non-covalent self-assembly mechanisms for straightforward probe preparation and specimen labeling, requiring no advanced technical skills and being directly applicable for a wide range of molecular profiling studies. Utilization of quantum dot platform for single-cell molecular profiling promises to greatly benefit both biomedical research and clinical diagnostics by providing a tool for addressing phenotypic heterogeneity within large cell populations, opening access to studying low-abundance events often masked or completely erased by batch processing, and elucidating biomarker signatures of diseases critical for accurate diagnostics and targeted therapy.

  3. One-Way Deficit and Quantum Phase Transitions in XX Model

    NASA Astrophysics Data System (ADS)

    Wang, Yao-Kun; Zhang, Yu-Ran

    2018-02-01

    Quantum correlations including entanglement and quantum discord have drawn much attention in characterizing quantum phase transitions. Quantum deficit originates in questions regarding work extraction from quantum systems coupled to a heat bath (Oppenheim et al. Phys. Rev. Lett. 89, 180402, 2002). It links quantum thermodynamics with quantum correlations and provides a new standpoint for understanding quantum non-locality. In this paper, we evaluate the one-way deficit of two adjacent spins in the bulk for the XX model. In the thermodynamic limit, the XX model undergoes a first order transition from fully polarized to a critical phase with quasi-long-range order with decrease of quantum parameter. We find that the one-way deficit becomes nonzero after the critical point. Therefore, the one-way deficit characterizes the quantum phase transition in the XX model.

  4. Chaotic quantum ratchets and filters with cold atoms in optical lattices: Properties of Floquet states

    NASA Astrophysics Data System (ADS)

    Hur, Gwang-Ok

    The -kicked rotor is a paradigm of quantum chaos. Its realisation with clouds of cold atoms in pulsed optical lattices demonstrated the well-known quantum chaos phenomenon of 'dynamical localisation'. In those experi ments by several groups world-wide, the £-kicks were applied at equal time intervals. However, recent theoretical and experimental work by the cold atom group at UCL Monteiro et al 2002, Jonckheere et al 2003, Jones et al 2004 showed that novel quantum and classical dynamics arises if the atomic cloud is pulsed with repeating sequences of unequally spaced kicks. In Mon teiro et al 2002 it was found that the energy absorption rates depend on the momentum of the atoms relative to the optical lattice hence a type of chaotic ratchet was proposed. In Jonckheere et al and Jones et al, a possible mechanism for selecting atoms according to their momenta (velocity filter) was investigated. The aim of this thesis was to study the properties of the underlying eigen values and eigenstates. Despite the unequally-spaced kicks, these systems are still time-periodic, so we in fact investigated the Floquet states, which are eigenstates of U(T), the one-period time evolution operator. The Floquet states and corresponding eigenvalues were obtained by diagonalising a ma trix representation of the operator U(T). It was found that the form of the eigenstates enables us to analyse qual itatively the atomic momentum probability distributions, N(p) measured experimentally. In particular, the momentum width of the individual eigen states varies strongly with < p > as expected from the theoretical and ex- perimental results obtained previously. In addition, at specific < p > close to values which in the experiment yield directed motion (ratchet transport), the probability distribution of the individual Floquet states is asymmetric, mirroring the asymmetric N(p) measured in clouds of cesium atoms. In the penultimate chapter, the spectral fluctuations (eigenvalue statis tics) are investigated for one particular system, the double-delta kicked rotor. We computed Nearest Neighbour Spacing (NNS) distributions as well as the number variances (E2 statistics). We find that even in regimes where the corresponding classical dynamics are fully chaotic, the statistics are, unex pectedly, intermediate between fully chaotic (GOE) and fully regular (Pois- son). It is argued that they are analogous to the critical statistics seen in the Anderson metal-insulator transition.

  5. Zinc sulfide quantum dots for photocatalytic and sensing applications

    NASA Astrophysics Data System (ADS)

    Sergeev, Alexander A.; Leonov, Andrei A.; Zhuikova, Elena I.; Postnova, Irina V.; Voznesenskiy, Sergey S.

    2017-09-01

    Herein, we report the photocatalytic and sensing applications of pure and Mn-doped ZnS quantum dots. The quantum dots were prepared by a chemical precipitation in an aqueous solution in the presence of glutathione as a stabilizing agent. The synthesized quantum dots were used as effective photocatalyst for the degradation of methylene blue dye. Interestingly, fully degradation of methylene blue dye was achieved in 5 min using pure ZnS quantum dots. Further, the synthesized quantum dots were used as efficient sensing element for methane fluorescent sensor. Interfering studies confirmed that the developed sensor possesses very good sensitivity and selectivity towards methane.

  6. Generalized quantum interference of correlated photon pairs

    PubMed Central

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-01-01

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source. PMID:25951143

  7. Ab initio electron correlated studies on the intracluster reaction of NO+ (H2O)(n) → H3O+ (H2O)(n-2) (HONO) (n = 4 and 5).

    PubMed

    Asada, Toshio; Nagaoka, Masataka; Koseki, Shiro

    2011-01-28

    Hydrated nitrosonium ion clusters NO(+)(H(2)O)(n) (n = 4 and 5) were investigated by using MP2/aug-cc-pVTZ level of theory to clarify isomeric reaction pathways for formation of HONO and fully hydrated hydride ions. We found some new isomers and transition state structures in each hydration number, whose lowest activation energies of the intracluster reactions were found to be 4.1 and 3.4 kcal mol(-1) for n = 4 and n = 5, respectively. These thermodynamic properties and full quantum mechanical molecular dynamics simulation suggest that product isomers with HONO and fully hydrated hydride ions can be obtained at n = 4 and n = 5 in terms of excess hydration binding energies which can overcome these activation barriers.

  8. Helical quantum states in HgTe quantum dots with inverted band structures.

    PubMed

    Chang, Kai; Lou, Wen-Kai

    2011-05-20

    We investigate theoretically the electron states in HgTe quantum dots (QDs) with inverted band structures. In sharp contrast to conventional semiconductor quantum dots, the quantum states in the gap of the HgTe QD are fully spin-polarized and show ringlike density distributions near the boundary of the QD and spin-angular momentum locking. The persistent charge currents and magnetic moments, i.e., the Aharonov-Bohm effect, can be observed in such a QD structure. This feature offers us a practical way to detect these exotic ringlike edge states by using the SQUID technique.

  9. Observation of quasiperiodic dynamics in a one-dimensional quantum walk of single photons in space

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Qin, Hao; Tang, Bao; Sanders, Barry C.

    2014-05-01

    We realize the quasi-periodic dynamics of a quantum walker over 2.5 quasi-periods by realizing the walker as a single photon passing through a quantum-walk optical-interferometer network. We introduce fully controllable polarization-independent phase shifters in each optical path to realize arbitrary site-dependent phase shifts, and employ large clear-aperture beam displacers, while maintaining high-visibility interference, to enable 10 quantum-walk steps to be reached. By varying the half-wave-plate setting, we control the quantum-coin bias thereby observing a transition from quasi-periodic dynamics to ballistic diffusion.

  10. Emerging interpretations of quantum mechanics and recent progress in quantum measurement

    NASA Astrophysics Data System (ADS)

    Clarke, M. L.

    2014-01-01

    The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism).

  11. Transfer of Learning in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2005-09-01

    We investigate the difficulties that undergraduate students in quantum mechanics courses have in transferring learning from previous courses or within the same course from one context to another by administering written tests and conducting individual interviews. Quantum mechanics is abstract and its paradigm is very different from the classical one. A good grasp of the principles of quantum mechanics requires creating and organizing a knowledge structure consistent with the quantum postulates. Previously learned concepts such as the principle of superposition and probability can be useful in quantum mechanics if students are given opportunity to build associations between new and prior knowledge. We also discuss the need for better alignment between quantum mechanics and modern physics courses taken previously because semi-classical models can impede internalization of the quantum paradigm in more advanced courses.

  12. Quantum thermodynamic cycles and quantum heat engines. II.

    PubMed

    Quan, H T

    2009-04-01

    We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.

  13. Probability and Locality: Determinism Versus Indeterminism in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Dickson, William Michael

    1995-01-01

    Quantum mechanics is often taken to be necessarily probabilistic. However, this view of quantum mechanics appears to be more the result of historical accident than of careful analysis. Moreover, quantum mechanics in its usual form faces serious problems. Although the mathematical core of quantum mechanics--quantum probability theory- -does not face conceptual difficulties, the application of quantum probability to the physical world leads to problems. In particular, quantum mechanics seems incapable of describing our everyday macroscopic experience. Therefore, several authors have proposed new interpretations --including (but not limited to) modal interpretations, spontaneous localization interpretations, the consistent histories approach, and the Bohm theory--each of which deals with quantum-mechanical probabilities differently. Each of these interpretations promises to describe our macroscopic experience and, arguably, each succeeds. Is there any way to compare them? Perhaps, if we turn to another troubling aspect of quantum mechanics, non-locality. Non -locality is troubling because prima facie it threatens the compatibility of quantum mechanics with special relativity. This prima facie threat is mitigated by the no-signalling theorems in quantum mechanics, but nonetheless one may find a 'conflict of spirit' between nonlocality in quantum mechanics and special relativity. Do any of these interpretations resolve this conflict of spirit?. There is a strong relation between how an interpretation deals with quantum-mechanical probabilities and how it deals with non-locality. The main argument here is that only a completely deterministic interpretation can be completely local. That is, locality together with the empirical predictions of quantum mechanics (specifically, its strict correlations) entails determinism. But even with this entailment in hand, comparison of the various interpretations requires a look at each, to see how non-locality arises, or in the case of deterministic interpretations, whether it arises. The result of this investigation is that, at the least, deterministic interpretations are no worse off with respect to special relativity than indeterministic interpretations. This conclusion runs against a common view that deterministic interpretations, specifically the Bohm theory, have more difficulty with special relativity than other interpretations.

  14. Conceptual Foundations of Quantum Mechanics:. the Role of Evidence Theory, Quantum Sets, and Modal Logic

    NASA Astrophysics Data System (ADS)

    Resconi, Germano; Klir, George J.; Pessa, Eliano

    Recognizing that syntactic and semantic structures of classical logic are not sufficient to understand the meaning of quantum phenomena, we propose in this paper a new interpretation of quantum mechanics based on evidence theory. The connection between these two theories is obtained through a new language, quantum set theory, built on a suggestion by J. Bell. Further, we give a modal logic interpretation of quantum mechanics and quantum set theory by using Kripke's semantics of modal logic based on the concept of possible worlds. This is grounded on previous work of a number of researchers (Resconi, Klir, Harmanec) who showed how to represent evidence theory and other uncertainty theories in terms of modal logic. Moreover, we also propose a reformulation of the many-worlds interpretation of quantum mechanics in terms of Kripke's semantics. We thus show how three different theories — quantum mechanics, evidence theory, and modal logic — are interrelated. This opens, on one hand, the way to new applications of quantum mechanics within domains different from the traditional ones, and, on the other hand, the possibility of building new generalizations of quantum mechanics itself.

  15. Blind topological measurement-based quantum computation.

    PubMed

    Morimae, Tomoyuki; Fujii, Keisuke

    2012-01-01

    Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf-Harrington-Goyal scheme. The error threshold of our scheme is 4.3 × 10(-3), which is comparable to that (7.5 × 10(-3)) of non-blind topological quantum computation. As the error per gate of the order 10(-3) was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach.

  16. Complete quantum control of exciton qubits bound to isoelectronic centres.

    PubMed

    Éthier-Majcher, G; St-Jean, P; Boso, G; Tosi, A; Klem, J F; Francoeur, S

    2014-05-30

    In recent years, impressive demonstrations related to quantum information processing have been realized. The scalability of quantum interactions between arbitrary qubits within an array remains however a significant hurdle to the practical realization of a quantum computer. Among the proposed ideas to achieve fully scalable quantum processing, the use of photons is appealing because they can mediate long-range quantum interactions and could serve as buses to build quantum networks. Quantum dots or nitrogen-vacancy centres in diamond can be coupled to light, but the former system lacks optical homogeneity while the latter suffers from a low dipole moment, rendering their large-scale interconnection challenging. Here, through the complete quantum control of exciton qubits, we demonstrate that nitrogen isoelectronic centres in GaAs combine both the uniformity and predictability of atomic defects and the dipole moment of semiconductor quantum dots. This establishes isoelectronic centres as a promising platform for quantum information processing.

  17. Blind topological measurement-based quantum computation

    NASA Astrophysics Data System (ADS)

    Morimae, Tomoyuki; Fujii, Keisuke

    2012-09-01

    Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf-Harrington-Goyal scheme. The error threshold of our scheme is 4.3×10-3, which is comparable to that (7.5×10-3) of non-blind topological quantum computation. As the error per gate of the order 10-3 was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach.

  18. A New Ontological View of the Quantum Measurement Problem

    DTIC Science & Technology

    2005-06-13

    broader issues in the foundations of quantum mechanics as well. In this scenario, a quantum measurement is a nonequilibrium phase transition in a...the foundations of quantum mechan - ics as well. In this scenario a quantum measurement is a non-equilibrium phase transition in a “resonant cavity...ontology, and the probabilistic element is removed from the foundations of quantum mechanics , its apparent presence in the quantum measurement being solely

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shore, B.W.; Knight, P.L.

    The Jaynes-Cummings Model (JCM), a soluble fully quantum mechanical model of an atom in a field, was first used (in 1963) to examine the classical aspects of spontaneous emission and to reveal the existence of Rabi oscillations in atomic excitation probability for fields with sharply defined energy (or photon number). For fields having a statistical distributions of photon numbers the oscillations collapse to an expected steady value. In 1980 it was discovered that with appropriate initial conditions (e.g. a near-classical field), the Rabi oscillations would eventually revive -- only to collapse and revive repeatedly in a complicated pattern. The existencemore » of these revivals, present in the analytic solutions of the JCM, provided direct evidence for discreteness of field excitation (photons) and hence for the truly quantum nature of radiation. Subsequent study revealed further nonclassical properties of the JCM field, such as a tendency of the photons to antibunch. Within the last two years it has been found that during the quiescent intervals of collapsed Rabi oscillations the atom and field exist in a macroscopic superposition state (a Schroedinger cat). This discovery offers the opportunity to use the JCM to elucidate the basic properties of quantum correlation (entanglement) and to explore still further the relationship between classical and quantum physics. In tribute to E. D. Jaynes, who first recognized the importance of the JCM for clarifying the differences and similarities between quantum and classical physics, we here present an overview of the theory of the JCM and some of the many remarkable discoveries about it.« less

  20. Temperature equilibration rate with Fermi-Dirac statistics.

    PubMed

    Brown, Lowell S; Singleton, Robert L

    2007-12-01

    We calculate analytically the electron-ion temperature equilibration rate in a fully ionized, weakly to moderately coupled plasma, using an exact treatment of the Fermi-Dirac electrons. The temperature is sufficiently high so that the quantum-mechanical Born approximation to the scattering is valid. It should be emphasized that we do not build a model of the energy exchange mechanism, but rather, we perform a systematic first principles calculation of the energy exchange. At the heart of this calculation lies the method of dimensional continuation, a technique that we borrow from quantum field theory and use in a different fashion to regulate the kinetic equations in a consistent manner. We can then perform a systematic perturbation expansion and thereby obtain a finite first-principles result to leading and next-to-leading order. Unlike model building, this systematic calculation yields an estimate of its own error and thus prescribes its domain of applicability. The calculational error is small for a weakly to moderately coupled plasma, for which our result is nearly exact. It should also be emphasized that our calculation becomes unreliable for a strongly coupled plasma, where the perturbative expansion that we employ breaks down, and one must then utilize model building and computer simulations. Besides providing different and potentially useful results, we use this calculation as an opportunity to explain the method of dimensional continuation in a pedagogical fashion. Interestingly, in the regime of relevance for many inertial confinement fusion experiments, the degeneracy corrections are comparable in size to the subleading quantum correction below the Born approximation. For consistency, we therefore present this subleading quantum-to-classical transition correction in addition to the degeneracy correction.

  1. Light-induced negative differential resistance in graphene/Si-quantum-dot tunneling diodes

    PubMed Central

    Lee, Kyeong Won; Jang, Chan Wook; Shin, Dong Hee; Kim, Jong Min; Kang, Soo Seok; Lee, Dae Hun; Kim, Sung; Choi, Suk-Ho; Hwang, Euyheon

    2016-01-01

    One of the interesing tunneling phenomena is negative differential resistance (NDR), the basic principle of resonant-tunneling diodes. NDR has been utilized in various semiconductor devices such as frequency multipliers, oscillators, relfection amplifiers, logic switches, and memories. The NDR in graphene has been also reported theoretically as well as experimentally, but should be further studied to fully understand its mechanism, useful for practical device applications. Especially, there has been no observation about light-induced NDR (LNDR) in graphene-related structures despite very few reports on the LNDR in GaAs-based heterostructures. Here, we report first observation of LNDR in graphene/Si quantum dots-embedded SiO2 (SQDs:SiO2) multilayers (MLs) tunneling diodes. The LNDR strongly depends on temperature (T) as well as on SQD size, and the T dependence is consistent with photocurrent (PC)-decay behaviors. With increasing light power, the PC-voltage curves are more structured with peak-to-valley ratios over 2 at room temperature. The physical mechanism of the LNDR, governed by resonant tunneling of charge carriers through the minibands formed across the graphene/SQDs:SiO2 MLs and by their nonresonant phonon-assisted tunneling, is discussed based on theoretical considerations. PMID:27465107

  2. Light-induced negative differential resistance in graphene/Si-quantum-dot tunneling diodes.

    PubMed

    Lee, Kyeong Won; Jang, Chan Wook; Shin, Dong Hee; Kim, Jong Min; Kang, Soo Seok; Lee, Dae Hun; Kim, Sung; Choi, Suk-Ho; Hwang, Euyheon

    2016-07-28

    One of the interesing tunneling phenomena is negative differential resistance (NDR), the basic principle of resonant-tunneling diodes. NDR has been utilized in various semiconductor devices such as frequency multipliers, oscillators, relfection amplifiers, logic switches, and memories. The NDR in graphene has been also reported theoretically as well as experimentally, but should be further studied to fully understand its mechanism, useful for practical device applications. Especially, there has been no observation about light-induced NDR (LNDR) in graphene-related structures despite very few reports on the LNDR in GaAs-based heterostructures. Here, we report first observation of LNDR in graphene/Si quantum dots-embedded SiO2 (SQDs:SiO2) multilayers (MLs) tunneling diodes. The LNDR strongly depends on temperature (T) as well as on SQD size, and the T dependence is consistent with photocurrent (PC)-decay behaviors. With increasing light power, the PC-voltage curves are more structured with peak-to-valley ratios over 2 at room temperature. The physical mechanism of the LNDR, governed by resonant tunneling of charge carriers through the minibands formed across the graphene/SQDs:SiO2 MLs and by their nonresonant phonon-assisted tunneling, is discussed based on theoretical considerations.

  3. Vibrational Properties of Hydrogen-Bonded Systems Using the Multireference Generalization to the "On-the-Fly" Electronic Structure within Quantum Wavepacket ab Initio Molecular Dynamics (QWAIMD).

    PubMed

    Li, Junjie; Li, Xiaohu; Iyengar, Srinivasan S

    2014-06-10

    We discuss a multiconfigurational treatment of the "on-the-fly" electronic structure within the quantum wavepacket ab initio molecular dynamics (QWAIMD) method for coupled treatment of quantum nuclear effects with electronic structural effects. Here, multiple single-particle electronic density matrices are simultaneously propagated with a quantum nuclear wavepacket and other classical nuclear degrees of freedom. The multiple density matrices are coupled through a nonorthogonal configuration interaction (NOCI) procedure to construct the instantaneous potential surface. An adaptive-mesh-guided set of basis functions composed of Gaussian primitives are used to simplify the electronic structure calculations. Specifically, with the replacement of the atom-centered basis functions positioned on the centers of the quantum-mechanically treated nuclei by a mesh-guided band of basis functions, the two-electron integrals used to compute the electronic structure potential surface become independent of the quantum nuclear variable and hence reusable along the entire Cartesian grid representing the quantum nuclear coordinates. This reduces the computational complexity involved in obtaining a potential surface and facilitates the interpretation of the individual density matrices as representative diabatic states. The parametric nuclear position dependence of the diabatic states is evaluated at the initial time-step using a Shannon-entropy-based sampling function that depends on an approximation to the quantum nuclear wavepacket and the potential surface. This development is meant as a precursor to an on-the-fly fully multireference electronic structure procedure embedded, on-the-fly, within a quantum nuclear dynamics formalism. We benchmark the current development by computing structural, dynamic, and spectroscopic features for a series of bihalide hydrogen-bonded systems: FHF(-), ClHCl(-), BrHBr(-), and BrHCl(-). We find that the donor-acceptor structural features are in good agreement with experiments. Spectroscopic features are computed using a unified velocity/flux autocorrelation function and include vibrational fundamentals and combination bands. These agree well with experiments and other theories.

  4. Multipulse addressing of a Raman quantum memory: configurable beam splitting and efficient readout.

    PubMed

    Reim, K F; Nunn, J; Jin, X-M; Michelberger, P S; Champion, T F M; England, D G; Lee, K C; Kolthammer, W S; Langford, N K; Walmsley, I A

    2012-06-29

    Quantum memories are vital to the scalability of photonic quantum information processing (PQIP), since the storage of photons enables repeat-until-success strategies. On the other hand, the key element of all PQIP architectures is the beam splitter, which allows us to coherently couple optical modes. Here, we show how to combine these crucial functionalities by addressing a Raman quantum memory with multiple control pulses. The result is a coherent optical storage device with an extremely large time bandwidth product, that functions as an array of dynamically configurable beam splitters, and that can be read out with arbitrarily high efficiency. Networks of such devices would allow fully scalable PQIP, with applications in quantum computation, long distance quantum communications and quantum metrology.

  5. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    PubMed

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  6. Quantum simulations with noisy quantum computers

    NASA Astrophysics Data System (ADS)

    Gambetta, Jay

    Quantum computing is a new computational paradigm that is expected to lie beyond the standard model of computation. This implies a quantum computer can solve problems that can't be solved by a conventional computer with tractable overhead. To fully harness this power we need a universal fault-tolerant quantum computer. However the overhead in building such a machine is high and a full solution appears to be many years away. Nevertheless, we believe that we can build machines in the near term that cannot be emulated by a conventional computer. It is then interesting to ask what these can be used for. In this talk we will present our advances in simulating complex quantum systems with noisy quantum computers. We will show experimental implementations of this on some small quantum computers.

  7. Quantum Information in Non-physics Departments at Liberal Arts Colleges

    NASA Astrophysics Data System (ADS)

    Westmoreland, Michael

    2012-02-01

    Quantum information and quantum computing have changed our thinking about the basic concepts of quantum physics. These fields have also introduced exciting new applications of quantum mechanics such as quantum cryptography and non-interactive measurement. It is standard to teach such topics only to advanced physics majors who have completed coursework in quantum mechanics. Recent encounters with teaching quantum cryptography to non-majors and a bout of textbook-writing suggest strategies for teaching this interesting material to those without the standard quantum mechanics background. This talk will share some of those strategies.

  8. Development and validation of an achievement test in introductory quantum mechanics: The Quantum Mechanics Visualization Instrument (QMVI)

    NASA Astrophysics Data System (ADS)

    Cataloglu, Erdat

    The purpose of this study was to construct a valid and reliable multiple-choice achievement test to assess students' understanding of core concepts of introductory quantum mechanics. Development of the Quantum Mechanics Visualization Instrument (QMVI) occurred across four successive semesters in 1999--2001. During this time 213 undergraduate and graduate students attending the Pennsylvania State University (PSU) at University Park and Arizona State University (ASU) participated in this development and validation study. Participating students were enrolled in four distinct groups of courses: Modern Physics, Undergraduate Quantum Mechanics, Graduate Quantum Mechanics, and Chemistry Quantum Mechanics. Expert panels of professors of physics experienced in teaching quantum mechanics courses and graduate students in physics and science education established the core content and assisted in the validating of successive versions of the 24-question QMVI. Instrument development was guided by procedures outlined in the Standards for Educational and Psychological Testing (AERA-APA-NCME, 1999). Data gathered in this study provided information used in the development of successive versions of the QMVI. Data gathered in the final phase of administration of the QMVI also provided evidence that the intended score interpretation of the QMVI achievement test is valid and reliable. A moderate positive correlation coefficient of 0.49 was observed between the students' QMVI scores and their confidence levels. Analyses of variance indicated that students' scores in Graduate Quantum Mechanics and Undergraduate Quantum Mechanics courses were significantly higher than the mean scores of students in Modern Physics and Chemistry Quantum Mechanics courses (p < 0.05). That finding is consistent with the additional understanding and experience that should be anticipated in graduate students and junior-senior level students over sophomore physics majors and majors in another field. The moderate positive correlation coefficient of 0.42 observed between students' QMVI scores and their final course grades was also consistent with expectations in a valid instrument. In addition, the Cronbach-alpha reliability coefficient of the QMVI was found to be 0.82. Limited findings were drawn on students' understanding of introductory quantum mechanics concepts. Data suggested that the construct of quantum mechanics understanding is most likely multidimensional and the Main Topic defined as "Quantum Mechanics Postulates" may be an especially important factor for students in acquiring a successful understanding of quantum mechanics.

  9. Theory of the Decoherence Effect in Finite and Infinite Open Quantum Systems Using the Algebraic Approach

    NASA Astrophysics Data System (ADS)

    Blanchard, Philippe; Hellmich, Mario; Ługiewicz, Piotr; Olkiewicz, Robert

    Quantum mechanics is the greatest revision of our conception of the character of the physical world since Newton. Consequently, David Hilbert was very interested in quantum mechanics. He and John von Neumann discussed it frequently during von Neumann's residence in Göttingen. He published in 1932 his book Mathematical Foundations of Quantum Mechanics. In Hilbert's opinion it was the first exposition of quantum mechanics in a mathematically rigorous way. The pioneers of quantum mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor much interest in it. Conceptually, quantum theory as developed by Bohr and Heisenberg is based on the positivism of Mach as it describes only observable quantities. It first emerged as a result of experimental data in the form of statistical observations of quantum noise, the basic concept of quantum probability.

  10. Symmetrically private information retrieval based on blind quantum computing

    NASA Astrophysics Data System (ADS)

    Sun, Zhiwei; Yu, Jianping; Wang, Ping; Xu, Lingling

    2015-05-01

    Universal blind quantum computation (UBQC) is a new secure quantum computing protocol which allows a user Alice who does not have any sophisticated quantum technology to delegate her computing to a server Bob without leaking any privacy. Using the features of UBQC, we propose a protocol to achieve symmetrically private information retrieval, which allows a quantum limited Alice to query an item from Bob with a fully fledged quantum computer; meanwhile, the privacy of both parties is preserved. The security of our protocol is based on the assumption that malicious Alice has no quantum computer, which avoids the impossibility proof of Lo. For the honest Alice, she is almost classical and only requires minimal quantum resources to carry out the proposed protocol. Therefore, she does not need any expensive laboratory which can maintain the coherence of complicated quantum experimental setups.

  11. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom

    PubMed Central

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-01-01

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process. PMID:27321821

  12. On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom.

    PubMed

    Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can

    2016-06-20

    In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process.

  13. From classical to quantum mechanics: ``How to translate physical ideas into mathematical language''

    NASA Astrophysics Data System (ADS)

    Bergeron, H.

    2001-09-01

    Following previous works by E. Prugovečki [Physica A 91A, 202 (1978) and Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)] on common features of classical and quantum mechanics, we develop a unified mathematical framework for classical and quantum mechanics (based on L2-spaces over classical phase space), in order to investigate to what extent quantum mechanics can be obtained as a simple modification of classical mechanics (on both logical and analytical levels). To obtain this unified framework, we split quantum theory in two parts: (i) general quantum axiomatics (a system is described by a state in a Hilbert space, observables are self-adjoints operators, and so on) and (ii) quantum mechanics proper that specifies the Hilbert space as L2(Rn); the Heisenberg rule [pi,qj]=-iℏδij with p=-iℏ∇, the free Hamiltonian H=-ℏ2Δ/2m and so on. We show that general quantum axiomatics (up to a supplementary "axiom of classicity") can be used as a nonstandard mathematical ground to formulate physical ideas and equations of ordinary classical statistical mechanics. So, the question of a "true quantization" with "ℏ" must be seen as an independent physical problem not directly related with quantum formalism. At this stage, we show that this nonstandard formulation of classical mechanics exhibits a new kind of operation that has no classical counterpart: this operation is related to the "quantization process," and we show why quantization physically depends on group theory (the Galilei group). This analytical procedure of quantization replaces the "correspondence principle" (or canonical quantization) and allows us to map classical mechanics into quantum mechanics, giving all operators of quantum dynamics and the Schrödinger equation. The great advantage of this point of view is that quantization is based on concrete physical arguments and not derived from some "pure algebraic rule" (we exhibit also some limit of the correspondence principle). Moreover spins for particles are naturally generated, including an approximation of their interaction with magnetic fields. We also recover by this approach the semi-classical formalism developed by E. Prugovečki [Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)].

  14. Experimental preparation and characterization of four-dimensional quantum states using polarization and time-bin modes of a single photon

    NASA Astrophysics Data System (ADS)

    Yoo, Jinwon; Choi, Yujun; Cho, Young-Wook; Han, Sang-Wook; Lee, Sang-Yun; Moon, Sung; Oh, Kyunghwan; Kim, Yong-Su

    2018-07-01

    We present a detailed method to prepare and characterize four-dimensional pure quantum states or ququarts using polarization and time-bin modes of a single-photon. In particular, we provide a simple method to generate an arbitrary pure ququart and fully characterize the state with quantum state tomography. We also verify the reliability of the recipe by showing experimental preparation and characterization of 20 ququart states in mutually unbiased bases. As qudits provide superior properties over qubits in many fundamental tests of quantum physics and applications in quantum information processing, the presented method will be useful for photonic quantum information science.

  15. Evolution equation for quantum entanglement

    NASA Astrophysics Data System (ADS)

    Konrad, Thomas; de Melo, Fernando; Tiersch, Markus; Kasztelan, Christian; Aragão, Adriano; Buchleitner, Andreas

    2008-02-01

    Quantum information technology largely relies on a precious and fragile resource, quantum entanglement, a highly non-trivial manifestation of the coherent superposition of states of composite quantum systems. However, our knowledge of the time evolution of this resource under realistic conditions-that is, when corrupted by environment-induced decoherence-is so far limited, and general statements on entanglement dynamics in open systems are scarce. Here we prove a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement on passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.

  16. Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth.

    PubMed

    Lignos, Ioannis; Maceiczyk, Richard; deMello, Andrew J

    2017-05-16

    The controlled and reproducible formation of colloidal semiconductor nanocrystals (or quantum dots) is of central importance in nanoscale science and technology. The tunable size- and shape-dependent properties of such materials make them ideal candidates for the development of efficient and low-cost displays, solar cells, light-emitting devices, and catalysts. The formidable difficulties associated with the macroscale preparation of semiconductor nanocrystals (possessing bespoke optical and chemical properties) result from the fact that underlying reaction mechanisms are complex and that the reactive environment is difficult to control. Automated microfluidic reactors coupled with monitoring systems and optimization algorithms aim to elucidate complex reaction mechanisms that govern both nucleation and growth of nanocrystals. Such platforms are ideally suited for the efficient optimization of reaction parameters, assuring the reproducible synthesis of nanocrystals with user-defined properties. This Account aims to inform the nanomaterials community about how microfluidic technologies can supplement flask experimentation for the ensemble investigation of formation mechanisms and design of semiconductor nanocrystals. We present selected studies outlining the preparation of quantum dots using microfluidic systems with integrated analytics. Such microfluidic reaction systems leverage the ability to extract real-time information regarding optical, structural, and compositional characteristics of quantum dots during nucleation and growth stages. The Account further highlights our recent research activities focused on the development and application of droplet-based microfluidics with integrated optical detection systems for the efficient and rapid screening of reaction conditions and a better understanding of the mechanisms of quantum dot synthesis. We describe the features and operation of fully automated microfluidic reactors and their subsequent application to high-throughput parametric screening of metal chalcogenides (CdSe, PbS, PbSe, CdSeTe), ternary and core/shell heavy metal-free quantum dots (CuInS 2 , CuInS 2 /ZnS), and all-inorganic perovskite nanocrystals (CsPbX 3 , X = Cl, Br, I) syntheses. Critically, concurrent absorption and photoluminescence measurements on millisecond to second time scales allow the extraction of basic parameters governing nanocrystal formation. Moreover, experimental data obtained from such microfluidic platforms can be directly supported by theoretical models of nucleation and growth. To this end, we also describe the use of metamodeling algorithms able to accurately predict optimized conditions of CdSe synthesis using a minimal number of sample parameters. Importantly, we discuss future challenges that must be addressed before microfluidic technologies are in a position to be widely adopted for the on-demand formation of nanocrystals. From a technology perspective, these challenges include the development of novel engineering platforms for the formation of complex architectures, the integration of monitoring systems able to harvest photophysical and structural information, the incorporation of continuous purification systems, and the application of optimization algorithms to multicomponent quantum dot systems.

  17. Advanced Concepts in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George

    2014-11-01

    Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.

  18. Fractional Quantum Hall Effect in n = 0 Landau Band of Graphene with Chern Number Matrix

    NASA Astrophysics Data System (ADS)

    Kudo, Koji; Hatsugai, Yasuhiro

    2018-06-01

    Fully taking into account the honeycomb lattice structure, fractional quantum Hall states of graphene are considered by a pseudopotential projected into the n = 0 Landau band. By using chirality as an internal degree of freedom, the Chern number matrices are defined and evaluated numerically. Quantum phase transition induced by changing a range of the interaction is demonstrated that is associated with chirality ferromagnetism. The chirality-unpolarized ground state is consistent with the Halperin 331 state of the bilayer quantum Hall system.

  19. Future in biomolecular computation

    NASA Astrophysics Data System (ADS)

    Wimmer, E.

    1988-01-01

    Large-scale computations for biomolecules are dominated by three levels of theory: rigorous quantum mechanical calculations for molecules with up to about 30 atoms, semi-empirical quantum mechanical calculations for systems with up to several hundred atoms, and force-field molecular dynamics studies of biomacromolecules with 10,000 atoms and more including surrounding solvent molecules. It can be anticipated that increased computational power will allow the treatment of larger systems of ever growing complexity. Due to the scaling of the computational requirements with increasing number of atoms, the force-field approaches will benefit the most from increased computational power. On the other hand, progress in methodologies such as density functional theory will enable us to treat larger systems on a fully quantum mechanical level and a combination of molecular dynamics and quantum mechanics can be envisioned. One of the greatest challenges in biomolecular computation is the protein folding problem. It is unclear at this point, if an approach with current methodologies will lead to a satisfactory answer or if unconventional, new approaches will be necessary. In any event, due to the complexity of biomolecular systems, a hierarchy of approaches will have to be established and used in order to capture the wide ranges of length-scales and time-scales involved in biological processes. In terms of hardware development, speed and power of computers will increase while the price/performance ratio will become more and more favorable. Parallelism can be anticipated to become an integral architectural feature in a range of computers. It is unclear at this point, how fast massively parallel systems will become easy enough to use so that new methodological developments can be pursued on such computers. Current trends show that distributed processing such as the combination of convenient graphics workstations and powerful general-purpose supercomputers will lead to a new style of computing in which the calculations are monitored and manipulated as they proceed. The combination of a numeric approach with artificial-intelligence approaches can be expected to open up entirely new possibilities. Ultimately, the most exciding aspect of the future in biomolecular computing will be the unexpected discoveries.

  20. The role of probabilities in physics.

    PubMed

    Le Bellac, Michel

    2012-09-01

    Although modern physics was born in the XVIIth century as a fully deterministic theory in the form of Newtonian mechanics, the use of probabilistic arguments turned out later on to be unavoidable. Three main situations can be distinguished. (1) When the number of degrees of freedom is very large, on the order of Avogadro's number, a detailed dynamical description is not possible, and in fact not useful: we do not care about the velocity of a particular molecule in a gas, all we need is the probability distribution of the velocities. This statistical description introduced by Maxwell and Boltzmann allows us to recover equilibrium thermodynamics, gives a microscopic interpretation of entropy and underlies our understanding of irreversibility. (2) Even when the number of degrees of freedom is small (but larger than three) sensitivity to initial conditions of chaotic dynamics makes determinism irrelevant in practice, because we cannot control the initial conditions with infinite accuracy. Although die tossing is in principle predictable, the approach to chaotic dynamics in some limit implies that our ignorance of initial conditions is translated into a probabilistic description: each face comes up with probability 1/6. (3) As is well-known, quantum mechanics is incompatible with determinism. However, quantum probabilities differ in an essential way from the probabilities introduced previously: it has been shown from the work of John Bell that quantum probabilities are intrinsic and cannot be given an ignorance interpretation based on a hypothetical deeper level of description. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. On-Chip Single-Plasmon Nanocircuit Driven by a Self-Assembled Quantum Dot.

    PubMed

    Wu, Xiaofei; Jiang, Ping; Razinskas, Gary; Huo, Yongheng; Zhang, Hongyi; Kamp, Martin; Rastelli, Armando; Schmidt, Oliver G; Hecht, Bert; Lindfors, Klas; Lippitz, Markus

    2017-07-12

    Quantum photonics holds great promise for future technologies such as secure communication, quantum computation, quantum simulation, and quantum metrology. An outstanding challenge for quantum photonics is to develop scalable miniature circuits that integrate single-photon sources, linear optical components, and detectors on a chip. Plasmonic nanocircuits will play essential roles in such developments. However, for quantum plasmonic circuits, integration of stable, bright, and narrow-band single photon sources in the structure has so far not been reported. Here we present a plasmonic nanocircuit driven by a self-assembled GaAs quantum dot. Through a planar dielectric-plasmonic hybrid waveguide, the quantum dot efficiently excites narrow-band single plasmons that are guided in a two-wire transmission line until they are converted into single photons by an optical antenna. Our work demonstrates the feasibility of fully on-chip plasmonic nanocircuits for quantum optical applications.

  2. Quantum Mechanics From the Cradle?

    ERIC Educational Resources Information Center

    Martin, John L.

    1974-01-01

    States that the major problem in learning quantum mechanics is often the student's ignorance of classical mechanics and that one conceptual hurdle in quantum mechanics is its statistical nature, in contrast to the determinism of classical mechanics. (MLH)

  3. Dichromatic Langmuir waves in degenerate quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubinov, A. E., E-mail: dubinov-ae@yandex.ru; Kitayev, I. N.

    2015-06-15

    Langmuir waves in fully degenerate quantum plasma are considered. It is shown that, in the linear approximation, Langmuir waves are always dichromatic. The low-frequency component of the waves corresponds to classical Langmuir waves, while the high-frequency component, to free-electron quantum oscillations. The nonlinear problem on the profile of dichromatic Langmuir waves is solved. Solutions in the form of a superposition of waves and in the form of beatings of its components are obtained.

  4. Reply to "Comment on 'Fractional quantum mechanics' and 'Fractional Schrödinger equation' ".

    PubMed

    Laskin, Nick

    2016-06-01

    The fractional uncertainty relation is a mathematical formulation of Heisenberg's uncertainty principle in the framework of fractional quantum mechanics. Two mistaken statements presented in the Comment have been revealed. The origin of each mistaken statement has been clarified and corrected statements have been made. A map between standard quantum mechanics and fractional quantum mechanics has been presented to emphasize the features of fractional quantum mechanics and to avoid misinterpretations of the fractional uncertainty relation. It has been shown that the fractional probability current equation is correct in the area of its applicability. Further studies have to be done to find meaningful quantum physics problems with involvement of the fractional probability current density vector and the extra term emerging in the framework of fractional quantum mechanics.

  5. Quantum Optical Implementations of Current Quantum Computing Paradigms

    DTIC Science & Technology

    2005-05-01

    Conferences and Proceedings: The results were presented at several conferences. These include: 1. M. O. Scully, " Foundations of Quantum Mechanics ", in...applications have revealed a strong connection between the fundamental aspects of quantum mechanics that governs physical systems and the informational...could be solved in polynomial time using quantum computers. Another set of problems where quantum mechanics can carry out computations substantially

  6. Axioms for quantum mechanics: relativistic causality, retrocausality, and the existence of a classical limit

    NASA Astrophysics Data System (ADS)

    Rohrlich, Daniel

    Y. Aharonov and A. Shimony both conjectured that two axioms - relativistic causality (``no superluminal signalling'') and nonlocality - so nearly contradict each other that only quantum mechanics reconciles them. Can we indeed derive quantum mechanics, at least in part, from these two axioms? No: ``PR-box'' correlations show that quantum correlations are not the most nonlocal correlations consistent with relativistic causality. Here we replace ``nonlocality'' with ``retrocausality'' and supplement the axioms of relativistic causality and retrocausality with a natural and minimal third axiom: the existence of a classical limit, in which macroscopic observables commute. That is, just as quantum mechanics has a classical limit, so must any generalization of quantum mechanics. In this limit, PR-box correlations violaterelativistic causality. Generalized to all stronger-than-quantum bipartite correlations, this result is a derivation of Tsirelson's bound (a theorem of quantum mechanics) from the three axioms of relativistic causality, retrocausality and the existence of a classical limit. Although the derivation does not assume quantum mechanics, it points to the Hilbert space structure that underlies quantum correlations. I thank the John Templeton Foundation (Project ID 43297) and the Israel Science Foundation (Grant No. 1190/13) for support.

  7. Insights into Teaching Quantum Mechanics in Secondary and Lower Undergraduate Education

    ERIC Educational Resources Information Center

    Krijtenburg-Lewerissa, K.; Pol, H. J.; Brinkman, A.; van Joolingen, W. R.

    2017-01-01

    This study presents a review of the current state of research on teaching quantum mechanics in secondary and lower undergraduate education. A conceptual approach to quantum mechanics is being implemented in more and more introductory physics courses around the world. Because of the differences between the conceptual nature of quantum mechanics and…

  8. Drama in Dynamics: Boom, Splash, and Speed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Netzloff, Heather Marie

    2004-12-19

    The full nature of chemistry and physics cannot be captured by static calculations alone. Dynamics calculations allow the simulation of time-dependent phenomena. This facilitates both comparisons with experimental data and the prediction and interpretation of details not easily obtainable from experiments. Simulations thus provide a direct link between theory and experiment, between microscopic details of a system and macroscopic observed properties. Many types of dynamics calculations exist. The most important distinction between the methods and the decision of which method to use can be described in terms of the size and type of molecule/reaction under consideration and the type andmore » level of accuracy required in the final properties of interest. These considerations must be balanced with available computational codes and resources as simulations to mimic ''real-life'' may require many time steps. As indicated in the title, the theme of this thesis is dynamics. The goal is to utilize the best type of dynamics for the system under study while trying to perform dynamics in the most accurate way possible. As a quantum chemist, this involves some level of first principles calculations by default. Very accurate calculations of small molecules and molecular systems are now possible with relatively high-level ab initio quantum chemistry. For example, a quantum chemical potential energy surface (PES) can be developed ''on-the-fly'' with dynamic reaction path (DRP) methods. In this way a classical trajectory is developed without prior knowledge of the PES. In order to treat solvation processes and the condensed phase, large numbers of molecules are required, especially in predicting bulk behavior. The Effective Fragment Potential (EFP) method for solvation decreases the cost of a fully quantum mechanical calculation by dividing a chemical system into an ab initio region that contains the solute and an ''effective fragment'' region that contains the remaining solvent molecules. But, despite the reduced cost relative to fully QM calculations, the EFP method, due to its complex, QM-based potential, does require more computation time than simple interaction potentials, especially when the method is used for large scale molecular dynamics simulations. Thus, the EFP method was parallelized to facilitate these calculations within the quantum chemistry program GAMESS. The EFP method provides relative energies and structures that are in excellent agreement with the analogous fully quantum results for small water clusters. The ability of the method to predict bulk water properties with a comparable accuracy is assessed by performing EFP molecular dynamics simulations. Molecular dynamics simulations can provide properties that are directly comparable with experimental results, for example radial distribution functions. The molecular PES is a fundamental starting point for chemical reaction dynamics. Many methods can be used to obtain a PES; for example, assuming a global functional form for the PES or, as mentioned above, performing ''on-the-fly'' dynamics with Al or semi-empirical calculations at every molecular configuration. But as the size of the system grows, using electronic structure theory to build a PES and, therefore, study reaction dynamics becomes virtually impossible. The program Grow builds a PES as an interpolation of Al data; the goal is to attempt to produce an accurate PES with the smallest number of Al calculations. The Grow-GAMESS interface was developed to obtain the Al data from GAMESS. Classical or quantum dynamics can be performed on the resulting surface. The interface includes the novel capability to build multi-reference PESs; these types of calculations are applicable to problems ranging from atmospheric chemistry to photochemical reaction mechanisms in organic and inorganic chemistry to fundamental biological phenomena such as photosynthesis.« less

  9. Investigating and Improving Student Understanding of Key Ideas in Quantum Mechanics throughout Instruction

    NASA Astrophysics Data System (ADS)

    Emigh, Paul Jeffrey

    This dissertation describes research on student understanding of quantum mechanics across multiple levels of instruction. The primary focus has been to identify patterns in student reasoning related to key concepts in quantum mechanics. The specific topics include quantum measurements, time dependence, vector spaces, and angular momentum. The research has spanned a variety of different quantum courses intended for introductory physics students, upper-division physics majors, and graduate students in physics. The results of this research have been used to develop a set of curriculum, Tutorials in Physics: Quantum Mechanics, for addressing the most persistent student difficulties. We document both the development of this curriculum and how it has impacted and improved student understanding of quantum mechanics.

  10. Quantum mechanics: The Bayesian theory generalized to the space of Hermitian matrices

    NASA Astrophysics Data System (ADS)

    Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco

    2016-10-01

    We consider the problem of gambling on a quantum experiment and enforce rational behavior by a few rules. These rules yield, in the classical case, the Bayesian theory of probability via duality theorems. In our quantum setting, they yield the Bayesian theory generalized to the space of Hermitian matrices. This very theory is quantum mechanics: in fact, we derive all its four postulates from the generalized Bayesian theory. This implies that quantum mechanics is self-consistent. It also leads us to reinterpret the main operations in quantum mechanics as probability rules: Bayes' rule (measurement), marginalization (partial tracing), independence (tensor product). To say it with a slogan, we obtain that quantum mechanics is the Bayesian theory in the complex numbers.

  11. Teaching Quantum Mechanics on an Introductory Level.

    ERIC Educational Resources Information Center

    Muller, Rainer; Wiesner, Hartmut

    2002-01-01

    Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)

  12. Gaussian effective potential: Quantum mechanics

    NASA Astrophysics Data System (ADS)

    Stevenson, P. M.

    1984-10-01

    We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.

  13. Facets of contextual realism in quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Alok Kumar; Home, Dipankar

    2011-09-23

    In recent times, there is an upsurge of interest in demonstrating the quantum contextuality. In this proceedings, we explore the two different forms of arguments that have been used for showing the contextual character of quantum mechanics. First line of study concerns the violations of the noncontextual realist models by quantum mechanics, where second line of study that is qualitatively distinct from the earlier one, demonstrates the contextuality within the formalism of quantum mechanics.

  14. Trapping photons on the line: controllable dynamics of a quantum walk

    NASA Astrophysics Data System (ADS)

    Xue, Peng; Qin, Hao; Tang, Bao

    2014-04-01

    Optical interferometers comprising birefringent-crystal beam displacers, wave plates, and phase shifters serve as stable devices for simulating quantum information processes such as heralded coined quantum walks. Quantum walks are important for quantum algorithms, universal quantum computing circuits, quantum transport in complex systems, and demonstrating intriguing nonlinear dynamical quantum phenomena. We introduce fully controllable polarization-independent phase shifters in optical pathes in order to realize site-dependent phase defects. The effectiveness of our interferometer is demonstrated through realizing single-photon quantum-walk dynamics in one dimension. By applying site-dependent phase defects, the translational symmetry of an ideal standard quantum walk is broken resulting in localization effect in a quantum walk architecture. The walk is realized for different site-dependent phase defects and coin settings, indicating the strength of localization signature depends on the level of phase due to site-dependent phase defects and coin settings and opening the way for the implementation of a quantum-walk-based algorithm.

  15. Secret Sharing of a Quantum State.

    PubMed

    Lu, He; Zhang, Zhen; Chen, Luo-Kan; Li, Zheng-Da; Liu, Chang; Li, Li; Liu, Nai-Le; Ma, Xiongfeng; Chen, Yu-Ao; Pan, Jian-Wei

    2016-07-15

    Secret sharing of a quantum state, or quantum secret sharing, in which a dealer wants to share a certain amount of quantum information with a few players, has wide applications in quantum information. The critical criterion in a threshold secret sharing scheme is confidentiality: with less than the designated number of players, no information can be recovered. Furthermore, in a quantum scenario, one additional critical criterion exists: the capability of sharing entangled and unknown quantum information. Here, by employing a six-photon entangled state, we demonstrate a quantum threshold scheme, where the shared quantum secrecy can be efficiently reconstructed with a state fidelity as high as 93%. By observing that any one or two parties cannot recover the secrecy, we show that our scheme meets the confidentiality criterion. Meanwhile, we also demonstrate that entangled quantum information can be shared and recovered via our setting, which shows that our implemented scheme is fully quantum. Moreover, our experimental setup can be treated as a decoding circuit of the five-qubit quantum error-correcting code with two erasure errors.

  16. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.

    PubMed

    Pelc, Jason S; Yu, Leo; De Greve, Kristiaan; McMahon, Peter L; Natarajan, Chandra M; Esfandyarpour, Vahid; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Yamamoto, Yoshihisa; Fejer, M M

    2012-12-03

    Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-μm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-μm quantum channels.

  17. Revisiting the quantum Szilard engine with fully quantum considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hai; School of Information and Electronics Engineering, Shandong Institute of Business and Technology, Yantai 264000; Zou, Jian, E-mail: zoujian@bit.edu.cn

    2012-12-15

    By considering level shifting during the insertion process we revisit the quantum Szilard engine (QSZE) with fully quantum consideration. We derive the general expressions of the heat absorbed from thermal bath and the total work done to the environment by the system in a cycle with two different cyclic strategies. We find that only the quantum information contributes to the absorbed heat, and the classical information acts like a feedback controller and has no direct effect on the absorbed heat. This is the first demonstration of the different effects of quantum information and classical information for extracting heat from themore » bath in the QSZE. Moreover, when the well width L{yields}{infinity} or the temperature of the bath T{yields}{infinity} the QSZE reduces to the classical Szilard engine (CSZE), and the total work satisfies the relation W{sub tot}=k{sub B}Tln2 as obtained by Sang Wook Kim et al. [S.W. Kim, T. Sagawa, S. De Liberato, M. Ueda, Phys. Rev. Lett. 106 (2011) 070401] for one particle case. - Highlights: Black-Right-Pointing-Pointer For the first time analyze the QSZE by considering energy level shifts. Black-Right-Pointing-Pointer Find different roles played by classical and quantum information in the QSZE. Black-Right-Pointing-Pointer The amount of work extracted depends on the cyclic strategies of the QSZE. Black-Right-Pointing-Pointer Verify that the QSZE will reduce to the CSZE in the classical limits.« less

  18. Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Lemr, Karel; Černoch, Antonín; Miranowicz, Adam

    2017-03-01

    We propose and experimentally implement an efficient procedure based on entanglement swapping to determine the Bell nonlocality measure of Horodecki et al. [Phys. Lett. A 200, 340 (1995), 10.1016/0375-9601(95)00214-N] and the fully entangled fraction of Bennett et al. [Phys. Rev. A 54, 3824 (1996), 10.1103/PhysRevA.54.3824] of an arbitrary two-qubit polarization-encoded state. The nonlocality measure corresponds to the amount of the violation of the Clauser-Horne-Shimony-Holt (CHSH) optimized over all measurement settings. By using simultaneously two copies of a given state, we measure directly only six parameters. This is an experimental determination of these quantities without quantum state tomography or continuous monitoring of all measurement bases in the usual CHSH inequality tests. We analyze how well the measured degrees of Bell nonlocality and other entanglement witnesses (including the fully entangled fraction and a nonlinear entropic witness) of an arbitrary two-qubit state can estimate its entanglement. In particular, we measure these witnesses and estimate the negativity of various two-qubit Werner states. Our approach could especially be useful for quantum communication protocols based on entanglement swapping.

  19. Local quantum measurement and no-signaling imply quantum correlations.

    PubMed

    Barnum, H; Beigi, S; Boixo, S; Elliott, M B; Wehner, S

    2010-04-09

    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.

  20. The Unruh quantum Otto engine

    NASA Astrophysics Data System (ADS)

    Arias, Enrique; de Oliveira, Thiago R.; Sarandy, M. S.

    2018-02-01

    We introduce a quantum heat engine performing an Otto cycle by using the thermal properties of the quantum vacuum. Since Hawking and Unruh, it has been established that the vacuum space, either near a black hole or for an accelerated observer, behaves as a bath of thermal radiation. In this work, we present a fully quantum Otto cycle, which relies on the Unruh effect for a single quantum bit (qubit) in contact with quantum vacuum fluctuations. By using the notions of quantum thermodynamics and perturbation theory we obtain that the quantum vacuum can exchange heat and produce work on the qubit. Moreover, we obtain the efficiency and derive the conditions to have both a thermodynamic and a kinematic cycle in terms of the initial populations of the excited state, which define a range of allowed accelerations for the Unruh engine.

  1. Open Quantum Walks and Dissipative Quantum Computing

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco

    2012-02-01

    Open Quantum Walks (OQWs) have been recently introduced as quantum Markov chains on graphs [S. Attal, F. Petruccione, C. Sabot, and I. Sinayskiy, E-print: http://hal.archives-ouvertes.fr/hal-00581553/fr/]. The formulation of the OQWs is exclusively based upon the non-unitary dynamics induced by the environment. It will be shown that OQWs are a very useful tool for the formulation of dissipative quantum computing and quantum state preparation. In particular, it will be shown how to implement single qubit gates and the CNOT gate as OQWs on fully connected graphs. Also, OQWS make possible the dissipative quantum state preparation of arbitrary single qubit states and of all two-qubit Bell states. Finally, it will be shown how to reformulate efficiently a discrete time version of dissipative quantum computing in the language of OQWs.

  2. Unique Properties and Prospects: Quantum Theory of the Orbital Angular Momentum of Ince-Gauss Beams

    NASA Astrophysics Data System (ADS)

    Plick, William; Krenn, Mario; Fickler, Robert; Ramelow, Sven; Zeilinger, Anton

    2012-02-01

    The Ince-Gauss modes represent a new addition to the standard solutions to the paraxial wave equation. Parametrized by the ellipticity of the beam, they span the solution space between the Hermite-Gauss and the Laguerre-Gauss modes. These beams may be decomposed in either basis, and single photons in the Ince-Gauss modes exist naturally as superpositions of either Laguerre-Gauss or Hermite-Gauss modes. We present the fully quantum theory of the orbital angular momentum of these beams. Interesting features that arise are: stable beams with fractional orbital angular momentum, non-monotonic behavior of the OAM with respect to ellipticity, and the possibility of orthogonal modes possessing the same OAM. We believe that these modes may open up a fully new parameter space for quantum informatics and communication, and thus are worthy of thorough study.

  3. Detection of entanglement in asymmetric quantum networks and multipartite quantum steering.

    PubMed

    Cavalcanti, D; Skrzypczyk, P; Aguilar, G H; Nery, R V; Ribeiro, P H Souto; Walborn, S P

    2015-08-03

    The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks.

  4. Continuing progress toward controlled intracellular delivery of semiconductor quantum dots

    PubMed Central

    Breger, Joyce; Delehanty, James B; Medintz, Igor L

    2015-01-01

    The biological applications of luminescent semiconductor quantum dots (QDs) continue to grow at a nearly unabated pace. This growth is driven, in part, by their unique photophysical and physicochemical properties which have allowed them to be used in many different roles in cellular biology including: as superior fluorophores for a wide variety of cellular labeling applications; as active platforms for assembly of nanoscale sensors; and, more recently, as a powerful tool to understand the mechanisms of nanoparticle mediated drug delivery. Given that controlled cellular delivery is at the intersection of all these applications, the latest progress in delivering QDs to cells is examined here. A brief discussion of relevant considerations including the importance of materials preparation and bioconjugation along with the continuing issue of endosomal sequestration is initially provided for context. Methods for the cellular delivery of QDs are then highlighted including those based on passive exposure, facilitated strategies that utilize peptides or polymers and fully active modalities such as electroporation and other mechanically based methods. Following on this, the exciting advent of QD cellular delivery using multiple or combined mechanisms is then previewed. Several recent methods reporting endosomal escape of QD materials in cells are also examined in detail with a focus on the mechanisms by which access to the cytosol is achieved. The ongoing debate over QD cytotoxicity is also discussed along with a perspective on how this field will continue to evolve in the future. PMID:25154379

  5. Experimental comparison of two quantum computing architectures.

    PubMed

    Linke, Norbert M; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A; Wright, Kenneth; Monroe, Christopher

    2017-03-28

    We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www. ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future.

  6. Quantum state transfer and controlled-phase gate on one-dimensional superconducting resonators assisted by a quantum bus.

    PubMed

    Hua, Ming; Tao, Ming-Jie; Deng, Fu-Guo

    2016-02-24

    We propose a quantum processor for the scalable quantum computation on microwave photons in distant one-dimensional superconducting resonators. It is composed of a common resonator R acting as a quantum bus and some distant resonators rj coupled to the bus in different positions assisted by superconducting quantum interferometer devices (SQUID), different from previous processors. R is coupled to one transmon qutrit, and the coupling strengths between rj and R can be fully tuned by the external flux through the SQUID. To show the processor can be used to achieve universal quantum computation effectively, we present a scheme to complete the high-fidelity quantum state transfer between two distant microwave-photon resonators and another one for the high-fidelity controlled-phase gate on them. By using the technique for catching and releasing the microwave photons from resonators, our processor may play an important role in quantum communication as well.

  7. Multiparty Quantum Key Agreement Based on Quantum Search Algorithm

    PubMed Central

    Cao, Hao; Ma, Wenping

    2017-01-01

    Quantum key agreement is an important topic that the shared key must be negotiated equally by all participants, and any nontrivial subset of participants cannot fully determine the shared key. To date, the embed modes of subkey in all the previously proposed quantum key agreement protocols are based on either BB84 or entangled states. The research of the quantum key agreement protocol based on quantum search algorithms is still blank. In this paper, on the basis of investigating the properties of quantum search algorithms, we propose the first quantum key agreement protocol whose embed mode of subkey is based on a quantum search algorithm known as Grover’s algorithm. A novel example of protocols with 5 – party is presented. The efficiency analysis shows that our protocol is prior to existing MQKA protocols. Furthermore it is secure against both external attack and internal attacks. PMID:28332610

  8. Quantum Mechanics/Molecular Mechanics Simulations Identify the Ring-Opening Mechanism of Creatininase.

    PubMed

    Jitonnom, Jitrayut; Mujika, Jon I; van der Kamp, Marc W; Mulholland, Adrian J

    2017-12-05

    Creatininase catalyzes the conversion of creatinine (a biosensor for kidney function) to creatine via a two-step mechanism: water addition followed by ring opening. Water addition is common to other known cyclic amidohydrolases, but the precise mechanism for ring opening is still under debate. The proton donor in this step is either His178 or a water molecule bound to one of the metal ions, and the roles of His178 and Glu122 are unclear. Here, the two possible reaction pathways have been fully examined by means of combined quantum mechanics/molecular mechanics simulations at the SCC-DFTB/CHARMM22 level of theory. The results indicate that His178 is the main catalytic residue for the whole reaction and explain its role as proton shuttle during the ring-opening step. In the first step, His178 provides electrostatic stabilization to the gem-diolate tetrahedral intermediate. In the second step, His178 abstracts the hydroxyl proton of the intermediate and delivers it to the cyclic amide nitrogen, leading to ring opening. The latter is the rate-limiting step with a free energy barrier of 18.5 kcal/mol, in agreement with the experiment. We find that Glu122 must be protonated during the enzyme reaction, so that it can form a stable hydrogen bond with its neighboring water molecule. Simulations of the E122Q mutant showed that this replacement disrupts the H-bond network formed by three conserved residues (Glu34, Ser78, and Glu122) and water, increasing the energy barrier. Our computational studies provide a comprehensive explanation for previous structural and kinetic observations, including why the H178A mutation causes a complete loss of activity but the E122Q mutation does not.

  9. A two-channel, spectrally degenerate polarization entangled source on chip

    NASA Astrophysics Data System (ADS)

    Sansoni, Linda; Luo, Kai Hong; Eigner, Christof; Ricken, Raimund; Quiring, Viktor; Herrmann, Harald; Silberhorn, Christine

    2017-12-01

    Integrated optics provides the platform for the experimental implementation of highly complex and compact circuits for quantum information applications. In this context integrated waveguide sources represent a powerful resource for the generation of quantum states of light due to their high brightness and stability. However, the confinement of the light in a single spatial mode limits the realization of multi-channel sources. Due to this challenge one of the most adopted sources in quantum information processes, i.e. a source which generates spectrally indistinguishable polarization entangled photons in two different spatial modes, has not yet been realized in a fully integrated platform. Here we overcome this limitation by suitably engineering two periodically poled waveguides and an integrated polarization splitter in lithium niobate. This source produces polarization entangled states with fidelity of F = 0.973 ±0.003 and a test of Bell's inequality results in a violation larger than 14 standard deviations. It can work both in pulsed and continuous wave regime. This device represents a new step toward the implementation of fully integrated circuits for quantum information applications.

  10. Cognitive Issues in Learning Advanced Physics: An Example from Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha; Zhu, Guangtian

    2009-11-01

    We are investigating cognitive issues in learning quantum mechanics in order to develop effective teaching and learning tools. The analysis of cognitive issues is particularly important for bridging the gap between the quantitative and conceptual aspects of quantum mechanics and for ensuring that the learning tools help students build a robust knowledge structure. We discuss the cognitive aspects of quantum mechanics that are similar or different from those of introductory physics and their implications for developing strategies to help students develop a good grasp of quantum mechanics.

  11. Quantum efficiency measurements of eROSITA pnCCDs

    NASA Astrophysics Data System (ADS)

    Ebermayer, Stefanie; Andritschke, Robert; Elbs, Johannes; Meidinger, Norbert; Strüder, Lothar; Hartmann, Robert; Gottwald, Alexander; Krumrey, Michael; Scholze, Frank

    2010-07-01

    For the eROSITA X-ray telescope, which is planned to be launched in 2012, detectors were developed and fabricated at the MPI Semiconductor Laboratory. The fully depleted, back-illuminated pnCCDs have an ultrathin pn-junction to improve the low-energy X-ray response function and quantum efficiency. The device thickness of 450 μm is fully sensitive to X-ray photons yielding high quantum efficiency of more than 90% at photon energies of 10 keV. An on-chip filter is deposited on top of the entrance window to suppress visible and UV light which would interfere with the X-ray observations. The pnCCD type developed for the eROSITA telescope was characterized in terms of quantum efficiency and spectral response function. The described measurements were performed in 2009 at the synchrotron radiation sources BESSY II and MLS as cooperation between the MPI Semiconductor Laboratory and the Physikalisch-Technische Bundesanstalt (PTB). Quantum efficiency measurements over a wide range of photon energies from 3 eV to 11 keV as well as spectral response measurements are presented. For X-ray energies from 3 keV to 10 keV the quantum efficiency of the CCD including on-chip filter is shown to be above 90% with an attenuation of visible light of more than five orders of magnitude. A detector response model is described and compared to the measurements.

  12. Dicke-model simulation via cavity-assisted Raman transitions

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Lee, Chern Hui; Kumar, Ravi; Arnold, K. J.; Masson, Stuart J.; Grimsmo, A. L.; Parkins, A. S.; Barrett, M. D.

    2018-04-01

    The Dicke model is of fundamental importance in quantum mechanics for understanding the collective behavior of atoms coupled to a single electromagnetic mode. Here, we demonstrate a Dicke-model simulation via cavity-assisted Raman transitions in a configuration using counterpropagating laser beams. The observations indicate that motional effects should be included to fully account for the results. These results are contrary to experiments using single-beam and copropagating configurations. We give a theoretical description that accounts for the beam geometries used in the experiments and indicates the potential role of motional effects. In particular, a model is given that highlights the influence of Doppler broadening on the observed phase-transition thresholds.

  13. Dibenzopyrrolo[1,2-a][1,8]naphthyridines: Synthesis and Structural Modification of Fluorescent L-Shaped Heteroarenes.

    PubMed

    Tateno, Kotaro; Ogawa, Rie; Sakamoto, Ryota; Tsuchiya, Mizuho; Kutsumura, Noriki; Otani, Takashi; Ono, Kosuke; Kawai, Hidetoshi; Saito, Takao

    2018-01-19

    The L-shaped, π-extended pentacycle dibenzopyrrolo[1,2-a][1,8]naphthyridine and its derivatives were synthesized using two methods: fully intramolecular [2 + 2 + 2] cycloaddition and oxidative aromatization using substituted carbodiimide and modification of an electron-rich indole ring of an L-shaped skeleton via electrophilic reaction and cross-coupling. These L-shaped compounds emitted fluorescence in high quantum yield. The position of substituents affected the fluorescence color through two different mechanisms, π-conjugation and skeletal distortion, which caused the substituted L-shaped compounds to emit fluorescence in a variety of colors and to exhibit solvato-fluorochromism.

  14. Quantum optics, cavity QED, and quantum optomechanics

    NASA Astrophysics Data System (ADS)

    Meystre, Pierre

    2013-05-01

    Quantum optomechanics provides a universal tool to achieve the quantum control of mechanical motion. It does that in devices spanning a vast range of parameters, with mechanical frequencies from a few Hertz to GHz, and with masses from 10-20 g to several kilos. Its underlying ideas can be traced back to the study of gravitational wave antennas, quantum optics, cavity QED and laser cooling which, when combined with the recent availability of advanced micromechanical and nanomechanical devices, opens a path to the realization of macroscopic mechanical systems that operate deep in the quantum regime. At the fundamental level this development paves the way to experiments that will lead to a more profound understanding of quantum mechanics; and from the point of view of applications, quantum optomechanical techniques will provide motion and force sensing near the fundamental limit imposed by quantum mechanics (quantum metrology) and significantly expand the toolbox of quantum information science. After a brief summary of key historical developments, the talk will give a broad overview of the current state of the art of quantum optomechanics, and comment on future prospects both in applied and in fundamental science. Work supported by NSF, ARO and the DARPA QuASAR and ORCHID programs.

  15. A Theoretical Study of Phosphoryl Transfers of Tyrosyl-DNA Phosphodiesterase I (Tdp1) and the Possibility of a "Dead-End" Phosphohistidine Intermediate.

    PubMed

    DeYonker, Nathan J; Webster, Charles Edwin

    2015-07-14

    Tyrosyl-DNA phosphodiesterase I (Tdp1) is a DNA repair enzyme conserved across eukaryotes that catalyzes the hydrolysis of the phosphodiester bond between the tyrosine residue of topoisomerase I and the 3'-phosphate of DNA. Atomic level details of the mechanism of Tdp1 are proposed and analyzed using a fully quantum mechanical, geometrically constrained model. The structural basis for the computational model is the vanadate-inhibited crystal structure of human Tdp1 (hTdp1, Protein Data Bank entry 1RFF ). Density functional theory computations are used to acquire thermodynamic and kinetic data along the catalytic pathway, including the phosphoryl transfer and subsequent hydrolysis. Located transition states and intermediates along the reaction coordinate suggest an associative phosphoryl transfer mechanism with five-coordinate phosphorane intermediates. Similar to both theoretical and experimental results for phospholipase D, the proposed mechanism for hTdp1 also includes the thermodynamically favorable possibility of a four-coordinate phosphohistidine "dead-end" product.

  16. Testing Nonassociative Quantum Mechanics.

    PubMed

    Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut

    2015-11-27

    The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.

  17. From Einstein-Podolsky-Rosen paradox to quantum nonlocality: experimental investigation of quantum correlations

    NASA Astrophysics Data System (ADS)

    Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can

    2016-11-01

    In 1935, Einstein, Podolsky and Rosen published their influential paper proposing a now famous paradox (the EPR paradox) that threw doubt on the completeness of quantum mechanics. Two fundamental concepts: entanglement and steering, were given in the response to the EPR paper by Schrodinger, which both reflect the nonlocal nature of quantum mechanics. In 1964, John Bell obtained an experimentally testable inequality, in which its violation contradicts the prediction of local hidden variable models and agrees with that of quantum mechanics. Since then, great efforts have been made to experimentally investigate the nonlocal feature of quantum mechanics and many distinguished quantum properties were observed. In this work, along with the discussion of the development of quantum nonlocality, we would focus on our recent experimental efforts in investigating quantum correlations and their applications with optical systems, including the study of entanglement-assisted entropic uncertainty principle, Einstein-Podolsky-Rosen steering and the dynamics of quantum correlations.

  18. Demonstration of a fully integrated superconducting receiver with a 2.7 THz quantum cascade laser.

    PubMed

    Miao, Wei; Lou, Zheng; Xu, Gang-Yi; Hu, Jie; Li, Shao-Liang; Zhang, Wen; Zhou, Kang-Min; Yao, Qi-Jun; Zhang, Kun; Duan, Wen-Ying; Shi, Sheng-Cai; Colombelli, Raffaele; Beere, Harvey E; Ritchie, David A

    2015-02-23

    We demonstrate for the first time the integration of a superconducting hot electron bolometer (HEB) mixer and a quantum cascade laser (QCL) on the same 4-K stage of a single cryostat, which is of particular interest for terahertz (THz) HEB/QCL integrated heterodyne receivers for practical applications. Two key issues are addressed. Firstly, a low power consumption QCL is adopted for preventing its heat dissipation from destroying the HEB's superconductivity. Secondly, a simple spherical lens located on the same 4-K stage is introduced to optimize the coupling between the HEB and the QCL, which has relatively limited output power owing to low input direct current (DC) power. Note that simulation techniques are used to design the HEB/QCL integrated heterodyne receiver to avoid the need for mechanical tuning. The integrated HEB/QCL receiver shows an uncorrected noise temperature of 1500 K at 2.7 THz, which is better than the performance of the same receiver with all the components not integrated.

  19. Quantum origin of the primordial fluctuation spectrum and its statistics

    NASA Astrophysics Data System (ADS)

    Landau, Susana; León, Gabriel; Sudarsky, Daniel

    2013-07-01

    The usual account for the origin of cosmic structure during inflation is not fully satisfactory, as it lacks a physical mechanism capable of generating the inhomogeneity and anisotropy of our Universe, from an exactly homogeneous and isotropic initial state associated with the early inflationary regime. The proposal in [A. Perez, H. Sahlmann, and D. Sudarsky, Classical Quantum Gravity 23, 2317 (2006)] considers the spontaneous dynamical collapse of the wave function as a possible answer to that problem. In this work, we review briefly the difficulties facing the standard approach, as well as the answers provided by the above proposal and explore their relevance to the investigations concerning the characterization of the primordial spectrum and other statistical aspects of the cosmic microwave background and large-scale matter distribution. We will see that the new approach leads to novel ways of considering some of the relevant questions, and, in particular, to distinct characterizations of the non-Gaussianities that might have left imprints on the available data.

  20. Bacterial Interactions with CdSe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Holden, P.; Nadeau, J. L.; Kumar, A.; Clarke, S.; Priester, J. H.; Stucky, G. D.

    2007-12-01

    Cadmium selenide quantum dots (QDs) are semiconductor nanoparticles that are manufactured for biomedical imaging, photovoltaics, and other applications. While metallic nanoparticles can be made biotically by bacteria and fungi, and thus occur in nature, the fate of either natural or engineered QDs and relationships to nanoparticle size, conjugate and biotic conditions are mostly unknown. Working with several different bacterial strains and QDs of different sizes and conjugate chemistries, including QDs synthesized by a Fusarium fungal strain, we show that QDs can enter cells through specfic receptor-mediated processes, that QDs are broken down by bacteria during cell association, and that toxicity to cells is much like that imposed by Cd(II) ions. The mechanisms of entry and toxicity are not fully understood, but preliminary evidence suggests that electron transfer between cells and QDs occurs. Also, cell membranes are compromised, indicating oxidative stress is occurring. Results with planktonic and biofilm bacteria are similar, but differently, biofilms tend to accumulate Cd(II) associated with QD treatments.

  1. Rapid onset of decoherence in driven-dissipative Rydberg systems

    NASA Astrophysics Data System (ADS)

    Magnan, Eric; Boulier, Thomas; Bracamontes, Carlos; Maslek, James; Young, Jeremy; Gorshkov, Alexei; Porto, Trey; Rolston, Steven; JQI-Rubidium One Team

    2017-04-01

    Rydberg atoms have been strong candidates for the realization of quantum information processing and quantum simulation. Recently, however, there has been concerns about this approach due to the observation of a rapid onset of decoherence in large ensembles. In we provide experimental support for the hypothesis that this is due to the avalanche-like onset of exchange dipole interactions, fueled by blackbody transitions to nearby Rydberg states of opposite parity. Making a fully microscopic model has proven difficult as it requires beyond mean-field arguments, but the ubiquitousness of Rydberg-Rydberg blackbody transitions at room temperature and the always-resonant nature of dipole exchange interactions make it an interesting challenge, and argues for deeper study into the matter. In this poster, we present complementary measurements and analysis that confirm this mechanism. We also discuss several possibilities to reduce its impact on the system's coherence. This work was partially supported by NSF PIF, AFOSR, ARO, ARL-CDQI, and NSF PFC at JQI.

  2. Quantum Conductance in Metal Nanowires

    NASA Astrophysics Data System (ADS)

    Ugarte, Daniel

    2004-03-01

    Quantum Conductance in Metal Nanowires D. Ugarte Brazilian National Synchrotron Light Laboratory C.P. 6192, 13084-971 Campinas SP, Brazil. Electrical transport properties of metallic nanowires (NWs) have received great attention due to their quantum conductance behavior. Atomic scale wires can be generated by stretching metal contacts; during the elongation and just before rupture, the NW conductance shows flat plateaus and abrupt jumps of approximately a conductance quantum. In this experiments, both the NW atomic arrangement and conductance change simultaneously, making difficult to discriminate electronic and structural effects. In this work, the atomic structure of NWs was studied by time-resolved in situ experiments in a high resolution transmission electron microscope, while their electrical properties using an UHV mechanically controllable break junction (MCBJ). From the analysis of numerous HRTEM images and videos, we have deduced that metal (Au, Ag, Pt, etc.) junctions generated by tensile deformation are crystalline and free of defects. The neck structure is strongly dependent on the surface properties of the analyzed metal, this was verified by comparing different metal NWs (Au, Ag, Cu), which have similar atomic structure (FCC), but show very different faceting patterns. The correlation between the observed structural and transport properties of NW points out that the quantum conductance behavior is defined by preferred atomic arrangement at the narrowest constriction. In the case of magnetic (ex. Fe,Co,Ni) or quasi-magnetic (ex. Pd) wires, we have observed that one-atom-thick structures show a conductance of half the quantum as expected for a fully spin polarized current. This phenomenon seems to occur spontaneously for magnetic suspended atom-chains in zero magnetic field and at room temperature. These results open new opportunities for spin control in nanostructures. Funded by FAPESP, LNLS and CNPq.

  3. Improving students' understanding of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtian

    2011-12-01

    Learning physics is challenging at all levels. Students' difficulties in the introductory level physics courses have been widely studied and many instructional strategies have been developed to help students learn introductory physics. However, research shows that there is a large diversity in students' preparation and skills in the upper-level physics courses and it is necessary to provide scaffolding support to help students learn advanced physics. This thesis explores issues related to students' common difficulties in learning upper-level undergraduate quantum mechanics and how these difficulties can be reduced by research-based learning tutorials and peer instruction tools. We investigated students' difficulties in learning quantum mechanics by administering written tests and surveys to many classes and conducting individual interviews with a subset of students. Based on these investigations, we developed Quantum Interactive Learning Tutorials (QuILTs) and peer instruction tools to help students build a hierarchical knowledge structure of quantum mechanics through a guided approach. Preliminary assessments indicate that students' understanding of quantum mechanics is improved after using the research-based learning tools in the junior-senior level quantum mechanics courses. We also designed a standardized conceptual survey that can help instructors better probe students' understanding of quantum mechanics concepts in one spatial dimension. The validity and reliability of this quantum mechanics survey is discussed.

  4. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solution based upon a mixed quantum–classical approximation. II. Proton transfer reaction in non-polar solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, H.; Yamada, A.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp

    2015-05-07

    The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum–classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates ismore » reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute–solvent interactions.« less

  5. Search for violations of quantum mechanics

    DOE PAGES

    Ellis, John; Hagelin, John S.; Nanopoulos, D. V.; ...

    1984-07-01

    The treatment of quantum effects in gravitational fields indicates that pure states may evolve into mixed states, and Hawking has proposed modification of the axioms of field theory which incorporate the corresponding violation of quantum mechanics. In this study we propose a modified hamiltonian equation of motion for density matrices and use it to interpret upper bounds on the violation of quantum mechanics in different phenomenological situations. We apply our formalism to the K 0-K 0 system and to long baseline neutron interferometry experiments. In both cases we find upper bounds of about 2 × 10 -21 GeV on contributionsmore » to the single particle “hamiltonian” which violate quantum mechanical coherence. We discuss how these limits might be improved in the future, and consider the relative significance of other successful tests of quantum mechanics. Finally, an appendix contains model estimates of the magnitude of effects violating quantum mechanics.« less

  6. Blind topological measurement-based quantum computation

    PubMed Central

    Morimae, Tomoyuki; Fujii, Keisuke

    2012-01-01

    Blind quantum computation is a novel secure quantum-computing protocol that enables Alice, who does not have sufficient quantum technology at her disposal, to delegate her quantum computation to Bob, who has a fully fledged quantum computer, in such a way that Bob cannot learn anything about Alice's input, output and algorithm. A recent proof-of-principle experiment demonstrating blind quantum computation in an optical system has raised new challenges regarding the scalability of blind quantum computation in realistic noisy conditions. Here we show that fault-tolerant blind quantum computation is possible in a topologically protected manner using the Raussendorf–Harrington–Goyal scheme. The error threshold of our scheme is 4.3×10−3, which is comparable to that (7.5×10−3) of non-blind topological quantum computation. As the error per gate of the order 10−3 was already achieved in some experimental systems, our result implies that secure cloud quantum computation is within reach. PMID:22948818

  7. Nonexponential Decoherence and Momentum Subdiffusion in a Quantum Lévy Kicked Rotator

    NASA Astrophysics Data System (ADS)

    Schomerus, Henning; Lutz, Eric

    2007-06-01

    We investigate decoherence in the quantum kicked rotator (modeling cold atoms in a pulsed optical field) subjected to noise with power-law tail waiting-time distributions of variable exponent (Lévy noise). We demonstrate the existence of a regime of nonexponential decoherence where the notion of a decoherence rate is ill defined. In this regime, dynamical localization is never fully destroyed, indicating that the dynamics of the quantum system never reaches the classical limit. We show that this leads to quantum subdiffusion of the momentum, which should be observable in an experiment.

  8. Generation of mechanical interference fringes by multi-photon counting

    NASA Astrophysics Data System (ADS)

    Ringbauer, M.; Weinhold, T. J.; Howard, L. A.; White, A. G.; Vanner, M. R.

    2018-05-01

    Exploring the quantum behaviour of macroscopic objects provides an intriguing avenue to study the foundations of physics and to develop a suite of quantum-enhanced technologies. One prominent path of study is provided by quantum optomechanics which utilizes the tools of quantum optics to control the motion of macroscopic mechanical resonators. Despite excellent recent progress, the preparation of mechanical quantum superposition states remains outstanding due to weak coupling and thermal decoherence. Here we present a novel optomechanical scheme that significantly relaxes these requirements allowing the preparation of quantum superposition states of motion of a mechanical resonator by exploiting the nonlinearity of multi-photon quantum measurements. Our method is capable of generating non-classical mechanical states without the need for strong single-photon coupling, is resilient against optical loss, and offers more favourable scaling against initial mechanical thermal occupation than existing schemes. Moreover, our approach allows the generation of larger superposition states by projecting the optical field onto NOON states. We experimentally demonstrate this multi-photon-counting technique on a mechanical thermal state in the classical limit and observe interference fringes in the mechanical position distribution that show phase super-resolution. This opens a feasible route to explore and exploit quantum phenomena at a macroscopic scale.

  9. Are quantum-mechanical-like models possible, or necessary, outside quantum physics?

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2014-12-01

    This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well.

  10. Holographic description of a quantum black hole on a computer

    NASA Astrophysics Data System (ADS)

    Hanada, Masanori; Hyakutake, Yoshifumi; Ishiki, Goro; Nishimura, Jun

    2014-05-01

    Black holes have been predicted to radiate particles and eventually evaporate, which has led to the information loss paradox and implies that the fundamental laws of quantum mechanics may be violated. Superstring theory, a consistent theory of quantum gravity, provides a possible solution to the paradox if evaporating black holes can actually be described in terms of standard quantum mechanical systems, as conjectured from the theory. Here, we test this conjecture by calculating the mass of a black hole in the corresponding quantum mechanical system numerically. Our results agree well with the prediction from gravity theory, including the leading quantum gravity correction. Our ability to simulate black holes offers the potential to further explore the yet mysterious nature of quantum gravity through well-established quantum mechanics.

  11. Fundamental Study on Quantum Nanojets

    DTIC Science & Technology

    2004-08-01

    Pergamon Press. Bell , J. S . 1966 On the problem of hidden variables in quantum mechanics. Rev. of Modern Phys., 38, 447. Berndl, K., Daumer, M...fluid dynamics based on two quantum mechanical perspectives; Schrödinger’s wave mechanics and quantum fluid dynamics based on Hamilton-Jacoby...References 8 2). Direct Problems a). Quantum fluid dynamics formalism based on Hamilton-Jacoby equation are adapted for the numerical

  12. Faithful conversion of propagating quantum information to mechanical motion

    NASA Astrophysics Data System (ADS)

    Reed, A. P.; Mayer, K. H.; Teufel, J. D.; Burkhart, L. D.; Pfaff, W.; Reagor, M.; Sletten, L.; Ma, X.; Schoelkopf, R. J.; Knill, E.; Lehnert, K. W.

    2017-12-01

    The motion of micrometre-sized mechanical resonators can now be controlled and measured at the fundamental limits imposed by quantum mechanics. These resonators have been prepared in their motional ground state or in squeezed states, measured with quantum-limited precision, and even entangled with microwave fields. Such advances make it possible to process quantum information using the motion of a macroscopic object. In particular, recent experiments have combined mechanical resonators with superconducting quantum circuits to frequency-convert, store and amplify propagating microwave fields. But these systems have not been used to manipulate states that encode quantum bits (qubits), which are required for quantum communication and modular quantum computation. Here we demonstrate the conversion of propagating qubits encoded as superpositions of zero and one photons to the motion of a micromechanical resonator with a fidelity in excess of the classical bound. This ability is necessary for mechanical resonators to convert quantum information between the microwave and optical domains or to act as storage elements in a modular quantum information processor. Additionally, these results are an important step towards testing speculative notions that quantum theory may not be valid for sufficiently massive systems.

  13. Beyond the Quantum

    NASA Astrophysics Data System (ADS)

    Nieuwenhuizen, Theo M.; Mehmani, Bahar; Špička, Václav; Aghdami, Maryam J.; Khrennikov, Andrei Yu

    2007-09-01

    pt. A. Introductions. The mathematical basis for deterministic quantum mechanics / G.'t Hooft. What did we learn from quantum gravity? / A. Ashtekar. Bose-Einstein condensates and EPR quantum non-locality / F. Laloe. The quantum measurement process: lessons from an exactly solvable model / A.E. Allahverdyan, R. Balian and Th. M. Nieuwenhuizen -- pt. B. Quantum mechanics and quantum information. POVMs: a small but important step beyond standard quantum mechanics / W. M. de Muynck. State reduction by measurements with a null result / G. Nienhuis. Solving open questions in the Bose-Einstein condensation of an ideal gas via a hybrid mixture of laser and statistical physics / M. Kim, A. Svidzinsky and M.O. Scully. Twin-Photon light scattering and causality / G. Puentes, A. Aiello and J. P. Woerdman. Simultaneous measurement of non-commuting observables / G. Aquino and B. Mehmani. Quantum decoherence and gravitational waves / M.T. Jaekel ... [et al.]. Role of various entropies in the black hole information loss problem / Th. M. Nieuwenhuizen and I.V. Volovich. Quantum and super-quantum correlations / G.S. Jaeger -- pt. C. Long distance correlations and bell inequalities. Understanding long-distance quantum correlations / L. Marchildon. Connection of probability models to EPR experiments: probability spaces and Bell's theorem / K. Hess and W. Philipp. Fair sampling vs no-signalling principle in EPR experiments / G. Adenier and A. Yu. Khrennikov -- pt. D. Mathematical foundations. Where the mathematical structure of quantum mechanics comes from / G.M. D'Ariano. Phase space description of quantum mechanics and non-commutative geometry: Wigner-Moyal and Bohm in a wider context / B.J. Hiley. Quantum mechanics as simple algorithm for approximation of classical integrals / A. Yu. Khrennikov. Noncommutative quantum mechanics viewed from Feynman Formalism / J. Lages ... [et al.]. Beyond the quantum in Snyder space / J.F.S. van Huele and M. K. Transtrum -- pt. E. Stochastic electrodynamics. Some quantum experiments from the point of view of Stochastic electrodynamics / V. Spicka ... [et al.]. On the ergodic behaviour of atomic systems under the action of the zero-point radiation field / L. De La Peña and A. M. Cetto. Inertia and the vacuum-view on the emergence of the inertia reaction force / A. Rueda and H. Sunahata -- pt. F. Models for the electron. Rotating Hopf-Kinks: oscillators in the sense of de Broglie / U. Enz. Kerr-Newman particles: symmetries and other properties / H.I. Arcos and J.G. Pereira. Kerr geometry beyond the quantum theory / Th. M. Nieuwenhuizen -- pt. G. Philosophical considerations. Probability in non-collapse interpretations of a quantum mechanics / D. Dieks. The Schrödinger-Park paradox about the concept of "State" in quantum statistical mechanics and quantum information theory is still open: one more reason to go beyond? / G.P. Beretta. The conjecture that local realism is possible / E. Santos -- pt. H. The round table. Round table discussion / A.M. Cetto ... [et al.].

  14. Quantum supergravity, supergravity anomalies and string phenomenology

    DOE PAGES

    Gaillard, Mary K.

    2016-03-15

    I discuss the role of quantum effects in the phenomenology of effective supergravity theories from compactification of the weakly coupled heterotic string. An accurate incorporation of these effects requires a regularization procedure that respects local supersymmetry and BRST invariance and that retains information associated with the cut-off scale, which has physical meaning in an effective theory. I briefly outline the Pauli–Villars regularization procedure, describe some applications, and comment on what remains to be done to fully define the effective quantum field theory.

  15. Full characterization of a three-photon Greenberger-Horne-Zeilinger state using quantum state tomography.

    PubMed

    Resch, K J; Walther, P; Zeilinger, A

    2005-02-25

    We have performed the first experimental tomographic reconstruction of a three-photon polarization state. Quantum state tomography is a powerful tool for fully describing the density matrix of a quantum system. We measured 64 three-photon polarization correlations and used a "maximum-likelihood" reconstruction method to reconstruct the Greenberger-Horne-Zeilinger state. The entanglement class has been characterized using an entanglement witness operator and the maximum predicted values for the Mermin inequality were extracted.

  16. Wigner Functions for Arbitrary Quantum Systems.

    PubMed

    Tilma, Todd; Everitt, Mark J; Samson, John H; Munro, William J; Nemoto, Kae

    2016-10-28

    The possibility of constructing a complete, continuous Wigner function for any quantum system has been a subject of investigation for over 50 years. A key system that has served to illustrate the difficulties of this problem has been an ensemble of spins. Here we present a general and consistent framework for constructing Wigner functions exploiting the underlying symmetries in the physical system at hand. The Wigner function can be used to fully describe any quantum system of arbitrary dimension or ensemble size.

  17. Insights into teaching quantum mechanics in secondary and lower undergraduate education

    NASA Astrophysics Data System (ADS)

    Krijtenburg-Lewerissa, K.; Pol, H. J.; Brinkman, A.; van Joolingen, W. R.

    2017-06-01

    This study presents a review of the current state of research on teaching quantum mechanics in secondary and lower undergraduate education. A conceptual approach to quantum mechanics is being implemented in more and more introductory physics courses around the world. Because of the differences between the conceptual nature of quantum mechanics and classical physics, research on misconceptions, testing, and teaching strategies for introductory quantum mechanics is needed. For this review, 74 articles were selected and analyzed for the misconceptions, research tools, teaching strategies, and multimedia applications investigated. Outcomes were categorized according to their contribution to the various subtopics of quantum mechanics. Analysis shows that students have difficulty relating quantum physics to physical reality. It also shows that the teaching of complex quantum behavior, such as time dependence, superposition, and the measurement problem, has barely been investigated for the secondary and lower undergraduate level. At the secondary school level, this article shows a need to investigate student difficulties concerning wave functions and potential wells. Investigation of research tools shows the necessity for the development of assessment tools for secondary and lower undergraduate education, which cover all major topics and are suitable for statistical analysis. Furthermore, this article shows the existence of very diverse ideas concerning teaching strategies for quantum mechanics and a lack of research into which strategies promote understanding. This article underlines the need for more empirical research into student difficulties, teaching strategies, activities, and research tools intended for a conceptual approach for quantum mechanics.

  18. Quantum state engineering using one-dimensional discrete-time quantum walks

    NASA Astrophysics Data System (ADS)

    Innocenti, Luca; Majury, Helena; Giordani, Taira; Spagnolo, Nicolò; Sciarrino, Fabio; Paternostro, Mauro; Ferraro, Alessandro

    2017-12-01

    Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen for implementation, and a general framework is still missing. Here we show that coined quantum walks on a line, which represent a framework general enough to encompass a variety of different platforms, can be used for quantum state engineering of arbitrary superpositions of the walker's sites. We achieve this goal by identifying a set of conditions that fully characterize the reachable states in the space comprising walker and coin and providing a method to efficiently compute the corresponding set of coin parameters. We assess the feasibility of our proposal by identifying a linear optics experiment based on photonic orbital angular momentum technology.

  19. The (in)adequacy of applicative use of quantum cryptography in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Turkanović, Muhamed; Hölbl, Marko

    2014-10-01

    Recently quantum computation and cryptography principles are exploited in the design of security systems for wireless sensor networks (WSNs), which are consequently named as quantum WSN. Quantum cryptography is presumably secure against any eavesdropper and thus labeled as providing unconditional security. This paper tries to analyze the aspect of the applicative use of quantum principles in WSN. The outcome of the analysis elaborates a summary about the inadequacy of applicative use of quantum cryptography in WSN and presents an overview of all possible applicative challenges and problems while designing quantum-based security systems for WSN. Since WSNs are highly complex frameworks, with many restrictions and constraints, every security system has to be fully compatible and worthwhile. The aim of the paper was to contribute a verdict about this topic, backed up by equitable facts.

  20. Two statistical mechanics aspects of complex networks

    NASA Astrophysics Data System (ADS)

    Thurner, Stefan; Biely, Christoly

    2006-12-01

    By adopting an ensemble interpretation of non-growing rewiring networks, network theory can be reduced to a counting problem of possible network states and an identification of their associated probabilities. We present two scenarios of how different rewirement schemes can be used to control the state probabilities of the system. In particular, we review how by generalizing the linking rules of random graphs, in combination with superstatistics and quantum mechanical concepts, one can establish an exact relation between the degree distribution of any given network and the nodes’ linking probability distributions. In a second approach, we control state probabilities by a network Hamiltonian, whose characteristics are motivated by biological and socio-economical statistical systems. We demonstrate that a thermodynamics of networks becomes a fully consistent concept, allowing to study e.g. ‘phase transitions’ and computing entropies through thermodynamic relations.

  1. Basic mechanisms in the laser control of non-Markovian dynamics

    NASA Astrophysics Data System (ADS)

    Puthumpally-Joseph, R.; Mangaud, E.; Chevet, V.; Desouter-Lecomte, M.; Sugny, D.; Atabek, O.

    2018-03-01

    Referring to a Fano-type model qualitative analogy we develop a comprehensive basic mechanism for the laser control of the non-Markovian bath response and fully implement it in a realistic control scheme, in strongly coupled open quantum systems. Converged hierarchical equations of motion are worked out to numerically solve the master equation of a spin-boson Hamiltonian to reach the reduced electronic density matrix of a heterojunction in the presence of strong terahertz laser pulses. Robust and efficient control is achieved increasing by a factor of 2 the non-Markovianity measured by the time evolution of the volume of accessible states. The consequences of such fields on the central system populations and coherence are examined, putting the emphasis on the relation between the increase of non-Markovianity and the slowing down of decoherence processes.

  2. A Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2015-04-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. We describe a theoretical framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates the effects of diversity in students' prior preparation, goals and motivation for taking upper-level physics courses in general as well as the ``paradigm shift'' from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics will be discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a theoretical framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics. Support from the National Science Foundation is gratefully acknowledged.

  3. Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masayuki

    2013-09-01

    In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called quantum annealing. The most typical instance is quantum adiabatic computation based on the adiabatic theorem. The quantum adiabatic computation as discussed in the other chapter, unfortunately, has a crucial bottleneck for a part of the optimization problems. We here introduce several recent trials to overcome such a weakpoint by use of developments in statistical mechanics. Through both of the topics, we would shed light on the birth of the interdisciplinary field between quantum mechanics and statistical mechanics.

  4. Emergent mechanics, quantum and un-quantum

    NASA Astrophysics Data System (ADS)

    Ralston, John P.

    2013-10-01

    There is great interest in quantum mechanics as an "emergent" phenomenon. The program holds that nonobvious patterns and laws can emerge from complicated physical systems operating by more fundamental rules. We find a new approach where quantum mechanics itself should be viewed as an information management tool not derived from physics nor depending on physics. The main accomplishment of quantum-style theory comes in expanding the notion of probability. We construct a map from macroscopic information as data" to quantum probability. The map allows a hidden variable description for quantum states, and efficient use of the helpful tools of quantum mechanics in unlimited circumstances. Quantum dynamics via the time-dependent Shroedinger equation or operator methods actually represents a restricted class of classical Hamiltonian or Lagrangian dynamics, albeit with different numbers of degrees of freedom. We show that under wide circumstances such dynamics emerges from structureless dynamical systems. The uses of the quantum information management tools are illustrated by numerical experiments and practical applications

  5. Quantum Interactive Learning Tutorial on the Double-Slit Experiment to Improve Student Understanding of Quantum Mechanics

    ERIC Educational Resources Information Center

    Sayer, Ryan; Maries, Alexandru; Singh, Chandralekha

    2017-01-01

    Learning quantum mechanics is challenging, even for upper-level undergraduate and graduate students. Research-validated interactive tutorials that build on students' prior knowledge can be useful tools to enhance student learning. We have been investigating student difficulties with quantum mechanics pertaining to the double-slit experiment in…

  6. What's the Matter with Waves?; An introduction to techniques and applications of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Parkinson, William

    2017-12-01

    Like rocket science or brain surgery, quantum mechanics is pigeonholed as a daunting and inaccessible topic, which is best left to an elite or peculiar few. This classification was not earned without some degree of merit. Depending on perspective; quantum mechanics is a discipline or philosophy, a convention or conundrum, an answer or question. Authors have run the gamut from hand waving to heavy handed in the hope to dispel the common beliefs about quantum mechanics, but perhaps they continue to promulgate the stigma. The focus of this particular effort is to give the reader an introduction, if not at least an appreciation, of the role that linear algebra techniques play in the practical application of quantum mechanical methods. It interlaces aspects of the classical and quantum picture, including a number of both worked and parallel applications. Students with no prior experience in quantum mechanics, motivated graduate students, or researchers in other areas attempting to gain some introduction to quantum theory will find particular interest in this book. Part of Series on wave phenomena in the physical sciences

  7. Quantum Social Science

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel; Khrennikov, Andrei

    2013-01-01

    Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.

  8. Holographic description of a quantum black hole on a computer.

    PubMed

    Hanada, Masanori; Hyakutake, Yoshifumi; Ishiki, Goro; Nishimura, Jun

    2014-05-23

    Black holes have been predicted to radiate particles and eventually evaporate, which has led to the information loss paradox and implies that the fundamental laws of quantum mechanics may be violated. Superstring theory, a consistent theory of quantum gravity, provides a possible solution to the paradox if evaporating black holes can actually be described in terms of standard quantum mechanical systems, as conjectured from the theory. Here, we test this conjecture by calculating the mass of a black hole in the corresponding quantum mechanical system numerically. Our results agree well with the prediction from gravity theory, including the leading quantum gravity correction. Our ability to simulate black holes offers the potential to further explore the yet mysterious nature of quantum gravity through well-established quantum mechanics. Copyright © 2014, American Association for the Advancement of Science.

  9. Lorentz quantum mechanics

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Wu, Biao

    2018-01-01

    We present a theoretical framework for the dynamics of bosonic Bogoliubov quasiparticles. We call it Lorentz quantum mechanics because the dynamics is a continuous complex Lorentz transformation in complex Minkowski space. In contrast, in usual quantum mechanics, the dynamics is the unitary transformation in Hilbert space. In our Lorentz quantum mechanics, three types of state exist: space-like, light-like and time-like. Fundamental aspects are explored in parallel to the usual quantum mechanics, such as a matrix form of a Lorentz transformation, and the construction of Pauli-like matrices for spinors. We also investigate the adiabatic evolution in these mechanics, as well as the associated Berry curvature and Chern number. Three typical physical systems, where bosonic Bogoliubov quasi-particles and their Lorentz quantum dynamics can arise, are presented. They are a one-dimensional fermion gas, Bose-Einstein condensate (or superfluid), and one-dimensional antiferromagnet.

  10. From the GKLS Equation to the Theory of Solar and Fuel Cells

    NASA Astrophysics Data System (ADS)

    Alicki, R.

    The mathematically sound theory of quantum open systems, formulated in the ’70s and highlighted by the discovery of Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) equation, found a wide range of applications in various branches of physics and chemistry, notably in the field of quantum information and quantum thermodynamics. However, it took 40 years before this formalism has been applied to explain correctly the operation principles of long existing energy transducers like photovoltaic, thermoelectric and fuel cells. This long path is briefly reviewed from the author’s perspective. Finally, the new, fully quantum model of chemical engine based on GKLS equation and applicable to fuel cells or replicators is outlined. The model illustrates the difficulty with an entirely quantum operational definition of work, comparable to the problem of quantum measurement.

  11. Scalable digital hardware for a trapped ion quantum computer

    NASA Astrophysics Data System (ADS)

    Mount, Emily; Gaultney, Daniel; Vrijsen, Geert; Adams, Michael; Baek, So-Young; Hudek, Kai; Isabella, Louis; Crain, Stephen; van Rynbach, Andre; Maunz, Peter; Kim, Jungsang

    2016-12-01

    Many of the challenges of scaling quantum computer hardware lie at the interface between the qubits and the classical control signals used to manipulate them. Modular ion trap quantum computer architectures address scalability by constructing individual quantum processors interconnected via a network of quantum communication channels. Successful operation of such quantum hardware requires a fully programmable classical control system capable of frequency stabilizing the continuous wave lasers necessary for loading, cooling, initialization, and detection of the ion qubits, stabilizing the optical frequency combs used to drive logic gate operations on the ion qubits, providing a large number of analog voltage sources to drive the trap electrodes, and a scheme for maintaining phase coherence among all the controllers that manipulate the qubits. In this work, we describe scalable solutions to these hardware development challenges.

  12. Heat-machine control by quantum-state preparation: from quantum engines to refrigerators.

    PubMed

    Gelbwaser-Klimovsky, D; Kurizki, G

    2014-08-01

    We explore the dependence of the performance bounds of heat engines and refrigerators on the initial quantum state and the subsequent evolution of their piston, modeled by a quantized harmonic oscillator. Our goal is to provide a fully quantized treatment of self-contained (autonomous) heat machines, as opposed to their prevailing semiclassical description that consists of a quantum system alternately coupled to a hot or a cold heat bath and parametrically driven by a classical time-dependent piston or field. Here, by contrast, there is no external time-dependent driving. Instead, the evolution is caused by the stationary simultaneous interaction of two heat baths (having distinct spectra and temperatures) with a single two-level system that is in turn coupled to the quantum piston. The fully quantized treatment we put forward allows us to investigate work extraction and refrigeration by the tools of quantum-optical amplifier and dissipation theory, particularly, by the analysis of amplified or dissipated phase-plane quasiprobability distributions. Our main insight is that quantum states may be thermodynamic resources and can provide a powerful handle, or control, on the efficiency of the heat machine. In particular, a piston initialized in a coherent state can cause the engine to produce work at an efficiency above the Carnot bound in the linear amplification regime. In the refrigeration regime, the coefficient of performance can transgress the Carnot bound if the piston is initialized in a Fock state. The piston may be realized by a vibrational mode, as in nanomechanical setups, or an electromagnetic field mode, as in cavity-based scenarios.

  13. Heat-machine control by quantum-state preparation: From quantum engines to refrigerators

    NASA Astrophysics Data System (ADS)

    Gelbwaser-Klimovsky, D.; Kurizki, G.

    2014-08-01

    We explore the dependence of the performance bounds of heat engines and refrigerators on the initial quantum state and the subsequent evolution of their piston, modeled by a quantized harmonic oscillator. Our goal is to provide a fully quantized treatment of self-contained (autonomous) heat machines, as opposed to their prevailing semiclassical description that consists of a quantum system alternately coupled to a hot or a cold heat bath and parametrically driven by a classical time-dependent piston or field. Here, by contrast, there is no external time-dependent driving. Instead, the evolution is caused by the stationary simultaneous interaction of two heat baths (having distinct spectra and temperatures) with a single two-level system that is in turn coupled to the quantum piston. The fully quantized treatment we put forward allows us to investigate work extraction and refrigeration by the tools of quantum-optical amplifier and dissipation theory, particularly, by the analysis of amplified or dissipated phase-plane quasiprobability distributions. Our main insight is that quantum states may be thermodynamic resources and can provide a powerful handle, or control, on the efficiency of the heat machine. In particular, a piston initialized in a coherent state can cause the engine to produce work at an efficiency above the Carnot bound in the linear amplification regime. In the refrigeration regime, the coefficient of performance can transgress the Carnot bound if the piston is initialized in a Fock state. The piston may be realized by a vibrational mode, as in nanomechanical setups, or an electromagnetic field mode, as in cavity-based scenarios.

  14. Quantum Field Theory in (0 + 1) Dimensions

    ERIC Educational Resources Information Center

    Boozer, A. D.

    2007-01-01

    We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…

  15. Free-Space Quantum Communication with a Portable Quantum Memory

    NASA Astrophysics Data System (ADS)

    Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden

    2017-12-01

    The realization of an elementary quantum network that is intrinsically secure and operates over long distances requires the interconnection of several quantum modules performing different tasks. In this work, we report the realization of a communication network functioning in a quantum regime, consisting of four different quantum modules: (i) a random polarization qubit generator, (ii) a free-space quantum-communication channel, (iii) an ultralow-noise portable quantum memory, and (iv) a qubit decoder, in a functional elementary quantum network possessing all capabilities needed for quantum-information distribution protocols. We create weak coherent pulses at the single-photon level encoding polarization states |H ⟩ , |V ⟩, |D ⟩, and |A ⟩ in a randomized sequence. The random qubits are sent over a free-space link and coupled into a dual-rail room-temperature quantum memory and after storage and retrieval are analyzed in a four-detector polarization analysis akin to the requirements of the BB84 protocol. We also show ultralow noise and fully portable operation, paving the way towards memory-assisted all-environment free-space quantum cryptographic networks.

  16. A quantum–quantum Metropolis algorithm

    PubMed Central

    Yung, Man-Hong; Aspuru-Guzik, Alán

    2012-01-01

    The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature. PMID:22215584

  17. Relativity, Symmetry, and the Structure of Quantum Theory, Volume 2; Point form relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Klink, William H.; Schweiger, Wolfgang

    2018-03-01

    This book covers relativistic quantum theory from the point of view of a particle theory, based on the irreducible representations of the Poincaré group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; this book develops what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A chapter is devoted to applications of point form quantum mechanics to nuclear physics.

  18. Optical reflection from planetary surfaces as an operator-eigenvalue problem

    USGS Publications Warehouse

    Wildey, R.L.

    1986-01-01

    The understanding of quantum mechanical phenomena has come to rely heavily on theory framed in terms of operators and their eigenvalue equations. This paper investigates the utility of that technique as related to the reciprocity principle in diffuse reflection. The reciprocity operator is shown to be unitary and Hermitian; hence, its eigenvectors form a complete orthonormal basis. The relevant eigenvalue is found to be infinitely degenerate. A superposition of the eigenfunctions found from solution by separation of variables is inadequate to form a general solution that can be fitted to a one-dimensional boundary condition, because the difficulty of resolving the reciprocity operator into a superposition of independent one-dimensional operators has yet to be overcome. A particular lunar application in the form of a failed prediction of limb-darkening of the full Moon from brightness versus phase illustrates this problem. A general solution is derived which fully exploits the determinative powers of the reciprocity operator as an unresolved two-dimensional operator. However, a solution based on a sum of one-dimensional operators, if possible, would be much more powerful. A close association is found between the reciprocity operator and the particle-exchange operator of quantum mechanics, which may indicate the direction for further successful exploitation of the approach based on the operational calculus. ?? 1986 D. Reidel Publishing Company.

  19. Anharmonic quantum mechanical systems do not feature phase space trajectories

    NASA Astrophysics Data System (ADS)

    Oliva, Maxime; Kakofengitis, Dimitris; Steuernagel, Ole

    2018-07-01

    Phase space dynamics in classical mechanics is described by transport along trajectories. Anharmonic quantum mechanical systems do not allow for a trajectory-based description of their phase space dynamics. This invalidates some approaches to quantum phase space studies. We first demonstrate the absence of trajectories in general terms. We then give an explicit proof for all quantum phase space distributions with negative values: we show that the generation of coherences in anharmonic quantum mechanical systems is responsible for the occurrence of singularities in their phase space velocity fields, and vice versa. This explains numerical problems repeatedly reported in the literature, and provides deeper insight into the nature of quantum phase space dynamics.

  20. Investigating and improving student understanding of quantum mechanics in the context of single photon interference

    NASA Astrophysics Data System (ADS)

    Marshman, Emily; Singh, Chandralekha

    2017-06-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the abstract quantum theory and concrete laboratory settings and have the potential to help students develop a solid grasp of the foundational issues in quantum mechanics. Here we describe students' conceptual difficulties with these topics in the context of Mach-Zehnder interferometer experiments with single photons and how the difficulties found in written surveys and individual interviews were used as a guide in the development of a Quantum Interactive Learning Tutorial (QuILT). The QuILT uses an inquiry-based approach to learning and takes into account the conceptual difficulties found via research to help upper-level undergraduate and graduate students learn about foundational quantum mechanics concepts using the concrete quantum optics context. It strives to help students learn the basics of quantum mechanics in the context of single photon experiment, develop the ability to apply fundamental quantum principles to experimental situations in quantum optics, and explore the differences between classical and quantum ideas in a concrete context. We discuss the findings from in-class evaluations suggesting that the QuILT was effective in helping students learn these abstract concepts.

  1. Effective equations for the quantum pendulum from momentous quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Hector H.; Chacon-Acosta, Guillermo; Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120

    In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

  2. Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue

    NASA Astrophysics Data System (ADS)

    Shukla, Chitra; Thapliyal, Kishore; Pathak, Anirban

    2017-12-01

    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first-time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.

  3. Experimental comparison of two quantum computing architectures

    PubMed Central

    Linke, Norbert M.; Maslov, Dmitri; Roetteler, Martin; Debnath, Shantanu; Figgatt, Caroline; Landsman, Kevin A.; Wright, Kenneth; Monroe, Christopher

    2017-01-01

    We run a selection of algorithms on two state-of-the-art 5-qubit quantum computers that are based on different technology platforms. One is a publicly accessible superconducting transmon device (www.research.ibm.com/ibm-q) with limited connectivity, and the other is a fully connected trapped-ion system. Even though the two systems have different native quantum interactions, both can be programed in a way that is blind to the underlying hardware, thus allowing a comparison of identical quantum algorithms between different physical systems. We show that quantum algorithms and circuits that use more connectivity clearly benefit from a better-connected system of qubits. Although the quantum systems here are not yet large enough to eclipse classical computers, this experiment exposes critical factors of scaling quantum computers, such as qubit connectivity and gate expressivity. In addition, the results suggest that codesigning particular quantum applications with the hardware itself will be paramount in successfully using quantum computers in the future. PMID:28325879

  4. Faithful conditional quantum state transfer between weakly coupled qubits

    NASA Astrophysics Data System (ADS)

    Miková, M.; Straka, I.; Mičuda, M.; Krčmarský, V.; Dušek, M.; Ježek, M.; Fiurášek, J.; Filip, R.

    2016-08-01

    One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons.

  5. Experimental Satellite Quantum Communications

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-01

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER =4.6 % for a total link duration of 85 s. The mean photon number per pulse μsat leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  6. Framework for understanding the patterns of student difficulties in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Marshman, Emily; Singh, Chandralekha

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the effects of diversity in upper-level students' prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel) as well as the "paradigm shift" from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics.

  7. Bell's theorem and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Rosen, Nathan

    1994-02-01

    Bell showed that assuming locality leads to a disagreement with quantum mechanics. Here the nature of the nonlocality that follows from quantum mechanics is investigated. Note by the Editor—Readers will recognize Professor Rosen, author of this paper, as one of the co-authors of the famous EPR paper, Albert Einstein, Boris Podolsky, and Nathan Rosen, ``Can Quantum-Mechanical Description of Physical Reality be considered Complete?'', Phys. Rev. 47, 770-780 (1935). Robert H. Romer, Editor

  8. Calendar effects in quantum mechanics in view of interactive holography

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon

    2013-04-01

    Quantum mechanics in terms of interactive holography appears as `normal' science [1]. With the holography quantum behavior is determined by the interplay of material formations and their conjugate images. To begin with, this effortlessly elucidates the nonlocality in quantum entanglements. Then, it has been shown that Schr"odinger's dynamics for a single particle arises from Bi-Fragmental random walks of the particle itself and its holographic image. For many particles this picture blurs with fragments merging as bosons or fermions. In biomolecules, swapping of particles and their holographic placeholders leads to self-replication of the living matter. Because of broad interpretations of quantum formalism direct experiments attributing it to holography may not be very compelling. The holographic mechanism better reveals as an absolute frame of reference. A number of physical and biological events exhibit annual variations when Earth orbital position changes with respect to the universal holographic mechanism. The well established calendar variations of heart attacks can be regarded as a positive outcome of a generalization of the Michelson experiment, where holography is interferometry and ailing hearts are detectors of pathologically replicated proteins. Also, there have been already observed calendar changes in radioactive decay rates. The same could be expected for various fine quantum experiences, like, e.g., Josephson tunneling. In other words, Quantum Mechanics (February) Quantum Mechanics (August). [1] S. Berkovich, ``A comprehensive explanation of quantum mechanics,'' www.cs.gwu.edu/research/technical-report/170 .

  9. High-resolution hard x-ray spectroscopy of high-temperature plasmas using an array of quantum microcalorimeters.

    PubMed

    Thorn, Daniel B; Gu, Ming F; Brown, Greg V; Beiersdorfer, Peter; Porter, F Scott; Kilbourne, Caroline A; Kelley, Richard L

    2008-10-01

    Quantum microcalorimeters show promise in being able to fully resolve x-ray spectra from heavy highly charged ions, such as would be found in hot plasmas with temperatures in excess of 50 keV. Quantum microcalorimeter arrays are able to achieve this as they have a high-resolving power and good effective quantum efficiency for hard x-ray photons up to 60 keV. To demonstrate this, we present a measurement using an array of thin HgTe quantum microcalorimeters to measure the K-shell spectrum of hydrogenlike through carbonlike praseodymium (Z=57). With this device we are able to attain a resolving power, E/DeltaE, of 1000 at a photon energy of 37 keV.

  10. Single-photon emitting diode in silicon carbide.

    PubMed

    Lohrmann, A; Iwamoto, N; Bodrog, Z; Castelletto, S; Ohshima, T; Karle, T J; Gali, A; Prawer, S; McCallum, J C; Johnson, B C

    2015-07-23

    Electrically driven single-photon emitting devices have immediate applications in quantum cryptography, quantum computation and single-photon metrology. Mature device fabrication protocols and the recent observations of single defect systems with quantum functionalities make silicon carbide an ideal material to build such devices. Here, we demonstrate the fabrication of bright single-photon emitting diodes. The electrically driven emitters display fully polarized output, superior photon statistics (with a count rate of >300 kHz) and stability in both continuous and pulsed modes, all at room temperature. The atomic origin of the single-photon source is proposed. These results provide a foundation for the large scale integration of single-photon sources into a broad range of applications, such as quantum cryptography or linear optics quantum computing.

  11. Probing quantum Hall states with single-electron transistors at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Gustafsson, Martin; Yankowitz, Matthew; Forsythe, Carlos; Zhu, Xiaoyang; Dean, Cory

    The sequence of fractional quantum Hall states in graphene is not yet fully understood, largely due to disorder-induced limitations of conventional transport studies. Measurements of magnetotransport in other 2D crystals are further complicated by the difficulties in making ohmic contact to the materials. On the other hand, bulk electronic compressibility can provide clear signatures of the integer and fractional quantum Hall effects, does not require ohmic contact, and can be localized to regions of low disorder. The single-electron transistor (SET) is a suitable tool for such experiments due to its small size and high charge sensitivity, which allow electric fields penetrating the 2D electron system to be detected locally and with high fidelity. Here we report studies of exfoliated 2D van der Waals materials fully encapsulated in flakes of hexagonal boron nitride. SETs are fabricated lithographically on top of the encapsulation, yielding a structure which lends itself to experiments at high electric and magnetic fields. We demonstrate the method on monolayer graphene, where we observe fractional quantum Hall states at all filling factors ν = n / 3 up to n = 17 and extract their associated energy gaps for magnetic fields up to 31 tesla.

  12. Autonomous calibration of single spin qubit operations

    NASA Astrophysics Data System (ADS)

    Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor

    2017-12-01

    Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.

  13. The entropic cost of quantum generalized measurements

    NASA Astrophysics Data System (ADS)

    Mancino, Luca; Sbroscia, Marco; Roccia, Emanuele; Gianani, Ilaria; Somma, Fabrizia; Mataloni, Paolo; Paternostro, Mauro; Barbieri, Marco

    2018-03-01

    Landauer's principle introduces a symmetry between computational and physical processes: erasure of information, a logically irreversible operation, must be underlain by an irreversible transformation dissipating energy. Monitoring micro- and nano-systems needs to enter into the energetic balance of their control; hence, finding the ultimate limits is instrumental to the development of future thermal machines operating at the quantum level. We report on the experimental investigation of a lower bound to the irreversible entropy associated to generalized quantum measurements on a quantum bit. We adopted a quantum photonics gate to implement a device interpolating from the weakly disturbing to the fully invasive and maximally informative regime. Our experiment prompted us to introduce a bound taking into account both the classical result of the measurement and the outcoming quantum state; unlike previous investigation, our entropic bound is based uniquely on measurable quantities. Our results highlight what insights the information-theoretic approach provides on building blocks of quantum information processors.

  14. A variational eigenvalue solver on a photonic quantum processor

    PubMed Central

    Peruzzo, Alberto; McClean, Jarrod; Shadbolt, Peter; Yung, Man-Hong; Zhou, Xiao-Qi; Love, Peter J.; Aspuru-Guzik, Alán; O’Brien, Jeremy L.

    2014-01-01

    Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the physical dimension grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent evolution. Here we present an alternative approach that greatly reduces the requirements for coherent evolution and combine this method with a new approach to state preparation based on ansätze and classical optimization. We implement the algorithm by combining a highly reconfigurable photonic quantum processor with a conventional computer. We experimentally demonstrate the feasibility of this approach with an example from quantum chemistry—calculating the ground-state molecular energy for He–H+. The proposed approach drastically reduces the coherence time requirements, enhancing the potential of quantum resources available today and in the near future. PMID:25055053

  15. Self-homodyne measurement of a dynamic Mollow triplet in the solid state

    NASA Astrophysics Data System (ADS)

    Fischer, Kevin A.; Müller, Kai; Rundquist, Armand; Sarmiento, Tomas; Piggott, Alexander Y.; Kelaita, Yousif; Dory, Constantin; Lagoudakis, Konstantinos G.; Vučković, Jelena

    2016-03-01

    The study of the light-matter interaction at the quantum scale has been enabled by the cavity quantum electrodynamics (CQED) architecture, in which a quantum two-level system strongly couples to a single cavity mode. Originally implemented with atoms in optical cavities, CQED effects are now also observed with artificial atoms in solid-state environments. Such realizations of these systems exhibit fast dynamics, making them attractive candidates for devices including modulators and sources in high-throughput communications. However, these systems possess large photon out-coupling rates that obscure any quantum behaviour at large excitation powers. Here, we have used a self-homodyning interferometric technique that fully employs the complex mode structure of our nanofabricated cavity to observe a quantum phenomenon known as the dynamic Mollow triplet. We expect this interference to facilitate the development of arbitrary on-chip quantum state generators, thereby strongly influencing quantum lithography, metrology and imaging.

  16. Experimental realization of narrowband four-photon Greenberger-Horne-Zeilinger state in a single cold atomic ensemble.

    PubMed

    Dong, Ming-Xin; Zhang, Wei; Hou, Zhi-Bo; Yu, Yi-Chen; Shi, Shuai; Ding, Dong-Sheng; Shi, Bao-Sen

    2017-11-15

    Multi-photon entangled states not only play a crucial role in research on quantum physics but also have many applications in quantum information fields such as quantum computation, quantum communication, and quantum metrology. To fully exploit the multi-photon entangled states, it is important to establish the interaction between entangled photons and matter, which requires that photons have narrow bandwidth. Here, we report on the experimental generation of a narrowband four-photon Greenberger-Horne-Zeilinger state with a fidelity of 64.9% through multiplexing two spontaneous four-wave mixings in a cold Rb85 atomic ensemble. The full bandwidth of the generated GHZ state is about 19.5 MHz. Thus, the generated photons can effectively match the atoms, which are very suitable for building a quantum computation and quantum communication network based on atomic ensembles.

  17. Neural-network quantum state tomography

    NASA Astrophysics Data System (ADS)

    Torlai, Giacomo; Mazzola, Guglielmo; Carrasquilla, Juan; Troyer, Matthias; Melko, Roger; Carleo, Giuseppe

    2018-05-01

    The experimental realization of increasingly complex synthetic quantum systems calls for the development of general theoretical methods to validate and fully exploit quantum resources. Quantum state tomography (QST) aims to reconstruct the full quantum state from simple measurements, and therefore provides a key tool to obtain reliable analytics1-3. However, exact brute-force approaches to QST place a high demand on computational resources, making them unfeasible for anything except small systems4,5. Here we show how machine learning techniques can be used to perform QST of highly entangled states with more than a hundred qubits, to a high degree of accuracy. We demonstrate that machine learning allows one to reconstruct traditionally challenging many-body quantities—such as the entanglement entropy—from simple, experimentally accessible measurements. This approach can benefit existing and future generations of devices ranging from quantum computers to ultracold-atom quantum simulators6-8.

  18. Endo-Fullerene and Doped Diamond Nanocrystallite Based Models of Qubits for Solid-State Quantum Computers

    NASA Technical Reports Server (NTRS)

    Park, Seongjun; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Models of encapsulated 1/2 nuclear spin H-1 and P-31 atoms in fullerene and diamond nanocrystallite, respectively, are proposed and examined with ab-initio local density functional method for possible applications as single quantum bits (qubits) in solid-state quantum computers. A H-1 atom encapsulated in a fully deuterated fullerene, C(sub 20)D(sub 20), forms the first model system and ab-initio calculation shows that H-1 atom is stable in atomic state at the center of the fullerene with a barrier of about 1 eV to escape. A P-31 atom positioned at the center of a diamond nanocrystallite is the second model system, and 3 1P atom is found to be stable at the substitutional site relative to interstitial sites by 15 eV, Vacancy formation energy is 6 eV in diamond so that substitutional P-31 atom will be stable against diffusion during the formation mechanisms within the nanocrystallite. The coupling between the nuclear spin and weakly bound (valance) donor electron coupling in both systems is found to be suitable for single qubit applications, where as the spatial distributions of (valance) donor electron wave functions are found to be preferentially spread along certain lattice directions facilitating two or more qubit applications. The feasibility of the fabrication pathways for both model solid-state qubit systems within practical quantum computers is discussed with in the context of our proposed solid-state qubits.

  19. Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) using Complex Quantum Neuron (CQN): Applications to time series prediction.

    PubMed

    Cui, Yiqian; Shi, Junyou; Wang, Zili

    2015-11-01

    Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Cylindrical dust acoustic solitary waves with transverse perturbations in quantum dusty plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mushtaq, A.

    2007-11-15

    The nonlinear quantum dust acoustic waves with effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the perturbation method, a cylindrical Kadomtsev-Petviashvili equation for dust acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics, and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave, are studied both analytically and numerically.

  1. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sang-Bong

    1993-09-01

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaoticmore » nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.« less

  2. JOURNAL SCOPE GUIDELINES: Paper classification scheme

    NASA Astrophysics Data System (ADS)

    2005-06-01

    This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas

  3. Repetitive Interrogation of 2-Level Quantum Systems

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Chung, Sang K.

    2010-01-01

    Trapped ion clocks derive information from a reference atomic transition by repetitive interrogations of the same quantum system, either a single ion or ionized gas of many millions of ions. Atomic beam frequency standards, by contrast, measure reference atomic transitions in a continuously replenished "flow through" configuration where initial ensemble atomic coherence is zero. We will describe some issues and problems that can arise when atomic state selection and preparation of the quantum atomic system is not completed, that is, optical pumping has not fully relaxed the coherence and also not fully transferred atoms to the initial state. We present a simple two-level density matrix analysis showing how frequency shifts during the state-selection process can cause frequency shifts of the measured clock transition. Such considerations are very important when a low intensity lamp light source is used for state selection, where there is relatively weak relaxation and re-pumping of ions to an initial state and much weaker 'environmental' relaxation of the atomic coherence set-up in the atomic sample.

  4. The New Quantum Logic

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2014-06-01

    It is shown how all the major conceptual difficulties of standard (textbook) quantum mechanics, including the two measurement problems and the (supposed) nonlocality that conflicts with special relativity, are resolved in the consistent or decoherent histories interpretation of quantum mechanics by using a modified form of quantum logic to discuss quantum properties (subspaces of the quantum Hilbert space), and treating quantum time development as a stochastic process. The histories approach in turn gives rise to some conceptual difficulties, in particular the correct choice of a framework (probabilistic sample space) or family of histories, and these are discussed. The central issue is that the principle of unicity, the idea that there is a unique single true description of the world, is incompatible with our current understanding of quantum mechanics.

  5. Quantum mechanics and reality: An interpretation of Everett's theory

    NASA Astrophysics Data System (ADS)

    Lehner, Christoph Albert

    The central part of Everett's formulation of quantum mechanics is a quantum mechanical model of memory and of observation as the recording of information in a memory. To use this model as an answer to the measurement problem, Everett has to assume that a conscious observer can be in a superposition of such memory states and be unaware of it. This assumption has puzzled generations of readers. The fundamental aim of this dissertation is to find a set of simpler assumptions which are sufficient to show that Everett's model is empirically adequate. I argue that Everett's model needs three assumptions to account for the process of observation: an assumption of decoherence of observers as quantum mechanical systems; an assumption of supervenience of mental states (qualities) over quantum mechanical properties; and an assumption about the interpretation of quantum mechanical states in general: quantum mechanical states describe ensembles of states of affairs coexisting in the same system. I argue that the only plausible understanding of such ensembles is as ensembles of possibilities, and that all standard no-collapse interpretations agree in this reading of quantum mechanical states. Their differences can be understood as different theories about what marks the real state within this ensemble, and Everett's theory as the claim that no additional 'mark of reality' is necessary. Using the three assumptions, I argue that introspection cannot determine the objective quantum mechanical state of an observer. Rather, the introspective qualities of a quantum mechanical state can be represented by a (classical) statistical ensemble of subjective states. An analysis of these subjective states and their dynamics leads to the conclusion that they suffice to give empirically correct predictions. The argument for the empirical adequacy of the subjective state entails that knowledge of the objective quantum mechanical state is impossible in principle. Empirical reality for a conscious observer is not described by the objective state, but by a Everettian relative state conditional on the subjective state, and no theoretical 'mark of reality' is necessary for this concept of reality. I compare the resulting concept of reality to Kant's distinction between empirical and transcendental reality.

  6. Communication: Charge-transfer rate constants in zinc-porphyrin-porphyrin-derived dyads: A Fermi golden rule first-principles-based study

    NASA Astrophysics Data System (ADS)

    Manna, Arun K.; Dunietz, Barry D.

    2014-09-01

    We investigate photoinduced charge transfer (CT) processes within dyads consisting of porphyrin derivatives in which one ring ligates a Zn metal center and where the rings vary by their degree of conjugation. Using a first-principles approach, we show that molecular-scale means can tune CT rates through stabilization affected by the polar environment. Such means of CT tuning are important for achieving high efficiency optoelectronic applications using organic semiconducting materials. Our fully quantum mechanical scheme is necessary for reliably modeling the CT process across different regimes, in contrast to the pervading semi-classical Marcus picture that grossly underestimates transfer in the far-inverted regime.

  7. Quantum particles in general spacetimes: A tangent bundle formalism

    NASA Astrophysics Data System (ADS)

    Wohlfarth, Mattias N. R.

    2018-06-01

    Using tangent bundle geometry we construct an equivalent reformulation of classical field theory on flat spacetimes which simultaneously encodes the perspectives of multiple observers. Its generalization to curved spacetimes realizes a new type of nonminimal coupling of the fields and is shown to admit a canonical quantization procedure. For the resulting quantum theory we demonstrate the emergence of a particle interpretation, fully consistent with general relativistic geometry. The path dependency of parallel transport forces each observer to carry their own quantum state; we find that the communication of the corresponding quantum information may generate extra particles on curved spacetimes. A speculative link between quantum information and spacetime curvature is discussed which might lead to novel explanations for quantum decoherence and vanishing interference in double-slit or interaction-free measurement scenarios, in the mere presence of additional observers.

  8. Multimode quantum interference of photons in multiport integrated devices

    PubMed Central

    Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L.

    2011-01-01

    Photonics is a leading approach in realizing future quantum technologies and recently, optical waveguide circuits on silicon chips have demonstrated high levels of miniaturization and performance. Multimode interference (MMI) devices promise a straightforward implementation of compact and robust multiport circuits. Here, we show quantum interference in a 2×2 MMI coupler with visibility of V=95.6±0.9%. We further demonstrate the operation of a 4×4 port MMI device with photon pairs, which exhibits complex quantum interference behaviour. We have developed a new technique to fully characterize such multiport devices, which removes the need for phase-sensitive measurements and may find applications for a wide range of photonic devices. Our results show that MMI devices can operate in the quantum regime with high fidelity and promise substantial simplification and concatenation of photonic quantum circuits. PMID:21364563

  9. Making Sense of Bell's Theorem and Quantum Nonlocality

    NASA Astrophysics Data System (ADS)

    Boughn, Stephen

    2017-05-01

    Bell's theorem has fascinated physicists and philosophers since his 1964 paper, which was written in response to the 1935 paper of Einstein, Podolsky, and Rosen. Bell's theorem and its many extensions have led to the claim that quantum mechanics and by inference nature herself are nonlocal in the sense that a measurement on a system by an observer at one location has an immediate effect on a distant entangled system (one with which the original system has previously interacted). Einstein was repulsed by such "spooky action at a distance" and was led to question whether quantum mechanics could provide a complete description of physical reality. In this paper I argue that quantum mechanics does not require spooky action at a distance of any kind and yet it is entirely reasonable to question the assumption that quantum mechanics can provide a complete description of physical reality. The magic of entangled quantum states has little to do with entanglement and everything to do with superposition, a property of all quantum systems and a foundational tenet of quantum mechanics.

  10. Mixing-induced quantum non-Markovianity and information flow

    NASA Astrophysics Data System (ADS)

    Breuer, Heinz-Peter; Amato, Giulio; Vacchini, Bassano

    2018-04-01

    Mixing dynamical maps describing open quantum systems can lead from Markovian to non-Markovian processes. Being surprising and counter-intuitive, this result has been used as argument against characterization of non-Markovianity in terms of information exchange. Here, we demonstrate that, quite the contrary, mixing can be understood in a natural way which is fully consistent with existing theories of memory effects. In particular, we show how mixing-induced non-Markovianity can be interpreted in terms of the distinguishability of quantum states, system-environment correlations and the information flow between system and environment.

  11. Continuous QKD and high speed data encryption

    NASA Astrophysics Data System (ADS)

    Zbinden, Hugo; Walenta, Nino; Guinnard, Olivier; Houlmann, Raphael; Wen, Charles Lim Ci; Korzh, Boris; Lunghi, Tommaso; Gisin, Nicolas; Burg, Andreas; Constantin, Jeremy; Legré, Matthieu; Trinkler, Patrick; Caselunghe, Dario; Kulesza, Natalia; Trolliet, Gregory; Vannel, Fabien; Junod, Pascal; Auberson, Olivier; Graf, Yoan; Curchod, Gilles; Habegger, Gilles; Messerli, Etienne; Portmann, Christopher; Henzen, Luca; Keller, Christoph; Pendl, Christian; Mühlberghuber, Michael; Roth, Christoph; Felber, Norbert; Gürkaynak, Frank; Schöni, Daniel; Muheim, Beat

    2013-10-01

    We present the results of a Swiss project dedicated to the development of high speed quantum key distribution and data encryption. The QKD engine features fully automated key exchange, hardware key distillation based on finite key security analysis, efficient authentication and wavelength division multiplexing of the quantum and the classical channel and one-time pas encryption. The encryption device allows authenticated symmetric key encryption (e.g AES) at rates of up to 100 Gb/s. A new quantum key can uploaded up to 1000 times second from the QKD engine.

  12. Optical-nanofiber-based interface for single molecules

    NASA Astrophysics Data System (ADS)

    Skoff, Sarah M.; Papencordt, David; Schauffert, Hardy; Bayer, Bernhard C.; Rauschenbeutel, Arno

    2018-04-01

    Optical interfaces for quantum emitters are a prerequisite for implementing quantum networks. Here, we couple single molecules to the guided modes of an optical nanofiber. The molecules are embedded within a crystal that provides photostability and, due to the inhomogeneous broadening, a means to spectrally address single molecules. Single molecules are excited and detected solely via the nanofiber interface without the requirement of additional optical access. In this way, we realize a fully fiber-integrated system that is scalable and may become a versatile constituent for quantum hybrid systems.

  13. A continued fraction resummation form of bath relaxation effect in the spin-boson model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Zhihao; Tang, Zhoufei; Wu, Jianlan, E-mail: jianlanwu@zju.edu.cn

    2015-02-28

    In the spin-boson model, a continued fraction form is proposed to systematically resum high-order quantum kinetic expansion (QKE) rate kernels, accounting for the bath relaxation effect beyond the second-order perturbation. In particular, the analytical expression of the sixth-order QKE rate kernel is derived for resummation. With higher-order correction terms systematically extracted from higher-order rate kernels, the resummed quantum kinetic expansion approach in the continued fraction form extends the Pade approximation and can fully recover the exact quantum dynamics as the expansion order increases.

  14. Unconditional optimality of Gaussian attacks against continuous-variable quantum key distribution.

    PubMed

    García-Patrón, Raúl; Cerf, Nicolas J

    2006-11-10

    A fully general approach to the security analysis of continuous-variable quantum key distribution (CV-QKD) is presented. Provided that the quantum channel is estimated via the covariance matrix of the quadratures, Gaussian attacks are shown to be optimal against all collective eavesdropping strategies. The proof is made strikingly simple by combining a physical model of measurement, an entanglement-based description of CV-QKD, and a recent powerful result on the extremality of Gaussian states [M. M. Wolf, Phys. Rev. Lett. 96, 080502 (2006)10.1103/PhysRevLett.96.080502].

  15. High-dimensional quantum cloning and applications to quantum hacking

    PubMed Central

    Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W.; Karimi, Ebrahim

    2017-01-01

    Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography. PMID:28168219

  16. High-dimensional quantum cloning and applications to quantum hacking.

    PubMed

    Bouchard, Frédéric; Fickler, Robert; Boyd, Robert W; Karimi, Ebrahim

    2017-02-01

    Attempts at cloning a quantum system result in the introduction of imperfections in the state of the copies. This is a consequence of the no-cloning theorem, which is a fundamental law of quantum physics and the backbone of security for quantum communications. Although perfect copies are prohibited, a quantum state may be copied with maximal accuracy via various optimal cloning schemes. Optimal quantum cloning, which lies at the border of the physical limit imposed by the no-signaling theorem and the Heisenberg uncertainty principle, has been experimentally realized for low-dimensional photonic states. However, an increase in the dimensionality of quantum systems is greatly beneficial to quantum computation and communication protocols. Nonetheless, no experimental demonstration of optimal cloning machines has hitherto been shown for high-dimensional quantum systems. We perform optimal cloning of high-dimensional photonic states by means of the symmetrization method. We show the universality of our technique by conducting cloning of numerous arbitrary input states and fully characterize our cloning machine by performing quantum state tomography on cloned photons. In addition, a cloning attack on a Bennett and Brassard (BB84) quantum key distribution protocol is experimentally demonstrated to reveal the robustness of high-dimensional states in quantum cryptography.

  17. Hybrid quantum systems with trapped charged particles

    NASA Astrophysics Data System (ADS)

    Kotler, Shlomi; Simmonds, Raymond W.; Leibfried, Dietrich; Wineland, David J.

    2017-02-01

    Trapped charged particles have been at the forefront of quantum information processing (QIP) for a few decades now, with deterministic two-qubit logic gates reaching record fidelities of 99.9 % and single-qubit operations of much higher fidelity. In a hybrid system involving trapped charges, quantum degrees of freedom of macroscopic objects such as bulk acoustic resonators, superconducting circuits, or nanomechanical membranes, couple to the trapped charges and ideally inherit the coherent properties of the charges. The hybrid system therefore implements a "quantum transducer," where the quantum reality (i.e., superpositions and entanglement) of small objects is extended to include the larger object. Although a hybrid quantum system with trapped charges could be valuable both for fundamental research and for QIP applications, no such system exists today. Here we study theoretically the possibilities of coupling the quantum-mechanical motion of a trapped charged particle (e.g., an ion or electron) to the quantum degrees of freedom of superconducting devices, nanomechanical resonators, and quartz bulk acoustic wave resonators. For each case, we estimate the coupling rate between the charged particle and its macroscopic counterpart and compare it to the decoherence rate, i.e., the rate at which quantum superposition decays. A hybrid system can only be considered quantum if the coupling rate significantly exceeds all decoherence rates. Our approach is to examine specific examples by using parameters that are experimentally attainable in the foreseeable future. We conclude that hybrid quantum systems involving a single atomic ion are unfavorable compared with the use of a single electron because the coupling rates between the ion and its counterpart are slower than the expected decoherence rates. A system based on trapped electrons, on the other hand, might have coupling rates that significantly exceed decoherence rates. Moreover, it might have appealing properties such as fast entangling gates, long coherence, and flexible topology that is fully electronic in nature. Realizing such a system, however, is technologically challenging because it requires accommodating both a trapping technology and superconducting circuitry in a compatible manner. We review some of the challenges involved, such as the required trap parameters, electron sources, electrical circuitry, and cooling schemes in order to promote further investigations towards the realization of such a hybrid system.

  18. Introduction

    NASA Astrophysics Data System (ADS)

    Bub, Jeffrey; Fuchs, Christopher A.

    The great debate between Einstein and Bohr on the interpretation of quantum mechanics culminated with the Einstein-Podolsky-Rosen (EPR) paper in 1935, "Can quantum-mechanical description of physical reality be considered complete?" (Einstein, Podolsky, & Rosen, 1935, and Bohr's reply, 1935). EPR showed that composite quantum systems, consisting of widely separated subsystems, could exist in certain quantum states that they thought spelled trouble for the Copenhagen interpretation. Specifically, they argued that for such states, the correlations between the outcomes of measurements on the subsystems were incompatible with the assumption that the quantum state was a complete description of the system. They concluded that quantum mechanics was an incomplete theory-that the quantum state could not be the whole story about a system.

  19. Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light.

    PubMed

    Schäfermeier, Clemens; Kerdoncuff, Hugo; Hoff, Ulrich B; Fu, Hao; Huck, Alexander; Bilek, Jan; Harris, Glen I; Bowen, Warwick P; Gehring, Tobias; Andersen, Ulrik L

    2016-11-29

    Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics.

  20. Albert Einstein and the Quantum Riddle

    ERIC Educational Resources Information Center

    Lande, Alfred

    1974-01-01

    Derives a systematic structure contributing to the solution of the quantum riddle in Einstein's sense by deducing quantum mechanics from the postulates of symmetry, correspondence, and covariance. Indicates that the systematic presentation is in agreement with quantum mechanics established by Schroedinger, Born, and Heisenberg. (CC)

  1. Locality and quantum mechanics.

    PubMed

    Unruh, W G

    2018-07-13

    It is argued that it is best not to think of quantum mechanics as non-local, but rather that it is non-realistic.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  2. Heisenberg and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian

    2011-09-01

    Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.

  3. Heisenberg and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian

    2009-02-01

    Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.

  4. Contact geometry and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Herczeg, Gabriel; Waldron, Andrew

    2018-06-01

    We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental "phase-spacetime". We show that this covariant starting point makes quantization into a purely geometric flatness condition. This makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer. As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum mechanics.

  5. O+OH-->O(2)+H: A key reaction for interstellar chemistry. New theoretical results and comparison with experiment.

    PubMed

    Lique, F; Jorfi, M; Honvault, P; Halvick, P; Lin, S Y; Guo, H; Xie, D Q; Dagdigian, P J; Kłos, J; Alexander, M H

    2009-12-14

    We report extensive, fully quantum, time-independent (TID) calculations of cross sections at low collision energies and rate constants at low temperatures for the O+OH reaction, of key importance in the production of molecular oxygen in cold, dark, interstellar clouds and in the chemistry of the Earth's atmosphere. Our calculations are compared with TID calculations within the J-shifting approximation, with wave-packet calculations, and with quasiclassical trajectory calculations. The fully quantum TID calculations yield rate constants higher than those from the more approximate methods and are qualitatively consistent with a low-temperature extrapolation of earlier experimental values but not with the most recent experiments at the lowest temperatures.

  6. Secure entanglement distillation for double-server blind quantum computation.

    PubMed

    Morimae, Tomoyuki; Fujii, Keisuke

    2013-07-12

    Blind quantum computation is a new secure quantum computing protocol where a client, who does not have enough quantum technologies at her disposal, can delegate her quantum computation to a server, who has a fully fledged quantum computer, in such a way that the server cannot learn anything about the client's input, output, and program. If the client interacts with only a single server, the client has to have some minimum quantum power, such as the ability of emitting randomly rotated single-qubit states or the ability of measuring states. If the client interacts with two servers who share Bell pairs but cannot communicate with each other, the client can be completely classical. For such a double-server scheme, two servers have to share clean Bell pairs, and therefore the entanglement distillation is necessary in a realistic noisy environment. In this Letter, we show that it is possible to perform entanglement distillation in the double-server scheme without degrading the security of blind quantum computing.

  7. A multiplexed light-matter interface for fibre-based quantum networks

    PubMed Central

    Saglamyurek, Erhan; Grimau Puigibert, Marcelli; Zhou, Qiang; Giner, Lambert; Marsili, Francesco; Verma, Varun B.; Woo Nam, Sae; Oesterling, Lee; Nippa, David; Oblak, Daniel; Tittel, Wolfgang

    2016-01-01

    Processing and distributing quantum information using photons through fibre-optic or free-space links are essential for building future quantum networks. The scalability needed for such networks can be achieved by employing photonic quantum states that are multiplexed into time and/or frequency, and light-matter interfaces that are able to store and process such states with large time-bandwidth product and multimode capacities. Despite important progress in developing such devices, the demonstration of these capabilities using non-classical light remains challenging. Here, employing the atomic frequency comb quantum memory protocol in a cryogenically cooled erbium-doped optical fibre, we report the quantum storage of heralded single photons at a telecom-wavelength (1.53 μm) with a time-bandwidth product approaching 800. Furthermore, we demonstrate frequency-multimode storage and memory-based spectral-temporal photon manipulation. Notably, our demonstrations rely on fully integrated quantum technologies operating at telecommunication wavelengths. With improved storage efficiency, our light-matter interface may become a useful tool in future quantum networks. PMID:27046076

  8. A multiplexed light-matter interface for fibre-based quantum networks.

    PubMed

    Saglamyurek, Erhan; Grimau Puigibert, Marcelli; Zhou, Qiang; Giner, Lambert; Marsili, Francesco; Verma, Varun B; Woo Nam, Sae; Oesterling, Lee; Nippa, David; Oblak, Daniel; Tittel, Wolfgang

    2016-04-05

    Processing and distributing quantum information using photons through fibre-optic or free-space links are essential for building future quantum networks. The scalability needed for such networks can be achieved by employing photonic quantum states that are multiplexed into time and/or frequency, and light-matter interfaces that are able to store and process such states with large time-bandwidth product and multimode capacities. Despite important progress in developing such devices, the demonstration of these capabilities using non-classical light remains challenging. Here, employing the atomic frequency comb quantum memory protocol in a cryogenically cooled erbium-doped optical fibre, we report the quantum storage of heralded single photons at a telecom-wavelength (1.53 μm) with a time-bandwidth product approaching 800. Furthermore, we demonstrate frequency-multimode storage and memory-based spectral-temporal photon manipulation. Notably, our demonstrations rely on fully integrated quantum technologies operating at telecommunication wavelengths. With improved storage efficiency, our light-matter interface may become a useful tool in future quantum networks.

  9. Thermodynamic integration from classical to quantum mechanics.

    PubMed

    Habershon, Scott; Manolopoulos, David E

    2011-12-14

    We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable. © 2011 American Institute of Physics

  10. Emergent quantum mechanics without wavefunctions

    NASA Astrophysics Data System (ADS)

    Mesa Pascasio, J.; Fussy, S.; Schwabl, H.; Grössing, G.

    2016-03-01

    We present our model of an Emergent Quantum Mechanics which can be characterized by “realism without pre-determination”. This is illustrated by our analytic description and corresponding computer simulations of Bohmian-like “surreal” trajectories, which are obtained classically, i.e. without the use of any quantum mechanical tool such as wavefunctions. However, these trajectories do not necessarily represent ontological paths of particles but rather mappings of the probability density flux in a hydrodynamical sense. Modelling emergent quantum mechanics in a high-low intesity double slit scenario gives rise to the “quantum sweeper effect” with a characteristic intensity pattern. This phenomenon should be experimentally testable via weak measurement techniques.

  11. Nanotube Tunneling as a Consequence of Probable Discrete Trajectories

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2001-01-01

    It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but is divided into charge "islands." A clear understanding of tunneling phenomena can be useful to elucidate the mechanism for electrical conduction in nanotubes. This paper represents the first attempt to shed light on the aforementioned phenomenon through viewing tunneling as a natural consequence of "discrete trajectories." The relevance of this analysis is that it may provide further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. In a situation involving particles impinging on a classically impenetrable barrier, the result of quantum mechanics that the probability of detecting transmitted particles falls off exponentially is derived without wave theory. This paper should provide a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.

  12. Fritz London and the scale of quantum mechanisms

    NASA Astrophysics Data System (ADS)

    Monaldi, Daniela

    2017-11-01

    Fritz London's seminal idea of ;quantum mechanisms of macroscopic scale;, first articulated in 1946, was the unanticipated result of two decades of research, during which London pursued quantum-mechanical explanations of various kinds of systems of particles at different scales. He started at the microphysical scale with the hydrogen molecule, generalized his approach to chemical bonds and intermolecular forces, then turned to macrophysical systems like superconductors and superfluid helium. Along this path, he formulated a set of concepts-the quantum mechanism of exchange, the rigidity of the wave function, the role of quantum statistics in multi-particle systems, the possibility of order in momentum space-that eventually coalesced into a new conception of systems of equal particles. In particular, it was London's clarification of Bose-Einstein condensation that enabled him to formulate the notion of superfluids, and led him to the recognition that quantum mechanics was not, as it was commonly assumed, relevant exclusively as a micromechanics.

  13. An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: incorporation of the quantum effect between solute and solvent.

    PubMed

    Watanabe, Hiroshi C; Banno, Misa; Sakurai, Minoru

    2016-03-14

    Quantum effects in solute-solvent interactions, such as the many-body effect and the dipole-induced dipole, are known to be critical factors influencing the infrared spectra of species in the liquid phase. For accurate spectrum evaluation, the surrounding solvent molecules, in addition to the solute of interest, should be treated using a quantum mechanical method. However, conventional quantum mechanics/molecular mechanics (QM/MM) methods cannot handle free QM solvent molecules during molecular dynamics (MD) simulation because of the diffusion problem. To deal with this problem, we have previously proposed an adaptive QM/MM "size-consistent multipartitioning (SCMP) method". In the present study, as the first application of the SCMP method, we demonstrate the reproduction of the infrared spectrum of liquid-phase water, and evaluate the quantum effect in comparison with conventional QM/MM simulations.

  14. Continuous quantum measurement and the quantum to classical transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Tanmoy; Habib, Salman; Jacobs, Kurt

    2003-04-01

    While ultimately they are described by quantum mechanics, macroscopic mechanical systems are nevertheless observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining macroscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a process referred to as the quantum to classical transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys. Rev. Lett. 85, 4852 (2000)], here we elucidate this transition in some detail, showing that once the measurement processes that affect all macroscopic systems are taken into account, quantum mechanics indeed predicts the emergence of classical motion. We derive inequalities thatmore » describe the parameter regime in which classical motion is obtained, and provide numerical examples. We also demonstrate two further important properties of the classical limit: first, that multiple observers all agree on the motion of an object, and second, that classical statistical inference may be used to correctly track the classical motion.« less

  15. Gate-controlled electromechanical backaction induced by a quantum dot

    NASA Astrophysics Data System (ADS)

    Okazaki, Yuma; Mahboob, Imran; Onomitsu, Koji; Sasaki, Satoshi; Yamaguchi, Hiroshi

    2016-04-01

    Semiconductor-based quantum structures integrated into mechanical resonators have emerged as a unique platform for generating entanglement between macroscopic phononic and mesocopic electronic degrees of freedom. A key challenge to realizing this is the ability to create and control the coupling between two vastly dissimilar systems. Here, such coupling is demonstrated in a hybrid device composed of a gate-defined quantum dot integrated into a piezoelectricity-based mechanical resonator enabling milli-Kelvin phonon states to be detected via charge fluctuations in the quantum dot. Conversely, the single electron transport in the quantum dot can induce a backaction onto the mechanics where appropriate bias of the quantum dot can enable damping and even current-driven amplification of the mechanical motion. Such electron transport induced control of the mechanical resonator dynamics paves the way towards a new class of hybrid semiconductor devices including a current injected phonon laser and an on-demand single phonon emitter.

  16. Acquisition of an Adiabatic Demagnetization Refrigerator for Quantum Information Science with Superconducting Circuits

    DTIC Science & Technology

    2015-11-23

    SECURITY CLASSIFICATION OF: The DURIP award provided funds for acquiring a cryogen-free adiabatic demagnetization refrigerator at Syracuse University...The new refrigerator has been installed and is now fully operational. The PI has intensive research efforts in the area of Quantum Information...Aug-2014 24-Aug-2015 Approved for Public Release; Distribution Unlimited Final Report: Acquisition of an Adiabatic Demagnetization Refrigerator for

  17. Macro-mechanics controls quantum mechanics: mechanically controllable quantum conductance switching of an electrochemically fabricated atomic-scale point contact.

    PubMed

    Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas

    2018-01-12

    Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from 'electrochemical' to 'mechanical', which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.

  18. Many-Body Localization and Thermalization in Quantum Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Nandkishore, Rahul; Huse, David A.

    2015-03-01

    We review some recent developments in the statistical mechanics of isolated quantum systems. We provide a brief introduction to quantum thermalization, paying particular attention to the eigenstate thermalization hypothesis (ETH) and the resulting single-eigenstate statistical mechanics. We then focus on a class of systems that fail to quantum thermalize and whose eigenstates violate the ETH: These are the many-body Anderson-localized systems; their long-time properties are not captured by the conventional ensembles of quantum statistical mechanics. These systems can forever locally remember information about their local initial conditions and are thus of interest for possibilities of storing quantum information. We discuss key features of many-body localization (MBL) and review a phenomenology of the MBL phase. Single-eigenstate statistical mechanics within the MBL phase reveal dynamically stable ordered phases, and phase transitions among them, that are invisible to equilibrium statistical mechanics and can occur at high energy and low spatial dimensionality, where equilibrium ordering is forbidden.

  19. Nonlinear Riccati equations as a unifying link between linear quantum mechanics and other fields of physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-04-01

    Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.

  20. Architectures for Quantum Simulation Showing a Quantum Speedup

    NASA Astrophysics Data System (ADS)

    Bermejo-Vega, Juan; Hangleiter, Dominik; Schwarz, Martin; Raussendorf, Robert; Eisert, Jens

    2018-04-01

    One of the main aims in the field of quantum simulation is to achieve a quantum speedup, often referred to as "quantum computational supremacy," referring to the experimental realization of a quantum device that computationally outperforms classical computers. In this work, we show that one can devise versatile and feasible schemes of two-dimensional, dynamical, quantum simulators showing such a quantum speedup, building on intermediate problems involving nonadaptive, measurement-based, quantum computation. In each of the schemes, an initial product state is prepared, potentially involving an element of randomness as in disordered models, followed by a short-time evolution under a basic translationally invariant Hamiltonian with simple nearest-neighbor interactions and a mere sampling measurement in a fixed basis. The correctness of the final-state preparation in each scheme is fully efficiently certifiable. We discuss experimental necessities and possible physical architectures, inspired by platforms of cold atoms in optical lattices and a number of others, as well as specific assumptions that enter the complexity-theoretic arguments. This work shows that benchmark settings exhibiting a quantum speedup may require little control, in contrast to universal quantum computing. Thus, our proposal puts a convincing experimental demonstration of a quantum speedup within reach in the near term.

  1. A pedestrian approach to the measurement problem in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Boughn, Stephen; Reginatto, Marcel

    2013-09-01

    The quantum theory of measurement has been a matter of debate for over eighty years. Most of the discussion has focused on theoretical issues with the consequence that other aspects (such as the operational prescriptions that are an integral part of experimental physics) have been largely ignored. This has undoubtedly exacerbated attempts to find a solution to the "measurement problem". How the measurement problem is defined depends to some extent on how the theoretical concepts introduced by the theory are interpreted. In this paper, we fully embrace the minimalist statistical (ensemble) interpretation of quantum mechanics espoused by Einstein, Ballentine, and others. According to this interpretation, the quantum state description applies only to a statistical ensemble of similarly prepared systems rather than representing an individual system. Thus, the statistical interpretation obviates the need to entertain reduction of the state vector, one of the primary dilemmas of the measurement problem. The other major aspect of the measurement problem, the necessity of describing measurements in terms of classical concepts that lay outside of quantum theory, remains. A consistent formalism for interacting quantum and classical systems, like the one based on ensembles on configuration space that we refer to in this paper, might seem to eliminate this facet of the measurement problem; however, we argue that the ultimate interface with experiments is described by operational prescriptions and not in terms of the concepts of classical theory. There is no doubt that attempts to address the measurement problem have yielded important advances in fundamental physics; however, it is also very clear that the measurement problem is still far from being resolved. The pedestrian approach presented here suggests that this state of affairs is in part the result of searching for a theoretical/mathematical solution to what is fundamentally an experimental/observational question. It suggests also that the measurement problem is, in some sense, ill-posed and might never be resolved. This point of view is tenable so long as one is willing to view physical theories as providing models of nature rather than complete descriptions of reality. Among other things, these considerations lead us to suggest that the Copenhagen interpretation's insistence on the classicality of the measurement apparatus should be replaced by the requirement that a measurement, which is specified operationally, should simply be of sufficient precision.

  2. Measurements of entanglement over a kilometric distance to test superluminal models of Quantum Mechanics: preliminary results.

    NASA Astrophysics Data System (ADS)

    Cocciaro, B.; Faetti, S.; Fronzoni, L.

    2017-08-01

    As shown in the EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is a non-local Theory. The Bell theorem and the successive experiments ruled out the possibility of explaining quantum correlations using only local hidden variables models. Some authors suggested that quantum correlations could be due to superluminal communications that propagate isotropically with velocity vt > c in a preferred reference frame. For finite values of vt and in some special cases, Quantum Mechanics and superluminal models lead to different predictions. So far, no deviations from the predictions of Quantum Mechanics have been detected and only lower bounds for the superluminal velocities vt have been established. Here we describe a new experiment that increases the maximum detectable superluminal velocities and we give some preliminary results.

  3. Is a description deeper than the quantum one possible?

    NASA Astrophysics Data System (ADS)

    Ghirardi, GianCarlo; Romano, Raffaele

    2014-12-01

    Recently, it has been argued that quantum mechanics is a complete theory, and that different quantum states do necessarily correspond to different elements of reality, under the assumptions that quantum mechanics is correct and that measurement settings can be freely chosen. In this work, we prove that this result is a consequence of an unnecessarily strong mathematical expression of the free choice assumption, which embodies more conditions than explicitly stated. The issues of the completeness of quantum mechanics, and of the interpretation of the state vector, are by no means resolved. Taking this perspective, we describe how the recently introduced class of crypto-nonlocal hidden variables theories can be used to characterize the maximal possible departure from quantum mechanics, when the system consists of a pair of qubits.

  4. "A dedicated missionary". Charles Galton Darwin and the new quantum mechanics in Britain

    NASA Astrophysics Data System (ADS)

    Navarro, Jaume

    In this paper I discuss the work on quantum physics and wave mechanics by Charles Galton Darwin, a Cambridge wrangler of the last generation, as a case study to better understand the early reception of quantum physics in Britain. I argue that his proposal in the early 1920s to abandon the strict conservation of energy, as well as his enthusiastic embracement of wave mechanics at the end of the decade, can be easily understood by tracing his ontological and epistemological commitments to his early training in the Cambridge Mathematical Tripos. I also suggest that Darwin's work cannot be neglected in a study of quantum physics in Britain, since he was one of very few fellows of the Royal Society able to judge and explain quantum physics and quantum mechanics.

  5. Prediction and Repetition in Quantum Mechanics: The EPR Experiment and Quantum Probability

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2007-02-01

    The article considers the implications of the experiment of A. Einstein, B. Podolsky, and N. Rosen (EPR), and of the exchange (concerning this experiment) between EPR and Bohr concerning the incompleteness, or else nonlocality, of quantum mechanics for our understanding of quantum phenomena and quantum probability. The article specifically argues that in the case of quantum phenomena, including those involved in the experiments of the EPR type, the probabilistic considerations are important even when the predictions concerned can be made with certainty, due to the impossibility, in general, to repeat any given quantum experiment with the same outcome. The article argue that this fact, not properly considered or taken into account by EPR, makes it difficult and ultimately impossible to sustain their argument, which it is consistent with Bohr's counterargument to EPR and with his view of quantum phenomena and quantum mechanics.

  6. Quantum biological channel modeling and capacity calculation.

    PubMed

    Djordjevic, Ivan B

    2012-12-10

    Quantum mechanics has an important role in photosynthesis, magnetoreception, and evolution. There were many attempts in an effort to explain the structure of genetic code and transfer of information from DNA to protein by using the concepts of quantum mechanics. The existing biological quantum channel models are not sufficiently general to incorporate all relevant contributions responsible for imperfect protein synthesis. Moreover, the problem of determination of quantum biological channel capacity is still an open problem. To solve these problems, we construct the operator-sum representation of biological channel based on codon basekets (basis vectors), and determine the quantum channel model suitable for study of the quantum biological channel capacity and beyond. The transcription process, DNA point mutations, insertions, deletions, and translation are interpreted as the quantum noise processes. The various types of quantum errors are classified into several broad categories: (i) storage errors that occur in DNA itself as it represents an imperfect storage of genetic information, (ii) replication errors introduced during DNA replication process, (iii) transcription errors introduced during DNA to mRNA transcription, and (iv) translation errors introduced during the translation process. By using this model, we determine the biological quantum channel capacity and compare it against corresponding classical biological channel capacity. We demonstrate that the quantum biological channel capacity is higher than the classical one, for a coherent quantum channel model, suggesting that quantum effects have an important role in biological systems. The proposed model is of crucial importance towards future study of quantum DNA error correction, developing quantum mechanical model of aging, developing the quantum mechanical models for tumors/cancer, and study of intracellular dynamics in general.

  7. Mechanical Properties of Laminate Materials: From Surface Waves to Bloch Oscillations

    NASA Astrophysics Data System (ADS)

    Liang, Z.; Willatzen, M.; Christensen, J.

    2015-10-01

    We propose hitherto unexplored and fully analytical insights into laminate elastic materials in a true condensed-matter-physics spirit. Pure mechanical surface waves that decay as evanescent waves from the interface are discussed, and we demonstrate how these designer Scholte waves are controlled by the geometry as opposed to the material alone. The linear surface wave dispersion is modulated by the crystal filling fraction such that the degree of confinement can be engineered without relying on narrow-band resonances but on effective stiffness moduli. In the same context, we provide a theoretical recipe for designing Bloch oscillations in classical plate structures and show how mechanical Bloch oscillations can be generated in arrays of solid plates when the modal wavelength is gradually reduced. The design recipe describes how Bloch oscillations in classical structures of arbitrary dimensions can be generated, and we demonstrate this numerically for structures with millimeter and centimeter dimensions in the kilohertz to megahertz range. Analytical predictions agree entirely with full wave simulations showing how elastodynamics can mimic quantum-mechanical condensed-matter phenomena.

  8. The Nature of the Chemical Bond--1990.

    ERIC Educational Resources Information Center

    Ogilvie, J. F.

    1990-01-01

    Three aspects of quantum mechanics in modern chemistry are stressed: the fundamental structure of quantum mechanics as a basis of chemical applications, the relationship of quantum mechanics to atomic and molecular structure, and the consequent implications for chemical education. A list of 64 references is included. (CW)

  9. Quantum Mechanics for Everyone: Hands-On Activities Integrated with Technology.

    ERIC Educational Resources Information Center

    Zollman, Dean A.; Rebello, N. Sanjay; Hogg, Kirsten

    2002-01-01

    Explains a hands-on approach to teaching quantum mechanics that challenges the belief shared by many physics instructors that quantum mechanics is a very abstract subject that cannot be understood until students have learned much of the classical physics. (Contains 23 references.) (Author/YDS)

  10. Poly(vinylpyrrolidone) supported copper nanoclusters: glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices

    NASA Astrophysics Data System (ADS)

    Wang, Zhenguang; Susha, Andrei S.; Chen, Bingkun; Reckmeier, Claas; Tomanec, Ondrej; Zboril, Radek; Zhong, Haizheng; Rogach, Andrey L.

    2016-03-01

    Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92.Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92. Electronic supplementary information (ESI) available: The optical spectra of control experiments for Cu NC synthesis, optimization of the reaction conditions, and spectra for LEDs chips and blue LEDs. See DOI: 10.1039/c6nr00806b

  11. Some foundational aspects of quantum computers and quantum robots.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, P.; Physics

    1998-01-01

    This paper addresses foundational issues related to quantum computing. The need for a universally valid theory such as quantum mechanics to describe to some extent its own validation is noted. This includes quantum mechanical descriptions of systems that do theoretical calculations (i.e. quantum computers) and systems that perform experiments. Quantum robots interacting with an environment are a small first step in this direction. Quantum robots are described here as mobile quantum systems with on-board quantum computers that interact with environments. Included are discussions on the carrying out of tasks and the division of tasks into computation and action phases. Specificmore » models based on quantum Turing machines are described. Differences and similarities between quantum robots plus environments and quantum computers are discussed.« less

  12. Charge transfer in low-energy collisions of H with He+ and H+ with He in excited states

    NASA Astrophysics Data System (ADS)

    Loreau, J.; Ryabchenko, S.; Muñoz Burgos, J. M.; Vaeck, N.

    2018-04-01

    The charge transfer process in collisions of excited (n = 2, 3) hydrogen atoms with He+ and in collisions of excited helium atoms with H+ is studied theoretically. A combination of a fully quantum-mechanical method and a semi-classical approach is employed to calculate the charge-exchange cross sections at collision energies from 0.1 eV u‑1 up to 1 keV u‑1. These methods are based on accurate ab initio potential energy curves and non-adiabatic couplings for the molecular ion HeH+. Charge transfer can occur either in singlet or in triplet states, and the differences between the singlet and triplet spin manifolds are discussed. The dependence of the cross section on the quantum numbers n and l of the initial state is demonstrated. The isotope effect on the charge transfer cross sections, arising at low collision energy when H is substituted by D or T, is investigated. Rate coefficients are calculated for all isotopes up to 106 K. Finally, the impact of the present calculations on models of laboratory plasmas is discussed.

  13. Revealing electronic open quantum systems with subsystem TDDFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishtal, Alisa, E-mail: alisa.krishtal@rutgers.edu; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustratemore » the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.« less

  14. Revealing electronic open quantum systems with subsystem TDDFT.

    PubMed

    Krishtal, Alisa; Pavanello, Michele

    2016-03-28

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  15. Precise positioning of an ion in an integrated Paul trap-cavity system using radiofrequency signals

    NASA Astrophysics Data System (ADS)

    Kassa, Ezra; Takahashi, Hiroki; Christoforou, Costas; Keller, Matthias

    2018-03-01

    We report a novel miniature Paul ion trap design with an integrated optical fibre cavity which can serve as a building block for a fibre-linked quantum network. In such cavity quantum electrodynamic set-ups, the optimal coupling of the ions to the cavity mode is of vital importance and this is achieved by moving the ion relative to the cavity mode. The trap presented herein features an endcap-style design complemented with extra electrodes on which additional radiofrequency voltages are applied to fully control the pseudopotential minimum in three dimensions. This method lifts the need to use three-dimensional translation stages for moving the fibre cavity with respect to the ion and achieves high integrability, mechanical rigidity and scalability. Not based on modifying the capacitive load of the trap, this method leads to precise control of the pseudopotential minimum allowing the ion to be moved with precisions limited only by the ion's position spread. We demonstrate this by coupling the ion to the fibre cavity and probing the cavity mode profile.

  16. Ultrathin Quantum Dot Display Integrated with Wearable Electronics.

    PubMed

    Kim, Jaemin; Shim, Hyung Joon; Yang, Jiwoong; Choi, Moon Kee; Kim, Dong Chan; Kim, Junhee; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2017-10-01

    An ultrathin skin-attachable display is a critical component for an information output port in next-generation wearable electronics. In this regard, quantum dot (QD) light-emitting diodes (QLEDs) offer unique and attractive characteristics for future displays, including high color purity with narrow bandwidths, high electroluminescence (EL) brightness at low operating voltages, and easy processability. Here, ultrathin QLED displays that utilize a passive matrix to address individual pixels are reported. The ultrathin thickness (≈5.5 µm) of the QLED display enables its conformal contact with the wearer's skin and prevents its failure under vigorous mechanical deformation. QDs with relatively thick shells are employed to improve EL characteristics (brightness up to 44 719 cd m -2 at 9 V, which is the record highest among wearable LEDs reported to date) by suppressing the nonradiative recombination. Various patterns, including letters, numbers, and symbols can be successfully visualized on the skin-mounted QLED display. Furthermore, the combination of the ultrathin QLED display with flexible driving circuits and wearable sensors results in a fully integrated QLED display that can directly show sensor data. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Revealing electronic open quantum systems with subsystem TDDFT

    NASA Astrophysics Data System (ADS)

    Krishtal, Alisa; Pavanello, Michele

    2016-03-01

    Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.

  18. Angular dependence of optical modes in metal-insulator-metal coupled quantum well infrared photodetector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, YouLiang; Li, ZhiFeng, E-mail: zfli@mail.sitp.ac.cn; Chen, PingPing

    We report the dependence of the near-field optical modes in metal-insulator-metal quantum well infrared photodetector (MIM-QWIP) on the incident angles. Three optical modes are observed and attributed to the 2nd- and the 3rd-order surface plasmon polariton (SPP) modes and the localized surface polariton (LSP) mode. In addition to the observation of a responsivity enhancement of 14 times by the LSP mode, the varying pattern of the three modes against the incident angle are revealed, in which the LSP mode is fixed while the 2nd SPP mode splits into two branches and the 3rd SPP mode red-shifts. The detailed mechanisms aremore » analyzed and numerically simulated. The results fit the experiments very well, demonstrating the wavevector coupling effect between the incident light and the metal gratings on the SPP modes. Our work will pave the way to fully understanding the influence of incident angles on a detector’s response for applying the MIM-QWIP to focal plane arrays.« less

  19. Electron Matter Optics and the Quantum Electron Stern-Gerlach Magnet

    NASA Astrophysics Data System (ADS)

    McGregor, Scot; Bach, Roger; Yin, Xiaolu; Liou, Sy-Hwang; Batelaan, Herman; Gronniger, Glen

    2011-05-01

    We explore electron interferometry for the purpose of performing fundamental quantum mechanical experiments and sensing applications. To this end electron matter optics elements, in particular, a diffraction limited single slit, a double slit, and a nano-fabricated grating diffraction apparatus as well as a Mach-Zehnder IFM were previously developed. The double slit diffraction pattern has been recorded one electron at a time. Furthermore, the capability of closing each slit on demand has been developed, in that way realizing the thought experiment that Feynman explains in his lectures. The capability of the Mach-Zehnder interferometer to sense DC and AC electromagnetic fields for industrial applications is currently under investigation. Also, the construction of a new type of interferometer that has the potential to significantly increase the enclosed area and thus its sensitivity is in progress. Finally an idea to separate an electron beam fully into its two spin component using an electron interferometer is presented. We gratefully acknowledge funding by NSF Grant No. 0969506 and R. B. and S. M. acknowledge DOE-GAANN fellowships.

  20. PHOTOSYNTHETIC EFFICIENCY OF MARINE PLANTS

    PubMed Central

    Yocum, C. S.; Blinks, L. R.

    1954-01-01

    Multicellular marine plants were collected from their natural habitats and the quantum efficiency of their photosynthesis was determined in the laboratory in five narrow wave length bands in the visible spectrum. The results along with estimates of the relative absorption by the various plastid pigments show a fairly uniform efficiency of 0.08 molecules O2 per absorbed quantum for (a) chlorophyll of one flowering plant, green algae, and brown algae, (b) fucoxanthol and other carotenoids of brown algae, and (c) the phycobilin pigments phycocyanin and phycoerythrin of red algae. The carotenoids of green algae are sometimes less efficient while those of red algae are largely or entirely inactive. Chlorophyll a of red algae is about one-half as efficient (φo2 = 0.04) as either the phycobilins, or the chlorophyll of most other plants. These results as well as those of high intensity and of fluorescence experiments are consistent with a mechanism in which about half the chlorophyll is inactive while the other half is fully active and is an intermediate in phycoerythrin- and phycocyanin-sensitized photosynthesis. PMID:13192311

  1. Elucidating reaction mechanisms on quantum computers.

    PubMed

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias

    2017-07-18

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  2. Elucidating reaction mechanisms on quantum computers

    PubMed Central

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-01-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources. PMID:28674011

  3. Elucidating reaction mechanisms on quantum computers

    NASA Astrophysics Data System (ADS)

    Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias

    2017-07-01

    With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.

  4. Quantum Simulation of Helium Hydride Cation in a Solid-State Spin Register.

    PubMed

    Wang, Ya; Dolde, Florian; Biamonte, Jacob; Babbush, Ryan; Bergholm, Ville; Yang, Sen; Jakobi, Ingmar; Neumann, Philipp; Aspuru-Guzik, Alán; Whitfield, James D; Wrachtrup, Jörg

    2015-08-25

    Ab initio computation of molecular properties is one of the most promising applications of quantum computing. While this problem is widely believed to be intractable for classical computers, efficient quantum algorithms exist which have the potential to vastly accelerate research throughput in fields ranging from material science to drug discovery. Using a solid-state quantum register realized in a nitrogen-vacancy (NV) defect in diamond, we compute the bond dissociation curve of the minimal basis helium hydride cation, HeH(+). Moreover, we report an energy uncertainty (given our model basis) of the order of 10(-14) hartree, which is 10 orders of magnitude below the desired chemical precision. As NV centers in diamond provide a robust and straightforward platform for quantum information processing, our work provides an important step toward a fully scalable solid-state implementation of a quantum chemistry simulator.

  5. Quantum annealing with all-to-all connected nonlinear oscillators

    PubMed Central

    Puri, Shruti; Andersen, Christian Kraglund; Grimsmo, Arne L.; Blais, Alexandre

    2017-01-01

    Quantum annealing aims at solving combinatorial optimization problems mapped to Ising interactions between quantum spins. Here, with the objective of developing a noise-resilient annealer, we propose a paradigm for quantum annealing with a scalable network of two-photon-driven Kerr-nonlinear resonators. Each resonator encodes an Ising spin in a robust degenerate subspace formed by two coherent states of opposite phases. A fully connected optimization problem is mapped to local fields driving the resonators, which are connected with only local four-body interactions. We describe an adiabatic annealing protocol in this system and analyse its performance in the presence of photon loss. Numerical simulations indicate substantial resilience to this noise channel, leading to a high success probability for quantum annealing. Finally, we propose a realistic circuit QED implementation of this promising platform for implementing a large-scale quantum Ising machine. PMID:28593952

  6. Quantum key distribution session with 16-dimensional photonic states.

    PubMed

    Etcheverry, S; Cañas, G; Gómez, E S; Nogueira, W A T; Saavedra, C; Xavier, G B; Lima, G

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.

  7. Chaotic Dynamical Ferromagnetic Phase Induced by Nonequilibrium Quantum Fluctuations

    NASA Astrophysics Data System (ADS)

    Lerose, Alessio; Marino, Jamir; Žunkovič, Bojan; Gambassi, Andrea; Silva, Alessandro

    2018-03-01

    We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbor spin interaction in one spatial dimension on the nonequilibrium dynamical phase diagram of the fully connected quantum Ising model. In particular, we focus on the transient dynamics after a quantum quench and study the prethermal state via a combination of analytic time-dependent spin wave theory and numerical methods based on matrix product states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point fans out into a chaotic dynamical phase within which the asymptotic ordering is characterized by strong sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system which exhibits a broken discrete symmetry.

  8. Quantum key distribution session with 16-dimensional photonic states

    NASA Astrophysics Data System (ADS)

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-07-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD.

  9. Chaotic Dynamical Ferromagnetic Phase Induced by Nonequilibrium Quantum Fluctuations.

    PubMed

    Lerose, Alessio; Marino, Jamir; Žunkovič, Bojan; Gambassi, Andrea; Silva, Alessandro

    2018-03-30

    We investigate the robustness of a dynamical phase transition against quantum fluctuations by studying the impact of a ferromagnetic nearest-neighbor spin interaction in one spatial dimension on the nonequilibrium dynamical phase diagram of the fully connected quantum Ising model. In particular, we focus on the transient dynamics after a quantum quench and study the prethermal state via a combination of analytic time-dependent spin wave theory and numerical methods based on matrix product states. We find that, upon increasing the strength of the quantum fluctuations, the dynamical critical point fans out into a chaotic dynamical phase within which the asymptotic ordering is characterized by strong sensitivity to the parameters and initial conditions. We argue that such a phenomenon is general, as it arises from the impact of quantum fluctuations on the mean-field out of equilibrium dynamics of any system which exhibits a broken discrete symmetry.

  10. Non-classical photon correlation in a two-dimensional photonic lattice.

    PubMed

    Gao, Jun; Qiao, Lu-Feng; Lin, Xiao-Feng; Jiao, Zhi-Qiang; Feng, Zhen; Zhou, Zheng; Gao, Zhen-Wei; Xu, Xiao-Yun; Chen, Yuan; Tang, Hao; Jin, Xian-Min

    2016-06-13

    Quantum interference and quantum correlation, as two main features of quantum optics, play an essential role in quantum information applications, such as multi-particle quantum walk and boson sampling. While many experimental demonstrations have been done in one-dimensional waveguide arrays, it remains unexplored in higher dimensions due to tight requirement of manipulating and detecting photons in large-scale. Here, we experimentally observe non-classical correlation of two identical photons in a fully coupled two-dimensional structure, i.e. photonic lattice manufactured by three-dimensional femtosecond laser writing. Photon interference consists of 36 Hong-Ou-Mandel interference and 9 bunching. The overlap between measured and simulated distribution is up to 0.890 ± 0.001. Clear photon correlation is observed in the two-dimensional photonic lattice. Combining with controllably engineered disorder, our results open new perspectives towards large-scale implementation of quantum simulation on integrated photonic chips.

  11. Quantum key distribution session with 16-dimensional photonic states

    PubMed Central

    Etcheverry, S.; Cañas, G.; Gómez, E. S.; Nogueira, W. A. T.; Saavedra, C.; Xavier, G. B.; Lima, G.

    2013-01-01

    The secure transfer of information is an important problem in modern telecommunications. Quantum key distribution (QKD) provides a solution to this problem by using individual quantum systems to generate correlated bits between remote parties, that can be used to extract a secret key. QKD with D-dimensional quantum channels provides security advantages that grow with increasing D. However, the vast majority of QKD implementations has been restricted to two dimensions. Here we demonstrate the feasibility of using higher dimensions for real-world quantum cryptography by performing, for the first time, a fully automated QKD session based on the BB84 protocol with 16-dimensional quantum states. Information is encoded in the single-photon transverse momentum and the required states are dynamically generated with programmable spatial light modulators. Our setup paves the way for future developments in the field of experimental high-dimensional QKD. PMID:23897033

  12. Single and two-mode mechanical squeezing of an optically levitated nanodiamond via dressed-state coherence

    NASA Astrophysics Data System (ADS)

    Ge, Wenchao; Bhattacharya, M.

    2016-10-01

    Nonclassical states of macroscopic objects are promising for ultrasensitive metrology as well as testing quantum mechanics. In this work, we investigate dissipative mechanical quantum state engineering in an optically levitated nanodiamond. First, we study single-mode mechanical squeezed states by magnetically coupling the mechanical motion to a dressed three-level system provided by a nitrogen-vacancy center in the nanoparticle. Quantum coherence between the dressed levels is created via microwave fields to induce a two-phonon transition, which results in mechanical squeezing. Remarkably, we find that in ultrahigh vacuum quantum squeezing is achievable at room temperature with feedback cooling. For moderate vacuum, quantum squeezing is possible with cryogenic temperature. Second, we present a setup for two mechanical modes coupled to the dressed three levels, which results in two-mode squeezing analogous to the mechanism of the single-mode case. In contrast to previous works, our study provides a deterministic method for engineering macroscopic squeezed states without the requirement for a cavity.

  13. Pseudospectra in non-Hermitian quantum mechanics

    NASA Astrophysics Data System (ADS)

    Krejčiřík, D.; Siegl, P.; Tater, M.; Viola, J.

    2015-10-01

    We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT -symmetric quantum mechanics.

  14. Categorization of Quantum Mechanics Problems by Professors and Students

    ERIC Educational Resources Information Center

    Lin, Shih-Yin; Singh, Chandralekha

    2010-01-01

    We discuss the categorization of 20 quantum mechanics problems by physics professors and undergraduate students from two honours-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty…

  15. Developing and Evaluating Animations for Teaching Quantum Mechanics Concepts

    ERIC Educational Resources Information Center

    Kohnle, Antje; Douglass, Margaret; Edwards, Tom J.; Gillies, Alastair D.; Hooley, Christopher A.; Sinclair, Bruce D.

    2010-01-01

    In this paper, we describe animations and animated visualizations for introductory and intermediate-level quantum mechanics instruction developed at the University of St Andrews. The animations aim to help students build mental representations of quantum mechanics concepts. They focus on known areas of student difficulty and misconceptions by…

  16. Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems

    ERIC Educational Resources Information Center

    Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih

    2009-01-01

    In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…

  17. In Defense of a Heuristic Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Healy, Eamonn F.

    2010-01-01

    Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shift…

  18. Questioning quantum mechanics

    NASA Astrophysics Data System (ADS)

    Frappier, Mélanie

    2018-03-01

    A century after its inception, quantum mechanics continues to puzzle us with dead-and-alive cats, waves "collapsing" into particles, and "spooky action at a distance." In his first book, What Is Real?, science writer and astrophysicist Adam Becker sets out to explore why the physics community is still arguing today about quantum mechanics's true meaning.

  19. Students' Epistemological Framing in Quantum Mechanics Problem Solving

    ERIC Educational Resources Information Center

    Modir, Bahar; Thompson, John D.; Sayre, Eleanor C.

    2017-01-01

    Students' difficulties in quantum mechanics may be the result of unproductive framing and not a fundamental inability to solve the problems or misconceptions about physics content. We observed groups of students solving quantum mechanics problems in an upper-division physics course. Using the lens of epistemological framing, we investigated four…

  20. Exploring the boundaries of quantum mechanics: advances in satellite quantum communications.

    PubMed

    Agnesi, Costantino; Vedovato, Francesco; Schiavon, Matteo; Dequal, Daniele; Calderaro, Luca; Tomasin, Marco; Marangon, Davide G; Stanco, Andrea; Luceri, Vincenza; Bianco, Giuseppe; Vallone, Giuseppe; Villoresi, Paolo

    2018-07-13

    Recent interest in quantum communications has stimulated great technological progress in satellite quantum technologies. These advances have rendered the aforesaid technologies mature enough to support the realization of experiments that test the foundations of quantum theory at unprecedented scales and in the unexplored space environment. Such experiments, in fact, could explore the boundaries of quantum theory and may provide new insights to investigate phenomena where gravity affects quantum objects. Here, we review recent results in satellite quantum communications and discuss possible phenomena that could be observable with current technologies. Furthermore, stressing the fact that space represents an incredible resource to realize new experiments aimed at highlighting some physical effects, we challenge the community to propose new experiments that unveil the interplay between quantum mechanics and gravity that could be realizable in the near future.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  1. The actual content of quantum theoretical kinematics and mechanics

    NASA Technical Reports Server (NTRS)

    Heisenberg, W.

    1983-01-01

    First, exact definitions are supplied for the terms: position, velocity, energy, etc. (of the electron, for instance), such that they are valid also in quantum mechanics. Canonically conjugated variables are determined simultaneously only with a characteristic uncertainty. This uncertainty is the intrinsic reason for the occurrence of statistical relations in quantum mechanics. Mathematical formulation is made possible by the Dirac-Jordan theory. Beginning from the basic principles thus obtained, macroscopic processes are understood from the viewpoint of quantum mechanics. Several imaginary experiments are discussed to elucidate the theory.

  2. A General No-Cloning Theorem for an infinite Multiverse

    NASA Astrophysics Data System (ADS)

    Gauthier, Yvon

    2013-10-01

    In this paper, I formulate a general no-cloning theorem which covers the quantum-mechanical and the theoretical quantum information cases as well as the cosmological multiverse theory. However, the main argument is topological and does not involve the peculiar copier devices of the quantum-mechanical and information-theoretic approaches to the no-cloning thesis. It is shown that a combinatorial set-theoretic treatment of the mathematical and physical spacetime continuum in cosmological or quantum-mechanical terms forbids an infinite (countable or uncountable) number of exact copies of finite elements (states) in the uncountable multiverse cosmology. The historical background draws on ideas from Weyl to Conway and Kochen on the free will theorem in quantum mechanics.

  3. Philosophical Concepts in Physics

    NASA Astrophysics Data System (ADS)

    Cushing, James T.

    1998-01-01

    Preface; Part I. The Scientific Enterprise: 1. Ways of knowing; 2. Aristotle and Francis Bacon; 3. Science and metaphysics; Part II. Ancient and Modern Models of the Universe: 4. Observational astronomy and the Ptolemaic model; 5. The Copernican model and Kepler's laws; 6. Galileo on motion; Part III. The Newtonian Universe: 7. Newton's Principia; 8. Newton's law of universal gravitation; 9. Some old questions revisited; Part IV. A Perspective: 10. Galileo's Letter to the Grand Duchess; 11. An overarching Newtonian framework; 12. A view of the world based on science: determinism; Part V. Mechanical Versus Electrodynamical World Views: 13. Models of the aether; 14. Maxwell's theory; 15. The Kaufmann experiments; Part VI. The Theory of Relativity: 16. The background to and essentials of special relativity; 17. Further logical consequences of Einstein's postulates; 18. General relativity and the expanding universe; Part VII. The Quantum World and the Completeness of Quantum Mechanics: 19. The road to quantum mechanics; 20. 'Copenhage' quantum mechanics; 21. Is quantum mechanics complete?; Part VIII. Some Philosophical Lessons from Quantum Mechanics: 22. The EPR paper and Bell's theorem; 23. An alternative version of quantum mechanics; 24. An essential role for historical contingency?; Part IX. A Retrospective: 25. The goals of science and the status of its knowledge; Notes; General references; Bibliography; Author index; Subject index.

  4. Electrical control of single hole spins in nanowire quantum dots.

    PubMed

    Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P

    2013-03-01

    The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.

  5. Emission wavelength red-shift by using ;semi-bulk; InGaN buffer layer in InGaN/InGaN multiple-quantum-well

    NASA Astrophysics Data System (ADS)

    Alam, Saiful; Sundaram, Suresh; Li, Xin; El Gmili, Youssef; Elouneg-Jamroz, Miryam; Robin, Ivan Christophe; Patriarche, Gilles; Salvestrini, Jean-Paul; Voss, Paul L.; Ougazzaden, Abdallah

    2017-12-01

    We report an elongation of emission wavelength by inserting a ∼70 nm thick high quality semi-bulk (SB) InyGa1-yN buffer layer underneath the InxGa1-xN/InyGa1-yN (x > y) multi-quantum-well (MQW).While the MQW structure without the InGaN SB buffer is fully strained on the n-GaN template, the MQW structure with the buffer has ∼15% relaxation. This small relaxation along with slight compositional pulling induced well thickness increase of MQW is believed to be the reason for the red-shift of emission wavelength. In addition, the SB InGaN buffer acts as an electron reservoir and also helps to reduce the Quantum Confined Stark Effect (QCSE) and thus increase the emission intensity. In this way, by avoiding fully relaxed buffer induced material degradation, a longer emission wavelength can be achieved by just using InGaN SB buffer while keeping all other growth conditions the same as the reference structure. Thus, a reasonably thick fully strained or very little relaxed InGaN buffer, which is realized by ;semi-bulk; approach to maintain good InGaN material quality, can be beneficial for realizing LEDs, grown on top of this buffer, emitting in the blue to cyan to green regime without using excess indium (In).

  6. Macro-mechanics controls quantum mechanics: mechanically controllable quantum conductance switching of an electrochemically fabricated atomic-scale point contact

    NASA Astrophysics Data System (ADS)

    Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas

    2018-01-01

    Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from ‘electrochemical’ to ‘mechanical’, which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.

  7. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.

    PubMed

    Gao, Jiali; Major, Dan T; Fan, Yao; Lin, Yen-Lin; Ma, Shuhua; Wong, Kin-Yiu

    2008-01-01

    A method for incorporating quantum mechanics into enzyme kinetics modeling is presented. Three aspects are emphasized: 1) combined quantum mechanical and molecular mechanical methods are used to represent the potential energy surface for modeling bond forming and breaking processes, 2) instantaneous normal mode analyses are used to incorporate quantum vibrational free energies to the classical potential of mean force, and 3) multidimensional tunneling methods are used to estimate quantum effects on the reaction coordinate motion. Centroid path integral simulations are described to make quantum corrections to the classical potential of mean force. In this method, the nuclear quantum vibrational and tunneling contributions are not separable. An integrated centroid path integral-free energy perturbation and umbrella sampling (PI-FEP/UM) method along with a bisection sampling procedure was summarized, which provides an accurate, easily convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. In the ensemble-averaged variational transition state theory with multidimensional tunneling (EA-VTST/MT), these three aspects of quantum mechanical effects can be individually treated, providing useful insights into the mechanism of enzymatic reactions. These methods are illustrated by applications to a model process in the gas phase, the decarboxylation reaction of N-methyl picolinate in water, and the proton abstraction and reprotonation process catalyzed by alanine racemase. These examples show that the incorporation of quantum mechanical effects is essential for enzyme kinetics simulations.

  8. Coherent strong field interactions between a nanomagnet and a photonic cavity

    NASA Astrophysics Data System (ADS)

    Soykal, Oney Orhunc

    Strong coupling of light and matter is an essential element of cavity quantum electrodynamics (cavity-QED) and quantum optics, which may lead to novel mixed states of light and matter and to applications such as quantum computation. In the strong-coupling regime, where the coupling strength exceeds the dissipation, the light-matter interaction produces a characteristic vacuum Rabi splitting. Therefore, strong coupling can be utilized as an effective coherent interface between light and matter (in the form of electron charge, spin or superconducting Cooper pairs) to achieve components of quantum information technology including quantum memory, teleportation, and quantum repeaters. Semiconductor quantum dots, nuclear spins and paramagnetic spin systems are only some of the material systems under investigation for strong coupling in solid-state physics. Mixed states of light and matter coupled via electric dipole transitions often suffer from short coherence times (nanoseconds). Even though magnetic transitions appear to be intrinsically more quantum coherent than orbital transitions, their typical coupling strengths have been estimated to be much smaller. Hence, they have been neglected for the purposes of quantum information technology. However, we predict that strong coupling is feasible between photons and a ferromagnetic nanomagnet, due to exchange interactions that cause very large numbers of spins to coherently lock together with a significant increase in oscillator strength while still maintaining very long coherence times. In order to examine this new exciting possibility, the interaction of a ferromagnetic nanomagnet with a single photonic mode of a cavity is analyzed in a fully quantum-mechanical treatment. Exceptionally large quantum-coherent magnet-photon coupling with coupling terms in excess of several THz are predicted to be achievable in a spherical cavity of ˜ 1 mm radius with a nanomagnet of ˜ 100 nm radius and ferromagnet resonance frequency of ˜ 200 GHz. This should substantially exceed the coupling observed in solids between orbital transitions and light. Eigenstates of the nanomagnet-photon system correspond to entangled states of spin orientation and photon number over 105 values of each quantum number. Initial coherent state of definite spin and photon number evolve dynamically to produce large coherent oscillations in the microwave power with exceptionally long dephasing times of few seconds. In addition to dephasing, several decoherence mechanisms including elementary excitation of magnons and crystalline magnetic anisotropy are investigated and shown to not substantially affect coherence upto room temperature. For small nanomagnets the crystalline magnetic anisotropy of the magnet strongly localize the eigenstates in photon and spin number, quenching the potential for coherent states and for a sufficiently large nanomagnet the macrospin approximation breaks down and different domains of the nanomagnet may couple separately to the photonic mode. Thus the optimal nanomagnet size is predicted to be just below the threshold for failure of the macrospin approximation. Moreover, it is shown that initially unentangled coherent states of light (cavity field) and spin (nanomagnet spin orientation) can be phase-locked to evolve into a coherent entangled states of the system under the influence of strong coupling.

  9. The geometrical structure of quantum theory as a natural generalization of information geometry

    NASA Astrophysics Data System (ADS)

    Reginatto, Marcel

    2015-01-01

    Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed using geometrical quantities. This suggests that quantum theory has its roots in information geometry.

  10. Developing and assessing research-based tools for teaching quantum mechanics and thermodynamics

    NASA Astrophysics Data System (ADS)

    Brown, Benjamin R.

    Research-based tools to educate college students in physics courses from introductory level to graduate level are essential for helping students with a diverse set of goals and backgrounds learn physics. This thesis explores issues related to student common difficulties with some topics in undergraduate quantum mechanics and thermodynamics courses. Student difficulties in learning quantum mechanics and thermodynamics are investigated by administering written tests and surveys to many classes and conducting individual interviews with a subset of students outside the class to unpack the cognitive mechanisms of the difficulties. The quantum mechanics research also focuses on using the research on student difficulties for the development and evaluation of a Quantum Interactive Learning Tutorial (QuILT) to help students learn about the time-dependence of expectation values using the context of Larmor precession of spin and evaluating the role of asking students to self-diagnose their mistakes on midterm examination on their performance on subsequent problem solving. The QuILT on Larmor precession of spin has both paper-pencil activities and a simulation component to help students learn these foundational issues in quantum mechanics. Preliminary evaluations suggest that the QuILT, which strives to help students build a robust knowledge structure of time-dependence of expectation values in quantum mechanics using a guided approach, is successful in helping students learn these topics in the junior-senior level quantum mechanics courses. The technique to help upper-level students in quantum mechanics courses effectively engage in the process of learning from their mistakes is also found to be effective. In particular, research shows that the self-diagnosis activity in upper-level quantum mechanics significantly helps students who are struggling and this activity can reduce the gap between the high and low achieving students on subsequent problem solving. Finally, a survey of Thermodynamic Processes and the First and Second Laws (STPFaSL) is developed and validated with the purpose of evaluating the effectiveness of these topics in a thermodynamics curriculum. The validity and reliability of this survey are discussed and the student difficulties with these topics among various groups from introductory students to physics graduate students are cataloged.

  11. Tripartite correlations over two octaves from cascaded harmonic generation

    NASA Astrophysics Data System (ADS)

    Olsen, M. K.

    2018-03-01

    We analyse the output quantum tripartite correlations from an intracavity nonlinear optical system which uses cascaded nonlinearities to produce both second and fourth harmonic outputs from an input field at the fundamental frequency. Using fully quantum equations of motion, we investigate two parameter regimes and show that the system produces tripartite inseparability, entanglement and EPR steering, with the detection of these depending on the correlations being considered.

  12. First observation of the quantized exciton-polariton field and effect of interactions on a single polariton

    PubMed Central

    Silva, Blanca; Fieramosca, Antonio; Tasco, Vittorianna; del Valle, Elena; Ballarini, Dario; Gigli, Giuseppe; Sanvitto, Daniele

    2018-01-01

    Polaritons are quasi-particles that originate from the coupling of light with matter and that demonstrate quantum phenomena at the many-particle mesoscopic level, such as Bose-Einstein condensation and superfluidity. A highly sought and long-time missing feature of polaritons is a genuine quantum manifestation of their dynamics at the single-particle level. Although they are conceptually perceived as entangled states and theoretical proposals abound for an explicit manifestation of their single-particle properties, so far their behavior has remained fully accounted for by classical and mean-field theories. We report the first experimental demonstration of a genuinely quantum state of the microcavity polariton field, by swapping a photon for a polariton in a two-photon entangled state generated by parametric downconversion. When bringing this single-polariton quantum state in contact with a polariton condensate, we observe a disentangling with the external photon. This manifestation of a polariton quantum state involving a single quantum unlocks new possibilities for quantum information processing with interacting bosons. PMID:29725616

  13. First observation of the quantized exciton-polariton field and effect of interactions on a single polariton.

    PubMed

    Cuevas, Álvaro; López Carreño, Juan Camilo; Silva, Blanca; De Giorgi, Milena; Suárez-Forero, Daniel G; Sánchez Muñoz, Carlos; Fieramosca, Antonio; Cardano, Filippo; Marrucci, Lorenzo; Tasco, Vittorianna; Biasiol, Giorgio; Del Valle, Elena; Dominici, Lorenzo; Ballarini, Dario; Gigli, Giuseppe; Mataloni, Paolo; Laussy, Fabrice P; Sciarrino, Fabio; Sanvitto, Daniele

    2018-04-01

    Polaritons are quasi-particles that originate from the coupling of light with matter and that demonstrate quantum phenomena at the many-particle mesoscopic level, such as Bose-Einstein condensation and superfluidity. A highly sought and long-time missing feature of polaritons is a genuine quantum manifestation of their dynamics at the single-particle level. Although they are conceptually perceived as entangled states and theoretical proposals abound for an explicit manifestation of their single-particle properties, so far their behavior has remained fully accounted for by classical and mean-field theories. We report the first experimental demonstration of a genuinely quantum state of the microcavity polariton field, by swapping a photon for a polariton in a two-photon entangled state generated by parametric downconversion. When bringing this single-polariton quantum state in contact with a polariton condensate, we observe a disentangling with the external photon. This manifestation of a polariton quantum state involving a single quantum unlocks new possibilities for quantum information processing with interacting bosons.

  14. Quantum many-body dynamics of dark solitons in optical lattices

    NASA Astrophysics Data System (ADS)

    Mishmash, R. V.; Danshita, I.; Clark, Charles W.; Carr, L. D.

    2009-11-01

    We present a fully quantum many-body treatment of dark solitons formed by ultracold bosonic atoms in one-dimensional optical lattices. Using time-evolving block decimation to simulate the single-band Bose-Hubbard Hamiltonian, we consider the quantum dynamics of density and phase engineered dark solitons as well as the quantum evolution of mean-field dark solitons injected into the quantum model. The former approach directly models how one may create quantum entangled dark solitons in experiment. While we have already presented results regarding the latter approach elsewhere [R. V. Mishmash and L. D. Carr, Phys. Rev. Lett. 103, 140403 (2009)], we expand upon those results in this work. In both cases, quantum fluctuations cause the dark soliton to fill in and may induce an inelasticity in soliton-soliton collisions. Comparisons are made to the Bogoliubov theory which predicts depletion into an anomalous mode that fills in the soliton. Our many-body treatment allows us to go beyond the Bogoliubov approximation and calculate explicitly the dynamics of the system’s natural orbitals.

  15. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography.

    PubMed

    Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan

    2018-04-11

    The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g (2) (0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.

  16. Reply to ``Comment on `Quantum time-of-flight distribution for cold trapped atoms' ''

    NASA Astrophysics Data System (ADS)

    Ali, Md. Manirul; Home, Dipankar; Majumdar, A. S.; Pan, Alok K.

    2008-02-01

    In their comment Gomes [Phys. Rev. A 77, 026101 (2008)] have questioned the possibility of empirically testable differences existing between the semiclassical time of flight distribution for cold trapped atoms and a quantum distribution discussed by us recently [Ali , Phys. Rev. A 75, 042110 (2007).]. We argue that their criticism is based on a semiclassical treatment having restricted applicability for a particular trapping potential. Their claim does not preclude, in general, the possibility of differences between the semiclassical calculations and fully quantum results for the arrival time distribution of freely falling atoms.

  17. Reply to 'Comment on 'Quantum time-of-flight distribution for cold trapped atoms''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Md. Manirul; Home, Dipankar; Pan, Alok K.

    2008-02-15

    In their comment Gomes et al. [Phys. Rev. A 77, 026101 (2008)] have questioned the possibility of empirically testable differences existing between the semiclassical time of flight distribution for cold trapped atoms and a quantum distribution discussed by us recently [Ali et al., Phys. Rev. A 75, 042110 (2007).]. We argue that their criticism is based on a semiclassical treatment having restricted applicability for a particular trapping potential. Their claim does not preclude, in general, the possibility of differences between the semiclassical calculations and fully quantum results for the arrival time distribution of freely falling atoms.

  18. Cluster-state quantum computing enhanced by high-fidelity generalized measurements.

    PubMed

    Biggerstaff, D N; Kaltenbaek, R; Hamel, D R; Weihs, G; Rudolph, T; Resch, K J

    2009-12-11

    We introduce and implement a technique to extend the quantum computational power of cluster states by replacing some projective measurements with generalized quantum measurements (POVMs). As an experimental demonstration we fully realize an arbitrary three-qubit cluster computation by implementing a tunable linear-optical POVM, as well as fast active feedforward, on a two-qubit photonic cluster state. Over 206 different computations, the average output fidelity is 0.9832+/-0.0002; furthermore the error contribution from our POVM device and feedforward is only of O(10(-3)), less than some recent thresholds for fault-tolerant cluster computing.

  19. Efficient many-party controlled teleportation of multiqubit quantum information via entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Chuiping; Department of Chemistry, University of Kansas, and Kansas Center for Advanced Scientific Computing, Lawrence, Kansas 66045; Chu, Shih-I

    2004-08-01

    We present a way to teleport multiqubit quantum information from a sender to a distant receiver via the control of many agents in a network. We show that the original state of each qubit can be restored by the receiver as long as all the agents collaborate. However, even if one agent does not cooperate, the receiver cannot fully recover the original state of each qubit. The method operates essentially through entangling quantum information during teleportation, in such a way that the required auxiliary qubit resources, local operation, and classical communication are considerably reduced for the present purpose.

  20. Student Understanding of Time Dependence in Quantum Mechanics

    ERIC Educational Resources Information Center

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-01-01

    The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…

  1. Bohm's Quantum Potential and the Visualization of Molecular Structure

    NASA Technical Reports Server (NTRS)

    Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    David Bohm's ontological interpretation of quantum theory can shed light on otherwise counter-intuitive quantum mechanical phenomena including chemical bonding. In the field of quantum chemistry, Richard Bader has shown that the topology of the Laplacian of the electronic charge density characterizes many features of molecular structure and reactivity. Visual and computational examination suggests that the Laplacian of Bader and the quantum potential of Bohm are morphologically equivalent. It appears that Bohmian mechanics and the quantum potential can make chemistry as clear as they makes physics.

  2. The transactional interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Cramer, John G.

    2001-06-01

    The transactional interpretation of quantum mechanics [1] was originally published in 1986 and is now about 14 years old. It is an explicitly nonlocal and Lorentz invariant alternative to the Copenhagen interpretation. It interprets the formalism for a quantum interaction as describing a "handshake" between retarded waves (ψ) and advanced waves (ψ*) for each quantum event or "transaction" in which energy, momentum, angular momentum, and other conserved quantities are transferred. The transactional interpretation offers the advantages that (1) it is actually "visible" in the formalism of quantum mechanics, (2) it is economical, involving fewer independent assumptions than its rivals, (3) it is paradox-free, resolving all of the paradoxes of standard quantum theory including nonlocality and wave function collapse, (4) it does not give a privileged role to observers or measurements, and (5) it permits the visualization of quantum events. We will review the transactional interpretation and some of its applications to "quantum paradoxes."

  3. Interactive Simulations to Support Quantum Mechanics Instruction for Chemistry Students

    ERIC Educational Resources Information Center

    Kohnle, Antje; Benfield, Cory; Hahner, Georg; Paetkau, Mark

    2017-01-01

    The QuVis Quantum Mechanics Visualization Project provides freely available research-based interactive simulations with accompanying activities for the teaching and learning of quantum mechanics across a wide range of topics and levels. This article gives an overview of some of the simulations and describes their use in an introductory physical…

  4. Teaching the Common Aspects in Mechanical, Electromagnetic and Quantum Waves at Interfaces and Waveguides

    ERIC Educational Resources Information Center

    Rojas, R.; Robles, P.

    2011-01-01

    We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…

  5. Design and Validation of the Quantum Mechanics Conceptual Survey

    ERIC Educational Resources Information Center

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2010-01-01

    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…

  6. Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    ERIC Educational Resources Information Center

    Marshman, Emily; Singh, Chandralekha

    2015-01-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that…

  7. The criterion for time symmetry of probabilistic theories and the reversibility of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Holster, A. T.

    2003-10-01

    Physicists routinely claim that the fundamental laws of physics are 'time symmetric' or 'time reversal invariant' or 'reversible'. In particular, it is claimed that the theory of quantum mechanics is time symmetric. But it is shown in this paper that the orthodox analysis suffers from a fatal conceptual error, because the logical criterion for judging the time symmetry of probabilistic theories has been incorrectly formulated. The correct criterion requires symmetry between future-directed laws and past-directed laws. This criterion is formulated and proved in detail. The orthodox claim that quantum mechanics is reversible is re-evaluated. The property demonstrated in the orthodox analysis is shown to be quite distinct from time reversal invariance. The view of Satosi Watanabe that quantum mechanics is time asymmetric is verified, as well as his view that this feature does not merely show a de facto or 'contingent' asymmetry, as commonly supposed, but implies a genuine failure of time reversal invariance of the laws of quantum mechanics. The laws of quantum mechanics would be incompatible with a time-reversed version of our universe.

  8. Topical review: spins and mechanics in diamond

    NASA Astrophysics Data System (ADS)

    Lee, Donghun; Lee, Kenneth W.; Cady, Jeffrey V.; Ovartchaiyapong, Preeti; Bleszynski Jayich, Ania C.

    2017-03-01

    There has been rapidly growing interest in hybrid quantum devices involving a solid-state spin and a macroscopic mechanical oscillator. Such hybrid devices create exciting opportunities to mediate interactions between disparate quantum bits (qubits) and to explore the quantum regime of macroscopic mechanical objects. In particular, a system consisting of the nitrogen-vacancy defect center (NV center) in diamond coupled to a high-quality-factor mechanical oscillator is an appealing candidate for such a hybrid quantum device, as it utilizes the highly coherent and versatile spin properties of the defect center. In this paper, we will review recent experimental progress on diamond-based hybrid quantum devices in which the spin and orbital dynamics of single defects are driven by the motion of a mechanical oscillator. In addition, we discuss prospective applications for this device, including long-range, phonon-mediated spin-spin interactions, and phonon cooling in the quantum regime. We conclude the review by evaluating the experimental limitations of current devices and identifying alternative device architectures that may reach the strong coupling regime.

  9. Machine Learning Technique to Find Quantum Many-Body Ground States of Bosons on a Lattice

    NASA Astrophysics Data System (ADS)

    Saito, Hiroki; Kato, Masaya

    2018-01-01

    We have developed a variational method to obtain many-body ground states of the Bose-Hubbard model using feedforward artificial neural networks. A fully connected network with a single hidden layer works better than a fully connected network with multiple hidden layers, and a multilayer convolutional network is more efficient than a fully connected network. AdaGrad and Adam are optimization methods that work well. Moreover, we show that many-body ground states with different numbers of particles can be generated by a single network.

  10. Tampering detection system using quantum-mechanical systems

    DOEpatents

    Humble, Travis S [Knoxville, TN; Bennink, Ryan S [Knoxville, TN; Grice, Warren P [Oak Ridge, TN

    2011-12-13

    The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

  11. Why were Matrix Mechanics and Wave Mechanics considered equivalent?

    NASA Astrophysics Data System (ADS)

    Perovic, Slobodan

    A recent rethinking of the early history of Quantum Mechanics deemed the late 1920s agreement on the equivalence of Matrix Mechanics and Wave Mechanics, prompted by Schrödinger's 1926 proof, a myth. Schrödinger supposedly failed to prove isomorphism, or even a weaker equivalence ("Schrödinger-equivalence") of the mathematical structures of the two theories; developments in the early 1930s, especially the work of mathematician von Neumann provided sound proof of mathematical equivalence. The alleged agreement about the Copenhagen Interpretation, predicated to a large extent on this equivalence, was deemed a myth as well. In response, I argue that Schrödinger's proof concerned primarily a domain-specific ontological equivalence, rather than the isomorphism or a weaker mathematical equivalence. It stemmed initially from the agreement of the eigenvalues of Wave Mechanics and energy-states of Bohr's Model that was discovered and published by Schrödinger in his first and second communications of 1926. Schrödinger demonstrated in this proof that the laws of motion arrived at by the method of Matrix Mechanics are satisfied by assigning the auxiliary role to eigenfunctions in the derivation of matrices (while he only outlined the reversed derivation of eigenfunctions from Matrix Mechanics, which was necessary for the proof of both isomorphism and Schrödinger-equivalence of the two theories). This result was intended to demonstrate the domain-specific ontological equivalence of Matrix Mechanics and Wave Mechanics, with respect to the domain of Bohr's atom. And although the mathematical equivalence of the theories did not seem out of the reach of existing theories and methods, Schrödinger never intended to fully explore such a possibility in his proof paper. In a further development of Quantum Mechanics, Bohr's complementarity and Copenhagen Interpretation captured a more substantial convergence of the subsequently revised (in light of the experimental results) Wave and Matrix Mechanics. I argue that both the equivalence and Copenhagen Interpretation can be deemed myths if one predicates the philosophical and historical analysis on a narrow model of physical theory which disregards its historical context, and focuses exclusively on its formal aspects and the exploration of the logical models supposedly implicit in it.

  12. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinitskiy, Anton V.; Voth, Gregory A., E-mail: gavoth@uchicago.edu

    2015-09-07

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman’s imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionistmore » perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.« less

  13. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.

    PubMed

    Sinitskiy, Anton V; Voth, Gregory A

    2015-09-07

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.

  14. Experimental metaphysics2 : The double standard in the quantum-information approach to the foundations of quantum theory

    NASA Astrophysics Data System (ADS)

    Hagar, Amit

    Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one's system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the 'apparent' collapse in open quantum systems. But while recent advances in condensed-matter physics may lead in the near future to experimental setups that will allow one to test the two hypotheses, namely genuine collapse vs. decoherence, hence make progress toward a solution to the quantum measurement problem, those philosophers and physicists who are advocating an information-theoretic approach to the foundations of quantum mechanics are still unwilling to acknowledge the empirical character of the issue at stake. Here I argue that in doing so they are displaying an unwarranted double standard.

  15. Generalized Weyl-Wigner map and Vey quantum mechanics

    NASA Astrophysics Data System (ADS)

    Dias, Nuno Costa; Prata, João Nuno

    2001-12-01

    The Weyl-Wigner map yields the entire structure of Moyal quantum mechanics directly from the standard operator formulation. The covariant generalization of Moyal theory, also known as Vey quantum mechanics, was presented in the literature many years ago. However, a derivation of the formalism directly from standard operator quantum mechanics, clarifying the relation between the two formulations, is still missing. In this article we present a covariant generalization of the Weyl order prescription and of the Weyl-Wigner map and use them to derive Vey quantum mechanics directly from the standard operator formulation. The procedure displays some interesting features: it yields all the key ingredients and provides a more straightforward interpretation of the Vey theory including a direct implementation of unitary operator transformations as phase space coordinate transformations in the Vey idiom. These features are illustrated through a simple example.

  16. Quantum mechanical streamlines. I - Square potential barrier

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.

    1974-01-01

    Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.

  17. ON THE DYNAMICAL DERIVATION OF EQUILIBRIUM STATISTICAL MECHANICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prigogine, I.; Balescu, R.; Henin, F.

    1960-12-01

    Work on nonequilibrium statistical mechanics, which allows an extension of the kinetic proof to all results of equilibrium statistical mechanics involving a finite number of degrees of freedom, is summarized. As an introduction to the general N-body problem, the scattering theory in classical mechanics is considered. The general N-body problem is considered for the case of classical mechanics, quantum mechanics with Boltzmann statistics, and quantum mechanics including quantum statistics. Six basic diagrams, which describe the elementary processes of the dynamics of correlations, were obtained. (M.C.G.)

  18. Real-time Feynman path integral with Picard–Lefschetz theory and its applications to quantum tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanizaki, Yuya, E-mail: yuya.tanizaki@riken.jp; Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198; Koike, Takayuki, E-mail: tkoike@ms.u-tokyo.ac.jp

    Picard–Lefschetz theory is applied to path integrals of quantum mechanics, in order to compute real-time dynamics directly. After discussing basic properties of real-time path integrals on Lefschetz thimbles, we demonstrate its computational method in a concrete way by solving three simple examples of quantum mechanics. It is applied to quantum mechanics of a double-well potential, and quantum tunneling is discussed. We identify all of the complex saddle points of the classical action, and their properties are discussed in detail. However a big theoretical difficulty turns out to appear in rewriting the original path integral into a sum of path integralsmore » on Lefschetz thimbles. We discuss generality of that problem and mention its importance. Real-time tunneling processes are shown to be described by those complex saddle points, and thus semi-classical description of real-time quantum tunneling becomes possible on solid ground if we could solve that problem. - Highlights: • Real-time path integral is studied based on Picard–Lefschetz theory. • Lucid demonstration is given through simple examples of quantum mechanics. • This technique is applied to quantum mechanics of the double-well potential. • Difficulty for practical applications is revealed, and we discuss its generality. • Quantum tunneling is shown to be closely related to complex classical solutions.« less

  19. Undergraduate computational physics projects on quantum computing

    NASA Astrophysics Data System (ADS)

    Candela, D.

    2015-08-01

    Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.

  20. Nonreciprocal quantum interactions and devices via autonomous feedforward

    NASA Astrophysics Data System (ADS)

    Metelmann, A.; Clerk, A. A.

    2017-01-01

    In a recent work [A. Metelmann and A. A. Clerk, Phys. Rev. X 5, 021025 (2015), 10.1103/PhysRevX.5.021025], a general reservoir engineering approach for generating nonreciprocal quantum interactions and devices was described. We show here how in many cases this general recipe can be viewed as an example of autonomous feedforward: the full dissipative evolution is identical to the unconditional evolution in a setup where an observer performs an ideal quantum measurement of one system, and then uses the results to drive a second system. We also extend the application of this approach to nonreciprocal quantum amplifiers, showing the added functionality possible when using two engineered reservoirs. In particular, we demonstrate how to construct an ideal phase-preserving cavity-based amplifier which is fully nonreciprocal, quantum limited, and free of any fundamental gain-bandwidth constraint.

  1. Deterministic error correction for nonlocal spatial-polarization hyperentanglement

    PubMed Central

    Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu

    2016-01-01

    Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication. PMID:26861681

  2. Deterministic error correction for nonlocal spatial-polarization hyperentanglement.

    PubMed

    Li, Tao; Wang, Guan-Yu; Deng, Fu-Guo; Long, Gui-Lu

    2016-02-10

    Hyperentanglement is an effective quantum source for quantum communication network due to its high capacity, low loss rate, and its unusual character in teleportation of quantum particle fully. Here we present a deterministic error-correction scheme for nonlocal spatial-polarization hyperentangled photon pairs over collective-noise channels. In our scheme, the spatial-polarization hyperentanglement is first encoded into a spatial-defined time-bin entanglement with identical polarization before it is transmitted over collective-noise channels, which leads to the error rejection of the spatial entanglement during the transmission. The polarization noise affecting the polarization entanglement can be corrected with a proper one-step decoding procedure. The two parties in quantum communication can, in principle, obtain a nonlocal maximally entangled spatial-polarization hyperentanglement in a deterministic way, which makes our protocol more convenient than others in long-distance quantum communication.

  3. Supersymmetric quantum mechanics method for the Fokker-Planck equation with applications to protein folding dynamics

    NASA Astrophysics Data System (ADS)

    Polotto, Franciele; Drigo Filho, Elso; Chahine, Jorge; Oliveira, Ronaldo Junio de

    2018-03-01

    This work developed analytical methods to explore the kinetics of the time-dependent probability distributions over thermodynamic free energy profiles of protein folding and compared the results with simulation. The Fokker-Planck equation is mapped onto a Schrödinger-type equation due to the well-known solutions of the latter. Through a semi-analytical description, the supersymmetric quantum mechanics formalism is invoked and the time-dependent probability distributions are obtained with numerical calculations by using the variational method. A coarse-grained structure-based model of the two-state protein Tm CSP was simulated at a Cα level of resolution and the thermodynamics and kinetics were fully characterized. Analytical solutions from non-equilibrium conditions were obtained with the simulated double-well free energy potential and kinetic folding times were calculated. It was found that analytical folding time as a function of temperature agrees, quantitatively, with simulations and experiments from the literature of Tm CSP having the well-known 'U' shape of the Chevron Plots. The simple analytical model developed in this study has a potential to be used by theoreticians and experimentalists willing to explore, quantitatively, rates and the kinetic behavior of their system by informing the thermally activated barrier. The theory developed describes a stochastic process and, therefore, can be applied to a variety of biological as well as condensed-phase two-state systems.

  4. Target electron collision effects on energy loss straggling of protons in an electron gas at any degeneracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barriga-Carrasco, Manuel D.

    2008-03-15

    The purpose of the present paper is to describe the effects of target electron collisions on proton energy loss straggling in plasmas at any degeneracy. Targets are considered fully ionized so electronic energy loss is only due to the free electrons. The analysis is focused on targets with electronic density around solid values n{sub e}{approx_equal}10{sup 23} cm{sup -3} and with temperature around T{approx_equal}10 eV; these targets are in the limit of weakly coupled electron gases. These types of plasma targets have not been studied extensively, though they are very important for inertial confinement fusion. The energy loss straggling is obtainedmore » from an exact quantum-mechanical evaluation, which takes into account the degeneracy of the target plasma, and later it is compared with common classical and degenerate approximations. Then electron collisions in the exact quantum-mechanical straggling calculation are considered. Now the energy loss straggling is enhanced for energies smaller than the energy before the maximum, then decreases around this maximum, and finally tends to the same values with respect to noncollisional calculation. Differences with the same results but not taking into account these collisions are as far as 17% in the cases analyzed. As an example, proton range distributions have been calculated to show the importance of an accurate energy straggling calculation.« less

  5. Determining polarizable force fields with electrostatic potentials from quantum mechanical linear response theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Yang, Weitao, E-mail: weitao.yang@duke.edu; Department of Physics, Duke University, Durham, North Carolina 27708

    We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniformmore » external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics’ force fields and nontransferable molecule-specific atomic polarizabilities.« less

  6. Quantum versus classical dynamics in the optical centrifuge

    NASA Astrophysics Data System (ADS)

    Armon, Tsafrir; Friedland, Lazar

    2017-09-01

    The interplay between classical and quantum-mechanical evolution in the optical centrifuge (OC) is discussed. The analysis is based on the quantum-mechanical formalism starting from either the ground state or a thermal ensemble. Two resonant mechanisms are identified, i.e., the classical autoresonance and the quantum-mechanical ladder climbing, yielding different dynamics and rotational excitation efficiencies. The rotating-wave approximation is used to analyze the two resonant regimes in the associated dimensionless two-parameter space and calculate the OC excitation efficiency. The results show good agreement between numerical simulations and theory and are relevant to existing experimental setups.

  7. A full quantum analysis of the Stern-Gerlach experiment using the evolution operator method: analyzing current issues in teaching quantum mechanics

    NASA Astrophysics Data System (ADS)

    Benítez Rodríguez, E.; Arévalo Aguilar, L. M.; Piceno Martínez, E.

    2017-03-01

    To the quantum mechanics specialists community it is a well-known fact that the famous original Stern-Gerlach experiment (SGE) produces entanglement between the external degrees of freedom (position) and the internal degree of freedom (spin) of silver atoms. Despite this fact, almost all textbooks on quantum mechanics explain this experiment using a semiclassical approach, where the external degrees of freedom are considered classical variables, the internal degree is treated as a quantum variable, and Newton's second law is used to describe the dynamics. In the literature there are some works that analyze this experiment in its full quantum mechanical form. However, astonishingly, to the best of our knowledge the original experiment, where the initial states of the spin degree of freedom are randomly oriented coming from the oven, has not been analyzed yet in the available textbooks using the Schrödinger equation (to the best of our knowledge there is only one paper that treats this case: Hsu et al (2011 Phys. Rev. A 83 012109)). Therefore, in this contribution we use the time-evolution operator to give a full quantum mechanics analysis of the SGE when the initial state of the internal degree of freedom is completely random, i.e. when it is a statistical mixture. Additionally, as the SGE and the development of quantum mechanics are heavily intermingled, we analyze some features and drawbacks in the current teaching of quantum mechanics. We focus on textbooks that use the SGE as a starting point, based on the fact that most physicist do not use results from physics education research, and comment on traditional pedagogical attitudes in the physics community.

  8. Blueprint for a microwave trapped ion quantum computer.

    PubMed

    Lekitsch, Bjoern; Weidt, Sebastian; Fowler, Austin G; Mølmer, Klaus; Devitt, Simon J; Wunderlich, Christof; Hensinger, Winfried K

    2017-02-01

    The availability of a universal quantum computer may have a fundamental impact on a vast number of research fields and on society as a whole. An increasingly large scientific and industrial community is working toward the realization of such a device. An arbitrarily large quantum computer may best be constructed using a modular approach. We present a blueprint for a trapped ion-based scalable quantum computer module, making it possible to create a scalable quantum computer architecture based on long-wavelength radiation quantum gates. The modules control all operations as stand-alone units, are constructed using silicon microfabrication techniques, and are within reach of current technology. To perform the required quantum computations, the modules make use of long-wavelength radiation-based quantum gate technology. To scale this microwave quantum computer architecture to a large size, we present a fully scalable design that makes use of ion transport between different modules, thereby allowing arbitrarily many modules to be connected to construct a large-scale device. A high error-threshold surface error correction code can be implemented in the proposed architecture to execute fault-tolerant operations. With appropriate adjustments, the proposed modules are also suitable for alternative trapped ion quantum computer architectures, such as schemes using photonic interconnects.

  9. Unconditional polarization qubit quantum memory at room temperature

    NASA Astrophysics Data System (ADS)

    Namazi, Mehdi; Kupchak, Connor; Jordaan, Bertus; Shahrokhshahi, Reihaneh; Figueroa, Eden

    2016-05-01

    The creation of global quantum key distribution and quantum communication networks requires multiple operational quantum memories. Achieving a considerable reduction in experimental and cost overhead in these implementations is thus a major challenge. Here we present a polarization qubit quantum memory fully-operational at 330K, an unheard frontier in the development of useful qubit quantum technology. This result is achieved through extensive study of how optical response of cold atomic medium is transformed by the motion of atoms at room temperature leading to an optimal characterization of room temperature quantum light-matter interfaces. Our quantum memory shows an average fidelity of 86.6 +/- 0.6% for optical pulses containing on average 1 photon per pulse, thereby defeating any classical strategy exploiting the non-unitary character of the memory efficiency. Our system significantly decreases the technological overhead required to achieve quantum memory operation and will serve as a building block for scalable and technologically simpler many-memory quantum machines. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180. B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  10. Demonstration of a small programmable quantum computer with atomic qubits.

    PubMed

    Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C

    2016-08-04

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  11. Demonstration of a small programmable quantum computer with atomic qubits

    NASA Astrophysics Data System (ADS)

    Debnath, S.; Linke, N. M.; Figgatt, C.; Landsman, K. A.; Wright, K.; Monroe, C.

    2016-08-01

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  12. Quantum Optimization of Fully Connected Spin Glasses

    NASA Astrophysics Data System (ADS)

    Venturelli, Davide; Mandrà, Salvatore; Knysh, Sergey; O'Gorman, Bryan; Biswas, Rupak; Smelyanskiy, Vadim

    2015-07-01

    Many NP-hard problems can be seen as the task of finding a ground state of a disordered highly connected Ising spin glass. If solutions are sought by means of quantum annealing, it is often necessary to represent those graphs in the annealer's hardware by means of the graph-minor embedding technique, generating a final Hamiltonian consisting of coupled chains of ferromagnetically bound spins, whose binding energy is a free parameter. In order to investigate the effect of embedding on problems of interest, the fully connected Sherrington-Kirkpatrick model with random ±1 couplings is programmed on the D-Wave TwoTM annealer using up to 270 qubits interacting on a Chimera-type graph. We present the best embedding prescriptions for encoding the Sherrington-Kirkpatrick problem in the Chimera graph. The results indicate that the optimal choice of embedding parameters could be associated with the emergence of the spin-glass phase of the embedded problem, whose presence was previously uncertain. This optimal parameter setting allows the performance of the quantum annealer to compete with (and potentially outperform, in the absence of analog control errors) optimized simulated annealing algorithms.

  13. Noisy relativistic quantum games in noninertial frames

    NASA Astrophysics Data System (ADS)

    Khan, Salman; Khan, M. Khalid

    2013-02-01

    The influence of noise and of Unruh effect on quantum Prisoners' dilemma is investigated both for entangled and unentangled initial states. The noise is incorporated through amplitude damping channel. For unentangled initial state, the decoherence compensates for the adverse effect of acceleration of the frame and the effect of acceleration becomes irrelevant provided the game is fully decohered. It is shown that the inertial player always out scores the noninertial player by choosing defection. For maximally entangled initially state, we show that for fully decohered case every strategy profile results in either of the two possible equilibrium outcomes. Two of the four possible strategy profiles become Pareto optimal and Nash equilibrium and no dilemma is leftover. It is shown that other equilibrium points emerge for different region of values of decoherence parameter that are either Pareto optimal or Pareto inefficient in the quantum strategic spaces. It is shown that the Eisert et al. (Phys Rev Lett 83:3077, 1999) miracle move is a special move that leads always to distinguishable results compare to other moves. We show that the dilemma like situation is resolved in favor of one player or the other.

  14. Fully Transparent Quantum Dot Light-Emitting Diode with a Laminated Top Graphene Anode.

    PubMed

    Yao, Li; Fang, Xin; Gu, Wei; Zhai, Wenhao; Wan, Yi; Xie, Xixi; Xu, Wanjin; Pi, Xiaodong; Ran, Guangzhao; Qin, Guogang

    2017-07-19

    A new method to employ graphene as top electrode was introduced, and based on that, fully transparent quantum dot light-emitting diodes (T-QLEDs) were successfully fabricated through a lamination process. We adopted the widely used wet transfer method to transfer bilayer graphene (BG) on polydimethylsiloxane/polyethylene terephthalate (PDMS/PET) substrate. The sheet resistance of graphene reduced to ∼540 Ω/□ through transferring BG for 3 times on the PDMS/PET. The T-QLED has an inverted device structure of glass/indium tin oxide (ITO)/ZnO nanoparticles/(CdSSe/ZnS quantum dots (QDs))/1,1-bis[(di-4-tolylamino)phenyl] cyclohexane (TAPC)/MoO 3 /graphene/PDMS/PET. The graphene anode on PDMS/PET substrate can be directly laminated on the MoO 3 /TAPC/(CdSSe/ZnS QDs)/ZnO nanoparticles/ITO/glass, which relied on the van der Waals interaction between the graphene/PDMS and the MoO 3 . The transmittance of the T-QLED is 79.4% at its main electroluminescence peak wavelength of 622 nm.

  15. Quantum probabilistic logic programming

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan

    2015-05-01

    We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.

  16. Optical studies of current-induced magnetization switching and photonic quantum states

    NASA Astrophysics Data System (ADS)

    Lorenz, Virginia

    2017-04-01

    The ever-decreasing size of electronic components is leading to a fundamental change in the way computers operate, as at the few-nanometer scale, resistive heating and quantum mechanics prohibit efficient and stable operation. One of the most promising next-generation computing paradigms is Spintronics, which uses the spin of the electron to manipulate and store information in the form of magnetic thin films. I will present our optical studies of the fundamental mechanisms by which we can efficiently manipulate magnetization using electrical current. Although electron spin is a quantum-mechanical property, Spintronics relies on macroscopic magnetization and thus does not take advantage of quantum mechanics in the algorithms used to encode and transmit information. For the second part of my talk, I will present our work under the umbrella of new computing and communication technologies based on the quantum mechanical properties of photons. Quantum technologies often require the carriers of information, or qubits, to have specific properties. Photonic quantum states are good information carriers because they travel fast and are robust to environmental fluctuations, but characterizing and controlling photonic sources so the photons have just the right properties is still a challenge. I will describe our work towards enabling quantum-physics-based secure long-distance communication using photons.

  17. Proliferation of Observables and Measurement in Quantum-Classical Hybrids

    NASA Astrophysics Data System (ADS)

    Elze, Hans-Thomas

    2012-01-01

    Following a review of quantum-classical hybrid dynamics, we discuss the ensuing proliferation of observables and relate it to measurements of (would-be) quantum mechanical degrees of freedom performed by (would-be) classical ones (if they were separable). Hybrids consist in coupled classical (CL) and quantum mechanical (QM) objects. Numerous consistency requirements for their description have been discussed and are fulfilled here. We summarize a representation of quantum mechanics in terms of classical analytical mechanics which is naturally extended to QM-CL hybrids. This framework allows for superposition, separable, and entangled states originating in the QM sector, admits experimenter's "Free Will", and is local and nonsignaling. Presently, we study the set of hybrid observables, which is larger than the Cartesian product of QM and CL observables of its components; yet it is smaller than a corresponding product of all-classical observables. Thus, quantumness and classicality infect each other.

  18. Generalized radiation-field quantization method and the Petermann excess-noise factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Y.-J.; Siegman, A.E.; E.L. Ginzton Laboratory, Stanford University, Stanford, California 94305

    2003-10-01

    We propose a generalized radiation-field quantization formalism, where quantization does not have to be referenced to a set of power-orthogonal eigenmodes as conventionally required. This formalism can be used to directly quantize the true system eigenmodes, which can be non-power-orthogonal due to the open nature of the system or the gain/loss medium involved in the system. We apply this generalized field quantization to the laser linewidth problem, in particular, lasers with non-power-orthogonal oscillation modes, and derive the excess-noise factor in a fully quantum-mechanical framework. We also show that, despite the excess-noise factor for oscillating modes, the total spatially averaged decaymore » rate for the laser atoms remains unchanged.« less

  19. Elastic and transport cross sections for inert gases in a hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag

    2005-05-01

    Accurate elastic differential and integral scattering and transport cross sections have been computed using a fully quantum-mechanical approach for hydrogen ions (H^+, D^+ and T^+) colliding with Neon, Krypton and Xenon, in the center of mass energy range 0.1 to 200 eV. The momentum transfer and viscosity cross sections have been extended to higher keV collision energies using a classical, three-body scattering method. The results were compared with previously calculated values for Argon and Helium, as well as with simple analytical models. The cross sections, tabulated and available through the world wide web (www-cfadc.phy.ornl.gov) are of significance in fusion plasma modeling, gaseous electronics and other plasma applications.

  20. Quaternions, Torsion and the Physical Vacuum: Theories of M. Sachs and G. Shipov Compared

    NASA Astrophysics Data System (ADS)

    Cyganski, David; Page, William S.

    Of several developments of unified field theories in the spirit of Einstein's original objective of a fully geometric description of all classical fields as well as quantum mechanics, two are particularly noteworthy. The works of Mendel Sachs and Gennady Shipov stand apart as major life works comprising tens of papers, several monographs and decades of effort. Direct comparison of these theories is hampered however by differences in notation and conceptual view-point. Despite these differences, there are many parallels between the fundamental mathematical structures appearing in each. In this paper we discuss the main tenets of the two approaches and demonstrate that they both give rise to a factorization of the invariant interval of general relativity.

  1. Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Yating; Li, Qiang; Lau, Kei May, E-mail: eekmlau@ust.hk

    2016-07-04

    Temperature characteristics of optically pumped micro-disk lasers (MDLs) incorporating InAs quantum dot active regions are investigated for on-chip light sources. The InAs quantum dot MDLs were grown on V-groove patterned (001) silicon, fully compatible with the prevailing complementary metal oxide-semiconductor technology. By combining the high-quality whispering gallery modes and 3D confinement of injected carriers in quantum dot micro-disk structures, we achieved lasing operation from 10 K up to room temperature under continuous optical pumping. Temperature dependences of the threshold, lasing wavelength, slope efficiency, and mode linewidth are examined. An excellent characteristic temperature T{sub o} of 105 K has been extracted.

  2. Characterization of the Sr(2+)- and Cd(2+)-Substituted Oxygen-Evolving Complex of Photosystem II by Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Pitari, Fabio; Bovi, Daniele; Narzi, Daniele; Guidoni, Leonardo

    2015-09-29

    The Mn4CaO5 cluster in the oxygen-evolving complex is the catalytic core of the Photosystem II (PSII) enzyme, responsible for the water splitting reaction in oxygenic photosynthesis. The role of the redox-inactive ion in the cluster has not yet been fully clarified, although several experimental data are available on Ca2+-depleted and Ca2+-substituted PSII complexes, indicating Sr2+-substituted PSII as the only modification that preserves oxygen evolution. In this work, we investigated the structural and electronic properties of the PSII catalytic core with Ca2+ replaced with Sr2+ and Cd2+ in the S2 state of the Kok−Joliot cycle by means of density functional theory and ab initio molecular dynamics based on a quantum mechanics/ molecular mechanics approach. Our calculations do not reveal significant differences between the substituted and wild-type systems in terms of geometries, thermodynamics, and kinetics of two previously identified intermediate states along the S2 to S3 transition, namely, the open cubane S2 A and closed cubane S2 B conformers. Conversely, our calculations show different pKa values for the water molecule bound to the three investigated heterocations. Specifically, for Cd-substituted PSII, the pKa value is 5.3 units smaller than the respective value in wild type Ca-PSII. On the basis of our results, we conclude that, assuming all the cations sharing the same binding site, the induced difference in the acidity of the binding pocket might influence the hydrogen bonding network and the redox levels to prevent the further evolution of the cycle toward the S3 state.

  3. Extracontextuality and extravalence in quantum mechanics.

    PubMed

    Auffèves, Alexia; Grangier, Philippe

    2018-07-13

    We develop the point of view where quantum mechanics results from the interplay between the quantized number of 'modalities' accessible to a quantum system, and the continuum of 'contexts' that are required to define these modalities. We point out the specific roles of 'extracontextuality' and 'extravalence' of modalities, and relate them to the Kochen-Specker and Gleason theorems.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  4. Einstein's equivalence principle in quantum mechanics revisited

    NASA Astrophysics Data System (ADS)

    Nauenberg, Michael

    2016-11-01

    The gravitational equivalence principle in quantum mechanics is of considerable importance, but it is generally not included in physics textbooks. In this note, we present a precise quantum formulation of this principle and comment on its verification in a neutron diffraction experiment. The solution of the time dependent Schrödinger equation for this problem also gives the wave function for the motion of a charged particle in a homogeneous electric field, which is also usually ignored in textbooks on quantum mechanics.

  5. Material Phase Causality or a Dynamics-Statistical Interpretation of Quantum Mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koprinkov, I. G.

    2010-11-25

    The internal phase dynamics of a quantum system interacting with an electromagnetic field is revealed in details. Theoretical and experimental evidences of a causal relation of the phase of the wave function to the dynamics of the quantum system are presented sistematically for the first time. A dynamics-statistical interpretation of the quantum mechanics is introduced.

  6. The geometrical structure of quantum theory as a natural generalization of information geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reginatto, Marcel

    2015-01-13

    Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed usingmore » geometrical quantities. This suggests that quantum theory has its roots in information geometry.« less

  7. Much Polyphony but Little Harmony: Otto Sackur's Groping for a Quantum Theory of Gases

    NASA Astrophysics Data System (ADS)

    Badino, Massimiliano; Friedrich, Bretislav

    2013-09-01

    The endeavor of Otto Sackur (1880-1914) was driven, on the one hand, by his interest in Nernst's heat theorem, statistical mechanics, and the problem of chemical equilibrium and, on the other hand, by his goal to shed light on classical mechanics from the quantum vantage point. Inspired by the interplay between classical physics and quantum theory, Sackur chanced to expound his personal take on the role of the quantum in the changing landscape of physics in the turbulent 1910s. We tell the story of this enthusiastic practitioner of the old quantum theory and early contributor to quantum statistical mechanics, whose scientific ontogenesis provides a telling clue about the phylogeny of his contemporaries.

  8. Uncertain for a century: quantum mechanics and the dilemma of interpretation.

    PubMed

    Frank, Adam

    2015-12-01

    Quantum mechanics, the physical theory describing the microworld, is one of science's greatest triumphs. Remarkably, however, after more than 100 years it is still unclear what quantum mechanics means in terms of basic philosophical questions about the nature of reality. While there are many interpretations of the mathematical machinery of quantum physics, there remain no experimental means to distinguish between most of them. In this contribution, I wish to consider the ways in which the enduring lack of an agreed-upon interpretation of quantum physics influences a number of critical philosophical debates about physics and reality. I briefly review two problems affected by quantum interpretations: the meaning of the term universe and the nature of consciousness. © 2015 New York Academy of Sciences.

  9. Individuation in Quantum Mechanics and Space-Time

    NASA Astrophysics Data System (ADS)

    Jaeger, Gregg

    2010-10-01

    Two physical approaches—as distinct, under the classification of Mittelstaedt, from formal approaches—to the problem of individuation of quantum objects are considered, one formulated in spatiotemporal terms and one in quantum mechanical terms. The spatiotemporal approach itself has two forms: one attributed to Einstein and based on the ontology of space-time points, and the other proposed by Howard and based on intersections of world lines. The quantum mechanical approach is also provided here in two forms, one based on interference and another based on a new Quantum Principle of Individuation (QPI). It is argued that the space-time approach to individuation fails and that the quantum approach offers several advantages over it, including consistency with Leibniz’s Principle of Identity of Indiscernibles.

  10. The physics of quantum materials

    NASA Astrophysics Data System (ADS)

    Keimer, B.; Moore, J. E.

    2017-11-01

    The physical description of all materials is rooted in quantum mechanics, which describes how atoms bond and electrons interact at a fundamental level. Although these quantum effects can in many cases be approximated by a classical description at the macroscopic level, in recent years there has been growing interest in material systems where quantum effects remain manifest over a wider range of energy and length scales. Such quantum materials include superconductors, graphene, topological insulators, Weyl semimetals, quantum spin liquids, and spin ices. Many of them derive their properties from reduced dimensionality, in particular from confinement of electrons to two-dimensional sheets. Moreover, they tend to be materials in which electrons cannot be considered as independent particles but interact strongly and give rise to collective excitations known as quasiparticles. In all cases, however, quantum-mechanical effects fundamentally alter properties of the material. This Review surveys the electronic properties of quantum materials through the prism of the electron wavefunction, and examines how its entanglement and topology give rise to a rich variety of quantum states and phases; these are less classically describable than conventional ordered states also driven by quantum mechanics, such as ferromagnetism.

  11. Circuit quantum acoustodynamics with surface acoustic waves.

    PubMed

    Manenti, Riccardo; Kockum, Anton F; Patterson, Andrew; Behrle, Tanja; Rahamim, Joseph; Tancredi, Giovanna; Nori, Franco; Leek, Peter J

    2017-10-17

    The experimental investigation of quantum devices incorporating mechanical resonators has opened up new frontiers in the study of quantum mechanics at a macroscopic level. It has recently been shown that surface acoustic waves (SAWs) can be piezoelectrically coupled to superconducting qubits, and confined in high-quality Fabry-Perot cavities in the quantum regime. Here we present measurements of a device in which a superconducting qubit is coupled to a SAW cavity, realising a surface acoustic version of cavity quantum electrodynamics. We use measurements of the AC Stark shift between the two systems to determine the coupling strength, which is in agreement with a theoretical model. This quantum acoustodynamics architecture may be used to develop new quantum acoustic devices in which quantum information is stored in trapped on-chip acoustic wavepackets, and manipulated in ways that are impossible with purely electromagnetic signals, due to the 10 5 times slower mechanical waves.In this work, Manenti et al. present measurements of a device in which a tuneable transmon qubit is piezoelectrically coupled to a surface acoustic wave cavity, realising circuit quantum acoustodynamic architecture. This may be used to develop new quantum acoustic devices.

  12. Student Ability to Distinguish between Superposition States and Mixed States in Quantum Mechanics

    ERIC Educational Resources Information Center

    Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.

    2015-01-01

    Superposition gives rise to the probabilistic nature of quantum mechanics and is therefore one of the concepts at the heart of quantum mechanics. Although we have found that many students can successfully use the idea of superposition to calculate the probabilities of different measurement outcomes, they are often unable to identify the…

  13. Phonon counting and intensity interferometry of a nanomechanical resonator

    NASA Astrophysics Data System (ADS)

    Cohen, Justin D.; Meenehan, Seán M.; Maccabe, Gregory S.; Gröblacher, Simon; Safavi-Naeini, Amir H.; Marsili, Francesco; Shaw, Matthew D.; Painter, Oskar

    2015-04-01

    In optics, the ability to measure individual quanta of light (photons) enables a great many applications, ranging from dynamic imaging within living organisms to secure quantum communication. Pioneering photon counting experiments, such as the intensity interferometry performed by Hanbury Brown and Twiss to measure the angular width of visible stars, have played a critical role in our understanding of the full quantum nature of light. As with matter at the atomic scale, the laws of quantum mechanics also govern the properties of macroscopic mechanical objects, providing fundamental quantum limits to the sensitivity of mechanical sensors and transducers. Current research in cavity optomechanics seeks to use light to explore the quantum properties of mechanical systems ranging in size from kilogram-mass mirrors to nanoscale membranes, as well as to develop technologies for precision sensing and quantum information processing. Here we use an optical probe and single-photon detection to study the acoustic emission and absorption processes in a silicon nanomechanical resonator, and perform a measurement similar to that used by Hanbury Brown and Twiss to measure correlations in the emitted phonons as the resonator undergoes a parametric instability formally equivalent to that of a laser. Owing to the cavity-enhanced coupling of light with mechanical motion, this effective phonon counting technique has a noise equivalent phonon sensitivity of 0.89 +/- 0.05. With straightforward improvements to this method, a variety of quantum state engineering tasks using mesoscopic mechanical resonators would be enabled, including the generation and heralding of single-phonon Fock states and the quantum entanglement of remote mechanical elements.

  14. Remanent Magnetization: Signature of Many-Body Localization in Quantum Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Ros, V.; Müller, M.

    2017-06-01

    We study the remanent magnetization in antiferromagnetic, many-body localized quantum spin chains, initialized in a fully magnetized state. Its long time limit is an order parameter for the localization transition, which is readily accessible by standard experimental probes in magnets. We analytically calculate its value in the strong-disorder regime exploiting the explicit construction of quasilocal conserved quantities of the localized phase. We discuss analogies in cold atomic systems.

  15. Quantum correlations of two-qubit states with one maximally mixed marginal

    NASA Astrophysics Data System (ADS)

    Milne, Antony; Jennings, David; Jevtic, Sania; Rudolph, Terry

    2014-08-01

    We investigate the entanglement, CHSH nonlocality, fully entangled fraction, and symmetric extendibility of two-qubit states that have a single maximally mixed marginal. Within this set of states, the steering ellipsoid formalism has recently highlighted an interesting family of so-called maximally obese states. These are found to have extremal quantum correlation properties that are significant in the steering ellipsoid picture and for the study of two-qubit states in general.

  16. Quantum chemical study of the mechanism of action of vitamin K epoxide reductase (VKOR)

    NASA Astrophysics Data System (ADS)

    Deerfield, David, II; Davis, Charles H.; Wymore, Troy; Stafford, Darrel W.; Pedersen, Lee G.

    Possible model, but simplistic, mechanisms for the action of vitamin K epoxide reductase (VKOR) are investigated with quantum mechanical methods (B3LYP/6-311G**). The geometries of proposed model intermediates in the mechanisms are energy optimized. Finally, the energetics of the proposed (pseudo-enzymatic) pathways are compared. We find that the several pathways are all energetically feasible. These results will be useful for designing quantum mechanical/molecular mechanical method (QM/MM) studies of the enzymatic pathway once three-dimensional structural data are determined and available for VKOR.

  17. A universal test for gravitational decoherence

    PubMed Central

    Pfister, C.; Kaniewski, J.; Tomamichel, M.; Mantri, A.; Schmucker, R.; McMahon, N.; Milburn, G.; Wehner, S.

    2016-01-01

    Quantum mechanics and the theory of gravity are presently not compatible. A particular question is whether gravity causes decoherence. Several models for gravitational decoherence have been proposed, not all of which can be described quantum mechanically. Since quantum mechanics may need to be modified, one may question the use of quantum mechanics as a calculational tool to draw conclusions from the data of experiments concerning gravity. Here we propose a general method to estimate gravitational decoherence in an experiment that allows us to draw conclusions in any physical theory where the no-signalling principle holds, even if quantum mechanics needs to be modified. As an example, we propose a concrete experiment using optomechanics. Our work raises the interesting question whether other properties of nature could similarly be established from experimental observations alone—that is, without already having a rather well-formed theory of nature to make sense of experimental data. PMID:27694976

  18. Quantum Teleportation and Grover's Algorithm Without the Wavefunction

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    2017-02-01

    In the same way as the quantum no-cloning theorem and quantum key distribution in two preceding papers, entanglement-assisted quantum teleportation and Grover's search algorithm are generalized by transferring them to an abstract setting, including usual quantum mechanics as a special case. This again shows that a much more general and abstract access to these quantum mechanical features is possible than commonly thought. A non-classical extension of conditional probability and, particularly, a very special type of state-independent conditional probability are used instead of Hilbert spaces and wavefunctions.

  19. Exponential energy growth due to slow parameter oscillations in quantum mechanical systems.

    PubMed

    Turaev, Dmitry

    2016-05-01

    It is shown that a periodic emergence and destruction of an additional quantum number leads to an exponential growth of energy of a quantum mechanical system subjected to a slow periodic variation of parameters. The main example is given by systems (e.g., quantum billiards and quantum graphs) with periodically divided configuration space. In special cases, the process can also lead to a long period of cooling that precedes the acceleration, and to the desertion of the states with a particular value of the quantum number.

  20. QDENSITY—A Mathematica quantum computer simulation

    NASA Astrophysics Data System (ADS)

    Juliá-Díaz, Bruno; Burdis, Joseph M.; Tabakin, Frank

    2009-03-01

    This Mathematica 6.0 package is a simulation of a Quantum Computer. The program provides a modular, instructive approach for generating the basic elements that make up a quantum circuit. The main emphasis is on using the density matrix, although an approach using state vectors is also implemented in the package. The package commands are defined in Qdensity.m which contains the tools needed in quantum circuits, e.g., multiqubit kets, projectors, gates, etc. New version program summaryProgram title: QDENSITY 2.0 Catalogue identifier: ADXH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 26 055 No. of bytes in distributed program, including test data, etc.: 227 540 Distribution format: tar.gz Programming language: Mathematica 6.0 Operating system: Any which supports Mathematica; tested under Microsoft Windows XP, Macintosh OS X, and Linux FC4 Catalogue identifier of previous version: ADXH_v1_0 Journal reference of previous version: Comput. Phys. Comm. 174 (2006) 914 Classification: 4.15 Does the new version supersede the previous version?: Offers an alternative, more up to date, implementation Nature of problem: Analysis and design of quantum circuits, quantum algorithms and quantum clusters. Solution method: A Mathematica package is provided which contains commands to create and analyze quantum circuits. Several Mathematica notebooks containing relevant examples: Teleportation, Shor's Algorithm and Grover's search are explained in detail. A tutorial, Tutorial.nb is also enclosed. Reasons for new version: The package has been updated to make it fully compatible with Mathematica 6.0 Summary of revisions: The package has been updated to make it fully compatible with Mathematica 6.0 Running time: Most examples included in the package, e.g., the tutorial, Shor's examples, Teleportation examples and Grover's search, run in less than a minute on a Pentium 4 processor (2.6 GHz). The running time for a quantum computation depends crucially on the number of qubits employed.

  1. Quantum acoustics with superconducting qubits

    NASA Astrophysics Data System (ADS)

    Chu, Yiwen

    2017-04-01

    The ability to engineer and manipulate different types of quantum mechanical objects allows us to take advantage of their unique properties and create useful hybrid technologies. Thus far, complex quantum states and exquisite quantum control have been demonstrated in systems ranging from trapped ions to superconducting resonators. Recently, there have been many efforts to extend these demonstrations to the motion of complex, macroscopic objects. These mechanical objects have important applications as quantum memories or transducers for measuring and connecting different types of quantum systems. In particular, there have been a few experiments that couple motion to nonlinear quantum objects such as superconducting qubits. This opens up the possibility of creating, storing, and manipulating non-Gaussian quantum states in mechanical degrees of freedom. However, before sophisticated quantum control of mechanical motion can be achieved, we must realize systems with long coherence times while maintaining a sufficient interaction strength. These systems should be implemented in a simple and robust manner that allows for increasing complexity and scalability in the future. In this talk, I will describe our recent experiments demonstrating a high frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction. In contrast to previous experiments with qubit-mechanical systems, our device requires only simple fabrication methods, extends coherence times to many microseconds, and provides controllable access to a multitude of phonon modes. We use this system to demonstrate basic quantum operations on the coupled qubit-phonon system. Straightforward improvements to the current device will allow for advanced protocols analogous to what has been shown in optical and microwave resonators, resulting in a novel resource for implementing hybrid quantum technologies.

  2. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-06-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  3. Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system

    NASA Astrophysics Data System (ADS)

    Samosvat, D. M.; Chikalova-Luzina, O. P.; Vyatkin, V. M.; Zegrya, G. G.

    2016-11-01

    In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones.

  4. Transfer of non-Gaussian quantum states of mechanical oscillator to light

    NASA Astrophysics Data System (ADS)

    Filip, Radim; Rakhubovsky, Andrey A.

    2015-11-01

    Non-Gaussian quantum states are key resources for quantum optics with continuous-variable oscillators. The non-Gaussian states can be deterministically prepared by a continuous evolution of the mechanical oscillator isolated in a nonlinear potential. We propose feasible and deterministic transfer of non-Gaussian quantum states of mechanical oscillators to a traveling light beam, using purely all-optical methods. The method relies on only basic feasible and high-quality elements of quantum optics: squeezed states of light, linear optics, homodyne detection, and electro-optical feedforward control of light. By this method, a wide range of novel non-Gaussian states of light can be produced in the future from the mechanical states of levitating particles in optical tweezers, including states necessary for the implementation of an important cubic phase gate.

  5. Progress in post-quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sarfatti, Jack

    2017-05-01

    Newton's mechanics in the 17th century increased the lethality of artillery. Thermodynamics in the 19th led to the steam-powered industrial revolution. Maxwell's unification of electricity, magnetism and light gave us electrical power, the telegraph, radio and television. The discovery of quantum mechanics in the 20th century by Planck, Bohr, Einstein, Schrodinger, Heisenberg led to the creation of the atomic and hydrogen bombs as well as computer chips, the world-wide-web and Silicon Valley's multibillion dollar corporations. The lesson is that breakthroughs in fundamental physics, both theoretical and experimental, have always led to profound technological wealth-creating industries and will continue to do so. There is now a new revolution brewing in quantum mechanics that can be divided into three periods. The first quantum revolution was from 1900 to about 1975. The second quantum information/computer revolution was from about 1975 to 2015. (The early part of this story is told by Kaiser in his book, How the Hippies Saved Physics, how a small group of Berkeley/San Francisco physicists triggered that second revolution.) The third quantum revolution is how an extension of quantum mechanics may lead to the understanding of consciousness as a natural physical phenomenon that can emerge in many material substrates, not only in our carbon-based biochemistry. In particular, this new post-quantum mechanics may lead to naturally conscious artificial intelligence in nano-electronic machines, as well as perhaps extending human life spans to hundreds of years and more.

  6. Quantum Mechanics for Everybody: An autonomous MOOC on EdX for nonscientists

    NASA Astrophysics Data System (ADS)

    Freericks, James; Cutler, Dylan; Vieira-Barbosa, Lucas

    2017-01-01

    We have launched a MOOC for nonscientists that teaches quantum mechanics using the Feynman methodology as outlined in his QED book and in a similar book by Daniel Styer. Using a combination of videos, voice-over powerpoint animations, computer simulations and interactive tutorials, we teach the fundamentals of quantum mechanics employing a minimum of math (high school algebra, square roots, and a little trigonometry) but going into detail on a number of complex quantum ideas. We begin with the Stern-Gerlach experiment, including delayed choice and Bell's inequality variants. Then we focus on light developing the quantum theory for partial reflection and diffraction. At this point we demonstrate the complexity of quantum physics by showing how watched and unwatched two-slit experiments behave differently and how quantum particles interfere. The four week course ends with advanced topics in light where we cover the idea of an interaction free measurement, the quantum Zeno effect and indistinguishable particles via the Hong-Ou-Mandel experiment. We hope this MOOC will reach thousands of students interesting in learning quantum mechanics without any dumbing down or the need to learn complex math. It can also be used with undergraduates to help with conceptual understanding. Funded by the National Science Foundation under grants numbered PHY-1620555 and PHY-1314295 and by Georgetown University.

  7. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  8. Phase space quantum mechanics - Direct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasiri, S.; Sobouti, Y.; Taati, F.

    2006-09-15

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of themore » formalism are demonstrated throughout the text.« less

  9. Teaching Quantum Mechanics with qCraft: Outreach and Video Games

    NASA Astrophysics Data System (ADS)

    Kubica, Aleksander; Chatwin-Davies, Aidan; Michalakis, Spyridon

    Why is quantum mechanics considered a hard and inaccessible subject? Part of the difficulty is due to the nature of the subject itself. However, no small part of the difficulty is its pedagogy, which often relies on out-of-date historical motivation and experimental evidence that is disconnected from day-to-day experiences. In this first talk, we explore ways in which video games are well-suited to teaching quantum mechanics, in particular with regards to building intuition, as well as some of their limitations. We then illustrate these considerations through qCraft, an extension for Minecraft that incorporates aspects of quantum mechanics into the game.

  10. Capacities of quantum amplifier channels

    NASA Astrophysics Data System (ADS)

    Qi, Haoyu; Wilde, Mark M.

    2017-01-01

    Quantum amplifier channels are at the core of several physical processes. Not only do they model the optical process of spontaneous parametric down-conversion, but the transformation corresponding to an amplifier channel also describes the physics of the dynamical Casimir effect in superconducting circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited amplifier channels for one of the most general communication tasks, characterized by the trade-off between classical communication, quantum communication, and entanglement generation or consumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off between public classical communication, private classical communication, and secret key generation. Third, we determine the capacity region for a broadcast channel induced by the quantum-limited amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by classical coherent-detection strategies. In all three scenarios, we find that the capacities significantly outperform communication rates achieved with a naive time-sharing strategy.

  11. Quantumness and the role of locality on quantum correlations

    NASA Astrophysics Data System (ADS)

    Bellomo, G.; Plastino, A.; Plastino, A. R.

    2016-06-01

    Quantum correlations in a physical system are usually studied with respect to a unique and fixed decomposition of the system into subsystems, without fully exploiting the rich structure of the state space. Here, we show several examples in which the consideration of different ways to decompose a physical system enhances the quantum resources and accounts for a more flexible definition of quantumness measures. Furthermore, we give a different perspective regarding how to reassess the fact that local operations play a key role in general quantumness measures that go beyond entanglement—as discordlike ones. We propose a family of measures to quantify the maximum quantumness of a given state. For the discord-based case, we present some analytical results for 2 ×d -dimensional states. Applying our definition to low-dimensional bipartite states, we show that different behaviors can be reported for separable and entangled states vis-à-vis those corresponding to the usual measures of quantum correlations. We show that there is a close link between our proposal and the criterion to witness quantum correlations based on the rank of the correlation matrix, proposed by Dakić, Vedral, and Brukner [Phys. Rev. Lett. 105, 190502 (2010), 10.1103/PhysRevLett.105.190502].

  12. Quantum crystallographic charge density of urea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  13. Quantum crystallographic charge density of urea

    DOE PAGES

    Wall, Michael E.

    2016-06-08

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  14. Consistent Quantum Theory

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2001-11-01

    Quantum mechanics is one of the most fundamental yet difficult subjects in physics. Nonrelativistic quantum theory is presented here in a clear and systematic fashion, integrating Born's probabilistic interpretation with Schrödinger dynamics. Basic quantum principles are illustrated with simple examples requiring no mathematics beyond linear algebra and elementary probability theory. The quantum measurement process is consistently analyzed using fundamental quantum principles without referring to measurement. These same principles are used to resolve several of the paradoxes that have long perplexed physicists, including the double slit and Schrödinger's cat. The consistent histories formalism used here was first introduced by the author, and extended by M. Gell-Mann, J. Hartle and R. Omnès. Essential for researchers yet accessible to advanced undergraduate students in physics, chemistry, mathematics, and computer science, this book is supplementary to standard textbooks. It will also be of interest to physicists and philosophers working on the foundations of quantum mechanics. Comprehensive account Written by one of the main figures in the field Paperback edition of successful work on philosophy of quantum mechanics

  15. Thermal Quantum Correlations in Photosynthetic Light-Harvesting Complexes

    NASA Astrophysics Data System (ADS)

    Mahdian, M.; Kouhestani, H.

    2015-08-01

    Photosynthesis is one of the ancient biological processes, playing crucial role converting solar energy to cellular usable currency. Environmental factors and external perturbations has forced nature to choose systems with the highest efficiency and performance. Recent theoretical and experimental studies have proved the presence of quantum properties in biological systems. Energy transfer systems like Fenna-Matthews-Olson (FMO) complex shows quantum entanglement between sites of Bacteriophylla molecules in protein environment and presence of decoherence. Complex biological systems implement more truthful mechanisms beside chemical-quantum correlations to assure system's efficiency. In this study we investigate thermal quantum correlations in FMO protein of the photosynthetic apparatus of green sulfur bacteria by quantum discord measure. The results confirmed existence of remarkable quantum correlations of of BChla pigments in room temperature. This results approve involvement of quantum correlation mechanisms for information storage and retention in living organisms that could be useful for further evolutionary studies. Inspired idea of this study is potentially interesting to practice by the same procedure in genetic data transfer mechanisms.

  16. Probability in the Many-Worlds Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Vaidman, Lev

    It is argued that, although in the Many-Worlds Interpretation of quantum mechanics there is no "probability" for an outcome of a quantum experiment in the usual sense, we can understand why we have an illusion of probability. The explanation involves: (a) A "sleeping pill" gedanken experiment which makes correspondence between an illegitimate question: "What is the probability of an outcome of a quantum measurement?" with a legitimate question: "What is the probability that `I' am in the world corresponding to that outcome?"; (b) A gedanken experiment which splits the world into several worlds which are identical according to some symmetry condition; and (c) Relativistic causality, which together with (b) explain the Born rule of standard quantum mechanics. The Quantum Sleeping Beauty controversy and "caring measure" replacing probability measure are discussed.

  17. Nonplanar KdV and KP equations for quantum electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Dutta, Debjit

    2015-12-01

    Nonlinear quantum ion-acoustic waves with the effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the standard reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation for ion-acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave are studied analytically. It is found that the dynamics of ion-acoustic solitary waves (IASWs) is governed by a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE). The results could help in a theoretical analysis of astrophysical and laser produced plasmas.

  18. Quorum sensing: a quantum perspective.

    PubMed

    Majumdar, Sarangam; Pal, Sukla

    2016-09-01

    Quorum sensing is the efficient mode of communication in the bacterial world. After a lot of advancements in the classical theory of quorum sensing few basic questions of quorum sensing still remain unanswered. The sufficient progresses in quantum biology demands to explain these questions from the quantum perspective as non trivial quantum effects already have manifested in various biological processes like photosynthesis, magneto-reception etc. Therefore, it's the time to review the bacterial communications from the quantum view point. In this article we carefully accumulate the latest results and arguments to strengthen quantum biology through the addition of quorum sensing mechanism in the light of quantum mechanics.

  19. Experimental test of state-independent quantum contextuality of an indivisible quantum system

    NASA Astrophysics Data System (ADS)

    Li, Meng; Huang, Yun-Feng; Cao, Dong-Yang; Zhang, Chao; Zhang, Yong-Sheng; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can

    2014-05-01

    Since the quantum mechanics was born, quantum mechanics was argued among scientists because the differences between quantum mechanics and the classical physics. Because of this, some people give hidden variable theory. One of the hidden variable theory is non-contextual hidden variable theory, and KS inequalities are famous in non-contextual hidden variable theory. But the original KS inequalities have 117 directions to measure, so it is almost impossible to test the KS inequalities in experiment. However bout two years ago, Sixia Yu and C.H. Oh point out that for a single qutrit, we only need to measure 13 directions, then we can test the KS inequalities. This makes it possible to test the KS inequalities in experiment. We use the polarization and the path of single photon to construct a qutrit, and we use the half-wave plates, the beam displacers and polar beam splitters to prepare the quantum state and finish the measurement. And the result prove that quantum mechanics is right and non-contextual hidden variable theory is wrong.

  20. Quantum Hamilton equations of motion for bound states of one-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Köppe, J.; Patzold, M.; Grecksch, W.; Paul, W.

    2018-06-01

    On the basis of Nelson's stochastic mechanics derivation of the Schrödinger equation, a formal mathematical structure of non-relativistic quantum mechanics equivalent to the one in classical analytical mechanics has been established in the literature. We recently were able to augment this structure by deriving quantum Hamilton equations of motion by finding the Nash equilibrium of a stochastic optimal control problem, which is the generalization of Hamilton's principle of classical mechanics to quantum systems. We showed that these equations allow a description and numerical determination of the ground state of quantum problems without using the Schrödinger equation. We extend this approach here to deliver the complete discrete energy spectrum and related eigenfunctions for bound states of one-dimensional stationary quantum systems. We exemplify this analytically for the one-dimensional harmonic oscillator and numerically by analyzing a quartic double-well potential, a model of broad importance in many areas of physics. We furthermore point out a relation between the tunnel splitting of such models and mean first passage time concepts applied to Nelson's diffusion paths in the ground state.

Top